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Abstract

This dissertation is about total least-squares (TLS) adjustments within the errors-
in-variables (EIV) model. In particular, it deals with symmetric positive-(semi)def-
inite cofactor matrices that are otherwise quite arbitrary, including the case of cross-
correlation between cofactor matrices for the observation vector and the coefficient
matrix and also the case of singular cofactor matrices. The former case has been
addressed already in a recent dissertation by Fang [2011], whereas the latter case
has not been treated until very recently in a presentation by Schaffrin et al. [2012b],
which was developed in conjunction with this dissertation. The second primary con-
tribution of this work is the introduction of prior information on the parameters to
the EIV model, thereby resulting in an errors-in-variables with random effects model
(EIV-REM ) [Snow and Schaffrin, 2012]. The (total) least-squares predictor within
this model is herein called weighted total least-squares collocation (WTLSC), which
was introduced just a few years ago by Schaffrin [2009] as TLSC for the case of in-
dependent and identically distributed (iid) data. Here the restriction of iid data is
removed.

The EIV models treated in this work are presented in detail, and thorough deriva-
tions are given for various TLS estimators and predictors within these models. Algo-
rithms for their use are also presented. In order to demonstrate the usefulness of the
presented algorithms, basic geodetic problems in 2-D line-fitting and 2-D similarity
transformations are solved numerically. The new extensions to the EIV model pre-
sented here will allow the model to be used by both researchers and practitioners to
solve a wider range of problems than was hitherto feasible.

In addition, the Gauss-Helmert model (GHM) is reviewed, including details show-
ing how to update the model properly during iteration in order to avoid certain pitfalls
pointed out by Pope [1972]. After this, some connections between the GHM and the
EIV model are explored.

Though the dissertation is written with a certain bent towards geodetic science,
it is hoped that the work will be of benefit to those researching and working in other
branches of applied science as well. Likewise, an important motivation of this work
is to highlight the classical EIV model, and its recent extensions, within the geodetic
science community, as it seems to have received little attention in this community
until a few years ago when Professor Burkhard Schaffrin began publishing papers on
the topic in both geodetic and applied mathematics publications.
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Preface

This report is substantially the same as a dissertation that was prepared for and
submitted to the Graduate School of The Ohio State University for the PhD degree.
Except for the omission of some pages from the front matter, a different acknowl-
edgment page, and a change from double-space to single-space format, this report is
identical to the dissertation, which contains 15 pages with Roman numerals and 116
pages with Arabic numerals.
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Chapter 1: Introduction

1.1 Contributions of this dissertation

This dissertation is about total least-squares (TLS) adjustments within the errors-
in-variables (EIV) model. In particular, it deals with symmetric positive-(semi)def-
inite cofactor matrices that are otherwise quite arbitrary, including the case of cross-
correlation between cofactor matrices for the observation vector and the coefficient
matrix and also the case of singular cofactor matrices. The former case has been
addressed already in a recent dissertation by Fang [2011], whereas the latter case
has not been treated until very recently in a presentation by Schaffrin et al. [2012b],
which was developed in conjunction with this dissertation. The second primary con-
tribution of this work is the introduction of prior information on the parameters to
the EIV model, thereby resulting in an errors-in-variables with random effects model
(EIV-REM ) [Snow and Schaffrin, 2012]. The (total) least-squares predictor within
this model is herein called weighted total least-squares collocation (WTLSC), which
was introduced just a few years ago by Schaffrin [2009] as TLSC for the case of in-
dependent and identically distributed (iid) data. Here the restriction of iid data is
removed.

The EIV models treated in this work are presented in detail, and thorough deriva-
tions are given for various TLS estimators and predictors within these models. Algo-
rithms for their use are also presented. In order to demonstrate the usefulness of the
presented algorithms, basic geodetic problems in 2-D line-fitting and 2-D similarity
transformations are solved numerically. The new extensions to the EIV model pre-
sented here will allow the model to be used by both researchers and practitioners to
solve a wider range of problems than was hitherto feasible.

In addition, the Gauss-Helmert model (GHM) is reviewed, including details show-
ing how to update the model properly during iteration in order to avoid certain pitfalls
pointed out by Pope [1972]. After this, some connections between the GHM and the
EIV model are explored.

Though the dissertation is written with a certain bent towards geodetic science,
it is hoped that the work will be of benefit to those researching and working in other
branches of applied science as well. Likewise, an important motivation of this work
is to highlight the classical EIV model, and its recent extensions, within the geodetic
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science community, as it seems to have received little attention in this community
until a few years ago when Professor Burkhard Schaffrin began publishing papers on
the topic in both geodetic and applied mathematics publications.

1.2 A brief introduction to the EIV model and TLS adjust-
ment

Before introducing the formal EIV model and the principle of TLS, a brief selec-
tion of historical developments in linear algebra, least-squares theory, and statistical
estimation is given, especially as related to the field of geodetic science.

1.2.1 Some historic connections of geodesy to linear algebra,
least-squares, and statistical estimation theory

The importance of linear algebra, least-squares minimization, and statistical esti-
mation in the field of geodetic science (or geodesy) cannot be overstated. The con-
nection between geodetic science to least-squares adjustment dates back to Gauss,
who discovered the least-squares principle in 1794 and used it for many years before
first publishing the theory in Gauss [1809] (translated into English by Davis [1857]),
followed by his famous 1823 work (Gauss [1823], translated into English by Stewart
[1995]), where the important statistical connection to the minimum-variance principle
was made. It is perhaps less well-known that, during the period between discovery
and the later publication, least-squares adjustment found a home in applied geodesy,
as Gauss devoted a significant amount of time to the geodetic surveying and mapping
of Hannover and other Germanic regions. See Dunnington et al. [2004, Ch. 10] for a
fairly detailed account of Gauss’ extensive work in, and contributions to, the field of
geodesy.

The German geodesist F.R. Helmert also made significant contributions to the
theory of least-squares [Helmert, 1907]; the least-squares solution within the Gauss-
Helmert model (GHM) is perhaps still one of the most versatile techniques available
for estimating unknown (fixed) parameters within a nonlinear functional model.

The Swedish geodesist Bjerhammar is credited with rediscovering Moore’s gener-
alized inverse and linking it to solutions of linear systems [Ben-Israel and Greville,
2003, p. 4]. A particular generalized inverse, originally introduced as “stochastic
ring inverse,” was eventually called Moore-Penrose inverse and is now perhaps the
most important generalized inverse for treating rank-deficient models in the context
of parameter estimation.

The Austrian geodesist H. Moritz introduced least-squares prediction [1970, 1978,
for example] in order to integrate a wide range of observables measured for deter-
mination of the gravity field of the Earth. These ideas were further promoted and
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advanced by the Danish geodesist T. Krarup [1969, 2006], who apparently coined the
phrase least-squares collocation for this predictor.

The number of less famous connections between geodetic science and advances in
linear algebra, least-squares minimization, and statistical estimation is too long to
list. But it is interesting to note that in more modern times a popular college text-
book on linear algebra [Strang, 1988, p. 145] mentions that a US geodetic institution
(the National Geodetic Survey) planned to solve the largest system of equations ever
attempted at that time (approximately 6,000,000 equations in 400,000 unknowns).
This project motivated the work of Golub and Plemmons [1980], who proposed an
orthogonal decomposition strategy to handle efficiently large, sparse systems of equa-
tions. The title of the popular textbook Linear Algebra, Geodesy, and GPS [Strang
and Borre, 1997] also underscores the linkage between these fields.

The tradition of geodetic-science influence in estimation and prediction theory
has continued in more recent years with new extensions to EIV modeling published
by geodesists. For example, the EIV model with constraints [Schaffrin, 2006], the
EIV model with stochastic prior information [Schaffrin, 2009], the EIV model trans-
formed to a system of nonlinear condition equations [Schaffrin and Wieser, 2011],
the EIV model in the presence of outliers [Schaffrin and Uzun, 2011], the EIV model
with full cofactor matrices and with cross-correlation between them [Fang, 2011],
structured EIV models [Schaffrin et al., 2012a], the EIV model with a singular co-
variance matrix [Schaffrin et al., 2012b], the EIV model with full cofactor matrices
but without cross-correlation [Mahboub, 2012], just to mention some of the important
contributions.

1.2.2 The notion of the total least-squares principle
A historical review

Essentially, the idea of total least-squares consists of minimizing the errors in all
measurement variables that enter into the model, rather than to minimize only the
errors in the dependent variables. The notion is often explained in the context of
linear regression or in data fitting to linear functions, such as a line in 2-D space.
Adcock [1877] is generally the first to be credited with a TLS-problem statement in
the English literature, which he succinctly made in a publication that barely spans a
full page. His brief paper mentions applications to point, line, and surface fitting.

Pearson [1901] developed a solution that treated all errors in q variables of line
and plane fitting by minimizing the “mean square residual.” He showed that the
solution “depends only on a knowledge of the means, standard-deviations, and corre-
lations of the q variables” and solved the problem by finding the least (non-zero) root
of the characteristic equation for a certain matrix, based only on these quantities.
Interestingly, the form of the matrix for which he found the least root of its char-
acteristic equation (see his p. 562) resembles the matrices shown in Schaffrin et al.
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[2006, eq. (1.15)] and Schaffrin [2007, eq. (38)], for which the minimum eigenvalues
were required. (See Appendix B for a comparison between Pearson’s and Schaffrin’s
formulations.) Pearson also proved that “The best-fitting straight line for a system
of points in a space of any order goes through the centroid of the system,” which is
certainly true for iid data.

The least-squares solution within the Gauss-Helmert model by Helmert [1907]
is quite versatile for minimizing errors in all variables, though its use seems to be
missing from the English literature until much more recent times, as evidenced by
several authors who investigated the treatment of errors in all measurement variables
from the 1930’s through the 1980’s, such as Aitken [1935], Wald [1940], Plackett
[1949], Linnik [1961], York [1966], and Demmel [1985].

Another concept associated with TLS is orthogonal regression, which gets its name
from the fact that, in the case of iid data, the observed data are projected orthogonally
onto the fitted line or surface. The idea dates back to at least Pearson [1901], who
did not use the term orthogonal regression but obviously expressed the idea in the
statement “...a good fit will clearly be obtained if we make the sum of the squares of
the perpendiculars from the system of points upon the line or plane a minimum.” An
illustration of this concept is shown in Figure 1.1, which resembles Pearson’s graph.
It is important to note, however, that as soon as a weight matrix is incorporated
into the minimization problem, the geometric orthogonality gives way to projections
having directions that depend on a ratio of standard deviations, as pointed out by
Schaffrin and Wieser [2008, see their Figure 1] and also earlier by Gerhold [1969, see
his footnote number 2].

Models for minimizing all the errors in 2D line-fitting

Given the oft-used example of 2-D line-fitting in explaining the concept of total
least squares, it seems apropos to show here how this could be accomplished within
various different models, before proceeding to the theoretical development of TLS
adjustment within the EIV model.

A very common and straight forward way to model a line in 2-D space as a function
of n coordinate pairs (xi, yi), i = 1, . . . , n, is

yi = ξ1xi + ξ2 + eyi
, i = 1, . . . , n, (1.1a)

ey :=
[
ey1 , . . . , eyn

]T
∼ (0, σ2

0P
−1), (1.1b)

where ξ1 and ξ2 are the unknown slope and intercept parameters, respectively, for the
2-D line; eyi

is the random error in the dependent variable yi, with the n × n given
positive-definite weight matrix P for the errors eyi

, and σ2
0 as the unknown variance

component. This represents a classical Gauss-Markov model (GMM). The least-
squares estimator within this model is often called ordinary least-squares estimator
(OLSE), if the weight matrix is replaced by P = In, to distinguish it from the
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Figure 1.1: Fitted line AB based on data points P1, . . . , Pn and associated orthogonal
distances p1, . . . , pn, c.f. Pearson [1901].

weighted (or generalized) least-squares estimator (GLSE) in the case that weights
are considered. (See Rao et al. [2008, Chapters 3 and 4].)

The problem oftentimes is as follows: not only are the y-coordinates contami-
nated by measurement error, but so are the x-coordinates, and the choice of which
coordinate to model as the independent, errorless one might be completely arbitrary.
However, the estimation results may be quite different depending on which variable
is chosen as the independent one. As Karl Pearson [1901] aptly stated, “the most
probable stature of a man with a given length of leg l being s, the most probable length
of leg for a man of stature s will not be l.”

In any case, if both coordinate variables are contaminated by measurement error,
a more accurate model could be found for the problem. The model used should
somehow incorporate the errors in the x-coordinates ex :=

[
ex1 , . . . , exn

]T
, and the

least-squares estimator for the unknown parameters should minimize the norm of
the total (extended) error-vector e :=

[
eTx , e

T
y

]T
, i.e., minimize the quadratic form
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eTPe. Of course, in this case the dimension of the weight matrix P is doubled to
account for the n additional errors in the independent variables.

There is more than one model that could be used to handle the above described
“total least-squares problem.” In fact, the GMM itself would work if the problem
were stated in the form of the so-called parametric equation for the line. In such a
model, n “nuisance parameters” would need to be introduced, one for each coordinate
pair, and also n additional equations would be written. The extra parameters and
equations cancel each other in terms of model redundancy. One option for such a
(now nonlinear) GMM could look like

xi = ξi+2 + exi
, (1.2a)

yi = ξ1 · ξi+2 + ξ2 + eyi
, (1.2b)

e :=
[
ex1 , . . . , exn , ey1 , . . . , eyn

]T
∼ (0, σ2

0P
−1 =: σ2

0

[
Qx Qxy

Qyx Qy

]
), (1.2c)

where i = 1, . . . , n; ξ1 is the slope of the line; ξ2 is the y-intercept, and ξi+2 is the
i-th nuisance parameter. This approach may be unappealing if the data set is large,
since the size of the unknown parameter vector ξ grows with the data set. But the
point to make is that the least-squares estimator that minimizes eTPe will minimize
the (weighted) errors of all measurement variables in the model. It is noted that this
approach is analogous to fitting circles in parametric form, as in Gander et al. [1994].

Like the preceding approach, a different technique by Reinking [2001], who sug-
gested to apply “Helmert’s knack” (i.e., “Helmerts Kunstgriff,” cf. Helmert (1907,
p. 286)), also introduces an additional n parameters to the model. However, Schaffrin
[2007] showed how these extra parameters could be removed before construction of
the normal equations, thereby leading to a Gauss-Helmert model (GHM). In fact, the
GHM, as described in detail in Chapter 4, provides another feasible model for mini-
mizing all measurement errors in 2-D line-fitting. The least-squares solution within
the GHM will produce the same parameter estimates and residuals as those generated
by the least-squares solution within the nonlinear GMM for the parametric form of
the line described above.

Finally, the total least-squares solution within the EIV model also can be used to
minimize all the measurement errors and to generate the same parameter estimates
and residuals as the respective estimators within the GMM and GHM described above.
Moreover, provided that the weight matrix has a certain form, the TLS problem
within the EIV model can be cast as a minimum eigenvalue problem for a certain
augmentation of the system of normal equations, see Van Huffel and Vandewalle
[1991, p. 37] or Felus and Schaffrin [2005, §2.2], for example. Or, the techniques
described later on in this dissertation can be used for the case of more general weight
matrices within the EIV model.
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Though it may be possible to minimize equivalently the total (extended) error-
vector via least-squares estimators within different models, e.g, GMM, GHM, or
EIV model,

the terms total least-squares (TLS) and TLS solution as used in this dis-
sertation will mean the least-squares solution within the EIV model without
linearization.

1.2.3 The development of TLS adjustment within the EIV
model

Golub and Reinsch [1970, §2.4] presented a model with errors in the coefficient
matrix A as well as in the observation vector y (they used b); however, the only
weighting permitted was that of a scalar quantity used to weight the inner product
of the observation vector in their minimization problem. A few years later, Golub
[1973] presented what eventually became known as the classical errors-in-variables
model, where two positive-definite diagonal matrices were introduced in the least-
squares minimization statement. (See his equations (6.1) and (6.2).) There he solved
the parameter estimation problem by a singular value decomposition (SVD) of the
matrix for which the Frobenius norm was minimized. In Golub and Van Loan [1979]
the model was extended for the treatment of multiple vectors on the right side (i.e.,
the observation vector b becomes an observation matrix B, meaning also that the
vector of parameters becomes a matrix of parameters). It was in this publication
that the phrase “the total least squares (TLS) problem” was first used. Shortly
thereafter, these authors published their well known paper [Golub and Van Loan,
1980] on total least squares, which included an SVD analysis of the TLS problem, a
sensitivity analysis, and a comparison of TLS to the ordinary least-squares problem.

The TLS problem has also been treated briefly in the well known textbooks by
Golub and Van Loan [1996, §12.3] and Björck [1996, §4.6], where the SVD technique
is used to estimate the model parameters. Beginning in the early 1990’s, the work of
Van Huffel and others [Van Huffel and Vandewalle, 1991, Van Huffel, 1997, 2004] drew
much attention to errors-in-variables modeling and the total least-squares problem,
where by then the phrase errors-in-variables model had taken hold as a name for the
model first introduced by Golub and Van Loan. The mathematical model by Golub
and Van Loan is introduced in some detail in §2.3 of this work and will from here on
be called the classical EIV model.

1.2.4 A progression of weighting schemes within the EIV
model

As mentioned in the introduction, recent developments in EIV modeling allow for
very arbitrary weighting of data, assuming that the weight matrices are symmetric
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positive-definite [Fang, 2011]. In contrast, the earliest EIV models were very limited in
their handling of data weighting. (See §2.3 below for further details.) In fact, weights
were often only admitted in the least-squares minimization statement, rather than
introduced as a stochastic component of the model. The recent extensions, including
the handling of singular cofactor matrices in this work, represent a maturation of the
EIV model that should make its use more appealing for a wider range of problems. To
gain an appreciation of the progression to the current state, one may be interested in
reviewing the works enumerated below, which are but a sample of the efforts made to
accommodate data weighting within the EIV model (or in some instances in the TLS
objective function rather than the model) since around the time that the classical
EIV model was introduced.

1. Heteroscedastic weighting for the observation vector only: Golub and Reinsch
[1970, §2.4] presented a TLS minimization that permitted a nonsingular, di-
agonal weight matrix for the errors of the observation vector. However, the
problem did not include weights for the errors of the data matrix.

2. Row- and column-dependent weighting: the TLS minimization presented by
Golub [1973, eq. (6.2)], Golub and Van Loan [1979, eqs. (7), (8)], and Golub
and Van Loan [1980, eqs. (1.1), (1.4)] introduced two positive-definite diag-
onal weight matrices. One pre-multiplies and the other post-multiplies the
augmented error matrix appearing in the matrix norm to be minimized. This
weighting scheme gives rise to row and column dependence among the weights,
which turns out, in general, not to be very useful for problems in geodetic
science. See §2.3 below for further explanation.

3. Demmel [1985] generalized the weighting introduced by Golub and Van Loan
(previous item) for the case where only some elements of the data matrix and
the data vector are contaminated by error.

4. Here the work of Deming [1964] is mentioned, not because it extends the classi-
cal EIV model (it actually precedes it), but rather because it was cited by Golub
and Van Loan [1980] as being more general than their TLS problem. In fact,
Deming’s approach is the same as the least-squares solution within the GHM
with heteroscedastic data (see his Part D). So it was indeed more general than
Golub and Van Loan as far as data weighting goes. However, the application of
Deming’s method could lead to the pitfalls discussed by Pope [1972], as Deming
states that it is sufficient to evaluate the derivatives needed for the (linear) nor-
mal equations at the observed data points and approximate parameters rather
than at the adjusted data points and estimated parameters (ibid, p. 139). By
now it should be widely known that the risk of taking such short cuts could lead
to erroneous estimates for the parameters or preclude convergence of the solu-
tion, and thus that practice must be avoided. (See §4.1 for further discussion.)
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Also mentioned by Golub and Van Loan in this context is the work of Ger-
hold [1969], who used a Lagrangian approach to treat independent weights for
all variables and employed the Newton-Raphson method to solve the resulting
nonlinear system of equations.

5. Van Huffel and Vandewalle [1989] wrote about Generalized Total Least-Squares
(GTLS), where a “weight” matrix was permitted for the errors in the data
matrix A, given that A could contain some error-free columns. However, as
in the case of Golub and Van Loan [1980] mentioned in the first item, their
weight matrix does not refer to a variance-covariance matrix for the data and
thus also turns out, in general, not to be very useful in geodetic applications.
Schaffrin and Wieser [2008] have called this GTLS approach “equilibrated TLS”
to distinguish it from weighted TLS.

6. Markovsky et al. [2006] introduced element-wise weighting to the TLS problem,
where the random errors of the data matrix A, augmented with the random
errors of the observation vector y (a matrix B in their paper), were considered
to be row-wise independent. Thus, for n observation equations and m unknown
parameters, their approach allows for n non-singular covariance matrices, each
of size (m+ 1)× (m+ 1). They further generalized the problem to handle the
case where some data were considered noise free, thus allowing for some of the
n covariance matrices to be singular (ibid, §3).

7. Schaffrin and Wieser [2008] made an important step towards “general variance-
covariance matrices” within the EIV model by allowing a completely general
cofactor matrix for errors of the observation vector y and a slightly more re-
stricted cofactor matrix for the errors in the data matrix A, which had a certain
Kronecker-product structure imposed upon it. An attractive feature of their es-
timator was that it handled constant columns of the data matrix (e.g., problems
having an intercept parameter) without any special considerations beyond the
Kronecker-product structure for the data cofactor matrix.

8. The dissertation by Fang [2011] presented an estimator that could handle ar-
bitrary, symmetric positive-definite weight matrices, including correlation be-
tween the errors of the data vector and the data matrix. Fang proposed three
different, but algebraically equivalent, forms of the estimator. In independent
work, Mahboub [2012] derived an estimator identical to one of the forms pre-
sented by Fang, except that Mahboub’s work did not account for correlation
between the observation vector and the data matrix. The developments of these
authors are important, as they represent a maturation of EIV modeling that
now permits very general covariance matrices, as long as they are not singular.
As shown in Appendix D, both Fang’s and Mahboub’s works are generalizations
of Schaffrin and Wieser [2008], with Fang’s estimator being the most general.
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9. The work of this dissertation now allows for singular cofactor matrices to be
treated within the EIV model. This development is analogous to the work of
Neitzel and Schaffrin [2012], where a least-squares estimator within the GHM
having a singular dispersion matrix was presented, as well as a criterion for this
estimator to be unique.

1.3 Comments on the notation used in this dissertation

An important task in writing mathematical works is to employ a clear and consis-
tent notation. To do otherwise places too much burden on the reader to understand
the meaning of variables and notation that may change from place to place. Of course,
some context-dependent reuse of variable names might be unavoidable in lengthy or
detailed works but should be kept to a minimum. In particular, when the meanings
of variable names change, the new meanings should be clearly stated and their scope
of use should be clearly delineated, a practice adhered to in this work.

Many textbooks on linear algebra use boldface type for matrices and vectors, using
uppercase characters for the former and lowercase for the latter. Most authors follow
this case-convention, but many do not use boldface at all. In Ben-Israel and Greville
[2003] boldface is used for vectors but not for matrices; this is the style adopted in
this work. Also, in this dissertation, matrices are always uppercase, whereas vectors
are always lowercase (with an exception in Chapter 4 where Y and Ξ are used for
vectors) and are always typeset with boldface font. Furthermore, boldface font is only
used for vectors, and vectors are always column vectors. If a row vector is needed, it
is written as the transpose of a column vector. With all but one exception, lowercase
characters are used for scalars. The exception is the use of Ω for the SSR (sum of
squared residuals), which is common among some authors.

Another notation convention employed here is one long used by Professor Burkhard
Schaffrin. The convention is helpful because it reveals something about the nature
of the unknown variables. Greek characters are used for unknown, nonrandom vari-
ables, and Latin characters are used for unknown, random variables. An example of
the former is the parameter vector ξ in the Gauss-Helmert model, while an example of
the latter is the random error vector e in the same model. Of course, the estimates of
unknown, nonrandom variables are themselves random, and for these a hat is placed
on top. We speak of predictions of unknown, random variables; for these a tilde is
used. So, when one reads ξ̂, one immediately realizes that the symbol refers to the
estimator (or estimate in the context of the actual realization of the estimator) of the
unknown, nonrandom vector ξ. Likewise, the symbol ẽ would refer to the predictor
(or possibly the prediction) of the unknown, random vector e.

Abbreviations used herein are mostly standard in the geodetic science and/or
statistics literature. They are always spelled out in full in the first place they occur.
However, for convenience of reference, all abbreviations used are defined in Table 1.1.
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Table 1.1: List of abbreviations

Abbr. Meaning
BLUUE Best Linear Uniformly Unbiased Estimator
EIV Errors-In-Variables
EIV-REM Errors-In-Variables with Random Effects Model
GLS Generalized Least Squares
GLSE Generalized Least-Squares Estimator
GHM Gauss-Helmert Model
GMM Gauss-Markov Model
iid Independent and Identically Distributed
LESS LEast-Squares Solution
LESS-GHM LEast-Squares Solution within the GHM
LSC Least-Squares Collocation
nnd nonnegative definite
OLS Ordinary Least Squares
OLSE Ordinary Least-Squares Estimator
REM Random Effects Model
SSR Sum of Squared Residuals
Std dev Standard deviation
SVD Singular Value Decomposition
TLS Total Least Squares
TLSC Total Least-Squares Collocation
TSSR Total Sum of Squared Residuals
WLS Weighted Least Squares
WTLS Weighted Total Least Squares
WTLSC Weighted Total Least-Squares Collocation
WTLSS-EIV Weighted Total Least-Squares Solution within the EIV model
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1.4 Linear algebra references

This dissertation makes heavy use of linear algebra. Some operators and special
matrices, such as the vec operator, the Kronecker product, and the commutation
matrix, may be unfamiliar to the reader. For this reason, many of their properties
used in this work are listed in Appendix E. For further reference to these topics
in linear algebra any of these works is recommended: Lütkepohl [1996], Horn and
Johnson [1994], Harville [1997], or Magnus and Neudecker [2007].
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Chapter 2: The EIV Model with Correlation

The errors-in-variables (EIV) model with correlated errors among the observation
vector y and among the data matrix A, as well as cross-correlation between the
random errors in y and A, can be written as

y = (A− EA)
n×m

ξ + ey, rkA = m, (2.1a)[
ey
eA

]
n(m+1)×1

:=
[
ey

vecEA

]
∼ (

[
0
0

]
, σ2

0Q), (2.1b)

where
Q =

[
Qy QyA

QAy QA

]
n(m+1)×n(m+1)

, rkQ ≤ n(m+ 1), (2.1c)

is a symmetric nnd cofactor matrix. The model variables are defined as follows:

y denotes the n× 1 observation vector,
ξ the m× 1 (unknown) parameter vector,
A the n×m data matrix with n > m = rkA,
ey the n× 1 (unknown) random error vector associated with y,
EA the n×m (unknown) random error matrix associated with A,
eA the nm× 1 vectorized form of EA,
σ2

0 the (unknown) variance component, and
Q the n× n symmetric nnd cofactor matrix.

If the cofactor matrix Q is non-singular, there exists a unique weight matrix P
defined as

P := Q−1 =

 P11
n×n

P12
n×nm

P21
nm×n

P22
nm×nm

 if, and only if, rkQ = n(m+ 1). (2.2)

The product of the variance component σ2
0 and the cofactor matrix Q is called

the covariance matrix, defined by Σ := σ2
0Q, which is also called variance-covariance

matrix (or vcm for short) in the literature. In this work, it is the cofactor matrix Q (or
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its inverse, the weight matrix P ) that is mainly discussed, with very few references to
the covariance matrix Σ specifically. As in this work, the cofactor matrix Q appears
as a (potentially) fully populated matrix in Fang [2011], where it was defined as
non-singular. However, in this contribution, the non-singular restriction has been
removed. The case of singular cofactor matrices is dealt with in detail in Chapter 3.

Note also that the data matrix A has full column rank in model (2.1). It is
also called design matrix, coefficient matrix, or information matrix in other contexts,
but here the use of the term data matrix underscores the fact that some or all of
the elements of A are comprised of random entries representing measurement data.
Moreover, in keeping with the customary usage of the EIV model, it is assumed that
all random entries of A are linear in the measurement variables.

In the following, total least-squares (TLS) estimators are derived for the unknown
parameters of the EIV model, and algorithms for their use in numerical computations
are presented. This is followed by numerical applications to 2-D line-fitting and 2-D
similarity transformations.

2.1 WTLS adjustment within the EIV model with correla-
tion

Let us assume for the moment that the cofactor matrix Q of model (2.1) is regular
(i.e., non-singular) so that rkQ = n(m+ 1), and therefore Q−1 = P exists. Then the
weighted total least-squares (WTLS) problem can be stated as

minimize
ξ

:
[
eTy , e

T
A

] [P11 P12
P21 P22

] [
ey
eA

]
such that y = (A− EA)ξ + ey. (2.3)

Here a Lagrangian approach is taken by introducing an unknown n × 1 vector
of Lagrange multipliers λ to solve for the parameter vector ξ. The Lagrange target
function is written as

φ(ey, eA, ξ,λ) = eTy P11ey + 2eTy P12eA + eTAP22eA+
+2λT

(
y − Aξ − ey +

(
ξT ⊗ In

)
eA
)

= stationary.
(2.4)

The symbol ⊗ represents the Kronecker product (or Kronecker-Zehfuss product),
several rules for which are listed in Appendix E.
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The Euler-Lagrange (or first-order) necessary conditions are satisfied by
1
2
∂φ

∂ey
= P11ẽy + P12ẽA − λ̂

.= 0, (2.5a)

1
2
∂φ

∂eA
= P22ẽA + P21ẽy +

(
ξ̂ ⊗ In

)
λ̂
.= 0, (2.5b)

1
2
∂φ

∂ξ
= −AT λ̂+ ẼT

Aλ̂
.= 0, (2.5c)

1
2
∂φ

∂λ
= y − Aξ̂ − ẽy +

(
ξ̂T ⊗ In

)
ẽA

.= 0. (2.5d)

Here hats and tildes are placed over the unknown nonrandom and random vectors,
respectively, to indicate the particular quantities that satisfy the first-order, homo-
geneous system of condition equations. The Hessian matrix can be derived from the
second partial-derivatives of φ with respect to eTy and eTA, which yields

1
2

∂2φ

∂

[
ey
yA

]
∂
[
eTy , e

T
A

] =
[
P11 P12
P21 P22

]
. (2.6)

Thus, the sufficient condition for minimization — namely that the Hessian matrix
(2.6) is positive-(semi)definite — is satisfied.

Substituting (2.5b) into (2.5a) and then, vice versa, substituting (2.5a) into (2.5b),
leads to predicted error vectors (or residual vectors)

ẽy =
(
P11 − P12P

−1
22 P21

)−1[
P12P

−1
22

(
ξ̂ ⊗ In

)
+ In

]
λ̂, (2.7a)

ẽA = −
(
P22 − P21P

−1
11 P12

)−1[
P21P

−1
11 +

(
ξ̂ ⊗ In

)]
λ̂ (2.7b)

as a function of the block components of the weight matrix P . Continuing under the
assumption that Q is regular (and thus also P11 and P22), the following identities,
based on the Banachiewicz inversion formula [Zhang, 2005, p. 11] for block matrices,
relate the blocks of Q to those of P :(

P11 − P12P
−1
22 P21

)−1
= Qy, (2.8a)(

P11 − P12P
−1
22 P21

)−1
P12P

−1
22 = −QyA = −QT

Ay, (2.8b)(
P22 − P21P

−1
11 P12

)−1
= QA, (2.8c)(

P22 − P21P
−1
11 P12

)−1
P21P

−1
11 = −QAy = −QT

yA. (2.8d)

Using the equations (2.8), the predicted error vectors can be rewritten in terms of
the block components of the cofactor matrix Q, rather than the weight matrix P , as

ẽy =
[
−QyA

(
ξ̂ ⊗ In

)
+Qy

]
λ̂, (2.9a)

ẽA =
[
QAy −QA

(
ξ̂ ⊗ In

)]
λ̂. (2.9b)

15



Substituting (2.9a) and (2.9b) into (2.5d) leads to

y − Aξ̂ =
= −QyA

(
ξ̂ ⊗ In

)
λ̂+Qyλ̂−

(
ξ̂T ⊗ In

)
QAyλ̂+

(
ξ̂T ⊗ In

)
QA

(
ξ̂ ⊗ In

)
λ̂ =

=
[
Qy −QyA

(
ξ̂ ⊗ In

)
−
(
ξ̂ ⊗ In

)T
QAy +

(
ξ̂ ⊗ In

)T
QA

(
ξ̂ ⊗ In

)]
λ̂ =

= Q1λ̂,

(2.10a)

with
Q1
n×n

:=
[
Qy −QyA

(
ξ̂ ⊗ In

)
−
(
ξ̂ ⊗ In

)T
QAy +

(
ξ̂ ⊗ In

)T
QA

(
ξ̂ ⊗ In

)]
= Q1(ξ̂).

(2.10b)

Since in this section it is assumed that Q (and therefore Qy and QA) is regular,
the matrix Q1 is also regular, which permits the solution

λ̂ = Q−1
1 (y − Aξ̂) (2.11)

for the vector of Lagrange multipliers λ in terms of the estimated parameter vector ξ̂.
Following the logic of Schaffrin et al. [2012a], (2.5c) is rewritten as

AT λ̂ = ẼT
Aλ̂ =

(
λ̂T ⊗ Im

)
vec

(
ẼT
A

)
=

=
(
λ̂T ⊗ Im

)
KnmẽA =

(
Im ⊗ λ̂

)T
ẽA

(2.12)

for a unique commutation (vec-permutation) matrix Knm of dimension nm × nm.
(See Appendix E for properties of commutation matrices.) Using (2.9b) and (2.11),
equation (2.12) can be further developed as

−AT λ̂ =
(
Im ⊗ λ̂

)T [
−QAy +QA

(
ξ̂ ⊗ In

)]
λ̂, (2.13a)

respectively,

−ATQ−1
1 (y − Aξ̂) =

=
(
Im ⊗ λ̂

)T [
−QAy +QA

(
ξ̂ ⊗ In

)]
Q−1

1 (y − Aξ̂) =

=
(
Im ⊗ λ̂

)T [
−QAyQ

−1
1 +QA

(
ξ̂ ⊗Q−1

1

)]
(y − Aξ̂) =

= R1(y − Aξ̂),

(2.13b)

with

R1
m×n

:=
(
Im ⊗ λ̂

)T [
−QAyQ

−1
1 +QA

(
ξ̂ ⊗Q−1

1

)]
= R1(ξ̂, λ̂). (2.13c)

Equation (2.13) yields what Schaffrin et al. [2012a] referred to as “the generalized
normal equations” (

ATQ−1
1 +R1

)
A · ξ̂ =

(
ATQ−1

1 +R1
)
y , (2.14)
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which is identical in form to their normal equations; however their formulation does
not incorporate the cross-correlation matrixQyA. On the other hand, when differences
in symbols are taken into account, (2.14) is found to be identical to equation (4.25)
in Fang [2011], which has the form ξ̂ =

[
(A− ẼA)TQ−1

1 A
]−1

(A − ẼA)TQ−1
1 y. This

becomes even more obvious when noting that R1 = −ẼT
AQ
−1
1 , which is proved below.

Proof that R1 = −ẼT
AQ
−1
1 :

An expression for vec ẼA =: ẽA is given in (2.9b), thus it is helpful to employ the
vec operator:

vec(−ẼT
AQ
−1
1 ) = −

(
Q−1

1 ⊗ Im
)

vec ẼT
A =

= −
(
Q−1

1 ⊗ Im
)
KnmẽA =

= −
(
Q−1

1 ⊗ Im
)
Knm

[
QAy −QA

(
ξ̂ ⊗ In

)]
λ̂ =

= −
(
λ̂T ⊗ (Q−1

1 ⊗ Im)Knm

)
vec

[
QAy −QA

(
ξ̂ ⊗ In

)]
=

= −
(
Q−1

1 ⊗ Im ⊗ λ̂T
)

vec
[
QAy −QA

(
ξ̂ ⊗ In

)]
.

Now apply the vec operator to R1:

vecR1 = vec
{(
Im ⊗ λ̂

)T [
−QAy +QA(ξ̂ ⊗ In)

]
Q−1

1

}
=

= −
(
Q−1

1 ⊗ Im ⊗ λ̂T
)

vec
[
QAy −QA

(
ξ̂ ⊗ In

)]
=

= − vec(ẼT
AQ
−1
1 ).

Since dimR1 = dim(ẼT
AQ
−1
1 ), therefore

R1 = −ẼT
AQ
−1
1 .

Along these lines, Appendix D makes some comparisons between the works of
Schaffrin and Wieser [2008] and Fang [2011].

Following the approach of Schaffrin et al. [2012a], an algorithm to solve (2.14)
is presented below. The algorithm is identical in structure to Schaffrin (ibid), but,
in contrast to theirs, will handle the case of correlation between Qy and QA. The
algorithm is labeled Algorithm 1 for reference purposes. Algebraically, it is identical
to “Algorithm 2” of Fang [2011]. Note that the superscript i in Algorithm 1 denotes
the iteration number.
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Algorithm 1 For the WTLS solution within the EIV model

Step 1: Compute an initial solution

ξ̂(0) := N−1c for
[
N, c

]
:= ATQ−1

y

[
A, y

]
. (2.15a)

Step 2:
repeat For i ∈ N, compute

Q
(i)
1 :=

[
Qy −QyA

(
ξ̂(i−1) ⊗ In

)
−
(
ξ̂(i−1) ⊗ In

)T
QAy+

+
(
ξ̂(i−1) ⊗ In

)T
QA

(
ξ̂(i−1) ⊗ In

)]
(2.15b)

λ̂(i) :=
(
Q

(i)
1

)−1(
y − Aξ̂(i−1)

)
(2.15c)

R
(i)
1 :=

(
Im ⊗ λ̂(i)

)T [
−QyA

(
Q

(i)
1

)−1
+QA

(
ξ̂(i−1) ⊗

(
Q

(i)
1

)−1)]
(2.15d)

ξ̂(i) =
[(
AT
(
Q

(i)
1

)−1
+R

(i)
1

)
A
]−1(

AT
(
Q

(i)
1

)−1
+R

(i)
1

)
y (2.15e)

until ∥∥∥ξ̂(i) − ξ̂(i−1)
∥∥∥ < δ (2.15f)

for a chosen threshold δ.

2.1.1 Alternative solution using (A− ẼA)
Now we wish to derive an alternative algorithm that allows us to work with a

symmetric positive-definite normal-equations matrix and that also directly accounts
for the errors in the design matrix by replacing A in Algorithm 1 with A− ẼA. The
derivation is as follows: using equations (2.10a), (2.9b), and (2.5c), the system of
equations (2.5) can be expressed equivalently as

Q1λ̂ = y − Aξ̂, (2.16a)
ẽA =

[
QAy −QA

(
ξ̂ ⊗ In

)]
λ̂, (2.16b)(

A− ẼA
)T
λ̂ = 0, (2.16c)

or as  Q1 A− ẼA(
A− ẼA

)T
0

λ̂
ξ̂

 =
y − ẼAξ̂

0

 , (2.17a)

and vec ẼA =: ẽA =
[
QAy −QA

(
ξ̂ ⊗ In

)]
λ̂. (2.17b)
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The variable λ̂ can be eliminated from the first row of (2.17a) via premultiplication
by (A− ẼA)TQ−1

1 , which then yields
[(
A− ẼA

)T
Q−1

1

(
A− ẼA

)]
ξ̂ =

(
A− ẼA

)T
Q−1

1

(
y − ẼAξ̂

)
. (2.18)

The matrix on the left side of (2.18) is symmetric and positive-definite, assuming
rk(A− ẼA) = rkA = m, and thus can be inverted by Cholesky factorization, though
the equation must be solved by iteration since the parameter vector ξ̂ appears on
both sides of the equation.

The following Algorithm 2 can be used to solve for ξ̂, while at the same time
generating solutions λ̂ and ẽA for the vector of Lagrange multipliers and the residual
vector, respectively. Following Schaffrin et al. [2012a], the symbol Invec is introduced
for the inverse of the vec operator as follows:

Invec(vecA) = A = [aij], where aij is the [(j − 1)m+ i]-th element of vecA. (2.19)

See Harville [1997], p. 340, for the relationship between the elements of a matrix and
the elements of the vec of the same matrix. Note that the superscript i in Algorithm 2
denotes the iteration number.

Algorithm 2 For the WTLS solution within the EIV model

Step 1: Compute an initial solution

ξ̂(0) := N−1c for
[
N, c

]
:= ATQ−1

y

[
A, y

]
, and assign Ẽ(0)

A := 0. (2.20a)

Step 2:
repeat For i ∈ N, compute

Q
(i)
1 :=

[
Qy −QyA

(
ξ̂(i−1) ⊗ In

)
−
(
ξ̂(i−1) ⊗ In

)T
QAy+

+
(
ξ̂(i−1) ⊗ In

)T
QA

(
ξ̂(i−1) ⊗ In

)]
(2.20b)

ξ̂(i) =
[(
A− Ẽ(i−1)

A

)T(
Q

(i)
1

)−1(
A− Ẽ(i−1)

A

)]−1
×[(

A− Ẽ(i−1)
A

)T(
Q

(i)
1

)−1(
y − Ẽ(i−1)

A ξ̂(i−1)
)]

(2.20c)

λ̂(i) =
(
Q

(i)
1

)−1[(
y − Ẽ(i−1)

A ξ̂(i−1)
)
−
(
A− Ẽ(i−1)

A

)
ξ̂(i)

]
(2.20d)

ẽ
(i)
A =

[
QAy −QA

(
ξ̂(i) ⊗ In

)]
λ̂(i) and Ẽ(i)

A = Invec ẽ(i)
A (2.20e)

until ∥∥∥ξ̂(i) − ξ̂(i−1)
∥∥∥ < δ (2.20f)

for a chosen threshold δ.
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It is noted that (2.18) is the same as equation (4.26) in Fang [2011], which is
associated with “Algorithm 3” therein.

Here it is important to note that either, or both, of the cofactor matrices Qy

or QA could actually be singular in the above algorithms. This is true as long as
the matrix Q1 that they are incorporated into does not become singular, in which
case Algorithms 1 and 2 could not be used. The case where singularities in cofactor
matrices Qy and/or QA lead to a singular Q1 matrix is investigated in Chapter 3.

2.2 Sum of squared residuals (SSR) for the WTLS solution

In the context of total least-squares (TLS), the sum of squared residuals (SSR) has
been called total sum of squared residuals (TSSR) by Schaffrin et al. [2012a]. This is
certainly a more descriptive label in this context, and it should not be confused with
the term total sum of squares used in the context of variance analysis, as in Davis
[2002, pp. 80, 195], for example.

The TSSR is a scalar-valued vector function, being the square of the (weighted)
norm of the total residual vector computed by

Ω =
∥∥∥[ẽTy , ẽTA]T ∥∥∥2

P
=
[
ẽTy , ẽ

T
A

]
P

[
ẽy
ẽA

]
= (2.21a)

= λ̂TQ1λ̂ = (2.21b)
= λ̂T (y − Aξ̂). (2.21c)

Then a suitable approximation for the estimated variance component σ̂2
0 is given by

dividing the TSSR by the model degrees of freedom (or redundancy) as in

σ̂2
0 = Ω/r, (2.22)

where the redundancy r is defined as r := n− rkA, or r = n−m if A has full column
rank m [cf. Schaffrin et al., 2012a].

2.3 The TLS problem within the classical EIV model

Though the name “errors-in-variables model” does not actually appear in the
works of Golub cited above, the model presented in Golub and Van Loan [1980],
from which their TLS solution was derived, will herein be referred to as the classical
EIV model. It is given here in its original form in order to compare and contrast
it with the extended EIV model shown in (2.1); however, some of the symbols are
changed from what Golub and Van Loan used in order to be consistent with the
notation used in this work.
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The system of equations

(A− EA)︸ ︷︷ ︸
n×m

ξ = y − ey (2.23)

is herein called the classical EIV model. With the introduction of positive-definite
“weighting matrices”

D = Diag[d1, . . . , dn], di > 0, i = 1, . . . , n, and (2.24a)
T = Diag[t1, . . . , t(m+1)], ti > 0, i = 1, . . . ,m+ 1, (2.24b)

the classical TLS problem is to

minimize
[EA | ey ]

(∥∥∥D [
EA ey

]
T
∥∥∥2

F
=
∥∥∥(T ⊗D)

[
eA
ey

]∥∥∥2
)
. (2.25)

Note that the weighting matrices D and T have been excluded intentionally from
the model (2.23), as they are not associated necessarily with the dispersion of the
random errors of the data, though under certain conditions perhaps they could be.
(See comments on page 22.)

The (squared) Frobenius norm of an n × m matrix A is defined as ‖A‖2
F :=

tr(ATA) = ∑n
i=1

∑m
j=1

∣∣∣aij∣∣∣2. Using this definition, and the definition eA := vecEA,
the matrix norm is transformed to a vector norm by∥∥∥∥D [

EA ey
]
T
∥∥∥∥2

F
= tr

(
T T

[
EA ey

]T
DTD

[
EA ey

]
T
)

=

= tr
([
EA ey

]T
D2

[
EA ey

]
T 2
)

=
[
eTA, e

T
y

]
(T 2 ⊗D2)

[
eA
ey

]
.

(2.26)

Now let T =
[
T1 0
0 tm+1

]
, with T1 := Diag[t1, . . . , tm]. Then the equivalent TLS

problem is to

minimize
[EA | ey ]

∥∥∥∥D [
EA ey

]
T
∥∥∥∥2

F
= minimize

[EA | ey ]

{
eTA(T 2

1 ⊗D2)eA + eTy (t2m+1D
2)ey

}
. (2.27)

Golub and Van Loan [1980] gave a solution based on the SVD of D [A |y]T , which
is presented below. Once again, it is noted that some symbols used here differ from
theirs in order to maintain consistency with this dissertation. Define the n× (m+ 1)
matrix

C := D
[
A y

]
T (2.28)

and let

UTCV
n×(m+1)

=
[
Diag(σ1, . . . , σm+1)

0

]
, (2.29a)

U =
[
u1, . . . ,un

]
, V =

[
v1, . . . ,vm+1

]
, ui ∈ Rn, vi ∈ Rm+1, (2.29b)

σ1 ≥ · · · ≥ σm > σm+1 > 0 (2.29c)
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be the SVD of C, with UTU = In and V TV = Im+1. If ξ̂ ∈ Rm such that

CTCT−1

 ξ̂
−1

 = σ2
m+1T

−1

 ξ̂
−1

 (2.30a)

⇒ ξ̂ = T1
(
T1A

TD2AT1 − σ2
m+1Im

)−1
T1A

TD2y , (2.30b)

then ξ̂ solves the TLS problem. Obviously, σ2
m+1 is the smallest eigenvalue of CTC.

The solution is unique as long as σm > σm+1 holds. In the case that σm = σm+1, a
solution may still exist, but it might not be unique.

In contrast to TLS minimization within the extended EIV model (2.1), the min-
imization (2.27) does not contain a bilinear term in eA and ey. Moreover, the ma-
trices (T 2

1 ⊗D2) and t2m+1D
2 could not, in general, be interpreted as weight matrices

P22 and P11, respectively (associated with eA and ey, respectively), from the extended
EIV model.

Another way to visualize the distribution of the weighting matrices is to multiply
out a few terms in (2.25), as in

D
[
EA ey

]
T =

d1eA11t1 · · · d1eA1mtm d1ey1tm+1
· · · · · · · · · · · ·

dneAn1t1 · · · dneAnmtm dneyntm+1

 , (2.31)

which clearly shows dependence among the columns due to the matrix D and depen-
dence among the rows due to the matrix T . If D is the identity matrix (or a scalar
multiple thereof), the data are row-wise iid. Likewise, if T is the identity matrix, the
data are column-wise iid. If both D and T are identities (or scalar multiples thereof),
the data are all iid.

In light of the above discussion, it is noted that the solution (2.30b) is only viable
within the extended EIV model (2.1) for a somewhat restricted category of weight
matrices. In fact, the TLS problem within the extended EIV model cannot be solved
by the SVD technique unless Py = t2m+1 ·D2 and PA = (T 2

1 ⊗D2) (also implying that
QyA = 0), meaning that the weights for each column of the variables in matrix A
would have to be scalar multiples of the weights for the observation vector y. The
restriction of the range of weight matrices admissible in the classical EIV model was
surely a primary motivation for the further development of the extended EIV model
(2.1), after Schaffrin and Wieser’s [2008] extension.
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Chapter 3: The EIV Model with Singular Cofactor Matrices

Algorithms 1 and 2 above cannot be used if the matrixQ1 of (2.10b) turns out to be
singular, which would suggest that eitherQy orQA is singular or that both are singular
(or perhaps rather the case where a nonzero QyA gives rise to a singularity in Q1).
Therefore, it is desirable to derive an estimator, and corresponding algorithm, that
works for a singular matrix Q1. First, the case of no cross-correlation, i.e., QyA = 0,
is considered in §3.1. This simplifies the development somewhat and is a useful
reference for problems without cross-correlation between the matrices Qy and QA.
Then in §3.2 the case of non-zero QyA is developed. Note that in this context the
term cross-correlation refers to correlation between random errors in the observation
vector y and random errors in the data matrix A.

3.1 Singular cofactor matrices without cross-correlation be-
tween Qy and QA

Let us begin by writing a system of equations comprised of (2.9b), (2.10a), (2.10b),
and (2.12), omitting the matrix QyA, i.e., assuming it is zero:

ẽA = −QA

(
Im ⊗ λ̂

)
ξ̂, (3.1a)

y − Aξ̂ = Q1λ̂, (3.1b)

AT λ̂ =
(
Im ⊗ λ̂

)T
ẽA, (3.1c)

where Q1 :=
[
Qy +

(
ξ̂ ⊗ In

)T
QA

(
ξ̂ ⊗ In

)]
= Q1(ξ̂). (3.1d)

In matrix form, the system of equations reads
Q1 0 A

0 −QA QA

(
Im ⊗ λ̂

)
AT

(
Im ⊗ λ̂

)T
QA 0


λ̂γ̂
ξ̂

 =

y0
0

 , (3.2)

with ẽA = vec ẼA = −QAγ̂, for γ̂ = (ξ̂ ⊗ λ̂) = (Im ⊗ λ̂)ξ̂.
Now introduce anm×m symmetric positive-(semi)definite matrix S; then perform

the following row operations on the system of equations (3.2):
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1. Multiply row three from the left by AS and add to row one.

2. Multiply row three from the left by QA(Im⊗ λ̂)S = QA(S ⊗ λ̂) and add to row
two.

These two row operations result in the following modified system of (necessary-
condition) equations:

Q1 + ASAT
(
AS ⊗ λ̂T

)
QA A

QA

(
SAT ⊗ λ̂

)
QA

(
S ⊗ λ̂λ̂T

)
QA −QA QA

(
Im ⊗ λ̂

)
AT

(
Im ⊗ λ̂T

)
QA 0


λ̂γ̂
ξ̂

 =

y0
0

 . (3.3)

Now define

Q′A := QA

(
S ⊗ λ̂λ̂T

)
QA −QA = Q′A(λ̂), (3.4a)

Q2 := Q1 + ASAT = Q2(ξ̂), (3.4b)

so that the symmetric system of equations (3.3) is simplified somewhat as
Q2

(
AS ⊗ λ̂T

)
QA A

QA

(
SAT ⊗ λ̂

)
Q′A QA

(
Im ⊗ λ̂

)
AT

(
Im ⊗ λ̂T

)
QA 0


λ̂γ̂
ξ̂

 =

y0
0

 . (3.5)

Note that the dimension of the range space of the augmented matrix [Q1, AS] should
satisfy dimR

[
Q1
n×n

, AS
n×m

]
= rk

[
Q1, AS

]
= n (3.6a)

⇒ rkQ2 = rk(Q1 + ASAT ) = rk
[
Q1, AS

] [Q−1 0
0 S−

] [
Q1
SAT

]
= n, (3.6b)

where Q−1 and S− denote (nonsingular) generalized inverses of Q1 and S, respectively.
Equations (3.6) ensure that Q2 = Q1 +ASAT is invertible. Moreover, equation (3.6b)
satisfies the Neitzel/Schaffrin criterion [2012] for uniqueness of the least-squares so-
lution ξ̂ in the presence of a singular dispersion matrix. (See Appendix C for further
details.)

From row one of (3.5), the estimator for the Lagrange multipliers is found to be

λ̂ = Q−1
2 ·

[
(y − Aξ̂)−

(
AS ⊗ λ̂T

)
QA · γ̂

]
. (3.7)

Substituting (3.7) into the vector on the left side of (3.5), yields for the second, resp.
third rows of (3.5)[

QA

(
SAT ⊗ λ̂

)
Q−1

2

(
AS ⊗ λ̂T

)
QA

]
· γ̂ −Q′A · γ̂ =

= QA

(
Im ⊗ λ̂

)
ξ̂ +QA

(
SAT ⊗ λ̂

)
Q−1

2

(
y − Aξ̂

) (3.8a)

24



and
ATQ−1

2

(
y − Aξ̂

)
= −

(
Im ⊗ λ̂T

)
QA · γ̂ + ATQ−1

2

(
AS ⊗ λ̂T

)
QA · γ̂ (3.8b)

or, combining the two equations in matrix form, ATQ−1
2 A −

[(
Im ⊗ λ̂T

)
−
(
ATQ−1

2 AS ⊗ λ̂T
)]
QA

−QA

[(
Im ⊗ λ̂

)
−
(
SATQ−1

2 A⊗ λ̂
)]

QA

(
SATQ−1

2 AS ⊗ λ̂λ̂T
)
QA −Q′A

×
×

ξ̂
γ̂

 =
 ATQ−1

2 y

QA

(
SATQ−1

2 ⊗ λ̂
)
y

 .
(3.9)

From (3.1a), the relation γ̂ = (Im ⊗ λ̂) · ξ̂ holds, which upon substituting into the
first row of (3.9) leads to the solution

ATQ−1
2

(
y − Aξ̂

)
=

= −
[(
Im ⊗ λ̂T

)
−
(
ATQ−1

2 AS ⊗ λ̂T
)]
QA · γ̂ =

=
(
ATQ−1

2 AS − Im
)
·
[(
Im ⊗ λ̂

)T
QA

(
Im ⊗ λ̂

)]
· ξ̂.

(3.10)

Now define R2 as

R2 :=
(
ATQ−1

2 AS − Im
)
·
[(
Im ⊗ λ̂

)T
QA

(
Im ⊗ λ̂

)]
= R2(ξ̂, λ̂). (3.11)

Then the solution ξ̂ is written as

ξ̂ =
(
ATQ−1

2 A+R2
)−1

ATQ−1
2 y . (3.12)

Using (3.7) and the relation γ̂ = (ξ̂⊗In) · λ̂, the estimator for the unknown vector
of Lagrange multipliers λ is derived as

Q2λ̂ = (y − Aξ̂)−
(
AS ⊗ λ̂T

)
QA

(
ξ̂ ⊗ In

)
· λ̂ (3.13a)

⇒ λ̂ =
(
Q2 + AS ·

[(
Im ⊗ λ̂

)T
QA

(
ξ̂ ⊗ In

)])−1
(y − Aξ̂) . (3.13b)

3.1.1 Alternative solution using (A− ẼA)
Note that the formula (3.12) is nonlinear in the unknown parameters, and thus

must be computed by iteration, though the matrix A remains constant through the
iteration steps. In the following, an alternative to (3.12) is developed that allows the
matrix difference A− ẼA to be used instead of just A, as long as rk(A− ẼA) = rkA.
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The system (3.2) can be rewritten as

Q1λ̂ = y − Aξ̂, (3.14a)
ẽA = −QA

(
ξ̂ ⊗ λ̂

)
, (3.14b)(

A− ẼA
)T
λ̂ = 0. (3.14c)

Equation (3.14c) can be premultiplied by (A− ẼA)S to arrive at
(
A− ẼA

)
S
(
A− ẼA

)T
λ̂ = 0, (3.15)

which combined with (3.14a) gives

Q3λ̂ =
[
Q1 +

(
A− ẼA

)
S
(
A− ẼA

)T ]
λ̂ = y − Aξ̂, (3.16)

where Q3 is defined by
Q3 :=

[
Q1 +

(
A− ẼA

)
S
(
A− ẼA

)T ]
= Q3(ξ̂, λ̂). (3.17)

Its inverse exists whenever rk[Q1, (A− ẼA)S] = n, in analogy to (3.6a).
This leads to the equivalent system of equations Q3 A− ẼA(

A− ẼA
)T

0

λ̂
ξ̂

 =
y − ẼAξ̂

0

 , (3.18a)

with vec ẼA = ẽA = −QA

(
ξ̂ ⊗ λ̂

)
. (3.18b)

Then the vector λ̂ can be eliminated from the first row of (3.18a) via premultiplication
by (A− ẼA)TQ−1

3 , which leads to the solution

ξ̂ =
[(
A− ẼA

)T
Q−1

3

(
A− ẼA

)]−1(
A− ẼA

)T
Q−1

3

(
y − ẼAξ̂

)
, (3.19)

provided Q3 remains nonsingular.
The “normal-equation matrix” to invert on the right side of (3.19) is symmetric

and positive-definite, if rk(A−ẼA) = rkA = m, and thus can be inverted by Cholesky
factorization, though the equation must be solved by iteration since the parameter
vector ξ̂ appears on both sides of the equation, and ξ̂ depends on the prediction ẼA
as well. Before an algorithm for numerical computation of (3.19) is presented, the
extension to the case of both a singular matrix Q1 and a non-zero matrix QyA is
developed.
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3.2 Singular cofactor matrices with cross-correlation

To account for cross-correlation between Qy and QA, the system of equations (3.1)
is modified, in accordance with (2.16), as

ẽA =
[
QAy −QA

(
ξ̂ ⊗ In

)]
λ̂, (3.20a)

y − Aξ̂ = Q1λ̂, (3.20b)

AT λ̂ =
(
Im ⊗ λ̂

)T
ẽA, (3.20c)

where
Q1 :=

[
Qy −QyA

(
ξ̂ ⊗ In

)
−
(
ξ̂ ⊗ In

)T
QAy +

(
ξ̂ ⊗ In

)T
QA

(
ξ̂ ⊗ In

)]
= Q1(ξ̂),

(3.20d)

which, analogous to (3.2), can be expressed in matrix form as
Q1 0 A

0 −QA QA

(
Im ⊗ λ̂

)
AT

(
Im ⊗ λ̂

)T
QA 0


λ̂γ̂
ξ̂

 =


y
0(

Im ⊗ λ̂
)T
QAyλ̂

 , (3.21)

with ẽA = vec ẼA = −QAγ̂, for γ̂ = (ξ̂ ⊗ λ̂) = (Im ⊗ λ̂)ξ̂. By eliminating λ̂ from
the right side, while maintaining symmetry on the left side, the preceding system of
equations is modified as

Q1 0 A−QyA

(
Im ⊗ λ̂

)
0 −QA QA

(
Im ⊗ λ̂

)
AT −

(
Im ⊗ λ̂

)T
QAy

(
Im ⊗ λ̂

)T
QA 0


λ̂γ̂
ξ̂

 =

=

y −QyA

(
Im ⊗ λ̂

)
· ξ̂

0
0

 .
(3.22)

For sake of compactness, define the the auxiliary matrix

Q′2 := Q1 + [A−QyA(Im ⊗ λ̂)]S[AT − (Im ⊗ λ̂)TQAy], (3.23)

and then perform the following row operations:

1. Multiply row three from the left by [A−QyA(Im ⊗ λ̂)]S and add to row one.

2. Multiply row three from the left by QA(Im⊗ λ̂)S = QA(S ⊗ λ̂) and add to row
two.
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This leads to the system of equations

Q′2 (AS ⊗ λ̂T )QA− A−QyA(Im ⊗ λ̂)
−QyA(S ⊗ λ̂λ̂T )QA

QA(SAT ⊗ λ̂)− Q′A QA(Im ⊗ λ̂)
−QA(S ⊗ λ̂λ̂T )QAy

AT − (Im ⊗ λ̂)TQAy (Im ⊗ λ̂)TQA 0



λ̂γ̂
ξ̂

 =

=

y −QyA

(
Im ⊗ λ̂

)
· ξ̂

0
0

 ,

(3.24)

where the matrix Q′A is defined in (3.4a).
The first row of (3.24) yields

λ̂ = (Q′2)−1 ·
[
(y − Aξ̂)−

[
(AS ⊗ λ̂T )−QyA(S ⊗ λ̂λ̂T )

]
QA.γ̂

]
. (3.25)

Then substituting this expression for λ̂ into the second, resp. third rows of (3.24)
yields

QA

[
(SAT ⊗ λ̂)− (S ⊗ λ̂λ̂T )QAy

]
(Q′2)−1×

×
[
(y−Aξ̂)−

[
(AS ⊗ λ̂T )−QyA(S ⊗ λ̂λ̂T )

]
QA · γ̂

]
+Q′A · γ̂ +QA(Im⊗ λ̂) · ξ̂ = 0

(3.26a)

and[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1(y − Aξ̂) =

=
[
AT−(Im⊗λ̂)TQAy

]
(Q′2)−1

[
(AS⊗λ̂T )−QyA(S⊗λ̂λ̂T )

]
QA · γ̂−(Im⊗λ̂)TQA · γ̂.

(3.26b)

Equations (3.26) can be expressed in matrix form as

[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1A

[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1·

·
[
A−QyA(Im ⊗ λ̂)

]
(S ⊗ λ̂)TQA − (Im ⊗ λ̂)QA

QA(S ⊗ λ̂)
[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1·

Symmetric ·
[
A−QyA(Im ⊗ λ̂)

]
(S ⊗ λ̂)TQA −Q′A


×

×

ξ̂
γ̂

 =


[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1y

QA(S ⊗ λ̂)
[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1 · (y −QyA(Im ⊗ λ̂)ξ̂)

 .
(3.27)
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Using the relation γ̂ = (Im ⊗ λ̂)ξ̂ and manipulating the first row of (3.27), leads
to an expression for the parameter estimator ξ̂ as follows:[

AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1(y − Aξ̂) =

=
{[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1

[
A−QyA(Im ⊗ λ̂)

]
(S ⊗ λ̂)T − (Im ⊗ λ̂)T

}
QA · γ̂ =

=
{[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1

[
A−QyA(Im ⊗ λ̂)

]
S − Im

}
×

×
[
(Im ⊗ λ̂)TQA(Im ⊗ λ̂)

]
· ξ̂ = R′2ξ̂,

with the auxiliary matrix R′2 defined as

R′2 :=
{[
AT−(Im⊗λ̂)TQAy

]
(Q′2)−1

[
A−QyA(Im⊗λ̂)

]
S−Im

}
·
[
(Im⊗λ̂)TQA(Im⊗λ̂)

]
,

(3.28)
finally resulting in

ξ̂ =
{[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1A+R′2

}−1
·
[
AT − (Im ⊗ λ̂)TQAy

]
(Q′2)−1y .

(3.29)
Substituting γ̂ = (ξ̂⊗ In)λ̂ into the vector on the left side of (3.24) yields, for the

first row of (3.24),

Q′2λ̂ = (y − Aξ̂)−
[
A−QyA

(
Im ⊗ λ̂

)]
S
(
Im ⊗ λ̂

)T
QA

(
ξ̂ ⊗ In

)
· λ̂, (3.30)

leading to

λ̂ =
{
Q′2 +

[
A−QyA

(
Im ⊗ λ̂

)]
· S ·

[(
Im ⊗ λ̂

)T
QA

(
ξ̂ ⊗ In

)]}−1
(y − Aξ̂) (3.31)

as an expression for the estimator for the vector of Lagrange multipliers.
As expected, when QAy = 0, the estimators derived in this section become equiva-

lent to those of §3.1, where it was assumed that there was no cross-correlation between
the random errors in y and A. Table 3.1 summarizes the respective equation numbers
associated with the cases where QAy = 0 and QAy 6= 0.

It is important to note the role of the matrix A in both cases shown in Table 3.1.
In the first case (when QAy = 0), the matrix A (or its transpose) appears without
having a matrix directly subtracted from it. In contrast, when QAy 6= 0 the term
A−QyA(Im⊗λ̂) appears in the equations listed in the last column of Table 3.1, rather
than A alone. The question then naturally arises as to whether such a reduction of the
matrix A might increase the condition numbers of the matrices that must be inverted
in equations (3.29) and (3.31) for ξ̂ and λ̂, respectively. If the condition numbers
were to increase significantly, these formulas may become numerically unstable. Such
a risk is perhaps much lower in the case where the matrix difference A− ẼA appears,
since the expectation of ẼA is zero.
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Table 3.1: Summary of equation numbers for the cases of QAy = 0 and QAy 6= 0

Variables When QAy = 0 When QAy 6= 0
Q2 or Q′2 (3.4b) (3.23)
R2 or R′2 (3.11) (3.28)

ξ̂ (3.12) (3.29)
λ̂ (3.13b) (3.31)

3.2.1 Alternative solution using (A− ẼA)
In light of the preceding discussion, we desire to find a solution analogous to

(3.19), which incorporates the corrected data matrix A − ẼA. The system (3.18) is
easily extended to the case of a nonzero matrix QAy by simply using (3.20a) for ẽA,
rather than the form shown in (3.18b), which is done in the following: Q3 A− ẼA(

A− ẼA
)T

0

λ̂
ξ̂

 =
y − ẼAξ̂

0

 , (3.32a)

with vec ẼA = ẽA =
[
QAy −QA

(
ξ̂ ⊗ In

)]
λ̂. (3.32b)

Then the solution for the parameter estimator ξ̂ takes the same form as (3.19), which
is repeated here for completeness:

ξ̂ =
[(
A− ẼA

)T
Q−1

3

(
A− ẼA

)]−1(
A− ẼA

)T
Q−1

3

(
y − ẼAξ̂

)
. (3.33)

Finally, Algorithm 3 is presented for computation of the estimated parameter
vector ξ̂ shown in (3.33), which handles both cross-correlation (i.e., QyA = QT

Ay 6= 0)
and singular cofactor matrices (more specifically, singular Q1).
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Algorithm 3 For the WTLS solution within the EIV model having rank-deficient
cofactor matrices (with singular matrix Q1)

Step 1: Compute an initial solution

ξ̂(0) := N+c for
[
N, c

]
:= ATQ+

y

[
A, y

]
, and assign Ẽ(0)

A = 0, (3.34a)

where N+ represents the pseudo-inverse (or Moore-Penrose inverse) of N .

Step 2:
repeat For i ∈ N, compute

Q
(i)
1 :=

[
Qy −QyA

(
ξ̂(i−1) ⊗ In

)
−
(
ξ̂(i−1) ⊗ In

)T
QAy+

+
(
ξ̂(i−1) ⊗ In

)T
QA

(
ξ̂(i−1) ⊗ In

)]
(3.34b)

Q
(i)
3 := Q

(i)
1 +

(
A− Ẽ(i−1)

A

)
S
(
A− Ẽ(i−1)

A

)T
(3.34c)

ξ̂(i) =
[(
A− Ẽ(i−1)

A

)T(
Q

(i)
3

)−1(
A− Ẽ(i−1)

A

)]−1
×

×
[(
A− Ẽ(i−1)

A

)T(
Q

(i)
3

)−1(
y − Ẽ(i−1)

A ξ̂(i−1)
)]

(3.34d)

λ̂(i) =
(
Q

(i)
3

)−1[(
y − Ẽ(i−1)

A ξ̂(i−1)
)
−
(
A− Ẽ(i−1)

A

)
ξ̂(i)

]
(3.34e)

ẽ
(i)
A =

[
QAy −QA

(
ξ̂(i) ⊗ In

)]
λ̂(i) and Ẽ

(i)
A = Invec ẽ(i)

A (3.34f)

until ∥∥∥ξ̂(i) − ξ̂(i−1)
∥∥∥ < δ (3.34g)

for a chosen threshold δ.
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Table 3.2 summarizes the WTLS algorithms presented thus far:

Table 3.2: Summary of WTLS algorithms

Eq. No. Algorithm Comment
(2.14) Algorithm 1 Same as eq. 4.25 (“Algorithm 2”) of Fang [2011]. 1

(2.18) Algorithm 2 Same as eq. 4.26 (“Algorithm 3”) of Fang [2011].
(3.33) Algorithm 3 Handles both cross-correlation (QyA 6= 0) and singular

cofactor matrices (singular Q1); new in this contribu-
tion.

1See also Mahboub [2012].
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Chapter 4: Analytical Comparisons Between the
Least-Squares Solutions within the EIV and Gauss-Helmert

Models

In this chapter the Gauss-Helmert model (GHM) is reviewed, and some relations
between solutions within the GHM and the errors-in-variables (EIV) model are pre-
sented. First, the EIV model (2.1) is rewritten in (4.1) with a slight variation in
notation, following Schaffrin and Snow [2010], so as to clearly distinguish between
symbols used for the EIV and Gauss-Helmert models.

y = (X − EX)︸ ︷︷ ︸
k×m

·βµ + ey,
[
ey

vecEX

]
∼ (

[
0
0

]
, σ2

0

 Qy
k×k

QyX

QXy QX
km×km

 = σ2
0Q) (4.1)

The meanings of the terms used in (4.1) should be clear from the descriptions
immediately following (2.1). By introducing new symbols

Y := vec
[
y, X

]
, e := vec

[
ey, EX

]
, Ξ := βµ, (4.2)

the EIV model (4.1) may be written as

b(Y − e︸ ︷︷ ︸
n×1

, Ξ︸︷︷︸
m×1

) :=
[
Ik, −(Ξ⊗ Ik)T

] [ y − ey
vec(X − EX)

]
= 0, e ∼ (0, σ2

0 P
−1︸︷︷︸

n×n

), (4.3)

where b : Rm+n ⇒ Rm+r denotes a given multivariate nonlinear function. Further-
more, n = k(m + 1) is the total number of observations (assuming no fixed columns
of X), and P is the n × n weight matrix such that P = Q−1, assuming Q has full
rank. Finally, r stands for the redundancy of the model, with r ≤ n − m. In this
form, (4.3) represents the nonlinear Gauss-Helmert model, following Helmert [1907].
Obviously, then, the EIV model can be classified as a nonlinear GHM.

By introducing the “true” n× 1 vector of observables

µ := Y − e = E{Y }, (4.4)
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the least-squares objective for model (4.3) is defined by

eTPe = (Y − µ)TP (Y − µ) = min subject to b(µ,Ξ) = 0. (4.5)

The solution resulting from (4.5), though it minimizes the weighted squared sum
of all random errors, will herein be called the least-squares solution (LESS) within
the GHM to distinguish it from the WTLS solutions within the EIV model derived
in the previous chapters.

4.1 Iterative linearization of the Gauss-Helmert model

The solution resulting from (4.5) can be determined by iterative linearization of the
model (4.3) with subsequent standard least-squares approximation. The linearization
scheme of Schaffrin and Snow [2010] is shown in Algorithm 4, where subscripts are
used for the expansion point of the iterative linearization, and superscripts are used
with the coefficient matrices and residual vector.
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Algorithm 4 For the iterative linearization of the GHM, and the associated LESS
repeat for j ∈ N0

Step 1: Use the truncated Taylor series about (µj,Ξj), namely[
∂b

∂µT

∣∣∣
µj ,Ξj

,
∂b

∂ΞT

∣∣∣
µj ,Ξj

]
·
[
µ− µj
Ξ−Ξj

]
+ b

(
µj,Ξj

)
= 0, (4.6a)

introduce an initial approximation Ξ0 for Ξj, and replace µ with Y − e, in accor-
dance with (4.4), to introduce

ξj+1
m×1

:= Ξ−Ξj, A(j)
(m+r)×m

:= − ∂b

∂ΞT

∣∣∣
µj ,Ξj

, B(j)
(m+r)×n

:= ∂b

∂µT

∣∣∣
µj ,Ξj

, (4.6b)

wj
(m+r)×1

:= b(µj,Ξj) +B(j) · (Y − µj) ≈ b(Y ,Ξj), µ0 := Y − 0˜, (4.6c)

and to form the linearized GHM:

wj = A(j)ξj+1 +B(j)e, e ∼ (0, σ2
0P
−1). (4.6d)

. Here it is noted
that matrix A(j) has full column rank, and matrix B(j) has full row rank. It is also
noted that 0˜ denotes a “random zero vector” (or vector of “pseudo-observations”)
of suitable size, in accordance with the notion in Harville [1986].

Step 2: Produce the (j + 1)-th least-squares solution for (4.6d), following Koch
[1999], e.g., namely:

ξ̂j+1 =
[(
A(j)

)T [
B(j)P−1

(
B(j)

)T ]−1
A(j)

]−1(
A(j)

)T [
B(j)P−1

(
B(j)

)T ]−1
wj, (4.6e)

ẽ(j+1) = P−1
(
B(j)

)T [
B(j)P−1

(
B(j)

)T ]−1(
wj − A(j)ξ̂j+1

)
. (4.6f)

Step 3: Obtain new approximate values (non-random) through:

Ξj+1 := Ξ̂(j+1) − 0˜ = Ξj + ξ̂j+1 − 0˜, (4.6g)

µj+1 := µ̂(j+1) − 0˜ = Y − ẽ(j+1) − 0˜. (4.6h)

. Note that the use of the random zero vector 0˜ means that
the j-th (approximate) estimates are stripped of their randomness while retaining
their numerical values.
until ∥∥∥ξ̂j+1

∥∥∥ < δ and
∥∥∥ẽ(j+1) − ẽ(j)

∥∥∥ < ε (4.6i)

for chosen thresholds δ and ε.
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After the condition (4.6i) of Algorithm 4 is fulfilled for ξ̂j+1 and ẽ(j+1), the respec-
tive Mean Squared Error (MSE) and dispersion matrices are obtained in first-order
approximation via:

D{Ξ̂ := Ξj + ξ̂j+1} = σ2
0

[(
A(j)

)T [
B(j)P−1

(
B(j)

)T ]−1
A(j)

]−1
≈ MSE{Ξ̂} (4.7a)

and
MSE{ẽ} = D{ẽ− e} = D{e} −D{ẽ}, (4.7b)

with
D{ẽ := ẽj+1} = P−1

(
B(j)

)T [
B(j)P−1

(
B(j)

)T ]−1
×

×
[
B(j)D{e}

(
B(j)

)T
− A(j)D{Ξ̂}

(
A(j)

)T ][
B(j)P−1

(
B(j)

)T ]−1
B(j)P−1, (4.7c)

while the variance component is estimated by

σ̂2
0 = r−1 ·wT

j

[
B(j)P−1

(
B(j)

)T ]−1(
wj − A(j)ξ̂j+1

)
. (4.8)

It is worth noting that Algorithm 4 conforms to the recommendations by Pope
[1972], who pointed out some “pitfalls” risked by taking short cuts in the iterative
adjustment of nonlinear problems. The main points made by Pope and treated in
this algorithm are the following:

1. The coefficients for A(j) and B(j) are evaluated at the most recent adjusted
values of all parameters and observables.

2. The vector wj does not necessarily have the form b(Y ,Ξj), except at the first
iteration, although it might be a numerically sufficient approximation.

3. In general, the second term of wj := b(µj,Ξj) +B(j) · (Y −µj) for j > 0 does
not vanish numerically.

4. The vectors Ξj and µj are updated differently. Ξj is updated by adding the
estimated corrections ξ̂j+1 to the solution from the previous iteration (and sub-
tracting the random zero vector, at least theoretically), whereas µj is updated
by subtracting the newly predicted error vector ẽj+1 from the observation vec-
tor Y (and then subtracting the random zero vector), not by subtracting from
the adjusted observation vector of the previous iteration.

4.2 Analytical comparisons between the least-squares solu-
tions within the EIV and Gauss-Helmert Models

The main objective in this section is to compare Algorithm 2, developed within
the EIV model, to Algorithm 4, which was developed within the GHM. Fang [2011]
has made some comparisons already. Prior to his work, Schaffrin and Snow [2010]
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had shown already that the (quasilinear) EIV model could be classified as a nonlinear
GHM, whereas Neitzel and Petrovic [2008] made comparisons at the adjustment (i.e.,
numerical) level in showing that the LESS within the GHM generated the same
optimally fitted 2-D line as other TLS approaches. Here this topic is explored in a
little further detail with the aim of better understanding similarities and differences
between the models that Algorithms 2 and 4 were developed within.

In this context, comparisons between the models mean that each model represents
the same underlying physical phenomenon that the data are generated by. (Note that
models are said to generate the data, not vice versa [see Rao et al., 2008, page 3].)
The investigation is restricted to problems where the measurement variables in the
EIV model appear only in linear form, which is consistent with the description of the
data matrix on page 14. It is also assumed that the data matrix X has full column
rank; thus, the redundancy r of the EIV model satisfies r = k−m, implying that the
number of rows of the matrix B in the GHM is m+ r = k.

Here the data matrix X in the EIV model (4.1) is considered as a matrix of
observations, though one or more columns could be constant in some cases. In
any case, it obviously contains coefficients of the unknown parameter vector Ξ.
Likewise, the matrix A in the GHM also contains coefficients of the unknown pa-
rameter vector Ξ, as indicated in Step 1 of Algorithm 4. These coefficients of A
also represent measurement variables, since we presently focus exclusively on prob-
lems where measurement variables appear only in linear form (e.g., line fitting and
plane fitting), as opposed to other problems of higher degree in the measurement
variables (e.g., conic sections). In such cases, the matrix X in the EIV model
(4.1) is numerically identical to the initial matrix A(0) in the GHM (4.6b), since
A(0) = (X − EX)

∣∣
µ0

= X − 0̃, with 0̃ as “random zero matrix.” For j ∈ N, the
matrices A(j) become A(j) = (X − EX)

∣∣
µj

= (X − Ẽ
(j)
X ) − 0̃, in accordance with

(4.6b).
Using the notation for the EIV-model presented in (4.1), equations (2.10b) and

(3.20d) for the matrices Q(j)
1 are replaced by

Q
(j)
1 := Qy −QyX

(
Ξj ⊗ Ik

)
−
(
Ξj ⊗ Ik

)T
QXy +

(
Ξj ⊗ Ik

)T
QX

(
Ξj ⊗ Ik

)
. (4.9)

Likewise, the normal equations (2.18) may be rewritten as
[(
X − ẼX

)T
Q−1

1

(
X − ẼX

)]
Ξ̂ =

(
X − ẼX

)T
Q−1

1

(
y − ẼXΞ̂

)
, (4.10a)

or, equivalently, as[(
A(j) + 0˜

)T
(Qj

1)−1
(
A(j) + 0˜

)]
Ξ̂(j) =

(
A(j) + 0˜

)T
(Qj

1)−1
(
y − Ẽ(j−1)

X · Ξ̂(j−1)
)

(4.10b)

for j ∈ N.
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Now the matrix product BQBT from Algorithm 4 is compared to the matrix Q1 of
Algorithm 2. By definition, the matrix B(j) of (4.6b) is comprised of the first partial-
derivatives of the nonlinear function b with respect to the true observables µ = Y −e,
which in the current context will then be comprised of an identity matrix associated
with the vector of observables y−ey and a second matrix containing the approximate
parameters Ξ̂ − 0̃ (with opposite sign) associated with the corrected data matrix
X − EX , as shown in the EIV model (4.1). That is, B(j) can be expressed as

B(j) =
[
Ik, −

(
Ξj ⊗ Ik

)T ] with j ∈ N0, (4.11)

leading to the product

B(j)Q(B(j))T =
[
Ik, −

(
Ξj ⊗ Ik

)T ]
 Qy
k×k

QyX

QXy QX
km×km


 Ik
−
(
Ξj ⊗ Ik

) , (4.12)

which when multiplied out gives

B(j)Q(B(j))T = Qy −QyX

(
(Ξ̂(j) − 0˜)⊗ Ik

)
−
(
(Ξ̂(j) − 0˜)⊗ Ik

)T
QXy

+
(
(Ξ̂(j) − 0˜)⊗ Ik

)T
QX

(
(Ξ̂(j) − 0˜)⊗ Ik

)
,

(4.13)

thereby showing numerical coincidence with Q
(j)
i in (4.9). It is again noted that

Ξj denotes the approximate, non-random value (i.e., the expansion point) of the
parameter vector Ξ at the j-th iteration, whereas Ξ̂(j) denotes the estimated (and
therefore random) parameter vector at the j-th iteration, both in accordance with
(4.6g).

Therefore, for the types of underlying functional models that have been considered
in this section, namely those that can be treated by the EIV model described in
Chapter 2, it has been shown that the matrices Q(j)

1 in the algorithms for the WTLS
within the EIV model correspond to the matrices B(j)Q(B(j))T in the algorithms
for the LESS within the GHM, as long as they are evaluated at the same values
for the estimated, resp. approximate parameters. These numerical equivalencies are
shown for specific problems in §6.1.3 and §6.2.1 for 2-D line-fitting and 2-D similarity
transformations, respectively.

Now let us compare the matrices A(j) in Algorithm 4, where the the superscript j
denotes their evaluation at the jth iteration of the model, to the matrix differenceX−
Ẽ

(j)
X . It was already stressed that A(j) must be evaluated at the current expansion

point for the measurement variables, as implied by (4.6h), namely the measured values
minus the residuals minus the random zero vector. But for the type of underlying
functions considered here, this is nothing more than X − Ẽ(j)

X − 0̃ in the EIV model.
Thus, the numerical connection between A(j) + 0̃ in the LESS algorithm within the
GHM and X − Ẽ(j)

X in the WTLS algorithm within the EIV model has been made.
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It is easy to verify this numerical equivalence, which will be done in the experiments
of Chapter 6.

Up to now, all the terms in the LESS within the GHM have been compared to
the corresponding terms in the WTLS within the EIV model, except for the so-called
misclosure vectors, which appear aswj in the LESS-GHM (4.6e) and as y−ẼXΞ̂ in the
WTLSS-EIV (4.10a). The relationship between these two terms will be established
in the following:

Firstly, from (4.6c), in conjunction with (4.3), we obtain

wj =
[
Ik, −(Ξj ⊗ Ik)T

]  y − ẽ(j)
y − 0̃

vec(X − Ẽ(j)
X − 0̃)

+B(j)

 ẽ(j) + 0̃
vec(Ẽ(j)

X + 0̃)

 =

=
[
Ik, −(Ξj ⊗ Ik)T

] [ y
vecX

]
= y −

(
A(j) + Ẽ

(j)
X + 0̃

)
·Ξj,

(4.14a)

or, equivalently,

wj + A(j) ·Ξj = y −
(
Ẽ

(j)
X + 0̃

)(
Ξ̂(j) − 0˜

)
. (4.14b)

Secondly, it follows from (4.6e), (4.6g), and (4.14b) that

Ξ̂(j+1) =
[
(A(j))T

[
B(j)P−1(B(j))T

]−1
A(j)

]−1
(A(j))T

[
B(j)P−1(B(j))T

]−1
×

×
[
y − (Ẽ(j)

X + 0̃) · (Ξ̂(j) + 0̃)
]
,

(4.15)

showing that this solution is similar, but not entirely identical, to (4.10b) under
consideration of (4.13).
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Chapter 5: Weighted Total Least-Squares Collocation

The previous chapters have dealt only with an unknown (and unobservable) pa-
rameter vector ξ of type fixed effects. In this chapter, stochastic prior information
is admitted for the parameter vector such that it becomes a vector of random ef-
fects, now denoted by x. The model that incorporates stochastic prior information
for the parameter vector x is called the random effects model (REM). First a review
of the traditional REM is presented, and then the EIV model is modified to include
stochastic prior information.

The revised model is called the errors-in-variables with random effects model
(EIV-REM) as introduced by Schaffrin [2009], but now with consideration of arbi-
trary cofactor matrices, including cross-correlation between certain cofactor matrices.
The least-squares predictor within the REM can be said to belong to the class of pre-
dictors called least-squares collocation, a predictor originally developed by Moritz in
the early 1960’s for the purpose of combining various geodetic data types in order to
predict functions of the Earth’s gravity field; see, e.g., Heiskanen and Moritz [1967] or
Moritz [1970]. The work by Krarup [1969] also advanced the concept of least-squares
collocation, as emphasized by Borre in the Preface to Krarup [2006].

5.1 Brief review of the random effects model (REM) and
least-squares collocation

Following Schaffrin [2001], for instance, the random effects model (REM) is defined
as

y = Ax+ e,
β0 = x+ e0,

[
e
e0

]
∼ (

[
0
0

]
, σ2

0

[
P−1 0

0 Q0

]
), (5.1)

with
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y the n× 1 observation vector,
x the m× 1 (unknown) random effects vector,
A the n×m (known) non-random coefficient matrix of rank q ≤ min{m,n},
e the n× 1 (unknown) random error vector associated with y,
β0 the m× 1 vector of (given) expected values β0 = E{x},
e0 the m× 1 vector of (unknown) random errors of the prior information,
σ2

0 the (unknown) variance component,
P the n × n symmetric positive-definite weight matrix associated with y,

such that P−1 = Q, with Q being the cofactor matrix, and
Q0 the m × m symmetric positive-(semi)definite (or nnd) cofactor matrix

associated with x.

No correlations between e and e0 are introduced, as they are assumed to come from
completely different sources in most cases. Furthermore, it is assumed that they share
a common variance component σ2

0. Note that, in contrast to the previously presented
models, the coefficient matrixA could be rank deficient, whereas the cofactor matrixQ
is assumed to be non-singular, though the cofactor matrix Q0 could be singular.

According to Schaffrin [2001], an inhomogeneous linear predictor x̃, called the
inhomBLIP of x, can be derived based on the principle of minimum mean-squared
error. The predictor is known to be weakly unbiased based on the equality E{x̃} =
β0 = E{x}. An equivalent linear predictor can be derived from the principle of
weighted least-squares by forming the Lagrange target function

φ(x) = (y − Ax)TP (y − Ax) + (β0 − x)TQ−1
0 (β0 − x) = min

x
. (5.2)

Note that the matrix Q0 is shown to be nonsingular in the target function, a
requirement that will be removed in the final step of the derivation. Defining the
terms [N, c] := ATP [A,y], the Euler-Lagrange (first-order) necessary condition is

1
2
∂φ

∂x
= −c+N x̃−Q−1

0 β0 +Q−1
0 x̃

.= 0, (5.3)

with the sufficient condition for minimization provided by

1
2

∂2φ

∂x∂xT
= N +Q−1

0 , (5.4)

which is positive-definite as long as the augmented matrix [AT |Q0] has full row
rank m. The normal equations are then written as(

N +Q−1
0

)
x̃ = c+Q−1

0 β0, (5.5a)
or (Im +Q0N) x̃ = β0 +Q0c, (5.5b)
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the second of which is valid for an either singular or nonsingular matrix Q0. The
normal equations lead to

x̃ =
(
N +Q−1

0

)−1
(c+Q−1

0 β0) = (5.6a)

= β0 +Q0 (Im +NQ0)−1ATP (y − Aβ0) (5.6b)

for the least-squares predictor within the REM, which is also called least-squares
collocation. Note that (5.6b) appears as an update to the given prior-information
vector β0.

Since the expectation of c is E{c} = ATPE{y} = Nβ0, then indeed we find the
predictor x̃ to be weakly unbiased due to

E{x̃} = β0 = E{x}, (5.7)

which leads to the mean-square prediction error

MSE{x̃} = D{x̃− x} = σ2
0

(
N +Q−1

0

)−1
= σ2

0Q0 (Im +NQ0)−1 , (5.8)

where D{·} denotes the dispersion (or variance) of its argument.
Analytically, the predictor x̃ also can be expressed as a combination of the first

and second statistical moments of the true (but unknown) variables x and y:

x̃ = E{x}+ C{x,y} · [D{y}]−1(y − E{y}), (5.9a)
with C{x,y} = σ2

0Q0A
T and D{y} = σ2

0

(
P−1 + AQ0A

T
)
, (5.9b)

where C{·, ·} denotes the covariance of its arguments.
The predicted residual vectors ẽ and ẽ0 are then given by

ẽ0 = β0 − x̃ = −Q0ν̂
0 for ν̂0 := (Im +NQ0)−1 (c−Nβ0), (5.10a)

ẽ = y − Ax̃ =
[
In − AQ0 (Im +NQ0)−1ATP

]
(y − Aβ0)⇒ ATP ẽ = ν̂0, (5.10b)

which permits the estimated variance component

σ̂2
0 = n−1 ·

(
ẽTP ẽ+ (ν̂0)TQ0ν̂

0
)

= n−1 ·
(
yTPy − cT x̃− βT0 ν̂0

)
(5.11)

to be formed without inversion of the matrix Q0.

5.2 The EIV with random effects model (EIV-REM)

Certain problems with measurement variables appearing in both the observation
vector y and in the coefficient matrix A are best treated by the errors-in-variables
with random effects model (EIV-REM) when stochastic prior information for the
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parameters is available. Such a model is formed by combining the EIV model of (2.1)
with the REM of (5.1) as follows:

y = (A− EA)x+ ey,
β0 = x+ e0,

eyeA
e0

 ∼ (

00
0

 , σ2
0

 Qy QyA 0
QAy QA 0

0 0 Q0

). (5.12)

All the terms of (5.12) have been defined already in the lists following (2.1) and (5.1),
so those definitions are not repeated here. However, it is noted that here both the
coefficient (data) matrix A and the prior-information cofactor matrix Q0 could be
rank deficient, as long as [AT |Q0] has full row rank m.

5.2.1 Total least-squares collocation (TLSC)
Consistent with previous chapters, the predictor x̃ of the unknown random effects

vector x is derived from the principle of least squares:

eTy P11ey + 2eTy P12eA + eTAP22eA + eT0Q−1
0 e0 = min, (5.13)

subject to the model (5.12), leading to the Lagrange target function

φ(ey, eA, e0,λ) = eTy P11ey + 2eTy P12eA + eTAP22eA + eT0Q−1
0 e0+

+ 2λT
(
y − Aβ0 − ey +

(
βT0 ⊗ In

)
eA + Ae0 − EAe0

)
= stationary,

(5.14)

where λ is an n×1 vector of Lagrange multipliers and Q0 is momentarily assumed to
be nonsingular. The weight matrix P =

[
P11 P12
P21 P22

]
has already been defined in (2.2).

The first-order partial derivatives of φ, set to zero and evaluated at ẽy, ẽA, ẽ0, λ̂,
provide the Euler-Lagrange necessary conditions

1
2
∂φ

∂ey
= P11ẽy + P12ẽA − λ̂

.= 0, (5.15a)

1
2
∂φ

∂eA
= P21ẽy + P22ẽA +

(
β0 ⊗ In

)
λ̂−

(
ẽ0 ⊗ In

)
λ̂
.= 0, (5.15b)

1
2
∂φ

∂e0
= Q−1

0 ẽ0 + AT λ̂− ẼT
Aλ̂

.= 0, (5.15c)

1
2
∂φ

∂λ
= y − Aβ0 − ẽy + ẼAβ0 + (A− ẼA)ẽ0

.= 0, (5.15d)

which are manipulated algebraically below in order to derive the predictor x̃.
Substituting (5.15b) into (5.15a) and then, vise versa, substituting (5.15a) into

(5.15b), leads to the residual (predicted error) vectors

ẽy =
(
P11 − P12P

−1
22 P21

)−1[
P12P

−1
22

(
[β0 − ẽ0]⊗ In

)
+ In

]
λ̂, (5.16)

ẽA = −
(
P22 − P21P

−1
11 P12

)−1[
P21P

−1
11 +

(
[β0 − ẽ0]⊗ In

)]
λ̂, (5.17)
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which, upon applying the relations (2.8), permits the predicted error vectors ẽy and ẽA
to be written in terms of the cofactor matrices and the estimated Lagrange multipliers:

ẽy =
[
−QyA

(
[β0 − ẽ0]⊗ In

)
+Qy

]
λ̂, (5.18)

ẽA =
[
QAy −QA

(
[β0 − ẽ0]⊗ In

)]
λ̂. (5.19)

For compactness, substitute x̃ for β0 − ẽ0, and then combine (5.15d), (5.18), and
(5.19) to arrive at

y − Ax̃ = ẽy − (x̃⊗ In)T ẽA =
=
[
Qy −QyA(x̃⊗ In)− (x̃⊗ In)TQAy + (x̃⊗ In)TQA(x̃⊗ In)

]
λ̂ = (5.20a)

= Q1λ̂,with
Q1 :=

[
Qy −QyA(x̃⊗ In)− (x̃⊗ In)TQAy + (x̃⊗ In)TQA(x̃⊗ In)

]
. (5.20b)

If Q1 is nonsingular, though neither Qy nor QA would necessarily have to be
nonsingular, then

λ̂ = Q−1
1 (y − Ax̃), if Q−1

1 exists. (5.21)
Continuing under the assumption that both Q−1

1 and Q−1
0 exist, and using (5.15c),

we can write

AT λ̂ = ẼT
Aλ̂−Q−1

0 ẽ0 = (5.22a)
= ẼT

AQ
−1
1 (y − Aβ0) +

(
ẼT
AQ
−1
1 A−Q−1

0

)
ẽ0 = (5.22b)

= ATQ−1
1 (y − Aβ0) + ATQ−1

1 Aẽ0. (5.22c)

Then subtracting (5.22b) from (5.22c) leads to the normal equations[
(A− ẼA)TQ−1

1 A+Q−1
0

]
ẽ0 = −(A− ẼA)TQ−1

1 (y − Aβ0), (5.23a)[
(A− ẼA)TQ−1

1 (A− ẼA) +Q−1
0

]
ẽ0 = −(A− ẼA)TQ−1

1 (y − (A− ẼA)β0 − ẼAx̃).
(5.23b)

Solving for the predicted error vector yields

ẽ0 = −
[
(A− ẼA)TQ−1

1 (A− ẼA) +Q−1
0

]−1
(A− ẼA)TQ−1

1 (y − (A− ẼA)β0 − ẼAx̃) ,
(5.24)

or for the predicted vector of random effects

x̃ = β0 +
[
(A− ẼA)TQ−1

1 (A− ẼA) +Q−1
0

]−1
·

· (A− ẼA)TQ−1
1 (y − Aβ0 + ẼAẽ0) =

(5.25a)

= β0 +Q0
[
Im + (A− ẼA)TQ−1

1 (A− ẼA)Q0
]−1
·

· (A− ẼA)TQ−1
1 (y − Aβ0 + ẼAẽ0),

(5.25b)
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which provide update formulas with respect to the prior information β0. The predic-
tion x̃ of the random effects vector x by (5.25a) will herein be called weighted total
least-squares collocation (WTLSC).

After prediction of the random effects vector x and the error vectors ey, eA,
and e0, as well as estimation of the vector of Lagrange multipliers λ, the total sum
of squared residuals (TSSR) can be computed by

Ω =
[
ẽTy , ẽ

T
A

] [P11 P12
P21 P22

] [
ẽy
ẽA

]
+ ẽT0Q−1

0 ẽ0 = (5.26a)

= λ̂T
(
Q1 + (A− ẼA)Q0(A− ẼA)T

)
λ̂, (5.26b)

which provides formulas for an either regular or singular matrix Q0.
§6.4 describes an experiment where the WTLSC predictor is applied to a 2-D line-

fitting problem, using Algorithm 5.
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Algorithm 5 For TLSC within the EIV with random effects model

Step 1: Assign x̃(0) = β0, Ẽ(0)
A = 0, and ẽ(0)

0 = 0.

Step 2:
repeat For i ∈ N, compute

Q
(i)
1 :=

[
Qy −QyA

(
x̃(i−1) ⊗ In

)
−
(
x̃(i−1) ⊗ In

)T
QAy+

+
(
x̃(i−1) ⊗ In

)T
QA

(
x̃(i−1) ⊗ In

)] (5.27a)

if Q0 is regular then

x̃(i) = β0 +
[(
A− Ẽ(i−1)

A

)T(
Q

(i)
1

)−1(
A− Ẽ(i−1)

A

)
+Q−1

0

]−1
×

×
(
A− Ẽ(i−1)

A

)T(
Q

(i)
1

)−1(
y − Aβ0 + Ẽ

(i−1)
A · ẽ(i−1)

0

) (5.27b)

else

x̃(i) = β0 +Q0
[
Im + (A− Ẽ(i−1)

A )T
(
Q

(i)
1

)−1
(A− Ẽ(i−1)

A )Q0
]−1
×

× (A− Ẽ(i−1)
A )T

(
Q

(i)
1

)−1(
y − Aβ0 + Ẽ

(i−1)
A · ẽ(i−1)

0

) (5.27c)

. This equation can also be used when Q0 is regular.
end if

λ̂(i) =
(
Q

(i)
1

)−1[(
y − Ẽ(i−1)

A x̃(i−1)
)
−
(
A− Ẽ(i−1)

A

)
x̃(i)

]
(5.27d)

ẽ
(i)
A =

[
QAy −QA

(
x̃(i) ⊗ In

)]
λ̂(i) and Ẽ

(i)
A = Invec ẽ(i)

A (5.27e)

ẽ
(i)
0 = β0 − x̃(i) (5.27f)

until ∥∥∥x̃(i) − x̃(i−1)
∥∥∥ < δ (5.27g)

for a chosen threshold δ.
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5.2.2 The special case of iid data within the EIV-REM
In some applications, the measurement data are independent and identically dis-

tributed (iid), while the distribution of the prior information may remain quite arbi-
trary. In fact, the assumption of iid data within the EIV model is fairly common in
the literature, where very often the error distribution is assumed to be characterized
by the dispersion matrix σ2

0 ·In(m+1); see Van Huffel and Vandewalle [1991, p. 230 and
assumption (8.6)] or Markovsky et al. [2010, Eqs. (2) and (3)], for example. There-
fore, it is worthwhile to show how the development from the preceding section can be
simplified somewhat when the data are iid. Rather than repeat every step in detail,
only some highlights are given.

The EIV-REM with iid data is provided by

y = (A− EA)x+ ey,
β0 = x+ e0,

eyeA
e0

 ∼ (

0
0
0

 , σ2
0

In 0 0
0 Imn 0
0 0 Q0

), (5.28)

where eA is the vectorized form of EA as before.
Here the dispersion D{eA} = σ2

0Imn could actually be reduced by use of a singular
selection matrix S, such that σ2

0(S ⊗ In) := σ2
0

[
I(m−c)n 0

0 0

]
, where c is the number of

fixed columns in A. This would require no special treatment as long as the matrix Q1
defined in (5.31) remains nonsingular.

Temporarily assuming that the cofactor matrix Q0 is nonsingular, the Lagrange
target function for the least-squares approach can be written as

φ(ey, eA, e0,λ) = eTy ey + eTAeA + eT0Q−1
0 e0+

+ 2λT
(
y − Aβ0 − ey +

(
βT0 ⊗ In

)
eA + Ae0 − EAe0

)
= stationary,

(5.29)

leading to the following Euler-Lagrange necessary conditions:
1
2
∂φ

∂ey
= ẽy − λ̂

.= 0, (5.30a)

1
2
∂φ

∂eA
= ẽA +

(
β0 ⊗ In

)
λ̂−

(
ẽ0 ⊗ In

)
λ̂
.= 0, (5.30b)

1
2
∂φ

∂e0
= Q−1

0 ẽ0 + AT λ̂− ẼT
Aλ̂

.= 0, (5.30c)

1
2
∂φ

∂λ
= y − Aβ0 − ẽy + ẼAβ0 + (A− ẼA)ẽ0

.= 0. (5.30d)

The matrix Q1 of (5.20b) reduces to

Q1 =
[
In +

(
x̃T ⊗ In

)
Imn

(
x̃⊗ In

)]
= (1 + x̃T x̃)In, (5.31)

unless the coefficient matrix A has fixed columns, meaning that ẼA has the corre-
sponding columns fixed to zero. In that case, the quadratic term x̃T x̃ would be
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reduced to x̃TSx̃ so as not to contain elements associated with the fixed columns.
For example, if the last c columns of A are fixed, then Q1 becomes

Q1 =
[
In +

(
x̃T ⊗ In

)([I(m−c)n 0
0 0

]
⊗ In

)(
x̃⊗ In

)]
=
(
1 +

m−c∑
i=1

x̃2
i

)
In. (5.32)

For the balance of this section, it is assumed that A has no fixed columns, and thus
equation (5.31) applies rather than equation (5.32). (Obviously, this restriction would
be unnecessary if the selection matrix S is used, with Im as a particular choice.)

Using (5.31) in (5.21), the estimator for the unknown vector of Lagrange multi-
pliers λ becomes

λ̂ = 1
(1 + x̃T x̃)(y − Ax̃) , (5.33)

resulting in the predicted errors from (5.30b), namely

ẽA = −(x̃⊗ In)λ̂⇒ ẼA = −λ̂x̃T . (5.34)

Revising equation (5.23a) with equations (5.31) and (5.34) yields[
(A− ẼA)TA+ (1 + x̃T x̃)Q−1

0

]
ẽ0 = −(A− ẼA)T (y − Aβ0) (5.35)

as the normal equations for the iid case, which, upon adopting [N, c] = AT [A, y],
can be reduced to

−(1 + x̃T x̃)Q−1
0 ẽ0 = c−N x̃− ẼT

A(y − Ax̃)⇒ (5.36a)
c−N x̃+Q−1

0 ẽ0 = −(x̃T x̃)Q−1
0 ẽ0 + ẼT

A(y − Ax̃). (5.36b)

Now using the relations ẽ0 = β0− x̃ and ẼT
A = −x̃λ̂T , a summary of the formulas

for the predicted random effects vector x̃ for the case where Q−1
0 exists is given by

(c+Q−1
0 β0)− (N +Q−1

0 )x̃ =
= −(x̃T x̃)Q−1

0 ẽ0 − x̃(1 + x̃T x̃)−1(y − Ax̃)T (y − Ax̃) = (5.37a)
= −ν̂ · x̃+ (x̃T x̃) · ν̂0,

where ν̂ := (1 + x̃T x̃)−1(y − Ax̃)T (y − Ax̃), (5.37b)
and ν̂0 := −Q−1

0 ẽ0, (5.37c)

which is in agreement with Schaffrin [2009]. In the case that Q0 is singular, the
following alternative system of equations can be used:

(c−Nβ0)− [(1 + x̃T x̃)Im +NQ0]ν̂0 = −ν̂ · x̃, (5.38a)
where ν̂ := (1 + x̃T x̃)−1(y − Ax̃)T (y − Ax̃), (5.38b)
and x̃ = β0 +Q0ν̂

0. (5.38c)
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The predictor x̃ of the random effects vector x has been called total least-squares
collocation (TLSC) by Schaffrin [2009] and can be extracted from the following algo-
rithm:

Algorithm 6 For TLSC within the EIV with random effects model having iid data

Step 1: Assign x̃(0) = β0 and construct an m × m diagonal selection matrix S
having a 0 at every diagonal element that corresponds to a fixed column in the
matrix A and 1 at the other diagonal elements.

Step 2:
repeat For i ∈ N, compute

ν̂(i) =
(
1 + (x̃(i−1))T · S · x̃(i−1)

)−1(
y − Ax̃(i−1)

)T(
y − Ax̃(i−1)

)
(5.39a)(

ν̂0
)(i)

=
[(

1 + (x̃(i−1))T · S · x̃(i−1)
)
Im +NQ0

]−1(
c−Nβ0 + ν̂(i) · S · x̃(i−1)

)
(5.39b)

x̃(i) = β0 +Q0 ·
(
ν̂0
)(i)

(5.39c)

. Here [N, c] := AT [A, y].
until ∥∥∥x̃(i) − x̃(i−1)

∥∥∥ < δ (5.39d)

for a chosen threshold δ.

Step 3: Compute the residual vectors and the total sum of squared residuals (TSSR)
as follows:

ẽy =
(
1 + x̃T · S · x̃

)(
y − Ax̃

)
(5.39e)

ẼA = −ẽy · S · x̃, ẽA = vec ẼA (5.39f)
ẽ0 = β0 − x̃ (5.39g)

Ω = ν̂ +
(
ν̂0
)T
·Q0 · ν̂0 (5.39h)

. The variables x̃, ν̂, and ν̂0 are shown without iteration superscripts in this step,
implying that the variables from the final iteration of step 2 are to be used.
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Chapter 6: Numerical Applications

The main purpose of this chapter is to show, in a straight-forward way, how
to apply key formulas from the earlier chapters, where the material is somewhat
abstract in nature. Thus, the problems presented here are kept relatively basic in
order to facilitate this objective. Experiments in 2-D line-fitting and 2-D similarity
transformations show how to apply the algorithms presented in Chapters 2, 3, and 5 to
typical problems in geodetic science. Indeed, 2-D line-fitting (and regression analysis
in general) is an applied problem that arises in practically every branch of science
and engineering as well as in the social sciences and in economics.

6.1 2-D line-fitting

Algorithms 1, 2, and 3 were applied by fitting a 2-D line to data presented by
Neri et al. [1989], listed here in Table 6.1. Following Schaffrin and Wieser [2008], the
EIV model for fitting a 2-D line with slope parameter ξ1 and intercept parameter ξ2
to n measured coordinate pairs (xi, yi) is given by

yi − eyi
= ξ1 · (xi − exi

) + ξ2, i = 1, . . . , n, (6.1a)
ey
n×1

:= [eyi
] ∼ (0, σ2

0Qy), ex
n×1

:= [exi
] ∼ (0, σ2

0Qx), C{ey, ex} = σ2
0Qyx, (6.1b)

or, in matrix form,

y − ey =
(
[x, 1]

=:A
− [ex, 0]

=:EA

)
ξ = [A− EA]︸ ︷︷ ︸

n×2

ξ, (6.2a)

[
ey

eA := vecEA

]
∼ (0, σ2

0Q). (6.2b)
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With m = 2, the n(m+ 1)× n(m+ 1) cofactor matrix Q is defined as

Q
3n×3n

:=

 Qy
n×n

QyA

QAy QA

 , (6.3a)

with QA
2n×2n

:=
[
1 0
0 0

]
⊗ Qx

n×n
and QyA

n×2n
=
[
Qyx, 0

]
, (6.3b)

⇒ Q =

Qy Qyx 0
Qxy Qx 0

0 0 0

 n
n
n

n n n

. (6.3c)

The n× n matrix Qy is the cofactor matrix for the dependent variables (yi-coor-
dinates), and the n × n matrix Qx is the cofactor matrix for the independent vari-
ables (xi-coordinates), whereas Qxy = QT

yx reflects the correlation between the xi-
and yi-coordinates. The column and row of zeros in Q are due to the y-intercept
parameter ξ2, which has no measurement-variables associated with it, as reflected by
the column of zeros in EA.

The independently measured coordinates (xi, yi) and their associated weights
(1/σ2

xi
, 1/σ2

yi
) are listed together in Table 6.1, where the data are given without units.

The complete cofactor matrix is constructed from the inverse of the weights shown
in Table 6.1 as[

Qy Qyx

Qxy Qx

]
=
[
Qy 0
0 Qx

]
= Diag

([
σ2
y1 , . . . , σ

2
yn
, σ2

x1 , . . . , σ
2
xn

])
, n = 10, (6.4)

which furnishes the nonzero blocks of the matrix Q in (6.3c).
Apparently the data presented by Neri et al. [1989] have been in use for quite

some time. The coordinates were originally presented by Pearson [1901], while the
weights were introduced by York [1966], who acknowledged that these may seem like
“somewhat extreme conditions of weighting” but claimed that similar weights were
encountered in his particular work. Though the weights may indeed seem “somewhat
extreme” for geodetic applications, they are acceptable for the purposes of this study.

Several cases were investigated in which correlation was added to the diagonal
cofactor matrix shown in (6.4). In each case the TLS solution was compared to
the least-squares solution within the Gauss-Helmert model (GHM) generated from
Algorithm 4. For sake of space, only two cases are reported here. The first case treats
cross-correlation between the non-singular cofactor matrices Qx and Qy such that the
n×n matrix Q1 (defined in (2.10b)) is also non-singular. The second case treats both
cross-correlation and singularities in Qx and Qy such that Q1 is also singular.

In both cases the initial parameter approximations are taken from the column
labeled GLS in Table 2 of Schaffrin and Wieser [2008], which is the generalized least-
squares solution obtained by treating the x-coordinates as errorless and using the
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Table 6.1: Neri’s Data for 2-D line-fitting: coordinate pairs (xi, yi) and corresponding
weights (1/σ2

xi
, 1/σ2

yi
). All values are considered unitless.

Point No. xi 1/σ2
xi

yi 1/σ2
yi

1 0.0 1.0× 103 5.9 1.0
2 0.9 1.0× 103 5.4 1.8
3 1.8 5.0× 102 4.4 4.0
4 2.6 8.0× 102 4.6 8.0
5 3.3 2.0× 102 3.5 2.0× 10
6 4.4 8.0× 10 3.7 2.0× 10
7 5.2 6.0× 10 2.8 7.0× 10
8 6.1 2.0× 10 2.8 7.0× 10
9 6.5 1.8 2.4 1.0× 102

10 7.4 1.0 1.5 5.0× 102

weights 1/σ2
yi

for the y-coordinates. The resulting initial values are ξ0
1 = −0.611 for

the slope parameter and ξ0
2 = 6.100 for the y-intercept. The convergence criterion δ,

which is required for the last step of the algorithms, was set to δ = 10−10. A model
check was made for both cases, which ensures that

n∑
i=1

(
yi − ẽyi

− ξ̂1 · (xi − ẽxi
)− ξ̂2

)2
≈ 0, (6.5)

where the approximation sign reflects the finiteness of machine precision and the fact
that the convergence criterion δ is nonzero.

6.1.1 Case 1 – nonsingular cofactor matrices
In the first case, (pseudo-)random correlations between individual (xi, yi)-pairs

were introduced so that the submatrices Qxy and Qyx are diagonal, while the sub-
matrices Qx and Qy remain unchanged. Randomness over the interval [−1, 1] was
imposed by use of the MATLAB function rand. The resulting ten correlation coef-
ficients ρxiyi

, associated with the ten respective (xi, yi)-pairs, are listed in Table 6.2.
The relationship between the correlation coefficients ρxiyi

and the cofactors σxiyi
is

given by
ρxiyi

= σxiyi

σxi
σyi

, i = 1, . . . , n, (6.6)

where obviously σxiyi
is the i-th diagonal element of both n×n matrices Qxy and Qyx

and is also the value of the element σ(n+i)i in the matrix Q = [σij] defined in (6.3c).
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Table 6.2: Correlation coefficients for correlated xy-pairs
Variables Numerical values
ρx1y1 . . . ρx5y5 -0.165956 0.440649 -0.999771 -0.395335 -0.706488
ρx6y6 . . . ρx10y10 -0.815323 -0.627480 -0.308879 -0.206465 0.077633

In this case, the diagonal cofactor matrices Qx and Qy and the diagonal cross-
cofactor matrices Qxy = Qyx are all non-singular, and thus Algorithms 1 and 2 are
employed. Both algorithms generated precisely the same solution, which is shown
in Table 6.3. The only difference in their behavior was that Algorithm 1 required
nine iterations to converge, whereas Algorithm 2 required 13. However, this does not
imply that Algorithm 1 is more efficient than Algorithm 2 in general, as several other
variations of the cofactor matrices revealed that sometimes Algorithm 1 took a few
less iterations than Algorithm 2, and sometimes it was the other way around.

Table 6.3: Parameter estimates and TSSR for fitted 2-D line – Case 1

Parameter Estimate
slope -0.45922870
y-intercept 5.35727267
TSSR 16.72548303

The (weighted) TSSR shown in the last line of Table 6.3 was computed using
(2.21c). The model check according to (6.5) was zero within machine precision. The
solutions from both TLS algorithms also agree with the least-squares solution within
the Gauss-Helmert model (LESS-GHM), computed using Algorithm 4, which con-
verged in 16 iterations. Note that the number of digits reported for the parameter
estimates is not meant to reflect their precisions but is merely shown for compari-
son purposes, in case the reader may want to experiment and compare with other
estimators, for example.

The fitted line is plotted in Figure 6.1, where the projections of the data points
onto the fitted line are shown by solid red lines labeled “residuals.” Had the data
been treated as iid, all of these projections would have been perpendicular to the
fitted line (orthogonal regression). Had the x-coordinates been treated as errorless,
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and the errors in y-coordinates as iid, the projections would have been parallel to the
y-axis (ordinary least-squares). Schaffrin and Wieser [2008] showed a similar graph
for their fitted line, which was based on the uncorrelated weights listed in Table 6.1.
The following quote from their paper (p. 419) applies here as well:

The plot clearly shows the impact of the WTLS adjustment where each ob-
served point is projected onto the regression line along a direction resulting
from the ratio of standard errors.

See also Gerhold [1969, footnote number 2]. It is noted that the correlation coefficients
will also play a role in the case studied here.

1 2 3 4 5 6 7 8 9

1
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4

5

6

7
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y Data
Fitted line

Adjusted data
Residuals

Figure 6.1: Fitted 2-D line – Case 1
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6.1.2 Case 2 – singular cofactor matrices
To generate a cofactor matrix

[
Qy Qyx

Qxy Qx

]
that is both full and singular, thereby

causing the matrix Q1 (as defined in (2.10b)) to be singular, correlation coefficients
were computed from the residual dispersion matrix (4.7c) of the least-squares solution
within the Gauss-Helmert model when treating the coordinate-data as iid. Since this
dispersion matrix turns out to be singular, using the correlation coefficients derived
from it, together with the weights in table Table 6.1, will generate a singular cofactor
matrix

[
Qy Qyx

Qxy Qx

]
, resulting in a singular matrix Q1, too. The numerical values for

the correlation coefficients are listed in Appendix A.
Of the three algorithms given in Chapters 2 and 3, only Algorithm 3 can han-

dle a singular matrix Q1, provided the Neitzel/Schaffrin rank condition is satisfied.
(See (3.6b) and Appendix C for details.) Owing to the recent work by Neitzel and
Schaffrin [2012], the solution can also be compared to the least-squares solution within
the Gauss-Helmert model with a singular dispersion matrix.

Table 6.4 shows the solution yielded by Algorithm 3, which converged in five
iterations. The (weighted) TSSR was computed using (2.21c). The model check
according to (6.5) was zero within machine precision. As noted in the previous section,
the number of digits shown for the estimates are not all significant but are shown for
comparison purposes, should anyone want to compare these results to solutions based
on other methods. The TLS solution generated by Algorithm 3 agrees precisely with
the least-squares solution within the Gauss-Helmert model with a singular dispersion
matrix, which also converged in five iterations.

Table 6.4: Parameter estimates and TSSR for fitted 2-D line – Case 2

Parameter Estimate
slope -0.49317262
y-intercept 5.54275204
TSSR 6.04625953

The fitted line is plotted in Figure 6.2, where the projections of the data points
onto the fitted line are shown by solid red lines labeled “residuals.” See the last
paragraph of the preceding section for further discussion about the graph of the
fitted line.
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Figure 6.2: Fitted 2-D line – Case 2

6.1.3 Equivalence between Q1 and BQBT

Here the equivalence between BQBT (LESS-GHM) and Q1 (WTLSS-EIV) is
shown in the context of 2-D line-fitting. Refer to Chapter 4 for a more general
discussion.

The matrix Q1 was defined earlier as

Q1 := Qy −QyA

(
ξ̂ ⊗ In

)
−
(
ξ̂ ⊗ In

)T
QAy +

(
ξ̂ ⊗ In

)T
QA

(
ξ̂ ⊗ In

)
.

Here

QA =
[
1 0
0 0

]
⊗Qx and QyA =

[
Qyx, 0

]
= QT

Ay.

The vector ξ̂ ≈ ξ0 =
[
ξ0

1 , ξ0
2

]T
is used for an initial approximation of the slope

and intercept values, respectively, which leads to

Q1 = Qy −
[
Qyx, 0

] [ξ0
1In
ξ0

2In

]
−
[
ξ0

1In, ξ0
2In

] [Qxy

0

]
+

+
[
ξ0

1In, ξ0
2In

] [Qx 0
0 0

] [
ξ0

1In
ξ0

2In

]
=

= Qy − ξ0
1Qyx − ξ0

1Qxy + ξ0
1Qxξ

0
1 .
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If the same initial approximation vector ξ0 is used in the iterated LESS within
the GHM, it follows that

BQBT =
[
−ξ0

1In, In
] [Qx Qxy

Qyx Qy

] [
−ξ0

1In
In

]
=

= ξ0
1Qxξ

0
1 − ξ0

1Qyx − ξ0
1Qxy +Qy.

Obviously Q1 and BQBT are numerically equivalent when evaluated at the same
approximate value ξ0

1 for the slope parameter. This agrees with the more general
development of §4.2. Note that the intercept parameter ξ0

2 does not factor into the
equations, which is as expected since there are no measurement variables associated
with it.

6.2 2-D similarity transformation

In the 2-D similarity transformation problem, four parameters are estimated for
the purpose of transforming coordinates from a source system (here labeled xy-
coordinate system) to a target system (here labeled XY -coordinate system). The
estimation requires redundant data consisting of observed (or previously estimated)
coordinates in both systems at common reference points, together with the associated
cofactor matrices Qxy and QXY for the source and target systems, respectively. Since
the observed coordinates and their cofactor matrices typically come from different
sources, it is assumed here that there is no cross-correlation between them.

The four parameters for the 2-D similarity transformation are

ξ0, ξ1 for the translation of the coordinate frame,
α for the rotation angle,
ω for the scale factor.

To transform the problem into a (quasi)linear one, two additional intermediary pa-
rameters are defined as ξ2 := ω cosα and ξ3 := ω sinα. The vector of unknown
parameters to estimate is then ξ =

[
ξ0, ξ1, ξ2, ξ3

]T
.

The EIV model for the 2-D similarity transformation, with n/2 pairs of observed
points in both source and target coordinate systems, is given by

y
n×1

:=



X1
Y1
. . .
Xn/2
Yn/2

 =



1 0 x1 −y1
0 1 y1 x1
... ... ... ...
1 0 xn/2 −yn/2
0 1 yn/2 xn/2




ξ0
ξ1
ξ2
ξ3

−


0 0 ex1 −ey1

0 0 ey1 ex1
... ... ... ...
0 0 exn/2 −eyn/2

0 0 eyn/2 exn/2




ξ0
ξ1
ξ2
ξ3

+



eX1

eY1
...

eXn/2

eYn/2


=

(6.7a)
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=
[
A− EA

]
n×m

· ξ + ey, with rkA = m = 4. (6.7b)

The random errors are distributed as[
ey
eA

]
:=
[
ey

vecEA

]
∼ (

[
0
0

]
, σ2

0

[
Qy 0
0 QA

]
), (6.7c)

with

Qy
n×n

:= QXY and QA
nm×nm

:=


0 0 0 0
0 0 0 0
0 0 QA33 QA34

0 0 QA43 QA44

 . (6.7d)

The relationship between the nonzero blocks of QA and the cofactor matrix Qxy

from the source coordinate-system is determined as follows: define a 2 × 2 block-
diagonal transformation matrix T of dimension n × n such that a4 = Ta3, where
a3 and a4 are the third and fourth columns, respectively, of the data matrix A =[
a1, a2, a3, a4

]
. The matrix T is then given by

T
n×n

:= Diag(T ′, . . . , T ′), with T ′ :=
[
0 −1
1 0

]
, (6.8)

where the matrix T ′ obviously occurs n/2 times in the Diag argument. Note that T
is orthonormal, and thus T T = T−1 and (T T )−1 = T .

Applying the law of variance propagation leads to the following expressions for
the non-zero blocks of QA in terms of Qxy:

QA33
n×n

= Qxy = QT
xy, QA34

n×n
= QxyT

T , QA43
n×n

= TQxy, QA44
n×n

= TQxyT
T . (6.9)

Now the matrix of combined cofactors
Q1 = Qy −QyA

(
ξ̂ ⊗ In

)
−
(
ξ̂ ⊗ In

)T
QAy +

(
ξ̂ ⊗ In

)T
QA

(
ξ̂ ⊗ In

)
(6.10)

can be readily expressed in terms of QXY and Qxy. Note that due to the first two
rows and columns of zeros in QA, the last matrix product in Q1, evaluated at an
approximate value ξ0, reduces to(

ξ0 ⊗ In
)T
QA ×

(
ξ0 ⊗ In

)
=

= (
[
ξ0

2 , ξ0
3

]
⊗ In)

[
Qxy QxyT

T

TQxy TQxyT
T

]
(
[
ξ0

2
ξ0

3

]
⊗ In) =

=
[
ξ0

2In, ξ0
3In

] [In
T

]
Qxy

[
In, T T

] [ξ0
2In
ξ0

3In

]
=

=
(
ξ0

2In + ξ0
3T
)
Qxy

(
ξ0

2In + ξ0
3T

T
)
.

(6.11)

Thus we have
Q0

1 = QXY + ξ0
2Qxyξ

0
2 + ξ0

3TQxyξ
0
2 + ξ0

2QxyT
T ξ0

3 + ξ0
3TQxyT

T ξ0
3 . (6.12)
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6.2.1 Equivalence between Q1 and BQBT

Here a comparison between Q1 and the matrix product BQBT from the LESS-
GHM is made to verify the more general development in section 4.2. In the LESS-
GHM, the matrices Q and BQBT are defined as

Q
2n×2n

:=
[
QXY 0

0 Qxy

]
, and B0

n×2n
=
In, − [ξ0

2In, ξ
0
3In

] [In
T

] ,
so that

B0Q(B0)T︸ ︷︷ ︸
LESS-GHM

= QXY +
(
ξ0

2In + ξ0
3T
)
Qxy

(
ξ0

2In + ξ0
3T

T
)

= Q0
1︸ ︷︷ ︸

WTLSS-EIV

,

provided that both matrices are evaluated at the same values for the approximate
parameters. This agrees with the more general development of §4.2.

6.3 2-D similarity transformation with singular cofactor ma-
trices

The data for the 2-D similarity transformation were provided by Professor Frank
Neitzel. They are comprised of 2-D coordinates of five stations from both the source
and target systems, together with their associated cofactor matrices, both of which
are fully populated and singular. It is noted again that the source and target data
are not correlated with each other. The coordinates are listed in Table 6.5, whereas
the cofactor matrices are listed in Appendix A.2.

Table 6.5: Coordinate estimates in source and target systems

Point No. xi[m] yi[m] Xi[m] Yi[m]
1 453.8001 137.6099 400.0040 100.0072
2 521.2865 350.7972 500.0019 299.9994
3 406.8728 433.9247 399.9925 399.9933
4 110.5545 386.9880 100.0059 400.0022
5 157.4861 90.6802 99.9956 99.9978

Both 10×10 source and target cofactor matrices Qxy and QXY , respectively, have
the rank of seven, and, when incorporated into the 10× 10 matrix Q1 of (6.12), the
resulting matrix Q1 is found to have rank eight. However, the Neitzel/Schaffrin rank
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condition is still satisfied. (See (3.6b) and Appendix C for details.) Thus the problem
is solved with Algorithm 3, as Algorithms 1 and 2 cannot treat the singularity of Q1.

Step 1 of Algorithm 3 requires an initial approximation for the parameter vector ξ.
As explained by Neitzel and Schaffrin [2012], initial approximations can be computed
by a traditional approach (using ordinary least-squares) where Qxy is replaced by 0
and QXY by In. The resulting approximate values are

ξ0 = [−69.73, 35.08, 0.988,−0.156]T .

The above problem is also solved by the least-squares solution within the Gauss-
Helmert model (LESS-GMH) for comparison purposes. The LESS-GHM permits
computation of the variances of the parameter estimates. Note that the variances of
the estimated shift parameters ξ̂0 and ξ̂1 can be taken directly from the dispersion
matrix (4.7a) computed as a byproduct of the LESS-GHM, whereas the variances
of the orientation and scale parameters are computed as a function of the variances
of the estimated intermediate parameters ξ̂2 and ξ̂3. The variance formulas for the
orientation and scale parameters are shown below, where for simplicity the variables
are written in a generic form without the use of hat symbols.

Scale factor:
ω =

√
ξ2

2 + ξ2
3

⇒ σ2
ω =

ξ2
2σ

2
ξ2 + ξ2

3σ
2
ξ3 + 2 · ξ2ξ3σξ2ξ3

ξ2
2 + ξ2

3
(6.13)

Orientation:
α = arctan(ξ3/ξ2)

⇒ σ2
α = 1

ω4

(
ξ2

3 · σ2
ξ2 − 2ξ2ξ3 · σξ2ξ3 + ξ2

2 · σ2
ξ3

)
(6.14)

Now using hats to represent estimates, the empirical standard deviations of the ori-
entation and scale are computed by

√
σ̂2

0 · σ2
α and

√
σ̂2

0 · σ2
ω, respectively, where σ̂2

0 is
the estimated variance component computed according to (4.8).

Using the initial approximation ξ0 given above, and a convergence tolerance δ =
1.0 × 10−12 for (3.34g), the WTLSS-EIV converged in three iterations, whereas the
LESS-GHM took four. Tables 6.6 and 6.7 show the WTLSS-EIV estimated parame-
ters and predicted residuals, respectively. The standard deviations computed from the
LESS-GHM are also shown. A TSSR of Ω = 6.1640345 was computed using (2.21c).
Considering the system redundancy of r = 6, the estimated variance component is
then computed using (2.22) as σ̂2

0 = Ω/r = (1.0135774)2 = 1.027339.
It was found that the WTLSS-EIV generated from Algorithm 3 is the same as

the LESS-GHM generated from Algorithm 4, to the precision shown in Table 6.6 and
Table 6.7, for both the estimated parameters and the predicted errors.
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Table 6.6: WTLS-EIV solution for the 2-D similarity transformation with standard
deviations computed from the LESS-GHM

Parameter Estimated value Std dev
x-shift ξ0 -69.726354 m ±4.090 mm
y-shift ξ1 35.078215 m ±2.488 mm
ξ2 = ω cosα 0.98765502 ±1.093×10−5

ξ3 = ω sinα -0.15642921 ±1.730×10−6

scale factor ω 0.99996626 ±1.091×10−5

rotation angle α -10.00000154 gon ±1.427×10−5 mgon
var. component σ2

0 1.027339 ±σ2
0

√
2/r

Table 6.7: 2-D similarity transformation residuals predicted by WTLS-EIV

Point Target System Source System
ẽY [mm] ẽX [mm] ẽy [mm] ẽx [mm]

1 0.8998 1.0204 -5.3231 -4.4026
2 -0.1634 0.3453 0.5454 -1.8617
3 -0.9923 -1.5805 6.2318 7.1386
4 1.2009 1.0399 -6.8490 -4.2616
5 -0.9450 -0.8250 5.3948 3.3873
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In addition to the tabulated residuals in Table 6.7, the total predicted error matrix

[
ẽy ẼA

]
=



1.0204 0 0 −4.4026 5.3231
0.8998 0 0 −5.3231 −4.4026
0.3453 0 0 −1.8617 −0.5454
−0.1634 0 0 0.5454 −1.8617
−1.5805 0 0 7.1386 −6.2318
−0.9923 0 0 6.2318 7.1386

1.0399 0 0 −4.2616 6.8490
1.2009 0 0 −6.8490 −4.2616
−0.8250 0 0 3.3873 −5.3948
−0.9450 0 0 5.3948 3.3873



mm

reveals interesting features of the WTLS-EIV algorithm. A comparison between this
matrix and equation (6.7a) shows that the structure of the data matrix A has been
replicated exactly in the residual matrix ẼA. The first two columns of both matrices
contain only zeros. The structure of the last two columns of ẼA is highlighted by
drawing a box around the first two rows. This replication of structure in the residual
matrix had already been pointed out by Fang [2011], Mahboub [2012], and Schaffrin
et al. [2012a] for EIV models with cofactor matrices having full rank. The property
holds here as well in the new estimator that handles rank-deficient cofactor matrices.

The points are plotted in a 2-D map in Figure 6.3, where the dotted lines represent
a grid for the adjusted coordinates (x−ẽx,y−ẽy) in the source system, and the dash-
dotted lines represent a (rotated) grid for the adjusted coordinates (X− ẽX ,Y − ẽY )
in the target system. The origin of the source system has coordinates (ξ̂0, ξ̂1) in the
target system.
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Figure 6.3: Map view of the five data points in the source and target systems. The
dotted lines represent a grid for the adjusted coordinates (x − ẽx,y − ẽy) in the
source system, and the dash-dotted lines represent a (rotated) grid for the adjusted
coordinates (X − ẽX ,Y − ẽY ) in the target system. The origin of the source system
has coordinates (ξ̂0, ξ̂1) in the target system. The grid interval for both grids is 200
meters.

6.4 2-D line-fitting by WTLS collocation

In this section, prior information is introduced for the parameters of a 2-D line in
order to experiment with WTLSC within the EIV-REM model developed in Chap-
ter 5. The data from §6.1 are used, and the errors are treated as heteroscadastic by
adopting the weights from Table 6.1 without adding correlation. Thus, the matrix Q1
of equation (6.12) is nonsingular.

In the absence of actual prior information, the information must be generated
somehow for experimental purposes. In practice, prior information often comes from
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a previous estimation task based on previously observed data. Then, often after the
passage of some time, new observations are made that need to be integrated with the
old solution, which now becomes the “prior information.” For this experiment, the
estimates, and their covariance matrix, from the generalized least-squares estimator
(GLSE) are adopted as prior information. Here, as in Rao et al. [2008], GLSE means
the least-squares estimator within the Gauss-Markov model (GMM) that treats only
the y-variables of Table 6.1 as random (making use of the weights 1/σ2

yi
from Table 6.1)

and considers the x-variables as errorless. The key equations for generating the prior
information are summarized below.

Formulas for generating simulated prior information: GLSE within the GMM

y = A
n×m

ξ + ey, rkA = m, and

ey ∼ (0, σ2
0P
−1 = σ2

0Qy)
(6.15a)

[N, c] = ATP [A,y] (6.15b)
ξ̂ = N−1c (6.15c)
ẽy = y − Aξ̂ (6.15d)

σ̂2
0 = (n−m)−1 · (ẽTy P ẽy) (6.15e)

D̂{ξ̂} = σ̂2
0N
−1 (6.15f)

The estimates computed from (6.15c) are assigned to β0, and the estimated dis-
persion matrix computed from (6.15f) is assigned to Q0. The numerical values are:

β0 =
[
−0.610812957
6.100109317

]
,

Q0 = (2.07199202153158)2 ·
[

0.000905254577531 −0.006064590624825
−0.006064590624825 0.041886814963206

]
.

The large number of digits is shown only for the sake of reproducing the experiment
without significant loss of computing precision. The solution is in agreement with the
GLS solution of Schaffrin and Wieser [2008, see Table 2].

6.4.1 Experiments with scaled heteroscedastic weights
It would be interesting to vary the influence of the prior information from an

extreme of having virtually no effect to an extreme of completely dominating the
solution, which can be done by introducing a scale factor s for the matrix Q0, such
that Q0 → s · Q0. The results based on a range of values from s = 1.0 × 10−10

to s = 1.0 × 1010, with an increase by a factor of 10 at each step, are shown in
Table 6.8. Of course, such a variation of Q0 has no practical value but does serve as a
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certain level of validation for the predictor derived in Chapter 5. The value of s = 1
represents the solution that would be adopted in practice.

As expected, the scaling of the cofactor matrix Q0 by an extremely small number,
thereby greatly magnifying the precision of the prior information, results in a solution
that reproduces precisely the prior information. See the first row of Table 6.8. On
the other hand, applying an extremely large scale factor to Q0 completely eliminates
the effect of the prior information, which is made apparent by comparing the last
row of Table 6.8 to the WTLS solution of Schaffrin and Wieser [2008, see Table 2] or
to the results of Neri et al. [1989, see Table 2]. Figure 6.4 portrays the transition of
the slope predictions across the range of scale factors s. Most of the change occurs
between s = 1.0 × 10−2 and s = 1.0 × 102, which is apparent also from the table.
Finally, it is noted that the total sum of squared residuals (TSSR) is smallest when
the prior information is effectively eliminated. The TSSR was computed by use of
(5.26a).

10−10 10−8 10−6 10−4 10−2 100 102 104 106 108 1010
−0.62

−0.60

−0.58

−0.56

−0.54

−0.52

−0.50

−0.48

log(s)

x̃1

Logarithmic plot of scale s vs. predicted slope x̃1

Figure 6.4: Predicted slopes as a function of the scaled cofactor matrix Q0 → s ·Q0

Another experiment that demonstrates the versatility of the WTLSC predictor is
conducted by scaling the cofactor matrix Q0 of the a-priori information by a large
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Table 6.8: WTLSC predictions of slope and intercept parameters with various cofactor
matrices Q0 → s ·Q0. N is the number of iterations. The formal model redundancy
is r = 10.

s N slope intercept TSSR = Ω
√
σ̂2

0 =
√

Ω/r

1.0×10−10 2 -0.610812957 6.100109317 16.285265299 1.276137348
1.0×10−9 3 -0.610812956 6.100109316 16.285265296 1.276137347
1.0×10−8 3 -0.610812955 6.100109308 16.285265259 1.276137346
1.0×10−7 3 -0.610812944 6.100109233 16.285264895 1.276137332
1.0×10−6 3 -0.610812831 6.100108475 16.285261255 1.276137189
1.0×10−5 3 -0.610811703 6.100100904 16.285224851 1.276135763
1.0×10−4 4 -0.610800423 6.100025213 16.284860928 1.276121504
1.0×10−3 5 -0.610687971 6.099270801 16.281232946 1.275979347
1.0×10−2 6 -0.609596967 6.091968014 16.246038438 1.274599484
1.0×10−1 8 -0.601147853 6.036638197 15.973709326 1.263871407
1.0 10 -0.570982196 5.868134044 15.007054498 1.225032836
1.0×101 12 -0.511074244 5.606976283 13.028815960 1.141438389
1.0×102 12 -0.484355500 5.495727556 12.022301584 1.096462566
1.0×103 13 -0.480924351 5.481527013 11.882471781 1.090067511
1.0×104 13 -0.480572590 5.480072256 11.867970447 1.089402150
1.0×105 13 -0.480537327 5.479926431 11.866514973 1.089335347
1.0×106 13 -0.480533799 5.479911845 11.866369373 1.089328664
1.0×107 13 -0.480533447 5.479910386 11.866354812 1.089327995
1.0×108 13 -0.480533411 5.479910240 11.866353356 1.089327928
1.0×109 13 -0.480533408 5.479910226 11.866353210 1.089327922
1.0×1010 13 -0.480533407 5.479910224 11.866353196 1.089327921

value and then computing solutions over a range of scaled matrices Qx, being the
cofactor matrix for the independent variables xi (x-coordinates). This effectively
eliminates the influence of the prior information while allowing the weights 1/σ2

x to
range from having no influence to having their expected influence. In the former
case, we obtain the generalized least-squares solution with weights 1/σ2

x having no
effect and weights 1/σ2

y having their full effect. In the latter case, we obtain the
WTLSS of Schaffrin and Wieser [2008]. These results are tabulated in Table 6.9,
where the first and last rows can be compared to the GLS, resp. WTLSS columns of
Table 2 in Schaffrin and Wieser [2008]. Row 1 can also be compared to the generalized
least-squares solution computed at the beginning of this section.
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The TSSR was computed by use of (5.26a). As expected, the smallest TSSR
occurs when errors in all coordinates are minimized, which is shown in the last row
of Table 6.9. A plot of slopes versus scale factor s is shown in Figure 6.5.

Table 6.9: WTLSC predictions of slope and intercept parameters with Q0 → 1.0 ×
1012 · Q0 and various cofactor matrices Qx → s · Qx. The formal model redundancy
is r = 10.

s slope intercept TSSR = Ω
√
σ̂2

0 =
√

Ω/r

1.0×10−11 -0.610812957 6.100109317 34.345207491 1.853246003
1.0×10−10 -0.610812956 6.100109315 34.345207422 1.853246002
1.0×10−9 -0.610812953 6.100109300 34.345206731 1.853245983
1.0×10−8 -0.610812919 6.100109154 34.345199827 1.853245797
1.0×10−7 -0.610812585 6.100107691 34.345130789 1.853243934
1.0×10−6 -0.610809238 6.100093057 34.344440439 1.853225308
1.0×10−5 -0.610775789 6.099946774 34.337540506 1.853039139
1.0×10−4 -0.610442812 6.098489654 34.268895335 1.851185980
1.0×10−3 -0.607255779 6.084461488 33.615765206 1.833460259
1.0×10−2 -0.584516082 5.980894722 29.170989937 1.707951695
1.0×10−1 -0.522030153 5.681869418 19.079158770 1.381273281
1.0 -0.480533407 5.479910224 11.866353194 1.089327921
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Figure 6.5: Predicted slopes as a function of the scaled cofactor matrix Qx → s ·Qx
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Chapter 7: Conclusions and Outlook

This work has reviewed the origin and progression of the EIV model with partic-
ular emphasis on the types of admissible cofactor, resp. weight matrices. It is indeed
interesting to see the progression from somewhat restricted weighting possibilities to
very general weighting possibilities that allow for full variance-covariance matrices for
both the observation vector and the data matrix, as well as cross-correlation matri-
ces to account for correlations between their errors. An important step towards this
end was the work of Schaffrin and Wieser [2008], with even more general develop-
ments due to the work of Mahboub [2012] and Fang [2011], the latter representing
a complete maturation of the EIV model in terms of accommodating traditional
variance-covariance matrices (i.e., symmetric positive-definite) for the data.

Though recent extensions to the EIV model open up a much wider range for its
use, estimators within these models were not available if the required combination
of cofactor matrices (i.e., matrix Q1 herein) turned out to be singular. Of course, in
this case one could try using the least-squares estimator within the Gauss-Helmert
model as provided by Neitzel and Schaffrin [2012], which would generate a unique
solution as long as the Neitzel/Schaffrin rank condition was satisfied. However, this
still leaves somewhat of a deficiency in the EIV model, which has now been addressed
in Chapter 3 of this work.

The TLS estimators of Chapter 3 now accommodate singular cofactor matrices in
the EIV model, while guaranteeing a unique solution provided that a certain rank con-
dition is satisfied. This development opens new possibilities for use of the EIV model.
Such use includes cases where high correlation between errors in the observation vec-
tor and errors in the data matrix gives rise to a singular Q1 matrix. In other cases the
cofactor matrix may have been derived from a rank-deficient least-squares adjustment
problem, for example the 2-D similarity transformation problem of §6.2 or the 2-D
line-fitting problem of §6.1.2. Surely many other examples exist.

Chapter 4 follows up on the work of Fang [2011] in making analytical comparisons
between respective TLS estimators with the EIV and Gauss-Helmert models. This
work also complements the comparisons made by Neitzel and Petrovic [2008] at the
adjustment level. The reader will also find, in Chapter 4, a useful reminder about how
to avoid the pernicious pitfalls in solving non-linear, iterative least-squares problems
(including a detailed algorithm), which were pointed out by Pope [1972] quite some
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time ago. Nevertheless, the reminder still needs to be made, as several examples can
be found in textbooks on least-squares adjustments that completely ignore Pope’s
advice, even though they were written after his work was published.

In some TLS problems the researcher or practitioner will have not only cofactor
matrices for the observed variables but also for the vector of parameters, as well as
prior information on the parameter values. In this case, the parameter vector is no
longer one of type fixed effects, as in the usual EIV models, but rather becomes a
vector of type random effects, for which the EIV with random effects model (EIV-
REM) is required. Schaffrin [2009] already presented the predictor for this model in
the case that the data were iid. In Chapter 5 of this work the iid restriction has been
removed. Here a TLS predictor has been derived within the EIV-REM having very
general cofactor matrices.

There is certainly more work that can be done to extend the EIV model even
further and/or to develop different types of estimators with the EIV model. A couple
of suggestions for further research are mentioned below.

The first suggestion is to include multiple variance components into the EIV
model. As a start, one could include separate variance components for the cofac-
tor matrix Qy, of the observation vector y, and the cofactor matrix QA, of the data
matrix A. This would be critical in the case where the variables in y where observed
using a different technique or instrument than was used for the variables in A and
when the relative precision of the differences is not well known.

In the case of the EIV-REM, one could consider introducing a separate variance
component for the prior information (perhaps then having three variance components
in total). It was already assumed in Chapter 5 that the observational data and the
prior information come from different sources and thus are uncorrelated. Perhaps
in some cases the reality of this assumption also means that it is hard to know the
relative precision between the observational data and the prior information, which
would certainly be a strong enough motivation for considering an additional variance
component for the prior information.

The second suggestion for further research is the incorporation of regularization
(i.e., of type Tikhonov) into the TLS estimator within the EIV model. This would re-
quire modifying the target function used to derive the estimator, while the EIV model
itself would remain unchanged. Schaffrin and Snow [2010] already derived such an es-
timator within the GHM, where they showed that the EIV model was a type of GHM.
However, it would still be worthwhile to develop Tikhonov regularization within the
extended EIV model of (2.1), with the objective of obtaining an estimator with certain
properties of optimality.
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Appendix A: Cofactor and Correlation Matrices

A.1 Correlation coefficients for 2-D line-fitting

Table A.1 lists the correlation coefficients used for the 2-D line-fitting in §6.1.2,
with a slightly different ordering that must be considered. In order to use these
coefficients to generate the matrix

[
Qx Qxy

Qyx Qy

]
, construct a symmetric matrix R = [ρij]

with ones on the diagonal and the off-diagonal elements taken from the values for ρij
in Table A.1. Then let Q0 be a diagonal matrix comprised of the inverses of the
weights given in Table 6.1, i.e., Q0 := Diag

([
1/σ2

x1 , . . . , 1/σ
2
x10 , 1/σ

2
y1 , . . . , 1/σ

2
y10

])
.

Note the ordering of the elements! Then compute[
Qx Qxy

Qyx Qy

]
= Q

1/2
0 RQ

1/2
0 .

If it is the matrix
[
Qy Qyx

Qxy Qx

]
that is required, it can be generated by

[
Qy Qyx

Qxy Qx

]
=
[

0 In
In 0

] [
Qx Qxy

Qyx Qy

] [
0 In
In 0

]
.
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Table A.1: Correlation coefficients for 2-D line-fitting – Case 2

R = {ρij} Numerical values of R = {ρij}

ρ01,02 . . . ρ01,20 −0.10729581873004 −0.13036772607508 −0.14543901792983 −0.17728539923803 −0.07425424945810
−0.00031909202598 0.07868531508505 0.05545515048479 0.11888722238149 1.00000000000000
−0.10729581873004 −0.13036772607508 −0.14543901792983 −0.17728539923803 −0.07425424945810
−0.00031909202598 0.07868531508505 0.05545515048479 0.11888722238149

ρ02,03 . . . ρ02,20 −0.14802155668504 −0.16631815753526 −0.20504857968775 −0.08997554009936 −0.01579733299168
0.07433378391878 0.05677853351729 0.12793755162244 −0.10729581873004 1.00000000000000
−0.14802155668504 −0.16631815753526 −0.20504857968775 −0.08997554009936 −0.01579733299168

0.07433378391878 0.05677853351729 0.12793755162244

ρ03,04 . . . ρ03,20 −0.20677760277889 −0.25913321746667 −0.12106477055257 −0.04769547503133 0.06397035186675
0.05852381274748 0.14448582847873 −0.13036772607508 −0.14802155668504 1.00000000000000
−0.20677760277889 −0.25913321746667 −0.12106477055257 −0.04769547503133 0.06397035186675

0.05852381274748 0.14448582847873

ρ04,05 . . . ρ04,20 −0.30519893292947 −0.15398805118467 −0.09915289932191 0.02889396723543 0.04842194382799
0.14351829731912 −0.14543901792983 −0.16631815753526 −0.20677760277889 1.00000000000000
−0.30519893292947 −0.15398805118467 −0.09915289932191 0.02889396723543 0.04842194382799

0.14351829731912

ρ05,06 . . . ρ05,20 −0.22465607987009 −0.21055387807942 −0.04769138812163 0.02609634246228 0.14044733149058
−0.17728539923803 −0.20504857968775 −0.25913321746667 −0.30519893292947 1.00000000000000
−0.22465607987009 −0.21055387807943 −0.04769138812163 0.02609634246228 0.14044733149058

ρ06,07 . . . ρ06,20 −0.24695374215615 −0.16674302304054 −0.04735842255881 −0.00223986777699 −0.07425424945810
−0.08997554009936 −0.12106477055257 −0.15398805118467 −0.22465607987009 1.00000000000000
−0.24695374215615 −0.16674302304054 −0.04735842255881 −0.00223986777699

ρ07,08 . . . ρ07,20 −0.55332321941763 −0.21967022592978 −0.22992934105249 −0.00031909202598 −0.01579733299168
−0.04769547503133 −0.09915289932191 −0.21055387807943 −0.24695374215615 1.00000000000000
−0.55332321941763 −0.21967022592978 −0.22992934105249

ρ08,09 . . . ρ08,20 −0.24903718461920 −0.31109981507291 0.07868531508505 0.07433378391878 0.06397035186675
0.02889396723543 −0.04769138812163 −0.16674302304054 −0.55332321941763 1.00000000000000
−0.24903718461920 −0.31109981507291
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Table A.1–Continued
R = {ρij} Numerical values of R = {ρij}

ρ09,10 . . . ρ09,20 −0.15375435693872 0.05545515048479 0.05677853351729 0.05852381274748 0.04842194382799
0.02609634246228 −0.04735842255881 −0.21967022592978 −0.24903718461920 1.00000000000000
−0.15375435693872

ρ10,11 . . . ρ10,20 0.11888722238149 0.12793755162244 0.14448582847873 0.14351829731912 0.14044733149058
−0.00223986777699 −0.22992934105249 −0.31109981507291 −0.15375435693872 1.00000000000000

ρ11,12 . . . ρ11,20 −0.10729581873004 −0.13036772607508 −0.14543901792983 −0.17728539923803 −0.07425424945810
−0.00031909202598 0.07868531508505 0.05545515048479 0.11888722238149

ρ12,13 . . . ρ12,20 −0.14802155668504 −0.16631815753526 −0.20504857968775 −0.08997554009936 −0.01579733299168
0.07433378391878 0.05677853351729 0.12793755162244

ρ13,14 . . . ρ13,20 −0.20677760277889 −0.25913321746667 −0.12106477055257 −0.04769547503133 0.06397035186675
0.05852381274748 0.14448582847873

ρ14,15 . . . ρ14,20 −0.30519893292947 −0.15398805118467 −0.09915289932191 0.02889396723543 0.04842194382799
0.14351829731912

ρ15,16 . . . ρ15,20 −0.22465607987009 −0.21055387807943 −0.04769138812163 0.02609634246228 0.14044733149058
ρ16,17 . . . ρ16,20 −0.24695374215615 −0.16674302304054 −0.04735842255881 −0.00223986777699
ρ17,18 . . . ρ17,20 −0.55332321941763 −0.21967022592978 −0.22992934105249
ρ18,19, ρ18,20 −0.24903718461920 −0.31109981507291
ρ19,20 −0.15375435693872
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A.2 Cofactor matrices for the 2-D similarity transformation

Listed below are the cofactor matrices for the 2-D similarity transformation problem of §6.3.

The 10× 10 cofactor Matrix Qxy associated with the source system:

Qxy =



36.370281457026799 −5.470847531049374 −10.717856095227500 −4.151968395749720 −8.652980417908310
−5.470847531049374 29.082186568548600 5.848221379655184 −12.471413471703499 4.362573210487724
−10.717856095227500 5.848221379655184 31.714850184591501 3.083310192383325 −9.754412805230141
−4.151968395749720 −12.471413471703499 3.083310192383325 30.958038019578300 3.061227368299260
−8.652980417908310 4.362573210487724 −9.754412805230141 3.061227368299260 29.490003562291800
−6.309575380973525 −6.363232761238930 −3.437514270957705 −17.720699070083000 6.203628967652265
−3.008722473688215 −0.456888271105760 −7.170133519153175 5.116298153814835 −9.264714951570751

5.061541661693445 −2.835610062891940 −5.891999249139355 −0.556828023714815 −10.232648328119300
−13.990722470202799 −4.283058787987756 −4.072447764980720 −7.108867318747670 −1.817895387582575

10.870849646079201 −7.411930272714205 0.397981948058545 −0.209097454076965 −3.394781218319955

. . .

−6.309575380973525 −3.008722473688215 5.061541661693445 −13.990722470202799 10.870849646079201
−6.363232761238930 −0.456888271105760 −2.835610062891940 −4.283058787987756 −7.411930272714205
−3.437514270957705 −7.170133519153175 −5.891999249139355 −4.072447764980720 0.397981948058545
−17.720699070083000 5.116298153814835 −0.556828023714815 −7.108867318747670 −0.209097454076965

6.203628967652265 −9.264714951570751 −10.232648328119300 −1.817895387582575 −3.394781218319955
38.734832754164600 2.979330360651055 −10.531447467909800 0.564130323627930 −4.119453454932780
2.979330360651055 26.031496206858101 −1.237264484444125 −6.587925262445999 −6.401475758915990

−10.531447467909800 −1.237264484444125 32.063142073587599 12.300370400009299 −18.139256519071100
0.564130323627930 −6.587925262445999 12.300370400009299 26.468990885212101 −1.472574616901790
−4.119453454932780 −6.401475758915990 −18.139256519071100 −1.472574616901790 29.879737700795101


[mm2]
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The 10× 10 cofactor Matrix QXY associated with the target system:

QXY =



6.794487571800590 −1.246373797420340 −2.067492652515560 −0.879050061336250 −1.752371987000400
−1.246373797420340 6.094989272208480 1.090128341653400 −2.499242822649745 0.938081379301460
−2.067492652515560 1.090128341653400 6.429318039548140 0.554510615436640 −1.970512300406600
−0.879050061336250 −2.499242822649745 0.554510615436640 5.912760395723920 0.362129743332930
−1.752371987000400 0.938081379301460 −1.970512300406600 0.362129743332930 6.229399700497530
−1.163579541268595 −1.204799645049460 −0.917558590359990 −3.440142089389230 1.443374807628205
−0.451547525907080 −0.106812374044770 −1.403742194865920 1.212589988419975 −2.051290948290685

0.979701730455350 −0.699300070526570 −0.955341882018735 −0.117912645153740 −2.018715860691035
−2.523075406377545 −0.675023549489755 −0.987570891760060 −1.250180285853295 −0.455224464799860

2.309301669569825 −1.691646733982720 0.228261515288690 0.144537161468785 −0.724870069571550

. . .

−1.163579541268595 −0.451547525907080 0.979701730455350 −2.523075406377545 2.309301669569825
−1.204799645049460 −0.106812374044770 −0.699300070526570 −0.675023549489755 −1.691646733982720
−0.917558590359990 −1.403742194865920 −0.955341882018735 −0.987570891760060 0.228261515288690
−3.440142089389230 1.212589988419975 −0.117912645153740 −1.250180285853295 0.144537161468785

1.443374807628205 −2.051290948290685 −2.018715860691035 −0.455224464799860 −0.724870069571550
7.206462860853270 0.582948103761090 −1.847407593285470 0.054815220239305 −0.714113533129125
0.582948103761090 5.079972517721780 −0.048153307431655 −1.173391848658100 −1.640572410704635
−1.847407593285470 −0.048153307431655 6.360602565647050 2.042509319686065 −3.695982256681265

0.054815220239305 −1.173391848658100 2.042509319686065 5.139262611595570 −0.172120704582330
−0.714113533129125 −1.640572410704635 −3.695982256681265 −0.172120704582330 5.957205362324320


[mm2]
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Appendix B: Connections between the Work of Pearson and
that of Schaffrin

In this section, a connection is made between the characteristic equation of Pear-
son [1901, eq. (10)] and of the characteristic equation of Schaffrin’s normal-equation
matrix [Schaffrin, 2007, eq. (1.15)] for the case of 2-D line-fitting. The least root of
the former is claimed to be the total sum of squared residuals (TSSR) divided by
the number of observations n, whereas the least root of the latter is the minimum
eigenvalue of the normal-equation matrix, which is equivalent to the TSSR. Indeed it
is shown below that the least root of the two characteristic equations differ exactly by
a factor of n, implying that Pearson effectively solved a minimum eigenvalue problem.

Assume two n-vectors x and y, representing measured coordinate pairs in 2-
D space, both having random errors distributed with zero-mean expectation and
σ2

0In dispersion. Let x̄ and ȳ denote the mean values of x and y, respectively, so that[
x
y

]
∼ (

[
x̄
ȳ

]
⊗ 1, σ2

0

[
σ2
x σxy

σxy σ2
y

]
⊗ In), (B.1)

where 1 is an n× 1 vector of ones, and σ2
0 is an unknown variance component. The

following empirical definitions for the variances σ2
x and σ2

y, the covariance σxy, and
the correlation coefficient ρxy are well known:

σ2
x = 1

n

n∑
i=1

(xi − x̄)2 = (xTx)/n− x̄2, (B.2a)

σ2
y = 1

n

n∑
i=1

(yi − ȳ)2 = (yTy)/n− ȳ2, (B.2b)

σxy = σyx = 1
n

n∑
i=1

(xi − x̄)(yi − ȳ) = (xTy)/n− x̄ȳ, (B.2c)

ρxy = σxy/
√
σ2
xσ

2
y = ρyx. (B.2d)
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Write the upper 2× 2 block of Pearson’s characteristic equation (10), here using
ρ rather than his r and Ω′ rather than his Σ2:∣∣∣∣∣∣

1− Ω′
σ2

x
ρxy

ρyx 1− Ω′
σ2

y

∣∣∣∣∣∣ = 0⇒ (B.3a)
(
1− Ω′/σ2

x

)(
1− Ω′/σ2

y

)
− ρ2

xy = 0⇒ (B.3b)

Ω′min = 1
2(σ2

x + σ2
y)−

1
2
√

(σ2
x + σ2

y)2 − 4σ2
xσ

2
y(1− ρ2

xy) = (B.3c)

Ω′min = 1
2(σ2

x + σ2
y)−

1
2
√

(σ2
x − σ2

y)2 + 4σ2
xσ

2
yρ

2
xy (B.3d)

Ω′min , n−1 · (TSSR)Pearson. (B.3e)

Write the normal-equation matrix of Schaffrin:[
xTx− n · x̄2 xTy − n · x̄ȳ
xTy − n · x̄ȳ yTy − n · ȳ2

]
= n

[
σ2
x ρxy

ρxy σ2
y

]
. (B.4)

Now form the characteristic equation for the matrix, using λ to denote an eigen-
value and factoring the scalar n outside of the determinant operator. The latter
step is appropriate for computing eigenvalues of a matrix but not for computing its
determinant, which would require a squaring of n.

n

∣∣∣∣∣σ2
x − λ ρxy
ρxy σ2

y − λ

∣∣∣∣∣ = 0⇒ (B.5a)

n
[
λ2 − (σ2

x + σ2
y)λ+ ρ2

xy

]
= 0⇒ (B.5b)

λmin = n ·
[

1
2(σ2

x + σ2
y)−

1
2
√

(σ2
x + σ2

y)2 + 4ρ2
xy

]
⇒ (B.5c)

λmin = n ·
[

1
2(σ2

x + σ2
y)−

1
2
√

(σ2
x − σ2

y)2 + 4ρ2
xyσ

2
xσ

2
y

]
(B.5d)

λmin , (TSSR)Schaffrin (B.5e)

Finally, comparing the least root of Pearson to the minimum eigenvalue of Schaf-
frin gives

n · Ω′min︸ ︷︷ ︸
Pearson

= λmin︸ ︷︷ ︸
Schaffrin

, TSSR, (B.6)

which shows the connection between the developments in Pearson’s work of 1901 and
Schaffrin’s work of 2007.
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Appendix C: The Neitzel/Schaffrin Criterion for Uniqueness

The following statement of the Neitzel/Schaffrin uniqueness condition (or rank
condition) is based on their work from 2009, submitted for publication in 2012, which
presented a unique least-squares estimator within the Gauss-Helmert model with a
rank-deficient dispersion matrix (or, equivalently, cofactor matrix).

Considering the EIV-Model

y − ey − (A− EA)︸ ︷︷ ︸
n×m

ξ = 0 (C.1)

as a special case of the nonlinear Gauss-Helmert model

b(y − ey, A− EA, ξ) = 0, (C.2)

the Neitzel/Schaffrin condition for uniqueness of the least-squares solution in the
presence of a singular dispersion matrix, i.e.,

Q =

 Qy
n×n

QyA
n×nm

QAy
nm×n

QA
nm×nm

 (C.3)

symmetric positive-semidefinite, reads

rk
[
BQ A

]
= n, (C.4)

where B := ∂b

∂[(y − e)T , (vecA− eA)T ] =
[
In, −

(
ξT ⊗ In

)]
︸ ︷︷ ︸

n×(m+1)n

, (C.5)

or, equivalently,

rk
[[
Qy −

(
ξ ⊗ In

)T
QAy, QyA −

(
ξ ⊗ In

)T
QA

]
A

]
=

= rk
(
Q1 + ASAT

)
= n,

(C.6)

for any symmetric positive-definite m×m matrix S and

Q1 := Qy −QyA

(
ξ ⊗ In

)
−
(
ξ ⊗ In

)T
QAy +

(
ξ ⊗ In

)T
QA

(
ξ ⊗ In

)
. (C.7)
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Appendix D: Fang’s WTLS Estimator as a Generalization of
Schaffrin and Wieser’s Estimator

Here it is shown that the WTLS estimators derived by Fang [2011, eqs. (4.22,
4.25, 426)] and Mahboub [2012, eq. (24)] are generalizations of the WTLS estimator
by Schaffrin and Wieser [2008, eq. (17)]. The purpose in showing these relations is
merely to facilitate comparison of these authors’ works.

The EIV model presented by Schaffrin and Wieser reads

y = (A− EA)
n×m

· ξ + ey, (D.1a)[
ey
eA

]
:=
[
ey

vecEA

]
∼ (

[
0
0

]
, σ2

0

[
Qy 0
0 QA

]
), (D.1b)

where the terms are defined as in Chapter 2, except that QA has the special form
QA := Q0 ⊗Qx, with Q0 having dimension m×m and Qx being size n× n.

Now, under this model, the matrix Q1 defined in (2.10b) reduces to

Q1 =
[
Qy +

(
ξ̂T ⊗ In

)(
Q0 ⊗Qx

)(
ξ̂ ⊗ In

)]
=

= Qy +
(
ξ̂TQ0ξ̂

)
Qx.

(D.2)

Then Schaffrin and Wieser’s normal equations (17) could be revised to read(
ATQ−1

1 A− ν̂ ·Q0
)
ξ̂ = ATQ−1

1 y. (D.3)

Now substituting their equation (16)

−AT λ̂ = −ẼT
Aλ̂ = Q0ξ̂ · ν̂ (D.4)

and performing some algebraic manipulation leads to(
ATQ−1

1 A
)
ξ̂ = ATQ−1

1 y − ẼT
Aλ̂

⇒
(
ATQ−1

1 A
)
ξ̂ = ATQ−1

1 y − vec
(
ẼT
Aλ̂
)

⇒
(
ATQ−1

1 A
)
ξ̂ = ATQ−1

1 y − vec
(
λ̂T ẼA

)
⇒
(
ATQ−1

1 A
)
ξ̂ = ATQ−1

1 y −
(
Im ⊗ λ̂T

)
ẽA

79



Schaffrin and Wieser [2008] Fang [2011] Mahboub [2012]
m u m

Qy + (ξ̂TQ0ξ̂)Qx = Q1 (B̂QllB̂) R−1
1

ẼA −ṼA ẼA
ẽA ṽA ẽA

Table D.1: Differences in notation between authors. The first column is consistent
with the notation used in this dissertation.

⇒ ξ̂ =
(
ATQ−1

1 A
)−1(

ATQ−1
1 y −

(
Im ⊗ λ̂T

)
ẽA
)
. (D.5)

Going further by subtracting a term in ẼT
A from each side of the preceding equa-

tions, and using the relation Q1λ̂ = (y − Aξ̂) from (2.10a), leads to
[(
A− ẼA

)T
Q−1

1 A
]
ξ̂ = ATQ−1

1 y −
(
Im ⊗ λ̂T

)
ẽA − ẼT

AQ
−1
1 Aξ̂ =

= ATQ−1
1 y − ẼT

AQ
−1
1

(
Aξ̂ +Q1λ̂

)
=

= ATQ−1
1 y − ẼT

AQ
−1
1

(
Aξ̂ + y − Aξ̂

)
⇒ ξ̂ =

[(
A− ẼA

)T
Q−1

1 A
]−1(

A− ẼA
)T
Q−1

1 y . (D.6)

It may be desirable to have rather a symmetric matrix to invert in (D.6). This
can readily be obtained by subtracting (A − ẼA)TQ−1

1 ẼAξ̂ from both sides of the
preceding equations to arrive at[(

A− ẼA
)T
Q−1

1

(
A− ẼA

)]
ξ̂ =

(
A− ẼA

)T
Q−1

1 y −
(
A− ẼA

)T
Q−1

1 ẼAξ̂ =

=
(
A− ẼA

)T
Q−1

1

(
y − ẼAξ̂

)
⇒ ξ̂ =

[(
A− ẼA

)T
Q−1

1

(
A− ẼA

)]−1(
A− ẼA

)T
Q−1

1

(
y − ẼAξ̂

)
. (D.7)

The notation of Fang and Schaffrin/Wieser is similar except for the differences
shown in the following table:

Now considering the notation differences listed in Table D.1, it is apparent that
equations (D.5), (D.6), and (D.7) are algebraically equivalent to Fang’s equations
(4.22), (4.25), and (4.26), respectively, which are also associated with his algorithms 1,
2, 3, respectively.

Now turning to the work by Mahboub [2012], define

R2 :=
(
Im ⊗ λ̂T

)
QA

(
ξ̂ ⊗ In

)
Q−1

1 , (D.8)
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which is identical to his equation (23), except that he substitutes R1 for Q−1
1 . Note

also that Mahboub’s Q1 takes the form of (3.1d), as he has not treated the case of
nonzero QAy. Since

R2(y − Aξ̂) =
(
Im ⊗ λ̂T

)
QA

(
ξ̂ ⊗ In

)
Q−1

1 (y − Aξ̂) =

=
(
Im ⊗ λ̂T

)
QA

(
ξ̂ ⊗ In

)
λ̂ =

= −
(
Im ⊗ λ̂T

)
ẽA,

it is apparent that the estimator by Mahboub shown in his equation (24) as

ξ̂ =
(
ATR1A+R2A

)−1(
ATR1 +R2

)
y (D.9)

is algebraically equivalent to (D.5). It is also identical to the estimator shown in
(2.14) when the notation differences of Table D.1 are considered.

In summary, the estimators presented by Schaffrin and Wieser [2008], Fang [2011],
and Mahboub [2012] are algebraically equivalent up to the definition of the matrix Q1.
Schaffrin/Wieser define Q1 as in (D.2); Fang defines Q1 as in (2.10b); and Mahboub
defines Q1 as in (3.1d). However, one should not underestimate the significance in
the differences in these definitions, as they represent different levels of generality in
the admission of weights into the EIV model. It could be said that, in terms of the
admissible weight matrices, the differences vary from fairly general to general to very
general between Schaffrin/Wieser, Mahboub, and Fang, respectively.
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Appendix E: Some Properties of the vec Operator and the
Kronecker Product of Matrices

The vec operator

Definition E.1. Let A be an n × m matrix A = [aij] = [a1, . . . ,am]; then the vec
operation vecA vertically stacks the successive n× 1 columns of A, from the leftmost
column a1 to the rightmost column am, to form the nm× 1 vector

vecA
nm×1

=



a11
a21
...
an1
a12
...
an2
a13
...

anm



=


a1
a2
...
am

 .

The process is also called the vectorization of matrix A.

The Kronecker product

Definition E.2. Let G = [gij] be a p × q matrix and H = [hij] be an r × s matrix;
then

G⊗H :=
[
gijH

]
gives the Kronecker product (also called Kronecker-Zehfuss product) G⊗H, which is
of size pr × qs.

Commutation matrix

Obviously the mn × 1 vector vec(AT ) contains exactly the same elements as the
nm× 1 vector vecA, except in a different order. The difference in order of elements
is revealed by a unique commutation matrix of size nm× nm.
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Definition E.3. Given an n × m matrix A, the relationship between vecA and
vec(AT ) is given by use of a unique nm × nm commutation (or vec-permutation)
matrix Knm, where

Knm vecA = vec(AT ).

Knm is a permutation matrix and therefore satisfies the relations KT
nm = K−1

nm =
Kmn. Also, it holds that Kn1 = K1n = In, and Knn = KT

nn if m = n.

Definition E.4. The nm× nm commutation matrix Knm is determined by

Knm =
n∑
i=1

m∑
j=1

(
Hij ⊗HT

ij

)
,

where Hij := ηiη
T
i is an n ×m matrix with a 1 in its ij entry and zeros elsewhere

[Magnus and Neudecker, 1979]. Here ηi and ηj denote the i-th, resp, j-th unit vector
of size n× 1, resp. m× 1.

Computational rules

vecABCT = (C ⊗ A) vecB (E.1)
trABCTDT = trDTABCT = (vecD)T (C ⊗ A) vecB (E.2)

(G⊗H)T = GT ⊗HT (E.3)
(G⊗H)−1 = G−1 ⊗H−1 (E.4)

α(G⊗H) = αG⊗H = G⊗ αH for α ∈ R (E.5)
(F +G)⊗H = (F ⊗H) + (G⊗H) (E.6)
G⊗ (H + J) = (G⊗H) + (G⊗ J) (E.7)

(A⊗B)(G⊗H) = AG⊗BH (E.8)

Let H be of dimension m× n and G be of dimension p× q.

(H ⊗G) = Kpm(G⊗H)Knq (E.9)
Kmp(H ⊗G) = (G⊗H)Knq (E.10)

Kmp(H ⊗ g) = g ⊗H ∀ g ∈ Rp×1 (E.11)
tr(G⊗H) = trG · trH (E.12)

G and H positive-(semi)definite ⇒ G⊗H positive-(semi)definite. (E.13)

Any of the following works can be consulted for further details on these linear
algebra topics: Magnus and Neudecker [1979], Lütkepohl [1996], Horn and Johnson
[1994], Harville [1997], or Magnus and Neudecker [2007].
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