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Abstract 
 
Earth’s gravity is continuously varying with respect to time due primarily to mass 
transports within the Earth system and external gravitational forcing. A new formalism 
based on energy conservation principle for time-variable gravity field recovery using 
satellite gravimetry has been developed and yields more accurate estimation of in-situ 
geopotential difference observables using K-Band Ranging (KBR) measurements from 
the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. The new 
approach can preserve more time-variable gravity information sensed by KBR range-rate 
measurements and reduce orbit error as compared to previous energy balance studies. 
Results based on analysis of more than 10 years of GRACE data indicate that the 
estimated geopotential differences agree well with the predicted values from official 
Level 2 solutions: with much higher correlation of 0.9, as compared to 0.5–0.8 reported 
by previous energy balance studies. This study demonstrates that the new approach is 
more flexible for both global and regional temporal gravity recovery, leading to the first 
independent GRACE monthly solution series based on energy conservation principle, 
which is comparable to the results from different approach. The developed formalism is 
applicable to the general case of low-low satellite-to-satellite radiometric or laser 
interferometric tracking measurements, such as GRACE Follow-on or other Next 
Generation Gravity Field missions, for efficient retrieval and studies of Earth’s mass 
transport evolutions. 
 
The regional gravity analysis over Greenland reveals that a substantially higher temporal 
resolution is achievable at 10 or 11-day interval from GRACE data, as compared to the 
official monthly solutions, but without the compromise of spatial resolution, nor the need 
to use regularization or post-processing. Studies of the terrestrial and ground water 
storage change over North China Plain show high correlation in sub-monthly scale, 
among the 11-day time-variable gravity solutions from this study, in-situ data, and 
hydrologic and atmospheric models. The 11-day solutions with 1-day step successfully 
capture the surface mass change caused by the rapid snow and ice accumulation and 
melting during the extreme weather event of 2008 Southeast China snow and ice storm. 
These results demonstrated that sub-monthly solutions from GRACE can provide an 
additional constraint to understand the rapid mass transport and the dynamic processes 
for both extreme weather events and short-time surface and ground water monitoring, 
which may potentially improve our understanding of various mass transports within the 
Earth system, and applicable to societal services such as disaster response or mitigation, 
and water resources management. 
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Chapter 1 Introduction 
 
1.1 GRACE Mission Overview  
 
Launched in March 2002, the Gravity Recovery and Climate Experiment (GRACE) 
mission [Tapley et al., 2004a] has been mapping Earth’s time-variable gravity field from 
space at approximate 400~500 km altitude for more than a decade. The resulting 
remarkable scientific advances [Cazenave and Chen, 2010] have revolutionized our 
understanding both for solid earth study, such as Glacial Isostatic Adjustment [e.g., 
Tamisiea et al., 2007; van der Wal et al., 2015] and earthquakes [e.g., Han et al., 2006; 
Dai et al., 2014], and for mass transport studies on the Earth surface, such as ice sheet 
mass balance [e.g., Velicogna et al., 2006; Chen et al., 2006], oceanography [e.g., 
Johnson et al., 2013], and hydrology [e.g., Rodell et al., 2009; Han et al., 2009]. From 
the data collected by the K/Ka-Band Ranging (KBR) low-low satellite-to-satellite 
tracking (SST) and the high-low GPS-GRACE twin-satellite tracking, monthly mean 
gravity field models in the form of Stokes coefficients (known as GRACE Level-2 
products) have been routinely computed and made available publicly by the University of 
Texas Center for Space Research (CSR), GeoForschungsZentrum (GFZ) German 
Research Centre for Geosciences, Jet Propulsion Laboratory (JPL) and others. The 
estimation approach used by the three agencies and others [e.g., Luthcke et al., 2006; 
Bruinsma et al., 2010] to generate these solutions is the so-called dynamic method based 
on the dynamic orbit determination and parameter recovery principle [Tapley et al., 
2004b], i.e., a linearized least squares adjustment using observations for gravity 
coefficients, orbit and other parameters. Besides the conventional dynamic method, 
various similar or alternative approaches have also been proposed and implemented, such 
as mascon approach [Rowland et al., 2005, 2010], short-arc approach [Mayer-Gürr et al., 
2007; Kurtenbach et al., 2009], celestial mechanics approach [Meyer et al., 2012], 
acceleration approach [Chen et al., 2008; Liu et al., 2010], and finally energy balance 
approach [Jekeli, 1999; Visser et al., 2003; Han et al., 2006; Ramillien et al., 2011; 
Tangdamrongsub et al., 2012]. The last approach is the focus of this study. 
 
1.2 Energy Balance Approach 
 
Energy balance approach, also known as energy integral approach, can be traced back to 
the 1960s (e.g., Bjerhammer [1967]) in the early era of satellite geodesy. The basic idea 
of this approach is to explore the possibility of applying the principle of energy 
conservation, i.e., the constant sum of kinematic energy and potential energy, to the 
satellite tracking data for direct measuring of Earth’s gravity field. The concept was 
investigated again by Jekeli [1999] at the beginning of the Decade of Geopotential 
Missions, and developed the first practical formulation to explicitly express the 
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relationship between geopotential and satellite data in inertial frame (later called energy 
equation), with conceived application for the forthcoming satellite gravimetry missions, 
Challenging Minisatellite Payload (CHAMP) and GRACE. Shortly after, Visser et al. 
[2003] similarly derived the energy equation but in Earth-fixed frame. Since then, a 
renewed interest of using energy balance approach to estimate Earth’s static and time-
variable gravity field was aroused during the last decade, especially for applications using 
the data from satellite gravimetry missions, such as CHAMP [e.g., Han et al., 2002; 
Gerlach et al., 2003; Badura et al., 2006], GRACE [e.g., Han et al., 2006; Ramillien et 
al., 2011; Tangdamrongsub et al., 2012] and Gravity Field and Steady-State Ocean 
Circulation Explorer (GOCE) [e.g., Pail et al., 2011]. 
 
One of the major advantages of energy balance formalism is that it is the sole approach 
that can be utilized to directly estimate the in-situ geopotential observables (for a single 
satellite) or geopotential difference observables (for a pair of satellites), which is realized 
through the so-called energy equation that represent a clear connection between the 
geometric measurements and geopotential. As a quantity with explicit geophysical 
interpretation, the in-situ geopotential observables are more natural to be used for gravity 
field inversions as compared with other approaches. The estimation procedure is also 
more efficient because of the linear relationship between the observables and gravity 
coefficients, that is, there is no linearization nor the assumption that the a priori state 
parameters have to be known sufficiently close to the true parameters. More importantly, 
the in-situ geopotential difference observables would greatly benefit the time-variable 
gravity recovery missions, such as GRACE, since the epoch-wise observables can 
support flexible spatial and temporal resolutions, leading to local enhanced solutions 
which could possibly retrieve more regional gravity information [Han et al., 2005; 
Schmidt et al., 2006, 2008; Tangdamrongsub et al., 2012].  
 
1.3 Motivation for This Study 
 
However, appropriate applications of the energy balance approach to GRACE-type 
mission data for highly accurate geopotential estimation is still a demanding task. One of 
the most challenging problems is how to efficiently extract the gravity signal sensed by 
the essential measurements from SST, i.e., KBR range-rate measurements, of which the 
energy equation does not explicitly express. Previous researchers attempt to adjust range-
rate and orbit data simultaneously via a nonlinear least squares estimation with either 
fixed constraints [Han et al., 2006] or stochastic constraints [Tangdamrongsub et al., 
2012]. The use of constrained least squares adjustment, though straightforward, is still a 
compromise between the very high-precision range-rate data and the relative low-
precision orbit data, which may tend to distort the estimation of in-situ geopotential 
observables caused by errors including orbit error. The orbit error, inherited from the 
chosen reference orbit, would contaminate the resulting gravity estimation especially at 
the low-frequency band [Ditmar et al., 2012]. Besides, since orbit data are usually 
correlated with the a priori gravity model, any difference between the a priori models 
used in the orbit and the models used for energy method would cause systematic errors 
during the reduction of range-rate measurements. In addition, recent study [Guo et al., 
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2015] has demonstrated that the previous formulation of the energy equation may contain 
a non-negligible approximation, which could overwhelm the time-variable gravity signal 
also at the low-frequency band. These issues limit the application of the earlier developed 
in-situ geopotential differences only to regional gravity analysis, i.e., at the high-
frequency band, and arguably regions with large temporal gravity field signals. As a 
result, large-scale gravity field inversion, including global gravity solution, has not been 
fully exploited or were inaccurately applied based on previous energy approaches. 
 
The primary purpose of this study is to overcome these limitations by employing an 
improved energy balance approach to obtain a more accurate estimation of in-situ 
geopotential difference observables, with an aim to preserve both the low- and high-
frequency gravity signal and consequently yield a full scale, i.e., both regional and global, 
gravity inversion. To achieve this goal, I develop a novel formulation, called the 
alignment equation, to incorporate range-rate observations into energy equation, together 
with a method to reconstruct the related reference orbit. In addition, a more rigorous 
formulation of energy equation [Guo et al., 2015] is applied to model the in-situ 
geopotential difference observables, which is proved to be requisite for the reduction of 
the GRACE measurement for gravity field inversion.  
 
The objective of this study is also to use the resulting geopotential difference estimates to 
solve a comparable series of global monthly solution with official GRACE monthly 
products. Based on that, I aim to explore the possibility to improve the temporal 
resolution and recover any possible sub-monthly gravity change, and to address a few of 
the contemporary problems in Earth sciences. Three different cases are carried out to 
demonstrate the enhanced temporal resolution and the reliability of my gravity solutions. 
 
1.4 Dissertation Outlines 
 
The outline of this paper is as follows:  
 
Chapter 2 presents the detailed methodology of the improved energy balance approach. It 
starts with a brief description of the general idea of energy balance approach formalism, 
following by the introducing of alignment equation and discussion about the essential 
advantage of this equation. After that the orbit reconstruction algorithm is given as well 
as the description of the a priori gravity models adopted in this study. The last section of 
this chapter describes the precise derivation of energy equation and the corresponding 
numerical results and their accuracy assessment.   
 
Chapter 3 contains the results using the improved energy balance approach. The 
estimation of geopotential differences is given first as well as the calibration of empirical 
parameters for both accelerometer and range-rate. Next a new global monthly solution 
series based on energy conservation principle is presented from 2003 to 2013 using the 
geopotential difference estimates, and then the solution series are evaluated and 
compared with official GRACE monthly products for both the secular and seasonal 
gravity variation. Finally, I demonstrate that the solutions with enhanced temporal 
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resolutions are achievable and apply my sub-monthly solutions to study three 
contemporary Earth science problems. The first research topic focuses on the estimates of 
the Greenland ice sheet mass balance and ice mass evolutions. The second topic is to 
quantify terrestrial and ground water storage changes over the North China Plain aquifer 
using the improved GRACE solutions. The third topic is for the first detection of the 
2008 Southeast China snow and ice storm using higher temporal sampled GRACE 
solutions.  
 
Chapter 4 concludes the study and proposes future work. 
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Chapter 2 Improved Energy Balance Formalism 
 
The orbit data of a near-Earth satellite, the positions and velocities within a well-defined 
reference frame, are dominated by the gravitational perturbations and other forces, and 
thus can be regarded as observations and used for gravity recovery, which is the basic 
concept of the energy balance approach. The energy equation, a mathematical expression 
of this concept, can be formulated in either Earth-fixed frame [Visser et al., 2003; Zeng et 
al., 2015], or Earth-centered inertial frame [Jekeli, 1999]. The formulation in the Earth-
centered inertial frame for a single satellite can be expressed as: 
 

 V = 1
2
!r 2 + ∂V

∂t
dt

t0

t

∫ − f ⋅ !rdt
t0

t

∫ − E 0 , (2.1) 

 
where V is the total gravitational potential (for unit mass), r (implicit in V) and !r  are the 
orbit position and velocity vectors in inertial frame, f is the non-conservative force, 

∂V ∂t( )dt
t0

t

∫  
is the so-called potential rotation term due to time variations of the gravity 

field with respect to the inertial frame, which is mainly caused by the variable Earth 
rotation, and E0 is a integral constant. 
 
The total gravitational potential V can be decomposed into two parts V=VE+VR, where VE 
is the geopotential, including both the Earth’s mean, including secular, seasonal and other 
variable components which can be treated as a constant field during a short time, and VR 
is the residual gravitational potential, mostly from the high-frequency (e.g., semi-diurnal 
and diurnal) varying geopotential, such as tides and high-frequency barotropic variation 
from atmosphere and ocean, which are assumed that they are known and will be removed 
from the observations. If we assume the residual gravitational potential VR can be reduced 
or corrected using a priori models, and that the nonconservative force f can be measured 
by an onboard 3-axis accelerometer, we arrive at the complete formulation of energy 
equation for estimating geopotential VE, from a single satellite, which can be expressed as 
 

 V E = 1
2
!r 2 + ∂V

∂t
dt

t0

t

∫ − f ⋅ !rdt
t0

t

∫ −V R − E 0 . (2.2) 

 
And for estimating geopotential difference from a pair of satellites, such as GRACE, the 
formulation is simply the subtraction between the equations of two single satellites:  
 

 V12
E =V2

E −V1
E = 1

2
!r12

2 + !r1 ⋅ !r12 +
∂V12
∂t

dt
t0

t

∫ − f2 ⋅ !r2 − f1 ⋅ !r1( )dt
t0

t

∫ −V12
R − E12

0 , (2.3) 
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where the subscripts 1 and 2 represent the two satellites, and ‘12’ their difference. The 
orbit data (r and !r ) in both formulations are normally regarded as observables, which 
can be obtained from a pre-computed reference orbit using high-low GPS tracking data.  
 
Equations (2.2) and (2.3) are the widely used energy equations for the case of CHAMP 
and GRACE, respectively. The resulting geopotential or geopotential difference estimates 
at each orbital sampling point can be directly used for both global and regional gravity 
field recovery.  
 
2.1 A Novel Method to Utilize Range-rate Measurements 
 
2.1.1 Motivation of Seeking a New Method 
 
Application of the energy balance approach on GRACE-type mission could be much 
more challenging than CHAMP-type mission partly because energy equation (2.3) is 
unable to explicitly contain the tracking measurements from the low-low SST system, 
i.e., range-rate measurements from KBR system in the case of GRACE. Previous studies 
usually use either of two methods to combine range-rate with the energy equation. One is 
an approximate method proposed by Wolff [1969], which relates the range-rate 
measurements to geopotential differences through a simplified equation as V12 ≈ !ρ !r1  or 
V12 ≈ !ρ !r1 . But as an approximate method, it has not yet been successfully applied, since 
it is not suitable for high-precision geopotential estimation [Morrison, 1970], except for 
simulation studies [Jekeli, 1999]. The other method, as I mentioned before, is to treat 
range-rate measurements as redundancy observations, and use them with the orbit data, 
by a nonlinear least squares adjustment, where the energy equation is treated as either a 
fixed [Han et al., 2006], or as a stochastic [Tangdamrongsub et al., 2012] constraint. The 
estimates would be the six inter-satellite orbit states and other empirical parameters. 
However, it is known that the uncertainty of GRACE orbits is around 1~2 cm in positions 
and 10~20 µm/s in velocities (only for dynamic orbit; for kinematic orbit the uncertainty 
in velocities is even worse) [Kang et al., 2006], whereas the range-rate measurements 
have a much lower uncertainty of about 0.2 µm/s [Loomis et al., 2012]. The use of 
constrained least squares adjustment may be able to extract some information from range-
rate measurement, but it is still a compromise between high-precision data and low-
precision data, as the (unknown) systematic error, e.g., from orbit errors, would 
inevitably affect the solved parameters, and subsequently bias the estimation of 
geopotential difference observables.  
 
In this study I aim to develop a new, alternative method to adjust inter-satellite orbit state 
parameters using range-rate measurements. The rationale is based on a simple fact, that a 
single range-rate measurement cannot be sensitive to all the six independent intersatellite 
orbit components (three relative position components and three relative velocity 
components), especially for the case of GRACE where the precision of range-rate is 
about two orders of magnitude higher than that of inter-satellite orbit data. Therefore, I 
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need to first find the most sensitive parameters(s) to the range-rate measurement, and 
then seek an approach to adjust or align the corresponding parameters(s) using range-rate 
measurements. 
 
According to the previous study by Rowlands et al. [2002], the six independent 
intersatellite orbit components, i.e., the baseline vector can be transformed into a local 
Cartesian coordinate system. The xy plane of the local system can be defined to be 
perpendicular to the position vector of either satellite or the midpoint of the two satellites. 
The x axis is pointing to the local east and y axis is pointing to the flight direction. The z 
axis is defined according to the right-hand rule. Further, the Cartesian vector (relative 
position and velocity) in the local coordinate system can be converted into spherical 
coordinates, i.e., magnitude, pitch, which is the angle the vector makes with xy plane, and 
yaw, which is the angle that the projection onto the xy plane makes with the X axis. 
Under the new coordinate system, simulation study by Rowlands et al. [2002] has shown 
that, among all the inter-satellite parameters, the relative velocity pitch is the most 
sensitive parameter to range-rate measurements, and also one of the most important 
parameters for gravity recovery [Luthcke et al., 2006]. The other two important 
parameters are the relative velocity magnitude and the relative position pitch, but they are 
relatively much less sensitive to range-rate measurements as compared to the relative 
velocity pitch. Based on that, I develop a new equation to use range-rate measurements to 
adjust only the relative velocity pitch, i.e., the most sensitive parameter, and adopt or fix 
the other less sensitive or insensitive parameters as provided by the reference orbits.  
 
2.1.2 Alignment Equation  
 
The derivation of the new equation is straightforward. I start with the relative position 
vector, which can be written as r12 = ρn1 , where n1 = r12 r12  is the unit vector along 
line-of-sight (LOS) direction, and ρ  represent the relative range. Then I take derivative 

on the both sides, and get !r12
!ρ = !ρn1 + !r12

2 − !ρ2n2 , where n2 is the unit vector of the 
derivative of n1. Since n2 have to be orthogonal to n1, n2 can be written as 
n2 = r12 × !r12 × r12( ) r12 × !r12 × r12 . The projection along the direction n2  must be chosen 

as !r12
2 − !ρ2  in order to maintain the whole magnitude of the inter-satellite velocity as 

!r12 .  
 
Finally, I arrive at the new equation as follows: 
 
 !r12

!ρ = !ρ r12
r12

+ !r12
2 − !ρ2 r12 ×

!r12 × r12
r12 × !r12 × r12

, (2.4) 

 
which is referred to as the alignment equation throughout this paper. Here !ρ  represents 
the range-rate measurement, r12  and !r12  are the relative position and velocity vectors 
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from the reference orbit, r12 × !r12 × r12  is the vector triple cross product between them, and 
!r12
!ρ  represents the new relative velocity vector. As we can see, the new relative velocity 

vector !r12
!ρ  would be equal to the original vector !r12  if there is no additional range-rate 

observation, i.e., !ρ  is given as !ρ = !r12 ⋅r12 r12 . In that case, the alignment equation 
would degrade to an identical equation, which represents an exact geometric relationship 
between relative velocity direction vector and range-rate measurement. That means the 
alignment equation itself does not contain any approximation.  
 
Once we have an independent and more accurate measuring of relative range-rate, such 
as the case of GRACE, then the new relative velocity vector !r12

!ρ  would become more 
accurate compared to the original vector !r12  because the pitch angle of relative velocity 
vector has been constrained by, or we can say, aligned to the range-rate. The term 
‘alignment’ actually means the relative velocity pitch, the most sensitive inter-satellite 
parameter to range-rate and most important parameter for gravity recovery, has been 
aligned to the range-rate measurement through the equation. The reason can be further 
explained as follows. 
 
The alignment equation essentially decomposes relative velocity vector into two 
components. One is along the line-of-sight (LOS) direction, where unit vector is 
n1 = r12 r12 , and the correspondent projection is !ρ . The other is orthogonal to the LOS 
direction and is in the plane containing relative position vector and velocity vector, where 
the unit vector is n2 = r12 × !r12 × r12( ) r12 × !r12 × r12 , with the correspondent projection of 

!r12
2 − !ρ2 . In Figure 2.1, I illustrate such decomposition by showing the simple 

geometric configuration of GRACE constellation. As shown in Figure 2.1(b), the inter-
satellite velocity is decomposed into two orthogonal directions along n1  and n2 .  The 
projection along the direction n1  should be equal to range-rate because of the 
relationship !ρ = !r12 ⋅r12 r12  again. Then the other projection along the direction n2  

should be equal to !r12
2 − !ρ2  in order to maintain the same magnitude of the inter-

satellite velocity. 
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Figure 2.1 Geometric configuration of GRACE constellation and its relationship with alignment 
equation. (a) The absolute position and velocity vector for GRACE satellites with respect to the 
Earth’s Center of Mass (CM). (b) The inter-satellite components of position and velocity vector 
and the decomposition of velocity vector, illustrating the derivation of the alignment equation. 
 
 
Again, my goal here is to use high accurate measurement, i.e., the range-rate measured by 
the KBR, to adjust the most sensitive inter-satellite parameter, i.e., the relative velocity 
pitch. In another words, range-rate should be used to replace the relative velocity pitch 
component and form a new ‘pitch-free’ relative velocity vector. That is exactly what the 
alignment equation (2.4) represents. Under the decomposition as equation (2.4), the 
computation of !r12

!ρ  only requires four inter-satellite quantities, which are range-rate !ρ , 
relative velocity magnitude !r12 , LOS direction unit vector n1 , and direction unit vector 
n2  that is always perpendicular to n1  and in the plane of intersatellite position and 
velocity.  Among the four quantities, two of them, !ρ  and n1 , are totally independent of 
the velocity component (as well as the position magnitude), and !r12  is only dependent on 
the velocity magnitude. The last one, unit vector n2 , does rely on the velocity direction, 
but only the yaw angle. Therefore, n2  does not depend on the relative velocity pitch at 
all. This can be further clarified using Figure 2.1 (b). Using the local spherical coordinate 
system, the error of the relative velocity vector can be decomposed into magnitude error, 
pitch error and yaw error. The original vector !r12 obviously contains all three kinds of 
error. In contrast, the new vector !r12

!ρ  by applying the alignment equation can totally 
eliminate pitch and its error of !r12 . It should be emphasized that in Figure 2.1 (b) the four 
vectors, !r1 , !r2 , r12  and !r12 , are not strictly in the same plane. The yaw error of !r12  can 
be explained as the uncertainty between the plane of r12  and !r12 , and the plane of !r1  and 
!r2 . Therefore, by using the alignment equation, the information that are needed from the 
reference orbit are only relative velocity magnitude, relative position direction, and 
relative velocity yaw, but not relative velocity pitch. Therefore, the resulting relative 
velocity vector !r12

!ρ  is a ‘pitch-free’ quantity. The effect of relative velocity pitch from 

𝒏𝟐 

𝒏𝟏 

𝒓̇𝟐 

𝒓𝟏𝟐 
𝒓̇𝟐 

𝒓̇𝟏 

𝒓𝟐 
𝒓𝟏 𝒓̇𝟏𝟐 

𝒓̇𝟏 𝒓𝟏𝟐 

CM 

(a) (b) 

pitch yaw 
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less accurate reference orbit is thus totally eliminated. The only contribution of the 
resulting relative velocity pitch is from range-rate, and therefore the most sensitive 
component to intersatellite observation, has been fully constrained by range-rate 
measurement through the alignment equation. 
 
Also, previous publications usually adopted an equation !ρ = !r12 ⋅r12 r12 , such as 
equation (20) from Jekeli [1999] and equation (2) from Han et al. [2006], for GRACE 
data processing. Here I call it range-rate equation. Comparing the range-rate equation and 
alignment equation, we can see range-rate equation only represents the first component of 
the alignment equation, i.e., the projection along LOS direction. The alignment equation 
provides the other component, which is the direction that is orthogonal to the LOS 
direction, as well as the corresponding projection. By giving the full components, the 
alignment equation can successfully update the relative velocity vector using range-rate 
without any approximation or adjustment. For comparison, previous applications using 
range-rate equation, since it only has part of the components, can only consider it as a 
constraint during the procedure of least squares adjustment. 
 
After applying the alignment equation, the new relative velocity vector !r12

!ρ , would 
subsequently be used as the input to the energy equation (2.3). Again, rather than merely 
providing a method to explicitly incorporate range-rate data into energy equation, 
alignment equation concentrates on aligning the most sensitive inter-satellite parameter 
using range-rate data, instead of equally adjusting it with all the other parameters. In the 
next step, I expect to determine geopotential difference observables solely from range-
rate measurement, and meanwhile minimize the direct effect from the reference orbit to 
the estimates, which will be discussed in the next subsection. 
 
2.2 Reconstruction of the Reference Orbit 
 
The reference orbit, i.e., Cartesian coordinates from both satellites, is another critical 
input to the energy equation (2.3) in addition to the range-rate measurements for GRACE. 
In fact, in the case of CHAMP-type mission, since there are no additional geometric 
measurements, orbit data would be the only geometric input to the energy equation (2.2), 
besides accelerometer measurements. As we know, satellite can be regarded as a free-
falling object that is falling under the sole influence of gravity field if non-conservative 
force can be neglected or completely accounted for. If one could precisely measure the 
orbit, both positions and velocities, thus the gravity information can be directly inferred 
from orbit data itself. 
 
Therefore, satellite gravimetry highly relies on the orbit data instead of direct 
measurement from accelerometer or gravimeter. In fact, gravimetry mission like GRAIL 
(Gravity Recovery and Interior Laboratory) [Konopliv et al., 2013] does not even carry 
an accelerometer or gravimeter, but the (lunar) gravity field can still be recovered by 
satellite-to-satellite and precise orbit tracking with the adequately accurate modeling of 
non-conservative forces.  
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2.2.1 Which Orbit?  
 
2.2.1.1 Coupled Problem Between Orbit and Gravity 
 
However, one must be very cautious about choosing the orbit data as the input of energy 
equation, because orbit products are usually coupled with gravity product for satellite 
gravimetry. Before the GPS era, all the satellite orbits, both on Earth and on other planets 
or the Moon, are dynamically computed using the a priori gravity field and other models. 
Those dynamic orbit data are merely byproduct of the gravity field and cannot be 
regarded as an observable. Using such orbit in energy method for the purpose of solving 
gravity would be problematic or even impossible since the orbit data does not contain any 
new gravity information. In the age of GPS, it becomes possible to geometrically 
compute or measure the satellite orbit on Earth, and these orbits would be less dependent 
of a priori gravity models as compared to the dynamic orbit.  
 
Generally there exist three different choices of reference orbits, namely the kinematic, 
reduced-dynamic or dynamic orbit. For CHAMP, kinematic orbit is normally preferred to 
dynamic or reduced-dynamic orbit because arguably the kinematic orbit is relatively free 
of a priori gravity models. The estimation of geopotential using kinematic orbit could 
avoid being biased toward the a priori gravity model, but the drawback is that a special 
processing, such as interpolation, has to be applied in order to obtain the velocity 
components since kinematic orbits usually can only provide position components, which 
normally would introduce large interpolation error to velocity components in kinematic 
orbit [Gerlach et al., 2003].  
 
The situation is different for the case of GRACE since there exists a redundant and more 
precise geometric observation, i.e., the KBR range-rate measurement. Range-rate should 
dominate the time-variable gravity information, so the geopotential difference 
observables do not rely much on the choice of the reference orbit. Therefore, it is possible 
to choose dynamic or reduced-dynamic orbit as the reference orbit for GRACE gravity 
field recovery, as long as the range-rate measurements are appropriately used to correct 
or adjust the orbit data. So in practice, various reference orbit data have indeed been 
implemented for GRACE real data analysis [Han et al., 2006; Tangdamrongsub et al., 
2012].  
 
It is worth mentioning that directly using those pre-computed dynamic or reduced 
dynamic orbits requires the user must fully comprehend all the a priori models as well as 
the parameterization for the orbit determination, and otherwise any difference between 
the a priori models used in the orbit and the referenced models used for energy method 
would cause systematic errors in the reduction of KBR measurements. On the other side, 
directly using kinematic orbit could avoid these systematic errors, but still would suffer 
from the random error of the kinematic position as well as the interpolation error of the 
velocity components.  
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2.2.1.2 Reconstruction of Purely Dynamic Orbit  
 
In order to avoid any mis-modeled or un-modeled error from the pre-computed dynamic 
or reduce-dynamic orbit, and suppress the random and interpolation error from the 
kinematic orbit, I choose to adopt a purely dynamic orbit as the reference orbit in this 
study. The purpose also aims to partly exclude the direct contribution from the low-
precision reference orbit (compared to range-rate) to the geopotential difference 
estimates. As I said before, when a purely dynamic orbit computed from a priori gravity 
model is used as the only input for energy equation, the output from both equation (2.2) 
and (2.3) would be inevitably reduced to the same a priori gravity model. That means no 
new geopotential information would be obtained from energy equation if only the purely 
dynamic orbits are used without range-rate measurements. Accordingly, once the purely 
dynamic orbit has been aligned through the alignment equation by including the range-
rate measurements, the updated orbit would contain the new time-variable gravity 
information propagated solely from the rang-rate measurement, which would be revealed 
by the energy equation afterwards. By this means, all the new gravity information comes 
from the discrepancy between the range-rate measurement and the dynamic orbit 
computed from a priori gravity model. If the method can be iteratively applied, i.e., using 
the solved gravity solution as a new a priori gravity model, the discrepancy would be 
gradually reduced after each iteration, and the iterated gravity solution would be closer to 
the true gravity field.  
 
The drawback for this method (and probably for all other implements based on energy 
balance principle so far) is that the signal-coherent adjustment is inevitable. The range-
rate measurement (and also the accelerometer data) does not only contain signals and 
white noise, but also systematic error mainly driven by the orbital revolution. These 
systematic errors have to be adjusted with the orbit data, meaning the solved systematic 
parameters are always biased to the a priori gravity model, which is a kind of signal-
coherent adjustment. Again iteration might be able to overcome this problem however it 
will be a topic of the future work. 
 
Nevertheless, comparing to previous studies based on pre-computed orbit, I claim that the 
use of a purely dynamic orbit, together with the new method as alignment equation to 
incorporate the range-rate measurements, would have positive impact on the accuracy of 
the resulting GRACE disturbance potential difference observables. 
 
Instead of computing a dynamic orbit directly from GPS observation, I use an alternative, 
but simple method to reconstruct the purely dynamic orbit from existing orbit data 
products. The similar technique has been used for previous studies on GRACE [Liu et al., 
2010] and GOCE [Yi, 2012]. The idea is to treat the available orbit coordinates (positions 
and/or velocities) as pseudo observations, and estimate a purely dynamic orbit by fitting 
the orbit coordinates with respect to a complete reference model, via least squares 
adjustment. Meanwhile, the accelerometer data are also simultaneously calibrated with 
respect to the purely dynamic orbit. The detailed algorithm for the orbit reconstruction is 
given in next section. 
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2.2.2 Orbit Reconstruction Algorithm 
 
The orbit reconstruction algorithm is based on the principle of statistical orbit 
determination [Tapley et al., 2004b] and can be briefly summarized as follows. 
 
2.2.2.1 Observation Equation and Linearization 
 
First, the observation equation, i.e., observation-state relationship, can be expressed as 
 
 O = F Ξ( )+ e , (2.5) 
 
where O denotes the vector of observations, Ξ  denotes the unknown state vector to be 
estimated, and e denotes the vector of unknown observation errors. For this particular 
problem, O represents the vector of pre-computed orbit coordinates at each epoch and Ξ  
represents the reconstructed orbit coordinates at each epoch and piecewise accelerometer 
parameters. 
 
Observation O and unknown states Ξ  have a significant nonlinear relationship F. 
Therefore, either a nonlinear adjustment should be applied, or the linearization has to be 
conducted first, followed by a linear adjustment and iteration. In the general orbit 
determination problem, the latter is a routine procedure. So I linearize the equation (2.5) 
by applying Taylor-series expansion about a reference trajectory and neglecting terms of 
order higher than the first as 
 

 O ≈ F Ξ0( ) + ∂F
∂Ξ Ξ=Ξ0

Ξ−Ξ0( ) + e , (2.6) 

	
  
where Ξ0  is the reference state vector of the unknowns. So the referenced observation 
vector C = F Ξ0( )  can be computed from the reference trajectory and the nonlinear 
relationship F. By defining the residual observation as y =O −C =O − F Ξ0( ) , the 

partial derivative matrix as A = ∂F
∂Ξ Ξ=Ξ0

, and the residual unknown state vector as 

ξ = Ξ−Ξ0 , I can rewrite the linearized equation (2.6) as 
 
 y = Aξ + e , (2.7) 
 
which can be regarded as a linearized Gauss-Markov Model (GMM) if observation errors 
are considered to be random and have zero expectation as 

 
e  0,σ 2P−1( ) . So the LEast-

Squares Solution (LESS) of this GMM can be given by the expressions 
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 ξ̂ = ATPA( )−1 ATPy , D ξ̂( ) =σ 2 ATPA( )−1 . (2.8) 

 
Therefore the estimates for the unknown states and the associated dispersion and 
covariance matrix can be written as 
 
 Ξ̂ = Ξ0 + ξ̂ , D Ξ̂( ) = D ξ̂( ) .  

 
2.2.2.2 Partial Derivative Matrix 
 
The partial derivative matrix A of nonlinear function F with respect to unknown states Ξ  
is the only term that still needs to be derived. Proper categorization of the unknown states 
will help to clarify the partial derivative formulation. The unknown states Ξ  can be 
divided into two groups as dynamic parameters and kinematic parameters. Dynamic 
parameters are the orbit-related parameter X t( ) , i.e., position and velocity vectors, which 
vary with respect to time due to the dynamic process and can be mapped into other states 
by using a state transition matrix. Kinematic parameters are the additional parameters B, 
such as accelerometer parameters here, which are usually regarded as constant during the 
adjustment. So the unknown states can be written as Ξ = Β,X t( )⎡⎣ ⎤⎦ . After linearization, I 
have  
 
 ξ = β, x t( )⎡⎣ ⎤⎦ . (2.9) 
 
Here I use uppercases to represent the states and parameters and the lowercase to 
represent the residual of states and parameters. The dynamic parameters x t( )  are not 
independent at each epoch because of the dynamic process, and can be propagated from 
the initial dynamic parameters x t0( )  and kinematic parameters by a linear system called 
state transition equation as 
 

 x t( ) = ∂X t( )
∂X t0( )

X0 t0( )
x t0( ) + ∂X t( )

∂Β Β0

β . (2.10) 

 
Therefore, the number of the unknown states can be reduced using the initial state as 
 
 ξ = β, x t0( )⎡⎣ ⎤⎦ , (2.11) 
 
i.e., converting a boundary value problem (2.9) of a differential equation into an initial 
value problem (2.11), which is the basic concept of dynamic orbit determination. 
 
Then I expand the previous GMM equation (2.7) as 
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y = Aξ + e = ∂F
∂Ξ Ξ=Ξ0

ξ + e

= ∂F
∂X t( )

X0 t( )
x t( )+ ∂F

∂Β Β0

β + e
. (2.12) 

 
Substituting the state transition equation (2.10) leads to 
 

 

y = Aξ + e

= ∂F
∂X t( )

X0 t( )

∂X t( )
∂X t0( )

X0 t0( )
x t0( ) + ∂X t( )

∂Β Β0

β
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ ∂F
∂Β Β0

β + e

= ∂F
∂X t( )

X0 t( )

∂X t( )
∂X t0( )

X0 t0( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
x t0( ) + ∂F

∂X t( )
X0 t( )

∂X t( )
∂Β Β0

+ ∂F
∂Β Β0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
β + e

. (2.13) 

 
Hence I arrive at the expression of the partial derivative matrix A. 
 

Here, partial derivatives 
∂F

∂X t( ) X0 t( )
and ∂F

∂Β Β0

 can be computed from the observation 

equation. For this particular problem of orbit reconstruction, the observation equation can 
be written as 
 
 O = X t,X0,Β( )+ e . (2.14) 
 
Therefore, through easy derivation, I get 
 

 
∂F

∂X t( ) X0 t( )
= ∂X
∂X t( ) X0 t( )

= I    and   ∂F
∂Β Β0

= ∂X
∂Β Β0

= 0 . (2.15) 

 

The other two partial derivatives 
∂X t( )
∂X t0( )

X0 t0( )
 and 

∂X t( )
∂Β Β0

, called state transition 

matrices, can be derived from solving state transition equation (2.10). 
 
2.2.2.3 State Transition Matrix 
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I denote the two state transition matrices as Φ1  and Φ2 , i.e., Φ1 =
∂X t( )
∂X t0( )

X0 t0( )
 and 

Φ2 =
∂X t( )
∂Β Β0

.  Then the state transition equation (2.10) can be rewritten as 

 
 x t( ) = Φ1x t0( ) +Φ2β . (2.16) 
 
Now, I need to consider the dynamic equations, which can be expressed as 
 

 
 

X t( ) = f X t( ),Β( )
Β= 0

, (2.17) 

 
where the first equation represents the equations of motion for the satellite, and the 
second equation represents the constant parameters. Similarly, after linearization I have  
 

 

 

x t( ) = ∂ X t( )
∂X t( )

X0 t( )
x t( ) + ∂ X t( )

∂Β Β0

β

β = 0

. (2.18) 

 
Next, by substituting state transition equation (2.16) to the first equation of (2.18), I have 
 

 

 

x t( ) = ∂ X t( )
∂X t( )

X0 t( )
Φ1x t0( ) +Φ2β( ) + ∂ X t( )

∂Β Β0

β

=
∂ X t( )
∂X t( )

X0 t( )
Φ1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
x t0( ) + ∂ X t( )

∂X t( )
X0 t( )

Φ2 +
∂ X t( )
∂Β Β0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
β

. (2.19) 

 
On the other hand, by directly taking derivatives on both sides of state transition equation 
(2.16), I also have 
 
  x t( ) = Φ1x t0( ) + Φ2β . (2.20) 
 
Comparing the two equations above, (2.19) and (2.20), I arrive at 
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Φ1 =
∂ X t( )
∂X t( ) X0 t( )

Φ1

Φ2 =
∂ X t( )
∂X t( ) X0 t( )

Φ2 +
∂ X t( )
∂Β Β0

. (2.21) 

 
Equation (2.21) are the differential equations that the state transition matrices should 
satisfy, which means the state transition matrices can be solved by integrating equation 
(2.21) with a proper initial condition. 
 
The initial conditions of the transition matrices can be found from equation (2.16) by 
letting t = t0 , which leads to 
 
 x t0( ) = Φ1 t0( )x t0( ) +Φ2 t0( )β .  (2.22) 
 
That is, the initial conditions of the transition matrices can be expressed as 
 

 
Φ1 t0( ) = I
Φ2 t0( ) = 0 .  (2.23) 

 
Therefore, the problem of orbit reconstruction can be fully solved by numerically 
integrating differential equations of state transition matrices (2.21) and dynamic 
equations (2.17), in order to fulfill the partial derivative matrix A in the GMM (2.13). The 
only thing left is the two partial derivative matrices during the linearization of the 

dynamic equation, i.e., 
 

∂ X t( )
∂X t( ) X0 t( )

 and 
 

∂ X t( )
∂Β Β0

. In the next section, I will describe the 

background dynamic models used in this study and derive the two partial derivative 
matrices using the corresponding background models. 
 
2.2.3 Dynamic Model and Input Orbit Data 
 
2.2.3.1 Dynamic Equation and its Partial Derivative 
 
As I said before, during the process of the orbit reconstruction, the dynamic models 
would serve two purposes. One is for the equations of motion on the right-hand side of 
the first equation of (2.17), which has to be as accurate as possible. The other is for the 
partial derivative matrix on the right-hand side of the first equation of (2.18) and further 
for the state transition matrix, which can be approximate since it is already a linearization 
of the dynamic equation. The general form of dynamic equation can be expressed as 
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rx = vx
ry = vy
rz = vz
vx = ax
vy = ay
vz = az

.  (2.24) 

 
where r = rx, ry, rz⎡⎣ ⎤⎦

T
 is the position vector, v = vx,vy,vz⎡⎣ ⎤⎦

T
 is the velocity vector, and 

a = ax,ay,az⎡⎣ ⎤⎦
T

 is the acceleration vector. Using the above notation, that is  
 
 X t( ) = rT ,vT⎡⎣ ⎤⎦

T
= rx, ry, rz,vx,vy,vz⎡⎣ ⎤⎦

T
 (2.25) 

 
 !X t( ) = vT ,aT⎡⎣ ⎤⎦

T
= vx,vy,vz,ax,ay,az⎡⎣ ⎤⎦

T
 (2.26) 

 
The partial derivative matrix of the satellite state time derivative with respect to satellite 
state is given as 
 

 
∂ !X t( )
∂X t( ) =

03×3 I3×3
∂a
∂r

⎛
⎝⎜

⎞
⎠⎟ 3×3

∂a
∂v

⎛
⎝⎜

⎞
⎠⎟ 3×3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (2.27) 

 
which is a 6 by 6 matrix.  
 
The partial derivative matrix of the satellite state time derivative with respect to constant 
parameters is given as 
 

 
∂ !X t( )
∂Β Β0

=
03×m
∂a
∂Β

⎛
⎝⎜

⎞
⎠⎟ 3×m

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (2.28) 

 
which is a 6 by m matrix, if the number of the constant parameters is m. 
 
By substituting equation (2.27) and (2.28) into (2.21), one can further solve the 
differential equation of the state transition matrix. Including the 6 differential equations 
of motion, the total number of the differential equations that need to solve is 
6 + 6 × 6 + 6 ×m = 42 + 6m . All the differential equations can be simultaneously solved 
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using a numerical integrator. The detailed dynamic equation of motion is given in next 
section. 
 
2.2.3.2 Dynamic Models Used in This Study 
 
The equation of motion can be explicitly expressed as 
 
 !!r = a = g + f + ares  (2.29) 
 
where g represents all conservative forces, such as geopotential, tide, non-tidal variation, 
N-body perturbation and some other conservative forces, f represents non-conservative 
force measured by the on-board accelerometer and orientation data, ares represents other 
residual accelerations, such as general relativity perturbation. 
 
The background models adopted in this study are identical to the models used by GFZ for 
solving the official GRACE Level-2 (L2) product Release 05 (RL05) [Dahle et al., 
2012], which include geopotential model from EIGEN-6C up to degree and order 200, 
anelasticity solid Earth tides model with frequency dependent corrections from IERS 
2010 Standard [Petit and Luzum, 2010] (Section 6.2), EOT11a ocean tides model from 
Mayer-Gürr et al. [2012], atmosphere and oceanic non-tidal variability from GRACE 
AOD1B RL05 product, pole tide model from IERS 2010 (Section 6.4), N-body 
perturbation with indirect J2 effect from the DE421 ephemerides, general relativistic 
perturbation from IERS 2010 (Section 10.3), atmosphere tides from Biancale and Bode 
[2006], and ocean pole tide model from IERS 2010 (section 6.5). The accelerometer data 
from GRACE Level 1B (L1B) ACC1B product, together with orientation data from L1B 
SCA1B product, are used to model the non-gravitational acceleration. 
 
2.2.3.3 Input Pre-computed Orbit Products 
 
There are many existing orbit data products available to potentially serve as the input of 
the reconstruction of the purely dynamic orbit. I have tested three different highly 
accurate scientific orbit products from independent institutes, which are the kinematic 
orbit product from National Central University, Taiwan [Courtesy, Tzupang Tseng], the 
kinematic orbit product from University of Bern [Courtesy, Adrian Jäggi], and the 
reduced-dynamic orbit from JPL, i.e., the GRACE L1B GNV1B product [Courtesy, 
Dahning Yuan]. I found the difference between the resulting reconstructed purely 
dynamic orbits using these orbit products negligible. In addition, the subsequent 
geopotential difference observables are also not sensitive to the input orbit product 
because of the reconstruction process. Therefore, I simply choose the L1B GNV1B 
product as the input orbit data to reconstruct the purely dynamic orbit since it is readily 
available with other L1B products. 
 
The reconstructed dynamic orbit is first used as the input of the alignment equation (2.4), 
together with the range-rate data from GRACE L1B KBR1B product. The resulting new 
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relative velocity vector !r12
!ρ  and the accelerometer calibration parameters from the 

reconstruction process are then used as the input data to the energy equation (2.3). Again, 
this process will minimize the direct effect from the reference orbit to the geopotential 
differences simply because the estimates would be reduced to the a priori gravity model 
if range-rate data were absent. New gravity information could be revealed only if the 
range-rate data is used to correct orbit data through the alignment equation. One may 
argue that this process may also eliminate the possible contribution from GPS tracking 
data to gravity estimation, but considering the much higher (~50 times) noise level (both 
high frequency and low frequency) in the orbit data as compared to the KBR range-rate 
data, I believe it is a reasonable tradeoff. Besides, it is worth pointing out this strategy is 
also used by Luthcke et al. [2006]. They applied the traditional dynamic method to solve 
GRACE monthly solution, but also solely from range-rate measurements, and claim they 
achieved similar or even better monthly solutions than the official GRACE Level 2 data 
products.  
 
2.3 Formulation and Assessment of Energy Equation 
 
When energy equation (2.3) is applied to compute the geopotential difference, all the 
quantities and terms on the right-hand side can be computed from data or based on 
reference models, except one term, ∂V ∂t( )dt

t0

t

∫ , the so-called “potential rotation term”. 

The potential rotation term represents the rate of change of the total potential V in the 
geocentric inertial frame, and the integral is a line integral following the orbits of the two 
satellites from t0 to t. In energy equations of both equation (2.2) for single satellite and 
equation (2.3) for the twin satellites, the potential rotation term must be reformulated for 
practical purpose; otherwise, the unknown, geopotential VE would appear in both sides of 
the equation. This subsection will discuss how to formulate the energy equation. Here 
only the single satellite case (equation (2.2)) needs to be considered, since the twin 
satellite case (equation (2.3)) is merely the subtraction between the equations of two 
single satellites. 
 
The formulation of energy equation (2.2) previously developed by Jekeli [1999] is as 
follows: 
 

 V E ≈ 1
2
!r 2 −ω x!y − y!x( )− f ⋅ !rdt

t0

t

∫ −V R − E 0 , (2.30) 

 
where the potential rotation term was approximated as ∂V ∂t( )dt

t0

t

∫ ≈ −ω x!y − y!x( ) , x and 

y represent the first and second component for position vector, and ω  is the nominal 
Earth’s angular velocity, i.e., Earth’s angular velocity vector along the third axis.  
 
However, Guo et al. [2015] have already demonstrated via simulation that this 
approximation of the potential rotation term does not fulfill the precision of GRACE 
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observation, because the contribution of the time variable part of the gravitational 
potential to the potential rotation term was partly neglected. Although Ramillien et al. 
[2011] computed the potential rotation term in a different way, the same approximation 
has been made. Instead, a more accurate formulation of the energy equation should be 
used as follows: 
 

 V E ≈ 1
2
!r 2 −w ⋅ r × !r( )− a ⋅ !r −w × r( )dt

t0

t

∫ − E 0 , (2.31) 

 
where a = ∇V R + f  is the acceleration of both residual geopotential acceleration and 
nonconservative acceleration, and w  is Earth’s angular velocity of Earth-fixed frame 
relative to the inertial frame, with coordinates in the inertial frame. The third term of the 
right-hand side can be numerically integrated. Similar formulation can be also found in 
previous studies especially for CHAMP [e.g. Badura et al., 2006; Jäggi et al., 2008]. In 
the next section, I give the detailed derivation of the formulation (2.31). 
 
 
2.3.1 Derivation of the Formulation  
 
2.3.1.1 Newton’s Law of Motion in Inertial and Earth-fixed Frame 
 
The position vector r, representing the satellite position relative to Earth center, can be 
expanded in any Cartesian coordinate frame s (called s-frame) with a set of unit vectors 
denoted by e js , j=1, 2, 3. Using the unit vector, this position vector can be further 
rewritten as a coordinate vector rs = r1

se1
s + r2

se2
s + r3

se3
s . Or it can be represented as an 

ordered triplet of coordinates in s-frame as rs = r1
s r2

s r3
s( )T . Two Earth-centered 

coordinate frames will be primarily considered, the inertial frame or i-frame defined as a 
frame where Newton’s law of motion holds, and the rotational Earth-fixed frame or e-
frame. Therefore, the position vector can be projected into both frames, denoted by 
coordinate vector ri in i-frame, and coordinate vector re in Earth-fixed frame (e-frame), 
respectively. The relation between the two coordinate vectors can be described as  
 
 ri = Ce

ire , (2.32) 
 
where Ce

i  is a transformation matrix representing the orientation between the two frames. 
The time-derivative of Ce

i  can be derived using the angular velocity w between the two 

frames. Here I define wie
i = ω1,ω2,ω3( )T  as the angular velocity vector of the e-frame 

with respect to the i-frame, with coordinates in the i-frame. The cross product of the 
angular velocity vector can be further written as a skew-symmetric matrix 
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 wie
i ×⎡⎣ ⎤⎦ =Ωie

i =
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.                                     

 
Using above notations, the time-derivative of the transformation matrix Ce

i  can be 
derived as [Jekeli, 2001] 
 
 !Ce

i = −Ωei
i Ce

i =Ωie
i Ce

i = Ce
iΩie

e = wie
i ×⎡⎣ ⎤⎦Ce

i = Ce
i wie

e ×⎡⎣ ⎤⎦ . 
 
Therefore, taking the time-derivative of equation (2.32) yields 
 
 !ri = Ce

i !re + !Ce
ire = Ce

i !re +wie
e × re( ) , (2.33) 

 
which represent the transformation of the velocity vector between two frames. Taking 
another time-derivative of equation (2.33) yields 
 
 !!ri = Ce

i!!re + 2Ce
i wie

e × !re( )+Ce
i wie

e × wie
e × re( )⎡⎣ ⎤⎦ , (2.34) 

 
which represents the transformation of the acceleration vector between two frames. Here 
the assumption !wie = !wie

i = !wie
e = 0  is required, which is the first assumption for energy 

equations. 
 
Acceleration vector in i-frame must obey Newton’s law of motion, which says 
 
 !!ri = ∇iV E + ai , (2.35) 
 

where ∇i =
∂
∂r1

i
∂
∂r2

i
∂
∂r3

i

⎛

⎝
⎜

⎞

⎠
⎟

T

 represents the gradient operator in i-frame, VE is 

Earth’s static as well as secular and seasonal time-variable geopotential, and 
ai = ∇iV R + f i  represent the sum of the acceleration from residual geopotential VR and 
nonconservative force f. 
  
In e-frame, Newton’s law of motion can be derived using equation (2.34) and (2.35) as 
 
 !!re = ∇eV E + ae − 2 !wie

e × !re( )− !wie
e × !wie

e × re( )⎡⎣ ⎤⎦ , (2.36) 

 
where all quantities are represented in e-frame.  
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2.3.1.2 Time-Derivative of Static Geopotential in Both Frames 
 
For the purpose of derivation of energy equation, the time-derivative of Earth’s static 
gravitational potential VE is also needed, which can be conducted in either i-frame or e-
frame. In i-frame, the time-derivative of VE can be expanded as 
  

 !V E = dV
E

dt
= ∂V E

∂t

i

+ ∇iV E( )T ⋅ !ri , (2.37) 

 
The same is for e-frame where the time-derivative of VE can be expanded as 
 

 !V E = dV
E

dt
= ∂V E

∂t

e

+ ∇eV E( )T ⋅ !re , (2.38) 

 
In equation (2.37) and (2.38) VE appears on both side of each equation. The goal next is 
to rewrite both equations by eliminating VE  from the right-hand side. Here the second 
assumption ∂V E ∂t( ) e = 0  is needed, which means VE has to be static in e-frame, i.e., the 

partial derivative with respect to time in e-frame should be zero, for a certain time 
interval. So by combining equation (2.37) and (2.38) under the second assumption, I get 
 

∂V E

∂t

i

= ∇iV E( )T Ce
i !re − !ri( ) .                                    

 
 
Substituting the above equation into (2.37) by considering (2.33) and Newton’s law in i-
frame (2.35), I can rewrite equation (2.37), the time-derivative of static geopotential in i-
frame, as 
 

 dV E

dt
= !!ri − ai( ) ⋅ !ri −wie

i × ri( ) . (2.39) 

 
In e-frame, multiplying re to (2.36), I have 
 

!!re ⋅ !re = ∇eV E ⋅ !re + ae ⋅ !re − 2 wie
e × !re( ) ⋅ !re − wie

e × wie
e × re( )⎡⎣ ⎤⎦ ⋅ !r

e , 

 
where the third term on the right-hand side is zero. Substituting the above equation into 
(2.38) by considering the second assumption, I can rewrite equation (2.38), the time-
derivative of static geopotential in e-frame, as 
 

 dV E

dt
= !!re − ae + !wie

e × !wie
e × re( )⎡⎣ ⎤⎦ ⋅ !r

e . (2.40) 
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Clearly (2.39) and (2.40) are equivalent since they are both derived from the same 
equations and the same two assumptions; that is, one can easily show 
 

dV E

dt
= !!ri − ai( ) ⋅ !ri −wie

i × ri( ) = !!re − ae +wie
e × wie

e × re( )⎡⎣ ⎤⎦ ⋅ !r
e = ∇eV E( )T ⋅ !re . 

 
2.3.1.3 Energy Equation in Both Frames 
 
The energy equation in i-frame is obtained by integrating (2.39) with respect to time as 
 

V E = !!ri − ai( ) ⋅ !ri −wie
i × ri( )dt

t0

t

∫ . 

 
Because of !wie

i = 0 , except that ai  term can’t be explicitly integrated, all the other terms 
can be easily integrated as 
 

!!ri ⋅ !ri dt
t0

t

∫ = 1
2
!ri

2
− E1i

 

!!ri ⋅ wie
i × ri( )dt

t0

t

∫ = wie
i ⋅ ri × !ri( )− E 2i

 
 
I arrive at the formulation of energy equation in i-frame as follows: 
 

 V E = 1
2
!ri

2
−wie

i ⋅ ri × !ri( )− ai ⋅ !ri −wie
i × ri( )dt

t0

t

∫ − E 0i . (2.41) 

 
Similarly, the energy equation in e-frame is obtained by integrating (2.40) with respect to 
time as 
 

V E = !!re − ae + !wie
e × !wie

e × re( )⎡⎣ ⎤⎦ ⋅ !r
e dt

t0

t

∫ . 

 
Because of !wie

e = 0  as well, only ae  term can’t be explicitly integrated as the same, and 
other terms can be easily integrated as 
 

!!re ⋅ !re dt
t0

t

∫ = 1
2
!re

2
− E1e
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wie
e × wie

e × re( )⎡⎣ ⎤⎦ ⋅ !r
e dt

t0

t

∫ = wie
e ⋅re( ) wie

e ⋅ !re( )− wie
e ⋅wie

e( ) re ⋅ !"r e( )⎡⎣ ⎤⎦dt
t0

t

∫

= 1
2
wie

e ⋅re( ) wie
e ⋅re( )− 12 wie

e ⋅wie
e( ) re ⋅re( )− E 2e

= − 1
2
wie

e × re
2
− E 2e

 

 
where the cross product and dot product are related by a × b × c( ) = b a ⋅c( )− c a ⋅b( )  and 

a × b 2 = a 2 b 2 − a ⋅b( )2 . And finally I arrive at the formulation of energy equation in e-
frame as follows: 
 

 V E = 1
2
!re

2
− 1
2
!wie
e × re

2
− ae ⋅ !re dt

t0

t

∫ − E 0e . (2.42) 

 
Again, energy equation (2.41) and (2.42) are equivalent just as (2.39) and (2.40). Thus, as 
it should be, there is no difference no matter in which frame the energy equation is used 
for the energy balance method [Zeng et al., 2015]. In this study, I adopt the equation in 
inertial frame (2.41), i.e., equation (2.31), for the GRACE data processing, since most of 
the measurements are given in that frame. 
 
Finally, it should be noticed that in both frames a ⋅ !rdt

t0

t

∫ ≠ V R + f ⋅ !rdt
t0

t

∫ , since residual 

geopotential VR (such as tides) is not static in either frames. I mention that some previous 
studies have already derived the identical [e.g. Han, 2003; Gerlach et al., 2003; Wang et 
al., 2012] or similar [e.g. Badura et al., 2006; Jäggi et al., 2008] formulation.  
 
2.3.2 Numerical Assessment of the Formulation 
 
2.3.2.1 Computation of angular velocity vectors in both frames  
 
Both energy equations in i-frame and e-frame need the computation of angular velocity 
projected into each frame, i.e., coordinates vectors wie

i  and wie
e . There are at least two 

approaches to compute this vector. The first approach needs an intermediate frame in 
which the angular velocity only has non-zero values along z-axis. In this intermediate 
frame (called m-frame here), the z-axis is always in the same direction of instantaneous 
rotation axis. The angular velocity vector in m-frame can be written as 

wie
m = 0 0 Ω( )T , where Ω  is the instantaneous rotation rate of e-frame with respect 

to i-frame. Therefore one could transform this coordinate vector from m-frame to i-frame 
and e-frame by 
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wie

i = Cm
i wie

m

wie
e = Cm

ewie
m

. (2.43) 

 
In practice, i-frame is realized by ICRF and e-frame is realized by ITRF. However, the 
intermediate frame is not explicitly provided. The best approximation of intermediate 
frame is the frame along the so-called Celestial Intermediate Pole (CIP). If the difference 
between the CIP and the instantaneous rotation axis is neglected, the transformation 
between m-frame and i-frame can be approximated by the procession and nutation 
matrix, and the transformation between m-frame and e-frame can be approximated by 
polar motion matrix. 
 
The second approach is to use the skew-symmetric matrix from section 2.3.2, because the 
three non-zero entries for each skew-symmetric matrix represent the three coordinates of 
angular velocity vector in each frame. Considering the relationship of 
!Ce
i =Ωie

i Ce
i = Ce

iΩie
e = wie

i ×⎡⎣ ⎤⎦Ce
i = Ce

i wie
e ×⎡⎣ ⎤⎦ , one can easily derived the skew-symmetric 

matrix in both frames as 
 

 
Ωie

i = !Ce
iCi

e

Ωie
e = Ci

e !Ce
i
, (2.44) 

 
Compared to the first approach, this approach requires the time derivatives of the 
transformation matrix between the two frames. But such time derivatives are either not 
provided in the IERS standard. So in practice, numerical differentiation can be used to 
compute the time derivative, or if one has the knowledge of the rates of all the Earth 
orientation parameters (Earth rotation, procession, nutation and polar motion), the time 
derivative can also be explicitly derived.  
 
In this study, I adopt the first approach to compute the angular velocity vectors in inertial 
frame. 
 
2.3.2.2 Contribution of the Additional Terms From the Formulation 
 
Comparing the formulation (2.31) and the original formulation (2.30), it is obvious that 
there are several terms missing from the original formulation, such as the term due to the 
angular velocity vector, and terms due to the time-variable residual geopotential, which 
has been neglected by the previous studies as an approximation. This approximation can 
be expressed as an additional term δV E  by subtracting equation (2.30) from (2.31) as 
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δV E = 1
2
!r 2 −w ⋅ !r × !r( )− a ⋅ !r −w × r( )dt

t0

t

∫ − E 0⎛
⎝⎜

⎞
⎠⎟

− 1
2
!r 2 −ω x!y − y!x( )− f ⋅ !rdt

t0

t

∫ −V R − E 0⎛
⎝⎜

⎞
⎠⎟

= ω x!y − y!x( )−w ⋅ !r × !r( )⎡⎣ ⎤⎦ + a ⋅ w × r( )dt
t0

t

∫ + V R − ∇V R ⋅ !rdt
t0

t

∫⎡
⎣⎢

⎤
⎦⎥

= ω x!y − y!x( )−w ⋅ !r × !r( )⎡⎣ ⎤⎦ + f ⋅ w × r( )dt
t0

t

∫ + ∇V R ⋅ w × r( )dt
t0

t

∫ + ∂V R

∂t
dt

t0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥

=VW +VWF +VWR +VTR

,(2.45) 

 
where VW is denoted as the first term, representing the approximation due to the 
difference between the inertial frame where the orbit data are computed and the 
intermediate inertial frame, i.e., CIP frame, where angular velocity vector has non-zero 
values only along z-axis, VWF is denoted as the second term, representing the 
approximation caused by both angular velocity vector and the non-conservative force, 
VWR is denoted as the third term, representing the similar approximation but caused by 
the time-variable residual geopotential, and VTR is denoted as the fourth term, which can 
be written in the form of ‘potential rotation’ term, representing effect caused by the 
rotation of the time-variable residual geopotential in inertial frame. 
 
I conduct a simulation to calculate and assess each term, and evaluate if the 
approximation in the original formulation is negligible or not. Since the simulation is for 
GRACE constellation, all the potential terms in equation (2.45) are regarded as the 
potential differences. First, I integrate the equations of motion of two satellites to 
simulate the orbits, including positions and velocities, for a pair of satellites in GRACE 
configuration, and then use the satellite positions and velocities to compute each 
additional term according to equation (2.45), with the method of computing angular 
velocity vector according to equation (2.43). Computation is done for a day arbitrarily 
chosen (May 01, 2006). The dynamic model from Section 2.2.3 is also used here for the 
computation of residual geopotential terms. In addition, I decompose the residual 
geopotential terms (both VWR and VTR) into 4 parts, which are N-body perturbation, i.e., 
tide generating potential, solid Earth tide, ocean tides, and other effects. The last part 
includes mainly AOD1B, as well as pole tide, atmosphere tide and relativistic effect.  
 
The time series for one day of all the ten terms (1 VW term, 1 VWF term, 4 VWR terms, and 
4 VTR terms) from equation (2.45) are shown in Figure 2.2. Here the orbital revolution 
period, i.e., 5400 seconds, is used as the time scale for a better understanding of the main 
frequency of these terms. The unit of the y-axis is m2/s2, in terms of potential difference. 
It is worth mentioning that the typical magnitude of the signal from time-variable gravity 
field is usually at the level from 0.001 m2/s2 ~ 0.01 m2/s2 in terms of geopotential 
differences (see next section on the resulting geopotential difference estimates using real 
data). Therefore, any neglected terms larger than this threshold would significantly 
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contaminate the estimation of geopotential differences and the corresponding recovery of 
the gravity field.  
 
It can be clearly seen that, among all the 10 terms the largest one is VW, as shown in 
Figure 2.2 (a), the peak-to-peak amplitude of which is about 0.1 m2/s2. The dominant 
frequency of this term is 2-cycle-per-revolution (CPR), caused by the displacement from 
the poles of the two frames (orbit inertial frame and CIP frame), which means that 
neglecting of this term by using the original energy equation would certainly introduce 
2CPR errors to the estimation of geopotential difference. Of course, Figure 2.2 (a) only 
shows this term for one particular day and the amplitude of this approximation actually 
could greatly vary depending on the time. For example, in practice the orbit data are 
normally computed in the frame of orbit frame J2000.0, but for case of Figure 2.2 (a) the 
CIP has shifted from J2000.0 to the epoch of the day, i.e. May 01, 2006. More than six 
years’ precession would cause very large displacement between the two poles, and such 
displacement between the pole on J2000.0 and the CIP on May 01, 2006 would cause 
very large 2 CPR errors for VW term. That means the amplitude of this term would 
become larger when the epoch of the measurement is far away from J2000.0 and smaller 
when the epoch is close to J2000.0. On the other hand, this approximation can be also 
avoided if one could properly handle the orbit data. For instant, if one would first 
transform the orbit data from J2000.0 to CIP frame and then apply the energy equation, 
then the VW term would be zero. 
 
Figure 2.2 (b) shows that the VWF term has the peak-to-peak amplitude about 0.01 m2/s2, 
which is also non-negligible compared to the magnitude of the time-variable signal. The 
frequency of this term should be modulated by the non-conservative force f, which is 
measured by the on-board accelerometer and star camera. The typical frequency of non-
conservative force should be 1CPR plus measurement noise, and so the integral of non-
conservative force should yield a term with frequency of 1CPR plus random walks, just 
like the time series shown in Figure 2.2 (b).  
 
The 4 VWR terms, Figure 2.2 (c)~(f), are similar to VWF term, except that they are driven 
by the corresponding tidal potential. The N-body perturbation and solid Earth tide both 
have a dominated frequency of 2CPR because they mainly produce time dependent 
change in degree 2 coefficients and also GRACE satellites are flying in a near circular 
polar orbit. Therefore, the first two time series, Figure 2.2 (c) and (d), from these two 
effects have a similar 2 CPR frequency. The third term (Figure 2.2 (e)) from ocean tides 
and the forth term (Figure 2.2 (f)) mainly from AOD1B show time series with more 
complicated frequencies because ocean tides and AOD1B produce time dependent 
changes in much higher degrees and orders besides degree 2. Then about the amplitude 
for each term, the three terms, from N-body, solid Earth tide and ocean tides, are all 
above the signal level of 0.001 m2/s2 ~ 0.01 m2/s2, and thus can not be ignored. 
 

The 4 VTR terms, which can be also written as ∂V R

∂t
dt

t0

t

∫ , represent the integral of the 

partial derivative of residual geopotential with respect to time in inertial frame, according 
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to equation (2.37). Therefore, the magnitude of these terms can be simply estimated by 
evaluating the partial time derivative of the corresponding potential in inertial frame. For 
example, the magnitude caused by the partial time derivative of the potential from N-
body and solid Earth tide should be much smaller than the potential itself, but for ocean 
tides and AOD1B, the corresponding magnitude of the time derivative should be almost 
at the same level of the potential. The former is because the time variation of N-body 
effect and solid Earth tide is mainly driven by the motion of celestial bodies, such as the 
sun and the Moon, which is quite slow in inertial frame, and thus yield smaller magnitude 
as shown in Figure 2.2 (g) and (h). But for ocean tides and AOD1B, the time variation is 
caused by both the higher degree and order of those tides and earth rotation, and therefore 
ocean tides produce larger time variation than the N-body and solid Earth tide as shown 
in Figure 2.2 (i) and AOD1B produce almost the same level as N-body as shown in 
Figure 2.2 (j). Comparing to the signal threshold of 0.001 m2/s2 ~ 0.01 m2/s2, I conclude 
that at least the effect from ocean tides, with the peak-to-peak magnitude of about 0.005 
m2/s2, should not be neglected from the original formulation. 
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Figure 2.2 Comparison of the contribution of different terms in equation (2.45). (a) VW, the 
approximation due to the difference between the J2000.0 inertial frame where the orbit data are 
computed and the CIP inertial frame where angular velocity vector has non-zero values only 
along z-axis. (b) VWF, the approximation caused by both angular velocity vector and the non-
conservative force. (c)~(f) VWR, similar to VWF term, but caused by N-body perturbation, solid 
Earth tide, ocean tides and others (including mainly AOD1B, also pole tide, atmosphere tide and 
relativistic effect), respectively. (g)~(j) VTR, ‘potential rotation term’ caused by the rotation of the 
time-variable residual geopotential in inertial frame, for N-body, solid Earth tide, ocean tides, and 
others (including mainly AOD1B, also pole tide, atmosphere tide and relativistic effect), 
respectively.  
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2.3.2.3 The Accuracy of the Formulation 
 
Although the formulation (2.31) has made improvement by including all the additional 
terms neglected by the original formulation (2.30), according to the deviation from 
Section 2.3.2, two approximations are still inevitable and have to be assumed during the 
deviation of equation (2.31). One is to assume VE to be static during the integral limits 
from t0 to t, which is consistent with the GRACE convention, i.e., estimating a mean 
gravity field during a certain time interval, so it will not introduce any mathematical error 
by using the formulation. The other one is to assume the rates of Earth’s angular velocity 
vector is zero, i.e., !w = 0 , which indeed would cause errors but negligible compared to 
measurement noise level of GRACE. In this subsection, a closed-loop simulation is used 
to assess the accuracy of formulation (2.31) by evaluating this approximation. For 
comparison the original formulation (2.30) is also assessed but with the assumption that  
the largest approximation caused by the VW term has been avoided, i.e., the orbit data 
have been appropriately transformed from the J2000.0 frame to the CIP frame. 
 
First purely dynamic orbits for two satellites are simulated as the input to the energy 
equation. As mentioned in Section 2.2.1, using a purely dynamic orbit as the input data of 
energy equation should reduce the estimates to the a priori gravity field. If the residual 
geopotential difference observables are defined as: ΔV12

E =V12
E −V12

E _aprior , i.e., the 
difference between the estimated values using energy equation and the predicted values 
using the a priori gravity model, then theoretically the residual should be reduced to zero, 
if the formulation of energy equation is absolutely accurate. Therefore the nonzero 
residual would reveal the approximate errors caused by using each formulation of energy 
equation. 
 
The residuals based on equation (2.30) and (2.31) are presented in Figure 2.3, for the 
integral limit of one day. Figure 2.3 (a) shows the residuals based on both equations, and 
Figure 2.3 (b) zooms in on the residual based on formulation (2.31) only. From Figure 
2.3 (a), one can see that the one based on formulation (2.31) is reduced to almost zero, 
but the one based on original formulation (2.30) contains a relatively large nonzero 
residual with a dominated 2CPR (2-cycle-per-revolution) error, which is mainly caused 
by neglecting all the terms from Figure 2.2 (b) to (j). The magnitude of the error is just 
the magnitude of the summation of all the time series from Figure 2.2 (b) to (j), which is 
about 0.02 m2/s2 from peak to peak. The errors caused by the approximation would 
definitely overcome the signal level from the time-variable gravity field, and would 
further corrupt the geopotential difference estimates as well as the recovery of gravity 
field. 
 
Although the dominated frequency of the errors is close to 2CPR, which seems to be able 
to be removed by an additional 2CPR parameter [Han et al., 2006; Tangdamrongsub et 
al., 2012] or even more parameters [Ramillien et al., 2011], but actually the errors 
contain much more high-frequency constituents (e.g., from ocean tides) that the empirical 
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parameters cannot fully absorb. In addition, because of the polar-orbit configuration, the 
2CPR empirical parameters would highly correlate with the degree 2 gravity coefficients, 
and the same for other CPR empirical parameters. Therefore, using too many CPR 
empirical parameters would surely contaminate gravity signal, especially the zonal 
geopotential coefficients. In addition, the studies based on traditional orbit dynamic 
approach also indicate that the empirical parameterization should be no more than 1 CPR 
[Tapley et al., 2004a] or with even less empirical parameters [Luthcke et al., 2006], 
besides bias and trend, which is for the purpose to mitigate the systematic error of range-
rate data, as well as to better retain the time-variable geopotential signal. Therefore, I 
conclude the using large number of empirical parameters in the previous studies based on 
energy balance method might be actually caused by the systematic error from the original 
formulation of energy equation, and in order to fully exploit the precision of GRACE 
data, it is requisite to choose equation (2.31) as the practical formulation of energy 
equation.  
 
A zoomed view of the error from the new formulation is presented in Figure 2.3 (b), even 
though it appears to be negligible as the red line shown in Figure 2.3 (a). One can see that 
the error is mainly composed of a liner component and a 2CPR component, which is 
caused by both the assumption of !w = 0  and the approximate realization of intermediate 
frame using CIP frame. The linear component will be removed using a trend parameter so 
it will not bring any additional errors. The 2CPR component does introduce systematic 
error, but only with the peak-to-peak amplitude of the order less than 5×10-5 m2/s2, 
which is definitely negligible for current GRACE measurement accuracy and probably 
also for GRACE follow-on measurement accuracy in the future [Loomis et al., 2012].  
 
The detailed numerical evaluations can be found in Guo et al. [2015] on the discussion in 
the inertial frame and Zeng et al. [2015] on the discussion in earth-fixed frame 
formulations, respectively. 
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Figure 2.3 Residual geopotential differences from a closed-loop simulation based on equation 
(2.30) and equation (2.31). Simulated dynamic orbit data are only used as the input, so the 
residuals compared to a priori gravity field should be reduced to zero if the formulation is 
absolutely accurate. (a) Residual geopotential differences based on equation (2.30) and (2,31). 
The blue line represents the residuals based on equation (2.30) and the red line represents the 
residuals based on equation (2.31). (b) Zoomed view of (a), but for only residual geopotential 
difference based on equation (2.31). 
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Chapter 3 GRACE Time-variable Gravity Solutions and Applications 
 
3.1 Geopotential Difference Estimates 
 
As the exclusive approach that can directly link each KBR measurement to a geophysical 
quantity, i.e., geopotential difference between the two positions of the twin satellites, 
energy balance approach could provide a unique aspect to extend our conventional 
knowledge about both data processing and results interpretation of GRACE. The 
geopotential difference estimates are able to sense the gravity information, without losing 
any high-frequency resolution, since each estimate is computed straight from range-rate 
measurement for each epoch. Because of that, the geopotential difference estimates could 
not only be used for both global and regional gravity recovery but also be regarded as an 
in-situ gravity representation without downward continuation [Han et al., 2006]. 
Therefore, an accurate estimation of geopotential difference observables is the key issue 
for energy balance approach and is the most critical step for the subsequent temporal 
gravity inversion.   
 
In order to estimate geopotential differences, the input data from GRACE L1B products 
[Case et al., 2010; Wu et al., 2006] are processed based on the methodology and full 
background model described in last chapter. The procedures can be summarized as 
follows: 
 
1. GNV1B orbit data that are used to reconstruct the purely dynamic orbit and estimate 
the daily accelerometer calibration parameters, with respect to the full background model. 
 
2. Range-rate data from KBR1B product are used to correct the relative velocity 
components of the reconstructed orbit via the alignment equation (2.4), i.e., from 
reconstructed relative velocity vector !r12  to new ‘pitch-free’ relative velocity vector !r12

!ρ . 
 
3. Energy equation is applied according to the formulation as equation (2.31) to compute 
the raw geopotential difference observables. The background models are used again for 
computing all the correction terms, and the accelerometer calibration parameters obtained 
from orbit reconstruction are also used. 
 
4. Finally, since the raw geopotential differences would inevitably contain systematic 
error inherited from the range-rate data, a number of empirical parameters are estimated 
and removed from the raw geopotential difference observables. Again, because of the 
improved methodologies, the empirical parameters only contain bias, rate and 1 CPR 
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parameters for every orbital revolution, which is consistent with other approaches of 
GRACE data processing commonly used in other studies. 
 
According to the procedures described above, energy balance method can be regarded as 
a kind of ‘two-step’ approach, i.e., adjustment of the reference orbits first (Step 1) and 
estimation of gravity (geopotential difference) using the fixed reference orbits next (Step 
4), which is different from the term ‘two-step’ used in traditional dynamic method, where 
it means adjustment of GPS orbits in the first step and estimation of both GRACE orbits 
and time-variable gravity in the second step with the GPS orbits fixed [Dahle et al., 
2012]. Two calibrations of the measurements are needed in both Step 1 and Step 4, for 
accelerometer and range-rate data. In the following subsections, the two calibrations will 
be first discussed and then the result of the estimated geopotential differences will be 
presented. 
 
3.1.1 Calibration of Accelerometers 
 
The on-board accelerometers are designed to accurately measure the non-conservative 
force, including atmosphere drag, solar radiation pressure and spacecraft propulsion. 
Each satellite is equipped with a SuperSTAR accelerometer at the center of mass of the 
satellite. The accelerometer measures the non-conservative force in three orthogonal 
directions of the Science Reference Frame (SRF), which can be transformed into inertial 
frame using the quaternions from the SCA1B product measured by the Star Camera 
Assembly. Approximately, XSRF is along roll axis in the anti-flight and in-flight 
directions for the leading and trailing satellites, respectively, ZSRF is along the yaw axis 
and points to nadir, and YSRF is along pitch axis and forms a right-handed triad with XSRF 
and ZSRF [Case et al., 2010]. 
 
Despite the high precision of about 10-10 m/s2 within the bandwidth of 2×10-4–0.1 Hz 
[Kang et al., 2006], the raw accelerometer data directly from ACC1B product suffer from 
large uncertainty at lower bandwidth (<2×10-4 Hz), and therefore need to be calibrated 
first. A widely used method is to treat those low frequency errors as a kind of systematic 
error and calibrate them by estimating a group of empirical parameters, such as bias 
and/or scale parameters. The bias calibration usually includes not only the offset, but also 
the linear and even quadratic trend. The scale calibration is mainly to correct the 
additional 1CPR error, similar to all the data measured by the onboard payloads. 
Currently, most of the data processing centers adopt the strategies to calibration both bias 
and scale parameter daily or sub-daily. However, Van Helleputte et al. [2009] found that 
strong correlation may exist between scale and bias, and implied that the daily estimation 
of both bias and scale together may lead to unrealistic large variation of scale parameters 
compared to the non-conservative force model. Besides, unlike the ‘one-step’ dynamic 
method used by other processing centers, energy balance method is a ‘two-step’ method, 
which means the orbit has to be adjusted with the accelerometer parameters first (Step 1) 
and then next (Step 4) the geopotential difference is estimated by using range-rate data. 
In that case, the daily scale parameters of accelerometer may be also correlated with the 
1CPR parameter of range-rate. Therefore, in this study, a different strategy is adopted to 



 36 

calibrate the accelerometer with the main purpose to suppress the unrealistic large day-to-
day variation of scale parameters. 
 
First, the a priori bias and scale parameters recommended by Bettadpur [2009] are 
adopted. Note that the a priori values are estimated based on analysis of data only 
between launch and March 31, 2009. Then after correcting the accelerometers using the a 
priori values, I estimate the daily bias (offset, linear and quadratic trend) and scale 
parameters between launch and end of 2013 using the orbit reconstruction method. The 
estimated scale parameters are shown in Figure 3.1. As indicated by Van Helleputte et al. 
[2009], very large variation can be found on all the directions of the estimated scale for 
both satellites, which may be unrealistic since there is no reason to believe the scales 
should be significantly different for different days [Bettadpur, 2009]. Another apparent 
feature is that flight direction (XSRF) shows less uncertainty than the other two directions, 
which is consistent with the a-priori values of the uncertainty from Bettadpur [2009], i.e., 
0.002 in XSRF direction and 0.02 in the other two directions. It is not a surprise because 
along-track is the direction that would sense most of the non-conservative force 
compared to radial and cross-track directions. Therefore, here I only focus on the XSRF 
direction and simply fix the scales in other two relative trivial directions using the a 
priori values. 
 
From the time series of the XSRF direction, it can be noticed that there seems to be an 
offset from 1.0 after 2010. In order to see more evidently, the yearly mean scales with the 
standard deviation are computed using all the estimated daily scale parameters. The 
yearly estimated scales of the XSRF direction are shown in Figure 3.2. It can be seen 
clearly that the scale parameter jumps from approximate 1.0 to approximate 0.98 after 
2010 with even less uncertainty compared to previous years. Therefore, the strategy in 
this study is to additionally adjust the XSRF scale parameter to 0.98 after 2010, and keep 
1.0 before 2010. It is worth mentioning that almost at the same time, i.e., at the end of 
2010, the so-called ‘battery management’ started to operate for both satellites. 
Approximate every 5 months, the two satellites have to be switched off for about one 
month in order to reduce the load on the batteries. Therefore, I suspect that these 
operational events might be associated with the jump in the scale parameters of 
accelerometers.  
 
In order to show this adjustment is necessary, the post-fit residuals of the reconstructed 
orbit are computed based on difference accelerometers calibration strategies. Since here 
the input data are the GNV1B orbit data, the post-fit residuals also represent the orbit 
difference between GNV1B and the reconstructed orbit. GNV1B orbit is a kind of 
reduced dynamic orbit, and therefore it is relatively free of accelerometer information. 
The results are shown in Figure 3.3 in terms of the daily root mean square (RMS) of the 
orbit difference. Here the same method is adopted to calibrate bias parameters as GFZ 
RL05 standard [Dahle et al., 2012], i.e., estimate daily bias with offset, linear and 
quadratic trend. In the top row of Figure 3.3, the scale parameter is not estimated and just 
the a priori value is used. In that case, the RMS of the orbit difference rapidly increases 
after 2010. For comparison, in the middle row of Figure 3.3, the scale parameters are 



 37 

estimated for each day, so the large jumps after 2010 are suppressed. Eventually, in the 
bottom row of Figure 3.3, the scale parameters are not daily estimated but the yearly 
mean scale parameters are used, i.e., adjust the XSRF scale parameter to 0.98 after 2010 
and keep 1.0 before 2010. As a result, the method adopted in this study can efficiently 
reduce the large jumps of RMS after 2010, which is similar to the strategy of directly 
calibrating scales, but the gain is the unrealistic large variation of daily-estimated scale 
parameters can be avoided. 
 
 

 
Figure 3.1 Daily estimated scale parameter of accelerometers for both satellites in three 
directions. All directions show large variation. It seems there exist an offset from 1.0 after 2010 
in XSRF direction for both satellites.  
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Figure 3.2 Yearly mean and error of the daily estimated scale parameters in XSRF direction for 
both satellites. Scale parameter jumps from approximate 1.0 to approximate 0.98 after 2010 with 
less uncertainty. 
 

 
Figure 3.3 Root Mean Square (RMS) of the orbit difference between the input GNV1B orbit and 
output reconstructed dynamic orbit, using difference strategies to calibrate scale parameters of 
accelerometers. The orbit differences also represent the post-fit residuals. The top row: use a-
priori value of the scale parameters. The Middle row: use daily-estimated scale parameters. The 
bottom row: use the yearly-mean scale parameters, i.e., i.e., adjust the XSRF scale parameter to 
0.98 after 2010 and keep 1.0 before 2010. 
 
 
3.1.2 Calibration of Empirical Parameters 
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After the calibration of accelerometers as well as the reconstruction of the orbits, the 
range-rate measurements are used to align the orbit and then geopotential difference 
observables can be estimated using the energy equation. However, the direct estimated 
geopotential differences do not only contain the time-variable gravity signal, but also 
very large systematic error. An example of the raw geopotential differences is illustrated 
in Figure 3.4 (a) as a time series for the day of May 1, 2006, where referenced values 
from a static gravity field GIF48 [Ries et al., 2011] have been removed. It can be clearly 
seen from Figure 3.4 (a) that the time-variable gravity signals, i.e., the high frequency 
fluctuation, are almost invisible since they are overwhelmed by both an offset and very 
large 1CPR signals with ‘butterfly’ shape. The offset is trivial, which is caused by the 
difference of the integral constants between the two satellites, therefore it can be safely 
removed since gravity constant, i.e., degree 0 term, is usually not part of the GRACE 
solution. Similarly, the 1CPR signals are partly related to degree 1 term, which is 
routinely not estimated by GRACE either. However, the majority of these 1CPR signals, 
I conclude, are actually caused by two error, therefore, they must be treated as a kind of 
systematic error and have to be first removed using some empirical parameters before 
temporal gravity estimation. One error is the 1CPR systematic error directly inherited 
from KBR instrument, which should be small with relatively constant amplitude during a 
short period. The other error is caused by the imperfect background modeling used during 
orbit reconstruction. As we all know, orbit data obviously have a dominated frequency of 
1CPR, and therefore any un-modeled or mis-modeled part in both reference fields and the 
accelerometers parameters would alias into same 1 CPR frequency during the orbit 
adjustment process. If such orbits were compared to more accurate data, such as the K-
Band range-rate data, the residual of the time series would exhibit as 1CPR with 
‘butterfly’ pattern for the whole the orbit arc as shown in Figure 3.4 (a). Therefore, the 
1CPR part has to be removed as a systematic error since it is a kind of aliasing error and 
not directly from range-rate signals.  
 
The systematic errors can be calibrated by also using a set of empirical parameters. There 
are at least two ways to estimate these parameters [Zhao et al., 2011]. One is to estimate 
them simultaneously with gravity parameters. The other one is to estimate them directly 
from the raw residual time series before estimating the gravity field. Here the latter one is 
chosen in this study. One of reasons is that the purpose here is to first generate ready-to-
use geopotential difference estimates before solving gravity field, so the processed 
geopotential difference estimates can directly be applied for other purposes, such as 
regional gravity analysis. But one should keep in mind that the either way would cause 
the correlation between the systematic error removed and the gravity signal recovered, 
which actually leads to a kind of signal-coherent adjustment. In the future, iteration may 
be considered to overcome this problem. 
 
The adopted empirical parameters here include bias, trend and two 1CPR coefficients. 
The residuals after calibration of those empirical parameters are shown in Figure 3.4 (b). 
The figure shows the time series of the estimated geopotential difference residuals for the 
day of May 1, 2006. Again, the reference field is GIF48. The resulting geopotential 
differences is sampled every 5 seconds with the same sampling rate of range-rate data. 
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The root mean square (RMS) of the residuals is about 0.0024 m2/s2. If the small 
fluctuation in that time series can actually represent the geopotential change due to the 
time-variable gravity signal between May 1, 2006 and the reference epoch of GIF48, i.e., 
around 1 January 2007, it can be thus directly used for gravity field recovery. 
 
Finally, we mention that low-pass filter can be another opinion for calibration of those 
systematic errors. The cutoff frequency should be set to a frequency lower than 2CPR in 
order to keep degree 2 signals. But the drawback is that edge effect is normally inevitable 
by using a low-pass filter, which leads to the possible data loss at each end of the orbit 
arc, i.e., the beginning and the end of each day. So similar to other GRACE data centers, 
empirical parameters method is still chosen over low-pass filter method in this study. 
 
 

 
Figure 3.4 Geopotential difference estimates (with mean field removed) for the day of May 1, 
2006. (a) Direct results by using alignment equation and energy equation without calibrating any 
empirical parameters. (b) Results after removing bias, trend and 1 CPR parameters.  
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Figure 3.5 (a) highlights the two ascending profiles of geopotential difference 
observables on a global map of the daily ground tracks of July 17, 2003. The coordinate 
of each estimate on the map is assigned to the middle point of two satellites and the color 
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with respect to latitude and compared to the predicted values using GRACE L2 solutions 
(from CSR RL05, GFZ RL05a, and JPL RL05, truncated to degree and order 60 with the 
same mean field removed) along the same profiles. First, it can be clearly seen that the 
geopotential differences estimates based on the approach in this study are similar to the 
predicted values from the three official L2 solutions. Of course, the three series of 
predicted values look smooth since they are simply computed from existing models with 
band-limited field up to degree and order 60 only, while the series of estimates is noisier 
because it is directly from range-rate measurements, which also implies that the new 
geopotential difference estimates could contain more detailed high-frequency information 
of the geopotential signal (as well as noise) directly sensed by the range-rate 
measurements.  
 
As for each profile, Figure 3.5 (b) illustrates the profile approximately along 60°W 
longitude, mostly above the rough land area, and Figure 3.5 (c) is for the profile 
approximately along 140°W longitude, mostly above the flat ocean area. With the 
ascending of the satellite pair, the estimates in Figure 3.5 (b) obviously reveal the 
geopotential difference variation successively caused by West Antarctica, Amazon Basin, 
Hudson Bay and North Greenland, and the estimates in Figure 3.5 (c) mostly cover the 
Pacific Ocean. The surface gravity change can be directly inferred just from the 
geopotential difference profile. Because when the satellite pair passes by a gravity 
negative anomaly on ground, the geopotential differences (defined as the following 
satellite subtracting the leading satellite here) would exhibit increasing values first and 
decreasing values next, and vice versa. For example, in Figure 3.5 (b), from about 30°N 
to North Pole, a increase-decrease-increase fluctuation of geopotential difference can be 
observed, meaning that there should be a negative gravity anomaly followed by a positive 
anomaly compared to the epoch of the mean reference field (1 January 2007), which just 
corresponds the glacial isostatic adjustment (GIA) signal (negative) in the Hudson Bay, 
and Greenland ice sheet ablation signal (positive).   
 
In Figure 3.5 (d), the time series for the day of May 1, 2006 (the same as Figure 3.4 (b)) 
is shown again but with the predicted time series from CSR L2 RL05 solution for 
comparison. Again, the time series of the estimates seems very close to the predicted 
values from CSR solution. Quantitatively speaking, the correlation coefficient of the time 
series between the estimates (after a 20-point moving average smoothing) and the 
prediction is about 0.91 for that certain day. As for all the estimates from 2003 to 2013, 
the average value of the daily correlation coefficients is over 0.9, which is much higher 
than correlations of 0.5~0.8 reported in previous study [e.g., Han et al., 2006]. 
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Figure 3.5 Geopotential difference estimates (with mean field removed). (a) Ground track of July 
17, 2003 with two ascending profiles highlighted with color representing the values of the 
estimates. (b) Highlighted profile approximately along 60°W longitude mostly above the land 
area, with predicted values from GRACE L2 solutions (CSR RL05, GFZ RL05a, JPL RL05). (c) 
The same but for highlighted profile approximately along 140°W longitude mostly above the 
ocean area. (d) Time series of estimates for the day of May 1, 2006 with predicated values from 
CSR RL05 solution. 
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possible to utilize geopotential differences to recover global gravity. In this section, the 
global gravity recovery will be studied using the improved geopotential difference 
estimates. 
 
3.2.1 Inversion Method and Parallel Algorithm 
 
Similar to the convention of official GRACE L2 product, a series of monthly mean 
solutions is solved for each calendar month, which means the gravity variation within a 
month has to be neglected and the recovered solution is assumed to be able to represent 
the mean gravity field of that month. The geopotential differences are accumulated 
during a month, which serve as an input for global gravity inversion. The output of the 
inversion is the set of Stokes coefficients, also similar to official GRACE L2 product. 
 
The classic Gauss-Markov Model (GMM) is used to model this inversion problem 
straightforwardly. The relation of the geopotential difference V12

E  and Stokes coefficients 
(Cnm  and Snm ) can be expressed as 
 

 V12
E = GM

R
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where GM is the geocentric gravitational constant and R is Earth’s mean spherical radius, 
n and m are degree and order, respectively, and nmax is the maximum degree. Here degree 
0 and degree 1 coefficients are excluded, as GRACE range-rate measurements are 
insensitive to these parameters. The coefficients αnm  and βnm  are defined as 
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where r1,θ1,λ1( )  and r2,θ2,λ2( )  are denoted as the spherical coordinates of the two 
satellites in Earth-fixed reference system, and Pnm  is the fully normalized Legendre 
function. According to equation (3.1), the least squares principle to estimate the Stokes 
coefficients (Cnm  and Snm ) using data of geopotential difference V12

E  is  
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where the subscript k is used to represent data of the k-th observation including values of 
V12

E( )k , as well as αnm( )k  and βnm( )k  computed using satellite coordinates according to 

equation (3.2). Based on the least squares principle, the solution of the unknowns (Cnm  
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and Snm ) can be easily solved from a large number of observations, and the 
corresponding formulation is the same as equation (2.8) and thus not reproduced here. 
 
Here, the Cholesky decomposition is employed to invert the normal matrix, for the 
purpose to obtain both the estimates and the error covariance matrix. If the maximum 
degree and order is less than 60, the computation can be done using a normal 
workstation. If maximum degree and order were larger than 60, then the inversion would 
be more complexity, and the computation may be limited by both the float point 
operations (FLOPs) and memory storage. For example, assuming the maximum degree 
and order to be nmax, the number of the total coefficients would be M=(nmax+1)×(nmax+1). 
So the FLOPs of the Cholesky decomposition are about M3/3. Furthermore, assuming the 
number of the observation, i.e., geopotential differences, to be N, then the FLOPs of 
forming a normal matrix would be about (2×N-1)×(M+1)×M/2, or approximately O(nm2) 
[Xie, 2005]. So the total FLOPs would be the sum of the above two parts, which is M3/3 
+ (2×N-1)×(M+1)×M/2. About the memory limitation, for storing the design matrix the 
memory requirement is about N×M. And for storing the normal matrix it is M×M/2. So 
the total memory requirement would be N×M + M×M/2.  
 
Figure 3.6 visualizes the complexity of the computation. Here one month GRACE data is 
assumed to be the input of the inversion, so N is about 518,400 (17,280 for each day 
because of 5 seconds sampling rate). The figures show the total FLOPs and total memory 
requirement with respect to the maximum degree to be solved. The top panel of Figure 
3.6 shows the requirement of the FLOPs for processing one month GRACE data, where 
blue line represents the FLOPs for forming a normal matrix, i.e., (2×N-1)×(M+1)×M/2, 
and the green line represents the FLOPs for inversing a normal matrix, i.e., M3/3. The 
numbers in the parenthesis marks the coordinates (x,y) for selected cases. For example, if 
the maximum degree is 60, the requirement of FLOPs is about 7200G (mainly from 
forming the normal matrix, i.e., blue line). For a normal workstation with the CPU 
frequency of 3GHz, the computation time is about 2400 seconds, i.e., 48 minutes. The 
computation time can be further reduced if a parallel programming technique, such as 
OpenMP (Open Multi-Processing), would be considered. For instance, if the workstation 
has a total of 12 cores, so the computation time can be brought down to about 4 minutes 
if all the cores are available at the same time. For maximum degree and order larger than 
60, Message Passing Interface (MPI) parallel platform from Ohio Super Computer (OSC) 
is utilized, which is realized by an optimized implementation of ScaLAPACK included in 
Intel Math Kernel Library (MKL).  
 
The bottom panel of Figure 3.6 shows the requirement of the memeory also for 
processing one month GRACE data, where blue line represents the memory requirement 
for storing a design matrix, i.e., N×M, and the green line represents the memory 
requirement for storing a normal matrix, i.e., M×M/2. Similar to the FLOPs figure, if the 
maximum degree is 60, the memory requirement is about 15 GB (mainly for storing the 
design matrix), which is possible on a workstation. For maximum degree and order larger 
than 60, Design Matrix Accumulation (DMA) method is considered instead of the 
Normal equation Matrix Accumulation (NMA) method in order to alleviate large 
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memory requirement for design matrix. More information about the application of 
parallel computation about gravity inversion and can be found from Xie et al. [2004] and 
Xie [2005].  
 
 

 
Figure 3.6 Complexity of the computation for solving a monthly global solution using 1-month 
geopotential difference data. Top panel: Float point operations (FLOPs) requirement. Bottom 
panel: Memory requirement. The numbers in the parenthesis marks the coordinates (x,y) for 
selected cases. 
 
 
3.2.2 Recovered Monthly Gravity Solution 
 
Using all the geopotential difference estimates from 2003 to 2013, a series of monthly 
global solutions is generated including most of the months during that period except a 
few months because of the data outage. All the global solutions are computed up to 
degree and order 60, which is consistent with the official L2 products. Strictly speaking, 
the maximum degree and order may vary depending on the number of the valid 
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observation during a month and more importantly the ground track distribution [Weigelt 
et al., 2013]. As a satellite gravimetry mission, GRACE is designed to avoid repeat orbit 
as much as possible, i.e., with homogeneous ground track distribution. However, for a 
certain period, the GRACE orbit would decay into a near-repeat orbit [Yamamoto et al., 
2005], i.e., with overlaps and large gaps among the ground tracks, due to the orbit 
perturbation. It is reasonable to believe the months with homogeneous ground track 
distribution (‘good’ month) should yield better resolution of the gravity field than the 
months with near-repeat ground track distribution (‘bad’ month) [Save et al., 2012]. 
Accordingly, if all the months are solved with an identical resolution, the gravity solution 
for those ‘bad’ months may contain larger error than the solution for the ‘good’ months.  
 
Similar question is raised for the improved energy balance method. In this study, the only 
input for gravity inversion is geopotential differences, which are obtained directly from 
KBR range-rate measurements. Compared to conventional dynamic method, the GPS 
phase measurements are not explicitly included during the inversion. Therefore, it is 
important to check the KBR-only solutions for both ‘good’ months and ‘bad’ months. 
The example of the ‘good’ month here is chosen to be July 2003, and the ‘bad’ month is 
September 2004, which has a typical month of near-repeat orbits with repeat cycle of 61 
revolutions in 4 days. Study by Wagner et al. [2006] suggests the maximum degree of 
monthly gravity solution of September 2004 should be around 30 instead of 60 in order to 
avoid the higher degree error. Therefore for some scientific applications, solutions around 
September 2004 were directly excluded [Swenson et al., 2006]. 
 
3.2.2.1 Case with ‘good’ ground track coverage  
 
Figure 3.7 shows the result for the ‘good’ month of July 2003. First all the estimated 
geopotential difference observations are shown for the month of July 2003 on the global 
map in Figure 3.7a. The data from descending pass are presented with an additional 
minus sign so they would not look opposite to the data from ascending pass over the 
same region of the global map. Similar to Figure 3.5, the observations can roughly 
indicate the surface gravity signal. As for a global map, even though they are not 
measured exactly at the same altitude, similar signals can still be observed when two 
satellites pass the same area since they were flying in similar, near-circular orbits with 
slight altitude decay. Therefore some regions with large gravity variation are manifested 
in the global map of Figure 3.7a, including not only the highlighted regions in Figure 3.5 
but also some other regions like Alaska (glacier melting), Congo Basin (wet season), and 
Scandinavia (GIA). For comparison, the other three figures in the left panel of Figure 3.7 
show the predicted values at the same geographical location from three GRACE L2 
solutions (Figure 3.7c for CSR RL05, Figure 3.7e for GFZ RL05a and Figure 3.7g for 
JPL RL05). Again, clearly the global map of estimated data matches the global map of 
the predicted data from official L2 solutions very well.  
 
The most significant discrepancy between Figure 3.7a and other three figures in the left 
(Figure 3.7c, Figure 3.7e and Figure 3.7g) is that Figure 3.7a apparently contains 
measurement noise which are inherited from each range-rate measurement, while other 
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three figures are only predicted from a modeled gravity field with maximum degree of 60 
only. That implies probably the most significant contribution of using energy balance 
approach, i.e., directly connecting the geometry measurements (range-rate) to the 
geophysical quantities (geopotential difference). Therefore, even though the whole month 
estimates are shown in the same global map, Figure 3.7a still preserves the in-situ 
geopotential change for each epoch within a month, i.e., sub-monthly information, but 
Figure 3.7c, 3.7e and 3.7g can only show the predicted values from a monthly mean 
(static) gravity field. In next section, the possibility of extracting such sub-monthly time-
variable gravity information from geopotential differences will be explored. 
 
Using the data from Figure 3.7a, the monthly mean time-variable gravity solution up to 
degree and order 60 is solved and shown in Figure 3.7b. Here the Stokes coefficients are 
converted into geoid according to the equation 
 

 ΔN = a Pnm cosθ( ) ΔCnm cosmλ + ΔSnm sinmλ( )
m=0

n

∑
n=2

nmax

∑ , (3.4) 

 
where ΔCnm  and ΔSnm  represent the time-variable Stokes coefficient change with mean, 
static part removed, therefore ΔN  represent the time-variable geoid change with the same 
mean geoid removed. The same geoid maps from other three L2 solutions for the month 
of July 2003 are also shown in the right panel of Figure 3.7 for comparison (Figure 3.7d 
for CSR RL05, Figure 3.7f for GFZ RL05a and Figure 3.7g for JPL RL05). The reason of 
showing geoid here instead of the common used equivalent water height (EWH) is 
because geoid map can highlight both signal and noise (i.e., north-to-south stripes) 
together without applying any post-processing. That means no post-processing techniques 
are applied here except the replacement of the C20 coefficient using the value obtained 
from satellite laser ranging [Cheng et al., 2013] since different products show large 
disagreement on that coefficient. 
  
Actually, the good agreement of the estimated and predicted data shown in left panel of 
Figure 3.7 has already guaranteed that my gravity solution after the inversion process, 
i.e., the downward continuation, should not deviate from the official L2 solutions too 
much. And indeed, my solution in Figure 3.7b does show similar features of signal and 
comparable level of noise as the other three solutions. In terms of noise level, i.e., north-
to-south stripes, the geoid maps from my solution seems to be similar to the JPL solution, 
i.e., less stripes than the GFZ solution but more stripes than the CSR solution. The 
comparison of Power Spectral Density (PSD) of the coefficients from all the solutions is 
shown in Figure 3.8. At lower degree (below degree 15), the PSD of my solution (OSU) 
matches other three PSDs very well, which means my solution contains highly consistent 
signal of time-variable gravity. At higher degree (above degree 15), the PSD of my 
solution shows similar noise level as JPL’s PSD, which is slightly higher than CSR’s 
PSD but lower than GFZ’s PSD.  
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Figure 3.7 Global map of both geopotential difference estimates and recovered gravity solution 
(with mean field removed) for the month of July 2003. Left panel: geopotential differences (a) 
estimated from this study, and predicted from GRACE L2 products of (c) CSR RL05, (e) GFZ 
RL05a and (g) JPL RL05. Right panel: recovered geoid change from (b) this study using 
geopotential difference estimates and from GRACE L2 products of (d) CSR RL05, (e) GFZ 
RL05a, and (g) JPL RL05.  
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Figure 3.8 Comparison of Power Spectral Density (PSD) for the month of July 2003 from this 
study (OSU) and GRACE L2 products (CSR RL05, GFZ RL05a, JPL RL05). 
 
 
3.2.2.2 Case with ‘bad’ ground track coverage 
 
Figure 3.9 show the result for the ‘bad’ month of September 2004. Again, the left panel is 
the comparison of geopotential difference estimation (Figure 3.9a) based on range-rate 
and the prediction (Figure 3.9c, 3.9e, 3.9g) based on official L2 products. Compared to 
the left panel of Figure 3.7 for the ‘good’ month of July 2003, in Figure 3.9 the overlaps 
of the ground tracks lead to very large gaps between the geographical coverage, which is 
caused by the near-repeat orbit configuration during that month. GRACE should have 
approximate 15~16 revolutions every day because of the approximate 1.5 hours orbit 
period, and therefore for a normal month with 30 days non-repeat orbit, the number of the 
total revolution during a month should be around 450~480. However, for September 
2004, because of the 4-day near-repeat period, the number of the non-repeat revolution 
during that month is only equivalent to 61, which is about 13% of the normal month. 
Therefore, more errors are expected from the recovered gravity field up to degree 60.  
 
The solved gravity field is shown in Figure 3.9b in terms of geoid, which apparently 
contains heavier stripes compared to Figure 3.7b for the month of July 2003. Most of the 
stripes concentrate around equatorial area, which is understandable because equatorial 
area has worse ground track distribution than polar region. Actually for polar region, it is 
surprising to see that some of signals are not significantly affected by the stripes, such as 
Greenland. Again, the non-repeat 61 revolutions here are only equivalent to 4 days’ 
geopotential difference observation. Therefore, it implies that shorter temporal resolution 
than a month might be possible, at least for certain area such as polar region. 
 
For comparison, Figure 3.9d, 3.9f and 3.9h shows the same geoid maps from three L2 
official products, CSR RL05, GFZ RL05a and JPL RL05, respectively, for the month of 
September 2004. Unfortunately, my result seems to contain more stripes than other three 
official products. It might be able to match GFZ RL05a and JPL RL05, but definitely not 
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comparable to CSR RL05. One of the reasons could be official L2 products include direct 
contribution from both GPS and KBR data by using dynamic method as mentioned 
before, but it is questionable how large the contribution from GPS to solution is. At least 
study by Luthcke et al. [2006] shows that monthly solution solely from range-rate 
measurements could achieve comparable GRACE solutions as the official L2 products, 
using the similar dynamic method. It is also worthy mentioning that GFZ RL05a use 
regularization to stabilize the solution for that month [Dahle et al., 2012], which can also 
mitigate the stripes. It is unclear whether or not the similar strategy has been also adopted 
by CSR and JPL. The comparison of Power Spectral Density (PSD) of the coefficients 
from all the solutions is shows in Figure 3.10. Compared to Figure 3.8, similar agreement 
can be found at low degree. At higher degree (above degree 15), the PSD of my solution 
shows higher noise level than CSR and JPL’s PSD, and shows similar noise level as 
GFZ’s PDS. 
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Figure 3.9 Global map of both geopotential difference estimates and recovered gravity solution 
for the month of September 2004. Left panel: geopotential differences (a) estimated from this 
study and predicted from GRACE L2 products of (c) CSR RL05, (e) GFZ RL05a and (g) JPL 
RL05. Right panel: recovered geoid change from (b) this study using geopotential difference 
estimates and from GRACE L2 products of (d) CSR RL05, (e) GFZ RL05a, and (g) JPL RL05.  
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Figure 3.10 Comparison of Power Spectral Density (PSD) for the month of September 2004 from 
this study (OSU) and GRACE L2 products (CSR RL05, GFZ RL05a, JPL RL05). 
 
 
3.2.3 Secular and Seasonal Gravity Variation From Global Solutions 
 
As a dynamic planet, Earth’s gravity is continuously varying in different time scales. The 
primary goal of GRACE mission is to precisely map this temporal variation, in order to 
better understand the dynamic process, such as mass transportation, within the Earth 
system. This subsection focuses on the long-term variation of the gravity, and presents 
the secular and seasonal variation observed by GRACE. 
 
3.2.3.1 Secular Variation of Geoid 
 
As said in last subsection, based on the geopotential difference estimates, a series of 
monthly gravity solutions are generated up to degree and order 60 from 2003 to 2013. 
Based on that, the secular and seasonal variations of the time-variable gravity are 
estimated. Figure 3.11a shows the estimated secular variation from 2003 to 2013, in 
terms of geoid height trend. Figure 3.11b, 3.11c, 3.11d show the geoid trend maps 
estimated from for CSR RL05, GFZ RL05a and JPL RL05, respectively. 
 
Clear and consistent secular signals can be observed from Figure 3.11a-d for all the 
solution series, including negative trend in Greenland, Amundsen Sea Embayment, 
Antarctic Peninsula, and Alaska, reflecting the mass loss from the ice sheets and glacier, 
and positive trend in Hudson Bay, West and East Antarctic, and Scandinavia, mainly due 
to GIA. The agreements are mostly over high-latitude and polar region.  
 
On the other hand, the result in this study seems to have more stripes in certain areas, 
especially over low-latitude or equatorial regions, such as Southeast Asia with the signal 
of great Sumatra-Andaman earthquake of 26 December 2004, where my trend map show 
heavier stripes than other three solutions. One of the reasons for the discrepancy could be 
the different reference model used in my processing, especially the high-frequency 
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models that could regionally impact the aliasing effect if the model is less accurate over 
certain area. Another reason may be caused by the ‘bad’ months as I discussed in last 
subsection. The monthly solutions from ‘bad’ months should contain more aliasing 
errors, i.e., stripes, than the ‘good’ months. The geoid estimated from the ‘bad’ months 
may significantly contaminate the trend estimation. Energy balance method may suffer 
this problem more than the dynamic method because of the absent of the direct 
contribution from GPS. The strategy of applying regularization on those ‘bad’ months (at 
least by GFZ) might also be a reason. 
 
Figure 3.12 shows the comparison of Power Spectral Density (PSD) of the trend field 
from all the solutions. All the PSD agree with each other before around degree 25. After 
that, PSD of my solution deviates from CSR and JPL’s PSD, but is close to GFZ’s PSD. 
JPL’s PSD deviates from CSR’s after around degree 40. PSD of my solution derivate 
from GFS’s and drops around degree 56, but normally signals beyond about degree 55 
are regarded as noise for GRACE. The reason of the similarity between my PSD and 
GFZ as well as that between CSR and JPL might be also caused by the different reference 
models used during the data processing, since the models I adopt are identical to the 
models used by GFZ [Dahle et al., 2012], which is different from the models shared by 
JPL [Watkins et al., 2012] and CSR [Bettadpur, 2012], especially for ocean tides models 
as well as the interpolation method of minor ocean tides. 
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Figure 3.11 Geoid trend map (2003~2013) from this study (OSU) and official products. (a) OSU, 
(b) CSR RL05, (c) GFZ RL05a and (d) JPL RL05. 
 
 

 
 
Figure 3.12 Comparison of Power Spectral Density (PSD) for estimated trend from 2003 to 2013 
from this study (OSU) and GRACE L2 products (CSR RL05, GFZ RL05a, JPL RL05).  
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3.2.3.2 Secular Variation of Equivalent Water Height 
 
A large quantity of the application using GRACE monthly solutions is to estimate the 
surface mass transportation for hydrology and glaciology study. Therefore, it is necessary 
to build a connection between the surface mass transportation and gravity or geoid 
change. Wahr et al. [1998] first solved the problem based on a thin layer assumption, i.e., 
all the GRACE observed gravity change is caused by the surface density change of a thin 
layer as well as the corresponding loading effect on solid Earth underneath. The thin 
layer is on the reference sphere defined by the mean radius of the Earth, i.e., 6378136.3 
meters, and the thickness of the layer is negligible compared to the radius of the Earth, 
but has to be large enough to include all the mass change from atmosphere, cryosphere, 
ocean, terrestrial and ground water which are on the order of 10–15 km. The derived 
surface density change can be further scaled by the water density and converted into 
equivalent water height (EWH) change as 
 

 Δh = aσ E

3σ w

2n +1( )
kn +1( ) Pnm cosθ( ) ΔCnm cosmλ + ΔSnm sinmλ( )

m=0

n

∑
n=0

∞

∑ , (3.5) 

 
where a is the Earth’s mean radius, σE is the average density of Earth, σw is the density of 
water, kn are Love numbers of degree n. In Figure 3.13, the geoid trend map is converted 
into the EWH trend map based on the equation (3.5). Unlike the geoid map shown in 
Figure 3.11, the EWH map in Figure 3.13 seems to contain heavier stripes, which is 
caused by the amplification of high-frequency noise due to the additional (2n+1) factor in 
equation (3.5). The trend map from CSR shows fewest stripes than others. Trend maps 
from other three solutions shows similar heavy stripes but with difference characteristic. 
Trend map from this study show more stripe near equatorial region but less over polar 
region than either GFZ or JPL solution. Especially over Greenland and Antarctica, the 
trend map from my solution manifests similar noise level as the CSR solution.  
 
Therefore, post-processing techniques are required in order to mitigate those error and 
noise. The south-north stripes are caused by the correlation between the orbit-sampling 
period and certain gravity coefficients, mainly around the resonant orders of 15~16, 
30~32 and 45~48. Swenson et al. [2006b] provided an ad hoc method to reduce the error. 
Thereafter, similar (e.g., Chambers, [2006]; Chen et al. [2007]; Duan et al., [2009]) as 
well as alternative (e.g., Davis et al., [2008]; Klees et al., [2008]; Kusche, [2007]; 
Schrama et al., [2007]; Wouters et al., [2007]) approaches have been devised to reduce 
the correlation error. Here, the method from Duan et al. [2009] is adopted as a ‘de-
correlation’ technique. Besides de-correlation technique, Most of the approaches also 
need a further spatial domain smoothing (e.g., Guo et al., [2010]; Han et al., [2005]; 
Jekeli, [1981]; Wahr et al., [1998]). The method from Wahr et al. [1998] is adopted as 
smoothing technique, which is same as the isotropic Gaussian filter from Guo et al. 
[2010]. 
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Figure 3.14, 3.15 and 3.16 show the same EWH trend maps as Figure 3.13, but with 
difference post-processing technique applied. Figure 3.14 shows the EWH trend maps 
with only Gaussian smoothing applied, where the average radius is 200 km. Apparently, 
Gaussian smoothing alone is not enough to reduce all the stripes on the trend map, at 
least for the solution from this study and also GFZ and JPL. CSR shows an overall best 
result, so it might be able to use only Gaussian smoothing without de-correlation for CSR 
solutions. Figure 3.15 shows the EWH trend maps with only de-correlation applied. After 
de-correlation, my result shows similar noise level as other three official products, which 
means correlated error mainly dominates my result (as well as GFZ and JPL) instead of 
white noise. Figure 3.16 shows the EWH trend maps with both 200 km Gaussian 
smoothing and de-correlation applied. As a result, the combination of de-correlation and 
200 km Gaussian smoothing can effectively reduce both the correlated error and white 
noise, and lead to almost identical trend map from my solution and other three official 
products. 
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Figure 3.13 Equivalent Water Height (EWH) trend map (2003~2013) from this study (OSU) and 
official products. (a) OSU, (b) CSR RL05, (c) GFZ RL05a and (d) JPL RL05. 

Figure 3.14 Same as Figure 3.13 except 200km Gaussian smoothing applied. 
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Figure 3.15 Same as Figure 3.13 except de-correlation applied  
 

 
Figure 3.16 Same as Figure 3.13 except de-correlation and 200km Gaussian smoothing applied.  
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3.2.3.3 Seasonal Variation over Selected Basins 
 
Trend map is an efficient way to evaluate the secular change. But in order to show the 
seasonal variation in addition to secular variation, the monthly solutions are still needed 
to show the seasonal change of the EWH. Here several regions are chosen to generate the 
time series in terms of EWH using all the monthly solutions from 2003 to 2013. Similar 
to the trend map in Figure 3.16, both 200 km Gaussian smoothing and de-correlation are 
applied to each monthly solution. 33 world major river basins are chosen as the study 
regions to compute the mean EWH variation. The boundaries of those river basins are 
given in Llovel et al. [2010] as shown in Figure 3.17, with the corresponding basin ID 
from 1 to 33. Besides that, two major ice sheets, Antarctica and Greenland, are also 
included, with basin ID of 34 and 35, respectively.  
 
The times series of mean EWH from 33 river basins as well as 2 ice sheets are illustrated 
from Figure 3.18 to Figure 3.20. For river basins, these time series reveal the seasonal 
cycle for most of the basins, and usually the larger the basin is, the smoother the time 
series looks like. The GRACE measured EWH represents the total water storage (TWS), 
which include the surface water, soil moisture and ground water. For some basins like 
Amazon (basin ID 01), surface water redistribution and soil moisture change dominate 
the observed variation, which is mainly caused by precipitation, evapotranspiration and 
runoff, indicating GRACE could serve as a powerful tool to help us understand the 
dynamics of the surface hydrology process [Han et al., 2009]. For some region like Indus 
(basin ID 13), the seasonal cycle is driven by both surface water and ground water 
change. The declined trend signal indicates the ground water depletion over the Indus 
River plain aquifer [Rodell et al., 2009]. 
 
For the time series of the two ice sheets, a clear decline signal indicates the mass loss 
from both Antarctica and Greenland. The seasonal signal is due to the ice accumulation 
and ablation. But unlike river basin, the time series here are largely contaminated by the 
leakage error, which is induced by the Gaussian smoothing, and should be corrected by 
an additional reduction (e.g., Baur et al., 2009; Chen et al., 2006; Guo et al., 2010; 
Swenson and Wahr, 2002). Because this correction is omitted, the amplitudes here are 
actually underestimated, especially for the two ice sheets. 
 
For the inter-comparison of different GRACE solution, the time series from our study 
shows an overall good agreement with other three time series for both annual amplitude 
and phase. Slight disagreement can be identified after 2013, such as Amar (basin ID 01), 
Eyre (basin ID 11), Nelson (basin ID 19) and St Lawrence (basin ID 27), which will be 
left for further study. 
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Figure 3.17 The boundaries of 33 major river basins and the corresponding basin ID given by 
Llovel et al. [2010] 
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Figure 3.18 The mean EWH time series for river basins (ID 01~12), computed using GRACE 
monthly solutions from this study and other three official products. 
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Figure 3.19 The mean EWH time series for river basins (ID 13~24), computed using GRACE 
monthly solutions from this study and other three official products.  
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Figure 3.20 The mean EWH time series for river basins (ID 25~33) and two ice-sheet over 
Antarctica and Greenland, computed using GRACE monthly solutions from this study and other 
three official products. 
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3.3 Applications of GRACE Solutions with Enhanced Temporal Resolution 
 
On a monthly basis, GRACE has been routinely measuring the Earth’s time-variable 
gravity field from space at approximate 400~500 km altitude since late 2002 with only a 
few gaps. There exists a tremendous amount of publications about hydrology studies 
using GRACE, from the monitoring of flood [Chen et al., 2010] and drought [Chen et al., 
2009], to the assessment of hydrological models [de Paiva et al., 2013] and separate 
components (such as groundwater [Döll et al., 2014], precipitation [Matsuo and Heki, 
2012], evapotranspiration [Rodell et al., 2004] and runoff [Han et al., 2009]). Most of 
these studies start with the estimation of Total Water Storage (TWS) [Wahr et al., 1998] 
using the L2 monthly solutions. 
 
However, it is rational to presume a relative finer or enhanced temporal resolution from 
GRACE. First, as it can be seen from Figure 3.7 and 3.9, even though the ground track 
distribution for the ‘bad’ month (Figure 3.9) is much worse than that for the ‘good’ 
month (Figure 3.9), the resulting gravity solution in Figure 3.9 can still yield valid time-
variable gravity signal. Secondly, global gravity recovery usually has a homogeneous 
resolution by truncating the solution to a maximum degree (and order), such as degree 60 
for RL05, corresponding to the spatial resolution of 333 km. But it is reasonable to expect 
the region with more data coverage should have a better resolution than the region with 
less data coverage. Considering the near-polar orbit configuration, it is obviously that 
GRACE data should have more coverage over high-latitude region than middle- and low-
latitude region. Therefore, it might be also possible to obtain enhanced spatial and/or 
temporal resolutions over certain region, especially near polar region, using geopotential 
difference observation. 
 
Indeed, several attempts have also been made to improve the temporal resolution of 
GRACE. For example, GFZ routinely generates weekly solutions, but only up to degree 
and order 30. Kurtenbach et al. [2012] employed short-arc method [Mayer-Gürr et al., 
2007] under the principle of Kalman smoothing to conduct the daily snapshot solution, 
however the stochastic behavior of the gravity field has to be considered as a priori 
information. Kang et al. [2008] used traditional dynamic method to generate the so-called 
‘quick-look’ solution with a moving-window strategy (with a window step of one day 
and window width of 15 days), but those solutions are stabilized using regularization. An 
incomplete list of GRACE solutions with various temporal resolutions from different 
research groups can be found at http://icgem.gfz-potsdam.de/ICGEM/TimeSeries.html. 
 
The improved energy balance approach can also be easily implemented to generate 
solutions with enhanced temporal resolution since the inversion using geopotential 
differences is very straightforward. In this section, the possibility of solving GRACE 
solutions with enhanced temporal resolution is investigated, and the results are applied to 
three different cases. The first one focuses on the Greenland ice sheet. The second one is 
for the terrestrial and ground water storage study over North China Plain aquifer. The 
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third one is for terrestrial water storage study for the case of the 2008 Southeast China 
snow and ice storm. 
 
3.3.1 Sub-monthly Geoid Change over Greenland 
 
Unlike other sub-monthly solution, I attempt to solve unconstraint solutions without the 
compromise of spatial resolution (i.e., degree and order 60), nor the need to use 
regularization or a priori information. After several empirical experiments, I found for 
most of the case, using 10~11 days’ geopotential differences would be able to solve a 
solution up to degree 60 and meantime can avoid significantly increasing the correlated 
error, i.e., stripes, especially over polar region.  
 
Here Greenland ice sheet is chosen as the test area. First half year’s geopotential 
difference data from July 2013 to December 2013 are collected, and for each month the 
data are divided into three separate data subsets for every ten or eleven days. Then using 
the data from each 10 or 11-day subset, gravity solution is solved up to degree and order 
60 without any constraint. In Figure 3.21, both the geopotential difference data and the 
corresponding solutions in terms of geoid change are presented, from top to bottom for 
the month from July 2003 to December 2003, respectively. Here no post-processing 
techniques are applied to any of the solutions. The left three columns of Figure 3.21 show 
the 10 or 11-day geopotential difference subsets in terms of data coverage map over 
Greenland, where the color represents the value with mean field removed; the middle 
three columns show the 10 or 11-day solutions up to degree 60 in terms of geoid 
undulation with mean field removed; and for comparison the right three columns show 
the corresponding monthly solutions also up to degree 60 in terms of geoid with mean 
field removed, from this study, CSR RL05 and GFZ RL05a, respectively.  
 
It is interesting to note that although the temporal resolution is shortened to about 10 or 
11 days, the data coverage is still fairly dense over Greenland for most of the subsets. 
And the resulting 10-day solution, in the middle three columns of Figure 6, shows 
explicit geoid variation, surprisingly without introducing more stripes. The existing of 
some ‘gaps’ in the data coverage, such as the third subsets for August and September, 
due to missing days for each month (day of year 240 and 270), do not increase the stripes 
over the recovered solution either. It is thus remarkable to realize that, for the region like 
Greenland, 10 or 11-day geopotential difference data are sufficient to recover the time-
variable gravity, with a resolution up to degree 60 but without significantly increasing the 
error. My 10 or 11-day solutions show almost the same level of the stripes as the monthly 
solutions from both this study (column 7 in Figure 3.21) and CSR (column 8 in Figure 
3.21). For comparison, the monthly solutions from GFZ (column 9 in Figure 3.21) even 
show larger stripes than my 10 or 11-day solutions during the same period. 
 
From my 10-day solutions, the geoid fluctuation within each month can be clearly 
observed through the three sub-monthly geoid maps. For example, the three geoid maps 
of July show apparently deceasing signal from the beginning to the end of the month, and 
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on October geoid maps show increasing signal within that month. Also the average of the 
three sub-monthly geoid maps seems analogous to the monthly mean geoid map.  
 
Therefore, I conclude that my method and the resulting geopotential difference data can 
substantially improve the temporal solution of the regional gravity recovery, which is 
conducted over Greenland ice sheets and yields an enhanced temporal resolution by 3 
times. Furthermore, these 10 or 11-day solutions over Greenland might also be able to 
reveal more detailed sub-monthly temporal mass variations for the Greenland ice-sheets. 
More details evaluation using surface mass balance model will be left for future studies. 
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Figure 3.21 Regional enhanced solutions from July 2003 to December 2003 over Greenland ice 
sheet. Left three columns: 10-day geopotential difference subset in terms of data coverage map, 
where the color represents the value with mean field removed. Middle three column: 10-day 
solutions up to degree 60 in terms of geoid undulation with mean field removed. Right three 
columns: monthly solutions up to degree 60 in terms of geoid with mean field removed, from this 
study, CSR RL05 and GFZ RL05a, respectively. Neither regularization nor post-processing is 
applied.  
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With the confidence of the valid signal in my 10 or 11-day solutions, I apply the same 
method to solve gravity field but with only 1-day interval. That means instead of solving 
3 independent sub-monthly solutions within a month, I solve time-variable gravity field 
for each day using the neighboring 11-day geopotential difference data, i.e., 5 days before 
and 5 days after the corresponding day. Those 11-day solutions with 1-day step are not 
independent with each other any more, and represent 11-day average solutions. 
 
In the next two subsections, I use these 11-day solutions with 1-day step to study the sub-
monthly change of the terrestrial water storage, for two cases of snow and ice storm and 
ground water storage change. Since the solutions need to be converted into EWH, 
additional post-processing techniques are inevitable. Here the routine post-processing 
techniques are applied for all the solution, including both de-correlation and 200 km 
Gaussian smoothing. 
 
3.3.2 Terrestrial and Ground Water Storage Variation over North China Plain 
 
This subsection presents the study of Terrestrial Water Storage (TWS) as well as Ground 
Water Storage (GWS) variation over North China Plain (NCP) from the GRACE. First, 
the monthly global solutions based on improved energy balance method are used to 
generate the long-term trend estimation of both regional TWS and GWS. Similar to 
previous studies based on official monthly solutions, my result reveals the same negative 
trend over this area, which may be related to the groundwater depletion in NCP. Next, six 
months’ geopotential difference data are used for the sub-monthly analysis. Again, the 
strategy of 11-day solutions with 1-day step is applied here, and the solutions are solved 
up degree and order 60 using 11 equally weighted days of geopotential differences, which 
are estimated directly from Level 1B data by the improved energy balance method. The 
resulting sub-monthly solutions, after being routine post-processed, are compared with 
both hydrology models and in-situ observation.  
 
3.3.2.1 Regional Trend Comparison  
 
Before presenting the sub-monthly solutions, it is necessary to confirm the consistency 
between my monthly product and other three official products. The monthly solutions 
from 2003 to 2010 are used to compute the trend in terms of TWS and show the spatial 
pattern over China area in Figure 3.22, as well as the trend maps estimated from other 
three official products. Here the routine post-processing techniques are applied for all the 
monthly solution, including both 200 km Gaussian smoothing and de-correlation. Figure 
3.22a exhibits the TWS trend estimated from this study using the monthly solutions based 
on geopotential difference data, referred to as OSU solution here. Some significant 
signals are revealed by GRACE over this area, which has been thoroughly discussed by 
the previous studies. The largest negative signal is over North Indian and Himalayas area, 
which are believed due to the groundwater depletion [Rodell et al., 2009] and glacier 
melting [Yi and Sun, 2014], respectively. Another negative signal is near Southwest 
China, which corresponds the Tienshan glacier melting [Yi and Sun, 2014]. In Northeast 
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China, there is also a clear negative trend, reflecting the terrestrial water storage change. 
Figure 3.22b~d shows the trend estimated using the monthly solutions from CSR L2 
RL05 product, GFZ L2 RL05a product, and JPL L2 RL05 product, respectively. By 
comparing my result with other three official results, it can be seen that the trend 
estimated using my product is highly consistent with other three products. The signals 
over the same location with the similar amplitude are manifested.  
 
 

 
Figure 3.22 Terrestrial water storage (TWS) trend map from 2003 to 2010 over China and 
surrounding regions. De-correlation and 200 km Gaussian smoothing applied. Negative trend 
over Tienshan glacier, Indian and Himalayas area, and North China Plain. (a) from this study, (b) 
from CSR L2 RL05, (c) from GFZ L2 RL05, (d) from JPL L2 RL05. 
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over NCP, and the right shows the GWS trend based on the SM from the average of the 
four hydrological models. Compared to Figure 5 (a) from Feng et al. [2013], Figure 3.23 
left shows similar spatial pattern. Here the white mask shows the administrative 
boundaries of four nearby provinces (Hebei and Shanxi) and municipalities (Beijing and 
Tianjing), and the black mask shows the hydrogeological boundary of NCP aquifer. It is 
noticeable that the center of the negative trend of the GRACE GWS (the dark blue dome) 
is not exactly located over the NCP area, but instead it is shifted to the west edge of the 
aquifer, close to the Taihang Mountain. Huang et al. [2015] further argued that this dome 
shift might be caused by the faster decline in the west (Piedmont Plain) than in the East 
Central Plain.  
 
 

 
Figure 3.23 Terrestrial Water Storage (TWS) and Ground Water Storage (GWS) trend map from 
2003 to 2010 over North China Plain. De-correlation and 200 km Gaussian smoothing applied. 
Left: TWS directly from GRACE. Right: GWS after removing average SM of four hydrological 
models (NOAH, VIC, MOSAIC, and CPC). 
 
However, The spatial pattern of the GWS derived from GRACE is actually significantly 
dependent on the choice of hydrological models. Here I simply show the GWS results 
using individual models instead of the average. Figure 3.24 shows the derived GWS 
figures based on six hydrological models. The first four figures from the top two panels 
show the results from the individual models (NOAH, VIC, MOSAIC, and CPC) selected 
by Feng et al. [2013], and the last two figures from the bottom panel show the results 
from two additional models, including CLM (also from GLDAS but neglected in Feng et 
al. [2013]) and ERA (from ECMWF ERA-interim). Clearly, GWS using different 
hydrological models show various spatial patterns, and especially the last two models, 
ERA and CLM, shift the negative dome far away from the NCP area. Therefore, Figure 
3.24 shows that hydrological model is still the main error source for the GWS estimation 
from GRACE. 
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Figure 3.24 Ground Water Storage (GWS) trend map from 2003 to 2010 over North China Plain 
based on individual hydrological models: NOAH, VIC, MOSAIC, CPC, CLM, ERA from top left 
to bottom right. 
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3.3.2.2 Sub-monthly Terrestrial Water Storage from GRACE  
 
If one were only interested in the inter-annual signal or annual signal, monthly sampled 
solutions are sufficient to estimate inter-annual signals or annual signals. But when one 
need to examine more rapid change signals, such as sub-monthly signal, the monthly 
solutions then can hardly fulfill the purpose. In this part, the 11-day solutions with 1-day 
step are used to study the sub-monthly variation of the TWS over NCP from GRACE. Six 
months’ geopotential difference data from July 2003 through December 2003 are used to 
generate 184 11-day solutions with 1-day step up to degree and order 60. Both 200 km 
Gaussian smoothing and de-correlation are applied to those 11-day solutions for post-
processing. 
 
Figure 3.26 exhibits the sub-monthly analysis over North China Plain in terms of TWS as 
time series from July 2003 to December 2003. In Figure 3.26a the monthly TWS 
variation are displayed over NCP, estimated from both CSR RL05 product and my 
product, called OSU monthly here. The two time series can fit very well with each other, 
and of course each time series only contain 6 points during that period by using monthly 
product. Next, an additional line is added in Figure 3.26b to show the time series of the 
sub-monthly TWS estimated from 184 11-day solutions. The referenced epoch for both 
Figure 3.26a and 3.26b is the first day during this period, i.e. July 1st, 2003. For the 11-
day solutions, the value from referenced epoch is subtracted from all the other solutions, 
and for the monthly solution, the value of the referenced epoch is interpolated and 
subtracted from monthly solutions. Compared to the monthly solutions, the 11-day 
solutions with 1-day step can reveal many high frequency features besides the low-
frequency seasonal signal based on the time series. For example, from August to 
September 2003, the time series of the 11-day solutions deceases first then increases, 
indicating there might exist a short-time water loss event that is not observed by using 
monthly product; also for the October 2003, it exposes that there seems to exist a rapid 
water gain and loss within that month.  
 
The next question is that whether or not those high-frequency feathers represent real 
high-frequency hydrological signal instead of purely measurement noise. Here, 
hydrological models are used to assess those sub-monthly solutions from GRACE. 
Unlike previous monthly analysis, not all the hydrological models provide sub-monthly 
product. Besides, since the purpose here is to examine the high-frequency fluctuation of 
the TWS, using the average hydrology model as the previous studies [Rodell et al., 2009; 
Feng et al., 2013] might diminish the short-time change existed in different models. 
Therefore, instead of compute a mean hydrology model, here two individual hydrological 
models are used and compared separately with GRACE observation. The first 
hydrological model is from GLDAS-2 product. The second one is from ERA-interim 
product. The components of soil moisture and snow depth from both models are used to 
simulate the TWS, and both of them are sub-daily sampled grid data. In order to make 
them consistent with GRACE observation, each grid data are transformed into spherical 
harmonics, truncate it to degree 60 and apply the same 200 km Gaussian smoothing. 
Then for each day the 11-day average are calculated from those sub-daily processed 
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models to compare with the 11-day solutions from GRACE. The referenced epoch is also 
set to July 1st. In Figure 3.26c and 3.26d, the time series of TWS change from both 
models are plotted, together with TWS change from GRACE 11-day solutions. Both 
models show similar increasing trend over these 6 months, but apparently ERA-interim 
agrees with GRACE solutions better than GLDAS-2. It is interesting to notice that ERA-
interim model also shows two similar rapid change events in both August and October, 
implying that it might be more consistent with GRACE compared to GLDAS-2. The 
reason could be that GRACE use AOD1B data to remove the high-frequency variation 
from both atmosphere and ocean, and the input of the atmosphere part is the atmosphere 
field from ECMWF operational analysis data, which should be consistent with the soil 
moisture and snow depth field from ERA-Interim (i.e., ECMWF Re-Analysis). 
 
3.3.2.3 Sub-monthly Ground Water Storage from GRACE  
 
Since there still exists large discrepancy between the two lines in both Figure 3.26c and 
Figure 3.26d, it is thus obvious that soil moisture and snow depth components from 
models cannot fully explain the TWS change observed from GRACE. Another major 
contribution to the TWS change over North China Plain is the groundwater. In fact, since 
North China Plain includes one shallow unconfined aquifer and three deep confined 
aquifers, large amount of the groundwater from these aquifers has been used for 
agricultural irrigation, the excessive pumping of groundwater has caused severe 
groundwater depletion. Several studies based on GRACE monthly solution have already 
confirmed this depletion, and the estimated groundwater loss rate varies from 1.1–2.4 
cm/yr (e.g., Zhong et al. [2009]; Moiwo et al. [2009]; Su et al. [2011]; Feng et al. 
[2013]). 
 
Therefore, it is necessary to include the component from Ground Water Storage (GWS), 
which comes from the water table data measured from in-situ monitoring wells (courtesy 
of Wei Feng, IGG, CAS). The geo-locations of the 40 in-situ monitoring well stations are 
shown as the black points in Figure 3.25. These well stations provided daily water table 
depth measurements from 2002 to 2012. All the time series of the water table depth from 
these stations are directly plotted in Figure 3.26e, which shows very large biases between 
data time series from these well stations because they are located in different depth. In 
Figure 3.26f, the individual biases are removed to compute the mean time series as the 
red line. A mean specific yield number of 0.06 [Feng et al., 2013] are adopted to convert 
the water table depth to groundwater. 
 
If assuming the average time series can represent the groundwater change over North 
China Plain, then the sum of groundwater change (from average of the in-situ data) and 
soil moisture and snow depth components (from models) should match the GRACE 
observed TWS change. In Figure 3.26g and 3.26h, the groundwater change (green line) 
from in-situ data is added to soil moisture change from two different models (blue line) to 
get the sum of them (black line). As it can be seen, adding groundwater does mitigate part 
of the discrepancy with the GRACE, but still fails to explain some of the high frequency 
features. On the other hand, because of the large different between the ground water data 
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(Figure 3.26e), the use of mean value to represent the ground water change over a large 
area is also questionable. 
 
Therefore, instead of using the average of the ground water data from all the well 
stations, each station is evaluated individually. In order to do that, the soil moisture and 
snow depth from ERA-Interim model are adopted, and subtracted from GRACE TWS, to 
get the GRACE derived sub-monthly ground water storage (GWS) change. Then the 
GRACE derived GWS are compared with individual GWS measured from each well 
station. As a result, 7 stations show highly correlated in-situ measurement with GRACE 
GWS observation. In Figure 3.27, the 7 individual GWS time series are plotted with 
respect to the GRACE derived GWS from 3.27b to 3.27h. Figure 3.27a shows the 
average of the ground water time series for comparison, which shows the average of the 
ground water data from all 40 well stations does moderate the high frequency feathers 
hidden in individual station. The time series from 3.27b to 3.27h all show similar ground 
water depletion near the end of August. Two time series (from station 6 and station 7) 
also show similar deletion in December. Figure 3.25 highlights the geo-location of the 7 
well stations as the red dot, which shows that all the 7 stations are located in a small area 
of NCP, and also station 6 and 7 are very close to each other and therefore they show 
similar ground water measurement. This small area is near a shallow aquifer and also 
close to the high irrigation region, so the rapid change of ground water storage could be 
due to the short time heavy irrigation, which might possibly explain the correlation 
between the in-situ data and GRACE results. 
 
The correlation between models, in-situ GWS and GRACE derived TWS and GWS 
implies the possibility of using GRACE to monitor the rapid change of both surface water 
and ground water storage change, which may eventually benefit the potential water 
resources management as well as improve our understanding of hydrologic circulation 
and discharge. 
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Figure 3.25 Groundwater monitoring well distribution over North China Plain. Black dot: geo-
location of 40 well stations. Red dot: the 7 stations show the in-situ data which are highly 
correlated with GRACE derived groundwater storage change. 
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Figure 3.26 Sub-monthly GRACE Terrestrial Water Storage (TWS) over North China Plain from 
July to December 2003. (a) Monthly TWS from CSR RL05 and this study. (b) Daily TWS from 
this study. (c) Comparison of daily TWS from GRACE and model from ERA-interim. (d) 
Comparison of daily TWS from GRACE and model from GLDAS. (e) Water table data from 40 
in-situ well stations. (f) Average of all the water table data. (g) Comparison of GRACE TWS with 
in-situ ground water data and model from ERA-interim. (h) Comparison of GRACE TWS with 
in-situ ground water data and model from GLDAS. 
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Figure 3.27 Sub-monthly GRACE Ground Water Storage (GWS) over North China Plain from 
July to December 2003. (a) Comparison of GRACE GWS and average of the in-situ ground water 
data. (b~h) Comparison of GRACE GWS and the individual in-situ ground water data from 7 
different stations. 
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3.3.3 Measuring Snow and Ice Storm from GRACE 
 
3.3.3.1 2008 Southeast China Snow and Ice Storm 
 
Extreme weather events significantly impact human well being. Some of these 
unexpected natural hazards have led to significant loss of human lives and economics.. 
The 2008 Southeast China snow and ice storm [Stone, 2008], lasting from middle January 
to middle February, affected 21 out of China’s 34 provinces and regions with heavy 
snows, ice and freezing rains. As China’s worst winter in 5 decades, the storm caused 
extensive damage and transportation disruption, displaced nearly 1.7 million people, and 
claimed 129 lives. The massive accumulation of snow and ice due to the month-long 
precipitation and below freezing temperature even slightly changed the gravity and mass 
balance on Earth surface, and has consequently perturbed the relative motion of the two 
GRACE satellites, which is captured by KBR range-rate measurements. 
 
Previous applications of GRACE mission are mainly limited to secular and periodic 
(seasonal) gravity or mass changes over a large-scaled basin (such as Amazon) and ice 
sheets (such as Greenland or Antarctic), or a sudden permanent gravity jump with respect 
to the secular and periodic change (such as earthquake), using a series of gravity 
solutions approximately representing the mean gravity during each calendar month. 
However, this traditional method cannot fulfill the purpose of this study because the 
cumulated gravity change caused by snow and ice storm during such a short time has 
neither secular/periodic change nor permanent jump of gravity. The expecting gravity 
change over a certain area during the storm event should increase first because of snow 
accumulation and decrease afterwards because of melting and runoff.  
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Figure 3.28 In-situ data is from 194 regional climatology stations in Mainland China 
(http://cdc.cma.gov.cn) from January 1st to February 29th, 2008. Left: daily mean air temperature. 
Right: daily precipitation. 
 
 
Therefore, the new 11-day solutions with 1-day step have to be used in order to study this 
event. The chosen time span is exactly 60 days from January 1st to February 29th, 2008. 
First, the daily in-situ precipitation and temperature are shown in Figure 3.28, where the 
data are collected from 194 regional climatology stations over Mainland China 
(http://cdc.cma.gov.cn). The number for each figure is defined as the days since January 
1st, 2008.  
 
As can be seen in Figure 3.28, this severe winter hazard started at the beginning of 2008. 
Around the start of 2008, a warm, moist maritime tropical (mT) air mass was driven from 
Bay of Bengal and South China Sea to southern and central China, which abnormally 
increases the surface temperature to over 20 °C (D1~D10 in Figure 3.28 left) and 
meanwhile brings plenty amount of moisture. Around January 10th, 2008, this moist air 
mass was hit by a large dome of cold, continental polar (cP) air mass coming from central 
Asia and Mongolia. The encounter of the two air masses not only just rapidly drop the 
temperate below freezing point (after D11 in Figure 3.28 left), but more seriously 
suddenly develop into a stable atmospheric boundary layer, which is a favorable 
configuration for continuous snow and freezing rains over a large region [Zhou et al., 
2011]. 
 
As a result, snow and freezing rain started around January 11th, which can be seen from 
the precipitation maps on the right of Figure 3.28. The snow struck the east-central China 
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first, mainly over middle and lower reaches of the Yangtze River, including provinces of 
Anhui, Hunan, Henan, Shandong, Jiangsu Provinces and municipality of Shanghai. After 
that, around the second half of January, the affected area expanded into larger southeast 
China driven by the slow moving of the cold cP air mass towards south, which eventually 
bring the record-breaking snow, ice and freezing rains to half of China.  
 
From the right panel of Figure 3.28, the successive four separate waves (10–16 January, 
18–22 January, 25– 29 January, and 31 January–6 February) of snow and ice snow last 
until early February, and finally stop around February 6th (D37). During that period, 
almost all the recorded mean air temperature around southeast China is below or around 0 
°C (Figure 3.28 left). Therefore the snow and ice could continuously accumulate onsite 
instead of evapotranspiration and runoff. The short interval between the snow, such as 
January 23rd and 24th, could only temporally slow down the accumulation, but not long 
enough for ice melt also because of the low temperature. 
 
3.3.3.2 Results from GRACE  
 
The gravity change due to the surface snow and ice change can be measured by GRACE. 
To see that, the geopotential differences during that two months are collected, including 5 
more days for each end, and the strategy of 11-day solutions with 1-day step are applied 
again to solve the global gravity field up to degree and order 60. After applying de-
correlation and 200 km Gaussian smoothing, the EWH are computed for each 11-day 
solution. The referenced field is chosen as January 1st, 2008, which is computed using the 
data between December 27th, 2007 and January 6th, 2008. During that period, there is no 
evident precipitation for the area so the gravity fluctuation between December 27th, 2007 
and January 6th, 2008 is assumed to be negligible. Therefore, the results actually 
represent the 11-day average of gravity change for each day with respect to the reference 
day, which is mainly caused by the snow accumulation and melting afterwards. The 
gravity changes in terms of EWH during those two months are shows in Figure 3.29. 
 
Figure 3.29 clearly reveals the process of surface mass increasing and deceasing caused 
by the accumulation and melting of the snow and ice during this winter event. Surface 
mass first accumulate mainly over east-central China, since that is where the cold air 
initially struck. The accumulation in the east reached the peak around January 22, right 
before the short two days interval. After that, the surface mass accumulation over the 
southeast China overwhelmed the east, and reach to the maximum on February 6th (D37) 
when the major precipitation stopped. With the temperature gradually increasing after 
February 6th, the accumulated snow began to melt, so the evapotranspiration and runoff 
dominated the snow change and decreased the surface mass. 
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Figure 3.29 GRACE derived EWH from January 1st to February 29th, 2008, which captured the 
surface mass change signal caused by 2008 Southeast China snow and ice storm. 
 
3.3.3.3 Validation using Model and In-situ Data 
 
In order to further validate the GRACE-derived sub-monthly solution, the model from 
ERA-Interim product are used to compare with the EWH from GRACE. ERA-Interim is 
a global atmospheric reanalysis product, including global atmospheric and surface 
parameters from 1 January 1979 to present, which is based on ECMWF global daily 
gridded model of various hydrology parameters, such as precipitation (P), 
evapotranspiration (ET) and runoff (R). Using these parameters, the daily EWH can be 
modeled as 
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where the integral starts on January 1st until each day. The resulting EWH model is the 
gridded data, which have to be transformed into spherical harmonics and truncated to 
degree and order 60. Then the 11-day moving average and the 200 km Gaussian 
smoothing are applied, in order to be consistent with the GRACE-derived EWH. Besides, 
the daily in-situ evaporation observations from the 194 regional climatology stations are 
combined with the precipitation observations to model the EWH using the same method. 
Here the runoff term is ignored. 
 
Figure 3.30 shows the results of the EWH modeling from ERA-Interim and in-situ data. 
Compared to GRACE result, model from ERA-Interim shows smaller amplitude, and 
model from in-situ data shows larger amplitude, which is mainly caused by the lack of 
runoff in-situ data. The GRACE time series is found to be closer with the evolution of the 
in-situ data. But both the model and the in-situ data show similar EWH change pattern as 
GRACE result, i.e., accumulation in the east first, then expand to southeast and then fade 
away. This similarity again confirms my GRACE 11-day solutions with 1-day step do 
capture the surface mass change signal caused by 2008 Southeast China snow and ice 
storm, and furthermore prove that GRACE can provide an additional constraint to 
understand the mass transportation and the dynamic processes during extreme and rapid 
changing weather events, especially for the poor gauged area.  
 

 
Figure 3.30 GRACE-type EWH modeling using ERA-Interim (left) and in-situ data (right), from 
January 1st to February 29th, 2008. 
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Chapter 4 Conclusions 
 
A new approach, called improved energy balance formalism, has been developed for 
time-variable gravity field recovery from GRACE satellites in this study. A simple, 
innovative method, called the alignment equation, is first presented to exactly utilize the 
most accurate measurements, i.e., range-rate, from the satellite-to-satellite tracking 
system. Next, a reconstruction algorithm is also used to overcome the possible systematic 
error caused by the coupling between reference orbit and gravity, and recalibrate the 
accelerometer by uncovering an offset of scale parameter after 2010. Finally, a more 
precise formulation of energy equation to calculate the geopotential difference 
observables is adopted by considering more rigorous modeling and validated by using 
sophisticated close-loop simulation. Compared to the previous study about energy 
balance approach, this improved approach can better preserve gravity information from 
range-rate data and reduce error from orbit data, which would essentially improve the 
estimation of geopotential difference. Analysis of more than 10 years of GRACE data 
indicated that the resulting geopotential difference estimates agree well with predicted 
values from official GRACE RL05 monthly solutions: with much higher correlation at 
0.9, as compared to 0.5–0.8 reported by previous energy balance studies. The developed 
formalism is applicable to the general case of low-low satellite-to-satellite radiometric or 
laser interferometric tracking measurements, such as GRACE Follow-on or other Next 
Generation Gravity Field missions, for efficient retrieval and studies of Earth’s mass 
transport evolutions. 
 
The first GRACE global monthly solution series based on energy conservation principle 
is produced from 2003 to 2013 using the geopotential difference data and a 
straightforward inversion method up to degree and order 60. The recovered monthly 
solutions show comparable signal-to-noise ratio with official GRACE RL05 monthly 
solutions in both spatial domain and spectral domain, for both the month with 
homogeneous ground track distribution and the month with non-homogeneous ground 
track distribution due to the near-repeat orbit. Further comparison also indicated 
consistent secular and seasonal gravity variation, for both global trend and regional 
basins, with and without any post-processing techniques. 
 
This study demonstrates that an enhanced temporal resolution is achievable using the 
improved energy balance method because of the flexible inversion process from 
geopotential difference data. The enhanced solutions are conducted over Greenland first 
and reveal that a substantially higher temporal resolution is achievable at 10 or 11-day 
interval from GRACE data, as compared to the official monthly solutions, but without the 
compromise of spatial resolution, nor the need to use regularization or post-processing. 
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The similar strategy is further applied to solve gravity field using the neighboring 11-day 
geopotential difference data but with only 1-day step, leading to sub-monthly solutions 
for the purpose of studying the gravity variation within a month. These 11-day solutions 
with 1-day step have been applied to study both the terrestrial and ground water storage 
over North China Plain aquifer. Analysis of 6 months’ sub-monthly solutions show the 
GRACE-derived high-frequency variation of TWS is more consistent with the models 
from ERA-Interim than GLDAS-2. After removing the soil moisture using ERA-Interim, 
correlation between the derived GWS and selected in-situ measurements from well 
stations can be identified, which implies the possibility of using GRACE to monitor the 
rapid change of both surface water and ground water storage change, and could 
eventually benefit the potential water resources management as well as improve our 
understanding of hydrologic circulation and discharge. 
 
Finally, the 11-day solutions with 1-day step are applied to study the mass variations 
during the event of 2008 Southeast China snow and ice storm from January to February 
2008. The surface mass change caused by the rapid snow and ice accumulation and 
melting has been successfully captured by GRACE solutions after routine post-
processing, which are also validated by both the in-situ data and hydrologic models, and 
demonstrates that these 11-day solutions can provide an additional constraint to 
understand the mass transportation and the dynamic processes during extreme and rapid 
changing weather events, especially for the poor gauged area. 
 
Several limitations still exist in the current realization of the improved energy balance 
formalism. The fore problem is that signal-coherent adjustment is still inevitable, which 
means that the geopotential differences, gravity solutions, reconstructed orbit and the 
solved systematic parameters are all biased to the a priori gravity model. Iteration might 
be able to overcome this problem and lead to a more independent monthly global 
solutions series. Another problem is the purely dynamic orbit based on the orbit 
reconstruction algorithm is, although efficient, but still a simplified method, which may 
suffer the unexpected error from the input orbit. In the future, the reconstruction 
algorithm should be replaced by directly solving dynamic orbit from GPS tracking data. 
The third imperfection is the formulation of energy method still contains minor 
approximation on the order of 10-5 m2/s2, which is however negligible definitely for 
processing GRACE and also most likely for the future GRACE Follow-on observations. 
 
Therefore, the new method from this study would also benefit the forthcoming GRACE 
follow-on mission, especially considering the possibility that the precision of range-rate 
data can be improved by up to a factor of 20 [Loomis et al., 2012], but the precision of 
GPS tracking data may not have significant advances. In that case, for the traditional 
conventional dynamic method the weighting of GPS tracking data would need to be 
further reduced, which could be more analogous to this method since GPS data and 
range-rate data have already separately handled through the alignment equation. 
Therefore, the energy balance method might have a unique contribution to the processing 
of more accurate data from next generation satellite gravimetry mission to extend Earth’s 
mass transport climate record. 
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