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Abstract 
 
Because of Earth’s elasticity and its viscoelasticity, earthquakes induce mass 
redistributions in the crust and upper mantle, and consequently change Earth’s external 
gravitational field. Data from Gravity Recovery And Climate Experiment (GRACE) 
spaceborne gravimetry mission is able to detect the permanent gravitational and its 
gradient changes caused by great earthquakes, and provides an independent and thus 
valuable data type for earthquake studies. This study uses a spatiospectral localization 
analysis employing the Slepian basis functions and shows that the method is novel and 
efficient to represent and analyze regional signals, and particularly suitable for extracting 
coseismic deformation signals from GRACE. For the first time, this study uses the Monte 
Carlo optimization method (Simulated Annealing) for geophysical inversion to quantify 
earthquake faulting parameters using GRACE detected gravitational changes. GRACE 
monthly gravity field solutions have been analyzed for recent great earthquakes. For the 
2004 Mw 9.2 Sumatra-Andaman and 2005 Nias earthquakes (Mw 8.6), it is shown for the 
first time that refined deformation signals are detectable by processing the GRACE data 
in terms of the full gravitational gradient tensor. The GRACE-inferred gravitational 
gradients agree well with coseismic model predictions. Due to the characteristics of 
gradient measurements, which have enhanced high-frequency contents, the GRACE 
observations provide a more clear delineation of the fault lines, locate significant slips, 
and better define the extent of the coseismic deformation; For the 2010 Mw 8.8 Maule 
(Chile) earthquake and the 2011 Mw 9.0 Tohoku-Oki earthquake, by inverting the 
GRACE detected gravity change signals, it is demonstrated that, complimentary to 
classic teleseismic records and geodetic measurements, the coseismic gravitational 
change observed by spaceborne gravimetry can be used to quantify large scale 
deformations induced by great earthquakes.    
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Chapter 1: Introduction 

1.1 Recent Great Earthquakes  
Earthquake is one of the most devastating natural hazards facing mankind. The 

most recent catastrophic events include the 11 March 2011 Mw 9.0 Tohoku-Oki 
earthquake in Japan, the 27 February 2010 Mw 8.8 Maule earthquake in Chile, the 12 
January 2010 Mw 7.0 Léogâne earthquake in Haiti, the 12 May 2008 Mw 8.0 Wenchun 
earthquake in China, and the 26 December 2004 Mw 9.2 Sumatra-Andaman megathrust 
earthquake which generated the giant Indian Ocean killer tsunami. The Haitian and the 
Wenchun earthquakes alone killed 224,000 and 68,000 people, respectively, while the 
Sumatra-Andaman earthquake and the resulting Indian Ocean tsunami incurred 230,000 
casualties in fourteen countries. The most recent Tohoku-Oki earthquake claimed lives of 
15,845 people and the tsunami caused a series of nuclear accidents which affected 
hundreds of thousands of nearby residents. Improved quantification of these earthquake 
events, including the exact sizes, geometries and orientations of the faults and the 
associated coseismic deformation is critical towards achieving our ultimate goal to 
understand the mechanisms of earthquake and volcano activities and potentially lead to 
an improvement in the prediction of such events.  

Parameters quantifying earthquake faulting characteristics, such as the earthquake 
location, rupture size (length and width), rupture orientation, average displacement etc., 
have played major roles in the evolution of the theory of plate tectonics and revealing the 
lithospheric properties, which are meaningful scientific topics dedicated to the 
understanding of the processes and properties in Earth’s crust and upper mantle. For 
example, the exact knowledge of the spatial distribution of earthquakes can be used to 
determine the location of plate boundaries, focal mechanisms can be used to infer the 
directions of relative motion between plates, and the rates and cumulative displacements 
of earthquake occurrences can be used to infer the relative velocities between plates.  

Traditionally, seismological methods are used to determine the physical and 
geometric parameters quantifying the earthquake faulting characteristics. However, some 
of these parameters cannot be well resolved due to the intrinsic limits in the seismic wave 
analysis. For instance, although the pattern of seismic wave motions is able to constrain 
the overall geometry of fault and the sense of slip, the resolution generally is poor for the 
determination of slip distribution on the fault plane. The body wave data are relatively 
sensitive to depth of the earthquake focus, but there are trade-offs with many other 
parameters in the faulting quantification (Lay and Wallace, 1995). The absolute location 
of the epicenter cannot be well constrained purely by seismic waves, and its estimation 
highly relies on topographic features and the locations of aftershocks.  
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1.2 Geodetic Techniques for Earthquake Deformation Study 
Alternative to seismic wave records, geodetic measurements including GNSS 

(Global Navigation Satellite System)- derived horizontal and vertical displacements, and 
InSAR (Interferometric Synthetic Aperture Radar)-derived vertical crustal deformations 
over land are commonly used to study earthquake mechanisms. Geodetic observations 
play even more important roles in describing earthquakes which donot rupture the ground 
surface, or when the teleseismic records cannot definitively determine the rupture 
geometry.  

1.2.1 GPS 
The Global Positioning System (GPS), developed by the US Department of 

Defense for military and civilian navigation and positioning, has revolutionized studies 
for a wide range of scientific topics, such as plate motions, the deformation around active 
faults and volcanoes, the glacial isostatic adjustment, global sea level change estimation 
(when GPS measurement is combined with tide gauge records) and GPS meteorology. 
GPS is now more generally called GNSS, since other nations are also developing 
operational navigation satellite systems. Here in this study, we use the term GPS and 
GNSS interchangeably. GPS provides three-dimensional relative positions with precision 
of a few millimeters to approximately one centimeter, for baselines of length from 
hundreds of meters to thousands of kilometers (Segall and Davis, 1997), and therefore is 
widely used to measure the three-dimensional co- and post-seismic displacements. Both 
of the horizontal and vertical coseismic displacements on the land are induced by slips on 
one or several planes of displacement discontinuity (i.e. fault planes) buried in the earth. 
Thus, the GPS-measured surface coseismic displacements can be inverted for faulting 
parameters, such as rupture geometry and slip distribution. 

Continuous and campaign-type GPS measurements have been used to detect co-
seismic displacements and determine finite faulting models for recent great earthquakes 
such as the 2004 Mw 9.1-9.3 Sumatra-Andaman earthquake (Banerjee et al., 2005; Jade 
et al., 2005; Vigny et al., 2005; Gahalaut et al., 2006; Subarya et al., 2006), the 2010 Mw 
8.8 Maule, Chile earthquake (Delouis et al., 2010; Moreno et al., 2010; Pollitz et al., 
2011; Vigny et al., 2011) and the 2011 Mw 9.0 Tohoku-Oki earthquake (Iinuma et al., 
2011; Ozawa et al., 2011; Pollitz et al., 2011; Simons et al., 2011). Specifically, for 
instance, Vigny et al. (2006) analyzed GPS data from ~60 stations distributed in a range 
of 400km~4000km away from the seismic epicenter of the 2004 Sumatra-Andaman 
earthquake, and detected significant coseismic jumps between 5mm ~ 27cm at all stations 
for this event. By using GPS detected coseismic displacements, they also showed that the 
fault plane for this earthquake must be at least 1000km long with non-homogeneous slip 
distributions on it. Using GPS measured interseismic deformation during the past ten 
years before the 2010 Maule event, Moreno et al. (2010) derived the interseismic locking 
pattern along a segment of the Andean subduction zone, and found that the patchwork of 
interseismic locking distribution is spatially correlated with the slip distribution for the 
2010 Maule earthquake. For the recent 2011 Tohoku-Oki great earthquake, Ozawa et al. 
(2011) found the maximum horizontal coseismic displacement of 5.3m eastwards, and 
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maximum subsidence of 1.2m along the coastal line of the Tohoku region, by analyzing 
data from GPS Earth Observation Network (GEONET) operated by the Geospatial 
Information Authority of Japan. The inverted slips from these GPS observations indicate 
the rupture area during the 2011 Tohoku-Oki event extends approximately 400km along 
the Japan trench, where large strain accumulation rate was observed before the 
earthquake.  
 

1.2.2 InSAR 
InSAR (Interferometric Synthetic Aperture Radar) is a geodetic tool which 

combines conventional SAR techniques and interferometry techniques. Starting from 
early 1990s, it became popular to utilize radar interferometry to measure changes on 
Earth’s surface. Two images can be acquired by spaceborne or airborne synthetic 
aperture radar at two distinct epochs. The change in distance between the ground surface 
and the on-board radar instrument can be estimated from the interference pattern due to 
the difference in phase between these two images. The InSAR generated interferogram 
can have the spatial and temporal resolution of ~100 pixels km-2 and 1 pass month-1, 
respectively, and the observation accuracy of about 1 cm (Massonnet and Feigl, 1998).   

In order to capture the signature (surface displacement) of an earthquake, two 
images must be obtained by the satellite or aircraft over the seismic region, one of them 
before the earthquake and the other one after the earthquake.  The coseismic 
displacements by the earthquake can be estimated from changes in line-of-sight (LOS) 
range (range between ground point and radar antenna), which is derived by “unwrapping” 
the interferogram resulting from the two images. InSAR systems have been used 
extensively in the past two decades for coseismic displacement detections and slip 
modelings. For the 2010 Mw 8.8 Maule (Chile) earthquake, for example, Delouis et al. 
(2010) jointly inverted for the spatial and temporal distributions of slip during this event 
by combining the ALOS/PALSAR ScanSAR raw data with GPS and teleseismic 
broadband data. Tong et al. (2010) analyzed ascending and descending ALOS 
interferograms and found the maximum slip associated with the Maule earthquake was 
about 17m at a depth of 18km, and the rupture stopped at a depth of 43 ~ 48km. Lorito et 
al. (2010) jointly inverted tsunami and the ALSO observations for both coseismic slip 
distribution and stress changes resulting from Maule earthquake. Subsequently, they 
claimed that a zone of high preseismic locking remained unbroken.    

Unfortunately, for great undersea earthquakes, GPS and InSAR measurements 
typically have poor sensitivity to the occurrence of slip far offshore, since they only 
measure far-field displacement on land, and cannot provide enough constraints for the 
significant coseismic seafloor deformations near the epicenter. In addition, limited by 
relatively high expense and logistics, it is not realistic to build up a large number of GPS 
stations densely covering the whole deformation area to provide strong observation 
constraints.  
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1.2.3 Spaceborne Gravimetry 
Spaceborne gravimetry geodesy is the science of measuring the Earth’s gravity 

field using space techniques, allows both the static and temporal variable constituents of 
the Earth’s gravity field to be mapped with unprecedented accuracy and spatial 
resolution, and contributes to a better understanding of Earth system. The Gravity 
Recovery And Climate Experiment (GRACE) (Tapley et al., 2004), which is a satellite 
mission jointly launched in 2002 by the National Aeronautics and Space Administration 
(NASA) and the Deutsche Forschungsanstalt für Luft und Raumfahrt (DLR), is making 
detailed measurements of Earth’s gravity field, as well as its temporally variable 
component, with spatial resolution of several hundreds kilometers and temporal sampling 
of about 30 days. The GRACE-estimated Earth gravity fields revolutionized our 
understandings about the mass redistribution within the Earth system, e.g., terrestrial 
hydrologic water balance, ocean mass variations, sea-level rise, and ice-sheet and glacier 
ablations. The Gravity field and steady-state Ocean Circulation Explorer (GOCE), 
another satellite gravimetry mission launched in March 2009 by the European Space 
Agency (ESA), is dedicated to measure Earth’s static gravity field with unprecedented 
accuracy and spatial resolution, i.e. with accuracy of 1mGal for gravity and 1~2cm for 
the geoid at a resolution of 100km, corresponding to spherical harmonic degree of 200. 
The accurate static gravity field model from GOCE is expected to benefit many scientific 
areas. In geodesy, it helps to build a unified height system. In oceanography, it helps to 
understand better the dynamic ocean topography, and absolute ocean circulation. In 
geophysics, since the gravity field reveals density variations in the Earth's interior, it will 
provide new insights into processes occurring in the lithosphere and upper mantle – down 
to a depth of about 200km (Drinkwater et al., 2008). 

Earthquakes cause mass redistribution in the Earth’s crust and upper mantle, and 
permanently disturb Earth’s gravity field in free space, which would be detected by 
current spaceborne gravimetry missions. GRACE provides uniform coverage over both 
ocean and land, although its application to earthquake studies is limited by its current 
relatively coarse spatial resolution. It has been proven by a series of studies that the 
co/post-seismic gravity signatures can be detected by GRACE for the 2004 Mw Sumatra 
earthquake (Han et al, 2006; Chen et al., 2007; Panet et al., 2007; Han and Simons, 2008; 
de Linage et al., 2009; Simons et al., 2009; Broerse et al., 2011; Wang et al., 2012c), the 
2010 Mw 8.8 Maule earthquake (Han et al., 2010; Heki and Matsuo, 2010; Wang et al., 
2012a); as well as the recent 2011 Mw 9.0 Tohoku-Oki great earthquake (Matsuo and 
Heki, 2011; Wang et al., 2012b). This study not only explores efficient data processing 
schemes to extract coseismic gravity signals from spaceborne gravimetry observation, but 
also discusses the feasibility of faulting parameter inversions using the detected signals. 
 

1.3 Research Methodology and Outline 
The scientific objective of this study are to explore effective data processing 

schemes to extract Earth’s deformation signals due to large undersea earthquakes from 
the spaceborne gravimetry data provided by GRACE, and to provide a new type of 
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observation, i.e., gravity and gravitational gradients, to complimentarily constrain 
earthquake faulting modeling towards improved understanding of their mechanisms. An 
innovative spatiospectral localization analysis is applied to GRACE monthly 
gravitational solutions in order to extract co/post-seismic gravity changes due to great 
earthquakes. Subsequently, a Monte-Carlo inversion technique based on the simulated 
annealing algorithm is developed to allow the spaceborne gravity measurements to 
constrain earthquake faulting parameters. In addition, the calculations of coseismic 
gravitational changes due to shear and tensile faults in a half-space, both numerically and 
analytically, have been developed in this study.  

The detailed mapping of coseismic gravity changes and estimations of faulting 
parameters from spaceborne gravimetry are expected to shed new light on the processes 
exciting earthquake (and volcano) activities, and potentially lead to improvement in the 
prediction of such events. This study opens up a new field of earthquake studies, namely 
those purely conducted from space gravity observation, not just seismological or of other 
geodetic means. 

Chapter 2 gives the detailed derivations and numerical examples of coseismic 
gravitational and gradient changes due to finite fault model in a homogeneous half-space. 
Chapter 3 introduces the spatiospectral localization analysis for bandlimited signals based 
on the Slepian basis functions, and its advantages in the coseismic deformation studies. 
Subsequently, the simulated annealing (SA) algorithm, which is a popular non-linear 
inversion technique, is developed in Chapter 4 for inverting subsurface anomalies. The 
theories and methods developed in this study are applied to three recent earthquakes: the 
2004 Mw 9.2 Sumatra event, the 2010 Mw 8.8 Maule event, and the 2011 Mw 9.0 
Tohoku-Oki event, and the detailed analyses as well as subsequent results are presented 
in Chapter 5. Chapter 6 concludes the work in this dissertation.   
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Chapter 2: Gravitation and Gravitational Gradients Changes due to Shear and 
Tensile Faults in a Half Space 

 
Earthquakes disturb Earth’s gravitational potential, and consequently change 

gravitation and gravitational gradient observables on and above the surface of the Earth. 
Before discussing the coseismic gravitational changes due to earthquakes, the meanings 
of two terms, ‘displacement’ and ‘dislocation’, should be explicitly explained. 
‘Displacement’ refers to the vector distance of a particle in half-space at time t from its 
initial position at time t0, and ‘dislocation’ is regarded as the discontinuity in 
displacement or strain across a rupturing fault surface (Aki and Richards, 2002). To 
describe deformations and associated gravitation changes due to earthquakes, it is a 
simplified but effective way to model earthquakes as dislocations on a rectangular plane 
in a homogeneous elastic half-space (Okada, 1985; Okubo, 1991,1992). Dislocation 
theory adequately explains the coseimic displacement field (Press, 1965; Okada, 1985) 
and has been widely applied to coseismic deformation analyses. 

The gravitational potential changes due to earthquakes are attributable to three 
factors (Okubo, 1991, 1992): 
(1) The density perturbation −ρ∇⋅


u  of the half-space material, where ρ  is the original 

density of the unperturbed half-space, and 

u  is the displacement field in the half-space. 

(2) The surface mass density change hΔρ  owing to the uplift/subsidence hΔ  of the 
originally flat half-space surface. 
(3) Attraction of mass with density ρ ʹ′  filling into the cavity created by tensile fracturing. 
For example, the upwelling magma rises up to fill the gap formed as the tectonic plates 
gradually moving apart at mid-ocean ridges. 
 This chapter presents two methods, i.e. an analytical method and a numerical 
method (Fourier method), to calculate the coseismic gravitation and gravitational gradient 
changes due to dislocation on a rectangular fault plane with the assumption of a 
homogeneous elastic half-space. 

2.1  Analytical Method  
The gravitational potential change caused by a point dislocation source is first 

discussed. By integrating the Green’s function describing the point source effect over the 
whole rectangular fault plane, the expression of potential change caused by dislocation on 
a rectangular fault can be derived. Subsequently, the analytical expressions of the 
gravitation and gravitational gradient changes due to dislocation on a fault can be 
obtained by taking the first and second derivatives of the potential change. 
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2.1.1 Displacement Caused by Point Dislocation  
Let’s first discuss the displacement field u


 caused by a point dislocation buried in 

a homogeneous, isotropic and perfectly elastic half-space of density ρ . In Figure 2.1, a 
left-hand Cartesian frame is defined in the way that the x1ox2  plane spans the surface of 
the half-space with x3 -axis pointing perpendicularly downwards. A point dislocation 

source is buried at 0, 0,ξ3( )  in the half-space. 
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Figure 2.1: Point dislocation source buried in a half-space. 

 
The point source can be considered as an infinitesimal fault of area Σd  having the 

normal direction ),,( 321 nnnn =


. The dislocation on this infinitesimal fault plane is 

represented by a vector ),,( 321 uuuu =Δ


. Steketee (1958) shows that the displacement 

vector at an arbitrary point 

r = (x1, x2, x3)  in the half-space can be computed as: 

 

u

r;ξ3( ) = 1

8πµdΣ

∫ 
ω ij( ) r;ξ3( )uinjds =

1

8πµ

ω ij( ) r;ξ3( )uinjdΣ       (2.1) 

where the Einstein’s summation convention is applied and µ  is the rigidity of the half-

space medium. The kernel vector 

ω ij( )  is proportional to the displacement at 


r caused by 

a dislocation in direction of xi on the infinitesimal fault plane perpendicular to x j axis. 

Based on the work of Mindlin & Cheng (1950) who derived explicit expressions of the 
displacement and stress fields for half-space nuclei of strain, Press (1965) showed that 

ω ij( )  has the form of:
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where λ and µ  denote the Lamé constants, and δ ij  is Kronecker’s delta function. The 

vector 

v (k ) r,


ξ( )  in (2.2) is the displacement at 


r due to a single force at 


ξ  in xk -

direction with magnitude of 
8πµ λ + 2µ( )A0

λ +µ( )
, and A0  stands for the unit area (Okubo, 

1991). Mindlin & Cheng (1950) gave the form of 

v (k ) r,


ξ( )  as: 

 

v(k ) r,


ξ( )=2 1− v( ) ∇ ∇⋅


Γ(k )( )−∇×∇×


Γ(k )&

'
(
)−∇ ∇⋅


Γ(k )( )                    

   =2 1− v( )∇2

Γ(k ) −∇ ∇⋅


Γ(k )( )                      (2.3) 

where v  is Possion’s ratio and 

Γ(k ) denote the Galerkin vector, whose explicit expression 

is given in Appendix A.  
 

 2.1.2 Gravitational Potential Changes Caused by Point Dislocation 
 Earthquakes induce mass redistribution both in the interior and on the surface of 

the earth, and thereby perturb Earth’s gravitational field. After obtaining the displacement 
field, which quantitively describes the earthquake-induced mass movement, one can 
model the associated gravitational potential changes. Okubo (1991) divided the potential 
change caused by a subsurface point dislocation into two parts:  
(1) The gravitational potential change ψ  due to internal density disturbance −ρ∇⋅


u  

(divergence of the displacement field multiplied by density) to the original homogeneous 
density ρ ; 
(2) The gravitational potential change ϕ  due to vertical deformation Δh  of the originally 
flat half-space surface. The surface density change at the surface can be computed as 
ρΔh .  

2.1.2.1 Gravitational Potential Change Due to Density Changes 
At an observation point 


!r = !x1, !x2, !x3( )  outside of the half-space (see Figure 2.1), 

the gravitational potential change associated with the dilatation field, i.e. 
expansion/contraction of the half-space medium triggered by a point source buried at 
0, 0,ξ3( ) , can be evaluated as: 

           ψ

!r ,ξ3( ) =Gρ

∇⋅

u


r −

!r

dV
V

∫ (

r )

 

 =
Gρ
8πµ

∇⋅

ω (ij ) (


r,ξ3)


r −

$r

uinjdΣ
&

'
((

)

*
++dV

V

∫ (

r )                                   
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=

Gρ
8πµ

∇⋅

ω (ij ) (


r,ξ3)


r −

$r

dV (

r )

V

∫
&

'
((

)

*
++uinjdΣ  

 
=ψ (ij )uinjdΣ                                                                           (2.4) 

where 

 
ψ (ij ) !r ,ξ3( ) ≡ Gρ

8πµ
∇⋅

ω (ij ) (


r,ξ3)


r −

!r

dV
V

∫ (

r )

 .
                             (2.5) 

From equation (2.4), it can be seen that the expression ψ (ij ) !r ,ξ3( )  in equation (2.5) 

represents the gravitational potential change at 

!r  caused by a unit dislocation in 

direction of xi on an infinitesimal fault plane located at 0, 0,ξ3( ) , whose normal direction 

is parallel to x j axis. The expression of displacement vector u

r( )  in (2.4) is give by 

equation (2.1). 
By using equation (2.2) and (2.3), the term of ∇⋅


ω (ij ) (


r,ξ3)  in the integrand of 

equation (2.5) can be evaluated as: 

∇⋅

ω (ij ) (


r,ξ3) =∇⋅

λ +µ
λ + 2µ

λδ ij ∂
∂ξk

+µ δ ij ∂
∂ξ j

+δ jk ∂
∂ξi

$

%
&&

'

(
))

*

+
,
,

-

.
/
/


v (k ) r,


ξ( )

0
1
2

32

4
5
2

62 ξ1=ξ2=0

 

=
λ +µ
λ + 2µ

λδ ij ∂
∂ξk

+µ δ ij ∂
∂ξ j

+δ jk ∂
∂ξi

"

#
$$

%

&
''

(

)
*
*

+

,
-
-
∇ ⋅

v (k ) r,


ξ( )

0
1
2

32

4
5
2

62 ξ1=ξ2=0

 

=
λ +µ
λ + 2µ

λδ ij ∂
∂ξk

+µ δ ij ∂
∂ξ j

+δ jk ∂
∂ξi

"

#
$$

%

&
''

(

)
*
*

+

,
-
-
∇ ⋅ 2 1− v( )∇2


Γ(k ) −∇ ∇⋅


Γ(k )( )( )

2
3
4

54

6
7
4

84 ξ1=ξ2=0

 

= λδ ij ∂
∂ξk

+µ δ ij ∂
∂ξ j

+δ jk ∂
∂ξi

"

#
$$

%

&
''

(

)
*
*

+

,
-
-
∇ ⋅ ∇2


Γ(k )( )− λ +µ

λ + 2µ
∇2 ∇⋅


Γ(k )( )

(

)
*

+

,
-

2
3
4

54

6
7
4

84 ξ1=ξ2=0  

= λδ ij ∂
∂ξk

+µ δ ij ∂
∂ξ j

+δ jk ∂
∂ξi

"

#
$$

%

&
''

(

)
*
*

+

,
-
-

µ
λ + 2µ

∇2 ∇⋅

Γ(k )( )

(

)
*

+

,
-

1
2
3

43

5
6
3

73 ξ1=ξ2=0                       

=
µ

λ + 2µ
∇2P(ij ) r,ξ3( )                    (2.6) 

where   

 P ij( ) r,ξ3( ) ≡ λδ ij ∂
∂ξk

+µ δ ij ∂
∂ξ j

+δ jk ∂
∂ξi

#

$
%%

&

'
((

)

*
+
+

,

-
.
.
∇ ⋅

Γ k( ) r,


ξ( )( )

2
3
4

54

6
7
4

84 ξ1=ξ2=0

 (2.7) 
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Using the new notation P(ij ) r,ξ3( )  defined in equation (2.7), equation (2.5) can be 

rewritten as: 

 ψ (ij ) !r ,ξ3( ) = Gρ
8π λ + 2µ( )

∇2P(ij ) (

r,ξ3)


r −

!r

dV (

r )

V

∫
        

(2.8)  

As pointed out by Okubo (1991), singularities at the dislocation source exist if the 
potential change of ψ (ij ) !r ,ξ3( )  is evaluated using equation (2.8) directly, since the factor 

1

r −

ξ

 shows up in the term of ∇2P(ij ) (

r,ξ3)  after substituting the expressions of 

Galerkin vector given by equation A.1~A.3 into equation (2.7). To avoid the singularity, 
equation (2.8) can be rewritten using Green’s theorem as: 

  ψ (ij ) !r ,ξ3( ) = Gρ
8π λ + 2µ( )

−P(ij ) !r ,ξ3( )∇ 1

r −

!r

$

%
&&

'

(
))+

∇P(ij ) (

r,ξ3)


r −

!r

*

+
,
,

-

.
/
/S0

∫
1
2
3

43
−

e3( )ds  

+ P(ij ) r,ξ3( )∇2 1

r −

#r

$

%
&&

'

(
))

V

∫ dV (

r )
+
,
-

.-  

       

=
Gρ

8π λ + 2µ( )
P(ij ) !r ,ξ3( ) ∂

∂x3

1

r −

!r

$

%
&&

'

(
))−

∂P(ij ) (

r,ξ3)

∂x3

1

r −

!r

*

+
,
,

-

.
/
/S0

∫
1
2
3

43
ds

 

+ P(ij ) r,ξ3( )∇2 1

r −

#r

$

%
&&

'

(
))

V

∫ dV

r( )
+
,
-

.-                        

(2.9) 

where S0 denotes surface of the half-space at x3 =0, and 

e3  the unit vector of x3  

direction. By evaluating the surface and volume integral in equation (2.9) respectively, 

the explicit expressions of ψ ij( ) !r ,ξ3( )  are given in Appendix B (Okubo, 1991). Unlike 

above derivations where the notation of 

r  was used for the integral variable in half-

space, equations (B.1)~(B.4) use 

r  to denote the location of the observation outside the 

half-space x3 < 0( ) .

  

2.1.2.2 Potential Change Due to Surface Vertical Deformation  
Based on equation (2.1), the uplift/subsidence of the surface of half-space is 

obtained as:    

 
Δh(x1, x2;ξ3) = −

1

8πµ
ω3

ij( )(

r;ξ3)

x3=0
uinjdΣ = Δh(ij ) (x1, x2;ξ3)uinjdΣ    (2.10) 

where 

 
Δh(ij ) (x1, x2;ξ3) ≡ −

1

8πµ
ω3

ij( )(

r;ξ3)

x3=0
    (2.11) 
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The gravitational potential change due to surface elevation change is approximated by 
using a thin layer with surface density of ρΔh , and can be written as: 

 φ

r,ξ3( ) = −

GρΔh #x1, #x2;ξ3( )
x1 − #x1( )2

+ x2 − #x2( )+ x3
2−∞

∞

∫−∞

∞

∫ d #x1d #x2  

 = − Gρ
Δh(ij ) #x1, #x2;ξ3( )uinjdΣ

x1 − #x1( )2
+ x2 − #x2( )+ x3

2−∞

∞

∫−∞

∞

∫ d #x1d #x2  

 = − Gρ
Δh(ij ) #x1, #x2;ξ3( )

x1 − #x1( )2
+ x2 − #x2( )+ x3

2−∞

∞

∫−∞

∞

∫ d #x1d #x2

&

'

(
(

)

*

+
+uinjdΣ  

 
= φ (ij ) r;ξ3( )uinjdΣ               (2.12) 

where 

 

φ (ij ) r;ξ3( ) = − Gρ
Δh(ij ) #x1, #x2;ξ3( )

x1 − #x1( )2
+ x2 − #x2( )+ x3

2−∞

∞

∫−∞

∞

∫ d #x1d #x2       (2.13) 

Using the expressions for Δh(ij )  given by Press (1965) and Okada (1985), φ (ij ) r;ξ3( )  in 

equation (2.13) can be evaluated using Fourier transforms, since it has the form of 
convolution integral. Equations (B.5~B.8) list the final evaluations given by Okubo 
(1991).  
 

2.1.2.3 Total Potential Change 
By simply summing together the potential change due to expansion/contraction 

ψ (ij ) r,ξ3( )  in (2.9) and potential change due to surface uplift/subsidence φ (ij ) r,ξ3( )  in 

(2.13), the total gravitational potential change at a point 

r outside the half-space due to a 

point dislocation buried at 0, 0,ξ3( ) is obtained as: 

 Ψ (ij ) r,ξ3( ) =ψ (ij ) r,ξ3( )+ϕ (ij ) r,ξ3( )   (2.14) 

If some materials of density ρ0 fill into the cavity generated by tensile opening, a factor 

of −
Gρ0

R
 should be added to the diagonal components of Ψ (ij ) r;ξ3( ) . 

2.1.3 Potential Change Caused by Fault in Half-space 
Usually, it is not enough to just use an infinitesimal point dislocation to 

approximate the effect by a fault plane of finite size. How well the gravitation change due 
to a finite fault can be approximated by using a point dislocation depends on the distance 
between observation point and the dislocation source, as well as the size of the actual 
fault. Thus, it is necessary to consider the gravitational potential change due to uniform 
dislocation on a rectangular fault, which is a more realistic although simplified geometric 
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model for earthquakes. Figure 2.2 shows a finite rectangular fault plane with its length, 
width, depth and dip angle of L, W, d and δ , respectively. As indicated by the red arrows 
in Figure 2.2, the dislocation on this fault plane has the along-strike, down-dip and tensile 
components of U1 ,U2 and U3 , respectively. Under the Cartesian frame ox1x2x3 , the 

dislocation can be represented by a vector 


U : 

 


U =

U1

U2 cosδ −U3 sinδ

−U2 sinδ −U3 cosδ

"

#

$
$
$$

%

&

'
'
''

  (2.15)         

 and the normal vector of the fault plane is:    

  


n =

0
−sinδ
−cosδ

"

#

$
$
$

%

&

'
'
'

     (2.16) 

 

!"

#"

$"%&"

%'"%("
!&"

!'"

!("

""

#"

 
Figure 2.2: Geometry of a fault model. Positive U1,U2 and U3  with 0 < δ < 90o mean left-

lateral strike slip, thrusting slip and tensile opening, respectively. 
 
 In order to derive the gravitational potential changes caused by the faulting model 
in Figure 2.2, the Green’s functions Ψ (ij )  in (2.14), which describe potential changes 
excited by point dislocation, are integrated over the rectangular fault plane. To be 
specific, the total potential change ΔΨ  at a location 


r = x1, x2, x3( )  outside the half-space 

can be modeled by: 

 ΔΨ x1, x2, x3( ) = d #ξ d #η
0

W

∫0

L

∫ Ψ ij( ) x1 − #ξ , x2 − #η cosδ, x3;d − #η sinδ( )uinj . (2.17)  
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By applying the variable substitutions of ξ = x1 − "ξ  and η = p− "η , where 

p ≡ x2 cosδ + d − x3( )sinδ , the integral in equation (2.17) turns out to be: 

ΔΨ x1, x2x3( ) = dξ dη
p

p−W

∫ Ψ ij( ) ξ,η cosδ + qsinδ, x3;ηsinδ + d − psinδ( )uinjx1

x1−L

∫   (2.18) 

Similarly, the gravitational potential change cause by density change is: 

Δψ x1, x2x3( ) = dξ dη
p

p−W

∫ ψ ij( ) ξ,η cosδ + qsinδ, x3;ηsinδ + d − psinδ( )uinjx1

x1−L

∫  (2.19) 

In following text, the double-verticals notation is used to represent the form of: 
 f ξ,η( ) ≡ f x1, p( )− f x1, p−W( )− f x1 − L, p( )+ f x1 − L, p−W( )      (2.20)  

Appendix C provides the explicit forms of potential changes after integration (Okubo, 
1992).  

2.1.4 Gravitation Changes Caused by Faults in Half-space 
Gravitation is the first derivative of gravitational potential. Therefore, the 

gravitation change due to faulting in half-space can be derived by taking the derivative of 
potential change ΔΨ  in equation (2.17) with respect to x3 . For an observation point 

attached to the free surface of the half-space, the expression for gravitation change can be 
written as following form: 

Δg x1, x2, 0( ) = Gρ U1Sg ξ,η( )+U2Dg ξ,η( )+U3Tg ξ,η( )"# $%+GΔρU3Cg ξ,η( ){ } −βΔh x1, x2( )
    

             (2.21) 
where β = 0.3086×10−5 / s2  takes into account the free-air effect due to the surface 

vertical motion of Δh . To assume a density of 2.67kg / m3  and vertical uplift of 1 m of 
the half-space surface, the gravitation change due to the direct attraction of deformed 
surface is approximately 0.1119 mGal , while the free-air effect is 0.3086 mGal . Thus, 
the free-air effect is non-negligible when the observation point is on the free surface of 
the half-space. Sg, Dg,Tg  and Cg  are the derivatives of S, D, T, and C with respect to x3 , 

respectively, i.e., 
 Sg, Dg,Tg,Cg( ) = Γ S, D,T,C( )   (2.22) 

where Γ  is an operator defined as: 

 Γ ≡ −
∂
∂x3

−
∂q

∂x3

∂
∂q

−
∂p

∂x3

∂
∂η

%

&
'

(

)
*

x3=0

  (2.23) 

S, D and T are terms related to the potential changes caused by U1,U2  and U3  dislocation 

components respectively, and C takes into account the attraction of the mass intruding 
into the cavity formed by tensile opening. Their explicit expressions are given by 
(C.3)~(C.6) or (C.14)~(C.16). 

Similarly, by taking the derivative of Δψ  in equation (2.19) with respect to x3 , 

gravity change free from the effect of uplift/subsidence of the half-space surface is 
calculated by: 
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Δg* x1, x2, 0( ) = Gρ U1S
*
g ξ,η( )+U2D*

g ξ,η( )+U3T
*
g ξ,η( )"# $%+GΔρU3C

*
g ξ,η( ){ }      (2.24) 

Furthermore, the surface vertical deformation Δh  caused by dislocation on fault 
can be obtained by the same integration procedure as in equation (2.17), but using the 
Green’s function of Δh ij( )  given in equation (2.11), which describes surface vertical 
deformation caused by point dislocation source. After evaluation of the integral, the 
surface deformation due to a rectangular fault has the form of (Okada 1985, Okubo 
1992): 

 
Δh x1, x2, 0( ) = 1

2π
U1Sh ξ,η( )+U2Dh ξ,η( )+U3Th ξ,η( )"# $%

.
 (2.25) 

See Appendix D for explicit forms for (2.21), (2.24) and (2.25).   
 

2.1.5 Gravitational Gradients Changes Caused by Faults in Half-space 
The gravitational gradients are the 2nd derivatives of the gravitational potential. 

Thus, gravitational gradient changes at a fixed point outside the half-space ( x ≤ 0 ) can be 
calculated by applying various second order differential operators to the gravitational 
potential change given by equation (2.18) or (C.1), i.e., 

 
ΔTij x1, x2, 0( ) = − ∂2

∂xi∂x j

ΔΨ x1, x2, 0( )

= − Gρ U1Sij ξ,η( )+U2Dij ξ,η( )+U3Tij ξ,η( )%& '(+GΔρU3Cij ξ,η( ){ }
 

 
i, j =1, 2,3( )  (2.26) 

where 

 
Sij, Dij,Tij,Cij( ) = ∂2

∂xi∂x j

S, D,T,C( )   (2.27) 

Here, the expressions of S, D,T and C are given by equations (C.3)~(C.6) for 
cosδ ≠ 0 and equations (C.14)~(C.16) for cosδ = 0 . Based on aforementioned results 
mostly by Okubo (1991,1992), this study for the first time derived the analytical 
expressions of gradient changes for all five independent tensor components, both total 
changes and partial changes purely due to internal density perturbation. These analytical 
expressions are listed in Appendix E.  
 

2.2 Numerical Methods 
After dividing the half-space into finite regular grids, the dislocation-induced 

displacement and dilatation are computed at the center of each small cube. Then, the 
gravitational potential change, as well as its derivatives, can be numerically evaluated via 
Fourier transformations of the calculated displacements and dilatations on the regular 
grids.  
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2.2.1 Potential/Gravitation/Gravitational Gradients of Infinitesimally thin Mass 
Sheet 
Here, a right-hand Cartesian frame is defined for the homogeneous elastic half-

space. The plane spanned by x1  and x2 axes is parallel to the surface of half-space, x1  
and x2  axes point to the east and north, respectively, and x3  axis points upwards. Let us 

first consider the gravitational potential generated by an infinitesimally thin mass sheet 
with surface density of σ x1, x2( )  at depth of x3

(0) (see Figure 2.3). 

 

x3
(0)

x1

x2

x3

∇2Φ = 0

∇2Φ = −4πGρ

o

 
Figure 2.3: An infinitesimally thin mass sheet.Φ is the gravitational potential generated 
by this thin layer, G is the gravitational constant and ρ  is the mass density. 
 

The gravitational potential Φ  generated by the mass sheet satisfies Poisson’s 
equation: 

 
∂2Φ
∂x1

2
+
∂2Φ
∂x2

2
+
∂2Φ
∂x3

2
= −4πGσ x1, x2( )δ x3 − x3

(0)( )  (2.28) 

with the boundary conditions of: 
 lim

x1→∞
Φ = 0  (2.29) 

 lim
x2 →∞

Φ = 0  (2.30) 

 lim
x3→∞

Φ = 0  (2.31) 

Here, G and ρ  are the gravitational constant and mass density, respectively. 
The differential equation (2.28) can be solved using 2D Fourier transforms, whose 

forward and inverse transforms are defined as:  

 F(k1, k2 ) = f x1, x2( )e−i2π k1x1+k2x2( ) dx1 dx2
−∞

∞

∫
−∞

∞

∫  (2.32) 

 f (x1, x2 ) = F k1, k2( )ei2π k1x1+k2x2( ) dk1 dk2
−∞

∞

∫
−∞

∞

∫  (2.33) 
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Applying the forward 2D Fourier transform to variables x1  and x2 in equation (2.28) 
leads to: 

 −4π 2 k1
2 + k2

2( )Φ k1, k2, x3( )+ ∂
2Φ
∂x3

2
= −4πGσ k1, k2( )δ x3 − x3

(0)( )  (2.34) 

Then, forward 1D Fourier transform is applied for variable x3  in (2.34). Given the fact 

that:  

 δ x3 − x3
(0)( )e−i2πkx3 dz

−∞

∞

∫ = e−i2πkx3
(0 )

, (2.35) 

it gives:  

 π k1
2 + k2

2 + k3
2( )Φ k1, k2, k3( ) =Gσ k1, k2, k3( )e−i2πk3x3

(0 )

 (2.36)  

Therefore, the 2D spectrum of potential at height level of x3  is solved as: 

 

Φ k1, k2, x3( ) =
Gσ k1, k2( )

π
e

i2πk3 x3−x3
(0 )( )

k3
2 + k1

2 + k2
2( )−∞

∞

∫ dk3

=Gσ k1, k2( ) e
−2π k x3−x3

(0 )( )

k

 (2.37) 

where k = k1
2 + k2

2 . The expression of potential in space domain can be obtained by 

applying the inverse 2D Fourier transform to equation (2.37) for variables k1  and k2 : 

 Φ x1, x2, x3( ) =G σ k1, k2( ) e
−2π k x3−x3

(0 )( )

k−∞

∞

∫ ei2π k1x1+k2x2( ) dk1 dk2
−∞

∞

∫ . (2.38) 

Equation (2.38) is the expression of the gravitational potential generated by an 
infinitesimally thin mass sheet with surface density σ x1, x2( ) . By introducing two 

abstract operators ℑ and ℑ−1  to denote forward and inverse 2D Fourier transforms 
respectively, equation (2.38) can be concisely rewritten as: 

 Φ x1, x2, x3; x3
(0)( ) =Gℑ−1 ℑ σ x1, x2( ){ }e

−2π k x3−x3
(0 )( )

k

$
%
&

'&

(
)
&

*&
 (2.39)  

The gravitation generated by the mass sheet can subsequently be computed by 
taking the derivative of Φ x1, x2, x3( )  with respect to x3 : 

 g = −
∂Φ
∂x3

= 2πGℑ−1 ℑ σ x1, x2( ){ }e
−2π k x3−x3

(0 )( ){ }  (2.40) 

Similarly, the gravitational gradient components can be obtained by taking the 2nd 
derivatives: 
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  T11 =
∂2Φ
∂x1

2
= −4π 2Gℑ−1 ℑ σ x1, x2( ){ }k1

2 e
−2π k x3−x3

(0 )( )

k

%
&
'

('

)
*
'

+'
 (2.41) 

 T12 =
∂2Φ
∂x1∂x2

= −4π 2Gℑ−1 ℑ σ x1, x2( ){ }k1k2

e
−2π k x3−x3

(0 )( )

k

%
&
'

('

)
*
'

+'
 (2.42) 

 T13 = −
∂2Φ
∂x1∂x3

= 4π 2Gℑ−1 ℑ σ x1, x2( ){ }ik1e
−2π k x3−x3

(0 )( ){ }  (2.43) 

 T22 =
∂2Φ
∂x2

2
= −4π 2Gℑ−1 ℑ σ x1, x2( ){ }k2

2 e
−2π k x3−x3

(0 )( )

k

%
&
'

('

)
*
'

+'
 (2.44) 

 T23 = −
∂2Φ
∂x2∂x3

= 4π 2Gℑ−1 ℑ σ x1, x2( ){ }ik2e
−2π k x3−x3

(0 )( ){ }  (2.45) 

 T33 =
∂2Φ
∂x3

2
= 4π 2Gℑ−1 ℑ σ x1, x2( ){ } k e

−2π k x3−x3
(0 )( ){ }  (2.46) 

 

2.2.2 Potential/Gravitation/Gravitational Gradient Changes Due to Internal 
Density Changes  
If the dilatation field ∇⋅


u  can be calculated, the internal density changes can 

thereby be evaluated everywhere in the half-space as: 
 Δρ = −ρ∇⋅


u  (2.47) 

As shown in Figure 2.4, the half-space can be equally divided into a stack of thin layers 
with constant thickness of Δx3 . When the thickness Δx3  of each layer is small enough, 

the dislocation induced volumetric density change within each layer can be approximated 
by surface density change: 
 Δσ = Δρ ⋅ Δx3  (2.48) 
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Figure 2.4: Stacking of N+1 infinitesimally thin mass layers. 

 
In this way, the potential changes due to the expansion/contraction in each layer can be 
computed using equation (2.39). The potential change due to density changes in the 
whole half-space can then be numerically estimated by summing the contributions of all 
layers:  

 

Φ x1, x2, x3( ) = Φ x1, x2, x3; "x3( )
−∞

0

∫ dx3
"

≈ Φ(x1, x2, x3; x3
(i) )

i=N

0

∑ Δx3

 (2.49) 

where x3
(i) denotes the depth of ith layer, and Δx3  is the thickness of the layers. Similarly, 

gravitation and gravitational gradients changes can be computed by summing each 
layer’s effects given by equations (2.40)~(2.46). 
 

2.2.3 Potential/Gravitation/Gravitational Gradient Changes Due to Surface 
Vertical Deformation 
Same as the analytical method, gravitation change owing to vertical deformation 

of the half-space surface is approximated by using a thin layer with surface density 
σ x1, x2( ) , which is equal to the volumetric density ρ  multiplied by the amount of 

vertical deformation Δh x1, x2( ) : 

               σ x1, x2( ) = ρΔh x1, x2( ) .   (2.50) 

By introducing this thin layer, the potential, gravitation and gravitational gradient 
changes due to surface vertical deformation are ready to be evaluated using the same 
approaches discussed in section 2.2.1. 
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2.3 Numerical Results 
In this section, the gravitation and gravitational gradient changes due to different 

faulting scenarios are modeled using both analytical and numerical methods, and the 
computation results from these two approaches are compared with each other. This is a 
way to validate the Fourier approach since the evaluations using analytical formulas can 
be considered as truths.  

A rectangular fault plane with length L=10 km and width W=10 km is used in all 
numerical examples. The top edge of the fault plane is fixed at depth of 1 km. Poisson’s 
ratio is assumed to be 0.25, and density of the medium is assumed to be 2.67x103 kg/m3, 
consistent with the average density of Earth’s crust.  

For the first case, dip angle of the fault plane is set to be 30o. The gravitation and 
gravitational gradient changes triggered by a strike-slip faulting (U1 = 5m;U2 =U3 = 0 ) 

(see Figure 2.2) on this fault plane are computed over a 50 km×50 km domain on the 
surface of the half-space, with spatial samplings of 100 m. It can be seen from Figure 2.5 
that the gravity changes computed using analytical formula (Figure 2.5a) and using 
Fourier approach (Figure 2.5b) are very similar. They both reveal characteristic patterns 
similar to those of elevation changes. The differences between these two results (Figure 
2.5c) are about several µGal . Figure 2.6 shows the computed gravitational gradient 
changes for the same strike-slip faulting. The numerically computed gradient changes 
approximate the results from analytical formula fairly well for all tensor components. 
Large differences only show up along edges of the fault plane, particularly at upper 
corners of the rectangular fault.     
 

 
Figure 2.5: Gravitation changes in unit of µGal  caused by left-lateral faulting: fault 
length, width and dip are 10km, 10km, and 30o, respectively. Depth to the top edge of the 
fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U1 = 5m. 
(a) Gravitation changes calculated using analytical formula; (b) Gravitation changes 
calculated using Fourier approach; (c) The differences between (a) and (b) shown in a 
different color scale. 
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Figure 2.6: Gravitational gradient changes in unit of mE caused by left-lateral faulting: 
fault length, width and dip are 10km, 10km, and 30o, respectively. Depth to the top edge 
of the fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U1 
= 5m. (a)~(f) Gravitational gradient changes calculated using analytical formula; (g)~(l) 
Gravitational gradient changes calculated using Fourier approach; (m)~(r) The 
differences between the results using two methods shown in a different color scale. 

 
In the 2nd case, the gravitation and gravitational gradient changes are calculated 

for thrust faulting (U2 = 5m;U1 =U3 = 0 ) (see Figure 2.2) on the same fault plane as the 

one used in the previous case. The computed gravitation change (Figure 2.7) has larger 
amplitude than in the strike-slip case (Figure 2.5) although the dislocation magnitudes 
keep the same. Compared with the gravity change in Figure 2.7, the T22,T33 and T23  

components of the gravitational gradient changes (Figure 2.8), computed both 
analytically and numerically, more clearly delineate the edge of the fault.  
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Figure 2.7: Gravitation changes in unit of µGal  caused by thrust faulting: fault length, 
width and dip are 10km, 10km, and 30o, respectively. Depth to the top edge of the fault is 
1km. White rectangular shows the edges of the fault plane. Dislocation U2 = 5m. (a) 
Gravitation changes calculated using analytical formula; (b) Gravitation changes 
calculated using Fourier approach; (c) The differences between (a) and (b) shown in a 
different color scale. 
 

 
Figure 2.8: Gravitational gradient changes in unit of mE caused by thrust faulting: fault 
length, width and dip are 10km, 10km, and 30o, respectively. Depth to the top edge of the 
fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U2 = 5m. 
(a)~(f) Gravitational gradient changes calculated using analytical formula; (g)~(l) 
Gravitational gradient changes calculated using Fourier approach; (m)~(r) The 
differences between the results using two methods shown in a different color scale. 
 

In case III, dip angle of the fault plane is increased to 60o, different from the value 
of 30o used in previous two examples. The computed gravitation and gravitational 
gradient changes due to left-lateral faulting (U1 = 5m;U2 =U3 = 0 ) are shown in Figure 

2.9 and Figure 2.10, respectively. When compared with case I which has the same strike-
slip vector but shallower dip angle, it is found that the amplitudes of the gravitation and 
gravitational gradient changes get smaller as the dip angle increases from 30o in case I to 
60o in this case. Good consistencies still exist between the results calculated from 
analytical formula and from numerical method. 
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Figure 2.9: Gravitation changes in unit of µGal  caused by left-lateral faulting: fault 
length, width and dip are 10km, 10km, and 60o, respectively. Depth to the top edge of the 
fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U1 = 5m. 
(a) Gravitation changes calculated using analytical formula; (b) Gravitation changes 
calculated using Fourier approach; (c) The differences between (a) and (b) shown in a 
different color scale. 
 
 

 
Figure 2.10: Gravitational gradient changes in unit of mE caused by left-lateral faulting: 
fault length, width and dip are 10km, 10km, and 60o, respectively. Depth to the top edge 
of the fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U1 
= 5m. (a)~(f) Gravitational gradient changes calculated using analytical formula; (g)~(l) 
Gravitational gradient changes calculated using Fourier approach; (m)~(r) The 
differences between the results using two methods. 
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 In case IV, The geometry of the fault remains the same as the one in case III, but a 
thrust faulting is considered (U2 = 5m;U1 =U3 = 0 ). Figure 2.11 and Figure 2.12 show the 

predicted gravitation and gravitational gradient changes, respectively. When compared 
with case II in which the dislocation vector is the same yet the dip angle is shallower, 
more positive signals are found in the calculated gravitation changes (Figure 2.11) since 
larger dip angle leads to more significant elevation changes on the surface. Again, the 
T22,T33 and T23  components of the gravitational gradient changes (Figure 2.12) clearly 

delineate the edge of the fault. 
 
 

 
Figure 2.11: Gravitation changes in unit of µGal  caused by thrust faulting: fault length, 
width and dip are 10km, 10km, and 60o, respectively. Depth to the top edge of the fault is 
1km. White rectangular shows the edges of the fault plane. Dislocation U2 = 5m. (a) 
Gravitation changes calculated using analytical formula; (b) Gravitation changes 
calculated using Fourier approach; (c) The differences between (a) and (b) shown in a 
different color scale. 
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Figure 2.12: Gravitational gradient changes in unit of mE caused by thrust faulting: fault 
length, width and dip are 10km, 10km, and 60o, respectively. Depth to the top edge of the 
fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U2 = 5m. 
(a)~(f) Gravitational gradient changes calculated using analytical formula; (g)~(l) 
Gravitational gradient changes calculated using Fourier approach; (m)~(r) The 
differences between the results using two methods. 
 

In case V, let’s consider the gravitation and gravitational gradient changes due to 
strike-slip (U1 = 5m;U2 =U3 = 0 ) faulting on a vertical fault plane whose size keeps the 

same as in previous examples. The gravitation and gravitational gradient changes show 
totally symmetric spatial pattern, and the positive and negative changes have equal 
amplitudes. 
 

 
Figure 2.13: Gravitation changes in unit of µGal  caused by left-lateral faulting: fault 
length, width and dip are 10km, 10km, and 90o, respectively. Depth to the top edge of the 
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fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U1 = 5m. 
(a) Gravitation changes calculated using analytical formula; (b) Gravitation changes 
calculated using Fourier approach; (c) The differences between (a) and (b) shown in a 
different color scale. 
 

 
Figure 2.14: Gravitational gradient changes in unit of mE caused by left-lateral faulting: 
fault length, width and dip are 10km, 10km, and 90o, respectively. Depth to the top edge 
of the fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U1 
= 5m. (a)~(f) Gravitational gradient changes calculated using analytical formula; (g)~(l) 
Gravitational gradient changes calculated using Fourier approach; (m)~(r) The 
differences between the results using two methods. 
 

In last case, the gravitation (Figure 2.15) and gravitational gradient (Figure 2.16) 
changes due to a thrust (U2 = 5m;U1 =U3 = 0 ) faulting on the same vertical fault plane as 

the one used in case V are presented. 
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Figure 2.15: Gravitation changes in unit of µGal  caused by thrust faulting: fault length, 
width and dip are 10km, 10km, and 90o, respectively. Depth to the top edge of the fault is 
1km. White rectangular shows the edges of the fault plane. Dislocation U2 = 5m. (a) 
Gravitation changes calculated using analytical formula; (b) Gravitation changes 
calculated using Fourier approach; (c) The differences between (a) and (b) shown in a 
different color scale. 
 

 
Figure 2.16: Gravitational gradient changes in unit of mE caused by thrust faulting: fault 
length, width and dip are 10km, 10km, and 90o, respectively. Depth to the top edge of the 
fault is 1km. White rectangular shows the edges of the fault plane. Dislocation U2 = 5m. 
(a)~(f) Gravitational gradient changes calculated using analytical formula; (g)~(l) 
Gravitational gradient changes calculated using Fourier approach; (m)~(r) The 
differences between the results using two methods. 
 
 If the gravitation and gravitational gradient changes calculated by the analytical 
formulas are considered as truths, the errors induced by the numerical method can be 
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evaluated based on the differences between the results of these two methods. Table 2.1 
lists the standard deviations (std) of relative errors of the estimated gravitation and 
gravitational gradient changes using Fourier approach. 
 

                std 
    fault               

g

[µGal]
 

T33

[mE]
 

T13

[mE]
 

T23

[mE]
 

T22

[mE]
 

T12

[mE]
 

T11

[mE]
 

Dip=30o U1=5m 0.94 11.53 8.65 8.91 8.06 1.62 8.02 

U2=5m 1.12 13.81 3.46 13.38 13.15 2.58 2.40 

Dip=60o 
U1=5m 1.10 10.66 8.51 7.99 7.09 1.69 7.73 

U2=5m 1.57 14.83 2.69 14.71 14.47 2.27 1.79 

Dip=90o U1=5m 1.19 8.09 6.23 6.60 5.76 1.76 5.37 

U2=5m 1.68 18.37 2.45 18.69 18.24 2.34 1.67 

Table 2.1: Standard deviations of relative errors in estimated gravitation and gravitational 
gradient changes using Fourier approach for various faulting scenarios. The gravitation 
and gravitational gradient changes given by the analytical formulas are considered as 
‘truths’. 
 

Table 2.1 reveals that, for both strike-slip faulting and thrust faulting, the errors in 
the calculated gravitation changes by Fourier approach get larger with the increasing of 
dip angle. The errors are larger for thrust faulting than strike-slip faulting at the same dip 
angle. For the gravitational gradient components of T33,T23  and T22 , if the faulting is in 

the strike-slip sense, the errors induced by the numerical method become smaller as the 
dip angle increases; While for thrust faulting, the errors are larger for larger dip angles. 
At the same dip angle, the numerical approach induces larger errors for thrust faulting. 
For the components of T13 and T11 , the errors induced by the numerical methods get 

smaller as the dip angle increases for both strike-slip and thrust faultings. At fixed dip 
angle, the numerical approach induces larger errors for strike-slip faulting.  
 In all cases, when the numerical method is used, the standard deviations of errors 
in the calculated gravitation changes are less than 2µGal . The standard deviations of 
errors in estimated gravitational gradient changes are < 20mE  for T33,T23,T22 , while 

<10mE  for T13,T12,T11  components. 

 Analytical formula can be used to compute the coseismic gravitation and 
gravitational gradient changes very fast. The Fourier approach can also be used to 
effectively estimate the faulting-induced gravitation and gravitational gradient changes. 
In order to implement the numerical method, the half-space has to be divided into grid of 
rectangular cells whose size must be small enough to avoid losses of high-frequency 
contents. For complicated slip models, which typically consist of several large fault 
planes, and slips keep varying from patch to patch, utilization of the Fourier approach 
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demands huge memory storage and computation time. However, the advantage of the 
numerical method is that it can take into account the effect of layered density structure of 
the half-space. The only elastic property controlling the displacement field and thus the 
dilatation filed in the half-space is the Poisson ratio, which is less variable (Okada, 1985; 
Lay et al., 2011) in crust and upper mantle of the Earth. Therefore, multiplying the 
dilatation (sum of normal strains) by specific densities at different depths, e.g. sediment, 
soft crust, hard curst, and upper mantle, we can obtain the volumetric density changes at 
arbitrary levels even if the half-space has layered density structure. 
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Chapter 3:  Spatiospectral Localization Analysis for Regional Signals 
 

While many geophysical phenomena, such as ice-sheet melting over Greenland 
and Antarctica, glacial isostatic adjustment over Hudson Bay, magnetic anomaly due to 
bodies buried in Earth’s crust and deformation caused by great earthquakes, are spatially 
localized, the signals associated with these geological and geophysical processes are 
usually extracted and analyzed from data products represented by certain basis functions 
having global support. The so-called spatiospectral concentration problem is to determine 
an orthogonal family of strictly bandlimited functions that are optimally concentrated 
within a closed region of the sphere or, alternatively, to determine an orthogonal family 
of strictly spacelimited functions that are optimally concentrated in the spherical 
harmonic domain (Simons et al., 2006). The resulted Slepian basis function can be 
efficiently applied to represent and analyze regional signals, in particular the coseismic 
gravity changes by great earthquakes. 

3.1 Slepian’s Concentration Problem on Sphere 
Figure 3.1 shows a unit sphere Ω . 


r  is the location of a point on the surface of 

the unit sphere with colatitude θ  and longitude φ . An arbitrary real-valued, square-

integrable function f

r( )  

on the unit sphere can be expressed by spherical harmonic 

expansion as: 

 f

r( ) = flmYlm

m=−l

l

∑
l=0

∞

∑    (3.1) 

where flm is the spherical harmonic coefficient:  

 flm = fYlm dΩ
Ω∫ .        (3.2) 

Ylm  denotes the spherical harmonic of degree l and order m: 

 Ylm θ,φ( ) =
2Xlm θ( )cosmφ, if −l ≤m < 0

Xl0, if m = 0

2Xlm θ( )sin mφ, if 0 <m ≤ l

#

$
%%

&
%
%

 (3.3) 

 Xlm θ( ) = −1( )m 2l +1

4π
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 Plm t( ) = 1

2l l!
1− t2( )
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dt
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t2 −1( )
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In the following discussions, we use g

r( )  to denote strictly bandlimited square-

integrable functions on the unit sphere Ω : 

 g

r( ) = glmYlm

m=−l

l

∑
l=0

L

∑  (3.6) 

and h

r( )  to denote strictly spacelimited square-integrable functions on Ω : 

 h

r( ) = hlmYlm

m=−l

l

∑
l=0

∞

∑ ,    h(

r ) = 0  in Ω− R  (3.7) 

where R is an arbitrary spatial region on Ω , as shown in Figure 3.1. 
 

θ!

ϕ!

x 

y 

z 


r

Ω!

R!

 
Figure 3.1: A unit sphere Ω. R is a close region of the surface. 

 
No functions can be strictly spacelimited and at the same time strictly 

bandlimited. The objective of the spatiospectral concentration problem is to find 
bandlimited functions g


r( ) , which are optimally concentrated within a spatial region R, 

and to determine spacelimited functions h

r( )  whose spectrum is optimally concentrated 

within an interval 0 ≤ l ≤ L .   
 To maximize the spatial concentration of a bandlimited function g


r( )  within a 

region R, the ratio of the norms should be maximized as: 

 λ =
g

R

2

g
Ω

2 =
g2 dΩ

R∫
g2 dΩ

Ω∫
=maximum   (3.8) 

Here, the ratio 0 < λ <1 is a measure of the spatial concentration. Substituting equation 
(3.6) into equation (3.8), we have 
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 λ =
glm Dlm, !l !m g !l !m

!m =− !l

!l

∑
!l =0

L

∑
m=−l

l

∑
l=0

L

∑

glm
2

m=−l

l

∑
l=0

L

∑
             (3.9) 

where 
 Dlm, !l !m = YlmY !l !m dΩ

R∫ . (3.10) 

By introducing a matrix D of dimension L +1( )2
× L +1( )2

: 

D =

D0,0;0,0  D0,0;L,0 D0,0;1,−1  D0,0;L,−1 D0,0;1,1  D0,0;L,1  D0,0;L,L

 
DL,0;0,0  DL,0;L,0 DL,0;1,−1  DL,0;L,−1 DL,0;1,1  DL,0;L,1  DL,0;L,L

D1,−1;0,0  D1,−1;L,0 D1,−1;1,−1  D1,−1;L,−1 D1,−1;1,1  D1,−1;L,1  D1,−1;L,L

 
DL,−1;0,0  DL,−1;L,0 DL,−1;1,−1  DL,−1;L,−1 DL,−1;1,1  DL,−1;L,1  DL,−1;L,L

D1,1;0,0  D1,1;L,0 D1,1;1,−1  D1,1;L,−1 D1,1;1,1  D1,1;L,1  D1,1;L,L

 
DL,1;0,0  DL,1;L,0 DL,1;1,−1  DL,1;L,−1 DL,1;1,1  DL,1;L,1  DL,1;L,L

 
DL,L;0,0  DL,L;L,0 DL,L;1,−1  DL,L;L,−1 DL,L;1,1  DL,L;L,1  DL,L;L,L

"
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$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
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(3.11)

 

with elements Dl,m; !l , !m , 0 ≤ l "l( ) ≤ L  and −l ≤m #m( ) ≤ l , as well as a L +1( )2
×1  vector of 

spherical harmonic coefficients g:  

 g = g0,0  gL,0 g1,−1  gL,−1 g1,1  gL,1  gL,L( )
T

, (3.12) 

which is associated with function g

r( ) , we can rewrite equation (3.9) in matrix form as:

 
 λ =

gTDg
gTg

=maximum  (3.13) 

The concentration problem now turns out to be a classical matrix variational problem. By 

solving the L +1( )2
× L +1( )2

 algebraic eigenvalue problem: 

 Dg = λg ,    (3.14) 

L +1( )2
 eigenvalues λ  and associated eigenvectors g1, g2,, g

L+1( )2
 can be determined. 

The eigenvalues λ1,λ2,,λ
L+1( )2

 can be sorted in descending order 

(1> λ1 ≥ λ2 ≥≥ λ
L+1( )2

) and correspondingly the associated spectral-domain 

eigenvectors g1, g2,, g
L+1( )2

. Every spectral-domin eigenvector gα  corresponds to an 

associated bandlimited spatial eigenfunction gα

r( )  as defined by (3.6). The spatial 
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eigenfunction g1


r( )  corresponding to the largest eigenvalue of λ1  is a bandlimited 

function on the unit sphere but optimally concentrated within region R, and the 2nd ranked 
eigenfunction g2


r( )  is the next best concentrated function, et cetera. 

It can be proven that the spectrum domain eigenvectors g1, g2,, g
L+1( )2

 are 

mutually orthogonal. They can also be chosen to be orthonormal so that: 
 gα

T gβ = δαβ , and   gα
T Dgβ = λαδαβ  (3.15) 

where  

 δαβ =
1, α = β

0, α ≠ β

"
#
$

%$
 (3.16) 

is the Kronecker’s delta function. In space domain, the associated spatial eigenfunctions 
g1


r( ), g2


r( ),, g

L+1( )2

r( )  form a set of bases spanning the space of bandlimited square-

integrable functions on the unit sphere Ω . It is worth mentioning here that both Ylm , 

0 ≤ l ≤ L , −l ≤m ≤ l , and gα , α =1, 2,, L +1( )2
, are L +1( )2

- dimensinal orthogonal 

bases for the space of bandlimited square-integrable functions on Ω . 
The sum of all the eigenvalues λ1,λ2,,λ

L+1( )2
 of the matrix D defined in (3.11) 

is: 

 N = λα = tr(D) = Dlm,lm

m=−l

l

∑
l=0

L

∑ = L +1( )2 A

4πα=1

L+1( )2

∑  (3.17) 

where A is the area of the concentration region R. The quantity N is defined as ‘spherical 
Shannon number’. The eigenvalues λα  are near unity for the eigenfunctions gα


r( )  which 

are well concentrated within the region R, yet near zero for those poorly concentrated 
eigenfunctions. If the transition band from values near unity to values near zero in the 
eigenspectrum is narrow, the Shannon number well approximates the total number of the 
eigenvalues close to unity, i.e., the number of bandlimited spatial eigenfunctions having 
most of their energy concentrated within the region R. Thus, the first N orthogonal 
eigenfunctions gα , α =1, 2,, N , with significant eigenvalues λα ≈1, provide uniform 

coverage of the objective region R. This is the essence of the spatiospectral concentration 
problem: the local signals can be essentially well approximated by using only N 
(spherical Shannon number) Slepian basis functions. 
 As an example, following text discusses the localization problem for a special but 
important case, i.e., concentration within a circularly symmetric polar cap of colatitudinal 
radius Θ , centered on the north pole (see Figure 3.2).  
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Figure 3.2: An axisymmetric polar cap of colatitudinal radius Θ , centered on the north 
pole. 
 
In this circumstance, the matrix elements Dlm, !l !m  as given by equation (3.10) reduce to:  

 
Dlm, !l !m = YlmY !l !m dΩ

R∫
= 2πδm !m XlmX !l !m sinθ dθ

0

Θ

∫
  (3.18) 

The Kronecker’s delta δm !m makes the L +1( )2
× L +1( )2

matrix D of (3.11) block diagonal:  

D =

D0

D1

D1


DL

DL
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=

D0,0;0,0  D0,0;L,0

 
DL,0;0,0  DL,0;L,0

D1,−1;1,−1  D1,−1;L,−1

 
DL,−1;1,−1  DL,−1;L,−1

D1,1;1,1  D1,1;L,1

 
DL,1;1,1  DL,1;L,1


DL,L;L,L
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  (3.19) 
 
Every submatrix Dm  ( m ≠ 0 ) occurs twice because of the doublet degeneracy associated 

with ± m. Thus, the eigenvalue problem in equation (3.14) can be decomposed into a 
series of L −m+1( )× L −m+1( )  spectral-domain algebraic eigenvalue problems:  

 Dmgm = λmgm ,  (3.20)  

one for each non-negative order m. In the following text, the identifying subscript m is 
dropped, and each fixed-order eigenvalue problem is simply written as: 
 Dg = λg       (3.21) 
where 

 D =

Dmm  DmL

 
DLm  DLL
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.  (3.22) 

For a particular order 0 ≤m ≤ L and m ≤ l ≤ L , 

 Dl !l = Dl,m; !l ,m = 2π XlmX !l m sinθ dθ
0

Θ

∫          (3.23) 

Equation (3.23) can be evaluated as: 

Dl !l = −1( )m 2l +1( ) 2 !l +1( )
2

l n !l
0 0 0

#

$
%

&

'
(

n= l− !l

l+ !l

∑ l n !l
m 0 −m

#

$
%

&

'
( Pn−1 cosΘ( )−Pn+1 cosΘ( )+, -. , 

  (3.24) 
where the arrays of indices are Wigner 3-j symbols.  

By solving each of the fixed-order eigenvalue problem (3.21), we obtain L-m+1 
eigenvectors g1, g2,, gL−m+1  associated with the L-m+1 distinct eigenvalues 
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1> λ1 > λ2 >> λL−m+1 > 0 . These eigenvectors can be orthonormalized as in (3.15) so 

that:  
 gT

αgβ = δαβ ,     and  gT
αDgβ = λαδαβ .  (3.25) 

Consequently, the associated bandlimited colatitudinal eigenfunctions 
g1 θ( ), g2 θ( ),, gL−m+1 θ( ) , which are defined by: 

 g θ( ) = gl Xlm θ( )
l=m

L

∑ ,  (3.26) 

satisfy the orthogonality relations: 

 2π gαgβ sinθ dθ = δαβ0

π

∫ ,       and  2π gαgβ sinθ dθ = λαδαβ0

Θ

∫ .  (3.27) 

Finally, the optimally concentrated spatial eigenfunctions g

r( )  for a given order 

−L ≤m ≤ L  are expressed in terms of spherical harmonic expansion: 

 g θ,φ( ) =
2g θ( )cosmφ if −L ≤m < 0,

g θ( ) if m = 0,

2g θ( )sin mφ if 0 <m ≤ L.

#

$
%
%

&
%
%

   (3.28) 

After obtaining the L+1 sets of fixed-order eigenvalues, we can resort all the 

L +1( )2
eigenvalues to exhibit an overall mixed-order ranking. As discussed before, there 

are roughly N (spherical Shannon number) eigenfunctions optimally concentrated within 
the polar cap.  

Figure 3.3 shows the reordered, mixed-m eigenvalue spectra for four different 
polar caps, with colatitudinal radii Θ =10, 20,30, and 40 . The maximum spherical 
harmonic degree is L=20. The well concentrated eigenfunctions λ ≥ 0.5( )  are separated 

from the more poorly concentrated ones λ < 0.5( )  roughly by the rounded Shannon 

numbers N, which are N = 3, 13, 30 and 52 in all four cases.  
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Figure 3.3: Sorted eigenvalues (λα versus rank α ) for symmetric polar caps of 

colatitudinal radius Θ =10, 20,30 and 40 , and the maximum spherical harmonic 

degree L=20. Only λ1 through λ60 among the total (L +1)2 = 441 eigenvalues are shown. 

 
Figure 3.4 shows the first 32 eigenfunctions g θ,φ( )  concentrated with a polar cap of 

radius 40o as defined by equation (3.28). The maximum bandwidth is spherical harmonic 
degree of 20. The spherical Shannon number is N=52.  
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h2 =  0.995 ; m = 4 h1 =  0.991 ; m = −7 h1 =  0.991 ; m = 7 h3 =  0.990 ; m = −2

h3 =  0.990 ; m = 2 h4 =  0.988 ; m = 0 h2 =  0.967 ; m = −5 h2 =  0.967 ; m = 5

 
Figure 3.4: Bandlimited eigenfunctions g θ,φ( )  that are optimally concentrated within an 

axisymmetric polar cap of colatitudinal radius Θ = 40 , whose boundary is denoted by 
dashed circles. The bandwidth is L=20, and the rounded Shannon number is N=52. 
Subscripts on the eigenvalues λα  specify the rank for fixed-order m. The eigenvalues 

have been resorted into a mixed-order ranking, and the top 32 best concentrated 
eigenfunctions are plotted. Blue indicates positive values and red indicates negative 
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values; regions having the absolute value less than 1/100 of the maximum value on the 
sphere are left white.   
 

3.2 Sparsity in Slepian Localization Analysis 

3.2.1 Sparsity From Geometry 
Geophysical signals that are regional in nature are sparse in the Slepian domain if 

the Slepian basis is designed to be concentrated within the same region as the signals 
reside in. The signal of interest can be expressed by spherical harmonic expansion as in 
equation (3.1). Although the bandwidth of signal in real world can be infinite, in practice 
it is often represented or estimated up to certain maximum spherical harmonic degree L, 
i.e.,   

 f̂

r( ) = f̂lmYlm


r( )

m=−l

l

∑
l=0

L

∑ .    (3.29) 

     
 

Alternatively, it can be expanded using the Slepian basis designed for certain 
concentration region: 

 f̂

r( ) = f̂αgα


r( )

α=1

L+1( )2

∑        (3.30) 

In equation (3.29) and (3.30), the spherical harmonics Ylm  and the corresponding 

expansion coefficients f̂lm are indexed by the integer degree l and order m, and the 

Slepian basis functions gα  and expansion coefficients f̂α  by the linear index α . The 

expression by spherical harmonic basis (3.29) and the one using the Slepian basis (3.30) 
are completely equivalent, since the Slepian basis for bandlimited functions everywhere 
on the sphere is complete, and the transformation from the spherical harmonic to the 
Slepian basis is unitary. When the signal of interest, f


r( ) , is spatially localized, and the 

Slepian basis is designed to be concentrated inside the same region, the signal can be very 
well approximated by a truncated Slepian expansion limited to the first N (spherical 
Shannon number) terms:  

 
f̂ (

r ) = f̂lmYlm (


r )

m=−l

l

∑
l=0

L

∑ = f̂αgα (

r )

α=1

(L+1)2

∑ ≈ f̂αgα (

r )

α=1

N

∑ ,                     (3.31) 

since the first N Slepian basis functions have their energy optimally concentrated within 

the region, while the remaining L +1( )2
− N  basis functions are mostly defined outside 

the concentration region. In other words, a local bandlimited signal (with maximum 
bandwidth of L) can be well approximated by using only N Slepian coefficients instead of 
(L+1)2 spherical harmonic expansion coefficients. The efficiency gained by using Slepian 
representation depends on the area of the region of interest as shown in equation (3.17). 
Thus, we say this sparsity is mostly “geometric” (Simons et al., 2009). 
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For illustration, the coseismic gravity changes from 2010 Mw 8.8 Maule 
earthquake is represent using both spherical harmonics and the Slepian functions. With 
the assumption of a homogeneous half-space, the coseismic gravity changes can be 
computed from a seismically derived faulting model (USGS, 2010) up to degree and 
order 100. Figure 3.5a shows the coseismic gravity changes represented using all 10,201 
spherical harmonic coefficients. Figure 3.5d reveals that among those only 5,598 
coefficients are significant contributors to the signal, in that they have absolute values 
that are larger than one hundredth of the maximum of the entire set. Figure 3.5b  shows 
the approximation of the same coseismic gravity changes, but only using the first N = 77 
best-localized Slepian functions in the expansion. Compared to Figure 3.5a, the coseismic 
gravity changes inside of the concentration region are extremely well captured by the 
partial sum of the first N = 77 terms in the Slepian expansion, since only 50, belonging to 
those with the highest concentration ratios, have significant values, as shown in Figure 
3.5e. This example shows one of the advantages of making expansions in the Slepian 
basis: band-limited geophysical signals that are regional in nature are sparse in this sense. 
The root mean squared misfit of the expansions, which are shown in Figure 3.5c, is 
0.05% of the signal when calculated over the entire sphere, and 0.14% of the signal when 
calculated over the circular concentration region.      

 
Figure 3.5: The useful sparsity that results from expanding localized geophysical signals 
in a Slepian basis. (a) Model-predicted coseismic gravity changes for 2010 Mw 8.8 
Maule earthquake, bandlimited to spherical harmonic degree and order 100; (b) an 
approximation of the same coseismic gravity changes using the N  = 77 best-localized of 
the 10201 Slepian functions concentrated to a circular region centered at the epicenter 
with radius of 10o; (c) the differences between the spherical-harmonic representation in 
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(a) and the Slepian-function representation in (b); (d) the corresponding 10201 spherical 
harmonic expansion coefficients; and (e) their Slepian expansion coefficients, using the 
same color scheme. Values whose absolute value is smaller than 1/100 of their maximum 
absolute value are rendered white. The ordinate is the sum of the rank α of the Slepian 
function within a sequence of single absolute order and this order of m . Only a small 

number of Slepian functions are needed for an adequate representation of the signal in the 
target region. 

3.2.2 Sparsity From Geophysics 
The top-ranked Slepian basis functions on circular concentration regions, 

fortuitously, match the patterns of the geopotential perturbation generated by coseismic 
deformation.  

In a spherical coordinate system, the hypocenter of an earthquake is at 

rs = rs,θs,φs( ) . The equivalent body forces for seismic sources of different geometries at 

rs  are represented by the seismic moment tensor in spherical coordinate: 

 M =

Mrr Mrθ Mrφ

Mθr Mθθ Mθφ

Mφr Mφθ Mφφ

!

"

#
#
#
#

$

%

&
&
&
&

 (3.32) 

For simplicity, the symmetric moment tensor in above equation can be vectorized as: 
 M = Mrr, Mθθ , Mφφ, Mrθ , Mrφ, Mθφ

!" #$  (3.33) 

  According to normal-mode theory, Simons et al. (2009) showed that the first-
order Eulerian gravitational potential perturbations in a spherically-symmetric non-
rotating Earth due to a variety of earthquake focal-mechanism end-members form 
patterns that are similar to the shape of some of the best-concentrated Slepian functions 
on symmetric spherical cap. To be specific, the gravitational potential perturbations 
induced by a variety of fictitious earthquake sources at Japan trench are shown in Figure 
3.6. The symmetries of monopoles, dipoles and quadrupoles can be found in the patterns 
of gravitational perturbations by various seismic sources. Fortuitously, the shapes of top 
five Slepian functions, which are shown in Figure 3.4, match the patterns with which 
moment-tensor point source earthquakes perturb Earth’s geopotential field as shown in 
Figure 3.6. This is an additional advantage by which the Slepian basis functions are 
particularly suitable to represent and analyze coseismic gravity changes. 
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Figure 3.6: The spatial pattern of gravitational potential disturbance owing to fictitious 
double-coupled point-source earthquake occurring at depth of 30km along the Japan 
trench. The calculation is based on the normal-mode theory, and the Preliminary 
Reference Earth model (PREM) is assumed. The maximum spherical degree is L=60. 
Blue and red colors indicate positive and negative signals respectively, and the color axis 
is symmetric. (a)~(b) 45o thrust faults. (c)~(d) Vertical dip-slip faults. (e)~(f) Vertical 
strike-slip faults. 
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Chapter 4:  Monte Carlo Inversion 
 

During the earthquake, slips on the rupture interface induce mass movement in 
surrounding crust/upper mantle and consequently perturb the local gravity field. The 
earthquake induced mass redistribution, which can be detected by spaceborne gravimetry, 
is related to slips on the buried fault plane via Volterra’s formula (Aki and Richards, 
2002). Thus, it is possible to use the detected gravity change, as an independent thus 
valuable observation, to inversely constrain the slip and fault geometry of the earthquake. 
However, to invert for fault parameters from coseismic gravity changes is a strongly 
nonlinear problem as can be seen in Chapter 2. Furthermore, the gravity inverse problem 
is an ill-posed problem, and the solution faces the problem of non-uniqueness. Thus, the 
Monte Carlo method is applied for gravity inversion in the study.  

Modern Monte Carlo methods, defined as “experiments making use of random 
numbers to solve problems that are either probabilistic or deterministic in nature” 
(Sambridge and Mosegaard, 2002), are first used in the work on the atomic bomb during  
World War II to simulate the neutron diffusion. Since then, the Monte Carlo methods 
have been applied to a vast range of problems in physics, mathematics, biology, 
chemistry and geophysics etc.  

One important application of Monte Carlo methods is to realize the optimization 
in inverse problem. Inverse problems are typically ill-posed, linear inversion procedure 
based on matrix inversion suffers from numerical instabilities, such as inverting ill-
conditioned matrices. Compared with linear or linearized inversion schemes, the Monte 
Carlo methods directly sample the parameter space, and thereby are inherently stable in 
the sense that no potentially numerical unstable processes are involved. Furthermore, 
although linear inversion technique could always give a unique solution for weakly 
nonlinear inverse problem via linearization and regularization, it cannot be applied if 
either the inverse problem is highly nonlinear or it is practically impossible for the 
problem to be linearized. The Monte Carlo method can still be utilized since it only 
requires the capability to implement forward modeling.  

 The core of all Monte Carlo methods is to randomly sample (or ‘search’) the 
parameter space by an efficient algorithm. For most problems, the searching range is 
preferred to be gradually confined in particular ‘promising’ regions in the parameter 
space (non-uniform sampling). Otherwise, huge computation time would be required in 
order to find the optimal solution. Among various sampling algorithms, Metropolis-
Hastings algorithm (Metropolis et al., 1953), which belongs to the class of Markov Chain 
Monte Carlo (MCMC) algorithms, is widely used to search the parameter space in a way 
that the states leading to smaller data-model misfits have larger chances to be sampled. 
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Based on Metropolis-Hastings algorithm, the Simulated Annealing (SA) method, first 
introduced by Kirkpatrick et al. (1983), searches for the global optimum via a procedure 
analogous to the process of chemical annealing.  

In section 4.1, the Metropolis-Hastings sampling algorithm is first explained in 
details, as it is the basis of the SA method, which is introduced in section 4.2. Finally, 
two numerical applications are given in section 4.3.  
 

4.1 Metropolis-Hastings Algorithm 
Metropolis-Hastings algorithm is a kind of Markov Chain Monte Carlo (MCMC) 

algorithm designed to generate a sequence of random samples from a target probability 
distribution P over a high-dimensional space. When no explicit mathematical expressions 
exist for the probability distribution P, the samples generated by the Metropolis-Hastings 
algorithm can be used to effectively approximate or ‘visualize’ the distribution. 
Following the basic theories about Markov Chain model given in Appendix F, the 
Metropolis-Hastings algorithm is explained in detail below.  

Assume at epoch 0=t  the system is at state l. Notation )(t
lP  is used here to 

denote the probability of the state l  at epoch t , i.e., ))(( ltXP = , where X t( )  is the state 

of the system at epoch t. The evolution of probability )(t
lP  follows the “master equation”: 

    Pl
(t+1) −Pl

(t ) = Pm
(t ) pml −Pl

(t ) plm
"# $%

m≠l

∑                                (4.1) 

where plm is the 1-step transition probability from state m to state l. The first term on the 

right hand side is the probability of transitions from state m to state l , while the second 
term gives the probability for transitions out of state l . The objective is to design a 
transition probability pij so that the Markov chain converges to a target stationary 
distribution.  

To assume a target stationary (equilibrium) distribution eqP  is reached, equation 
(4.1) turns out to be: 
    ( ) 0=−∑

m
lm

eq
lml

eq
m pPpP .                                         (4.2) 

Equation (4.2) means that 
dPl

t( )

dt
= 0 , i.e. the system is at equilibrium.   

Given the fact 1=∑
m

lmp , it can be easily derived from (4.2) that: 

    ∑=
m

ml
eq

m
eq

l pPP                                                 (4.3)     

In practice, equilibrium in (4.2) is usually accomplished by making each term in the 
summation zero, i.e. 
    lm

eq
lml

eq
m pPpP = .                                                (4.4) 
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Equation (4.4) is known as the “detailed balance condition” or “microscopic 
reversibility”, which means that the probabilities of the transitions between two states 
(i.e. the transition from m  to l  and the transition from l  to m ) are the same at all time. 
If each pair of states in state space satisfies the detailed balance condition as given by 
(4.4), the overall equilibrium sampling is realized for the target distribution eqP . Any 
designed transition probability pij  satisfying the microscopic reversibility can be used to 

continuously sample the target probability distribution (e.g. eqP ).  
Equation (4.4) can be further written in the form of ratio: 

     
eq

l

eq
m

ml

lm

P

P

p

p
=                                                     (4.5)     

There are infinitely many choices for transition probability that satisfy equation 
(4.4) or (4.5). The Metropolis-Hastings algorithm uses a simple transition probability ijp  

given by: 

   
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

eq
j

eq
i

ij P

P

N
p ,1min

1
.                                            (4.6) 

In practice, this transition probability is realized in following way: first, to assume current 
state visited by the algorithm is i . Each point in the N neighbors of i has equal 
probability of   
 NPproposal /1=   (4.7) 

to be proposed as the state for next epoch. When a new state, say j, is proposed, it is 
accepted only with probability: 

      
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

eq
j
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i
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P
P ,1min                                           (4.8) 

Therefore, the transition probability from state i  to state j  is:  

      
⎟
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⎠
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⎜
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⎛
=
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j
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i

ij P

P
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1
                                          (4.9) 

Equation (4.9) indeed satisfies the microscopic reversibility in (4.5), since 
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It can be seen from equation (4.9) that to decide whether or not to accept a new 
state j requires knowledge about the probabilities of current state Pi

eq and the proposed 

state Pj
eq , not the absolute probabilities, but just the ratio between them. In geophysical 

inversion, Peq is usually a probability density derived from a certain data-model misfit 
function, e.g. the Gibbs-Boltzmann Distribution function given in next section.   

To numerically illustrate the Metropolis-Hastings algorithm, a system is assumed 
to have a state space consisting of two variables, x and y. The target probability density 
function is assumed to be inversely proportional to the Rosenbrock function, which is 
defined on the 2D infinite domain (−∞ < x <∞ ,−∞ < y <∞ ) as: 

 f x, y( ) = 1− x( )2
+100 ⋅ y− x2( )

2
. (4.12) 

The Rosenbrock function has a global minimum of 0 at the point (1, 1) locating in a 
parabolic shaped valley as shown in Figure 4.1. A Markov chain with initial point at 
(0,2.5) is run on the Rosenbrock function using the Metropolis algorithm. 
 

 
Figure 4.1：Rosenbrock function of two variables. 

 
Figure 4.2 visualizes the Metropolis-Hastings algorithm running for Rosenbrock 
function. It can be seen that all the trials, which reduce the function values of the current 
state, are accepted. However, not all the trials that increase the function values are 
rejected.    
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Figure 4.2: Evolution of the Markov chain running on the Rosenbrock function using 
Metropolis-Hastings algorithm. Total 30 iterations. The blue points connected by solid 
blue lines are the accepted samples, while the red points connected by dotted red lines are 
the rejected samples. The start point of the sampling, plotted as a solid green point, is at 
(0, 2.5). The contours of the Rosenbrock function are also plotted. 
 
Figure 4.3 shows the generated samples after 60000 iterations. A large part of the 
samples is concentrated into the narrow valley, where the Rosenbrock function has 
relatively small values and thereby larger probability density values for the system. Even 
more dense samples locate around the point (1, 1), at which the Rosenbrock function has 
the global minimum. 
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Figure 4.3: Random samples from Rosenbrock function using Metropolis-Hastings 
algorithm. 
 

4.2 Simulated Annealing 
 

Simulated Annealing (SA), which is the generalization of the Metropolis-Hastings 
algorithm, is used to find the global optimum of objective function which contains many 
local minima. In chemical industry, annealing is a process of slowly cooling a crystalline 
material from its melted status to form highly ordered, low-energy crystals. Kirkpatrick et 
al. (1983) first viewed the analogies between annealing process and optimization 
problem. In the numerical optimization problem, possible solutions of the numerical 
system are analogous to microcosmic configurations (or states) in the annealing process, 
and the cost function of the optimization problem is mapped to the internal energy E . The 
formation of flawless crystal is analogous to the attainment of global optimum, while the 
formation of metastable glass is the analogue of entrapment in local minima.  

4.2.1 Gibbs-Boltzmann Distribution in Statistical Mechanics  
The core of the SA method is to sample the Gibbs-Boltzmann distribution using 

the Metropolis-Hastings algorithm.  
A fundamental result in statistical mechanics is that, for a system in thermal 

equilibrium at temperature T, the Gibbs-Boltzmann distribution: 

 
)(

)(
exp

TZ

T

E

PB

⎟
⎠

⎞
⎜
⎝

⎛−
=

ω

    (4.13) 

describes the expected fluctuations of the system’s state. The ‘state’ of a system here 
means the configuration of its microscopic components. In above equation, ω  denotes a 
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state of a statistical ensemble of a system, )(ωE is the energy of the configuration, and 

)(TZ is called partition function:  

 ∑ ⎟
⎠

⎞
⎜
⎝

⎛−=
ω

ω
T

E
TZ

)(
exp)(                                         (4.14) 

In the Boltzmann distribution in equation (4.13), the system assigns progressively larger 
probability to the low-energy states as T decrease. Finally the system will freeze to a 
configuration with global minimal energy. This global minimal energy state is called 
‘ground state’. When it is applied to an optimization problem, the energy can be 
identified with the misfit function in the inversion problem, and the ground state is the 
counterpart of the global optimal estimate.  

Generally, it is impossible to get the explicit expression for the Gibbs-Boltzmann  
distribution in (4.13) due to the huge size of system’s state space. Thereby, a sequence of 
samples generated by Metropolis-Hastings algorithm is used for approximation. This 
process is called ‘importance sampling’, which is the core of the SA technique.   

4.2.2 Specific Procedure of Simulated Annealing  
Model parameters in the optimization problem are mapped to the state space 

variables ω in the thermal equilibrium system, and a misfit function (typically the sum of 
squares of the differences between observation and model prediction) are mapped to the 
energy E in the system. Using the Metropolis-Hastings algorithm, the model parameters 
are randomly perturbed to generate a trial model in each step. The change in energy EΔ  
from the old state is computed. If 0≤ΔE , the trial is accepted and further used as the 
starting point for the next step; If 0>ΔE , the trial model is only accepted with 
probability 

    ⎟
⎠

⎞
⎜
⎝

⎛ Δ
−=

T

E
expPaccept .                                            (4.15) 

If it is not accepted, the old model parameters are used to start the next iteration. It is not 
hard to see that this transition probability is a specific form of equation (4.9) and satisfies 
the detailed balance condition.  

By repeating this ‘trial and decision’ procedure many times, a sequence of 
random samples is obtained from the Gibbs-Boltzmann distribution in equation (4.13), 
which describes the states of a system in thermal equilibrium at temperature T .  

The temperature T is simply a control parameter in the same unit as the misfit 
function. For a given T , a population of parameter configurations of the given 
optimization problem can be generated, and they are in the Boltzmann distribution as 
long as the number of samplings is large enough. The SA process begins at a high 
temperature, then slowly lowers the temperature until the system ‘freezes’ and no further 
changes occur. At each temperature stage, the iterations must proceed long enough for 
the system to reach a steady (equilibrium) state.  
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4.3 Numerical Examples 

4.3.1 Subsurface Prism Detection 
The Simulated Annealing is applied to detect a subsurface prism using synthetic 

gravitational gradient observation. As shown in Figure 4.4, a prism of different density 
from surrounding medium is buried underground, and its position, size, orientation and 
inclination can be fully described under a NED (north-east-down) Cartesian frame. 

0x , 0y and d  give out the horizontal position and depth of one vetex of the prism; 

WL, and h  describe the prism’s length, width and height; s and δ denote orientation and 
inclination. 

On the ground surface, the full tensor gravitational gradients (Γcalc ) generated by 
this subsurface prism anomaly can be calculated using the analytical formulas given by 
Jekeli (2003). 
 

 
Figure 4.4: Position, size and orientation of a subsurface prism described using 8 
parameters. 
 

The optimization problem here is to find a set of model parameters which 
minimize the cost function: 

          Φ(x0, y0, d, L,W, h, s,δ) = Γobs (ω)−Γcalc (ω)( )
2

ω∈Ω

∑          (4.16) 

where obsΓ denotes the observed gravitational gradients on the ground surface, and Ω  
denotes the set of observation sites. 

In the computation, a prism is set with 00 =x m, 00 =y m, 5=d m, 100=L m, 

W =1m, 2=h m, °= 30s and °= 0δ . Assuming the prism has density contrast of 
2.67g/cc with respect to surrounding homogeneous medium, the gravitational gradient 
were calculated over a 200m by 200m square region. Figure 2 shows the simulated zzT  
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(the second derivative of gravitational potential with respect to the z-axis of the local 
NED frame in Figure 4.4) observation.   

 
Figure 4.5: The simulated gravitational gradient anomaly (Tzz component) on the ground 
surface due to a prism with following configuration: 00 =x m, 00 =y m, 5=d m, 

100=L m, W =1m, 2=h m, °= 30s and °= 0δ . 
 

Each possible combination of eight parameters represents as a point in an eight-
dimensional state space. To start the search, initial values of parameters (i.e. initial state 

0x ) should be given. In addition, the initial temperature 0T should be assigned. In each 

iteration, only one of eight parameters is randomly perturbed, thereby, all eight 
parameters are perturbed sequentially in eight consecutive iterations, which is called a 
cycle counted by an integer variable cN . As discussed before, whether or not the new 

trial state 1+ix  is accepted depends on the value of corresponding objective function 1+Φ i . 

If 1+Φ i  has the minimal value so far, it is stored as, Φmin , an intermediate result for 

further comparison; and, the corresponding state 1+ix  is accepted as the intermediate 

optimal point optimalx . Figure 4.6 gives the flow chart of the algorithm. TN  denotes the 

total cycles allowed in each temperature stage jT , and should be large enough to allow 

the system to reach the thermal equilibrium. After TN  cycles, the temperature is reduced 

according to an ‘annealing scheduling’ of jj TT 5.01 =+ and a new sequence of moves is 

made starting from current optimalx , until the steady state is reached again, and so on. At 

higher temperature, gross features of the true configuration are sketched; Fine details are 
further revealed at lower temperatures. The process is stopped at a temperature low 
enough so that no more useful improvement can be expected. 
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In our test, 1000 cycles (8000 iterations) are executed at each temperature stage 

jT  to guarantee that the system would arrive at a steady/equilibrium state (the average 

value of Φ almost remains constant as i increases). The criterion of convergence is set to 
be Φi+1 −Φminimum < ε =1×10−20  in this test. 

 

Initialize parameters 

Perform a cycle of random moves, Nc++;  
Accept or reject the trial; 

 Record the optimal point obtained so far: Θminimum &Xoptimal 

Nc ≥ NT ? 

|Θ- Θmin|< ε 

End 

No#

Yes#

No#

Yes#

Reduce temperature; 
Reset Nc=0; 

Set initial point as Xoptimal  

 
Figure 4.6: The flow chart of Simulated Annealing algorithm. 

 
Figure 4.7 shows the histogram of accepted trials at four different temperatures. At a 
given temperature, the probability density function of the sytem at equilibrium state can 
be approximated by these random samples. These histograms also help to monitor the 
computation process as well as to validate the effect of lowering temperature. At relative 
high temperature, say T = 50 , all samples equally distribute in the continuous state space. 
It is difficult to pick out a peak. As T decreases, the gross feature of the true state 
gradually shows up. For example, when T  is lowered to 0.05,the samples for most 
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parameters (except inclination) locate in narrow ranges centered around their true values. 
The peaks in the histograms indicate the states which lead to even smaller cost functions; 
Finally at convergence, the algorithm gave a small subspace of the state space, where the 
global optimum resides.  
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Figure 4.7: Histograms of the samples for prism parameters at different temperatures. 
 

4.3.2 Fault Size and Slip Estimation 
This example shows the feasibility of earthquake parameter estimation using 

observations from spaceborne gravimetry by the Simulated Annealing technique. A 
fictitious rectangular fault plane, whose length, width, strike and dip are 500km, 200km, 
203o and 10o respectively, is buried at 1km depth east of Japan. The coseismic gravity 
change owing to a uniform thrust slip of 10m on the fault plane is computed at the 
surface of the earth under the assumption of a homogeneous elastic half-space. In order to 
make the spatial resolution of the synthetic observation commensurate with the resolution 
of spaceborne gravimetric observation, a 350km isotropic Gaussian filter is applied to the 
calculated coseismic gravity change. Figure 4.8 shows the coseimic gravity changes at 
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spatial resolution of ~350km half-wavelength, which mimic the observations by the 
GRACE satellites.  
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Figure 4.8: Coseismic gravity changes by a fictitious faulting with uniform thrust slip of 
10m occurring on the megathrust interface at Japan trench. The fault plane, which is 
plotted as a red rectangular, has length of 500km, width of 200km, dip of 10o and strike 
of 203o.  
 
 In the inversion, the fault strike, dip and depth are assumed to be known. Only the 
fault size and the slip are estimated by the SA procedure. Figure 4.9 shows the 
histograms of samples at different temperatures. At very beginning of the iteration, the 
temperature T is set as high as 1000. As can be seen from Figure 4.9a~4.9c, all samples 
generated at this temperature are almost distributed uniformly in the state space; As the 
temperature decreases slowly, the distributions of samples gradually become narrowed; 
Finally, at the low temperature stage of T=0.04 (Figure 4.9j~l), the samples for all three 
parameters concentrate in a small space around their true value. The sample, which leads 
to the minimum misfit function, is chosen as the optimal estimate.   
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Figure 4.9 : Histograms of the samples of faulting parameters at different temperatures.



 
 
 

55 

 
 
 

Chapter 5:  Application 
 

In this chapter, the forward modeling, the spaceborne data processing scheme, and 
nonlinear inversion method developed in previous chapters are applied to study three 
recent great earthquakes: the 2004 Mw 9.1~9.2 Sumatra Andaman earthquake, the 2010 
Mw 8.8 Maule, Chile earthquake, and the 2011 Mw 9.0 Tohoku-Oki earthquake, not only 
to describe the co/post-seismic gravitational signatures associated with them, but to 
quantitively constrain the faulting dimension and slip amplitude using spaceborne 
gravimetry observation.  

5.1 Gravitational Gradient Changes Following the Sumatra-Andaman 
Earthquake Inferred from GRACE 

5.1.1  Introduction 
The 26 December 2004 Sumatra-Andaman Earthquake (Mw 9.1~9.3) is the 

largest event recorded in the last 50 years. This devastating shock was caused by the 
release of stress accumulated during the subduction of the oceanic plate (India plate) 
beneath the overriding continental plate (Burma plate). Due to the huge faulting area 
(~1000km long and ~200km wide), small dip angle (roughly 7o~15o), and large slips 
(more than 10m), the megathrust event ruptured 1200 to 1300km of a curved plate 
boundary (Lay et al., 2005), and significantly deformed the crust and the mantle. On 28 
March 2005, another thrust faulting event (Mw 8.6) occurred near Nias Island off the 
west coast of northern Sumatra. It ruptured an adjacent portion of the plate boundary by 
about 300km (Lay et al., 2005).  

After these great events, global seismogram data were collected to determine the 
fault geometry and rupture process (Ammon et al., 2005; Lay et al., 2005). In addition, 
surface displacement measurements observed by GPS on the surrounding nearby islands 
and on the continent were used in faulting inversion (Vigny et al., 2005; Banerjee et al., 
2007; Chlieh et al., 2007). In addition to these methods, spaceborne gravimetry, though at 
much coarser spatial resolution, provided direct observation of mass redistribution caused 
by the earthquakes, thus leads to complementary constraints for the faulting mechanism 
studies. GRACE consists of two identical satellites that mutually track each other with a 
highly precise inter-satellite K-band microwave ranging (KBR) system. This system has 
the capability of monitor temporal changes in the Earth’s gravitational field and can be 
used to estimate large scale mass redistributions within the Earth system. By applying the 
energy conservation principle to the satellites in their orbits and directly processing the 
KBR observations for regional gravitational field inversion, Han et al. (2006) 
demonstrated the detection of crust dilatation associated with the great Sumatra-Andaman 
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Earthquake. Ogawa & Heki (2007) processed the GRACE monthly gravitational field 
data sets to estimate postseismic changes. By using a tuned filter, Chen et al. (2007) 
showed that improved monthly gravity field data products from the University of Texas 
Center for Space Research (UTCSR) are able to reveal the coseismic change with greater 
spatial resolution. Other studies using GRACE to observe or constrain coseismic or 
postseismic deformation of these great earthquakes include: Panet et al. (2007), Han et al. 
(2008), and Cambiotti et al. (2011). 
 Due primarily to factors such as the GRACE along-track satellite-to-satellite 
tracking design which lacks observations in the radial and normal directions at a 
commensurate accuracy as the along-track KBR system, as well as errors in orbit, 
instrument, and background models, there are geographically correlated high-frequency 
errors in GRACE temporal gravity solutions. Post-processing of the GRACE monthly 
spherical harmonic (SH), or Stokes coefficient data products to infer temporal gravity 
signals thus requires the so-called “decorrelation” or “de-striping” techniques and spatial 
smoothing in order to suppress or minimize the high-frequency errors (Jekeli, 1981; 
Wahr et al., 1998; Swenson & Wahr, 2006). Depending on the post-processing 
algorithms used, there could be a significant trade-off between the resulting attainable 
spatial resolution and the accuracy of the GRACE temporal gravitational field products. 
The typical resolution at present is about several hundreds km half-wavelength. However, 
geophysical signals associated to phenomena of regional scale, such as earthquakes, are 
characterized dominantly by high-frequency contents. The relatively coarse spatial 
resolution therefore limits the application of GRACE observation to earthquake studies. 
 Here, we infer the full gravitational gradient tensor from the GRACE Stokes 
coefficients by taking the second derivatives of the gravitational potential in a given 
orthogonal coordinate system, and apply these quantities to the study of the coseismic 
deformation resulting from the combined Sumatra-Andaman and the Nias undersea 
earthquake events. Although we do not obtain additional high-frequency content via the 
gravitational gradients, we actually amplify short-wavelength components in the 
observation, so that the spectral structures of observation and the signal source are more 
consistent. With the emphasis on the high-frequency components resulting from the 
second derivatives of the potential, the corresponding coseismic gravitational gradient 
changes delineate more clearly the rupture line, and reveal refined mass redistribution 
features caused by the earthquakes. In addition, some of the gradient components, which 
are not contaminated by GRACE high-frequency (striping) error, are used to refine the 
edges of the mass anomaly.  

5.1.2 GRACE Data Processing 
We use the CSR Release (RL) 04 GRACE Level 2 (L2) monthly gravity field data 

products, which are composed of fully normalized SH coefficients up to degree and order 
60. A total of 47 monthly gravity field solutions covering the time period from January 
2003 to March 2007 are used. The earthquakes in question disturbed the mass distribution 
in the crust and mantle (Han et al., 2006), and therefore the Earth’s gravitational field. In 
order to extract the coseismic signals and suppress the seasonal variations, we take the 
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difference of two 2-year mean gravitational fields before and after the two combined 
earthquakes (Sumatra-Andaman and Nias events). The mean gravity field before the 
earthquake is obtained by averaging 23 monthly solutions from January 2003 to 
December 2004 (there is no solution available for June 2003); and, the mean field after 
the 2005 Nias event is computed by taking the mean of 24 monthly solutions from April 
2005 to March 2007. so that this mean field contains signals caused by both 26 December 
2004 Sumatra earthquake and the 28 March 2005 Nias earthquake. The coefficient 
differences ΔCnm , ΔSnm between these two mean fields are then used to compute 

coseismic gravitational gradient changes due to the Sumatra-Andaman and the Nias 
earthquakes. 

The gravitational field difference before and after the earthquake can be computed 
by: 
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ae is the equatorial radius; 

€ 

r,θ,λ  are the radius, colatitude, and longitude respectively; 

€ 

Pnm are the associated Legendre function; GM is the gravitational constant multiplied by 
the mass of the earth. Based on equation (5.1), the first derivatives of ΔV  with respect to 

€ 

r,θ  and 

€ 

λ  can be easily derived as: 
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and the second derivatives of ΔV with respect to 

€ 

r,θ  and 

€ 

λ  are: 
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Based on equation (5.1)~(5.10), the coseismic changes are first computed in 
spherical coordinates. Since the local gradient changes are of interest here, the local 
North-East-Down (NED) frame at a point with spherical coordinates (

€ 

r,θ,λ ) is 
introduced: the x-axis is directed to the north, the y-axis to the east, and the z-axis 
downwards. According to the transformation principle of curvilinear coordinates, the full 
gravitational gradient tensor (second derivatives of the potential difference between two 
mean fields) in this local NED frame can be obtained using following equations: 
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 ΔVzz (r,θ,λ) = ΔVrr (r,θ,λ)    (5.16) 

 Because of the large errors in the geographically-correlated and high-frequency 
components of GRACE data, decorrelation and filtering techniques are usually applied in 
order to obtain reasonable estimates of the time-varying signals. However, we did not 
apply any decorrelation to the GRACE SH solutions with the intent of preserving as 
much spatial resolution as possible. But, we did use an isotropic Gaussian filter with 
radius of 350km to take into account the large errors at high degrees and orders (Jekeli, 
1981; Wahr et al., 1998). The changes were then extracted by differencing the filtered 
mean gravitational gradient tensors before and after the earthquakes. The observation is a 
combination of coseismic signals associated to the 2004 Sumatra event and 2005 Nias 
event, as well as the viscoelastic relaxation of the asthenosphere (Pollitz et al., 2006; 
Panet et al., 2007; Han et al., 2008;). However, we confine our discussions only to the 
coseismic signals which dominate the observation. 

5.1.3 Model Predicted Coseismic Gravity Gradient Change 
The finite fault model for the Sumatra-Andaman (24 December 2004) and the 

Nias (28 March 2005) earthquakes (courtesy of C. Ji, UCSB) are used to predict the 
coseismic gravitational gradient changes. The model consists of 7 sub-fault planes and 
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over 1000 slip vectors, which were determined from both seismic records and far-field 
GPS observations. For convenience, the 7 sub-faults were merged into 4 segments and 
named Andaman, Nicobar, Sumatra and Nias, respectively. The first three constitute the 
fault model for the 2004 Sumatra event, and the Nias segment refers to the 2005 Nias 
event. Figure 5.1 shows the fault planes and the slip distribution.  
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Figure 5.1: Finite fault model and slip distribution for 2004 Sumatra-Andaman and 2005 
Nias earthquakes (courtesy of C. Ji at UCSB). On Audaman, Nicobar and Sumatra 
segments, the contours at interval of 15m are plotted in green. On Nias segment, contours 
at interval of 1m are plotted in blue. 
 

In order to properly model the coseismic gravitational gradient changes, the total 
mass redistribution due to earthquakes was divided into the following two components: 
the vertical displacement (uplift and subsidence) at the sea floor and Moho, where 
significant density contrasts exist; and the density changes (both in crust and mantle) due 
to the internal deformation assuming an elastic Earth. The Fourier approach introduced in 
section 2.2 was used to model the gravitation and gravitational gradient changes caused 
by the above two factors.  
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Figure 5.2 shows the gravitational gradient changes due to topography change at 
the sea floor (Figure 5.2a~5.2f), the Moho (Figure 5.2g~5.2l), and the summation of them 
(Figure 5.2m~5.2r). In order to compare with GRACE-derived values, the 350km 
isotropic Gaussian filter was applied.  
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Figure 5.2: Seismic model predicted coseismic gravitational gradient changes [in unit of 
milli-Eötvös] due to uplift/subsidence at sea floor (a~f corresponds to 
ΔVxx ,ΔVxy ,ΔVxz ,ΔVyy ,ΔVyz  and ΔVzz , respectively), Moho (g~l corresponds to 

ΔVxx ,ΔVxy ,ΔVxz ,ΔVyy ,ΔVyz  and ΔVzz , respectively) and the total effect by summing them 

together (m~r corresponds to ΔVxx ,ΔVxy ,ΔVxz ,ΔVyy ,ΔVyz  and ΔVzz , respectively). A 

350km isotropic Gaussian filter was applied. 
 
Figure 5.3 shows the gradient changes due to density change in the crust (Figure 
5.3a~5.3f), the mantle (Figure 5.3g~5.3l) and their summation (Fig 5.3m~5.3r).   
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Figure 5.3: Seismic model predicted coseismic gravitational gradient changes (milli-
Eötvös) due to density change in crust (a~f corresponds to ΔVxx ,ΔVxy ,ΔVxz ,ΔVyy ,ΔVyz  

and ΔVzz , respectively), mantle (g~l corresponds to ΔVxx ,ΔVxy ,ΔVxz ,ΔVyy ,ΔVyz  and 

ΔVzz , respectively) and the total effect by summing them together (m~r corresponds to 

ΔVxx ,ΔVxy ,ΔVxz ,ΔVyy ,ΔVyz  and ΔVzz , respectively). A 350km isotropic Gaussian filter 

was applied. 
 

By adding the contributions from the vertical motion and the density changes, we 
obtained the total gravitational gradient changes, which are shown in Figure 5.4a~5.4f.  
Figure 5.4g~5.4l shows the GRACE-derived coseismic gravitational gradient changes, 
which were computed following the procedures described in Section 5.1.2.  
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Figure 5.4: a~f: Seismic model predicted total coseismic gravitational gradient changes 
[in unit of milli-Eötvös] for components of ΔVxx ,ΔVxy ,ΔVxz ,ΔVyy ,ΔVyz  and ΔVzz  

respectively, i.e., the sum of contributions from vertical displacements on the sea 
floor/Moho (m~r in Figure 5.2) and from density changes (m~r in Figure 5.3). g~l: 
GRACE-derived gravitational gradient changes. 
 

For comparison with GRACE observed gravity changes, we also computed the 
gravity changes following the 2004 Sumatra and 2005 Nias earthquakes (Figure 5.5a) 
using the same GRACE data as the gravitational gradients were calculated.    
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Figure 5.5: Comparison between GRACE-derived (a) gravity changes and (b) 
gravitational gradient change (component of ΔVzz ) caused by 2004 Sumatra event and 

2005 Nias event. 
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5.1.4  Discussions 
Large deformations caused by earthquakes are typically highly local, and large 

parts of the signal associated to the deformation reside in the high frequency band. 
Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium 
frequency band for the gravitational changes. Therefore, the applications of spaceborne 
gravimetry to earthquake studies are seriously limited by its current spatial resolution. To 
show the spectrum structures of the earthquake deformation itself, as well as of the 
GRACE observed gravitational and gradient changes ( zzVΔ  component), we applied 
localized spectrum estimation using Slepian tapers. The Slepian functions are a set of 
bandlimited functions that have their energy optimally concentrated inside a spherical cap 
(Simons et al., 2006). It has been proven that it is an effective method to calculate the 
localized power spectrum using Slepian tapers (Wieczorek & Simons, 2005). Figure 5.6 
shows the spectrum of the geometrical deformation (uplift/subsidence of seafloor) and 
the physical observation, i.e. gravitational changes and their gradient ( zzVΔ component). 
Although other geodetic techniques, such as GPS and InSAR, directly measure the 
deformation of the accessible surface, physical quantities, such as gravitational gradients, 
indicate the total surface and subsurface mass deformation. Thus, for example, they can 
be used to estimate the deformation associated with the uplift/subsidence of the sea floor, 
which may have a larger effect on disturbing the surrounding gravitational field than the 
visible (accessible) land areas. On the other hand, in the frequency domain, we expect 
both the geometric and the gravitational deformations to occupy the same spectral band, 
specifically the relatively high-frequency part, so that the gravitational observation can be 
used to more directly describe the geometric deformation. The vertical deformations at 
seafloor, as can be directly measured by GPS if there were no ocean water, are first 
predicted at full resolution of 50km. Then, it is expanded using spherical harmonics up to 
degree of 60. Although there is a large part of signals resides beyond degree of 60, we 
only discuss the spectral structures of signals truncated to degree 60, which is the 
maximum spherical harmonic degree detectable by the GRACE satellites. As shown in 
Figure 5.6, the band-limited vertical deformation (maximum degree of 60) signal 
predicted by model has more than 70% of its energy residing in SH degrees higher than 
35. However, the gravitational change predicted by the model at spatial resolution of 
~350km, which approximately mimics GRACE observations, only has ~40% of its 
energy in the same frequency band. The value is ~31% for the actual observed 
gravitational changes as shown in Figure 5.5a. For model-predicted and actual observed 

zzVΔ  changes, the energy for SH degrees larger than 35 take 67% and 71% of the total 
energy, respectively, and therefore are more consistent with the spectrum structure of the 
geometric deformation. Figure 5.5 compares earthquake-induced gravitational changes 
(Figure 5.5a) with the gravitational gradient changes (Figure 5.5b) detected by GRACE 
in space domain. By amplifying the high-frequency content, GRACE-derived zzVΔ  
changes, together with other gravitational gradient components, help to reveal more detail 
in the deformations induced by an earthquake. 
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Figure 5.6: Spectrum structures of the earthquake deformation and the related 
gravity/gravitational gradients changes. The percentage of the total signal energy 
(truncated at SH degree 60) is plotted as a function of SH degree. 

 
Considering the fact that the gradients often present complex patterns even for 

subsurface anomalies with simple geometries, their interpretation is not as 
straightforward as using the gravity anomaly data. The horizontal derivatives along the x  
and y directions act as a phase shifter, which shifts the locations of mass anomalies in 
corresponding directions. In addition, they enhance the high frequency components via 
the multiplication in the frequency domain with factors xk and yk . The vertical derivative 

along the z  direction, on the other hand, emphasizes the high frequency components of 
the subsurface mass anomaly without changing its location.  In the following, we will 
interpret the implications of observed gravitational gradients components.    

Figure 5.4l shows the computed zzVΔ  using GRACE provided SH coefficients. 
The zero contour clearly delineates the shape of fault line, and helps to locate the hinge 
line corresponding to zero displacement. Along the fault line, two clearly separated 
patches of intensive positive anomalies are found: one located just west of the Sumatra 
segment, and the other one by the northwest corner of the Nicobar segment. The locations 
of these significant positive anomalies are consistent with the positions of discrete 
asperities on which coseismic slips are concentrated (Figure 5.1).    

In the model-predicted value of zzVΔ  due to vertical displacement, there exist 
significant positive anomalies (Figure 5.2f) and negative anomalies (Figure 5.2l), which 
indicate uplift of the sea floor and a deepening of the Moho, respectively. The minimum 
value in the model-predicted total coseismic value of zzVΔ  due to vertical displacement 
(Figure 5.2r) is around –0.5 milli-Eötvös (mE), while the GRACE-derived minimal value 
of zzVΔ  (Figure 5.4l) is about –0.8 mE. The ~0.3mE discrepancy can be explained by the 
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effects of internal density change, primarily due to crust dilatation. Indeed, the model 
prediction shows the signatures of crust expansion (negative anomalies in Figure 5.3f) 
and mantle contraction (positive anomalies in Figure 5.3l). By summing these two parts, 
we obtain the total dilatation-induced value of zzVΔ . The negative gravity gradient 
anomalies (due to crust expansion) reside over the middle of fault line, while positive 
signals (mantle contraction) occur at the two ends (Figure 5.3r). The zzVΔ  value due to 
crust dilatation is –0.34 mE, which explains the discrepancy between GRACE-derived 
total gravitational gradient changes and the contribution only from the modeled vertical 
displacement.  

The gravitational gradient changes, 

€ 

ΔVxz and 

€ 

ΔVyz , were computed by taking 

€ 

x  and 

€ 

y  derivatives of 

€ 

ΔVz , respectively. Since the horizontal derivative operator shifts the 
phase of the original anomaly distribution, the peaks (or troughs) in the results no longer 
indicate the maximum positive (or negative) mass anomaly. Instead, these peaks and 
troughs indicate the edges of the anomaly source, which can be better recognized since 
the peaks and troughs are sharpened due to the enhancement of the high frequency 
components. Furthermore, the GRACE-derived values of 

€ 

ΔVyz  (Figure 5.4k) are free 

from the geographically correlated errors in the GRACE monthly SH solutions, which 
manifest themselves as north-south stripes. Two peaks and two troughs can be found 
around the rupturing region in Figure 5.4k. They help to locate the southern and northern 
edges of the large mass anomaly as a result of the large slip in on south of Nicobar fault 
and north of Sumatra fault (Figure 5.1). Similarly, a symmetrical positive-negative-
positive pattern with the fault line at the center can be found in both the GRACE-detected 

€ 

ΔVxz  (Figure 5.4i) and the corresponding model prediction (Figure 5.4c). This observed 
triplet around the faulting area should be close to the eastern and western edges of region 
with significant deformation induced by the earthquakes.  

Similar to the computed 

€ 

ΔVxz  and 

€ 

ΔVyz  components, the changes, 

€ 

ΔVxx ,

€ 

ΔVyy , also 

give the locations of the edges. Figure 5.4j shows the GRACE-derived 

€ 

ΔVyy  component, 

which is also free from GRACE correlated errors. The zero contours between peak and 
trough indicate the southern and northern edges of mass anomaly. Similarly, the zero 
contours in the value of 

€ 

ΔVxx  components still follow the east-west edges.  
 

5.2 Coseismic Slip of the 2010 Mw 8.8 Great Maule, Chile, Earthquake 
Quantified by GRACE Observation 

5.2.1  Introduction 
The 2010 Maule Chilean earthquake, which was caused by the subduction of the 

Nazca plate underneath the overlying South America plate, is the sixth largest event in 
the seismic record. Figure 5.7 shows the tectonic setting of the Andean subduction zone, 
and prior significant earthquakes around the Constitución gap (Beck et al., 1998; Campos 
et al., 2002; Moreno et al., 2008; Nishenko, 1985; Ruegg et al., 2002, 2009) since the 
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1835 Mw ~8.5 event (Darwin, 1845). The 1906 Mw 8.4, 1943 Mw 7.9 and 1985 Mw 7.8 
earthquakes reduced the accumulated stresses in the segments north of the Constitución 
gap. The slip distribution of the 1960 Mw 9.5 event, the largest earthquake on record, 
extended north beneath the Arauco peninsula, accompanying stress release south of the 
gap. The middle locked zone (Constitución gap) had accumulated stresses for 175 years 
since 1835 until the 2010 Maule event, during which the rupture front propagated mostly 
upward (trench-ward) and bilaterally (northward and southward) rupturing a 500km long 
segment of the megathrust. 

 

 
Figure 5.7: Tectonic setting of the region surrounding the 2010 Mw 8.8 Maule 
earthquake, with the epicenter denoted by a red star. The approximate rupture extents of 
previous large earthquakes (yellow stars indicate the approximate epicenters) are shown 
shaded in pink. The green shaded region is the Constitución seismic gap. The subplots 
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show the slip models by USGS (2010), Lay et al. (2010), Tong et al. (2010) and Lorito et 
al. (2011). 

Data from teleseismic networks, coastal/river markers, tsunami sensors, Global 
Positioning System (GPS), and Interferometric Synthetic Aperture Radar (InSAR), have 
been used to observe and model the coseismic signature and slip history of this 
devastating event (Delouis et al., 2010; Farías et al., 2010; Lay et al., 2010; Lorito et al., 
2011; Moreno et al., 2010; Tong et al., 2010; Vigny et al., 2011).  In addition, 
spaceborne gravimetry data from the Gravity Recovery And Climate Experiment 
(GRACE) satellites have been used to observe coseismic signature of the 2010 Maule 
earthquake (Heki & Matsuo, 2010; Han et al., 2010). 

The Mw 8.8 Maule earthquake permanently changed the mass distribution within 
the Earth and consequently its gravitational potential, which can be observed with 
temporal and spatial resolutions of a month and several hundred km, respectively, using 
data from the Gravity Recovery And Climate Experiment (GRACE) satellite mission 
(Tapley et al., 2004). Previous analyses detected the coseismic signature of the Maule 
earthquake using GRACE, with different spatial resolutions, either based on global 
spherical harmonic analysis with additional filtering and decorrelation to remove high-
frequency errors (Heki & Matsuo, 2010) or regional inversion directly using GRACE 
inter-satellite tracking data as geopotential disturbance observables with 500km spatial 
resolution (Han et al., 2010). Our approach uses spatio-spectral localization with Slepian 
basis functions (Simons et al., 2006). The spherical Slepian basis, a set of bandlimited 
functions that have the majority of their energy concentrated by optimization inside of an 
arbitrarily defined region, provides an efficient way for the analysis and representation of 
coseismic gravity signatures and other spatio-spectrally localized geophysical signals 
(Simons et al., 2006, 2009). 

While the slip distribution for the Maule earthquake has been modeled either 
seismically by analyzing teleseismic records (Lay et al., 2010) or inverted using geodetic 
measurements including GPS and InSAR (Delouis et al., 2010; Lorito et al., 2010; Tong 
et al., 2010; Vigny et al., 2011), non-negligible discrepancies exist in the inverted fault 
parameters from these studies. The discrepancies are attributable to the following factors. 
Seismic and geologic data often do not completely constrain the fault geometry, 
particularly when the primary fault rupture does not reach Earth’s surface. Determination 
of fault geometry often relies on aftershock distribution, which is complex: substantial 
aftershock activities often occur off the principal fault plane (Segall and Davis, 1997). 
Geodetic methods (GPS, InSAR etc.) play an important role in elucidating the geometry 
of the rupture. However, for undersea earthquakes, geodetic inversion tends to 
underestimate the slip due to lack of far-field offshore observation. In contrast, 
gravitational data are sensitive to deformation either on land or on the seafloor, in 
continental/oceanic crust and mantle, although the signal-to-noise ratio, particularly in 
oceanic settings, depends on the size of rupture. The question of interest is whether or not 
spaceborne gravimetry from GRACE may provide complementary constraints to aid fault 
inversion. Although previous studies reported observing coseismic and postseismic 



 
 
 

68 

deformation of recent great earthquakes by spaceborne gravimetry (Chen et al., 2007; 
Han et al., 2006, 2008, 2010; Heki and Matsuo, 2010; de Linage et al., 2009; Panet et al., 
2007), none of them considered inverting the detected signals for fault parameters. Our 
study, for the first time, not only analyzes the sensitivity of coseismic gravity changes 
from spaceborne gravimetry to fault parameters, but attempts to use GRACE 
observations to constrain fault geometry and average slip for the 2010 Mw 8.8 Maule 
event.  

5.2.2 Spatio-spectral Localization Analysis of GRACE Data 
Here we use localized analysis with Slepian basis function to enhance the spatial 

resolution of the GRACE-observed coseismic gravity-change signal associated with the 
2010 Maule Chilean earthquake. In this study, ninety-one GRACE Level 2 Release 04 
geopotential fields from the Center for Space Research (CSR), spanning from January 
2003 to August 2010, were used for analysis. These solutions, one for every month, 
consist of spherical harmonic coefficients up to degree and order 60, corresponding to a 
maximum resolution of 333km (half-wavelength).   Here in order to preserve the 
maximum spatial resolution, we did not decorrelate or filter the monthly Stokes 
coefficients (e.g., by Heki & Matsuo (2010)), in favor of using Slepian function based 
localization to enhance or retain the resolution of the GRACE observations, estimated at 
~350km resolution. 

 A circularly symmetric cap of radius 10o is chosen as the concentration region. 
To give some examples for the Slepian bases, Figure 5.8 shows the first 9 band-limited 
(maximum degree L = 60) Slepian basis functions for the circularly symmetric region 
with a radius Θ = 10o centered offshore Chile on the epicenter of the 2010 Maule 
earthquake. Their eigenvalues are all very close to unity indicating nearly perfect spatial 
concentration despite the limited bandwidth.  
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Figure 5.8: The nine best-concentrated members of the family of bandlimited Slepian 
eigenfunctions that are optimally concentrated within a circularly symmetric domain of 
radius Θ =10  centered at the epicenter of the 2010 Maule earthquake. The bandwidth is 
L = 60. The color scale is symmetric and the sign is arbitrary. 
 

To properly choose the center of concentration region, we check the behaviors of 
the time series of the Slepian coefficients as a function of the concentration center 
location. The concentration center is moved along a west-east profile across the epicenter, 
and the Slepian transformations are applied to GRACE geopotential fields every 0.5o on 
the profile. From the resulting Slepian coefficients obtained at different concentration 
centers, a constant term, a linear trend, the first six largest periodic components and a step 
function between the months of February and March 2010 were simultaneously fitted by 
least-squares adjustment.  

In addition, the Student t-test is applied to check whether the estimated step 
functions, which are considered to be coseismic signals, are statistically significant. 
Figure 5.9 shows the estimated step values (Figure 5.9a) and the corresponding t-values 
(Figure 5.9b) from the 1st and 3rd Slepian coefficient series as a function of concentration 
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center location. No significant step is detected in other coefficients. Figure 5.9b shows 
that the estimated steps in the time series of the 1st Slepian coefficients are statistically 
significant within much of the range of the concentration centers, thus fulfilling a 95% 
confidence criterion (t = 1.99). The estimated step values achieve maximum magnitude 
when the concentration center is located at (69.9oW, 35.8oS), which is a point as far as 
almost 3o east of the earthquake epicenter. Although the jump in the time series of the 1st 
expansion coefficient is more pronounced when the concentration center moves 
eastwards from the epicenter, this comes at the expense of the 3rd coefficient, for which 
no other significant jumps can be detected. Figure 5.9b shows that the fitted step value in 
the 3rd Slepian coefficients are statistically significant (95% confidence level) only if the 
concentration center resides between 72.9oW and 70.9oW. If the concentration center 
moves eastwards further beyond 70.9oW, all the estimated step values in the 3rd 
coefficient become insignificant.  
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Figure 5.9: Step functions fitted from time series of the Slepian coefficients when varying 
the center location of the concentration domain. (a) Magnitudes of the estimated step 
functions; (b): the Student t-values of the estimates. Solid dots indicate estimates that are 
significant at the 95% confidence level. 
 

Figure 5.10 explicitly shows the original and fitted time series when the 
concentration centers are located at (72.9oW, 35.8oS) and (69.9oW, 35.8oS), respectively. 
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Figure 5.10: Time series of the Slepian expansion coefficients of the GRACE Level 2 
Release 04 monthly gravity field solutions delivered by the Center for Space Research 
(CSR). Red: the original expansion coefficients. Blue: The residuals in the coefficients 
after removing the periodic variations fitted by the least-squares estimation. First column: 
the concentration region centered at the epicenter (72.9oW, 35.8oS). Second column: the 
concentration region centered east of the epicenter (at 69.9oW, 35.8oS). 
 

Thus, in order to keep both significant jumps in the 1st and 3rd Slepian coefficient 
series and, meanwhile, to make sure that the concentration center is not too far from the 
epicenter, we choose the center of the concentration region at the mid point (71.9oW, 
35.8oS) of the range between 72.9oW and 70.9oW, where both estimated step values in 
the 1st and 3rd Slepian coefficients are statistically significant. We use the step functions 
fitted from the 1st and 3rd functions to finally estimate the coseismic gravity changes. The 
results are shown in Figure 5.11.  

The peak value in the negative signal on land from GRACE observation is ~8.0 
µGal and the maximum positive signal is ~1.2 µGal in the ocean. It should be realized 
that our GRACE observation only consists of the 1st and 3rd Slepian basis functions, for 
which significant jumps (induced by earthquake) can be detected. We find that the 
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GRACE observed earthquake-induced jump is significant only in the 1st and 3rd Slepian 
coefficients. The positive signal in the ocean due to sea-floor uplift is only ~1 µGal at 
GRACE spatial resolution, this is close to the GRACE error level. We state that the 
GRACE observations shown in Fig 5.11 resolve almost all the negative signals on land 
caused by the Maule earthquake, while the detected positive signals over the ocean 
qualitatively correspond to seafloor uplift, but should not be quantitatively applied in the 
inversion. 
 

 
Figure 5.11: The sensitivity of coseismic gravity changes (at spatial resolution of 350km) 
to fault width and length in a bird’s eye-view. The fault dip, strike and rake are fixed to 
be 16o, 17.5o, and 90o, respectively. The upper edge of the fault is fixed at 5km depth, and 
the slip is fixed to be 7m uniformly. Each row has the same fault-width value, which is 
50km, 150km and 250km for the 1st, 2nd and 3rd rows, respectively. Each column has the 
same fault-length value, which is 300km, 600km and 900km for the 1st, 2nd and 3rd 
columns, respectively. 
 

5.2.3 Comparisons of current slip models 
Reliable estimation of coseismic earthquake slip is necessary to evaluate the pre-

locking status and the level of stress release. However, existing slip models obtained by 
various constraints or via inversion of observations, including uplifted/subsided 
biomarkers, teleseismic data, InSAR, GPS, and tsunami observations, exhibit notable 
differences, both in slip amplitude and distribution. Here we compare four published slip 
models: Model I is a finite-fault solution derived from seismic observations (USGS, 
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2010); Model II is an inversion using teleseismic P and SH waves (Lay et al., 2010); 
Model III is an inversion based on InSAR interferograms and GPS displacement 
measurements (Tong et al., 2010); and Model IV is derived by combining land-level 
changes from coastal bio-markers, InSAR deformation, GPS displacement and tsunami 
observations at tide-gauges and DART buoys (Lorito et al., 2011).  Inset plots (Figure 
5.7) show the maps of the finite-fault slip distributions from these models, while Table 
5.1 compares some key parameters. As can be seen from Table 5.1, other than the 
obvious discrepancies in the length and width of the fault plane, the difference in the 
predicted maximum slips between the four models is as large as ~13 m, and the 
difference in the fault depth ranges up to 6km. Significant discrepancies also can be 
found in the potency, the integral of the slip over the rupture surface (Ben-Menahem and 
Singh, 1981). Moreover, the slip distributions predicted by these models have large 
discrepancies. While Model I predicts more slip in the southern asperities, larger slips are 
concentrated to the north of the epicenter in Models II, III and IV (Figure 5.7). The last 
row in Table 5.1 also lists the fault parameters inverted in this study from GRACE 
observations, which will be discussed further below.  
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Coseismic gravity changes can be computed from slip models, since coseismic 
slip due to the sudden unlocking of the megathrust causes an instantaneous elastic 
rebound of the upper plate, which translates into a distinctive pattern of uplift and 
subsidence at the surface and induces dilatation of the formerly compressed forearc 
volume. Assuming an elastic half-space, we use all four models to predict the coseismic 
gravity changes due to the effects of coseismic deformation including both the single-
layer topographical change (uplift/subsidence) of the seafloor and the internal density 
changes (compression/dilatation) within the crust and mantle (Okubo, 1992). To make 
the model predictions commensurate with the approximate spatial resolution of the 
GRACE observations, all the model predictions, which are originally modeled with 0.25o 

x 0.25o grid at full resolution, are truncated to degree 60, and an isotropic Gaussian filter 
(Jekeli, 1981; Wahr et al., 1998) with a smoothing radius of 350km is applied. The 
results are shown in Fig. 5.12. 
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Figure 5.12: Coseismic gravity changes (µGal) predicted from the seismic fault models. 
(a) As inferred by adding the effect of the vertical motion of the surface shown in (b) to 
the effect due to internal density changes (compression and dilatation) shown in (c) from 
Model I; (d)–(f) are similar to (a)–(c) but predicted by Model II; (g)–(i) are similar to (a)– 
(c) but predicted by Model III; (j)–(l) are similar to (a)–(c) but predicted by Model IV. 
The data shown in each panel have been smoothed with an isotropic Gaussian filter 
having a radius of 350km. The red star denotes the location of the epicenter, at 35.909°S 
and 72.733°W (U.S. Geological Survey, Magnitude 8.8 offshore Maule, Chile, 2010, 
http://earthquake.usgs.gov/earthquakes/recenteqsww/Quakes/us2010tfan.php). 
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The spatial patterns of total gravity change predicted from all four slip models 
(Figure 5.12a, d, g, and j) are similar at the spatial resolution attainable by GRACE 
observations, and consistent with the GRACE-detected gravity changes (Figure 5.11), 
even though Model I places more slip in the southern asperities, whereas Models II, III 
and IV have larger slip north of the epicenter. All model predictions indicate apparent 
negative gravity changes on land east of the epicenter. Hence, we conclude that GRACE 
is not sensitive to the detailed slip distribution of the 2010 Chilean shock, mainly because 
the length of faulting is of the same order of magnitude as the limiting resolution of the 
GRACE data. 

Although the coseismic gravity changes predicted by the models exhibit similar 
spatial patterns, the amplitudes from the four models are discernably different. Peak 
values in the negative signals on land predicted by Models I–IV are -8.1 µGal, –8.8 µGal, 
–6.9 µGal and -9.0 µGal, respectively (Figure 5.12). Since the four models give different 
slip amplitudes, they proportionally lead to different amplitude in the predicted coseismic 
gravity change. Although both Models I & II are derived from teleseismic wave analysis, 
the maximum slip amplitudes are 14.6 m and 27.8 m respectively, presumably because of 
different model assumptions and data distributions, and different intrinsic ranges of 
apparent velocities in the observations (Lay et al., 2010). Both Models III and IV 
inverted data from land-based InSAR deformation and GPS displacement measurements. 
Model III, which has a maximum slip of 18 m, probably underestimates the amount of 
slip at shallower depth as a consequence of lacking offshore observations (Tong et al., 
2010). Using tsunami observations to further constrain the offshore displacement, Model 
IV provides a larger estimate of 18.8 m as the peak value in slip. 

GRACE-detected gravity changes, which peak at –7.9 µGal over land, are 
compared with model predictions on three profiles along latitudes 32oS, 36oS and 39oS 
(Figure 5.13). Although both Models III and IV used the same InSAR data, they provide 
the smallest and largest magnitudes of gravity changes, respectively, among the GRACE 
observation and the models, along all three profiles (Figure 5.13). The large discrepancy 
between these two models can probably be attributed to the fact that the tsunami 
observations are used in Model IV to estimate the offshore displacement. The amplitudes 
of predicted gravity changes by seismically derived models (Models I and II) generally 
reside in the extent bounded by Models III and IV.  Along the 32oS and 36oS profiles, 
GRACE observations have peak values around longitude 70oW, and they are 
approximately equal to the means of the model predicted maximum amplitudes. However, 
to the south of the rupture along 39oS profile, the GRACE-observed gravity change, 
which is of the same order of magnitude as the prediction from Model IV, is relatively 
larger than the predictions from Models I, II, and III.  
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Figure 5.13: Comparisons of coseismic gravity changes for the profiles along 32oS (left), 
36oS (middle) and 39oS (right) between GRACE observations (shading indicates the 
estimated error) and the predictions from the four finite-fault models. 
 

Since there is no a priori error information available for the observations, we 
choose to use the model error (a posteriori error estimation) to provide error information 
for our GRACE observation. Since the earthquake-induced jumps are fitted from the time 
series of the 1st and 3rd Slepian coefficients by least-squares adjustment, we can estimate 
the data variance from the residuals in the time series, and thence the variance of the 
fitted jumps. The blue shadings along with the GRACE observation profiles in Figure 
5.13 indicate the estimated model errors based on this procedure. We conclude that the 
GRACE–derived amplitude can be used to constrain the fault parameters of the Maule 
earthquake, but these are discernibly different from the amplitudes derived by other 
coseismic slip models.  
 

5.2.4 Estimation of Fault Parameters From GRACE Observations 
We first analyze the sensitivity of the coseismic gravity changes to various fault 

parameters. A finite fault plane is set with length, depth, dip, strike and rake fixed at 
500km, 4km, 16o, 17.5o, and 90o, respectively. The width of the fault plane is made to 
vary between 100km and 200km in steps of 50km, and the uniform slip on the fault plane 
varies from 5m to 11m for each width value. Along an east-west profile across the middle 
of the fault plane, the coseismic gravity changes for each case are shown in Figure 5.14 
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(left). We can see from Figure 5.14 (left) that when the width of the fault plane is 100km, 
150km, or 200km, the trough values of the predicted gravity change on the profile occur 
around longitudes  -70.3o, -69.8o; and -68.8o, respectively. In other words, with increasing 
of fault-plane width, the location of the minimum in the observed gravity change moves 
to the east. Moreover, for a fixed width, the amplitude of the predicted gravity change 
increases proportionally with slip amplitude. Therefore, the location and amplitude of the 
minimum value in the coseismic gravity observation, i.e., the shape/size of the observed 
gravity profile, provide constraints on the width of the fault plane and its average slip.  
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Figure 5.14: The coseismic gravity changes (at spatial resolution of 350km) along an 
east-west profile across the middle of the fault plane for synthetic faulting scenarios: 
(Left) Fault length, depth, dip, strike, rake are fixed at 500km, 4km, 16o, 17.5o, and 90o, 
respectively. The width of the fault plane varies from 100km to 150km with steps of 
50km, and the uniform slip on the fault plane take values from 5m to 11m for each width. 
(Right) Fault-plane length, width, dip, strike and rake are fixed at 500km, 100km, 16o, 
17.5o, and 90o, respectively. The depth of the top edge of the fault varies from 4km to 
6km in steps of 1km, and the uniform slip on the fault plane take values from 5m to 11m 
for each width. This example shows the sensitivity of coseismic gravity changes to 
faulting parameters. 
 

Figure 5.15 gives a map view to further show the sensitivity of coseismic gravity 
changes to fault width and length. As in the previous example, the fault dip, strike and 
rake are fixed to be 16o, 17.5o, and 90o, respectively. The upper edge of the fault is set at 
5km depth, and the slip is uniformly fixed at 7m. The width of the fault plane is set to be 
50km, 150km and 250km, respectively, and for each fixed width, the coseismic gravity 
changes are computed for fault lengths of 300km, 600km and 900km. For certain fixed 
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fault lengths, the location of the negative peak in the predicted coseismic gravity changes 
moves eastwards with increased fault width. For fixed fault width, the spatial pattern of 
the gravity changes becomes more elongated in the north-south direction as the fault 
length grows.     
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Figure 5.15: The sensitivity of coseismic gravity changes (at spatial resolution of 350km) 
to fault width and length in a map view. The fault dip, strike and rake are fixed to be 16o, 
17.5o, and 90o, respectively. The upper edge of the fault is fixed at 5km depth, and the 
slip is fixed to be 7m uniformly. Each row has the same fault-width value, which is 
50km, 150km and 250km for the 1st, 2nd and 3rd rows, respectively. Each column has the 
same fault-length value, which is 300km, 600km and900 km for the 1st, 2nd and 3rd 
columns, respectively. 
 

Although GRACE detected coseismic gravity change is sensitive to fault length, 
width and average slip, there is trade-off between fault depth and average slip. To show 
this, a fault plane (length, dip, strike and rake are fixed to be 500km, 16o, 17.5o, and 90o 
respectively) is placed at depth (measured down to the upper edge of the fault) of 4km, 
5km and 6km, respectively. At each depth, the coseismic gravity changes are computed 
with slip of 5m, 7m, 9m and 11m, respectively. Figure 5.14 (right) shows the gravity 
changes along the same profile as in Figure 5.14 (left). We can clearly see the trade-off 
between the depth and slip. To be specific, at a spatial resolution of 350km, the coseismic 
gravity changes given by a fault at a depth of 5km and slip of 11m are similar to the ones 
computed from a fault at a depth of 6km and slip of 10m. For the depth range from 4km 
to 6km in this case, the trade-off between depth and slip would cause maximum errors of 
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~1m in the slip estimation using coseismic gravity changes only. Thus, for the Maule 
earthquake, the coseismic gravity changes observed by GRACE add little constraint to 
the depth estimation for the fault plane. The depth information estimated from other 
observations (e.g. seismic or geodetic observations) should be used in order to invert 
GRACE-derived observations for other fault parameters. 

Here, we use the GRACE observations to invert for fault parameters. A simplified 
elastic model with uniform slip on the fault plane is assumed for the study. Here we fix 
the strike angles to be 19o as given by the global CMT solutions (GCMT, 2011). We 
assume a uniform dip of 15o, which is consistent with the dip angle used by Vigny et al. 
(2011). By jointly inverting the continuous GPS, survey GPS and InSAR observations, 
Vigny et al. (2011) suggested that the rupture started from 5km depth along the 
megathrust interface. Therefore, we choose the depth to the top edge of the fault as 5km. 
Based on previous analysis, even if there is ±1km uncertainty in depth value, the trade-off 
effect in the slip estimate should be less than 1m. The rake angle is fixed as 90o in our 
inversion, i.e., we only invert for the thrust component and neglect the right-lateral strike 
slip component. This simplification can be justified by following two points: first of all, 
as shown by Tong et al. (2010), the strike-slip seismic moment is one order of magnitude 
smaller than the thrust (dip-slip) seismic moment; secondly, there is no significant jump 
detected in the time series of the coefficient associated to the 5th Slepian basis function 
(Fig. 5.8e), whose shape matches the spatial pattern of the coseismic gravity changes due 
to strike slip motion.  

We apply the SA algorithm by defining the cost function (energy function) as the 
sum of squares of the differences between GRACE-observed gravity changes and model 
predictions on three profiles along latitudes 32oS, 36oS, and 39oS. The state space consists 
of the length, width and average slip. Figure 5.16a through c show that the histograms of 
the accepted samplings for fault length, width and slip after convergence of the iterations. 
The ultimate optimal estimate for fault length, width and slip are, 429km, 146km, and 
8.1m, respectively. In order to further investigate uncertainties induced by GRACE 
observation errors in these estimated parameters, we also use the lower and upper bounds 
of the a posteriori error estimates for the GRACE observations to invert for fault-plane 
size and average slip. At the lower bound (shaded light blue in Figure 5.13) the algorithm 
converges to a fault plane with length 430km, width 143km, and average slip of 9.1m 
(see Figure 5.16d through f for the histograms of the solutions), while using the upper 
bound of the GRACE data yields estimates of fault-plane length, width and average slip 
of 427km, 149km and 7.1m, respectively. Similarly, Figure 5.16g through i shows the 
converged of fault length, width and slip estimates at the end of iteration. The maximum 
widths of the global minimum in state space for above three inversions are 8km, 4km and 
0.3m for length, width and slip, respectively.  
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Figure 5.16: Histogram of the accepted samplings for variables of fault length, width and 
slip in their state spaces at the lowest temperature of convergence of the simulated 
annealing algorithm. (a)–(c): using GRACE detected gravity changes as input for 
inversion; (d)–(f): using the lower bounds of the a posteriori error estimates for the 
GRACE observations as input for inversion; (g)–(i): using the upper bounds of the a 
posteriori error estimates for the GRACE observations as input for inversion. 
 

We finally estimate the fault length and width as 429±6km, 146±5km, 
respectively, and the average slip as 8.1±1.2m. Assuming a mean rigidity of 33GPa 
(Vigny et al. 2011), the new GRACE-derived total seismic moment is 1.67x1022 Nm, 
resulting in a moment-magnitude Mw 8.75, which is comparable to contemporary 
solutions (Mw 8.8). Since the rake is fixed as 90o in the inversion, our estimated Mw 8.75 
value only corresponds to the thrust part of the total moment magnitude, although the 
seismic moment of the strike-slip component is one order of magnitude smaller than that 
of thrust component. 

5.2.5  Discussion 
To acquire the information on ruptured fault geometry and co-seismic slip 

distribution helps one to better understand the earthquake mechanism and to evaluate the 
seismic hazard potential after large earthquakes. Due to the intrinsic limitations in fault 
inversions using either teleseismic records or geodetic measurements, discrepancies exist 
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in published slip models for the Mw8.8 2010 Maule earthquake, that translate in 
uncertainties regarding the assessment of short-term seismic hazard left inside the 
Concepción-Constitución seismic gap (Moreno et al., 2010; Lorito et al., 2011; Lay, 
2011).  Despite its low spatial resolution (currently at 350km half-wavelength), we have 
demonstrated here that GRACE spaceborne gravimetry is useful to complement seismic 
and geodetic observations because the total permanent gravity change result from great 
earthquakes observed by GRACE is a distinct observation type, and that the observation 
extends to both on land and offshore.  

By investigating the sensitivity of coseismic gravity changes to various fault 
parameters, we find that variations observed by GRACE cannot identify differences in 
detailed slip distributions for the 2010 Mw 8.8 Maule earthquake.  However, using a 
simple elastic dislocation model we can estimate uniform average slip, length and width 
of the rupture interface. Although we noted a tradeoff between average slip and fault 
depth, fixing the later with independent information (Vigny et al., 2011), we find the 
amplitude of the observed coseismic gravity change is proportional to the average slip on 
the fault plane. The location of the peak value of coseismic gravity change indicates the 
down-dip limit of the rupture, i.e., the width the fault plane (~146km), while the south-
north extent of the gravity change signature constrains the fault length (~429km). The 
dimensions and location of our ruptured fault coincide with the extent of significant co-
seismic slip (> 2m) predicted by published models.  Our inversion algorithm estimated an 
average slip of 8.1 m, which gives a seismic moment (1.67x1022 Nm) and moment-
magnitude (Mw 8.75), similar to previous estimations. 

Rapid afterslip on the ruptured fault is the predominant post-seismic deformation 
mechanism and typically occurs over timescales of ~months (Perfettini et al., 2010). 
Afterslip can be attributed to either aseismic slip in the sedimentary layer overlying the 
fault, coseismic slip generated by aftershocks, or silent slow slip triggered by the 
mainshock-induced stress and friction changes (Vigny et al., 2011). Because of its 
temporal resolution of a month, GRACE cannot identify gravity changes due to these 
earliest manifestations of post-seismic deformation, and therefore is not able to separate 
them from the coseismic estimates.  By using campaign- and continuous-GPS 
observations, Vigny et al. (2011) has shown that afterslip on the mega-thrust interface 
within 12 days following the main shock accounts for only 4% of the coseismic moment, 
and the maximum post-seismic slip is estimated to be ~50 cm. This lies within the error 
range of the GRACE-estimated slip provided in the previous section and it seems 
unlikely that afterslip could seriously contaminate our co-seismic slip estimation. 

In the extreme case that the plate interface in Constitución gap has remained fully 
locked for 175 years between 1835 and 2010, the cumulated slip deficit before the Maule 
earthquake at a rate of 62–68 mm/yr of plate convergence (Kendrick et al., 2003) would 
be on the order of 11–12 m. The difference with our estimated average slip could indicate 
that a remaining slip deficit of 3–4 m could still generate a large earthquake (Mw8.5 if 
occurring in the same fault plane of our model) to fully close the gap, supporting the 
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conclusion of Lorito et al. (2011). However, some alternatives must be considered on this 
limiting case.  
 GPS-derived velocity fields for the decade before the 2010 Maule earthquake 
show an overall strong coupling in this region (Khazaradze & Klotz, 2003; Ruegg et al., 
2009; Moreno et al., 2010). However, there is no evidence that bears on whether the plate 
interface ever experienced aseismic slip during interseismic phase before 2000, especially 
as afterslips after the 1835 earthquake. It has been shown (Perfettini et al., 2010; Ide et al., 
2007) that slow or silent slip events during the interseismic and post-seismic phases are 
common features of subduction-zone megathrusts, and can release large amounts of 
seismic moment (10-70% of the budget predicted by plate convergence). With the 
available information, it is impossible to discard such events as potential factors reducing 
the slip deficit before the Maule earthquake and hence explaining the difference with our 
average co-seismic estimation. Moreover, aseismic slip normally occurs on discrete 
patches of the megathrust, hence generates a spatially variable distribution of plate 
locking, which can be imaged by interseismic GPS velocity fields (Moreno et al., 2010; 
Loveless & Meade, 2011). When computed with the same model for geometry and 
rheology of the subduction zone, co-seismic slip patches seem to roughly coincide with 
strongly locked regions over the megathrust, as shown by Moreno et al. (2010) for the 
Maule event, and by Loveless & Meade (2011) for the 2011 Mw9 Tohoku-Oki 
earthquake. GRACE can’t recognize the detailed spatially variable slip distribution, but 
the averaged slip over the whole ruptured megathrust. Therefore, it is hard to tell whether 
or not the Constitución gap is completely closed just from the slip deficit of 3-4m 
between GRACE observed average coseismic slip (~8m) and expected value (11-12m). 
However, we conclude that most of the strain accumulated since 1835 in the Concepción-
Constitución gap had been released by the 2010 Maule earthquake. 
 

5.3  Coseismic and Postseismic Deformation of the 2011 Tohoku-Oki Earthquake 
Constrained by GRACE  

5.3.1 Introduction 
The 11 March 2011 moment magnitude (Mw) 9.0 Tohoku-Oki earthquake 

ruptured along the interplate boundary off the eastern shore of northern Honshu, and 
generated a devastating tsunami that swept the coastal area along the northern part of 
Japan. This event released a large part of the strain accumulated for a long time interval 
due to the subduction of the Pacific plate underneath the North America plate at a rate of 
92 mm/yr (DeMets et al., 1990).  There is no historical record for any massive 
earthquakes near this location and with similar magnitude as the 2011 event, except for 
the 869 AD Jōgan Sanriku earthquake and the resulting tsunami of the Mutsu province 
(Minoura et al., 2001).       

After the Tohoku-Oki earthquake, large postseismic deformations were observed 
by the GPS Earth Observation Network (GEONET) operated by the Geospatial 
Information Authority of Japan (GSI).  Based on the geodetic observations, large after-
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slip with thrust mechanisms, is found outside of the area of the major coseismic slip 
(Ozawa et al., 2011; Simons et al., 2011).  About 14 days after the Tohoku-Oki 
earthquake, the moment of after-slip reached a value ~10% of the main shock (Ozawa et 
al., 2011). 

The slip on the megathrust interface of the 2011 Tohoku-Oki event led to a large 
deformation on the sea floor, on land, and in the crust and upper mantle surrounding the 
rupture region.  For example, the seafloor near the trench was moved east-southeast tens 
of meters horizontally, and with several meters of uplift (Fujiwara et al., 2011; Sato et al., 
2011). On land, the largest coseismic displacement was ~5m toward the east-southeast 
with ~1m subsidence as observed by the GEONET. The earthquake-induced deformation 
consequently changed the Earth’s gravity field permanently. Matsuo and Heki (2011) 
were the first to publish an observation of the coseismic deformation of the Tohoku-Oki 
earthquake using GRACE data.  Here our focus is to use GRACE observations to invert 
for the composite slip, and thus to provide a complimentary constraint on the coseismic 
and postseimic deformation resulting from the great March 2011 Mw 9.0 Tohoku-Oki 
earthquake. 

5.3.2 Spatiospectial Localization Analysis of GRACE Data 
In this study, seventy-seven GRACE Level 2 Release 04 monthly geopotential 

fields from the University of Texas Center for Space Research (CSR), spanning the 
interval from January 2005 through July 2011, were processed. No solutions for January 
2011 and June 2011 are available. Each monthly solution consists of fully normalized 
spherical harmonic Stokes coefficients complete to degree and order 60, corresponding to 
a maximum spatial resolution on the order of 333 km (half-wavelength) at the equator.  
The spatial resolution increases with latitude as the satellite orbits converge at the polar 
region. Our approach relies on a spatio-spectral localization method which represents the 
gravity changes resulting from the earthquake, via the spherical harmonic representations 
of changes in the global gravity field solution transformed to the Slepian basis [Simons et 
al., 2006].  

In order to preserve or maximize the spatial resolution of the coseismic (and 
postseismic) gravity changes, no post-processing is applied to remove the ‘longitudinal-
stripe’ high-frequency errors in the GRACE temporal gravitational solutions, since any 
post-processing such as de-striping or decorrelation (e.g., Swenson and Wahr, 2006) 
would remove errors as well as seismic gravity change signals which happen to be near 
the longitudinal patterns or stripes, distorting the resulting gravity change observations.  
Here, we just applied a 350 km isotropic Gaussian filter to suppress the errors at short 
wavelength of the GRACE L2 monthly gravity field solutions. The annual, semi-annual 
signals and 161-day tidal S2 aliasing terms are further removed from these solutions, 
creating an immediate data set close to the spatial resolution of the original GRACE 
solution at 333 km (half-wavelength at the equator). Finally, the Slepian transformation is 
applied to the filtered spherical harmonic coefficients with the concentration domain 
defined by a circularly symmetric sphere cap of co-latitudinal radius Θ=7o centered at the 
Global Centroid Moment Tensor Project (GCMT) epicenter of the Tohoku-Oki 
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earthquake (λ=143.05o,φ=37.52o) (http://www.globalcmt.org). Figure 5.17 shows the 
Slepian coefficients (Figure 5.17b, d, f, h, j) of the top five optimally localized Slepian 
basis functions (Figure 5.17a, c, e, g, i), whose spatial patterns match the pattern of the 
gravitational potential perturbations due to double-couple point-source earthquakes 
(Simons et al., 2009). Significant jumps can be clearly seen in the time series of the 1st, 
3rd, 4th and 5th Slepian coefficients during the period of March 2011 Tohoku-Oki 
earthquake. We hereby assume that the jumps are due to earthquake-induced seismic 
deformations.  
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Figure 5.17: a), c), e), g) and i): Top five bandlimited Slepian functions (maximum 
spherical harmonic degree of 60) that are optimally concentrated within a circularly 
symmetric domain of colatitudinal radius Θ=7o center on the Global Centroid Moment 
Tensor Project (GCMT) epicenter of Tohoku-Oki earthquake (λ=143.05o,φ=37.52o); b), 
d), f), h), j): Time series of the corresponding Slepian expansion coefficients of the 
GRACE Level 2 Release 04 monthly gravity field solutions delivered by the Center for 
Space Research (CSR). Pink: the original expansion coefficients (after removal of the 
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annual, semi-annual and tidal S2 aliasing terms). Blue: The mean values before and after 
Tohoku-Oki earthquake, as well as the earthquake-induced jump in the time series 
computed by differentiating the two mean values. 
 
Figure 5.18 shows the gravity change in the space domain, which is recovered from fitted 
parameters representing a jump in Slepian domain. The maximum positive gravity 
changes detected by GRACE is 3.69 µgal in the ocean east of Honshu, Japan. These 
positive gravity change signals result from seafloor uplift. The negative gravity changes, 
which are jointly caused by seafloor and land subsidence and crust dilatation, mainly 
reside over the west boundary of Tohoku, with the peak value of -8.75 µgal located just 
north of Sado Island. By estimating the a posteriori variance of unit weight, we deduced 
that the 1-σ uncertainty is at ~1.60 µgal for our Slepian localized GRACE observations of 
the Tohoku-Oki seismic deformation. 
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Figure 5.18: The gravity changes, in units of µGal, due to coseismic and postseimic 
deformation associated to the March 2011 Tohoku-Oki earthquake obtained using spatio-
spectral Slepian localization analysis of monthly GRACE solutions. The postseismic 
signal refers to the deformation during period between March 11 and the end of July. The 
blue star denotes the GCMT epicenter. 
 

5.3.3 Model Predictions 
Figure 5.19 (left to right, the first three panels) shows three slip models 

considered in this study: Model I (Figure 5.19a) is jointly inverted from teleseismic P 
waves, broadband Rayleigh wave records as well as high-rate GPS measurements 
[Ammon et al., 2011], while Model II (Figure 5.19b, Shao et al., 2011) and Model III 
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(Figure 5.19c, Hayes, 2011, 
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/finite_fault.php) 
are derived from teleseismic body and surface waves. The predicted postseismic slip 
displacement model (Figure 5.19d, last panel, with a different color scale) is from Ozawa 
et al. (2011) over the time period between 12–25 March 2011. Table 5.2 lists some key 
parameters for the three coseismic slip models (Models I, II and III).
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The coseismic and postseismic gravity changes are then computed for the four 
models assuming a homogeneous half-space formalism (Okubo, 1992). The effect of 
water layer is taken into account by considering the density contrast between crust and 
ocean water as the sea floor moves vertically. In order to compare with GRACE 
observations, the model-predicted coseismic gravity changes at full resolution are 
truncated to spherical harmonic degree complete to 60, and then spatially filtered using a 
Gaussian filter with radius of 350 km half-wavelength. Figure 5.19e~g shows, 
respectively, the coseismic gravity changes predicted by the three models (Figures 
5.19a~c), and Figure 5.19h shows the postseismic gravity changes predicted from the 
Ozawa et al. (2011) model with a different color scale. Similar to the Slepian-localized 
GRACE observations (for composite co- and postseismic deformations) given in Figure 
5.18, all predictions shows a bi-polar pattern, with negative gravity changes west of the 
epicenter and positive changes over the ocean east of the Japan trench. The peak negative 
gravity changes calculated from Model I, II and III are –7.0, –6.7 and –6.7µGal, 
respectively, while the predicted maximum positive values are 1.6, 2.8 and 2.0µGal. The 
amplitudes of all gravity changes predicted in the coseismic model are smaller than the 
signal detected by GRACE, which gives –8.75±1.62 and 3.69±1.62µGal as peak values in 
negative and positive gravity changes, respectively.  
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Figure 5.19: a) ~ c): Coseismic slip distributions (in units of m) estimated by three 
models: (a) Model I by Ammon et al. (2011), (b) Model II by Shao et al. (2011) and (c) 
Model III by Hayes (2011) 
(http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/finite_fault.php).
The green contours of slips are at 10m, 20m and 30m, respectively. (d): postseismic slip 
estimated by Ozawa et al. (2011) for 12-25 March 2011. The contours are at 0.3m 0.6m 
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and 0.9m (at a different scale). The red lines describe plate boundaries, and the green 
arrow indicates relative motions between the Pacific Plate and North American Plate. The 
purple dots show the epicenters of the Tohoku-Oki earthquake aftershocks between 11 
March–24 April 2011, which are taken from the GCMT. The focal mechanism of 
Tohoku-Oki earthquake is plotted in blue. e)~h): The gravity changes predicted by the 
corresponding models in a)~d) respectively, but truncated to spherical harmonic degree 
60 and spatially smoothed using a Gaussian filter of radius 350km. 
 

In order to further check the effect of Earth’s curvature and radial heterogeneity 
on predicted coseismic gravity change, we calculated the coseismic gravity changes from 
three models: (1) by Ammon et al. (2011), (2) by Shao et al. (2011) and (3) by Hayes 
(2011), using the numerical codes developed by W. Sun (Sun & Okubo, 1998), which 
assumes the dislocation is in a layered spherical Earth. Figure 5.20 shows the results. The 
peak negative gravity changes predicted by three models are –4.9, –6.3 and –6.0µGal, 
respectively; while the maximum positive gravity changes are 4.7, 3.1 and 3.5µGal, 
respectively. Comparing with the predictions based on the assumption of a homogeneous 
half-space, we found that the magnitudes of negative gravity change become even 
smaller when the spherical model is used, while the magnitudes of positive signals get 
amplified. For Model II and Model III, the maximum discrepancy between these two sets 
of computations is around 1µGal. However, for Model I, the maximum discrepancy 
arrives at 3µGal. This is probably because Model I places large slip relatively deeper than 
the other two models. There is much evidence to support the slip distribution with large 
slip all the way up to the trench axis, such as the direct seafloor measurement, large 
tsunami generation, and locations of aftershocks. Thus, we think the uncertainty in the 
predicted gravity changes due to Earth’s spherical and layered effects should be around 
1µGal for the 2011 Tohoku-Oki earthquake, at the commensurate GRACE spatial 
resolution, currently estimated at 350km, half-wavelength.  
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Figure 5.20: Coseismic gravity changes calculated by three models: a) by Ammon et al. 
(2011), b) by Shao et al. (2011) and c) by Hayes (2011) 
[http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/finite_fault.php]. 
The calculation is implemented by the numerical codes by W. Sun (Sun & Okubo, 1998). 
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5.3.4 Sensitivity Analysis 
Here, we analyze the sensitivity of GRACE observed coseismic and postseismic 

gravity changes to fault parameters, i.e., fault length, width, depth and slip. For this 
purpose, an artificial fault plane, which has strike, dip, and rake of 203o, 10o and 90o 
respectively, is placed with its top edge parallel to Japan trench.  
 First, the fault length and depth are fixed at 300km and 1km, respectively, and the 
fault width is allowed to take values of 100km, 200km and300 km. For each width value, 
the seismic gravity changes at resolution of 350km half-wavelength are computed for 
uniform slip of 5m, 7m and 9m, respectively. Figure 5.21 shows the calculated coseismic 
gravity changes along the profile of latitude 39o. It can be seen that the location of the 
peak negative signal moves westwards as the fault width increases. When the fault width 
is fixed, the location of the peak negative signal stays at the same longitude even though 
the slip magnitude increases. Thus, the location of the minimum value in the seismic 
gravity changes provides constraints on the width of the fault plane.  
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Figure 5.21: The coseismic gravity changes (at spatial resolution of 350km) along the 
profile across the middle of the fault plane for synthetic faulting scenarios: (a) Fault 
length, depth, dip, strike, rake are fixed at 300km, 1km, 10o, 203o, and 90o, respectively. 
The width of the fault plane varies from 100km to 300km with step of 100 km, and the 
uniform slip on the fault plane take values from 5m to 9m for each width. (b) Fault-plane 
length, width, dip, strike and rake are fixed at 300km, 200km, 10o, 203o, and 90o, 
respectively. The depth of the top edge of the fault varies from 1 km to 5km in steps of 
2km, and the uniform slip on the fault plane take values from 5m to 9m for each width. 
This example shows the sensitivity of coseismic gravity changes to faulting parameters. 
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 Figure 5.22 provides a map view to further illustrate the sensitivity of coseismic 
gravity changes (at GRACE’s spatial resolution) to fault width. In Figure 5.22, the fault 
depth, length and uniform slip are fixed at 1km, 300km and 7m, respectively. The 
contours at gravity changes of -2µGal are shown for fault widths of 200km, 300km and 
400km, respectively. Similarly to the aforementioned conclusion, the location of the peak 
in negative gravity changes moves westward as fault width increases from 200km to 
400km.   
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Figure 5.22: The coseismic gravity changes (at GRACE’s spatial resolution) generated by 
faults with different widths. The fault depth, length and uniform slip are fixed as 1km, 
300km and 7m, respectively. The contours at gravity changes of -2µgal are shown for 
fault width of 200km(in green), 300km(in red) and 400km(in blue), respectively. 
 
 In another example, we test the GRACE’s sensitivity to fault depth. Fault length 
and width are chosen to be 300km and 200km, respectively. The depth of the top edge of 
the fault varies from 1m to 5m, and the uniform slip takes the values of 5m, 7m and 9m at 
each depth. From Figure 5.21b, we can see that there is a trade-off in the calculated 
coseismic gravity changes between fault depth and slip magnitude. For example, along 
the profile of 39o N, the seismic gravity changes predicted by slip of 7m on a fault at 
depth of 5km are similar to the gravity changes induced by a slip of 9m on a fault at 
depth of 1km. Consequently, GRACE data add little constraint to the depth estimation for 
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Tohoku-Oki earthquake. The depth information inverted from other observations should 
be used if one wants to estimate the other fault parameters using GRACE. 

5.3.5 Slip Inversion Using GRACE Observation 
We use Simulated Annealing (SA), a nonlinear inversion algorithm (Kirkpatrick 

et al., 1983) to simultaneously invert for the fault width and slip. Although various 
coseismic models exhibit substantial differences in terms of slip distribution on fault 
planes, the coseismic gravity changes predicted from them have similar spatial patterns at 
the spatial resolution commensurate with the GRACE solutions. In other words, GRACE 
is not able to help discriminate detailed slip distribution for Tohoku-Oki earthquake. 
Thus, a simplified fault model, i.e., a rectangular fault plane with uniform slip on it, is 
assumed for inversion. The strike, dip and rake are fixed to be 203o, 10o and 88o 
respectively, to be consistent with the GCMT solution. Unlike the 2004 Mw 9.1−9.2 
Sumatra earthquake and the 2010 Mw 8.8 Maule earthquake, which ruptured segments of 
more than 1000km and 500km along the subduction zones, respectively, the area of 
appreciable slip for the Tohoku-Oki earthquake is relatively compact, only about half of 
the 2010 Maule earthquake (Simons et al., 2011). As a result, GRACE observations are 
less sensitive to the rupture length resulting from the 2011 Tohoku-Oki earthquake. In the 
inversion, the fault length is fixed to be 240km, which is the average rupture extent in the 
three coseismic models for the area bearing slips of >10m (~80% of the total moment). It 
has been suggested that the strong slip of the Tohoku-Oki earthquake is shallow and 
occupies the concave seaward end in the trench (Ide et al., 2011; Lay et al., 2011; Shao et 
al., 2011). Furthermore, the deformation of the seafloor near the toe of the wedge directly 
measured by multi-beam bathymetry also provides evidence for the strong up-dip slip all 
the way to the trench axis (Fujiwara et al., 2011). Therefore, we fixed the fault’s top edge 
at 0 km in the inversion.  

The drawback of Simulated Annealing is that the technique does not provide 
uncertainty estimates for the inversion. In order to take into account the uncertainties in 
the inversion results caused by GRACE observation errors, the fault parameters are also 
inverted by using the upper and lower bounds of estimated GRACE observation errors 
(i.e. a posteriori unit-weight variance of 1.62µGal). Finally, the fault width and the 
uniform slip are estimated as 211±1km and 22.7±2.4m, respectively. Figure 5.23 shows 
the histograms at convergence in the inversion. 
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Figure 5.23: Histograms of accepted samplings for variables of fault width and slip in 
their state spaces when the simulated annealing algorithm converges. (a) and (b): using 
GRACE detected gravity changes as input; (c) and (d): using the lower bounds of a 
posteriori error estimates for GRACE observations as input; (e) and (f): using the upper 
bounds of a posteriori error estimates for GRACE observations as input. 
 

5.3.6  Discussion  
Using the estimated values of the total fault width and the uniform slip inverted 

using GRACE observations (211±1km and 22.7±2.4m, respectively) accounting for both 
the coseismic and postseismic deformations, and assuming a shear modulus of 40GPa, 
which is a rough average of the rigidities of upper crust, lower crust and upper mantle in 
northeastern Japan based on seismic data (Nakajima et al., 2001; Ozawa et al., 2011), the 
total composite moment is (4.59±0.49) x1022 N m, equivalent to a moment magnitude of 
Mw 9.07±0.65. Our GRACE-inverted model estimate (comprising both coseismic and 
postseismic slips) is larger than previous estimates, which accounted only for the 
coseismic moment of the Tohoku-Oki earthquake, i.e., 3.43x1022N m (Ozawa et al., 
2011), 4.0x1022 N m (Lay et al., 2011), and 3.9x2022 N m (Ammon et al., 2011), 
respectively. If we assume that 3.8x1022N m, as the averaged moment estimate from 
these studies, is the main shock moment, the post-seismic moment is estimated to be 3.0 
x1021−11.7x1021 N m, equivalent to a Mw 8.28−8.68 earthquake. 

  After the main shock, large postseismic deformation, resembling the coseismic 
displacement, but distributed more broadly (reaching further to the north and south to the 



 
 
 

97 

area of coseismic displacement), has been detected by the GPS network (Ozawa et al., 
2011). Based on the postseismic displacement measured by GPS, Ozawa et al. (2011) 
found that a large after-slip is distributed in and surrounding the area of the coseismic slip, 
extending to the north, the south and in the down-dip directions (Figure 5.19d). By using 
the collected GPS measurement up to March 25, 2011, they estimated the maximum slip 
of ~1m and moment of the 3.35x1021 N m for the after-slip, equivalent to a Mw 8.3 
earthquake and very close to the lower bound of the remaining moment (3.0 x1021 N m) 
in our estimate.  However, this agreement is possibly fortuitous given the uncertainty in 
the moment estimate of the main shock, the uncertainty range in the GRACE estimate of 
slip, as well as possible errors in the after-slip model derived based on only far-field GPS 
measurements. We argue that the effect of the after-slip is indeed a reasonable 
explanation for the relatively larger amplitude in the gravity changes detected by GRACE. 
Although the peak gravity change predicted by the model including after-slip during 
March 11 and March 25 is about –0.8µGal (Figure 5.19h), it should be noticed that, in 
our GRACE data analysis, the earthquake-induced jump is computed by subtracting the 
reference field before the earthquake from the mean field after the earthquake, which is 
the mean GRACE field of April, May and July 2011 (after removing periodic terms). 
Thus, what sensed by GRACE is the average after-slip during the interval between March 
11th and the end of July 2011. By the end of July, the preliminary after-slip model 
inferred from GEONET data has a maximum slip of ~2.3m and an equivalent moment of 
Mw 8.5 (http://www.gsi.go.jp/cais/topic110315.2-index-e.html).  

As shown by our GRACE sensitivity analysis, the location of the peak in negative 
gravity changes is diagnostic of the down-dip width of the rupture. The fault width 
estimate of ~210km in our GRACE observation partially covers the after-slip regions 
(Figure 5.19d), deeper than the co-seismic area. Additional GRACE data or improved 
solution after the earthquake will help further constrain the rupture width, as well as the 
co- and post-seismic moment estimates of the great March 2011 Tohoku-Oki earthquake. 
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Chapter 6: Conclusion 
 

The basic causes of earthquakes are stress accumulations resulting from relative 
plate motions with various patterns such as convergence, divergence, and relative 
horizontal slide between two plates. Earthquake quantification, which is an important 
topic in seismology, means to determine several geometric and physical parameters 
during the rupture, such as location of main shock, rupture area, amplitude of 
displacement, slip distribution on the fault plane, duration of rupturing, particle velocity 
at the fault, et cetera. To precisely describe earthquakes helps to understand many natural 
processes, such as the large scale relative motions of lithospheric plates, properties of 
Earth’s crust and upper mantle, volcanic and tsunami activities and so on. For instance, 
the map of earthquake distribution identifies the plate boundaries, and thus plays an 
important role in the development of plate tectonics; faulting patterns can be used to infer 
the direction of relative motion between plates; and slip amplitude helps to estimate the 
relative motion rate, re-estimate the seismic moment budget and evaluate the seismic 
hazard risk. 

Teleseismic wave records and geodetic measurements, such as GPS and inSAR, 
are the most common data types used to constrain fault geometry, displacement 
amplitude and rupturing history. Unfortunately, intrinsic limitations exist in both 
techniques. Seismic inversion depends on the estimated velocity structure in which large 
uncertainties exist. In addition, it is instable to determine the geometry of the fault, 
particularly when the rupture doesn’t break through to the ground surface, thereby the 
orientation can’t be observed directly. Geodetic inversion, which typically uses 
displacement measurements on land by GPS or InSAR, lacks sensitivity to offshore slips 
of great earthquakes, which generally occur in subduction zones at ocean trend.  

Spaceborne gravimetry provides anther type of geodetic observation for great 
earthquake studies. Instead of directly measuring the displacement in near-source region, 
it detects the gravitation changes as the consequence of mass redistribution excited by 
various faulting processes. This study not only develops new data analysis procedures 
which prove to be advantageous for extracting co/post-seismic gravitation signals from 
spaceborne gravimetry observations, but explores a feasible nonlinear inversion scheme 
to estimate faulting parameters using the detected gravitation changes. 

The precondition, for either examining the observation or implementing inversion, 
is the forward modeling of coseismic gravitation changes. Two approaches, i.e. analytical 
evaluation and numerical approximation, are developed to model coseismic gravity and 
gravitational gradient changes under the assumption of a homogeneous elastic half-space. 
It has been demonstrated by numerical examples that both methods are effective in 
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calculating the coseismic gravity and gravitational gradient changes triggered by 
dislocation on a rectangular fault plane. The computation is fast when the analytical 
method is used, while the effect of layered density structure in the half-space can be taken 
into account if the numerical approach is adopted.  

Different from routine GRACE data processing, the data processing scheme 
developed in this study is based on spatiospectral localization analysis, which preserves 
the primitive satellite observation and improves spatial resolution. It is efficient to 
represent and analyze a regional signal using Slepian function, since local signals are 
sparse in Slepian domain. Furthermore, the spatial patterns of gravitational potential 
perturbation owing to earthquakes are similar to those of optimally localized Slepian 
functions. The Slepian function is thus eminently suitable to analyze the seismic 
gravitation changes using GRACE observation.  

It is a highly nonlinear problem to estimate faulting parameters using GRACE 
detected coseismic gravity changes. Simulated annealing, which is a Markov Chain 
Monte Carlo method, is shown to be able to solve inversion problem of high nonlinearity 
and dimensionality, and it avoids any numerical instabilities due to ill-conditioned 
matrices. Before inverting for faulting parameters, the sensitivity of GRACE observed 
gravity changes to various faulting parameters, including fault length, width, depth and 
average slip, should be tested. Generally, there is a trade-off between the estimates of 
fault depth and average slip if they are simultaneously inverted. Thus, this study chooses 
to invert for fault length, width and average slip using GRACE observation. The fault 
depth, strike and dip are assumed to be known since either GRACE is not sensitive to 
them or they can be better determined by other observations.   

It has been well demonstrated that the GRACE spaceborne gravimetry data are 
capable of observing coseismic gravity changes resulting from the 26 December 2004 
Sumatra-Andaman event (Mw 9.2). This study shows for the first time that refined 
deformation signals resulting from the Sumatra-Andaman and the 28 March 2005 Nias 
earthquakes (Mw 8.6) are detectable by processing the GRACE data in terms of the full 
gravitational gradient tensor. The GRACE-inferred gravitational gradients agree well 
with coseismic model predictions. Due to the characteristics of these gradients, which 
have enhanced high-frequency content, the GRACE observations provide a clear 
delineation of the fault lines, locate significant slips, and better define the extent of the 
coseismic deformation. 

The 27 February 2010 Mw 8.8 Maule (Chile) earthquake ruptured over 500km 
along a mature seismic gap between 34oS and 38oS – the Concepción-Constitución gap, 
where no large megathrust earthquakes had occurred since the 1835 Mw ~8.5 event. 
Notable discrepancies exist in estimated slip distribution and moment magnitude by 
various models inverted using traditional observations such as teleseismic networks, 
coastal/river markers, tsunami sensors, Global Positioning System (GPS) and 
Interferometric Synthetic Aperture Radar (InSAR). This study conducts a spatio-spectral 
localization analysis, based on Slepian basis functions, of data from GRACE to extract 
coseismic gravity change signals of the Maule earthquake with improved spatial 
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resolution (350km half-wavelength). The results reveal discernable differences in the 
average slip between the GRACE observations and predictions from various coseismic 
models. Using a simulated annealing algorithm, the fault-plane area and the average slip 
are simultaneously inverted for. The GRACE-inverted fault plane length and width are 
429±6km, 146±5km, respectively. The estimated slip is 8.1±1.2m, indicating most of the 
strain accumulated since 1835 in the Concepción-Constitución gap had been released by 
the 2010 Maule earthquake.  

GRACE data are processed using spatiospectral localization analysis to detect 
high-resolution permanent gravity changes due to both coseismic and postseismic 
deformation associated with the great 11 March 2011 Mw 9.0 Tohoku-Oki earthquake. 
The GRACE observations are then used in a geophysical inversion to derive a new 
coseismic slip and after-slip model. The GRACE estimated moment for the total slip, up 
to the end of July 2011, is  (4.59±0.49) x1022 N m, equivalent to a composite Mw of 
9.07±0.65.  If the moment for the Tohoku-Oki main shock is assumed to be 3.8x1022 N m, 
the contribution from the after-slip is estimated to be 3.0 x1021~11.7x1021 N m, in good 
agreement with a postseismic slip model inverted from GPS data. Thus, GRACE data 
provides an independent constraint to quantify co- and post-seismic deformation for the 
Tohoku-Oki event. 

This study demonstrates that spaceborne gravimetry provides an independent and 
thus valuable constraint on the co-seismic slip for great megathrust events, although the 
spatial resolution attained by GRACE does not allow for a distinction of the variable slip 
distribution. However, the detection of the total gravity change produced by coseismic 
mass redistributions provides a complementary observation to geodetic measurements 
available on land. Future studies on simultaneous inversion of both data types could 
further improve the fidelity of coseismic slip models. 
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Appendix A: Galerkin Vector 
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  (A.3) 
where  

 R = x1 −ξ1( )2
+ x2 −ξ2( )2

+ x3 −ξ3( )2
     (A.4) 

 Q = x1 −ξ1( )2
+ x2 −ξ2( )2

+ x3 +ξ3( )2
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Appendix B: Gravitational Potential Change Caused by Point Dislocation 
 
Gravitational potential change due to density change: 

            

ψ (11) r,ξ3( ) =Gρ(1− 2v) −
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ψ (12) r,ξ3( ) = −Gρ(1− 2v)
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R R+ξ3 − x3( )2          (B.3) 

ψ (13) r,ξ3( ) = 0             (B.4) 

Gravitational potential change due to surface vertical deformation: 
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φ (13) r;ξ3( ) =Gρ
ξ3x1

R̂3
            (B.8) 

where  

 R̂ ≡ x1
2 + x2

2 + x3 −ξ3( )2
            (B.9) 

 
Total gravitational potential change: 
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Appendix C: Gravitational Potential Change Caused by Fault 
 

Total potential change 

ΔΨ x1, x2, x3( ) = Gρ U1S ξ,η( )+U2D ξ,η( )+U3T ξ,η( )#$ %&+GΔρU3C ξ,η( ){ }       (C.1) 

where   
 Δρ = "ρ − ρ            (C.2) 
S, D, T and C denote the contributions from strike-slip, dip-slip, tensile components and 
intrusions into the cavity formed due to tensile opening, respectively. 
 
If cosδ ≠ 0 : 
 S ξ,η( ) = −q0I0 sec2 δ + R tanδ + 2ξ I1 tan2 δ        (C.3) 

 D ξ,η( ) = −ξ I0 tanδ − 2x3I2 sinδ − q0 log R+ξ( )+ 2I1 tanδ"# $%      (C.4) 

 C ξ,η( ) = −ξ log R+η( )−η log R+ξ( )− 2qI2          (C.5) 

 T ξ,η( ) = ξ I0 tan2 δ − x3 sinδ log R+ξ( )+ 2q0 I1 tan2 δ + I2( )+C ξ,η( )    (C.6) 

where 

 I0 ξ,η( ) = log R+η( )− sinδ log R+ d( )        (C.7) 
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  R = ξ 2 +η2 + q2                    (C.10) 

  q = x2 sinδ − d − x3( )cosδ        (C.11) 

  q0 = q− x3 cosδ         (C.12) 

  d =ηsinδ − qcosδ         (C.13) 
If cosδ = 0 : 

 S ξ,η( ) = qsinδ
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            (C.16) 
 
Potential Change From Expansion/Contraction and Cavity-filling Materials 

  Δψ x1, x2, x3( ) = GΔρU3C
* ξ,η( )+Gρ U1S

* ξ,η( )+U2D* ξ,η( )+U3T
* ξ,η( )"# $%{ }   

            (C.17) 
where 
If cosδ ≠ 0 : 

 S* ξ,η( ) = 1− 2v( ) tanδ −R− 2ξ I1 tanδ + qsecδ sinδ log R+η( )− log R+ d( )"
#

$
%{ }   

            (C.18) 
 D* ξ,η( ) = 1− 2v( ) I3 sinδ cosδ        (C.19) 

T * ξ,η( ) = − 1− 2v( ) I3 sin2 δ         (C.20) 

 C* ξ,η( ) =C ξ,η( )          (C.21) 

 I3 ξ,η( ) = ξ I0 + 2qI1( )sec2 δ         (C.22) 

If cosδ = 0 : 
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Appendix D: Vertical Deformation and Gravity Change Caused by Fault 
 
Vertical deformation: 

Δh x1, x2, 0( ) = 1

2π
U1Sh ξ,η( )+U2Dh ξ,η( )+U3Th ξ,η( )"# $%       (D.1) 

where 
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R R+η( )
−

qsinδ
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and 
d =ηsinδ − qcosδ            (D.5) 
y =η cosδ + qsinδ            (D.6) 

  I4 ξ,η( ) = 1− 2v( ) log R+ d( )− sinδ log R+η( )"
#

$
%secδ       (D.7) 

I5 ξ,η( ) = 2 1− 2v( ) I1 secδ          (D.8) 

If cosδ = 0  

  I4 ξ,η( ) = − 1− 2v( ) q

R+ d
         (D.9) 

       
I5 ξ,η( ) = − 1− 2v( )ξ sinδ

R+ d
          (D.10) 

 
Total gravity change: 

Sg ξ,η( ) = − qsinδ
R

+
q2 cosδ
R(R+η)

           (D.11) 

 Dg ξ,η( ) = 2I2 sinδ −
qd

R(R+ξ )
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 Tg ξ,η( ) = 2I2 cosδ +
qy

R(R+ξ )
+

qξ cosδ
R(R+η)

       (D.13) 

 Cg ξ,η( ) = 2I2 cosδ − sinδ log R+ξ( )        (D.14) 
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Gravity change due to density change: 

Sg
* ξ,η( ) = I4 sinδ             (D.15) 

 Dg
* ξ,η( ) = −I5 sinδ cosδ         (D.16) 

Tg
* ξ,η( ) = I5 sin2 δ          (D.17) 

Cg
* ξ,η( ) =Cg ξ,η( )          (D.18) 

If cosδ = 0 , equations (D.9) and (D.10) are used for I4 and I5 . 
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Appendix E: Gravitational Gradient Change Caused by Fault 
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qsinδ

R R+η( )
           (E.4) 

S13 ξ,η( ) = −ξqsinδ
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2qsinδ cosδ
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yqsinδ
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=
d

2R3
−

sinδ
2R R+η( )

+
ξ 2 2R+η( )sinδ

2R3 R+η( )2        (E.31) 

∂2I2

∂x2
2

=
dy 2R+ξ( )
2R3 R+ξ( )2 +

ξ sinδ y 2R+η( )+ R2 cosδ( )
2R3 R+η( )2       (E.32) 

 
If cosδ = 0  

S12 ξ,η( ) = ξ sin2 δ
2R R+ d( )

−
ηsinδ + qcosδ( )ξ sin2 δ

2R R+ d( )
2 −

ξ Rsinδ + qcosδ( )sin2 δ

R2 R+η( )
 

 

+
ξq y + Rcosδ( ) 2R+η( )sin2 δ

R3 R+η( )2 −
ξqy 2R+ d( )sinδ

2R3 R+ d( )
2 +

ξqηy 3R+ d( )sin2 δ

2R3 R+ d( )
3    (E.33) 

D12 ξ,η( ) = − sinδ
R

+
qy

R3
         (E.34) 

T12 ξ,η( ) = 2
∂I2

∂x1

sinδ + 2q
∂2I2

∂x1∂x2

+
Rcosδ + y sinδ

2R R+ d( )
−
ξ 2 cosδ +ηy

2R R+ d( )
2

#

$

%
%

&

'

(
(

 

     −
ξ 2y 2R+ d( )sinδ

2R3 R+ d( )
2 +

ξ 2ηy 3R+ d( )
2R3 R+ d( )

3            (E.35) 

S22 ξ,η( ) = −
2y sinδ + q( )sin2 δ

R R+η( )
+

y sin2 δ
2R R+ d( )

−
Rηsin2 δ + qy( ) y sinδ

2R2 R+ d( )
2  

     −
ηsinδ − R− d( )sinδ

2R R+ d( )
2 y sinδ + q−

qy 2 3R+ d( )
R2 R+ d( )

"

#
$
$

%

&
'
'+

qy 2 2R+η( )sin2 δ

R3 R+η( )2      (E.36) 

D22 ξ,η( ) = − 2y sinδ + q

R R+ξ( )
+

qy 2 2R+ξ( )
R3 R+ξ( )2        (E.37) 
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T22 ξ,η( ) = ∂
2C

∂x2
+ 2

∂I2

∂x2

sinδ + 2 q+ sinδ( )∂
2I2

∂x2
2

+
ξRsinδ

2R2 R+ d( )
−

ξη

2R R+ d( )
2  

−
ξ y 2 2R+ d( )sinδ

2R3 R+ d( )
2 +

ξηy 2 3R+ d( )
2R3 R+ d( )

3       (E.38) 
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Appendix F: Markov Chain Model 
 

A Markov chain is a random process having the property of ‘memoryless’: future 
state only depends on the present state, and past states have no influence on the future. 
This property is called the Markov property, and can be formally expressed by: 
 P(Xn+1 = x | Xn = xn, Xn−1 = xn−1,, X2 = x2, X1 = x1) = P(Xn+1 = x | Xn = xn )    (F.1) 

where X1, X2, X3 … are random variable; x1, x2, x3 … are their realizations, i.e., the state 
of the system. All the possible states form a countable set E, which is called the state 
space of the Markov chain. P(A | B)  denotes the conditional probability of A given B.  
Followings are some general definition and properties about Markov chain. 
Transition probability 

In a system, the probability for going from state i  to state j in n time steps can be 
expressed as: 
    ))0(|)(()( iXjnXPp n

ij ===                                (F.2) 

which is call n -step transition probability. Specifically, the 1-step transition probability 
can be simply written as ijp .  

If the transition probability does not depend on time, the Markov chain is time-
homogeneous, i.e.,  
 ))(|)(()( ikXjknXPp n

ij ==+=  for all k.                             (F.3) 

Reducibility 
If the probability of transitioning from state i  to state j  is non-zero, i.e., 

 pij
(n) = P(X(n) = j | X(0) = i)> 0 , for 0≥n                    (F.4) 

then, state j  is said to be accessible from state i .  
Two states are said to communicate with each other if both states are accessible 

from each other. Assuming a set of states C , if every pair of states in C  communicates 
with each other, we call C is a communicating class. If the state space of a Markov chain 
is a single communicating class, i.e., any state is accessible from any state in space, the 
Markov chain is irreducible. 

 
Periodicity 

The state iX  has period 1>t  if 0)( =n
iip  unless vtn =  is a multiple of t . The 

state iX  is aperiodic if no such 1>t  exists. In other words, returning to state iX  can 

occur at irregular times. 
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Transition probability matrix. 
Let },2,1,0),({ =ttX be a Markov chain, and the state space },,1,0{ S=Ε . We 

can use a matrix to describe all transition probabilities: 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

SSSS

S

S

ppp

ppp

ppp

A







10

11110

00100

                                 (F.5) 

The matrix A is called transition probability matrix. 
Stationary distribution 

The time-dependent probability function of variable X  in the Markov chain can 
be represented by a vector 
        


ρ (t ) = (ρ0

(t ),ρ1
(t ),,ρS

(t ) )                                   (F.6) 

where 

ρi

(t ) = P(X(t) = i), i ∈ E . The vector 

ρ (t ) is called the distribution of X at time t, 

i.e. )(tX .  

The vector 

ρ (t )  describes the evolution of a Markov chain over time. In particular, 

it is interesting to check whether the limit lim t→∞


ρ (t )  exists and what it looks like. For a 

given Markov chain },2,1,0),({ =ttX , if its distribution 

ρ (t )  is the same for all time t , 

i.e.,  ===== )()2()1( tρρρρ , this Markov chain is stationary, and 

),,,( 10 Sρρρρ =  is called a stationary distribution for transition matrix A. 

Theorem 1: Let )(tρ  be the distributions at successive time t , of a Markov chain )}({ tX  

with transition matrix A . If )(lim t
t ρρ ∞→=  exists, it is a stationary distribution for A . 

Theorem 2: Assume a Markov chain is irreducible and aperiodic. Then there exists a 
unique stationary distribution ρ for A. For any states i  and j ,  

   j
t

ij
tt

piXjtXP ρ====
∞→∞→

)(lim))0(|)((lim                           (F.7) 

For any initial distributionρ (0)
, ρρ =∞→

)(lim t
t  
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