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ABSTRACT

The global prediction of gravity anomalies and sea surface heights and their rigorous
accuracy estimates from satellite altimeter data were carried out in the ocean area covering
¢ =72°to -72° and A = 0° to 360°. The data used is the OSU existing combined Geos-
3/Seasat data, which was updated by introducing sea surface topography correction,
equatornial radius correction, height bias correction and permanent tidal corrrection and
OSUBGE reference field to degree 180 for this study. The use of the supercomputer,
incorporating with the vectorization technique, has significantly reduced the computer
time and a total of 12 CPU hours (on CRAY) was consumed by the production work.
The global prediction was carried out in such a way that the sea surface heights were first
adjusted by the cross-over arcs method and then the predictions were made by the least
squares collocation method. From the tests focusing on various issues, we conclude that
the local arc adjustment can remove the biases of arcs with wavelength of 400~300 km
and the optimal altimeter data density is 400 points within a prediction cell of 0°5 with
0225 border.

A total of 2,322 080 point values with 1/8° grid interval were predicted. The mean
standard deviations are 12.11 mgals for anomaly and 8 cm for sea surface height. The
comparison of the predicted and ship measured anomalies at the 2011 points in the
Bermuda area has an RMS difference fo 15.9 mgals. The plots of anomalies show that
many undetected gravity signatures in Rapp's (1985) work now have been recovered.
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CHAPTER I

Introduction

The role of satellite altimeter data in the recovery of the gravity anomalies and sea
surface heights has been clearly demonstrated by Rapp (1979), Rapp (1983) and Rapp
(1985). The capability of the recovery is, however, limited by the number of altimeter
observations, the data accuracy, the computer resource and software's efficiency. Other
important factors include the model of the gravity field, the consideration of sea surface
topography and the satellite altimeter’s instrument calibrations.

Rapp (1985) first used the combined Geos-3/Seasat altimeter data to perform the
global recovery of gravity anomalies and sea surface heights. Due to computer resource
and other considerations, he reduced the original 5.9 million observations to 1.1 million
observations. Accuracy estimates for the predicted quantities were not rigorously
computed. Itis clear that the detailed information could be lost due to such simplification.
With the advent of supercomputers, the above considerations become unneccesary.
Thus, our goal now is to use the original combined Geos-3/Seasat data to exploit the full
potential of the recovery of gravity anomalies and sea surface heights through the use of
optimal procedures.

In addition to improved data handling, several correction terms, not considered by
Rapp (ibid.) will be considered. These terms will be illustrated in the following chapter.



CHAPTER II

The update of the existing combined Geos-3/Seasat data base

2.1 The existing OSU Geos-3/Seasat data base

The development of the existing OSU Geos-3/Seasat data base can be summarized

chronologically as follows:

@

(i)

(i)

(iv)

Rowlands (1981) performed crossing-arc adjustments of Seasat data provided by
the Jet Propulsion Laboratory. The adjustments were split into two parts, i.e., the
primary adjustment and local adjustment. Approximately 2.2 million points were
obtained from the adjustments. Figure 2.1 shows the distribution of Seasat arcs.

In 1982, Cruz improved Rowland's local adjustment but kept Rowland's primary
adjustment unchanged (Rapp, 1985).

Liang (1983) carried out the adjustment and combination of Seasat data from (ii)
and the 3.5 year Geos-3 data from National Geodetic Survey. The adjustment is
implemented in such a way that the primary arcs of Seasat were held fixed and
Geos-3 data were treated as local observations which were "forced" to fit the Seasat
data. After the adjustment, the two data sets were based on the same system and
can be regarded as one data set.

At this point, 3.7 million Geos-3 observations were obtained. Therefore, a total of
approximately 5.9 million combined Seasat/Geos-3 observations were available.
The Seasat data and Geos-3 data are stored in two different tapes. The distribution
of the adjusted Geos-3 data is given in Figure 2.2,

Liang (1984) readjusted some of Cruz's primary arcs (item (i) and (ii)) since 53
Seasat's primary arcs were found to have cross-over discrepancies greater than 40
c¢m (Rapp, 1985, appendix A). Only the observations along the 53 arcs were



corrected with the new biases associated with these particular arcs. Liang then
merged the Seasat and Geos-3 data so that the observatoins in a particular
geographical region will reside in the same file. The result is the current OSU
combined Geos-3/Seasat data base.

22 Th ate of the current Geos-3/Seasat as

Considering the expected accuracies of this study, several corrections for altimeter
data should be applied. The use of new reference undulations (to be described later) is
also necessary. These updates are summarized as follows:

(i) Sea Surface Topography correction

In the method of recovering gravity anomalies from satellite altimeter, the primary
data quantity of interest is the geoid undulation. The geoid is an equipotential surface
which deviates from the sea surface by a term called sea surface topography (SST). SST
can be divided into a time invariant (stationary) part and a time dependent part. For the
purpose of this study, we assume that the time dependent part is removed by averaging
data at different time intervals. The stationary SST has been estimated by a number of
authors (Litizin (1974), Levitus (1982)) using oceanographic data.

For this study we use the modified SST of Levitus described as SET3 by Engelis
(1987). This data set consists of 30922 estimated 1° x 1° mean values, including data in
the Mediterranean Sea. The mean value of 2.01 meters has been removed from the data
and the data has a RMS value of 62.4 cm. The spatial distribution of Engelis’' SET3 data
is shown in Figure 2.3.

Using Levitus' SST data, Rapp (1985) found that the effect of SST on gravity
anomalies was on the order of & 2 mgals which is far below the accuracy of the predicted
anomaly. However, since SST creates a long wavelength effect on the predicted
anomalies, it should be removed from the observed sea surface height (SSH).

For oceanwide corrections of SST to altimeter data, two steps were carried out:



a. Interpolate the mean SST in the blocks where SST are not available from the 5
closest mean values surrounding the block of interest. The program used for
interpolation is GEOGRID written by Forsberg (1982). The method of

interpolation is based on
3, SST;
52
S8T,= S 7
2
T

2-1)

where SSTy, is the interpolated value, SST; is the value used and rj is the distance
between two blocks (center to center). This step leads to a complete SST data set
in the ocean. A contour map of such data is given in Figure 2.4.

b. Interpolate the point SST to altimeter data point from the complete 1° x 1° data set
using a bilinear interpolation procedure.

(ii) Equatorial radius correction

The current Geos-3/Seasat data were referenced to the ellipsoid of the Geodetic
Reference System 1980 (a = 6378137.0 m, f = 1/298.257222101). However, a more
accurate equatorial radius (Rapp, 1987) of 6378136.2 m will be used in this study. We
designate aglq - apew = da.

(iii) Seasat’s bias correction

Based on the data analysis in the Bermuda area, Kolenkiewicz and Martin (1982)
found that the estimated height bias of Seasat altimeter was 0.0 £ 0.07 meter, which
should be added to Seasat's SSH. For the existing Geos-3/Seasat data, 11 cm had been
assumed to be Seasat's height bias and this quantity apparently is not consistent with
Kolenkiewicz and Martin's result. Therefore, 11 cm should be subtracted from the
existing Geos/Seasat's SSH. (Note: Due to the way of combining Goes-3 and Seasat
data, Geos-3 data should also receive such correction). We designate such bias as b.



(iv) Permanent tidal correction

The tidal effects on the satellite altimeter measurement consist of two parts: the
ocean tides and the solid Earth tides. The ocean tides can be estimated through some
models such as the Schwiderski model. The solid Earth tides are associated with the
elastic deformation of the earth and are induced from the sun and moon. Let Ahg be the
average (constant) sun induced earth tide and Ahy, be the average (constant) moon
induced earth tide, we wish to have a correction Ah, to Ahg and Ahyy, so that

Ah_+Ah_+Ah =0 (2-2)
A sea surface with the Ah¢ correction refers to a mean surface (i.e., in the presence of the
constant effect of the sun and moon). Ah; can be found in Rowlands (1981):

Ah_=0.124

2 sin’ ¢ - %) (meter}
2 (2-3)

Note that a sign error exists in equation (12) of Rowlands (ibid.).

Our goal now is to represent the 'geoid’ in the absence of the sun and moon, thus
the constant effect Ah; has to be removed from the satellite altimeter measurement. Let S
be the sea surface height corrected for the ocean tides, the various heights during the
development of the existing Geos-3/Seasat data can be summarized as follows:

¢ Rowlands (1981): Sy = Sj - (Ahg + Ahy + Ahe) + Ahe
e Cruz (1982): Siiy = St - (Ahg + Ahy + Ahg) = Sp1 - Ahg
» Liang (1983): Spv=SmI
¢ Liang (1984): Sy =S1v

Apparently, Syj represents the height in the absence of the sun and moon while S,
S1v, Sv have included the constant effect Ahe. For the purpose of this study, we wish to
have the Sy system, thus Ahe must be added to the sea surface heights of the existing
altimeter data (i.e., Sv).



(v) Use of new reference undulations

The existing Geos-3/Seasat data has reference undulations based on OSUS81 to
degree 180. The new reference undulations based on OSUBGE (Rapp and Cruz, 1986) to
degree 180 will be used instead. To do this, program F388 in Rapp's program library
was used to generate a global 1/4 gridded undulations from OSUSGE to degree 180 (The
equation used for this is (3-5)). Then, interpolation of undulation was made for each
altimeter data point using a bicubic spline interpolation procedure with 16 closest grid
points.

As a summary for these updates, let SSH be the sea surface height before
corrections and N be the undulation implied by the sea surface height after corrections; we
have:

N =S8SH- SST +da-b + Ah¢ (2-4)

Now we can treat the corrected sea surface heights as undulations which will be
used for our global gravity anomaly and undulation recovery. The geometry and sign
conventions of the corrections are shown in Figure 2.5
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CHAPTER III
Method of gravity anomaly and sea surface height recovery

3.1 Least squares collocation

The method used in this study was the well-known least squares collocation which
now takes altimeter implied geoid undulations as observables. A remove-restore
procedure was introduced using a set of potential coefficients. Our basic equations are
(following Rapp (1985)):

A -1
Ag=C (C,+D) (h-h)+Ag, a1

1

M +D)" [

2 -_— r—
A _Qgg ggh(ghh

g hg (3-2)
where

Agr - Thereference anomaly (at the prediction point) computed from a given set
of potential coefficients up to a certain degree.
The column vector of reference undulations of altimeter implied geoid
undulations computed from a given set of potential coefficients up to a
certain degree.

L5

- The column vector of altimeter implied geoid undulations
The diagonal matrix containing diagonal elements from the error variances
of observables, i.e. h .

g 1=

10
=
=

]

The autocovariance matrix of observablesh .

The cross covariance matrix between predicted quantity (g) and
observables It .

Ag - The predicted anomaly.

M)y - The accuracy estimate of the predicted anomaly.

Cpg - The autocovariance matrix of the predicted anomaly.

|
i)
=
]

Eqns (3-1) and (3-2) are valid for the predicted point anomaly Ag and its accuracy Mag.

12
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Similar equations for the predicted geoid undulations are the following:

A -1
=C (C,*+D) (h-h)+S; (3-3)

2_ =1
M=C -Cu(C,+D) £, (3-4)

The corresponding meanings of the notations in (3-3) and (3-4) can be immediately
obtained by comparing (3-3) and (3-4) with (3-1) and (3-2).

It is necessary to introduce the practical computation of the reference anomaly Agg
and undulation hg and Sg (Note: hg is the reference undulation for SSH and Sg is the
reference undulation at the prediction point). Following Rapp (1979), Aggr and hg can be
computed from a given disturbing potential coefficients, Cnm, Spm, Obtained by
subtracting the reference potential of a specific ellipsoidal system from the total potential,
in the following spherical harmonic expansions:

n+2 n
AgR(lr 0, l)——Z[n-l]( ) 2 nmcns mA + S, sin ml)P cos 9)
n=2

(3-5)

helr, 0, 3) = XM Y [Cpmcos mh + S, sin mA| P, {cos 6)
rIir P (E) 0( cos mA + sin ) cos o6

a is a scaling factor which is usually the equatorial radius of a specific reference system,
N is the maximum degree of harmonic expansion, KM is the product of gravitational
constant and the mass of the Earth, r is the distance from geocenter to the point where the
computation is made. For this study, we use the following parameters for the
computation:

N =180

KM = 398600.5 Km3 s-2

f=208.257222101

a = 6378137 meters (3-7)
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For the global computation of reference gravity anomalies and geoid undulations,
program F388TAPE in Rapp's program library was used. The computation was made at
1/8° grid interval from latitude 90° to -90° and longitude from 0° to 360°. The CPU time
consumed by calculating Agg is 27.0 minutes and the CPU time spent by calculating Ng
is 27.3 minutes on the IBM 3081.

3.2 Global covariance models
Due to the use of remove-restore procedure, it is necessary to consider the
coefficient errors of the reference field. The total covariance used in eqns (3-1) and (3-3)

consists of two parts, i.e., a signal part and an error part:

cov (‘I’) = cOVR(\I’) + COVE(W) (3-8)

Note that the covariance function is assumed to be isotropic and the spherical separation y
is the unique variable in the covariance function.

For the error part, the error degree variance related to the reference field can be
computed by (Rapp, classnotes, GS871)

2 2(n+2) n {-2 )
8cn=(ﬂ2) (n-1)2(%) 2(ecm+ es“,,,)
a m=0 (3_9)

where Ecnm and Egnm Tepresent the errors of the coefficients Cpm and Sy, in the potential
set, and n is the harmonic degree. Using OSU86C noise model (Rapp and Cruz, 1986),
we put

a=Rg=6371km

R =Rp =6369 km (3-10)

where Rp is the Bjerhammer's sphere (Moritz, 1980).
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For the signal part, the anomaly degree variance C; can be determined from a

specific model. For this study, we adopt Tscherning/Rapp's model (Tscherning and
Rapp, 1974) having the form:

C. = A(n-1)
1~ [n-2) [n+B) (3-11)
where A = 425.28 mgal2, B =24
Another important parameter of the covariance function is s defined as
Rp
s§= —2
R (3-12)

The value of s is specified to be 0.999617.

Having the error degree variance for the error part and the adopted anomaly degree
variance for signal part, the three fundamental covariance functions between two arbitrary
points can be expanded into a series of spherical harmonics as follows:

cov (Agp, Ag() = i 5C,, sn+2Pn(c05\pr) + i C, s"+2Pn(cospr)
n=2 N+1 (3-13)

2
& 8C]'[ n+l

cov(Ag,,

(cospr) +—_ 2 [n-_ (cosqrpQ)

p'YQn=21'l -1 PYQN +1
(3-14)



i6

2 2
Rp X R
cov (hp, hQ)= B > 8Cn2 "t Pn(coslpr)+ —B_
YpYQn=2(p-1) YpYqQ

= C
NZ = s“HPn(cospr)
+1{n-1) (3-15)

In (3-13) through (3-15) the first part on the right hand side of the equation is the error
part, second part being the signal part.

In the previous chapter, we mentioned that OSUSGE field with expansion to degree
180 will be used for the reference field. Therefore, the noise model adopted for this
study will be based on OSU86C which closely resembles OSUSGE.

In addition to the parameters given by Tscherning and Rapp (ibid), Jekeli (1978)
also recommended the parameters

A =343.3408 mgals?
B=24
s = (0.9988961 (3-16)

Parameters in (3-16) associated with Tscherning/Rapp's anomaly degree variance model
were extensively used by Kadir (1987) in his tests on the recovery of gravity anomalies
and sea surface heights using fairly dense altimeter data.

Figure 3.1 illustrates the behavior of the covariance functions of undulations with
respect to a degree 180 field and the anomaly degree variance model of (3-11). It can be
seen that the covariance function based on Tscherning/Rapp's parameters decays faster
than the covariance function based on Jekeli's parameters. When very dense data is used,
the relative smoothness of the later covariance function can easily cause the matrix
singularity during the collocation process. Therefore, it wil be suggested that
Tscherning/Rapp's parameters be used if one has to use dense data, or, if the working
area is restricted to being small.
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Recalling the idea of recovering gravity anomalies using geoid undulations, clearly
we are clearly dealing with heterogeneous gravimetric quantities. Therefore, it is not
sufficient for the determination of prediction choice if the covariance function of
undulation is discussed alone. As pointed out by Moritz (1980, p. 177), the prediction is

accurate enough if the station distances are well below the correlation length, which is the
spherical distance € having the feature:

1
cle)==c,
2 (3-17)

where Cy is the variance and C (£) is the covariance at a distance £. The discussion then

will be concentrated on the correlation lengths of the various covariance functions. Table
2.1 shows the correlation lengths related to cov (Agp, Agq), cov (Agp, hQ) and cov (hp,

hq) in (3-13), (3-14) and (3-15), respectively.

Table 2.1 Correlation length with respect to degree 180 field* and Tscherning/Rapp's
anornaly degree variance model

model A* model B**
cov (Agp, AgQ) 0.125° 0.208°
cov (Agp, hQ) 0.339° 0.441°
cov (hy, hq) 1.695° 1.877°

+ OSUB6C noise model
* Tscherning/Rapp's parameters
** Jekeli's parameters

Again, we compare the correlation lengths from the two sets of parameters for the
purpose of selecting a prediction procedure. Both sets indicate that the covariance
function of undulations undergoes a relatively smooth change while the covariance
function of anomalies has the fastest decay. Although Moritz (ibid.) observed the
importance of correlation length to the prediction accuracy, he did not specifically discuss
case where two kinds of covariance functions are used. For example, the prediction of
anomalies from geoid undulations (eq. (3-1)) is exactly such a case.
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Nevertheless, it is appropriate to assume that the covariance function having the
shortest correlation length could dominate the accuracy. Thus, it is expected that cov
(Agp, hg) will have an influence on the selection of a prediction cell (the cell where one
individual collocation prediction is performed). This aspect will be discussed in Chapter
5.

3.3 Local covariance model

For a local prediction of gravity anomalies using satellite altimeter data, the global
covariance function should be scaled to the local covariance function in the sense that the
residual undulations should appropriately reflect the accuracies of the predicted quantities.
A practical application of such concept to altimeter-related prediction has been given by
Rapp (1985).

It is now necessary to explain the scaling procedure for this study: In a prediction
cell, we first compute the variance of the residual undulations by

)
=y A7
o= 2 m
(3-18)
where n is total number of points used for the prediction and h is the mean of the residual
undulations defined by
TesS

h;”=h;- hg; (3-19)

where hj and hgr; are the observed and reference geoid undulations, at point i,
respectively.

Let CNN (0) be the variance of undulations based on (3-15). We have to apply a
scaling factor @ to this quantity so that the resultant quantity will be identical to the
variance of residual undulations. Thus o is:
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o,
==
CNN(0) (3-20)

The local covariance functions then can be constructed by multiplying (3-13), (3-14) and
(3-15) by the scaling factor .

To ensure a realistic scaling factor, we assume that the predicted anomaly has a
minimum anomaly variance of 400 mgal2. Thus a limiting scaling factor &’ will be the

lowest value for actually scaling (3-13), (3-14) and (3-15). o is computed by

400
o = =0.425
CGG {0} (3-21)

for Tscherning/Rapp's covariance model (with their parameters), CGG (0) is the variance
of the anomaly based on (3-13).

Having a, we can re-write (3-1) and (3-2) as follows:

3= (ac,)[(eC,) + D (b-1,) + 4,

(3-22)

2 _ =1

M,, = (®6,) — (o, ) [(«€,) + 2] (°€,) (3-23)

They can be reduced to:

A 1 al

Ag=C (C,*+<D) (h-h)+2g, (3-24)
2 _ 1 -

M} =alc,-C (¢, +4D) C | 525

Forms of (3-24) and (3-25) indicate the problem related to matrix singularity. First of all,
we recall the definition of D matrix: The elements of D are essentially the variances of the
observations, which break into two categories:
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a constant of 20 cm for Geos-3 observations
5 cm - 20 cm or higher for Seasat observations

A scaling factor of o which is much larger than 1 then can reduce the variances of
observations so that the resulting matrix 1/ D has no effect on the covariance matrix
Chh. Then, we investigate the case when a small prediction cell and dense data are used.
Since some of the points are so close, the corresponding row vectors of Cpp, nearly
become dependent. If 1/o D has relatively large elements, the dependence can be reduced
through the effect of (Chp + 1/a D). If « is large, i.e. 1/0. D becomes small, then 1/a. D
is no help for resolving the dependence problem. These statements will be verified by the
tests performed in area of higher latitude where only Seasat data is available; see Chapter
5 for more discussion.

3.4 The local adjustment of observed sea surface heights

The adjustment of altimeter data performed by Rowlands (1981) and Liang (1983)
were on a global basis. The global adjustments have theoretically treated the major track
problems in a global sense. However, the track problem can remain in a local area where
we thought a further adjustment of the arcs is necessary. The goal of the local adjustment
thus is to remove the possible track biases that were not removed by the global
adjustments.

The arc adjustment can be theoretically broken into two categories:

(i) Adjustment using cross-over differences of arcs
(ii) Adjustment using least squares collocation with biases of track as parameters

Category (i) again can be broken into two parts, according to different models for
cross-over differences.

Based on categories (i) and (ii), we present 3 models as follows:
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Model A:

In this model, we assume that each arc has a constant bias; the adjusted sea surface

height can be obtained by adding bias correction to the observed sea surface height as
follows:

i ob
hyj=hij + b, (3-26)
where ﬁij and h‘}? are the adjusted and observed sea surface heights, respectively,
pertaining to point i along arc j. Superscript "ob” denotes observed quantities. If two
arcs j, k have a cross-over difference at point i, then we form a cross-over difference by:

ab ob ob
djx = h;j - hy =bj-by (3-27)

(3-27) clearly is due to the assumption that:

hjj= hjy (3-28)
which means the two sea surface heights at the same point should be the same. A sketch
of the cross-over between two arcs is shown in Figure 3.2. Note that there is no actual

observation at point i. Observations at point i can be obtained by linear interpolation from
points A and B, C and D, separately.
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D SSH along north -
A geing arc

SSH along south-
going arc

/ ellipsold

Figure 3.2 Cross-over difference dS} between two arcs

(3-27) is fundamental to the observation equation and the cross-over differences are the
observables. Assuming n cross-over observations and q bias parameters, the observation
equation can be set up by (Uotila, 1986):

)

V=AX+L (3-29)
where

V = vector of n-elements containing the residuals of cross-over differences

A =n x q matrix containing elements 1, -1 and 0

5\( = vector of q-elements containing the bias parameters associated with arcs

L = vector of n-elements containing the cross-over differences
The system in (3-29) has rank deficiency of one because all arcs are not fixed in the
working area. A supplementary condition can be added to avoid the problem, for
example, we assume the sum of all biases is zero (Knudsen, 1987), hence



ibj=0

=1 (3-30)

which implies the average of the corrections is zero. (3-30) yields the constraint that has
to be added to (3-29):

TA
CX=0 (3-31)

Since 1 and -1 will simultaneously appear in any row of matrix A (the nature of cross-
over difference) and C is a vector with elements "1" alone, we immediately see that
AC=0. Therefore A and C are orthogonal. With the orthogonality property, the least
squares solution of (3-29) with (3-31) is found by (Caspary, eqn (3-51), 1987):

-1
~ T T
X=-(|A pA+cc1) A'PL (3-32)

£os ( O C1)'l ATp A(ATPA +C C’)_l (3-33)

where P is the weight matrix of cross-over differences obtained from error variances of
SSH using error propogation. (The propagation is based on (3-27)). Since CCTisqxq
matrix of elements "1", it has no substantial influence on the solution of (3-33) in terms
of programming efficiency (since the process of adding C CT to ATPA is simple).

A crossover adjustment has been used by Rowlands (1981) and Liang (1983) who
also augmented the model by adding "tilt" parameters and used different methods to
handle the rank deficiency problem. cf: Rowlands (ibid.) and Liang (ibid.) and Knudsen
(ibid.).

Model B:

This model again uses cross-over differences as observables. However, it is
assumed that the bias is a function of time instead of a constant and the covariance
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function of biases can be known through some model. The observable djk at time t; and
tk, at tracks j and k, is

ob
dji =b;-by (3-34)

Since bias is a time varying quantity, for n cross-over differences, we actually have 2n
estimates for biases. Thus the biases can be obtained through (Jackson, 1979 and
Knudsen, 1987)

-1
X=-C, AT(A C, AT+ P") L (3.35)

-1
$R=C,-C,ATac, AT+ P Ac, (3-36)

where Cy is the covariance matrix of biases with dimension 2n x 2n, Note that now A is
n x 2n matrix. The major difference between model A and B is the use of the covariance
function (matrix) of biases, i.e., Cx, which is known as "a priori" information. Knudsen
(1987) suggested a model for evaluating such a function using Gaussian functions:

: 3
cov (Sa, Sn)= EA? E([Sﬂfﬁ.,n} +{sne,.) )
i

(3-37)

where Sa is along track distance and Sn is cross track distance (the distance can be
computed from the time tag or the sequential point numbers along a track) at the point
where the cross-over is formed. Aj is the amplitude of the error associated with the ith
phenomenon. &, j and &y, ; are along and cross track correlation lengths of errors
associated with the ith phenomenon.

A practical calculation using model B has been carried out by Knudsen (ibid.) who
found that the RMS value of adjusted cross-over differences was less than that calculated
from model A. cf. Knudsen (ibid., p. 624).
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Model C:

The cross-over adjustment based on model A or B fails if no cross-overs between
arcs can be obtained. Or, even though the crossovers can be found the geometry of the
arcs could be unstable, cf. Figure 3.3

land

Figure 3.3 Poor geometry of cross-overs and an isolated arc

A solution to this problem is to incorporate the biases into the least squares
collocation (Isc) solution. For the simplest case, we still assume one constant bias
associated with one arc. Then, we have the Isc with parameters (Moritz, eq. (16-1),
1980).

l=A§(+BT+n (3-38)

where

1 - avector containing m elements of observed sea surface heights
& - avector containing q bias parameters
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A - amxqmatrix containing only 0 and 1
BT - a vector containing signal part of vector 1
n - avector containing noises of the observations

The solution of (3-38) is given by (ibid., p. 116)
-~ T -1 . ']"—-1
X = (A C A) ACl (3-39)
Tl )
Ix = (A C A) (3-40)

where C is the total covariance of undulations, together with the variance of observations,
i.e.

C=C +D (3-41)

cf. eq. (3-1). Note that the definition A in (3-39) is different from that in (3-29), due to
the different types of observables.

An a-priori weight matrix can be added to the bias parameters, as suggested by
Tscherning et al (1985): The solution then becomes:

-1
A— ']"—-1 ) T—-l
x_(A C A+P,] ATC 1 (3-42)

-1
-~ —-1
X = (ATC A+ Px) (3.43)

where Py is the weight matrix for the bias parameters.

Tscherning et al (ibid) has carried out bias determination using model A and model
Cin a test area located at 3825 < ¢ < 39°75 and 295225 < A < 296275. It was found that
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the two results have an RMS difference of 30.02 m for the estimated biases except for a
constant of 0.22 m.

At this point, three models have been discussed. However, only model A will be
used here in the global prediction due to an extremely large data set. Model A features
simplicity, efficient programming and easy debugging. Using Model A, Knudsen (1988)
has developed a sequence of programs that can determine the cross-over differences,
solve for the bias parameters and apply the bias corrections to the original altimeter data.
With some modification in input/output and dimension statements, these programs can
process a fairly large data set in an extremely efficient manner.

For the practical calculation of bias parameters based on Model A, two editing
criteria have been suggested by Knudsen (1988, program documentations):

(1) The mean distance between two successive points along a track is first calculated.
Then the maximum distance within which a cross-over can be formed is 2.5 times this
mean distance.

(ii) The standard deviations of "peak" and "outlier" SSH observations along one
particular arc are multiplied by a factor of 10.0. A "peak" is an SSH observation that
satisfies the following sequence of equations:

|2Hi - (Hi-l + Hi+l)| > (Zerri+ €rT;.1 + €IT; *2.0
‘Hi' Hi-1|> (El’f’i + erri,l) *20

[H; - Hyyg|> (emm; + erryyg) * 2.0 (3-44)
Distance (H;.1, H;+1) < 15.0 km

Hj.1, Hj, Hj41 are 3 consecutive SSH observations along an arc. cf, Figure 3.4. err
denotes the standard deviation associated with a SSH observation.
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Figure 3.4 Peak SSH observations along arc.

An "outlier” is an SSH observation satisfying:

DH;- DH|> STD * 2.5 + er; (3-45)

where DH is the mean value of the residual SSHs and STD is the standard deviation of
the residual SSHs in the area where the adjustment is performed. DH; is the ith residual
SSH.

Such an enlargement of standard deviations will not propagate to lsc process,
namely, the Isc still uses the original standard deviations of SSH.

3.5 Atmospheric correction

In order to compare the altimeter predicted anomalies with terrestrial measurements,
an atmospheric correction must be taken into account (Rapp, 1985). Namely, 0.87 mgal
must be subtracted from the altimeter predicted anomalies. However, all the values in the
figures and tables in this study do not apply such corrections.



CHAPTER IV

Use of the supercomputer in the global prediction

4.1 Computational advance from the supercomputer

A revolutionary advance in computational techniques has been achieved by the
supercomputer. An extensive application of the supercomputer to industrial engineering,
chemistry, physics and molecular dynamics, etc. has brought science into a new era. For
geodetic problems, especially those related to matrix operations, such an advance has a
profound influence.

In contrast to the traditional computer, the supercomputer uses its exclusive vector
functional units to perform calculations. The application of vector hardware, including
the famous tools such as pipeline and chaining, can actually linearize the computational
time which could be in the exponential or quadratic form originally in a traditional scalar-
operated machine. It is an important concept that the full application of supercomputer in
essence needs a conceptual update of the roles of hardware, algorithm designer and
application programmer (BCS, 1984). In the scalar mode, the architecture, algorithm and
application may work almost independently. Such a case is indicated in Figure 4.1 (ibid.)

application

Figure 4.1 The structure of computing environment in the scalar mode

30
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With the advent of the supercomputer, such a traditional structure must be updated.
Namely, a designer can no longer ignore the hardware structure of the machine and the
algorthms have to be re-investigated so that they would work efficiently in a
supercomputer environment. Such an update can be illustrated in Figure 4.2 (ibid.)

algorithm

superconputer

application

Figure 4.2 The structure of the supercomputing environment

Let us now give an example of such an update. Suppose a programmer has to
design a specific code for completing a certain calculation which involves some treatments
for an irregular problem. If he is working under a traditional scalar computing
environment he may use some "clever" ways to avoid such irregularity and his code
might be fairly short. He also disregards the system-provided routines and generates
equivalent routines by himself. He, however, will not or should not do so if he is
working under supercomputing environment. He first should notice that the "clever"
ways might not perform efficiently for a vector machine, say the CRAY X-MP. Instead
of short code, a longer code should be generated so that the irregular problem can be
treated in a vectorized mode, though some duplicated calculations may be made. He also
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has to realize that the system has provided some fundamental computational kernels
written in, say CRAY Assembly Language, which are not equivalent to his own code.
Such system kernels, unlike his code, can be executed much faster than what he
expected.

Another example is the compiler directive (command that instructs the compilation
of the program) which can be inserted in the FORTRAN codes. A user must understand
the function of the directive and then the directive will become meaningful to his code.
The understanding in turn means the interaction between user and machine and further
indicates the dependence between each other. Thus, it is full communication between
user and supercomputing facility that makes the computation reach its boundary.

In terms of optimization, the items such as vector hardware, compiler directives and
computational kernels can be regarded as global optimization that can be thought to be
built-in facilities. The important effect of local optimization of a user's code, however,
cannot be neglected. The optimization will mostly concentrate on the vectorization of the
code, as will be illustrated in the following section.

4.2 Vectorization of a FORTRAN program

One of the major features of a supercomputer is the use of vector hardware, which
has been mentioned in the previous section. The meaning of vectorization thus becomes
straightforward. Any manual of CRAY FORTRAN or any supercomputer workshop
material will define vectorization. Generally speaking, vectorization is the implementation
of the code so that some particular parts of the program can take advantage of the
machine's vector hardware and execute efficiently.

In terms of FORTRAN language, two types of loops can be vectorized:

Innermost DO - loop
IF - loop with backward branch

However, not all such loops can be vectorized. For example, the loops will not be
vectorized if the loops contain:
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CALL statement

J/O statement

Branch out of loop

Dependency of array

Bound checking for an array (compiler option)
RETURN statement

Understanding these prohibitions, the vectorization then can be carried out. In other
words, the work now will concentrate on removing these prohibitions or changing the
algorithm so that the code can be executed under vector environment. A sophisticated
skill can be obtained through only practical experience with the basic knowledge of
vectorization.

The achievement of vectorization can be remarkable. Consider the FORTRAN code
for calculating the (Chy, + D) matrix in eq. (3-3). The non-vectorized code is:

K=0

DO40I=1,N
DO40J=1,1
K=K+1

IF (.LEQ.J) GO TO 42

DIST=DSQRT ((X(M-XI)*XD-X@O)+YD-YIO)*(YD-YI)))
ID=DIST/FINT+1.01
CSTAR(K)=CNN(D)+(CNN(ID+1)-CNN(ID))/FINT*(DIST-(ID-1)*FINT)

GO TO40
42 CSTAR(K)=VARU+AAC2(I)
40 CONTINUE

which can be regarded as terse code. CSTAR is a one-dimensional array that stores
elements of (Ch, + D), AAC2 is an array containing variances of SSH observations. As
indicated by the CFT77 compiler, this code is not qualified for vectorization. Notice that
the calculation of distances and covariances is expensive. A modified code which
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introduces an additional array and duplicates the calculation of diagonal elements can be
vectorized. The modified code is:

40

60

61

K=0

DO40I=1,N

DO40J=1,I

K=K+1

DIST=DSQRT ((X(D-XI)*XD-XD)+YDM-YON*(YD-YD)
ID=DIST/FINT+1.01
CSTAR(K)=CNN(ID)+(CNN(ID+1)-CNN(ID))/FINT*(DIST-(ID-1)*FINT)
CONTINUE

DO 60I=1,N

INDX (D=I*(I+1)/2

CONTINUE

DO 611I=1,N

CSTAR (INDX(D))=VARU+AAC2(I)

CONTINUE

A timing comparison for the execution of the two codes is given in Table 4.1.

Table 4.1

CPU time comparison between vectorized code and non-vectorized code

(Time in 10-3 seconds)

N non-vector vector non-vect./vect.
20 0.024 0.013 1.85
50 0.059 0.026 2.27

100 0.163 0.054 3.02

200 0.498 0.122 4.08

300 1.025 0.211 4.86

400 1.728 0.320 5.40

500 2.616 0.448 5.84

The code was executed on the CRAY X-MP/28 supercomputer (2 stands for 2
processors, or CPUs, 8 stands for 8 mgawords). It is obvious that the vectorization
becomes more important as the size of N increases. We also note that a terse code does

not guarantee a faster execution and the "redundant” calculation might help the program's
speedup.
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From this example, we can see the significant impact of vector calculation on the
traditional algorithm design. If the problem is related to a mammoth calculation, which is
exactly the case in this study, the contribution of vectorization can definitely not be
neglected.

4, ial analvsis of some computational kernels for tic lem

Geodetic problems are frequently related to matrix operations, €.g., the 1sc problem
in this study. Therefore, it is necessary to investigate the corresponding computational
kemels before they can be introduced to the production mode. Three such kernels
(routines) are analyzed as follows:

(i) Matrix inversion routines
The CRAY Library provides the vectorized LINPACK routines that can compute
the inverse of a positive definite matrix. They are:

SPPCO: computes Cholesky factorization of A (a PD matix) i.e., A = RTR, where R
is an upper triangular matrix. It also estimates the condition of the inversion
and provides the working accuracy in the proceeding computation.

SPPDI: Inverts A by using R computed by SPPCO. It can optionally compute the
determinant of A.

IMSL routines are also available in our supercomputer system. The routine LINDS is
equivalent to the combination of SPPCO and SPPDI and it inverts a PD matrix without
breaking the procedure into two parts, namely

LINDS = SPPCO — SPPDI

The performances of LINDS and SPPDI (including SPPCO) are presented in Figure 4.3.
In this performance analysis, we first created a covariance matrix (Cphy, + D) of dimension
500 x 500 using the altimeter data in the Bermuda area; then routines LINDS and SSPDI
(with SPPCO) inverted the covariance matrices with dimensions varying from 10 to 500
(a total of 50 matrices were inverted).
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Since the routine LINDS is also available on the IBM 3081 system, such a
performance analysis was also carried out in such a scalar machine. Figure 4.3 clearly
demonstrates the linearization of CPU time in a vector machine for a routine whose
execution time undergoes a non-linear increase in a scalar machine. To have a feeling of
the efficiency of the supercomputer, Table 4.2 aiso provides the CPU time saving factors
for routine LINDS under IBM3081 and CRAY X-MP environments.

Table 4.2 Performance analysis for LINDS

(Time in seconds)

Dimension CPU in IBM3081 | CPU in CRAY X-MP gain factor
} (IBM/X-MP)
20 0.0203 0.0035 5.80
50 0.1323 0.0129 10.26
100 0.7093 0.0431 16.46
200 4.5748 0.1740 26.29
300 14,1970 0.4295 33.05
400 32.0196 0.8427 38.00
500 60.8148 1.4490 41.97

Apparently, the gain factors increase as dimensions increase. This is due to the
operational characteristic of vector hardware: the longer the vector is, the more efficient
the process is. Thus, it is preferred that the problem involves an inversion of a large
matrix so that vectorization can be fully utilized.

For our global prediction purpose, we decided to choose LINPACK's routines,
i.e., SPPCO and SPPDI], since the SPPCO routine can provide the working accuracy for
collocation prediction. More specifically, the parameter RCOND in

SPPCO (A, N, RCOND, WORK, INFO)

is an estimate of the reciprocal condition, 1/x(A), which is a condition number that
measures the sensitivity to the inverse solution. If the logical expression

(1.0 + RCOND). EQ.1.0



38

is true, then A can be regarded as singular to working accuracy (Dongorra et al, 1979) (In
the practical prediction of anomalies, the predicted anomalies have extremely abnormal
values if the above logical expression is true). Knowing such conditions, we can easily
handle the flow of the program and the program will not be interrupted. The IMSL
routine, LINDS, though can execute slightly faster, will completely stop the program's
execution if the matrix to be inverted is nearly singular, thus it is not adopted as our
computational kernel.

(ii) Matrix product routine

Our collocation solution inevitably uses the matrix product operation. Such matrix
product operations can be easily written with in-line FORTRAN codes . However, the
supercomputer's system usually provides such basic routines which are written in CRAY
Assembly Language (CAL) and callable by a FORTRAN program. Written in CAL, the
routine will execute faster than the equivalent in-line FORTRAN codes.

Consider the following in-line FORTRAN codes:

DIMENSION C (100, 500), A (100, 500), B (500, 500)
DO 11=1,100
DO 1J=1,N
DO 1 K=1,500
C(L,T)=C{,D+A(LK)*B(K,J)
1 CONTINUE

which is identical to
C=AB
A CRAY routine MXM will do the same job. We invoke
CALL MXM (A, 100, B, 500, C, N)
The output C will be exactly the same as that from in-line FORTRAN codes.

The performances of MXM and its equivalent codes are given in Figure 4.4, It is
evident that the routine written in CAL indeed provides a faster solution. A wise choice
will be using such system-provided routine instead of writing the codes if the problem
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involves a huge number of matrix products, e.g., a total of 345,600, in our global
production work.

(iii) Matrix-vector product routine
Our collocation process involves an operation such as:

-1
(€,*tD) (h-h) (4-1)

which is a product of a matrix and a vector. In a collocation solution without accuracy
estimates, we actually do not need to invert (Chp + D) and then perform the product of the
inverted matrix and the vector, (h - hr). Any numerical analysis book, e.g., Gerald et al
(1983), will suggest such a solution

(€. *+R)" (b-b)=X

4-2)
Then
(€, +D)X=(h-h) e
(Ciin + D) can be factorized, thus
C_+D=R'R s
Therefore
R'(RX) = (h-h) ws)

The advantage of eq. (4-5) is that (RX) is a vector and RT is a lower triangular
matrix and (h - hg) is also a vector. The solution will be found in a forward substitution
phase without inverting RT. However, a collocation solution with an accuracy estimate
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requires a matrix inversion. Thus, a product of matrix and vector cannot be avoided in
such a case. This work can be easily accomplished by using the FORTRAN codes:

DIMENSION C (100), A (100, 500), B (500)
DO 11=1,100
DO1J=1,N
CO=COH+ALDH*BM
1 CONTINUE

Again, we recall another useful routine written in CAL
MXYV (A, 100, B, N, C)

which is equivalent to the above in-line codes. The performances are presented in Figure
4.5. Again, it is remarkable the routine MXV can save much more computer time than
the in-line codes do.
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4.4 Performance analysis for the production program

Having realized the characteristics of the supercomputing environment, a fully
vectorized computer program was designed for our global production work. This
program is especially suitable for accuracy computation.

As pointed out by Rapp (1985), if the accuracy calculation is performed in a
collocation solution on a scalar machine, the time needed is eight times more than the time

needed for solution without accuracy calculation. The key factor is the computation of

3g=B(h—.hR) +Ag,

(4-6)
. = -
M 3 C " BChE @7
where
=1
B-'ggh('ghh-'-D) (4-8)

must be computed for each predicted point although the matrix needs to be inverted once

(ibid.). In essence, the following sections of the production program have been
optimized (or vectorized):

(i) The selection of altimeter points from the adjusted data (i.e., output from the
adjustment program)

(ii) Loops containing I/O

(iii) The computations of covariance matrices

(iv) The inefficient part of computing B using eq. (4-8)

(v) The formations of total Ag and SSH and their accuracy estimates using (4-6)
and (4-7)

In addition to these considerations, the matrix product operations were replaced by
SCILIB routine MXM and the matrix-vector product operations were replaced by SCILIB
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routine MXV. In essence, to accomplish the vectorization of the original IBM version of
the OSU altimeter analysis, i.e., F4591BM3, the entire algorithm and the codes were
completely changed.

Tests also showed that a matrix instability can take place if data is too dense,
especially for the case in which the original combined Geos-3/Seasat data was used.
Therefore, we had to eliminate some data points which were close to each other. The
original points thus are processed so that two arbitrary points will be separated from each
other by a specified distance. Such a process was also vectorized and it took a small
amount of time as compared to the time required for the entire collocation prediction. In
the test area located at ¢ =70° - 66°, A = 10° - 14°, it was found that, by specifying 1 km
as the minimum spacing between two arbitrary points, a distance check process can
reduce the number of altimeter points by 15 to 20 points in a 0°5 x 0°5 prediction cell
(with 075 border) with 300 points as the maximum number of points used, and hence
reduce the CPU time by 8% in the collocation part. The predicted quantities were not
substantially changed from a case where the check was made.

Another effort made to speed up the calculation is the simplification of the
determination of the reference values at the predicted points. Since our goal is to predict a
set of regularly gridded point values, their reference values can be calculated beforehand
and stored in a matrix that will generally cover the entire earth or 1/4 of the earth. The
interpolation then becomes a simple process which only involves the identification of the
corresponding elements in such a particular matrix. Furthermore, the accuracy of
interpolation method needs not be concerned since we did not perform interpolation,

At this point, we have tried all the effort that will accelerate the calculation of point
anomalies and sea surface heights on an oceanwide basis. The completion of the
optimizations yields a program called F459PRD. Since we incorporated the cross-over
adjustment program into it, the steps of the computation carried out by this program is
then split into two parts:

(i) Cross-over adjustment of arcs
(ii) Prediction of point anomalies and sea surface heights using Isc.
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Let's denote F459IBM3 as the original program that was executed in an IBM3081
machine, F459NOV being the CRAY version of F459IBM3 without any further
modification. The comparison among F459IBM3 (on IBM3081), F459NOV (on CRAY
X-MP/28) and F459PRD (on CRAY X-MP/28) is shown in Table 4.3 (a) and (b).

Table 4.3
(a) CPU time ratio in the cross-over adjustment part
(unitless)

program F4591BM3 FA59NOV | F459PRD
ratio 6.0 1.5 1.0

(b) CPU time ratio in the collocation prediction part
(unitless)

program F4591BM3 FA59NOV [ F459PRD
ratio 136.0 18.0 1.0

The ratios in Table 4.3 (a) and (b) are subject to change, depending on the choice of
prediction mode, but the variations are small. Note that not too much effort has been
made in optimizing the cross-over adjustment program and hence the speedup factor will
be approximately 5 which is the fundamental saving factor on transferring a scalar-
processed machine to a vector-processed machine. The CPU time comparison between
cross-over adjustment part and collocation part is hard to evaluate, due to the
considerations such as number of cross-overs, number of arcs, number of points used for
each prediction cell, etc. To have a feeling of CPU times consumed by the two parts, an
example is given as follows:

Case:
Test area: ¢ = 34° - 30°, A =293° - 297°
Adjustment blocksize = 4° x 4°
No. of crossovers = 23,273
No. of arcs = 466
No. of prediction cells = 64 (025 x 05, plus 0725 border)
Grid interval = 07125
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Minimum spacing between two altimeter data points = 4 km
Average number of altimeter points used in a prediction cell = 280

Cross-over adjustment = 15.95 seconds
Collocation prediction = 35.95 seconds

This particular run involved dense data that is not representative of the global case.
Typically, the cross-over adjustment will consume only 1/10 of the time consumed by the
collocation prediction, or even less.

Finally, it is necessary to present the statistics of cpu time taken by the collocation
prediction part in a regular production mode, which is just the case mentioned above and
will be comprehensively discussed in Chapter 5. The statistics are shown in Figure 4.6.
By CPU time we mean the time needed for processing 64 prediction cells which
individually involves one matrix inversion, matrix products, data point manipulations,
etc. A total of 1024 gravity anomalies and 1024 sea surface heights were predicted in

such a case. Figure 4.6 is very useful for the CPU time estimate for a global production
work.
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CHAPTER V
The optimal parameter for production mode based on various tests

1 Introduction

Rapp (1985) has carried out the global prediction of 0.125°-gridded anomalies and
SSH using the combined Geos-3/Seasat altimeter data. He used the following
specifications:

Reference Field = OSU 180 x 180 (1981)

Covariance Function = Scaled Tscherning/Rapp

Blocksize = 3° x 3° (For one matrix inversion)

Data Border = 0°5 about block border

Grid interval = 07125
As mentioned in Chapter I, he virtually used a thinned data set which contained only 1/6
of the original data points. Our job, however, is to recover the anomalies and SSH using
the original, unthinned altimeter data. Furthermore, we are also concemned about the track
errors associated with local areas that were not removed in Liang's adjustment and
combination process (Liang, 1983), thus many tests will be dedicated to this part.

Since our prediction procedure is carried out by first adjusting the local arcs and
secondly predicting the desired guantities in the local areas, we have to keep the other part
unchanged when one part is undergoing tests. In the following sections, our discussion
will concentrate on these two parts separately, though sometimes the two aspects are of
the same importance for interpreting the resnlting quantities.

.2 Bias removal from local arc

In section 3.4 we mentioned that Model A will be the adopted model for the local
arc adjustment. In this model many factors should be taken into account. First of all,
let's illustrate the effects of the adjustment blocksize when an arc passes through adjacent
adjustment blocks and separate biases are found. Figure 5.1 (a) and (b) shows such a
case.
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Considering Figures 5.1 (a) and (b), we somewhat loosely define that a blocksize of
4°x4° is large and 2° x 2° is small. The bias determined by the adopted model is a step
function whose variable is the location of the block. When an arc passes through a
specific block, it will receive a bias from the adjustment in this particular block. The bias
will be mostly influenced by the local phenomena which will vary from block to block. It
is such variation of local phenomena that makes the bias a step function. From this point
of view, it is expected that the bias function of a specific track will be relatively smooth if
such a function is determined from some continuous "smail" blocks. On the contrary, the
function will become rough if some "large" blocks are used for determining such a
function. More specifically, we have |ab1 |> [Ab2 | for Figures 5.1 (a) and (b).

An example of the biases determined from the adjustment is given in Figures 5.2 (a)

and 5.2 (b) and Tables 5.1 (a) and 5.1 (b). (Using the updated Geos-3/Seasat data, see
Chapter 2).

249 253 257 261 249 251 253 255

-17 -17
Bl B2 | B3 Bl B2 | B3

221 -19
B4 BS B6 B4 B5 B6

225 -21
B7 B8 B9 B7 B8 B9

-29 -23
(a) 4° adjustment block (b) 2° adjustment block

Figure 5.2
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Table 5.1
(a) Biases comresponding to Figure 5.2 (a)

Revolution number | Bl B2 B3 B4 B3 B6
N** 4100 -0.051 | -0.093 -0.154

N 3972 0.111 | 0.131

N 2958 0.243 0.289

S 4064 0.381 | 0.126 0.162 | 0.183
S 16489 0.591 -0.056
S 3808 0.289 |-0.097
S+ 90544 -0.231

(b) Biases corresponding to Figure 5.2 (b)

Revolution number| Bl B2 B3 B4 B5 B6 B7 BR
N4100 0.053 0.022 -0.278 |-0.130 |-0.178 -0.161
N3972 0.129 | 0.09 0.083 | 0.157

N3958 0.238 0.212

S4064 0.367 | 0.327 -0.029
S$90544 -0.102 | -0.111]-0.154 |-0.149 -0.198 1-0.202

* (0.5° border about the block for both 4° and 2° blocks
** N denotes ascending arc and S descending arc
+ Revolution number starting from 9 is Seasat track; otherwise it is Geos-3 track.

From this example, no substantial difference was found among biases determined
from different locations of blocks and different blocksizes. From the adjustment's result,
we also knew that, in the above two areas, the RMS cross-over differences before
adjustment are on the order of 20 to 30 cm, and approximately 5 to 10 cm less after
adjustment. For the production work, it will be appropriate to say that the choice
between 2° and 4° is not important since the biases estimated from such two cases have no
significant differences as compared to their accuracy estimates. However, an extremely
large blocksize, say 10 degree, will lose the meaning of adjusting short wavelength error
or it cannot be handled by the current computer program due to large number of bias
parameters. On the other hand, an extremely small blocksize, say 0.5 degrees, will yield
meaningless results due to the instability of the geometry and the lack of cross-overs.
Therefore, a blocksize varying from 2° to 5° will be acceptable.

Another discussion of blocksize will be related to the density of the altimeter data
distribution. Basically, the cross-overs form the connections between arcs. If the data is
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sparse or the distribution of the arcs is not even in a block, it is possible that the
connection will be lost between two or more independent groups of arcs. This case is
shown in Figure 5.3.

Figure 5.3 Block with two independent groups of arcs

The case in Figure 5.3 will yield dependency of the parameters in the adjustment
solution and the normal equation becomes singular. To overcome this situation, two
separate constrainis given by eq. (3-31) must be added to the observation equations, or
generally, n constraints are required for n groups of arcs. Although the additional
constraints can resolve the singularity problem, the biases could be inconsistent from
group to group in this block. Therefore, a better solution is recommended by increasing
the blocksize so that the connection between two or more groups of arcs become
possible. Figure 5.4 shows the effect of increasing the blocksize.
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\ X /A

Figure 5.4 Effect of increasing blocksize of bias adjustment region

Generally speaking, two types of areas will create independent groups: Area where
only Seasat or Geos-3 data is available and areas near a coastline. An example of the
second type is given in Figure 5.5. This area is located in Northern Australia. Block A
cannot be adjusted without adding an additional constraint, while Block B can be adjusted
without adding such a constraint.

At this point, we have discussed the non-gravity field related features of the
adjustment of the altimeter data in which the geometry of the altimeter arcs play an
important role. We should now proceed to the prediction of anomalies and SSHs which
will be our final product.
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Rapp (1985) has given an example of track problem occurring in the area at
-3370<$<0°0 and 220°0<A<259°75. Thus we decide to choose part of this area for
testing the bias adjustment program. In order to select the appropriate blocksize for the
bias adjustment, three predictions were carried out. The three predictions were
performed in an 10° x 10° area so that the continuity of the biases and predicted anomalies
and SSH can be investigated from block to block. The three predictions had the
following specifications which were designated as choice A, choice B and choice C.

(i) Location: (for A, B and C¥)
27°<d<-17°
249 <A <259°
For choice C, a 12° x 12° area was used; then the result for comparison was
extracted from this area (since 10° is not an integer multiple of 4°, we have to do so,
see (iii))
(i) Common choice: (for A, B and C)
Reference Field: OSUSGE 180 x 180
Covariance Function: Scaled Tscherning/Rapp with Jekeli's parameters
Prediction cell size: 1° x 1° (For one matrix inversion)
Data border: (£5 about block border
Grid interval: ({125
arcs without bias parameters: excluded*
The isolated arcs, which cannot be adjusted by using cross-over techniques, are not
used in the collocation solution.
(iif) Adjustment blocksize:
Choice A: 5° x 5° (with (75 border)
Choice B: 2° x 2° (with (°5 border)
Choice C: 4° x 4° (with (75 border)

Quantities associated with choices A, B, and C are given in Table 5.2.
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Table 5.2 Quantities of interest for the different prediction choices A, B and C

| No. of Adjust. block | No. of matrix inversions | No.* of Ag No.* of SSH
Choice A 4 100 6400 6400
Choice B 25 100 6400 6400
Choice C 9 144 9216 9216

* predicted

In order to demonstrate the ability of the bias removal by the adjustment program,
we first made a contour map for the predicted anomalies from Rapp's (1985) results.
This contour map is given in Figure 5.6 (a). Using the same data a color contour plot
was generated in a Tektronix 4115B machine with the same interval (color interval for
this plot) as used in Figure 5.6 (a). Figure 5.6 (b) was prepared by using the image of
the color contour plot in a regular Xerox machine. The advantage of the original color
plot or the image of the color plot (as given in Figure 5.6 (b)) was its ability to show
some track patterns that cannot be detected in a regular contour plot. Such features were

clearly revealed by Figure 5.6 (b) in which some linear features caused by track errors
were found.

We next used the adjusted geoid heights obtained from the 3 adjustments described
in Table 5.2 to perform the prediction of anomalies and SSH. The predicted anomalies
were given in Figures 5.7 (a) and (b), Figures 5.8 (a) and (b) and Figures 5.9 (a) and (b)
which correspond to choice A, choice B and choice C, respectively. It is obvious that the
linear features in Figures 5.6 (a) and (b) were removed from the predicted anomalies and
the adjusted data yields a smooth surface of anomalies that are free of the most obvious
features.

We are further interested in the differences between the different sets of predicted
anomalies. Table 5.3 gives the differences between the anomalies predicted from the
three choices being considered for production work.



Table 5.3 Comparison of anomalies from various adjustment blocksizes

Difference plot max RMS mean |Location of max diff,
) A
2°vs 5° 5.10(@ & () | 27.37 | 3.69 | -0.01 [-24.000 258.875
2° vs 4° 20.82 | 3.67 0.01 |-17.000 255.250
2°vsRapp* | 5.11 (a) & (b) | 49.36 | 6.53 | -0.77 |-26.375 254.375
4° vs Rapp* 4696 | 627 | -0.76 |-25.875 258.625
5° vs Rapp* | 5.12(a) & (b) | 42.97 | 6.21 | -0.78 |-26.375 253.500

* Result from Rapp (1985) (1/8° point anomaly and SSH data base)
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As shown in Figures 5.11 and 5.12, the large discrepancies of anomalies between
the predictions from the unadjusted (and reduced data file) and adjusted arcs took place in
the rough area (located at -27° < ¢ < -26°, 253° < A < 255°) and areas where significant
track errors occurred (located at -22° < ¢ < -21°, 256° < A < 259°). The large differences
of anomalies caused by using different adjustment block sizes, as shown in Figures 5.10
(a) and (b), however, took place near the border of the prediction block (located at -24%5
< ¢ <-2375, 2585<A<259°). A copy of the color plot shown in Figure 5.10 (b) reveals
linear features which correspond to zero contour lines. The reason is apparently that the
same arcs receive different biases from different choices of the blocksize and hence yield
different anomalies along the arcs. The smoothness of this area is also responsible for
the visability of such features.

It is interesting to study the variations of anomalies around the point where
maximum discrepancy of anomaly occurred. Table 5.4 shows such variations.

Table 5.4 Variations of anomalies for 5° and 2° adjustments

unit = mgals
) A | 2582625 2582750 2587875

247000
20.5 8.3 -15.4
7.7 8.5 12.0

-247125
14.7 11.6 2.9
9.2 14.0 16.5

247250
2.2 5.3 9.3
5.2 8.4 11.5

The first number in Table 5.4 is the predicted anomaly from the 5° adjustment while
the second number is the predicted anomaly from the 2° adjustment. It is seen that the
variation of anomalies of the first set is more drastic than that of a second set. At the
point ¢ =—24°00, A = 258°875, the anomaly differs from the adjacent anomaly by 23.4
mgals for the 5° case while only 3.5 mgals of difference was found for the 2° case. The
unreasonable change of sign in anomalies at this point also indicates the instability of the
estimated biases which could be improperly assumed to be constants along the arcs in a 5°
x 5° block.
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From Table 5.3, we also know that 5° and 4° cases produce similar results since the
corresponding RMS differences with 2° case are close. One remarkable achievement of
the adjustment process is that the adjusted arcs are almost continuous from block to block
since we have found systematic differences which are also continuous from block to
block in Figure 5.10. We thus conclude that the adjustment process can remove the track
errors if the cross-overs between arcs can be properly formed. The choice of adjustment
blocksize can vary from 2° to 5° and the result from these will be similar.

Another issue will be the accuracies of the bias estimation. The adjustment
basically tries to remove the biases of the arcs so that better agreement between
observations at the same locations can be achieved. Therefore, the RMS value of cross-
overs of those unadjusted arcs will be always reduced after adjustment. However, the
standard deviations of the estimated biases primarily depends on two factors. One factor
is the number of cross-overs along a particular arc. If the data distribution is such that
few cross-overs were formed along the arc, then the standard deviations are expected to
be high. From this viewpoint, a larger blocksize of adjustment is preferred since the
number of cross-overs could be increased in this case. Another factor is the RMS cross-
over differences along a particular arc. A large RMS value usually implies a great
fluctuation of the observations which in turn reveals the large inconsistencies between the
observations along this arc and the observations along the other arcs. A large standard
deviation of the estimated bias can be expected for a large RMS value.

To show the relationship between the standard deviations and the above two
factors, Table 5.5 presents part of the result of the bias adjustment in the adjustment
block -16° < ¢ < -20°, 256° <A < 260°. This is a 4° adjustment whose resuit corresponds
to Figure 5.9 (the anomalies were only given up to A = 259° in Figure 5.9, see Table 5.2
for explanation). We select this block because we already found the track errors in this
block (see Figure 5.6).



67

Table 5.5 The result of 4° adjustment + at -16°<$<-20°, 256°<A<260°, predicted
anomalies corresponding to figure 5.9 (unit for mean, RMS, bias, std. dev.:

meters)
[Rev. No. | No. CRS. Mean * RMS Bias Std. dev.
before after | before after ~
3716 19 -0.600 -0.011] 0.622 0.202 -0.572 0.046
90264 30 0.030 -0.0011]0.131 0.083 0.046 0.012
90752 30 -0.023 -0.008 1 0.121 0.061 0.000 0.014
3936 3 -0.654 0.033 ] 0.736 0.405 -0.701 0.180
90271 44 0.023 0.019] 0.174 0.086 -0.020 0.013

* Mean is the mean value of cross-over differences along an arc, the mean values were
computed before and after the adjustment.

+ Additional information:
No. of tracks: 41
No. of cross-overs: 396
RMS cross-over difference before adjustment: 0.227 meter
RMS cross-over difference after adjustment: 0.144 meter

From Table 5.5, we also found that the standard deviations of estinated biases can
vary from 0.012 to 0.180 meters and the estimated biases also have a large range of
variations. According to the analysis of the path of arcs, arc 3936 could be one of the
arcs that are responsible for the linear features in Figure 5.6. The small number of cross-
overs along this arc also accounts for large standard deviation of the bias.

In the previous section, we have demonstrated the capability of bias removal
through the cross-over adjustment model. A further analysis on this problem and other
related problems was then carried out in the Bermuda area where we have an opportunity
to compare the predicted anomalies with the ship measured anomalies.

We recall our goal of the study: Recovery of high precision gravity anomalies and
SSH through using dense altimeter data. In order to accomplish this goal a thorough
understanding of the relationship between precision of the predicted quantities and the
selection of altimeter data in the prediction area is needed (Covariance function is not our
issue now, but it is still a very important factor for the prediction process). Many
authors, e.g. Rapp (1985), and Kadir (1988), have shown the capability of detecting
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seamounts through the use of dense altimeter data. An example given by Rapp (ibid.)
illustrated the effect of prediction cellsizes in New England Seamount Area. In this
example, the prediction cellsize varied from 3° to 1° and the strongest signature of
seamount was for the 1° case. In essence, two factors are involved in the choice:
prediction cellsize and number of points used in a prediction cell.

In order to investigate these two factors, together with the adjustment blocksize
factor, six tests were performed with the following parameter selections:

Choice 1:
Block size = 1° x 1° (for one matrix inversion)
Data number = approximately 300 points

Data border = 025 about block border
Adjustment block size =2° x 2°

Adjustment border = 0°5
Grid interval = 07125
Arcs without parameters = excluded

Choice 2:
Block size = (°5 x 075 (for one matrix inversion)
Data number = approximately 300 points

Data border = (25 about block border
Adjustment block size = 2° x 2°

Adjustment border = 075
Grid interval = (7125
Arcs without parameters = excluded

Choice 3:
Block size = 075 x 075 (for one matrix inversion)
Data number = approximately 400 points

Data border = 0°5 about block border
Adjustment block size = 2° x 2°

Adjustment border = 0°5
Grid interval = 07125
Arcs without parameters = excluded

Choice 4:
Block size = 1° x 1° (for one matrix inversion)
Data number = approximately 300 points
Data border = (©’5 about block border
Adjustment block size = 2° x 2°

Adjustment border = 005
Grid interval = 07125
Arcs without parameters = included



Choice 5:

Choice 6:

Scaling factor* standard deviation of 1.5 for Seasat and 2.0 for Geos-3
Block size = 1° x 1° (for one matrix inversion)

Data number = approximately 300 points

Data border = 075 about block border

Adjustment block size = 2° x 2°

Adjustment border = 0°5

Grid interval = 07125

Arcs without parameters = excluded

Block size = 1° x 1° (for one matrix inversion)
Data number = approximately 300 points
Data border = 075 about block border
Adjustment block size = 5° x 5°

Adjustment border = 075

Grid interval = 07125

Arcs without parameters = excluded

* will be discussed in the following section
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A set of gravity measurements made at sea containing 2011 points was selected for
the comparison with predicted anomalies. This data was on a tape provided by the
National Geodetic Survey. The distribution of the data is shown in Figure 5.13. The
bathymetry surrounding the island is given in Figure 5.14. The ship data is based on the
GRS80 ellipsoid and has a maximum anomaly of 358.10 mgals and a minimum of -
46.40 mgals with an RMS value of 70.15 mgals. For the purpose of comparison, the
predicted anomaly was interpolated at each ship measurement point from the predicted
(also gridded) data using a bicubic-spline interpolation procedure with 16 points. The
result of comparison is given in Tables 5.6 (a) & (b). In Table 5.6 (a), we only accept
the differences less than 70 mgals; thus the number of points compared reduced to
approximately 500 points. However, in Table 5.6 (b), we compared 2011 points.
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Table 5.6 Comparison between ship measurement and predicted anomalies

(a) Location = 30° < ¢ < 33°, 294° < A < 296°
max discrepancy = 70 mgals

Choice| max mean RMS
1 69.3 -71.5 17.7
2 69.6 -3.4 15.1 |
3 69.4 -3.6 15.7
4 69.8 -6.6 16.8
5 69.8 -9.3 18.5 |
6 69.8 -1.9 17.7

(b) Location =30° < ¢ < 33°,294° <} < 296°
max discrepancy = 400 mgals

Choice| max mean RMS
1 183.6 -4.0 28.4
2 152.3 -1.5 21.6
3 138.2 -1.9 20.5
4 170.9 -3.1 26.6
5 216.1 -4.1 34.3
6 185.9 -3.5 30.1

The accuracies of the prediction depend primarily on the number of points used in
the prediction and whether the variation of residual SSH is smooth or rapid. In an area
with dense altimeter data (e.g., the Bermuda area), the standard deviations of predicted
result are expected to be low, even though the gravity field is not smooth. To investigate
the accuracies of predictions, we present some statistics of standard deviations for
choices 1, 2, 3 in Table 5.7.

Table 5.7 Predicted standard deviations* for choices 1, 2 and 3

Choice max std min std mean std
Ag N Ag N Ag N
1 18.04 0.26 6.79 0.04 10.38  0.09
2 16.16 0.16 5.68 0.03 9.32  0.07
3 14.30 0.13 5.60 0.03 8.89 0.07

* unit for anomalies = mgals, unit for undulations = meters



73

From Table 5.7, it is clear that increasing number of points (i.c., from choice 1 to
choice 2) in a prediction cell has improved the accuracy of prediction. As compared with
the RMS differences that were shown in Table 5.6, the standard deviations in Table 5.7
could be too low. These relatively low standard deviations should be due to using
Jekeli's parameters. If T/R's parameters were used, the standard deviations of the
predictions could be more realistic. This will be discussed later in this chapter.

In order to detect the capability of recovering detailed anomalies, profile plots along
selected latitude belts were made for choices 1, 2 and 3. These profiles are shown in
Figures 5.15, 5.16 and 5.17, respectively. Generally speaking, good agreement between
ship and predicted anomalies took place in the low amplitude domain. Nevertheless, the
high amplitude part has been seriously degraded in all of the three choices; this effect
leads to the large differences in anomalies reflected in Table 5.4. However, it is obvious
that the predicted anomalies can be improved by reducing the prediction cellsize or by
increasing the number of altimeter points in the prediction cell. For example, at the
latitude belt of 3270, the result from choice 1 generated a smooth profile, but the result
from choice 2 made the profile closer to the ship measurement's, the best agreement then

was obtained by choice 3. For the other latitude belts, similar phenomena can be
observed.

The possible explanation of the loss of the detailed anomalies in the altimeter
predictions could be:
* No altimeter observations were made at the points where large anomalies
occured.
o The density of altimeter data is not sufficient
o The observed SSH were corrected by improper tide models
e Covariance function is not proper.

Regarding item 2, several tests were made by Kadir (1988) by using very dense
data in a small prediction celi (e.g., 300 points in 0725 cell, see p. 21, ibid.). In these
tests, he was able to recover the detailed anomalies without losing the highest signature
such as seen in Table 5.4, cf. Kadir (ibid.). Unfortunately, the current Geos-3/Seasat
data base does not allow such predictions to be made everywhere in the ocean area. For
example, in the South Pacific area where we just finished the bias removal tests, the
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average number of altimeter points in a 1° x 1° prediction cell (with 075 border) varied
from 100 to 200, so that the test carried out by Kadir (ibid.) can only be made in limited
regions. Another concern is the large computer resources needed for the prediction with
the very dense data.

Although the current density of altimeter data is sparse in some regions it will be
helpful to understand what sort of density of altimeter data that will make the high
precision anomaly recovery possible from the experiments performed in the area such as
Bermuda, where the distribution of altimeter points can be considered to be very dense.
For example, in a 1°5 x 125 area, the number of altimeter points can be as high as 2000,
and in a 1° x 1° area, the maximum number can reach 1430. Such dense data provides an
opportunity for flexible selection of data points and also an opportunity to recover more
detailed anomalies and SSHs.



400.+

LATITUDE=32.00

350.F

800.4

250.4

200.+

150.1

ANDMALIES

100.T

. L 1 1 1 i
50250.00' 294,50 2d5.50 ' 296,00

LuBrp LATITUDE=32.50
850.4
300.+

250.+

200.4

150,

ANDMALIES

100+

S0. T

“Shdoo! zd'u.soL: s} 295,50 T 295.00
OSHIP MEASUREMENT

Figure 5.15 Profiles of anomalies for choice 1

§00.4

850.

300.4

250.~

ANOMALIES

100,

4004

350.+

800.1

2501

ANOMALIES

109.1

50.

S

200.-

150,

200.+

J50.1

LATITUDE=32.25

735

LATITUDE=32.75

29050
L

ong

450
1tu

¥PREDICTED ANOMALY

Be



76

400,

LATITUDE=32.00 Ll LATITUDE=32.25
350, a50.4
300.4 960,
250+ 250,
(/2] th
Wl200.4 200, -
| |
[an) [
5 S
2150.-- ZISD.-
[r oy O
100.} 100.4
50. 50, A
0. + D, -
i -
-5025'1.00 ' Eg.'i 50 t 25!5.00 : 2&5.50 T zsja.nn -5029 .DD: 2&'!.50 t EJS.BD : 2&5.50 t 29}5
oNETTUDE ¢ oNE1TUDE
i LATITUDE=32.50 L LATITUDE=32.75
850.+ 850 4
200.+4 800.1+
250.¢ 250.+
/5] vy
W a0, ‘200,
wad -l
[i s T
x - =
2150.-- %lSﬂ."
[« [«
100, 100.+
S0, + 50, -
0. 1 e.
'502911. 0o Zgr'l.SD t 2&5.00 : 24.5.50 ¢ EQ'E.BO —5025 .DD: Egl .50 ; 245.00 : 45.50 t Eglﬁ
LONETTUBE ! 30 onéiTdoe @

OSHIP MEASUREMENT  %PREDICTED ANGMALY

Figure 5.16 Profiles of anomalies for choice 2



77

i LATITUDE=32.00 R LATITUDE=32. 25
350.¢ 850,
$00.+ 300,
250.1 250,
(73] [12]
a0, &iapg,
| |
a @
g x
210 2150.-
o @
100, 100.4
50. 50. +
0. 4 0, -
e T ‘Hh 5n o 285,50 " 20
) ONGITUDE ’
Uy LATITUDE=32.50 LS LATITUDE=32.75
350.¢ 550.+
S60,4 800.—+
250,4 250.+
L) wH
Wooo.+ Wapo.+
& z
g;sg - gJSI:I T
.3 z
100.+ 10Q,+
50. + 50. 4
D, -+ D. o
-5029'4.!10 y esiu.sa t 2&5.00 ? 2§.5.5D y H;E.DU -SOQSH.DD t ?..50 : 2&5.00 y 25.5.50 ; E}E
LONGITUDE LONGITUDE
OSHIP MERSUREMENT ¥PREDICTED ANOMALY

Figure 5.17 Profiles of anomalies for choice 3



78

Finally, we will draw some conclusions from choices 1 through 6:

e  From choices 1 and 6: 2° and 5° adjustment blocksizes yield the similar result.
e  From choices 1 and 2: 0°5 prediction cell is better than 1° prediction cell.
o From choices 2 and 3: increasing the altimeter points can yield better

agreement with ship data.
¢ From choices 1 and 4: including arcs which have no bias parameters can
produce better agreement.
¢ From choices 1 and 5: Increasing the standard deviations of the SSHs will
degrade the result.
4 nsistency between the observ Hs and referen id heights and th
termination of maximun acceptable residual SSH in iction cell

One of the editing criteria in selecting altimeter points is related to the residual SSH
within the prediction cell. The procedure of such editing begins with computing the
standard deviation of the residual SSH for all the points falling into the prediction cell.
Then, the maximum acceptable difference between the residual SSH and the mean
residual SSH is 2.5 times of the standard deviation of the residual SSH or a specified
extremum if such maximum value exceeds the specified extremum, The extremum used
by all the tests in the above sections was 3.6 meters with which very few points were
rejected, even in the rough area such as Bermuda.

However, Rapp (1985, p. 92) has observed that the maximum sea surface
horizontal gradient can reach 0.28 m/km in the Kuril trench. This means that for a 0°5
prediction cell with a 0°5 border, the variation of the observed SSH could be quite large
in an area of 1.5° x 1.5°. This information indicates the need of investigating the behavior
of observed SSH, especially in the rough area such as trenches and seamounts. In the
carly stage of production work, many large standard deviations of residual SSHs were
found in the Kamchatka Trench (roughly at 50°<¢<60°, 160°<A<170°) and hence many
points were deleted due to the 3.6 meters limit. Therefore, this area provided a good
opportunity for investigating the agreement between SSHs and reference geoid heights.
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Two sets of profiles of SSHs (combined Geos-3/Seasat data) and reference geoid
undulations are examined in the two areas (the profiles were interpolated by GSPP
(Siinkel, 1980) using inverse distance of power 2 as weights):

* 54.0<$<55.50, 16575<A<168°

e 52.0<¢<53.50, 158°5<A<161°

The corresponding plots are given in Figure 5.18 and 5.19 respectively.

These two sets of profiles show the significant inconsistency between the observed
SSH and reference geoid undulations. The inconsistency is partly due to the resolution
of 180 x 180 field and partly due to the imperfection of OSUSGE geopotential model in
these areas. However, it is clear that the variation of observed SSHs itself is continuous
and no evidence of track errors can be found. The numerical listing also showed that the
observations are quite consistent. In particular, both observed SSH and reference geoids
generate the similar sea surfaces along the six profiles in Figure 5.19 and this implies that
the observed SSHs can properly reflect the fluctuations of the sea surface. Furthermore,
a change of 12 meters in one degree was found along the profile at ¢ = 54760 in Figure
5.18. The largest difference for all the Geos-3/Seasat between SSH and reference geoid
heights was 12.50 meters, which took place along the profile at ¢ = 53°20 in Figure
5.19.

With such possible drastic variations of sea surface within a small area, the limited
extreme of 3.6 meters thus becomes unpractical since some detailed information could be
lost due to the deletion of the points where differences are greater than 3.6 meters. Based
on the altimeter data in the Kuril trench and the Kamchatka Trench, the average RMS
difference between SSH and reference geoid heights is on the order of 2-3 meter, thus it

is suggested that 6 meters (roughly 2.5 times of the RMS residual) be the maximum
acceptable difference.
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Matrix singulari lem i lution in least squares collocation for the global
production work

When it came to the stage of first production run at the first block, i.e., at
40°<<72°, 0°<A<40°, the matrix

1
Chh+ - Cnn
o (5-1)

became singular in some prediction cell with the choice of 4° adjustment blocksize, 0°5

prediction cell (075 border) and Tshcerning/Rapp's model with Jekeli's parameter. The
phenomenon is the high scaling factor o for those cells having singularity problem.

The first singularity was found in the cell
7000<p<70%5, 28°5<A<29°0 (not including border)

within which only Seasat data is available. Since the latitude is high, the points are close
to each other, as indicated in Figure 5.20.

27 28 29 30
71 ! T PO oy S e o

. 3
e

70 — 0

27 28 29 30

Figure 5.20 Point distribution in the cell where a matrix singularity occurred
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The reason for singularity is obviously that two or more rows in matrix
(Chn+1/aCpy) are effectively linearly dependent, which in turn means that either the
covariance function of the undulation is so smooth that the regularizing matrix 1/a Cyp
becomes invalid or many points are so close that the matrix is still singular regardless of
the behavior of covariance function. Therefore, our solution to the singularity problem
will be based on the information derived from the distribution of the data, covariance
function characteristic, and the regularizing matrix 1/ct Cpp,.

It is obvious that the singularity can be avoided by specifying a minimum spacing in
the data selection procedure, but care must be exercised since the selection of points
might cause the loss of detailed information. To give an example of miminum spacing
between altimeter points that will make the matrix invertible, the status of matrix
inversion is given in Table 5.8 at the prediction cell whose north-west comner is $=55.0,
A=1660.

Table 5.8 Status of matrix inversion at $=55.0, A=166.0

max points used | min spacing | 1nver. cond. no. of pts rejected®
315 1 km error
315 1.5 km error 3
315 2.0 km no error 8

* Due to residual SSH criterion

In Table 5.8, the covariance model was T/R's with Jekeli's parameters, and the limiting
value for residual SSH is 3.6 meters. The choice was 4° adjustment blocksize and 0°5
prediction cell with 0%5 border.

Although the singularity problem was solved by specifying 2 km as the minimum
spacing, this value does not guarantee no inversion error in other places. Another
important consideration is the stability of the inversion even though the matrix is
successfully inverted. For example, in the first example of matrix singularity problem (at
70°0<¢<70°5, 287<A<29°0), the minimum distance between any two points was found
to be 317 meters in the cell, so that a specified minimum spacing of 500 meters was able
to make the matrix positive definite. However, the predicted quantities became unstable
since many unreasonably large quantities (residual anomalies and standard deviations)
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were found. Such numerical instability was then overcome by specifying a minimum
spacing of 1000 meters. This example also shows the importance of numerical stability
in the interpretation of the predicted quantities.

Another concern is the limiting value for the residual SSH. Based on the analysis
in section 5.4, 6 meters was suggested to be such a limit. Furthermore, the covariance
function is also an important factor in the maitrix singularity problem. In the following
example, we will combine these considerations and analyze the inversion status.

Table 5.9 Status of matrix inversion at ¢ = 530, A = 159°0

max points used | residual limit min spacing model | inver. cond.
315 3.6 2km Jekeli error
315 3.6 3km Jekeli No error
330 6.0 3 km Jekeli error
330 6.0 1 km T/R no error

In Table 5.9, the choice for adjustment blocksize and prediction cell are the same as
those in Table 5.8. The model of Jekeli (in Table 5.9) is the T/R's model with
A=343.408 mgals2, B = 24, s = 0.9988961 while the model of T/R uses: A=425.28
mgal?, B=24, s=0.999617. It is noted that the T/R's model gives a more stable inversion
than Jekeli's model. Thus, for future work the T/R's model with the original numerical
parameters will be preferred.

A concern arises when the minimum spacing is getting larger and too many points
are deleted. The concern is primarily on the quality of the predicted quantities. In order
to investigate this, several tests were performed in the Bermuda area. The predicted
anomalies were compared with ship measurements in the same way as described in
Section 5.3. Table 5.10 shows the results.



85

Table 5.10 Differences between ship measured and predicted anomalies based on various
choices of minimum spacings (at 30°<@<34°, 293°<A<297°)

Model | min spacing max mean RMS no. of pts used
TR 3km 117.4 mgal | -1.43 mgal | 17.8 mgal ~270
/R I km 117.2 -0.90 17.7 ~320
Jekeli 3km 118.6 -1.64 18.5 ~270
Jekeli* 0 151.8 -2.47 18.5 ~400
Jekeli**| 0 138.3 -2.00 20.5 ~400

unit for anomalies: mgals

* specified max no. of points = 400 .

** limit residual SSH = 3.6 meters, adjustment blocksize = 2.0, specified max no. of
points = 400

In Table 5.10, except for cases marked, the adjustment blocksize is 4°0 and
prediction cellsize is 0°5, the maximum limiting residual SSH is 6 meters and the
specified maximum number of points for the initial point selection is 330. It was found
that a minimum spacing of 1 km will delete approximately 10 points and 3 km will delete
60 points. It is remarkable that the deletion of points did not degrade the prediction's
quality. The use of additional points, such as in the last two cases, even yields worse
results (It could be due to matrix singularity). Another success of the minimum spacing
is the saving of computer time. For example, in Table 5.10, the case with the 3 km
spacing took about 70 percent of the time spent by the case with 0 km minimum spacing
and about 80 percent of time spent by the case with 1 km minimum spacing.

ling factors for stan viation of SSH

From previous discussions, we realize that the matrix (Chp + 1/o¢ Cpy) can be
positive definite if the distance between two arbitrary points exceeds a minimum spacing.
However, in the area where the distribution of altimeter data is not even and the gravity
field is relatively rough, the predicted anomalies again became unreliable even though a
large minimum spacing was used. Example of such a case can be shown in Figure 5.21.
In this figure, several gaps of altimeter points can be found. (A data gap means a location
where data distribution is not continuous and regular as compared to the data distribution
of the adjacent areas).
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Figure 5.21 Altimeter data distribution near the Kuril Trench

Using a choice of 4° adjustment blocksize, 075 prediction cellsize with 0725 border
and 4 km minimum spacing (it is not necessary to specify the maximum number of
points, since the total number of points in a prediction cell can hardly exceed 100), a set
of anomalies was predicted in the area given in Figure 5.21. As indicated by Figure 5.22
two circular areas of rapid anomaly change are seen at the location where data gaps
occurred. The numerical listing showed no significant errors in the observed SSHs in the
area. Observe that the sign of anomalies changed from positive to negative right around
the loops. These unrealistic signatures of anomalies cannot be reduced even by using a
10 km minimum spacing.
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indicate altimeter data points. CI

Using the same prediction structure, but multiplying the Seasat noise by 3.0 and the

Geos-3 noise by 4.0, the loops in Figure 5.22 then disappeared. Such a case is shown in

Figure 5.23.
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52

156 157 158 158

Figure 5.23 Predicted anomalies in case of multiplying 3 and 4 for Sedsat and Geos-3's
noises. CI = 10 mgals

This example shows the smoothing effect of the noise’s scaling factor. In terms of
matrix singularity problem, the noise's scaling factors become fairly important when a
large o value occurs, since for such a case the regularizing matrix 1/a Cyp has no
significant effect to the matrix's stability. A sample listing of anomalies corresponding to

Figures 5.22 and 5.23 is also given in Table 5.11. Clearly, the change of anomalies
from A = 157.875 to A=158.00 is not acceptable for the first case.
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Table 5.11 Sample listing of anomalies based on various noise's scaling factors

noise factors*: 1, 1 (3, 4)

¢ = 50.625 (anomalies)

A = 157.500 119+ 28 127+ 32
157.625 94+ 39 99+ 41
157.750 64 +44 20+ 46
157.875 3645 42 + 48
158.000 -165+ 50 -54 + 61
158.125 -521 58 32461

*First factor is for Seasat, second for Geos-3.

Although the noise's scaling factors might help the prediction's stability, it is not
recommended in the area where the altimeter data has regular and even distribution, and
the observed SSH do reflect the roughness of gravity field. To illustrate this, three
successive anomaly plots, namely, Figures 5.24, 5.25 and 5.26, were prepared for the
Bermuda area. These figures correspond to the predicted anomalies based on the scaling
factors: (choice: 4° adjustment blocksize, 0’5 prediction cell size, maximum number of
points used = 315, T/R's model, 2 km minimum spacing, 6 meters limit residual)

Figure 5.24 1 for Seasat, 1 for Geos-3

Figure 5.25 5 for Seasat, 7 for Geos-3

Figure 5.26 10 for Seasat, 15 for Geos-3

Enormous loss of details is found in Figure 5.26, and the signature in Figure 5.25
has reduced to such a level that it was thought to be unacceptable. Table 5.12 also shows
the comparison between the predicted results and the ship measurements.
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Table 5.12 Comparison of predicted anomalies and ship measurements based on
various noise's scaling factors
unit = mgals

Figure |noise factors¥] max mean RMS
5.24 1,1 126.7 -1.3 19.3
5.25 5,7 197.1 | -52 26.3_|
5.26 10, 15 237.0 -7.7 33.7

* First factor for Seasat, second for Geos-3

This test, on the other hand, gives an excellent example of the importance of the
accuracy estimate of the altimeter data. The implication is: If the observed SSH are
sufficiently accurate but the accuracy estimates are improperly high, the predicted
anomalies are then degraded. Needless to say, if the observed SSH are seriously affected
by orbit error, tidal error and other factors and large noises are inherent in observations,
then the contaminated signals cannot be recovered by the Isc method and hence no
recovery of highly detailed anomaly is possible.

Based on the above analysis, advantage and disadvantage of scaling factors can be
found. For our global production work, we will suggest not to use the scaling factors
since the case shown in Figure 5.22 can rarely occur and our tests for scaling factors in
Bermuda area have shown degraded anomalies if such factors are used. Although the
plot corresponding to the predicted anomalies based on scaling factors 3 for Seasat data
and 4 for Geos-3 data (these are factors corresponding to the resulting anomalies in
Figure 5.23) was not prepared, such anomalies have been compared with the ship data
(the same ship data used in Table 5.11) and an RMS difference of 22.9 mgals was found.

In case that no scaling factors are used and erratic anormalies are predicted (such as
those in Figure 5.22), an alternative way to eliminate (or detect) such anomalies is to
apply some point value acceptance criteria (e.g., standard deviation, depth, etc.) after the
prediction has been made. This will be discussed in Chapter 7.
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.6 nsi ions for altimeter

Although the adjustment process can produce consistent Seasat and Geos-3 data in
most of areas, there are large discrepancies between the mean SSH values of Seasat and
Geos-3 data within some prediction cells where the data distributions are not even or the
observations are nearly on land. For such a case, we will only retain the Seasat data in
the cells since the formation of the combined Seasat/Geos-3 data was performed in such a
way that the Geos-3 arcs were adjusted to the Seasat primary arcs. In the practical
computations, the mean SSH values of the Seasat and Geos-3 were first calculated at the
initial data selection stage within the prediction cell. Then, all the Geos-3 data would be
deleted if the difference between the mean values was greater than a specified limit.
Based on some tests, 1.5 meters was suggested to be the maximum absolute difference.

In some areas, it was found that the Seasat data with noise greater than 15 cm has
abnormal SSH values as compared with the adjacent points. Therefore, it was decided
that such data will not be adopted in the adjustment and prediction parts.

7_Summ of tests in the Bermuda nd the final decision for the production
roc

In addition to the tests described in the above sections, some other similar tests
focusing on various issues were also carried out in the Bermuda area. Among these
issues, the most important one is the determination of the data border about the prediction
cell. In Table 5.13, we have used a 0.5° data border for cases 1 through 13 and 07225 for
cases 14 through 17. As we can see, better results have been achieved by using 0725
data border. This is due to two reasons:

(i) In Table 2.1, we have listed the correlation lengths of the covariance function
COV(Agp, hg). The correlation of COV (Agp, hq) is 0.339° for T/R's model (with
T/R's parameters). With such a short correlation length, a smaller data border (0°25)
would be preferred since the distances between the predicted point and most of altimeter
data points can be shorter than the correlation length.

(ii) A larger data density has been used by the cases with a 0°25 data border. For
example, in case 3 (0°5 border), 400 points were used in a 1°5 x 135 area, the
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corresponding data density is 178 points per square degree. In case 16 (0°25 border),
198 points were used in a 1° x 1° area (see Table 5.14), the corresponding data density is
198 points per square degree. In addition to the fact that case 16 has larger data density,
we also performed the selection of altimeter data points so that any two points will be at
least 4 km apart in case 16. This larger data density not only improved the quality of the
prediction but also reduced the computer time enormously.

Based on Table 5.13 and Table 5.14 and all the tests carried out in the current

chapter, we finally decided to use the following parameters for the global production
mode:

Reference Field = OSUS8GE to degree 180

Covariance function = scaled Tscherning/Rapp with the T/R parameters
Adjustment block size =4° x 4°

Adjustment border = 075 about block border

Prediction cell size = 0%5 (for one matrix inversion)
Prediction border = 0725 about cell border

Data number = approximately 400 points in one prediction cell
Prediction grid interval = 07125

Arcs without parameters = included

Minimum spacing =4 km

Scaling factors for noises = none (i.e., 1, 1)

Residual limit for SSH = 6.0 meters

Minimum no. of points in one prediction cell =7

Applying point acceptance criteria in sec. 5.6

Such a choice corresponds to case 16 in Table 5.13. The predicted anomalies in the
Bermuda area using the production mode are shown in Figure 5.27. The profiles of
anomalies at selected latitude belts are also given in Figure 5.28. From Figure 5.28, it is
found that the excellent agreement between ship measurements and predicted anomalies
has been achieved by using our production mode. In particular, the highest anomalies
along profile ¢ = 32.25 and ¢ = 32.50 have been successfully recovered. Comparing the
anomalies in Figures 5.24 and 5.27, two observations can be made: First, in the flat area
the two sets of anomalies have good agreements; Second, in the rough area (near the
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Bermuda Istands) the two sets of anomalies have similar trends of signatures but the
magnitudes along the peak of the signature are substantially increased. (If one draws a
line from the point at $=3270, A=294°875, to another point at $=32750, A=295°375, this
line will correspond to the peak of the signature). Therefore, the signatures resulting
from the use of the production mode have decreased the large discrepancies between ship
determined and predicted anomalies along the profiles ¢ = 32725 and ¢ = 32°50.

Table 5.13
Summary of tests in the Bermuda area
I Cases
case | model | adjust. | border |prediction| border| min  [factors | max | residual
block cell spacing no.pt.| limit
1 |Jekeli |2°x2 | 0°5 1’x1° [ 05 [ O 1,1 [300] 3.6m
2 " " " 0%5x0°5 " 0 1,1 300 "
3 n " " " 1" 0 1 . 1 4% n
4 n " " loxlo " 0 1, 1 300 n
5 n n n it n 0 1. ,2 3m "
6 L1] 5Bx50 111 " " 0 1 . 1 300 it
7 |TR |4 " 0%5x0%5 | " 2km | 1,1 | 315 | 6m
8 " 1t mn L1} " 2krn 5’7 315 n
9 " n n L4 1t zlqn 10’15 315 "
10 n n n L " 6krn 1 . 1 450 "
1 1 11} n L1] " " lokn,l 1 . 1 450 11
12 1 (1] L1 [1] " 4lqn 3,4 315 n
13 " " H n n 4]('[1‘1 1 s 1 3 15 n
14 " " " " 0.25| 4km | 3,4 315 "
14A n " [1] n n 4kIn 3’4 400 "
15 n n " n n 4l(l,n 1 . 1 315 tH
15A " " 1" n 11] 4krl] 1 s 1 4m n
16* " " 11 11] " 4k[n 1’ 1 4% "
17 1t 11t [1] 1" Li 3k1n 1 . 1 400 [1]

* Applying point acceptance criteria (see sec. 5.6)

e For cases 1, 2, 3, 5, and 6, the arcs without parameters are not used in the prediction.
For the remaining cases, such arcs are used.




Table 5.14

Summary of the results of the tests in the Bermuda area

case max diff. mean diff. RMS diff. ave. no. of pts used
1 183.6 -4.0 28.4 300
2 152.3 -1.5 21.6 300
3 138.2 -1.9 20.5 400
4 170.9 -3.1 26.6 300
5 216.1 -4.1 343 300
6 185.9 -3.5 30.1 300
7 126.7 -1.3 19.3 280
8 197.1 -5.2 26.3 280
9 237.0 -7.7 33.7 280
10 184.5 -1.6 22.6 200
11 160.1 -3.3 23.4 100
12 158.3 -4.0 23.3 227
13 122.7 -14 19.5 227
14 2249 -3.5 229 177
14A 200.4 -2.8 20.8 198
15 145.1 -2.1 16.4 177
15A 113.4 -1.5 15.9 198
16 113.4 -1.5 15.9 198
17 113.9 -1.7 15.3 235

* Case 16 is the production choice.

In the Bermuda area, case 15A is equivalent to case 16

As mentioned in section 5.3, the standard deviations of predictions from use of the
Jekeli's parameters (in covariance function) were relatively low as compared to RMS
differences of ship measurement comparison (see Table 5.6 and 5.7). However, the
standard deviations of the results from use of the T/R's parameters, have better reflected
the accuracies of the predictions in terms of ship measurement comparison. For example,
the anomalies shown in Figure 5.26 have a maximum standard deviation of 26.2 mgals
and a minimum of 7.6 mgals. The mean standard deviation is 12.3 mgals, which should

be more appropriate for such an area with rough gravity field.
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CHAPTER VI

Global prediction of anomalies and sea surface heights
6.1 The initial prediction

The initial prediction contained the global production of gravity anomalies and SSH
using the combined Geos-3/Seasat data base. The predictions were carried out on the
CRAY X-MP/28 machine residing at the Ohio Supercomputer Center while the data have
been stored on the tapes on the IBM systern. In addition, the required data sets such as
covariance tables, 1/8° reference values also resided on the IBM system. As the
prediction run was completed on the CRAY, all the output data had to be transferred back
to the IBM system for further processing. The steps and data involved in the production
work are indicated in Figure 6.1.

With the decisions made in Section 5.7, we decided to perform the global prediction
by following the altimeter data storage scheme on the two master tapes. The storage
scheme provided the systematic organization of data according to the geographical areas
of altimeter data. Typically, a file on the tapes contains the altimeter data in a 32° x 40° or
40° x 40° area with sequential file numbers running from north to south and west to east.
More specifically, tape GS386 contains data in the Northern Hemisphere and tape GS387
contains data in the Southern Hemisphere. The file numbers on the two tapes, the

prediction block numbers and the numbers of altimeter data points in the files are shown
in Figure 6.2.

By (prediction) block number we mean that it is the sequence number associated
with one prediction run. After some preliminary tests, it was confirmed that the
prediction of gravity anomalies and SSHs in one 32° x 40° or 40° x 40° block can be
completed in one execution of the production program, F459PRD. A prediction run thus
means the execution of program F459PRD with prediction coverage of one 32° x 40° or
40° x 40° block. However, due to the limited temporary storage space of CRAY discs
(more specifically, the Solid State Device) and maximum accessible memory, we had to
read the altimeter data within the prediction block several times. This factor had a
significant influence on the production work.

99
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At this point, we should clarify some terms in order to better illustrate the
production work. We have the following definitions:
¢ Prediction block: the block, as shown in Figure 6.2, that covers a 32° x 40° or
40° x 40° geographical region. See also the above
description.
¢ Adjustment block: a 4° x 4° region within which one cross-over adjustment is

performed.

e Prediction cell: a 0°5 x 075 cell within which 16 point anomalies and 16 sea
surface heights are predicted.

o Altimeter file: a file containing altimeter data in a 32° x 40° or 40° x 4(0°
area.

These definitions are only valid for the production mode as specified in Section 5.7.
For a prediction block, the entire prediction process involves the following steps:

(1) Select altimeter data points for four 4° x 4° adjacent adjustment blocks (a total
of 8°x8° area) and write the data points to 4 separate temporary disc units
(FORTRAN I/O units),

(2) Perform a cross-over adjustment for the first adjustment block

(3) Use the adjusted altimeter data from (2) to perform the predictions of gravity
anomalies and SSH in the 64 0°5 x 075 prediction cells individually.

(4) Repeat (2) and (3) for the second, third and fourth adjustment blocks.

(5) Select the altimeter data points for the next 4 adjustment blocks and repeat (2)
- (4).

Based on the above procedure, a total of 20 data selections are required for a
32°x40° block and 25 data selections for a 40°x40° block. This means that we have to
read the altimeter data files 20 times or 25 times in order to complete the prediction in a
prediction block. In terms of the predicted result, a set of predicted gravity anomalies and
SSHs is defined as the predicted data located in the 4 adjustment blocks and derived from
steps (1) to (4). This explanation of "set" will be useful for checking the computer's
printouts.

With such a procedure, theoretically we have to read a maximum of 9 altimeter files
which have coverage of an area of either 32°x40° or 40°x40°. The CPU time consumed
by reading an entire altimeter file could be significant if the total number of points in the
file is large. For example, a total of 12.6 CPU seconds is needed for reading 163,888
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records (on CRAY X-MP/28). However, only a portion of data in the files surrounding
the “central file” are needed in the prediction. By central file we mean the file whose

corresponding geographical location is identical to the location of the prediction block.
cf. Figure 6.3.

file 8 [file 1 file 2

prediction

block
file 7 |ccentral | file 3

file)
File 6 | file S File 4

Figure 6.3 Sketch of file locations for a prediction block

In order to reduce CPU time for reading the altimeter data, an altimeter file was
partitioned into several sub-files, according to the desired borders of the adjustment
blocks and prediction cells. The partition was completed when an altimeter file was

transferred from the IBM system (in ASCIT) to CRAY (in binary). Specifically, we have
the following scheme:

One altimetric file on IBM

e

4 BANDS on CRAY 1 FILE on CRAY 4 CORNERS on CRAY

A "FILE" contains data in a 32°x40° or 40°x40° block, while BAND and CORNER
cover the data at the boundary areas of this particular block. Figure 6.4 shows the

locations of FILE, BAND and CORNER that are obtained from an altiemter file (on
IBM).
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" /BAND /" /| AA-CORNER

/]
FILE /}
o yyav

FILE: d4<dp<d1, Ai<A<hs (iotal 1)
BAND: ¢4<d<dq, A1<A<ha, etc (total 4)
CORNER: t<¢<di, A1<i<iy, etc (total 4)

?1
Pa

?3

Ol \\\\\

Ps

Figure 6.4 The locations of partitioned altimeter files (on CRAY discs)

The width of the band will typically be 075. Comparing Figure 6.4 with 6.3, we
immediately see that the central file is FILE. To avoid any mistake, the names of these
data sets have been systematically organized on CRAY discs. Using this manipulation of
data, the cpu time for reading data has been reduced enormously.

To show an example of what data sets should be used in a 40°x40° block prediction,
we show the data set names associated with the regions in and surrounding the prediction

area in Figure 6.5. ’ i
160 200
nc04p31— nb05s —+ nc06p2
a0’ /
nbl3e 4 — 95386 FM// —{- nb15w
-}
0
sc04ps +— sbd5n —i- sclépl

Figure 6.5 The required altimeter data sets (on CRAY) for prediction area at 0°<¢<40°,
160°<A<200°
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When one prediction block was completed, two formatted data sets were generated
and transferred back to the IBM system. One data set contained the anomalies, SSHs and
their accuracy estimates. It was then reorganized and stored on a tape. The other data set
contained the altimeter data used in the prediction cells. It was then copied to a file on
another tape. The space on a tape needed for the first data set is small while the space
needed for the second one is large. For the global production runs, it was estimated that
3 2400-foot tapes are required for the first data set and 4 to 5 2400-foot tapes for the
second data set.

To estimate the CPU time for global production work, only some empirical timing
can be obtained. Based on the tests in the S. Pacific Ocean and the Bermuda area and the
performance analysis for program F459PRD, an average time of 915 seconds was needed
for a production run which completed a prediction in a 40°x40° block. Approximately 10
CPU hours will be consumed for the entire production work. However, this estimate
does not count the repeated runs, so a factor of 1.2 should be considered and the final
timing will be close to 12 CPU hours on CRAY. As far as the CPU time on IBM is
concerned, it was expected that 1 CPU hour will be consumed by generating reference
values and covariance table and by some other manipulations. If the predicted anomalies
and SSH are plotted, then additional CPU time should be included.

When the initial global production runs were completed in January, 1989, the CPU
time (on CRAY) spent by each block was tabulated. Table 6.1 shows the result.
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Table 6.1 CPU time (on CRAY) for the initial block prediction

Block* time Block time Block time
1 460 13 1202 25 1265
2 102 14 1582 26 340
3 44 15 1574 27 1280
4 212 16 1492 28 518
5 1230 17 1913 29 589
6 1354 18 1071 30 567
7 106 19 791 31 672
8 1016 20 1135 32 753
9 1704 21 799 33 676

10 245 22 691 34 805
11 546 23 996 35 585
12 299 24 992 36 444

unit = cpu second
* The locations of the blocks are shown in Figure 6.2

Based on Table 6.1, a total of 8.34 hours was used in the 36 predictions. The
average CPU time for a prediction run is 834 seconds which is close to the original
estimate,

.2 Revised Prediction Runs for Select ell

The necessity of revised prediction runs was due to unreasonable results such as
track patterns and abormal signatures that were found in the anomaly plots associated
with the production results. Such phenomena, as discussed before, are mostly caused by
erroneous observations and uneven point distribution. The sea surface heights usually

generate a smooth surface and such unreasonable phenomena cannot be seen from plots
of this data,

Although we have adjusted the altimeter tracks before the predictions were
performed, the track biases really cannot be detected and adjusted by the current
adjustment algorithm if the biases turn out to be errors within a very short satellite orbit
segment. In an area with a smooth gravity field, the systematic patterns of anomalies
caused by these errors will be enormously enhanced. This effect will be demonstrated in
the following example. |
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The first problem area found is located in the South Indian Ocean. As shown in
Figure 6.6, linear features still showed up even though the adjustment of tracks for bias
removal has been carried out. Apparently, these features are associated with some tracks
that pass through the features. Another plot, as given in Figure 6.7 shows 4 suspected
tracks, i.e., tracks 861, 416, 172 and 5008 are responsible for the features. Note that at
this point we disregard the signatures at the right-lower corner of Figure 6.6. These four
tracks are Seasat's tracks and they are almost parallel as presented in Figure 6.4. Also
note that the major "error" signatures occur at the center of the areas where the data
distributions are not even (for example, -42.25<$<-41.25, 57°<A<58.25). In order to
study the behavior of SSH, the SSH along the four tracks are plotted in Figure 6.8 (a)
and (b) where (a) contains the unadjusted tracks and (b) contains adjusted tracks. In
Figure 6.8 (a) and (b), the spherical distances of the tracks started from a common cross
section as indicated in Figure 6.7.

The four tracks are approximately 12.5 km apart. The change of sea surface height
within such short distance is expected to be small. However, both Figure 6.8 (a) and (b)
indicate that the SSHs along track 172 have abnormal fluctuations as compared to the
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Figure 6.8 The SSH along tracks 861, 416, 172, and 5008 before and after adjustment.
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adjacent SSH. The adjustment obviously cannot eliminate the errors along this track
since the wavelengths of the errors are too short. Before a better model of adjustment is
developed, the only way to resolve the problem is to identify the "bad" track and remove
it from the prediction. Figure 6.9 shows the predicted anomalies after track 172 has been
removed. It can be seen that the linear features have disappeared. (The features in right-
lower corner need another investigation).

Unfortunately, this particular block was not the only one that has the track error
problems. Based on the global 10°x10° anomaly plots of the production results made by
K. Hong, the problems still exist in some other areas. The solution to the problems for
all the areas is the same: First plot the track numbers, remove the suspected tracks and
repeat the prediction. Then, plot the anomalies and repeat the process until the signatures
associated with track errors completely disappear. Tremendous effort has been given to
identifying and fixing the track problem. The amount of the work is almost equivalent to
the initial prediction work.

As a result, Table 6.2 lists the areas that receive revisions and the tracks that cause
the abnormal gravity anomalies. The information in Table 6.2 could be very important
for future altimeter work since the "bad" tracks have been recorded and these tracks can
be simply ignored in future work.

In Table 6.2, we find that a large amount of tracks have been deleted in some
revised areas. For example, in block 17 of Table 6.2, a total of 13 tracks were removed.
However, it is expected that the gravity information will not be substantially affected by
the removal of tracks even if some of the observations along the deleted tracks could
provide reliable information. In essence, as shown in Table 6.2, the number of tracks
deleted is proportional to the data density (or the "track density"), the removal of tracks
will be equivalent to eliminating the altimeter data points to fulfill the minimum spacing
criterion. The data density information is shown in Figure 6.2 (third number in a block).



Table 6.2 Summary of revised prediction areas

ID location* blockt tracks removed
1 40-32.125 13 656, 857, 463, 420, 168,
144-151.875 ~ 613, 707, 10415
2 40-32.125 17 7120, 1604, 463, 1346,
300-307.875 1387, 1432, 543, 14015,
2435, 7666, 10077, 1732, 291
3 -10- -17.875 22 664, 865, 1467, 4166,
124.0-131.875 1381
4 -32.0- -39.875 26 771, 283, 291, 168,
308-315.875 455, 211 .
5 -40- -477 875 29 172, 422, 465, 502,
56-63.875 221
6 -40- -47.875 ~ 29 422465, 502, 680,
| 64-71.875 393, 717, 723
7 -40- -47.875 30 286, 220, 421, 5009,
80-87.875 177, 4923, 1767
8 -40)- -47.875 35 283, 211, 205, 277,
304-311.875
9 32-16.125 10 12481
32-39.875 _
10 -60.0 -63.875 28 674
0.0-3.875
11 -52.0- -55.875 31 642
156.0-159.875

* Latitude and longitude in degree
+ See figure 6.2 for block numbers
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Having completed the revised predictions, the original predictions were replaced by
the revised result according to the block it resided on (as indicated in Table 6.2). Based
on Table 6.2, a total of 10 such revised files were created.

After the initial and revised predictions were completed, a total of 36 files were
created. Each of the 36 file stores the predicted anomalies, SSH and their accuracy
estimates in a prediction block. For future application, these 36 files were merged in such
a way that each file occupies a 72° x 40° area. The result is another tape containing such
18 files. Also, 18 additional files were created so that each grid point has an elevation
with it. The elevations were based on 5 minute mean elevations of TUG87 digital terrain

model (Wieser, 1987).



CHAPTER VII

Statistical analysis and comparison of the current prediction results with
those of Rapp's (1985)

.1 The eighth degree data

The global production work yielded a total of 2,322,080 point anomalies and sea
surface heights and their rigorous accuracy estimates. The point or grid interval is 07125.
Since one individual 40° x 40° or 32° x 40° block prediction was completed in one
production run without interruption, theoretically the prediction wil take place in any of
the 6400 or 5120 prediction cells provided that the number of altimeter in a cell is equal to
or greater than 7. However, for many obvious reasons, some altimeter observed SSHs
have significant deviations from the geoid heights at the corresponding locations. This
type of observed SSHs, for example, includes the SSHs in in-land seas, the SSHs
affected by ice, rain and clouds, the SSHs without valid ocean tidal correction. If these
undesired SSHs are used for the prediction, the predicted result will apparently be
unreliable.

Our global prediction of gravity anomalies and SSHs described in chapter 6 has
been carried out without considering these undesired SSHs, though local arc adjustments
were performed before predictions were made (we have interpreted the meaning of local
arc adjustment). Based on the global anomaly plots and numerical investigation of the
predicted results, the following phenomena were observed:

¢ Two groups of large anomalies were found in the Caspian Sea and Black sea,
respectively. The depths of the seas (with respect to their sea surfaces) are
around 10 to 30 meters.

e Abnormal anomalies were detected in Hudson Bay and Strait.

e Predictions were made in some isolated prediction cells on land. The anomaly
can be as high as 600 mgal.

e Most of the predicted quantities near (about 50 km) continenta! coastal area have
erratic behaviors. The accuracy estimates are large. (the largest 78.40 mgals
for anomaly)
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o Abnormal behavior of anomalies was found in areas below ¢ = -63°0. This
could be due to the surface ice when the observations were made.

Additionally, large standard deviations of the predictions are found in areas with a
rough gravity anomaly field, especially in trench areas. The associated phenomena with
these large standard deviations are the large scaling factors of the covariance functions.
Based on the above analysis of the predicted result, it is not appropriate to adopt all the
2,322,080 point values as our final prediction result. Several criteria could be applied if
one has to judge if a predicted value is reliable.

The decision for selecting the point acceptance criteria is hard to be made since we
want to keep the reliable information as much as possible under the consideration of the
criteria. However, a point elevation at each gridded point could be always one of the
criteria since the predictions made on land will never be adopted. To conveniently apply
the elevation criterion, the 5° x 5’ elevation block was searched for each point and the
elevation of the point was assumed to be the mean elevation of this 5" x 5 block. As
mentioned in Chapter 6, the 5’ x 5’ mean elevations for this study is TUG87 (Wieser,
1987). By doing this, a point in the ocean receives a negative elevation and a point on
land receives a positive elevation. The question is then what the minimum depth shounld
be if the point value can be acceptable. Obviously, we wish to choose a minimum depth
for which the predicted result in the Caspian Sea, Hudson Bay, Hudson strait, isolated
cells on land and coastal area will be rejected. Unfortunately, many locations
surrounding the isolated islands in the open ocean could have shallow water while the
predictions are still very reliable. A good example can be found in the vicinity of
Bermuda. Table 7.1 illustrates the effect of deleting point values if the depths at the
points are not greater than a specified minimum depth.
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Table 7.1

Number of points with Ag 2300 mgals that will be deleted according to the depth criteria

area ‘ minimum acceptable depth (meters)
100 250 350 500

Bonin Trench + 0 3 5 6
Alleutian Is. + 3 4 4 4
Hawaii Is. + 6 9 14 18
Bermuda Is. *+ 0 0 2 2
Bering Strait * All
Hudson Bay * Al
Caspian Sea * All
Black Sea * All

+ The deleted anomalies are considered to be reliable
* The deleted anomalies are considered to be unreliable

It was found that if 100 meters is the minimum depth for the acceptance of the point
predictions, all the abnormal anomalies, except those in Hudson Bay and Hudson Strait
and in areas ¢ < -63°, will not be accepted. However, as indicated in table 7.1, 3 large
anomalies in the Alleutian Islands and 6 large anomalies in the Hawaii Islands will be lost
due to such criterion. For our global analysis, a variable criterion apparently will not be
practical, thus we must sacrifice these large, reliable anomalies. For local analysis, the
depth criterion could be flexible and good informaiton may not be lost.

Based on the above analysis, it is recommended that the point value can be accepted
if the following criteria are fulfilled:

(i) Depth > 100 meters
(i) ¢=-63°
(iii) (¢, A) notin area (45° < ¢ < 65°, 250° <A < 296°)

Using the three criteria, we summarize the statistics of the global eighth degree data
in Table 7.2.
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Table 7.2

The statistics of the global eighth degree data based on the point value acceptance criteria

(unit: anomaly: mgals, SSH: meters)

Anomaly Sea surface height
No. of points predicted 2322080 2322080
No. of points accepted 2048487 2048487
maximum 439.70 82.66
minimum -368.50 -107.54
mean -1.74 2.36
RMS 30.06 31.02
mean predicted std. dev. 12.11 0.08
RMS value of predicted std. dev. 12.43 0.09

In addition, Table 7.3 gives the frequency distribution of the anomalies and Table
7.4 provides the standard deviation distribution of the anomalies.

Table 7.3

Frequency distribution of the accepted anomalies

Range (mgals) No. of points
-400 to -350 8
-350 to -300 97
-300 to -250° 482
-250 t0 -200 1643
-200 to -150 4461
-150 to -100 9675
-100 to -50 56944
-50100 1038565
0to 50 866448
50 to 100 58109
100 to 150 8735
150 to 200 2485
200 to 250 623
250 10 300 157
300 to 350 43
350 to 400 11
400 to 450 1




Table 7.4

Standard deviation distribution of the accepted anomalies

[Range (mgal) No. of points
5t010 410063
10to 15 1420338
151020 188123
20to 25 17503
25t030 7495
30t035 2873
351040 1235
40 t0 45 483
45 to 50 186
50to 55 82
55t0 60 55
60 to 100 51
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The maximum anomaly 439.70 mgals was located at ¢ = 27.625, A = 142.250
which is in the Bonin Trench and the minimum anomaly -368.50 mgals was located at
$=19.250, A = 294.25, which is in the Puerto Rico Trench; The maximum sea surface
height 82.66 meters was found at ¢ = -5.250, A 150.125, which is close to the New
Britain Trench and the minimum sea surface height -107.54 meters was found at ¢ =
4.625, A=150.125, which is close to the Mid Indian Basin. Furthermore, a group of
large anomalies was also found in the Japan-Kuril Trench, Bonin Trench, Mariana
Trench, Caroline Islands, Hawaiian Islands and the Puerto Rico Trench.

In Chapter 5, we have demonstrated the excellent agreement between the production
result and the "ground truth" - ship data. The capability of recovering high frequency
anomalies in the Bermuda area was also shown in Figure 5.28. Comparison of 2011
ship measured anomalies and those from production result showed an RMS difference of
15.9 mgals even though the gravity field surrounding the Bermuda Island is rough.
Since Rapp (ibid.) used 3° x 3° as the prediction cell and the number of data points were
only 300, the gravity field has been considerably smoothed. Therefore, the result from
Rapp (ibid.) showed an RMS difference of 47 mgals when comparison was performed
for Rapp's result and the ground truth at the same 2011 points.

Many unrecovered sea mounts in Rapp's (ibid.) work now also clearly showed up
in the anomaly maps. Three areas were selected for the comparison.
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The areas are:

1. The Mariana Trench and Magellan Seamounts: 12°<¢<24°, 145°<A<155°
(Figures 7.1, 7.2, 7.3, and 7.4)

2. The Hawaiian Islands: 15°<$<25°, 196°<A<206° (Figures 7.5, 7.6,7.7, 7.8)

3. The New England Seamount area: 36°<¢<40°, 295°<A<299° (Figures 7.9, 7.10,
7.11, 7.12)

From the comparisons, several conclusions can be drawn:

(i) Both of the results indicated the same trends of anomalies and sea surface heights,
but the current result provides more detailed information.

(ii) Substantial difference in anomalies are found, but the change in SSHs sometimes is
not significant. The current result clearly separates the signature which is
indistinguishable in Rapp's result. This implies that better resolution has been
achieved by the current result.

(iii) Shifts (with respect to Rapp's result) of the current estimated SSHs can take place
in areas where significant sea surface topography corrections were made. The
effect of various corrections made for the SSHs as described in chapter 2 will also
cause the shifts.

(iv) The current result has better capability of reflecting the mass distribution of the
seamounts, This aspect can be illustrated by the figures in the third area and the
corresponding bathymetry map {(from TUGS87 5 minute elevations), Figure 7.4. It
is also true that the sea surface heights do not reveal the seamount's signature as
much detail as the anomalies do and this holds for both the current result and
Rapp's result.

A final remark will be related to the accuracy estimates of the current result. The
computation of accuracy estimates was performed in a rigorous way by the equation (in
case of a point anomaly):

M = [c ¢ (¢, +gC )ﬁlc ]
. Be CANNE R A gh (7-1)
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where a is the scaling factor to the global covariances Cgg, Cop and Chp. @ is
determined by the residual SSHs and has a minimum value of 0.425 (see eq. (3-21)). In
case of erroneous SSHs and a rough gravity field, o could be relatively large. However,
the standard deviations are mainly governed by the data distribution and the number of
points used but not the o value. For example, in the Bermuda area, the standard
deviations are on the order of 10 to 20 mgals for a prediction cell that has a large o value
(typically 2 to 3); nevertheless, under the same o value the standard deviations could be
raised to 60 mgals for a prediction cell located in the Kuril Trench area. As mentioned in
Chapter 5, in a prediction cell of {5 x 075 (with 0725 border), the number of data points
can reach 1430 in the Bermuda area while only 120 points might be found in the Kuril
Trench area. (Note: 120 could reduce to half due to minimum spacing criterion). From
this example, we therefore can see how the altimeter data distribution and density can
effect the standard deviations of the prediction.

Instead of rigorously computing the accuracy estimates, Rapp (1985) used an
empirical formula to obtain a set of uniform accuracy within a prediction cell (i.e., 3°x3°).
He then showed that the mean value of the predicted standard deviations was +12.2 mgal
and the root mean square standard deviation was £12.7 mgal. For the current result, the
corresponding values are £12.1 mgal and £12.4 mgal, respectively. Thus, it can be
justified that Rapp's empirical formula is appropriate in a global sense.
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Another area of discussion is the spectral behavior of the eight degree data. Based
on the analysis by Brammer and Sailor, and the FFT analysis in eight 60° - length
profiles, Rapp (ibid.) concluded that the approximate point interval should be 0°19
instead of 0°125. However, with the use of the new procedure in this study, the
resolution of 0719 becomes questionable. In the previous section, we have shown the
intensified signatures in some seamount areas obtained from the current result. Also, in
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Section 5.7 we have shown the excellent agreement between the predicted anomalies and
ship determined anomalies in the rough gravity field area (see Figure 5.28). Therefore,
with the data selection and the prediction procedure used in this study, we expect that the
resolution will be higher than 0719, or 21.5 km.

An indirect proof of higher resolution can be carried out by the analysis of potential
degree variances. Following Rapp (ibid.), the unitless anomaly degree variances, o), can

be computed from the power spectrum density of the anomaly covariance function by

1,‘,1+% 1+%
0;=5.02x10"" —¢,, 0=—=
(-1) (7-2)

where ¢gg () is the psd defined by the Hankel transform

¢gg((°)= Zﬁfws C[S)Jo(ms) ds
’ (7-3)

where in planar case s is the distance, C (s) is the anomaly covariance function, @ is the
frequency function, Jg is the Bessel function of zero order. In equation (7-2), we have
assumed that ¢gg is given in (mgal deg)? and 1° spherical distance corresponds to 111 km
on a mean sphere with R = 6371 km.

Using Rapp's spectrum classification of the gravity field (Rapp, appendix D,
1985), we choose 3 areas for computing 6). Information of interest is indicated in Table
7.5.
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Table 7.5
Three areas where potential
degree variances are computed
area spectrum classification location
1 Rough 15°<$<30°, 285°<A<300°
2 Mild 15°<9<30°, 180°<h<195°
3 Smooth -30°<<-15°, 250°<A<265°

the reference anomalies based on GEMT1 potential coefficients to degree 20 are
subtracted from 121 x 121 point anomalies. Program F491V1 in Rapp's program library
is then used to compute G) for both the current result and Rapp's (1985) result. The
corresponding spherical harmonic degree in such a computation is

1=24i, 1<i<60 (7-4)
which is also based on Rapp (ibid.).
The resulting potential degree variances (oy) are presented in Figure 7.5. In Figure

7.5, we also include the 6] based on Kaula's rule and Tscherning/Rapp's model. Kaula's
rule is

5 2
107
1

(7-5)
and Tscherning/Rapp's model is
.= A (-1} §1*2
= 2 {1-2)(1+24)
{-1)"y (7-6)

where A = 425.28 mgal? and s = 0.999617.

Theoretically, the highest harmonic degree is 1440 though it will be restricted to
900, if the resolution is 0°19. To show the possibility of higher resolution, the potential
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degree variances corresponding to degrees higher than 900 are also included in Figure
7.14, Two conclusions can be drawn from Figure 7.14.

(i) For the rough and mild areas (area 1 and area 2, respectively), the o] values from the
current result agree very well with those from Rapp's before approximately degree 180.
After degree 180, the deviation between the two sets of values begins to increase, but the
latter one decays faster. This shows that more power has been obtained in the high
degrec part from the current result.

(ii) For the smooth area (area 3), small discrepancies between the &) values from the
current result and Rapp's result can be found before approximately degree 300.
Substantial deviation between the two sets of values starts from degree 300 and the latter
one decays faster.
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2 lation of igh ata and determination of 30'x30’mean anomalie:

For the purpose of high degree spherical harmonic expansion, it is necessary to
compute the mean values from the current result. For the 30" x 30" mean value case, the
simplest way is to take the straight mean of the values falling in the 30" x 30 block by

Ag.
)’: g‘. 13<n<25
n 7-1

2N,

N= ., 13<n<25
5 (7-8)

2=

where Ag; and Nj are the eighth degree point anomaly and sea surface height,

respectively. The minimum number of points that can form a mean value is 13 and
obviously the maximum number of points in a 30" x 30’ block is 25 points.

The accuracy estimates of 30" x 30" mean anomalies for such a procedure is

theoretically given by
2 1 (& 2 n n
Cag=—2 Z GA£i+ z z Oag i
n \i=1 i=1 j=1

ie] (7-9)

where OAg; is the error covariance between i and j points. Since our data does not

contain this value, we use the following approximate method:
Let

i 2
—= 6685

G =
sy~ P\ (7-10)
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be the mean error covariance for the points in a 30" x 30" block. P is the average

correlation coefficient. This follows the usual definition of correlation between points x
and y in the fundamental statistics:

ny= pxycxcy (7-11)

In equation (7-10) the product Gx Oy is replaced by the mean variance.
The estimated value for oz,sg is then

2
G
TR TR bt
n

n (7-12)

which takes into account the error covariances through the use of an average correlation
coefficient B. Eq. (7-12) reduces to

i 2
GAB!

2
L (7-13)

2
o5g=(1+Bln-1)

Thus

(7-14)

To determine 3, we need the rigorously computed c%g in the collocation process. In
other words, if we preserve error covariance matrix in the collocation, then oz,gg can be
obtained through
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2 1 0
%= —2-A EAg A
n (7-15)

where A is 1 x n matrix containing elements “1" alone. Eag is n x n error covariance
matrix whose diagonal elements are error variances of the predicted point anomalies.
Equation (7-15) is equivalent to equation (7-9).

A set of altimeter data is tested to determine a B value. The area is located at
30°<$<34°, 293°<A<297°, which covers the Bermuda Islands. This area is excellent for
testing since rough and smooth gravity fields were found here. In addition, we have a
variety of choices of numbers of points used for the predictions, hence the change of
value due to the use of different numbers of points can be easily detected. In the tests, it
is found that the error correlation between predicted anomalies is lower than that between
predicted sea surface heights in a 30" x 30 prediction cell. The reduction of the points
used for prediction also raises the correlation between predicted quantities. Table 7.6
shows the various B values for the case where an average of N points were used for
prediction.

Table 7.6

Average correlations of predicted anomalies and sea surface heights
based on various numbers of points

N BAg BN

263 0.02 0.06
247 0.02 0.06
153 0.02 0.10
45 0.05 0.18

For the oceanwide computation of 30’ x 30" mean values, a varying P for each
block is not possible. Therefore, we adopt an average B value for the computational

purpose:

BAg =0.04 (7-16)

Pn=0.12 (7-17)
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Thus, the accuracy estimates for 30" x 30" mean values are;

i 2
GASl

2
c;g=(1 +{n-1) BAS) =
n (7-18)

2
i“Ni

2
n (7-19)

o%: (1 +(n-1) BN]

where Gag; and ON; are available in the eighth degree data set.

Equations (7-18) and (7-19) are then investigated by comparing the estimated 035
and of; from these two empirical formulas and those from equation (7-15) in the same test
area (i.e., 30°<¢<34°, 293°<A<297°) and area where bias removal tests were performed.

(see Chapter 5). The agreement of 625 from the two results is on the order of 1 to 2
mgals and the agreement of O is on the order of 1 to 2 cm. This shows that equations

(7-18) and (7-19) are applicable for our oceanwide computation of 30’ x 30’ mean
values.

Using equations (7-7), (7-8}, and (7-9), the 30" x 30" mean anomalies and sea
surface heights and their accuracy estimates are computed from the current eighth degree
data base. In the computations, we still apply the point acceptance criteria except that
now we adopt the point values if the depths are greater than 0 meters (in Section 7.1, 100
meters is the minimum acceptable depth). Furthermore, in order to compare the current
30’ x 30’ mean values with Rapp's (1985), the point values below ¢ = -63°0 are also

taken into account. Briefly speaking, the following criteria are accepted for computing
the 30" x 30" mean values:

(i) Depth > 0 meters
i) -72°<p<72°
(iif) (¢, A) not in area (45°<$<65°, 250°<A<296°)
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It should be pointed out that the 0 meter depth criterion is based on the consideration
of the smoothing effect of averaging point values in a 30’ x 30’ block, but the mean
values in shallow water are still not reliable. Based on this effect, the statistics for the 30°
x 30" mean anomalies has excluded the mean anomalies whose mean depths are smaller

than 100 meters, Table 7.7 shows the statistics.

Table 7.7
The statistics for the 30" x 30" mean anomalies computed from the current result.
(mgals)
No. of mean anomalies 134486
mean value -1.89
mean predicted standard deviation 3.49
RMS predicted standard deviation 3.57
global mean anomaly variance 25.67
maximum anomaly 309.77
minimum anomaly -287.89
maximum predicted standard deviation 18.22
minimum predicted standard deviation 2.51

The comparison of the currrent mean values with Rapp's (ibid.) mean values yields
the results in Table 7.8.

Table 7.8

Comparison of 30" x 30’altimeter derived mean anoamalies between the current
result and Rapp's (1985) result

case 1+ case 2*
No. of blocks compared 132881 127489
mean difference in anomaly -0.57 -0.65
mean difference in std. -2.15 -2.04
RMS difference in anomaly 6.47 5.43
RMS difference in std. 2.73 2.46
maximum difference in anomaly | 184.95 98.15
minimum difference in anomaly | -199.63 -80.35
maximum difference in std. 8.17 5.06
minimum difference in std. -28.11 -28.11

+ Comparison made between -7175<$<72°0
* Comparison made between -6320<¢<72%0
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In Table 7.8, we have considered two cases: case 1 includes the comparison made
between -7175<¢<72°0, case 2 includes the comparison made between -63:0<¢<7270.
The substantial differences of the maximum and minimum differences in the two cases
were caused by the instability of prediction in the area below ¢ = -63°0. Thus we believe
that the predictions in the area below ¢ = -63° are not reliable.

Large differences of mean anomalies between the two results are also found in high
latitude areas and areas with strong signature of anomalies. In case 2, the block of
maximum difference is located in the Bermuda area, at (north-west corner) ¢ = 3275,
A=295°0; The block of minimum difference is located in a trench area, at (north-west
corner) ¢ =-5.0, A = 145.5. In order to present the differences completely, the 30" x 30
blocks where the absolute differences are greater than 15 mgal are shown in Figure 7.15.
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CHAPTER VII

Conclusions and recommendations

In this study, we have attempted to predict the high precision point anomalies and
altimeter implied geoid undulations from the combined Geos-3/Seasat data through the
use of the optimal prediction procedure. The original 5.9 million altimetric point data
base has been used in the predictions, but a small portion of data points have been
excluded due to the use of data selection criterion (The percentage of the deleted points
depends on the data density and the distribution of the data points). The accuracy
estimates were rigorously computed; Furthermore, we have incorporated the local arc
adjustment program and we believe that the biases of the arcs having the wavelength of
400 ~ 500 km have been removed.

The method used for predicting the gravity anomalies and altimeter implied geoid
undulations is the least squares collocation (lsc) method. The covariance function is
based on Tscheming/Rapp's anomaly degree variance model and OSUB6C noise model.
Using different parameters in T/R's anomaly degree variance model, we found that
Jekeli's parameters sometimes caused the instability of the covariance matrix or even
singularity of the matrix, especially when data density is high or the observations are
located at high latitude area. On the other hand, T/R's parameters gave more stable
condition of the covariance matrix except for few cases that were presented in Chapter 5.

Therefore, T/R's have been adopted in the covariance model for the global production
work.

Before the global production work was put into action, we performed the analysis
of special routines such as matrix inversion routines, matrix product routine and matrix-
vector product routine. The optimization for the production program, F459PRD, was
successfully achieved. The contribution of the supercomputer to the global production
work is remarkable. We estimate that approximately 12 CPU hours (including the 8.34
hours tabulated in Table 6.1 and the CPU time for repeated production runs) have been
consumed by the entire production work. If the optimization were not made for the
production program, we then need about 216 cpu hours on CRAY X-MP/28; If the
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production program were executed in IBM machine, we probably would need 1632 CPU
hours (see the saving factors in Table 4.3 (b)). Therefore, we conclude that for the type
of production work in this study not only the use of supercomputer is necessary but also
the optimization (mainly vectorization) of the program is necessary. With the advent of
more powerful supercomputer (such as CRAY Y-MP/864 that will be installed at the Ohio
Supercomputer Center in July, 1989), we have more confidence on attacking more
difficult problems.

Before we started the global predictions, many tests were performed in order to
choose the optimal parameters for the prediction procedure. With these optimal
parameters, we expected that we can recover gravity field related signature as much detail
as possible. From these tests, we concluded that a 4° x 4° block (with 0°5 border) and a
0°5 x 0°5 cell (with a 0725 border) were the sizes of the area for one adjustment and one
prediction process, respectively. The maximum number of data points in such a
prediction cell was 400 beyond which no substantially improved result can be obtained.
The use of 4 km as the minimum spacing between the data points has maintained the
stability of the covariance matrix and reduced the computer time significantly. Other
important parameters can also be found in Chapter 5.

With the use of optimal parameters, excellent agreement between predicted
anomalies and the ship measured anomalies has been achieved in the Bermuda are. The
RMS difference based on the comparison at the 2011 points was 15.9 mgals.
Considering the large variation of the anomalies (from -46.40 to 358.10 mgals), such a
small RMS difference proves that the reliable point anomalies and altimeter implied geoid
undulations can be obtained from satellite altimeter data.

One unresolved problem is related to the track errors that were not removed through
our adjustment model. In this study, we have used the cross-over model in which the
bias is assumed to be a constant within the adjustment block. Although we have shown
the capability of bias removal of this model, the revised prediction as described in Chapter
6 has revealed the fact that some track errors still cannot be removed through this model.
In Chapter 3, we presented two other adjustment models (models B and C), it will be
necessary to investigate whether these two models will have better performances in bias
removal for the production work.
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A total of 2,322,080 point values were predicted in the production work.
However, 273,593 of them are located either in shallow water areas (depth less than 100
meters) or in the areas where we believe that the prediction is not reliable (at ¢<-63° and
Hudson Bay and Hudson Strait). Excluding these points, 2,048,487 were considered to
be acceptable. Based on the statistics of the accepted point values, the maximum anomaly
is 439.70 mgals and minimum anomaly is -368.50 mgals; The maximum undulation is
82.66 meters and minimum undulation is -107.54 meters. The mean standard deviation
of the anomalies is 12.11 mgals, which justifies that Rapp's (1985) empirical formula for
estimating the standard deviations is appropriate in a global sense. The spectral analysis
in the three selected areas (i.e., rough, mild and smooth areas) for the point values
indicated that the potential degree variances obtained from the result in this study are
almost coincident with those obtained from Rapp's (ibid.) result before harmonic degree
of 180. As the harmonic degree goes higher than 180, the degree variances from the
current result have gained more power than Rapp's result.

A total of 134,486 30" x 30’ mean anomalies were computed from the point values.
The comparison between this set of 30” x 30" mean anomalies and the set of 30" x 30/
mean anomalies obtained from Rapp's (1985) resuit at the 127,489 common 30" x 30’
blocks was made. The comparison showed that the RMS difference is 5.43 mgals, the
maximum difference is 98.15 mgals, and the minimum difference is -80.35 mgals. The
large differences between the two sets of mean anomalies primarily arose from the use of
different data densities in the current prediction work and Rapp's prediction work. A
maximum of 300 points in a 3° x 3° prediction cell (with 025 border) was used in Rapp's
(ibid.) prediction work, while a maximum of 400 points in a 0°5 x 075 prediction cell
(with 0725 border) was used in the current prediction work, thus the data density in the
current work is 21 times of that in Rapp's (ibid.) work. Since we have the tool to handle
this type of prediction (i.e., the current one), it is recommended that the data density of
the altimeter data used for future work should be as high as possible (of course, the use
of minimum spacing for altimeter data points is necessary or the covariance matrix will be
singular). With the use of high density of altimeter data, as shown in the Bermuda area,
we have greater possibility to derive the "true" gravity anomalies and geoid undulations
from the altimeter data.
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Based on this study, we have the following recommendations for future altimeter
work:

1. Improvement of reference values in some rough area must be made.

2. More altimeter data should be combined with the existing data, especially for the
areas with the data gaps in coverage. The data gap problem is more serious in the
Southern Hemisphere, e.g., at -65°<$<-35° and -20°<A<20°, and at -50°<$<-30° and
60°<A<90°,

3. Better methods for removing short-wavelength track errors (on the order of 10 - 50
km) must be developed, or the data such as those along the tracks in Table 6.2
should be excluded from our existing data base.

4. In order to derive true or nearly true point values from altimeter data, a recommended

data density is 400 points or higher in an area of 110 x 110 km2. The data
distribution must be even.
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