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Abstract 
This document first reviews the theory of detecting a subsurface linear anomaly using the 
matched filter applied to observations of the gravitational gradient in the presence of a nominal 
gravitational background field and along tracks crossing the anomaly orthogonally or at an 
arbitrary angle.  The maximum filter output indicates the likely location along the track and, with 
appropriate statistical assumptions on the background field and measurement noise, it also serves 
as a test statistic in the probabilistic evaluation of the filter’s performance.  Different setups of 
the Neyman-Pearson statistical hypothesis test yield calculated probabilities of either a miss or a 
false alarm, respectively.  The needed statistics of the maximum filter output are properly 
obtained using the distribution of order statistics.  Through Monte Carlo simulations, we 
analyzed the ability of the matched filter to identify certain signals in typically correlated gravity 
fields using observations of elements of the gravity gradient tensor.  We also evaluated the 
reliability of the hypothesis testing and of the associated calculated probabilities of misses and 
false alarms.  We found that the hypothesis test that yields the probability of a miss is more 
robust than the one for the probability of a false alarm.  Moreover, the probability of a miss is 
somewhat less than the probability of a false alarm under otherwise equal circumstances.  Our 
simulations and statistical analyses confirm that the power of the tests increases as the signal 
strength increases and as more gradient tensor components per observation point are included.  
Finally, we found that the statistical methods apply only to single tracks (one-dimensional 
matched filter) and that the matched filter itself performs poorly for multiple parallel tracks (two-
dimensional formulation) crossing a linear anomaly obliquely.  Therefore, these methods are 
most useful, with respect to both the detection and the probability calculation, for single tracks of 
data crossing a linear anomaly (at arbitrary angle). 
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I Introduction 
The problem of detecting a signal touches many disciplines, including communications, 
medicine, military operations, and image processing, among others.  In simplest terms, the 
problem entails the identification of a known signal contained in background noise that itself has 
a known stochastic structure.  In geophysics, the detection problem may be subsumed under the 
more general inverse problem of characterizing subsurface formations from measurements on or 
above the Earth’s surface.  Stable solutions to inverse problems require some form of constraint 
on the prediction errors, or on the parameters to be solved, or both.  The matched filter (MF) is a 
particular type of solution where the essential constraint comes from the knowledge of the signal 
structure and the maximization of the signal-to-noise ratio. 
 The matched filter is not widely employed in geophysics (one example is the detection of sea 
mounts from satellite altimetry, White et al., 1983).  The example studied in this report is the 
detection of a signal in the local ambient gravitational field using surface measurements of 
components of the gravity gradient tensor.  The signal to be detected is due to the density 
contrast associated with a linear feature of either natural or anthropogenic origin, such as 
paleochannels, caves, large underground pipes, coal mines, tunnels, etc.  The Federal Highway 
Administration (Meglich et al., 2005) recently sponsored an extensive study on the various 
measurement technologies available to detect lava tubes that could create a hazard or difficulty in 
highway construction and maintenance.  Also, the USGS (Munk and Sheets, 1997) conducted a 
study of voids due to abandoned underground coal mines in Ohio that have led to the collapse of 
a major highway.  Today’s high-precision gravimeters are able to detect some of these 
anomalies, but gravity gradiometers are more sensitive to the very immediate mass anomalies 
and combining gradients in different directions potentially increases the detection capability 
(Butler, 1984; Romaides et al., 2001).  Moreover, while other geophysical techniques such as 
magnetic, electromagnetic, and resistivity surveys, as well as ground penetrating radar are easier 
(cheaper) to employ for such detection, gravimetry is perhaps the most robust technique.  Any of 
the methods based on electromagnetic fields or energies are highly susceptible to 
electromagnetic interferences from above the ground, which often are difficult to model, and to 
sub-surface dielectric and conductivity properties, which can vary by orders of magnitude.  
Gravimetry depends only on mass density, and we seek very specific anomalies in this 
distribution. 
 A well known feature of the matched filter is its connection to probabilistic measures of false 
alarms and missed detection.  The maximum output of the filter, which indicates a candidate 
location of the signal being sought, is a test statistic of a standard Neyman-Pearson hypothesis 
test that under known probability distributions yields the probabilities of false alarms or of 
misses, depending on the setup of the test.  Many of the details of the matched filter applied to 
gravity gradients, including comprehensive simulations for airborne measurements over 
extensive areas, have been elaborated by Dumrongchai (2007).  Our aim is to review the 
essential mathematics and statistics of the matched filter and investigate in more detail the 
determination of these probabilities using Monte Carlo simulations to validate them. 
 The matched filter is developed first for a single track of one type of observation of a gravity 
gradient tensor element, then generalized to observations of multiple elements and on multiple 
parallel tracks.  The subsurface anomaly is modeled as a right rectangular prism of constant 
negative density contrast, with its long, predominant dimension parallel to the plane containing 
the observations.  First, we assume that it is orthogonal to the tracks, and then consider the case 
of an arbitrary azimuthal orientation.  Completely arbitrary orientations in three angles can also 
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be formulated, although any rotation about the longitudinal axis of the prism will have little 
effect on the surface gradients, but a dip in the anomaly would clearly cause the signal strength at 
the surface to vary along the direction of this axis. 
 
 
II Observations, Noise, and Signal 
Let z be the observation at a point; let n be the noise; let x be the linear 1-D coordinate of the 
observation point; and let s be the sought signal due to a sub-surface anomaly.  The observation 
model is then given by 
 
 ( ) ( ) ( )z x s x x n x= − + , (1) 
 
where x  is the unknown location of the signal relative to our imposed coordinate system.  The 
number of evenly spaced observation points is N.  The signal is of the same type as the 
observation (e.g., a gravitational gradient) and has a known structure; i.e., we can compute ( )s x  
based on known or estimated parameters of the anomaly.  The noise, n, is assumed to be a 
stationary, correlated, random process with zero mean and a known covariance function, φ ; 
however, it need not be a Gaussian process.  Only when we attach probabilities to our detection 
process do we assume Gaussianity in the noise. 
 In practice the observation points are always discrete, and we suppose that the observations 
are distributed regularly along the (arbitrarily oriented) x-axis: jx j x∆= , where x∆  is a constant 

interval, and the range of index values is finite.  We also write ( )j jz x z=  and ( )j jn x n= .  The 
range of index values is chosen as follows (other possibilities could be used, e.g., 0, , 1j N= −… ; 
see also the section on multiple tracks): 
 

 1
2 2
N Nj− ≤ ≤ − , (2) 

 
where N is assumed to be a positive even integer.  We are only interested in finding the location, 
x , and we assume all other parameters of the anomaly (such as its depth) are given.  Thus, 
letting mx x= , equation (1) becomes 
 
 ( ) ( ) ( ) or j j m j j j m jz x s x x n x z s n−= − + = + . (3) 
 
In practice, the observations, jz , are given together with the covariance function, φ , and the 

signal, ( )s x .  The only unknown is the location, mx . 
 The noise comprises the gravitational background field, as well as instrument noise.  The 
former may be approximated as a correlated, stationary field, while the latter typically is a white 
noise process (also stationary).  The covariance function, 
 
 g nφ φ φ= + , (4) 
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is determined from an analysis of the local gravitational field, which yields a model for gφ , and 
the known statistical information on the instrument noise, which gives nφ . 
 In a Cartesian coordinate system, the gravitational gradients of a right rectangular prism of 
constant density and with its edges parallel to coordinate axes have straightforward analytic 
expressions.  Appendix A derives these; and Appendix B shows how to compute the gradients 
for an arbitrarily oriented prism. 
 
 
III The Matched Filter (Single Gradient, Single Track) 
It is desired to find a filter that in its output identifies (a candidate for) the location of the signal 
if it is present.  Like any filter, the matched filter is a convolution of the input (our observations), 
formulated for a discrete input as: 
 

 ( ) ( ) ( )
2 1

2

, 1
2 2

N

r r j j
j N

N Ny x h x x z x r
−

=−

= − − ≤ ≤ −∑ , (5) 

 
where h is the filter function, which needs to be defined for kx , 1, , 1k N N= − + −… .  
Alternatively, with an appropriate definition of the observations outside its given limited domain, 
one can define the filter as follows (for infinite domains, N →∞ , the two formulations would be 
identical): 
 

 ( ) ( ) ( )
2 1

2

, 1
2 2

N

r j r j
j N

N Ny x h x z x x r
−

=−

= − − ≤ ≤ −∑ , (6) 

 
This form of the filter facilitates the derivation of its filter function, h.  However, now the 
observations must be defined for 1, , 1j N N= − + −… .  This is accomplished by extending the 
observations either with zeros: 
 

 
0, 1 2

, 2 2 1
0, 2 1

j j

N j N
z z N j N

N j N

− + ≤ < −
= − ≤ ≤ −
 ≤ ≤ −

"  (7) 

 
or, by duplicating the observations assuming they are periodic with period equal to the length of 
the observation track: 
 

 
, 1 2

, 2 2 1
, 2 1

j N

j j

j N

z N j N
z z N j N

z N j N

+

−

 − + ≤ < −
= − ≤ ≤ −
 ≤ ≤ −

"  (8) 
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The latter option is a requirement when formulating the matched filter in terms of discrete 
Fourier transforms, and it is assumed here.  However, we continue the derivations and all 
analyses in the space domain. 
 If the observations contain the signal, it would be identified best in the filter output where the 
signal-to-noise ratio is a maximum.  Substituting the observations, modeled according to 
equation (3), into the filter (6), the output can be separated into a signal part and a noise part 
(using a simplified notation): 
 

 ( )
2 1 2 1

2 2

, 1
2 2

N N

r j r j m j r j
j N j N

N Ny h s h x n r
− −

− − −
=− =−

= + − ≤ ≤ −∑ ∑ . (9) 

 
Consequently, we define the signal-to-noise ratio in terms of squared norms of these parts: 
 

 

( )

22 1

2
22 1

2

, 1
2 2

N

j r j m
j N

r
N

j r j
j N

h s
N NSNR r

h x n

−

− −
=−

−

−
=−

 
 
 
 = − ≤ ≤ −
 
 
 
 

∑

∑E

, (10) 

 
where the statistical expectation, E , is used since we do not know the particular values of the 
noise. 
 Because the noise has zero mean and is stationary, its covariance function depends only on 
the difference between point coordinates.  We define the order of differencing as the coordinate 
of the first quantity minus the coordinate of the second quantity in the covariance expression: 
 

 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( )( )

cov ,r j r k r j r k

r j r k

j k

n x x n x x n x x n x x

x x x x

x x

φ

φ

− − = − −

= − − −

= − − −

E

 (11) 

 
We denote by φ−  the N N×  matrix of noise covariances that depend on the difference between 
two points, jx− and kx− , and let ( ) ,j kφ−  be the individual elements.  It is noted that the 

covariance matrix is symmetric (irrespective of the choice of order of differencing or the sign of 
the coordinates – but a different covariance matrix may result with a different choice of sign 
conventions– we just need to be consistent).  Thus the denominator of the SNR becomes 
 

 ( ) ( )
2 1 2 1

,
2 2

denom ,
N N

r j kj k
j N k N

SNR h h rφ
− −

−
=− =−

= ∀∑ ∑ , (12) 

 
and the denominator, therefore, does not dependent on r. 
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 For a more compact notation, let the N filter-function values for the individual points be 
collected in an 1N ×  vector: 
 
 ( )T

2 2 1 2 1, , ,N N Nh h h− − + −= …h . (13) 
 
Clearly, the denominator of SNR can now be written as 
 
 ( )denom ,T

rSNR rφ−= ∀h h , (14) 
 
and the numerator is 
 

 ( ) ( )2

,num ,T
r r mSNR r= ∀h s , (15) 

 
where 
 
 ( )( )T

, 2 2 1, ,r m r N m r N ms s+ − − − −= …s . (16) 

 
The signal must be defined outside the observation domain; and, we use zeros since the anomaly, 
in any case, is assumed to generate a highly localized signal. 
 We wish to find an expression for the filter function that maximizes the SNR at r mx x= .  
From equation (10), the SNR does not depend on the scale of the filter function, and since the 
denominator is independent of rx , we may insist that for whatever filter function, the 
denominator is constant, say 2c .  Thus, the maximization of the SNR can be recast as a 
constrained maximization problem: maximize the numerator subject to the condition that the 
denominator is 2c .  We set up a cost function with Lagrange multiplier: 
 

 ( ) ( )2T 2 2 Tcχ λ φ− −= + −h s h h , (17) 
 
where we have dispensed with the subscript notation on the signal since we consider maximizing 
the SNR at the location of the signal; that is, the signal in equation (17) is the signal in equation 
(16) with r m= : 
 
 ( )T T

, 2 2 1, ,m m N Ns s− + −= =s s… , (18) 
 
again, denoting the reversal of signs in the coordinates with the subscripted minus sign.  Taking 
derivatives of χ  with respect to the unknowns, h  and 2λ , we find: 
 

 ( )T T 2 T T T2χ λ φ φ− − − −
∂ = − +
∂

h s s h h
h

, (19) 
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 ( )
2 T

2
cχ φ

λ −
∂ = −

∂
h h . (20) 

 
Since the covariance matrix is symmetric, we obtain, upon setting the derivatives to zero: 
 
 T T 2 Tλ φ− − −=h s s h , (21) 
 
 T 2cφ− =h h . (22) 
 
 These are necessary conditions for the maximum of χ  subject to the constraint.  It is a 
standard procedure (not given here) to show that they are also sufficient conditions.  Note that 
equation (22) is simply a repeat of our constraint.  Post-multiplying equation (21) by h , we find: 
 

 
T T

2
2c

λ − −= h s s h , (23) 

 
which is, in fact, the maximum SNR.  Taking the transpose of equation (21) and noting that the 
covariance matrix is invertible, we have 
 
 1 T 2φ λ−

− − − =s s h h . (24) 
 
The matrix, 1 Tφ−

− − −s s , has rank 1; and, therefore, all but one of its eigenvalues are zero.  From the 
above equation, which is in the form that identifies all the eigenvectors, h , we seek the one 
corresponding to the non-zero eigenvalue (i.e., we assume 2 0λ ≠ ).  It is easily verified that 
 

 1

T 1

c φ
φ

−
− −−

− − −

h = s
s s

 (25) 

 
and 
 

 
( )

2 T 1

2 1 2 1
1

,
2 2

N N

j kj k
j N k N

s s

λ φ

φ

−
− − −

− −
−

− − −
=− =−

=

∑ ∑

s s

=
 (26) 

 
satisfy equations (23) and (24). 
 Recalling that the scale of the filter function does not influence the detection capability of the 
matched filter, we may define 2 1c = , which implies that 
 

 ( ) ( )
2 1

1 1

,
2

11 , 1
2 2

N

j kj k
k N

N Nh s jλ φ φ
λ

−
− −
− − − −

=−

= ⇒ = − ≤ ≤ −∑h s , (27) 
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which also makes the filter output unit-less.  Note that in designing the filter we would never 
assume that the signal is absent (otherwise, there would be no reason to continue).  Thus, the 
SNR as defined here is the one that would occur if the signal were present.  If the signal, in fact, 
is not present, then we still calculate the SNR under the assumption that it is, but our matched 
filter will not be successful in locating the signal.  To indicate that the filter function depends on 
a putative signal (which may or may not be the correct signal, and which, indeed, may not exist 
at all in the observations), we denote the modeled signal as s , and the filter function and the 
maximum SNR become 
 

 ( ) ( )
2 1

1 1

,
2

11 or , 1
2 2

N

j kj k
k N

N Nh s jλ φ φ
λ

−
− −
− − − −

=−

= = − ≤ ≤ −∑h s ; (28) 

 

 ( )
2 1 2 1

2 1

,
2 2

N N

j kj k
j N k N

s sλ φ
− −

−
− − −

=− =−

= ∑ ∑ . (29) 

 
 Substituting equation (28) into equation (6) (with observations extended as in equations (7) 
or (8)), the filter output can be calculated as 
 

 ( )
2 1 2 1

1

,
2 2

1 , 1
2 2

N N

r k r jj k
j N k N

N Ny s z rφ
λ

− −
−

− − −
=− =−

= − ≤ ≤ −∑ ∑ "  . (30) 

 
For 2r N= − , the indices of z"  are 0, 1, , 1r j N− = − − +… .  For 2 1r N= − , the indices of z"  
are 1, 2, ,0r j N N− = − − … .  Therefore, the observations need to be extended as in equations (7) 
or (8).  The (given) signal, js , is defined as if it were located at 0x =  (or symmetric with respect 
to 0x = ), with 2, , 2j N N= − …  (although the first point is not used).  Finally, it is noted that 
the filter output is a scalar quantity, which can be written in vector-matrix notation as 
 

 ( )T , 1
2 2

r
r

N Ny r−= − ≤ ≤ −h z" , (31) 

 

where 11φ
λ

−
− −=h s , and where 

 

 ( )TT
2 2 1 2 1, , ,N N Ns s s− − − +=s …  (32) 

 
and 
 

 ( ) ( )T
2 2 1 2 1, , ,r

N r N r N rz z z− + − + − + +=z" " " "… . (33) 
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The maximum output of the filter indicates a candidate location of the signal; and we denote the 
maximum as 
 
 ( )max rr

y y= . (34) 

 
 
IV Multiple Observations 
The matched filter developed in the previous section is easily extended to multiple observations 
per point along the track.  Instead of scalar functions, ( )z x , ( )s x , we now have vector 

functions, ( ) ( ) ( )( )T
1 , 2 ,x z x z x=z … , ( ) ( ) ( )( )T

1 , 2 ,x s x s x=s … , containing the particular 
gradients (or combinations thereof) at each point.  Note that the observation points are still along 
a single, straight track.  The matched filter function is given as in equation (28) by 
 
 ( ) 11 λ φ−

− −=h s , (35) 
 
where the signal-to-noise ratio is still given by equation (26), but now 
 

 ( )T

2 2 2 1 2 11 , 2 , , 1 , 2 ,N N N Ns s s s− − + − +=s … … , (36) 
 
and 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2 2 1 2 2 1

2 2 2 2 2 2 1 2 2 1

2 1 2 2 1 2 2 1 2 1 2 1 2 1

cov 1 , 1 cov 1 , 2 cov 1 , 1 cov 1 , 2

cov 2 , 1 cov 2 , 2 cov 2 , 1 cov 2 , 2

cov 1 , 1 cov 1 , 2 cov 1 , 1 cov 1 , 2

cov 2

N N N N N N N N

N N N N N N N N

N N N N N N N N

N

n n n n n n n n

n n n n n n n n

n n n n n n n n

n

φ

− + − +

− + − +

−

− + − + − + − + − + − +

−

=

# #

# # #

$ $ % $ $ %
$ % $

# #

( ) ( ) ( ) ( )2 1 2 2 1 2 2 1 2 1 2 1 2 1, 1 cov 2 , 2 cov 2 , 1 cov 2 , 2N N N N N N Nn n n n n n n+ − + − + − + − + − +

 
 
 
 
 
 
 
 
 
 
 
 
 

# # #

$ $ % $ $ %

 

  (37) 
 
The MF output, given by equation (31), again, is a scalar, and the observation vector (equation 
(33)) in this case is 
 

 ( ) ( )T
2 2 2 1 2 1 2 1 2 11 , 2 , , 1 , 2 , , 1 , 2 ,r

N r N r N r N r N r N rz z z z z z− + + − + − + − + + − + +=z" " " " " " "… … … . (38) 
 
 In case observations are linear combinations of gradients, for example, 
 

 ( ) 22
22 11

11

1 1
Γ

∆Γ Γ Γ
Γ
 

= − = −  
 

, (39) 
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then it is only necessary to ensure that the correct covariance element is computed for this 
combination, and between this combination and possibly other gradients.  For the example 
above, with a second observation of 122Γ , we have 
 

 
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

22 22 22 11

11 22 11 11

22 22 11 22 22 11 11 11

cov , cov , 1
cov , 1 1

cov , cov , 1

cov , cov , cov , cov ,

Γ Γ Γ Γ
∆Γ ∆Γ

Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ Γ Γ

  
= −   −  
= − − +

 (40) 

 
 ( ) ( ) ( )12 22 12 11 12cov , 2 cov , 2 cov ,2∆Γ Γ Γ Γ Γ Γ= − . (41) 
 
Then, the covariance matrix, equation (37), becomes 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 1 2

2 2 1

2 1 2 2 1 2 1 2 1

12 12 12 2 12 12 12 2 1

2 12 2 2 2 12 2 2 1

12 12 12 2 12 12 12

cov 2 ,2 cov 2 , cov 2 ,2 cov 2 ,

cov ,2 cov , cov ,2 cov ,

cov 2 , 2 cov 2 , cov 2 ,2 cov 2

N N N N N N

N N

N N N N N

N N

N N N N N N

N

Γ Γ Γ ∆Γ Γ Γ Γ ∆Γ

∆Γ Γ ∆Γ ∆Γ ∆Γ Γ ∆Γ ∆Γ

φ

Γ Γ Γ ∆Γ Γ Γ Γ

− +

− +

− + − + − + − +

− +

− +

− =

#

#

$ $ % $ $

# ( )
( ) ( ) ( ) ( )

2 1

2 2 1

2 1

2 1 12 2 1 2 2 1 12 2 1 2 1

,

cov ,2 cov , cov ,2 cov ,

N

N N

N

N N N N N N

∆Γ

∆Γ Γ ∆Γ ∆Γ ∆Γ Γ ∆Γ ∆Γ

− +

− +

− +

− + − + − + − + − +

 
 
 
 
 
 
 
 
 
 
 #

 (42) 

 
 
V Multiple Tracks 
In Section III, we derived the formula of the matched filter for observations along a single track.  
This can be generalized to multiple parallel tracks (or a two-dimensional grid of observations) by 
realizing that the filter is then a two-dimensional convolution of two-dimensional observations 
and a two-dimensional filter function:  To provide a slightly different indexing scheme, let us 
assume that the number of tracks and the number of observation points per track are both odd 
integers (the formulations for even integers would be very similar, as illustrated for the single-
track case).  From equations (28) and (30), we have for one track (and odd N) 
 

 
( )

( )1 2

1 2

1 1,
2 2

N

r j r j
j N

N Ny h z r
−

−
=− −

− −= − ≤ ≤∑ " . (43) 

 
Extending this to a 2-D convolution then yields 
 

 
( )

( )

( )

( )1 2

1 2 1 2 1 1 2 2

1 1 2 2

1 2 1 2
1 1 2 2

, , , 1 2
1 2 1 2

1 1 1 1, ,
2 2 2 2

N N

r r j j r j r j
j N j N

N N N Ny h z r r
− −

− −
=− − =− −

− − − −= − ≤ ≤ − ≤ ≤∑ ∑ " . (44) 

 
Let the first subscript denote the along-track coordinate and the second subscript the cross-track 
coordinate.  The filter function is now (analogous to equation (28)) 
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( )
( )

( )

( )

( )1 2

1 2 1 2

1 1 2 2

1 2 1 2
1 1 1 2 2

, 1 1 2 2 , 1 2
1 2 1 2

1 1 1 11 , , , , ,
2 2 2 2

N N

j j k k
k N k N

N N N Nh j k j k s j jφ
λ

− −
−
− − −

=− − =− −

− − − −= − ≤ ≤ − ≤ ≤∑ ∑
  (45) 
 
where ( )1

1 1 2 2, , ,j k j kφ−
−  is the appropriate element of the inverse of the covariance matrix: 

 
 ( )

1 2 1 2, ,cov ,j j k kn nφ− − − − −
 =   . (46) 

 
It is noted that for each ( )1 2,r r  the double sum in equation (44) is a scalar, just like in the single-
track case; that is, the filter output is still a scalar function. 
 In order to achieve a more compact notation using vectors, we may concatenate the tracks 
and duly account for the covariances of the background noises between points of different tracks.  
We write 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2

1 1 2 2 1 1 21 2 1

2 1 1 2

1 2 2

2

2

1 2 , 1 2 1 2 1 , 1 2 1

1 2 , 1 2 1 2 1 , 1 2 1 2 , 1 2

2

T

2

,

, 1,

, ,

,

,, ,

,
N r N r N r N r N r N r

N r N r N r N r r

r

N

r

N r

z

z

z

z z

z− + − + −

− + − − + −

− + − +

− + − −

− −

+ − − + − −
−

− +

+

+ 
 =
 
 

z
"

…

" …
"

"

" " "…
, (47) 

 
where each color corresponds to a track.  Also, 
 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

1 2 2 1

1

1

2

21 2, 1 2 1 2 1, 1 2 1 2,
T

1 2, 1 2 1 2 1, 1 2 1 2, 1

2T

2

1 , ,

, , ,

, , ,N N N N N

N N N N N

N

N

s s s

s s s−

− − − − −

− − − − − − − − − −

− − −
−

 
 =
 
 

s
…

…

…
; (48) 

 
and 
 

 ( )
2 2 2 2

1 2 1 2

2 2 2 2

1 2 1 2

1 1 1 1, ,
2 2 2 2

, ,

1 1 1 1, ,
2 2 2 2

cov ,

N N N N

j j k k

N N N N

N N N N

C C

n n
C C

φ

− − − −−

− − − − −

− − − −− − −
×

 
 
  = =   
  
 

#

$ % $
#

, (49) 

 
where the dimensions of the matrix are indicated in the subscript, and where 
 

 
2 2

1 1

1 1 2 2 1 1 2 2

1 1
,

2 2
1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2 2

N N

N N

N N N N N N N N

C
N N N N N N N N

− −

×

 − − − − − − − −    − − + −    
    

 =
 

− − − − − − − −    − − − − + −        

#

$ % $

#

 (50) 

 
denotes the sub-matrix of covariances among noises on the ( )2 1 2k N= − −  track, 
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2 2

1 1

1 1 2 2 1 1 2 2

1 1
,

2 2
1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2 2

N N

N N

N N N N N N N N

C
N N N N N N N N

− −
−

×

 − − − − − − − −    − − − + − −    
    

 =
 

− − − − − − − −    − − − − − + − −        

#

$ % $

#

 (51) 

 
denotes the sub-matrix of covariances between the ( )2 1 2k N= −  track and the ( )2 1 2k N= − −  
track, 
 

 
2 2

1 1

1 1 2 2 1 1 2 2

1 1
,

2 2
1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2 2

N N

N N

N N N N N N N N

C
N N N N N N N N

− −
−

×

 − − − − − − − −    − + + +    
    

 =
 

− − − − − − − −    − − + − + +        

#

$ % $

#

 (52) 

 
denotes the sub-matrix of covariances between the ( )2 1 2k N= − −  track and the ( )2 1 2k N= −  
track, and 
 

 
2 2

1 1

1 1 2 2 1 1 2 2

1 1
,

2 2
1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
, ,

2 2 2 2 2 2 2 2

N N

N N

N N N N N N N N

C
N N N N N N N N

− −
− −

×

 − − − − − − − −    − − + + − +    
    

 =
 

− − − − − − − −    − − − + − + − +        

#

$ % $

#

 (53) 

 
denotes the sub-matrix of covariances among noises on the ( )2 1 2k N= −  track.  In each matrix, 

the element ( ) ( )( )1 2 1 2,j j k k− − − − − −  denotes the differences in coordinates that are used to 
evaluate the covariance function (always the first coordinate minus the second coordinate).  The 
element of φ−  is located by the subscripts ( )1 2 1 1 2 1,N j j N k k+ + , allowing subscripts to range over 
the intervals as in equations (44) and (45). 
 With these definitions, we can write as before (see equations (26) and (31) with (28)): 
 
 2 T 1λ φ−

− − −= s s , (54) 
 
and 
 

 ( )1 2

1 2

,T 1 1 1 2 2
, 1 2

1 1 1 11 , ,
2 2 2 2

r r
r r

N N N Ny r rφ
λ

−
− − −

− − − −= − ≤ ≤ − ≤ ≤s z" . (55) 

 
For multiple observations at each point, it is necessary only to order these appropriately in the 
observation and signal vectors, and to substitute the appropriate covariance matrices. 
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 It is noted that the absolute maximum of the filter output obviously refers to a single point in 
the observation grid and this would be suitable to identify a local (monopole-like) signal.  
However, in principle, the 2-D matched filter should be able to identify any 2-D signal at the 
location of the maximum output value on the observation grid. 
 By the symmetry in the indices with respect to the origin (since the numbers of the 
observation points and of the tracks are odd), no additional signal values need to be defined; 
however, the observations need to be extended for the following indices: 
 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

1 1 2

1 1 2

1 21 2

1 2 2

1 2 2

, 1 1 1 2 2 2

, 1 1 1 2 2 2

, 1 1 1 2 2 2,

, 1 1 1 2 2 2

, 1 1 1 2 2 2

, 1 2, 1 2 1 2

, 1 2 , 1 2 1 2

, 1 2 1 2, 1 2 1 2

, , 1 2

, , 1 2

j N j

j N j

j jj j

j j N

j j N

z N j N N j N

z N j N N j N

z N j N N j Nz
z N j N N j N

z N j N N j N

+

−

+

−

 − ≤ < − − − − ≤ ≤ −


− < ≤ − − ≤ ≤ −
 − − ≤ ≤ − − − ≤ ≤ −= 
 − ≤ < − ≤ < − −
 − ≤ < − < ≤

"
"

"

 (56) 

 
 
VI Statistical Performance 
Once the maximum filter output has been determined from the given data, we may wish to assign 
a probability of false alarm or a probability of a miss.  We propose two hypothesis setups in 
order to assign these probabilities.  Under the first setup, Setup A, we have the following null 
hypothesis and its alternative: 
 
Setup A 
 ( )

0 : there is no (detectable) signal in the observationsAH . (57) 

 ( )
1 : there is a signal in the observationsAH . (58) 

 
We assume that these hypotheses represent two mutually exclusive and exhaustive events, where 

( )
0

AH  implies that either the signal does not exist or it is too deeply buried in the noise to be 
detectable – for our purposes these two scenarios are equivalent.  The other setup, Setup B, 
defines the null hypothesis as supposing that the signal exists in the observations. 
 
Setup B: 
 ( )

0 : there is a signal in the observationsBH . (59) 

 ( )
1 : there is no (detectable) signal in the observationsBH . (60) 

 
 We employ the Neyman-Pearson tests, which produce the probability of a Type II error given 
the probability of a Type I error.  An error of Type I occurs when the data wrongly lead to a 
rejection of the null hypothesis; and, a Type II error occurs when the data wrongly accept the 
null hypothesis.  Therefore, the Setup A leads to the determination of the probability of a miss, 
and the Setup B leads to the probability of a false alarm, in each case for a given acceptable level 
of Type I error. 
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 It can be shown (Appendix C) that the maximum filter output, y  (equation (34)), which 
indicates a candidate location of the signal, is also a test statistic for the hypotheses of Setups A 
and B.  Therefore, in order to compute the required probabilities, we require the probability 
density function (pdf) of y .  Toward this end, we first determine the pdf of the MF output, in 
general.  This can be computed if the pdf of the noise, n, is known; in fact, it is assumed to be 
Gaussian with zero mean and covariance function, φ . 
 We consider only the case of a single track (and later comment on the situation with multiple 
tracks).  The pdf of the MF output, being a linear combination of the observations (and hence the 
noise), is also Gaussian.  The mean (or expectation) is given by (assuming even N, but it makes 
no essential difference if N is odd) 
 

 ( ) ( )
2 1 2 1

T 1

,
2 2

1 , 1
2 2

N N

r k r j mj k
j N k N

N Ny s s rφ
λ

− −
−

− − − −
=− =−

= − ≤ ≤ −∑ ∑E , (61) 

 
where, again, s  is the assumed signal and s is the actual signal (which may differ from the 
assumed signal due to errors in various parameters, such as dimensions, depth (including infinite 
depth), and orientation of the anomaly).  The expected value of the maximum filter output thus 
depends on the hypothesis.  If there is no signal ( 0s = ), then the expectation is zero under either 

( )
0

AH  or ( )
1

BH .  If the assumed signal exists, s s=  (either ( )
0

BH  or ( )
1

AH  is true), then the 
expectation of the maximum filter output is the square root of the signal-to-noise ratio, λ , which 
is obtained by substituting observations (3) into filter (30), setting r m= , and comparing to 
equation (26).  We have: 
 

 ( )
( ) ( )

( ) ( )
0 1

0 1

0,  is true, or  is true

,  is true, or  is true

A B

B A

H H
y

H Hλ

= 


E  (62) 

 
The variance of the filter output for all r (including its maximum) is unity, irrespective of a 
signal in the observations.  This follows almost immediately from equation (31): 
 
 ( )var 1,ry r= ∀ ; (63) 
 
see also the derivations leading to equation (D.9) in Appendix D. 
 Now, while the pdf of the MF output, ry , is Gaussian, that of the maximum output, y , is not 
necessarily Gaussian.  If the signal in the observations is strong, the maximum filter output does 
not vary in location with different realization of the observations, and we may expect that y  is 
Gaussian with unit variance and mean equal to λ .  But, if the signal in the observations is 
virtually non-existent, the maximum output is located randomly and its pdf more closely assumes 
the density corresponding to an order statistic, that is, the density of a variable that has a specific 
hierarchical place among a sample of given size. 
 From the study of order statistics (e.g., David, 1981), the maximum, y , has a well defined 
probability density function, yf , if the filter outputs, ry , are identically and independently 
distributed for all r: 
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 ( ) ( )( ) ( )1N
y y yf y N F y f y

−
= , (64) 

 
where N is the number of points (samples), yf  is the probability density function of ry , and yF  
is its cumulative distribution function.  From equations (61) and (63), the MF outputs, ry , in the 
absence of a signal are identically distributed (zero-mean, unit-variance Gaussian).  If the 
background noise is uncorrelated and the signal is like an impulse function, then the MF output 
is easily seen to be also uncorrelated (Appendix D).  However, in the more general case of either 
correlated noise and/or a more extended signal, the output is only approximately uncorrelated, 
depending on the amount of correlation of the noise and extension of the signal.  Nevertheless, 
assuming that this approximation is adequate, we model the distribution of y  under hypothesis 

( )
0

AH  (no signal) according to the density given by equation (64). 

 Thus, we assume that under hypothesis ( )
1

AH  the probability density of y  is Gaussian: 
 

 ( )
( )( ) ( )2

1

1
2

1|

1
2

A

yA
y H

f y H e
λ

π
− −

= ; (65) 

 
since its mean is λ  (equation (62)), and the variance is unity (equation (63)).  And, under 
hypothesis ( )

0
AH , we assume that y  is distributed according to the density given by equation (64) 

with 
 

 ( )
( )( )

2

0

1
2

0|

1
2

A

yA
y H

f y H e
π

−
= , (66) 

 
and 
 

 ( )
( )( )

0
0|

1 1 erf
2 2 2

A
A

y H

yF y H  = +  
 

. (67) 

 
where erf is the error function.  That is, if there is no signal in the observations ( 0s = ), the mean 
of the filter output is zero and the variance is still unity.  We write 
 

 ( )
( )( )

2

0

1 1
2

0|

1 1 erf
2 22 2

A

N
yA

y H

N yf y H e
π

−
−  = +  

  
. (68) 

 
Note that the mean and variance of the maximum filter output are not those of the general filter 
output, ry .  Under Setup B, these probability densities are reversed in accordance with the 
reversal of the hypotheses: 
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 ( )
( )( ) ( )2

0

1
2

0|

1
2

B

yB
y H

f y H e
λ

π
− −

= , (69) 

 

 ( )
( )( )

2

1

1 1
2

1|

1 1 erf
2 22 2

B

N
yB

y H

N yf y H e
π

−
−  = +  

  
. (70) 

 
Figure 1 exhibits the non-symmetric character of the density for the maximum output when no 
signal is present in the observations, compared to the usual symmetry of the Gaussian density for 
the case that the signal is detectable.  This asymmetry influences the implementation as well as 
the performance of the statistical tests. 
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Figure 1: Probability densities for the maximum matched filter 
output under hypotheses of Setup A 

 
 
 The Neyman-Pearson hypothesis test is performed by first selecting a probability of Type I 
error, denoted α , that is acceptable.  This is also the significance level of the test and it 
establishes a threshold, 0ψ , for the test statistic, y .  For Setups A and B, we have 
 

 ( )
( )

( )( )
( ) ( )

2

0

0 0

1 1
2

0|

1 1 erf
2 22 2

A

A A

N
yA A

y H

N yf y H dy e dy
ψ ψ

α
π

∞ ∞ −
−  = = +  

  ∫ ∫ , (71) 

 

 ( )
( )

( )( )
( )

( )
( )( )

( )0

0 0

0
0 0| |

1 1 erf
2 2 2

B

B B

B
B B B

y H y H
f y H dy F

ψ
ψ λα ψ

−∞

 −= = = +   
 ∫ , (72) 

 
The threshold, ( )

0
Aψ , in Setup A must be determined numerically using equation (71) for the 

given ( )Aα ; for Setup B, it is 
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 ( ) ( )( )1

0 2 erf 2 1B Bψ λ α−= + − . (73) 

 
 If y  is greater than the threshold, ( )

0
Aψ , it falls in the critical region of the probability 

density function (one-tailed test) where it is considered to be statistically inconsistent with the 
null hypothesis; hence, we reject ( )

0
AH  (that there is no signal in the observations) at the ( )Aα  

significance level.  If the output is less than the threshold, then we accept ( )
0

AH .  The inequalities 

are reversed for Setup B; ( )
0

BH  is accepted if y  is greater than the threshold, ( )
0

Bψ . 
 The power of the test is defined as 1p β= − , where β  is the probability of making a Type II 
error (wrongly accepting the null hypothesis).  For the two setups we have 
 

 ( )
( )

( )( )
( )

( )0

1

0
1|

1 1 erf
2 2 2

A

A

A
A A

y H
f y H dy

ψ
ψ λβ

−∞

 −= = +   
 ∫ ; (74) 

 

 ( )
( )

( )( )
( ) ( )

2

1

0 0

1 1
2

1|

1 1 erf
2 22 2

B

B B

N
yB B

y H

N yf y H dy e dy
ψ ψ

β
π

∞ ∞ −
−  = = +  

  ∫ ∫ . (75) 

 
The Type II error probability may be identified as the probability of a miss (false negative), 

( )APOM β= , under Setup A, and as the probability of a false alarm (false positive), 
( )BPOF β= , under Setup B. 

 
 
VII Numerical Examples of the MF 
The matched filter as developed in the previous sections was tested using a simulated signal 
buried in background noise.  As noted in Section I, the signal is due to an elongated right-
rectangular prism orthogonal to the data track(s) and with sides parallel to the coordinate planes.  
Appendix A provides the appropriate formulas for the gravitational gradients.  The “noise” 
consists of both a nominal gravitational field and instrument noise with given statistics.  The 
gravitational field was generated from the power spectral density model of a typical gravity 
anomaly field extended to very high spatial frequency (1 cy/m) according to a power law, in 
keeping with the theory that the high-frequency gravitational field is generated primarily by the 
visible topography, which may be described as a fractal.  In essence, the field is generated by a 
2-D Fourier spectrum whose components are Gaussian random numbers that are scaled at each 
frequency by the square root of the psd at that frequency (Appendix E).  The details of this type 
of psd modeling may be found in (Jekeli, 2003, 2010). 
 The results of two tests are shown in this section.  The first test assumes observations of the 
vertical-vertical gradient, 33Γ , along the 1x -axis at a constant interval of 1 1 mx∆ = .  The second 
test is based on observations of 122Γ  and 22 11∆Γ Γ Γ= −  at these points.  In both cases, the 
number of observation points is 100N = ; and each observation includes instrument noise 
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(generated using a Gaussian random number generator) with standard deviation, 3 Eσ =  
( 9 21 E 10 s− −= ).  The anomaly that generates the corresponding signals is a prism with density 
contrast, 32670 kg/mρ = − ; along-track width, 1 ma = , cross-track length, 100 mb = ; and 
height, 2 mc = , where the depth to the top of the prism is 2 md = .  The geometric center of the 
anomaly is located at 1 20 mx = − , 2 0 mx = , 3 3 mx = − .  Figures 2-4 show the profiles of the 
observations, jz , and the signals due to the anomaly in each case.  Note that in this example the 
signal gradients, 12Γ , 22Γ , are vanishing small (not exactly zero due to the finite length of the 
anomaly).  Therefore, because of Laplace’s constraint, we have for the signal, 33Γ ∆Γ≈ . 
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Figure 2: Observed 33Γ  gradient (including a background gravitational 
field, instrument noise, and a signal), and the signal itself. 
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Figure 3: Observed 122Γ  gradient (including a background 
gravitational field, instrument noise, and a signal), and the signal itself. 
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Figure 4: Observed 22 11∆Γ Γ Γ= −  gradient (including a background 
gravitational field, instrument noise, and a signal), and the signal itself. 

 
 
 Figures 5 and 6 show the matched filter output.  The covariance function, gφ , used in the 
algorithm corresponds exactly to the psd model that was used to generate the background 
gravitational gradients.  A definite maximum in the output occurs at the true location of the 
anomaly in each case.  The statistical tests offer a slightly less definite answer, as seen below. 
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Figure 5: Output of matched filter applied to 33Γ  observations. 
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Figure 6: Output of matched filter applied to observations of 122Γ  and 22 11∆Γ Γ Γ= − . 

 
 
 Table 1 summarizes the numerical results of the matched filter and the corresponding 
probabilities.  All tests are performed with a significance level of ( ) ( ) 0.05A Bα α= = .  In the case 
of 33Γ  observations, the null hypothesis in Setup A is not rejected, since ( )

0
Ay ψ< , and we accept 

that there is no (detectable) signal.  But, the probability of a miss is not close to zero (0.37) (i.e., 
there is a significant chance that we missed the signal, having accepted the null hypothesis).  For 
the other set of observations, we reject the null hypothesis under Setup A since ( )

0
Ay ψ>  and the 

probability of a miss is only 0.05.  Under Setup B, the null hypothesis (that there is a detectable 
signal) is accepted in both cases; however, the probability of a false alarm is large in the first 
case (observing 33Γ ) and only 0.05 in the other case. 
 We see that under Setup A, the statistical analysis apparently is more robust than under Setup 
B.  Indeed, in the case of 33Γ  observations, the power of the test under Setup A is 

1 0.73p β= − =  and under Setup B it is only 1 0.09p β= − = .  On the other hand, it is noted that 
in this particular case the test under Setup B gives the correct result, whereas with Setup A it 
does not.  One must interpret the probabilities as just that – frequencies of occurrence of events 
realized from many experiments.  When observing 122Γ  and 22 11Γ Γ− , the power of the test is 

0.95p =  under both setups, ostensibly because the signal-to-noise ratio is higher in this case and 
both tests readily validate our selection with a high probability value. 
 
 
Table 1: Probabilities of Type II errors for MF example. 

Observations 2 SNRλ =  y  ( )( )( )arg max
x

y x  ( )
0

Aψ  ( )
0

Bψ  ( )Aβ  ( )Bβ  

33Γ  13.158 3.195 20 mx = −  3.283 1.983 0.37 0.91 

122Γ , 22 11Γ Γ−  18.020 4.910 20 mx = −  3.283 3.265 0.05 0.05 
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 The next numerical example illustrates the results of the 2-D matched filter.  The same 
background gradient field was used, but now there are three ( 2 3N = ) parallel tracks of 1 99N =  
observation points each.  Also, the same two gradients, 122Γ  and 22 11∆Γ Γ Γ= − , as in Section 
VI were observed (i.e., simulated) at each point.  The along-track spacing is the same as before, 

1 1 mx∆ = , and the tracks are spaced at 2 3 mx∆ = .  Also, the instrument noise is white with 
standard deviation, 3 Eσ = .  The anomaly is as before, 1 m 2 m×  in cross-section, 100 m long, 
perpendicular to the tracks, and at a depth (to the top) of 2 md = .  The geometric center of the 
anomaly is again located at 1 20 mx = − , 2 0 mx = , 3 3 mx = − .  Figure 7 shows the profiles of 
the observations, 

1 2,j jz . 
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Figure 7: Profiles of 122Γ  (top) and 22 11∆Γ Γ Γ= −  (bottom) observations (including 
background gravitational field, instrument noise and anomaly signal). 
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 The matched filter output is shown in Figure 8, where the outputs for the three tracks are 
offset intentionally, otherwise they would essentially overlap.  The signal-to-noise ratio in this 
case is 2 36.58λ =  and the maximum filter outputs per track are 
 
 ( ) ( ) ( )

1 1 1
1 1 1

, 1 ,0 ,1max 6.87, max 6.92, max 6.64j j jj j j
y y y− = = = , (76) 

 
precisely at the location of the anomaly.  We see that the filter output is highly correlated in the 
cross-track direction, which would occur even in the absence of the anomaly embedded in the 
noise (see the next section).  Therefore, since the pdf (equation (68)) of the maximum output 
with no signal requires all outputs to be independently distributed, the determination of 
probabilities of a miss or a false alarm cannot be computed as it was in the case of a single track. 
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Figure 8: Output of the 2-D matched filter applied to observations of 122Γ  and 22 11∆Γ Γ Γ= −  
on three parallel tracks.  The outputs for 2 0 mx =  and 2 3 mx =  are offset intentionally for 
clarity. 
 
 
VIII Correlation of the MF Output 
In order to understand the correlative nature of the filter output for multiple tracks in the 
numerical example of the previous section, we consider the case when the noise is uncorrelated 
( Iφ= ) and there is no signal in the observations ( z n= ).  For multiple tracks, the output 
becomes (equations (44) and (45)) 
 

 
( )

( )

( )

( )1 2

1 2 1 2 1 1 2 2

1 1 2 2

1 2 1 2

, , ,
1 2 1 2

1
N N

r r j j r j r j
j N j N

y s n
λ

− −

− − − −
=− − =− −

= ∑ ∑ " . (77) 
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Let us further simplify this case by assuming that the putative signal is an along-track impulse: 
 

 
1 2

1
,

1

1, 0
0, 0j j

j
s

j
=

=  ≠
 (78) 

 
for all 2j .  That is, the signal is constant in the cross-track direction.  The signal-to-noise ratio is 
then 2 T 1

2Nλ φ−
− − −= =s s ; and the filter output becomes 

 

 
( )

( )2

1 2 1 2 2

2 2

1 2

, ,
2 1 2

1
N

r r r r j
j N
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N
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−
=− −
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The difference in the output between adjacent tracks is 
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From equation (56), 

1 2 1 2, , 1 0r r r ry y −− = , on account of the periodic extension assumed for the 
background noise.  That is, in this simple case, the filter output is identical for all tracks.  Figure 
9 shows an example where the noise alternatively is extended by zeros (analogous to equation 
(7)).  There is still significant correlation between the tracks, because only one of the summands 
in equation (79) is different from one track to its adjacent track.  This is due to the linear feature 
of the putative signal that is perpendicular to all tracks. 
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Figure 9: Filter output along three parallel tracks (three colors) for the case of unit-variance 
white noise, a delta function for the putative signal, no signal in the observations, and the 
extension of observations with zeros. 
 
 
 Although we used a very simple example here to illustrate the cross-track correlation of the 
filter output, the result easily is seen to extend to the more general case.  We may conclude that 
the assumed signal in the design of the filter function is what causes the correlation of the output 
among the tracks.  It means also that the statistical analysis of Section VI is not directly 
applicable for multiple tracks, and further studies are needed to develop it for this case.  One 
option is to conduct the matched filter and corresponding statistical analysis separately for each 
track. 
 
 
IX Arbitrary Orientation of the Signal 
As a further numerical example of the matched filter (MF) for multiple tracks of data, consider 
the case of an arbitrarily oriented anomaly.  As before, the same background gradient field is 
used with three ( 2 3N = ) parallel tracks of 1 99N =  observation points each.  Also, the same two 
gradients, 122Γ  and 22 11∆Γ Γ Γ= − , are observed at each point.  The only change is the assumed 
orientation of the anomaly in the filter function.  The along-track and cross-track spacings are the 
same as before: 1 1 mx∆ = , 2 3 mx∆ = .  Also, the instrument noise is assumed to be white with 
standard deviation, 3 Eσ = .  The anomaly is a right rectangular prism, as before, but at arbitrary 
(presumed known) orientation with respect to the tracks.  The other parameters of the prism, 
(width, height, length, and depth) are also assumed known.  The true location of the anomaly is 
such that its geometric center has coordinates: 1 20 mx = − , 2 0 mx = , 3 3 mx = − .  Its true 
dimensions are 1 m 2 m×  in cross-section and 100 m in length.  The true orientation is 40°  in 
azimuth (zero degrees for the dip and twist angles). 
 Figure 10 shows the plan view and profiles of the signals along the tracks.  Figure 11 shows 
the observations, 

1 2,j jz , which include the background, the signal of the anomaly, and the 
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simulated instrument noise.  The results of the matched filter are shown in Figure 12 for 
differently assumed azimuths of the anomaly with additional information provided in Table 2. 
 We see that only by assuming the correct azimuth, 40α = ° , does the filter yield the correct 
location of the anomaly.  However, only the middle track is able to detect this correct location 
(the maximum output occurs at 1 20 mx = − ).  The two-dimensional filter is a convolution in two 
dimensions, and we must assume that the observations are extended beyond the observation grid 
in some way.  We chose a periodic extension, which for the non-perpendicularly oriented 
anomaly yields a significant distortion in the signal in the cross-track direction.  The situation 
does not improve if the observations are extended by zeros.  This is believed to be the reason that 
the filter is unable to detect the rather strong signal on the outer tracks (recall that when the 
anomaly is perpendicular to the tracks, the output on all tracks easily identifies the location, if the 
signal is strong, as in this case; see Figure 8). 
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Figure 10: Plan view of 122Γ  (top) and of 22 11∆Γ Γ Γ= −  (bottom) due to the anomaly signal 
and corresponding profiles along three parallel tracks separated by 2 3 mx∆ = . 
 
 We conclude that the matched filter in two dimensions is not particularly useful for this 
application.  Instead, given multiple tracks of data crossing a linear anomaly, each track of data 
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should be processed separately by the one-dimensional matched filter.  This also has the 
advantage that the output is amenable to a probabilistic interpretation, where the probability of a 
miss or a false alarm can be calculated on the basis of known probability distributions. 
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Figure 11: Profiles of 122Γ  (left) and 22 11∆Γ Γ Γ= −  (right) observations (including background 
gravitational field, instrument noise and anomaly signal). 
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Figure 12: MF outputs along three parallel tracks (three colored lines), assuming a particular 
azimuthal orientation of the anomaly: 20°  (left), 40°  (middle) and 60°  (right). 
 
 
Table 2:  Results of the 2-D matched filter for different assumed azimuth of the anomaly. 

location of max output, 1,mx , per track assumed 
azimuth of 
anomaly 

signal-to-noise, 
2λ  

2 3 mx = −  2 0 mx =  2 3 mx =  

20α = °  36.9 48 m -18 m 30 m 
40α = °  30.9 42 m -20 m 16 m 
60α = °  28.0 37 m 43 m 30 m 

 
 
 Figure 13 shows the MF output if each track is treated individually.  Table 3 shows 
additional information on the matched filter results.  For each track, the correct location of the 
anomaly is identified consistently if the correct azimuth is chosen in the filter (note that the 
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anomaly crosses the 2 3 mx = −  track at (approximately) 1 23 mx = −  and the 2 3 mx =  track at 

1 17 mx = − ).  In two cases the correct location is also identified if the incorrect azimuth 
( 20α = °) is built into the filter.  Considering the results for all three tracks, we may conjecture 
that the anomaly, if correctly detected, is oriented at an azimuth of 40α = ° .  An analysis of the 
calculated probabilities follows. 
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Figure 13: MF outputs along three parallel tracks (three colored lines), assuming a particular 
azimuthal orientation of the anomaly: 20°  (left), 40°  (middle) and 60°  (right).  Each track of 
data was filtered individually. 
 
 
Table 3:  Results of the 1-D matched filter for different assumed azimuths of the anomaly. 

location of max output, 1,mx , per track assumed 
azimuth of 
anomaly 

signal-to-noise, 
2λ  

2 3 mx = −  2 0 mx =  2 3 mx =  

20α = °  17.2 -23 m 40 m -17 m 
40α = °  9.7 -23 m -20 m -17 m 
60α = °  3.9 36 m -38 m 32 m 

 
 
 Tables 4 and 5 list the results of hypothesis testing under the two Setups A and B, 
respectively.  All tests are performed with a significance level of ( ) ( ) 0.05A Bα α= = .  Under 
Setup A, the threshold is ( )

0 3.283Aψ = , and the null hypothesis (there is no anomaly) is accepted 
in every case except for the 2 3 mx =  track when the azimuth was correctly modeled.  Thus, we 
get the correct outcome on only one out of three tracks when the orientation is correctly 
modeled.  Does the probability of a miss give a reasonable characterization of these actions? 
 The computed probabilities of a miss are small for the incorrect azimuth model, 20α = ° , 
which is consistent, in principle, with our acceptance of the null hypothesis in these cases.  That 
is, the orientation is incorrect (so our action is correct and we do not miss the correctly oriented 
anomaly); but, in fact, we actually do locate the anomaly in two out of three tracks, so one might 
argue that the POM should be higher. 
 For the other incorrect model, 60α = ° , the probability of a miss is very high, which in this 
case definitely is inconsistent with the result from the hypothesis test (we accept the null 
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hypothesis and it is the correct thing to do – the probability of a miss should be low).  For the 
correctly modeled orientation ( 40α = °), the calculated probability of a miss is about even (we 
do indeed miss the anomaly on two tracks, by accepting the null hypothesis, but find the anomaly 
on the third track by rejecting the null hypothesis).  So, in this case the probability is consistent 
with the outcome. 
 Under Setup B, the null hypothesis (there is an anomaly) is accepted in all but one case.  This 
is certainly the correct action for the orientation model, 40α = °  (that is, we do find the anomaly 
on all three tracks).  However, the calculated probability of a false alarm is very high (1.00) in 
this case, which is not consistent with the fact that we correctly locate the anomaly – it was not a 
false alarm.  When the incorrect orientation model is 60α = ° , we accept the hypothesis that the 
anomaly is detected, but clearly we do not locate it correctly, and the high POF (1.00) is 
consistent with that action.  On the other hand, when the incorrect orientation model is 20α = ° , 
the POF is neither high nor low (0.64), but, in principle, we should consistently reject the null 
hypothesis (that the correctly modeled anomaly is detected) and the POF should be low.  In fact, 
we do locate the anomaly consistently with our acceptance of the null hypothesis, but under false 
pretenses (i.e., the model is incorrect). 
 
Table 4: Accept ( )

0
AH  (no anomaly) if ( )

0
Ay ψ< .  Bolded output rejects ( )

0
AH . 

2 3 mx = −  2 0 mx =  2 3 mx =  assumed 
azimuth of 
anomaly y  ( )

0
Aψ  ( )Aβ  y  ( )

0
Aψ  ( )Aβ  y  ( )

0
Aψ  ( )Aβ  

20α = °  2.70 0.19 2.43 0.19 3.00 0.19 
40α = °  2.16 0.57 2.10 0.57 3.35 0.57 
60α = °  2.48 

3.283 
0.91 2.43 

3.283 
0.91 2.45 

3.283 
0.91 

 
 
Table 5: Accept ( )

0
BH  (anomaly) if ( )

0
By ψ> .  Bolded output rejects ( )

0
BH . 

2 3 mx = −  2 0 mx =  2 3 mx =  assumed 
azimuth of 
anomaly y  ( )

0
Bψ  ( )Bβ  y  ( )

0
Bψ  ( )Bβ  y  ( )

0
Bψ  ( )Bβ  

20α = °  2.70 2.50 0.64 2.43 2.50 0.64 3.00 2.50 0.64 
40α = °  2.16 1.47 1.00 2.10 1.47 1.00 3.35 1.47 1.00 
60α = °  2.48 0.33 1.00 2.43 0.33 1.00 2.45 0.33 1.00 

 
 
 From these simple tests, the probabilities under Setup A appear to be more robust (from the 
viewpoint of being more informative about our actions based on the hypothesis tests) than under 
Setup B when the correct orientation model is used, which is consistent with more extensive tests 
based on Monte Carlo simulations discussed in the next section.  However, for the incorrectly 
modeled orientations, the probabilities under either Setup were not uniformly informative.  That 
is, neither the computed POM nor the computed POF necessarily provided a reasonable 
characterization of our action based on the hypothesis test.  In fact, in some cases (for the 
incorrectly modeled orientation), the computed probability characterized our action as just the 
opposite of what it should have done.  For example, when we correctly accepted that the putative 
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anomaly does not exist, we obtained a large POM (last row of Table 4).  Clearly, the 
computation of probabilities for the output of an incorrectly modeled matched filter requires 
further study and, indeed, one should perhaps not expect these probabilities to be the same as for 
the correctly modeled MF. 
 
 
X Validation of Statistical Performance 
In developing the statistical tests for the MF with correlated noise, a number of assumptions were 
made regarding the probability density of the filter output.  These densities assumed either the 
strong presence or complete absence of a signal, as well as the independence among the MF 
outputs in the latter case.  The following simulations illustrate the performance of the tests under 
these assumptions and for signals ranging from strong to nonexistent. 
 We continue with the example of detecting a simple sub-surface structure from 
measurements of gravity gradients on the surface along a profile that intersects the signal at right 
angles.  In order to study the detectability of a specific mass density anomaly in a statistical 
setting, both the background gravity field and the instrument noise were determined in Monte 
Carlo fashion from simulated random processes.  As before, the gradiometer measurement error 
was assumed to be white and Gaussian with zero mean and a given standard deviation, 3 Eεσ = .  
The background gradient field was also assumed to be a known stationary, Gaussian, stochastic 
process.  Moreover, the component covariance functions were used to generate realizations of 
each process (Appendix E). 
 We considered two sets of gradients, either { }33Γ  or { }13 33,Γ Γ , observed at regularly spaced 
points along the track, with 1 1 mx∆ = .  No additional gradients were tested since for this signal 
the gravity gradients, 12Γ , 22Γ , and 23Γ , are zero; and by Laplace’s field equation, 11 33Γ Γ= − .  
The observations of the vertical gradient, 33Γ , (and analogously for the cross-gradient, 13Γ ) 
were simulated according to 
 
 ( )( ) ( )33 1 33 1 , 1, ,100s n

j jz j m x j x jΓ ∆ Γ ∆ ε= − + + = … , (81) 
 
where 33

sΓ  is the gradient of the anomaly, 30m = , 33
nΓ  is a realization of the background 

gradient, and jε  is a realization of the measurement noise.  As another example, analogous to 
Figures 2 and 5, Figure 14 (top) shows the observations, equation (81), where the top of the 
anomaly is at 2 m depth.  While the signal of the anomaly is barely noticeable by visual 
inspection of this single profile, the maximum filter output (Figure 14, bottom) correctly 
identifies its location.  It is also noted from Figure 14 that the observations come from a 
decidedly correlated process, but the MF output is much less correlated (except near the signal), 
which supports our assumption on the probability density of the output in the absence of a signal. 
 Among 1000 such realizations of the background field (and measurement noise), the matched 
filter correctly detected the signal of the density anomaly most of the time when its depth was 
just 1 m or 2 m.  An indication within 1 m of the correct horizontal location was considered a 
success.  At 3 m depth the maximum filter output still was situated more often at the correct 
location than at any other particular point.  When the signal was deeper, or did not exist, the 
maximum filter output fairly uniformly mis-located it.  The percentages of successfully 
identifying the anomaly based on the hypothesis tests, together with the percentage errors in 
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those choices are summarized in Table 6 (Setup A) and Table 7 (Setup B).  These results depend, 
though not with high sensitivity, on the thresholds computed under each of the two Setups.  The 
Tables include cases of deliberate mismodeling of the filter function with respect to the assumed 
depth of the signal ( ≠s s  in equation (28)). 
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Figure 14: Top: Along-track observations of 33Γ  including the signal from the mass anomaly at 

1 30 mx =  and 2 m depth, the background gradient field (see Figure E.1), and white 
measurement noise ( 3 EIσ = ).  Bottom: matched-filter output, with its maximum indicating the 
location of the anomaly. 
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Table 6: Percentages of declaring existence or non-existence of the signal; with parenthetical 
percentages of corresponding errors in the declaration (Setup A). 
true 
depth 

= 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m 

filter 
depth 

Declare Signal (reject ( )
0

AH ) Declare No Signal (accept ( )
0

AH ) 

 {Γ33} 
1 m 100 (0.0) 47.4 (9.3) 6.1 (93.4) 5.9 (98.3) 0.0 (-) 52.6 (54.0) 93.9 (6.4) 94.1 (4.5) 

2 m 100 (0.0) 64.0 (4.7) 6.1 (85.2) 5.2 (98.1) 0.0 (-) 36.0 (63.9) 93.9 (9.3) 94.8 (5.2) 

3 m 100 (0.0) 43.0 (9.1) 6.0 (78.3) 5.2 (90.4) 0.0 (-) 57.0 (55.8) 94.0 (12.6) 94.8 (5.3) 

4 m 100 (0.0) 15.7 (21.0) 5.0 (74.0) 4.5 (93.3) 0.0 (-) 84.3 (37.2) 95.0 (13.6) 95.5 (7.0) 

 {Γ13, Γ33} 
1 m 100 (0.0) 66.8 (3.8) 6.6 (90.9) 6.2 (96.8) 0.0 (-) 31.2 (66.7) 93.4 (7.4) 93.8 (4.8) 

2 m 100 (0.0) 85.1 (1.1) 6.2 (74.2) 5.0 (92.0) 0.0 (-) 14.9 (68.5) 93.8 (13.2) 95.0 (5.5) 

3 m 100 (0.0) 63.4 (3.2) 7.6 (53.9) 5.0 (84.0) 0.0 (-) 36.6 (65.8) 92.4 (19.3) 95.0 (8.4) 

4 m 99.9 (0.0) 24.0 (7.5) 4.6 (47.8) 3.1 (74.2) 0.1 (0.0) 76.0 (48.7) 95.4 (19.4) 96.9 (9.1) 
 
 
 Under Setup A, the null hypothesis (no signal) is selected more often as the depth of the 
anomaly increases and consequently as the signal is more thoroughly buried in the noise (right 
half of Table 6).  The percentage of the error in this choice also decreases correspondingly.  This 
percent error (in parentheses) is determined from the ratio of errors made in this decision relative 
to all decisions to accept the null hypothesis.  This is not the probability of a miss as defined by 
equation (74) where the sample space comprises all cases of actual detection, i.e., ( )

1
AH  is true 

(see also equation (83) and the corresponding discussion, below).  Conversely, the rate of 
rejecting the null hypothesis decreases with increasing anomaly depth, and the percent error in 
this choice increases (left half of Table 6). 
 With an incorrectly modeled anomaly depth, the correct hypothesis is somewhat less often 
selected when the anomaly is at a depth of 2 m.  Otherwise, the modeled depth (if within a few 
meters of the true depth) appears to have little impact on the results. 
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Table 7: Percentages of declaring existence or non-existence of the signal; with parenthetical 
percentages of corresponding errors in the declaration (Setup B). 
true 
depth 

= 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m 

filter 
depth 

Declare Signal (accept ( )
0

BH ) Declare No Signal (reject ( )
0

BH ) 

 {Γ33} 
1 m 94.5 (0.0) 0.0 (-) 0.0 (-) 0.0 (-) 5.5 (100) 100 (71.4) 100 (6.4) 100 (4.3) 

2 m 100 (0.0) 99.7 (15.9) 92.0 (90.7) 91.3 (95.4) 0.0 (-) 0.3 (66.7) 8.0 (12.5) 8.7 (9.2) 

3 m 100 (0.0) 100 (29.1) 100 (86.9) 100 (94.5) 0.0 (-) 0.0 (-) 0.0 (-) 0.0 (-) 

4 m 100 (0.0) 100 (56.2) 100 (85.8) 100 (93.0) 0.0 (-) 0.0 (-) 0.0 (-) 0.0 (-) 

 {Γ13, Γ33} 
1 m 94.7 (0.0) 0.0 (-) 0.0 (-) 0.0 (-) 5.3 (100) (100) (87.0) 100 (7.5) 100 (4.7) 

2 m 100 (0.0) 96.9 (3.8) 35.2 (81.8) 32.3 (93.8) 0.0 (-) 3.1(38.7) 64.8 (11.7) 67.7 (5.3) 

3 m 100 (0.0) 100 (14.5) 100 (78.7) 100 (91.2) 0.0 (-) 0.0 (-) 0.0 (-) 0.0 (-) 

4 m 100 (0.1) 100 (40.8) 100 (79.1) 100 (90.4) 0.0 (-) 0.0(-) 0.0 (-) 0.0 (-) 
 
 
 For Setup B, the null hypothesis (the signal exists) is almost always chosen, whether the 
signal is truly detected or not, and even if the anomaly depth is modeled incorrectly (left half of 
Table 7).  The only exception occurs when the anomaly depth is mis-modeled at 1 m (or also 2 m 
for the two-gradient observations).  The a posteriori rate of wrongly choosing the null hypothesis 
increases as the signal vanishes in the noise.  Clearly, the results of these simulations (Tables 6 
and 7) show that the correct decision is made more often if the hypothesis and corresponding 
threshold are based on Setup A.  On the other hand, the indiscriminate declaration of the 
existence of the signal under Setup B is compensated, as shown below, by an appropriate 
predicted probability of a false alarm. 
 The performance of the predicted (theoretical) probabilities of a false alarm or a miss 
depends on the validity of the underlying statistics of the matched filter output.  Table 8 shows 
for the gradient, 33Γ , that the empirical mean and standard deviation of the maximum output, y , 
determined from the 1000 simulations, correspond less to the theoretical values implied by the 
Gaussian distribution, as the signal becomes less detectable (depth increases) and the distribution 
of the maximum output changes to that of an order-statistic.  When the observations contain no 
signal ( = 0s ), the theoretical and empirical statistics of the filter output, ry , agree more closely, 
as Table 9 also shows.  The empirical standard deviation in this case was solved as the parameter 
in a least-squares fit of equation (68) to a histogram of y .  The empirical mean of ry  in all cases 
was numerically indistinguishable from its theoretical value of zero. 
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Table 8: Empirical statistics of the filter output and its maximum, determined from 1000 
simulations of the background gravity field ( 33Γ ).  The theoretical mean, λ , is computed 
according to equation (29).  The theoretical standard deviation in all cases is unity. 

=s s  = 0s  depth to top 
of assumed 
signal, s  

emp. mean of y  theor. mean of y  emp. st.dev. of y  emp. st.dev. of y 

1 m 22.968 22.996 1.001 0.995 
2 m 3.696 3.627 0.862 1.005 
3 m 2.528 1.055 0.466 0.993 
4 m 2.383 0.517 0.484 0.936 

 
 
 Errors in the presumed statistics, mean and standard deviation, of the filter output affect the 
determination of the threshold, 0ψ , to which, however, the acceptance or rejection of hypotheses 
under the two Setups is not particularly sensitive.  The potentially greater effect of such errors is 
on the probability density function of the maximum filter output, which, in turn, affects the value 
of the computed probability of a Type-II error ( β ).  We compared the values of β  computed 
from theoretical and empirical statistics of the filter output.  For Setup A, the theoretical 
threshold is determined numerically from equation (71), based on the theoretical statistics for the 
MF output when there is no signal (zero mean and unit variance), and with 100N =  since the 
maximum output is determined from 100 samples.  The probability of a Type I error was chosen 
to be ( ) 0.05Aα = .  The empirical threshold is computed by replacing in equation (71) the 
theoretical unit standard deviation of the filter output with the empirical value shown in Table 8.  
The Type-II error probability, the POM in this case, is computed either by equation (74) using 
theoretical statistics and threshold, or using the empirical values by 
 

 ( )
( )( )0 empemp

emp

1 1 erf
2 2 2

A y

A
y

ψ µ
β

σ

 −
 = +   
 

, (82) 

 
where emp

yµ  and emp
yσ  are the empirical mean and standard deviation of the maximum output 

(Table 8). 
 Table 9 shows that ( )Aβ  in several cases is slightly (though perhaps not significantly) better 
predicted using the empirical MF output statistics.  That is, column 6 of this Table, showing the 
still theoretically formulated POM, compares better than column 4 against the last column of 
Table 9 that shows the empirically determined POM.  The empirical POM is computed on the 
basis of the 1000 simulated background noise fields by emulating equation (74).  This formula 
gives the frequency of instances when the hypothesis test failed (the null hypothesis was wrongly 
accepted) among all instances that the signal is detectable ( ( )

1
AH  is true).  Thus, 

 

 
( )
0# successes when emp. 

# successes

AyPOM ψ<= , (83) 
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where a “success” means the filter correctly identifies the signal.  The essential agreement 
between the empirical and theoretical POM, whether the latter is based on theoretical or 
empirical statistics, is useful since empirical statistics may not be obtained easily in practice. 
 
 
Table 9: POMs determined either from theoretical or empirical thresholds for various depths of 
the signal.  The significance level of the hypothesis test is ( ) 0.05Aα = . 
Observations depth  theor. ψ0 ⇒ theor. POM emp. ψ0 ⇒ theor. POM emp. POM 

1 m 0.00 3.266 0.00 0.0 
2 m 0.37 3.299 0.32 0.27 
3 m 0.99 3.262 0.94 0.90 

{Γ33} 
 

4 m 

3.284 

1.00 3.073 0.92 0.96 
1 m 0.00 3.269 0.00 0.0 
2 m 0.15 3.332 0.15 0.11 
3 m 0.97 3.231 0.92 0.84 
4 m 0.99 3.076 0.94 0.92 

{Γ13, Γ33} 
 

5 m 

3.284 

1.00 2.829 0.90 0.97 
 
 
 Errors in the statistics of the output seem to affect more the POF, ( )Bβ , under Setup B 
(compare columns 4 and 6 in Table 10), although a useful quantitative assessment exists only for 
a single depth.  Using theoretical parameters, ( )Bβ  was computed by equation (75).  Empirical 

values were substituted as before to compute ( )Bβ  in column 6 of Table 10.  The last column 
represents the empirical POF, computed from the 1000 realizations of the simulated background 
field and noise 
 

 
( )
0# failures when emp. 

# failures

ByPOF ψ>= , (84) 

 
where a “failure” means the filter does not correctly identify the signal.  It is more difficult to 
claim from these simulations that the empirical POF agrees with the ( )Bβ  computed from either 
the empirical or theoretical statistics of the output. 
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Table 10: POFs determined either from theoretical or empirical thresholds for various depths of 
the signal.  The significance level of the hypothesis test is ( ) 0.05Bα = . 
Observations depth theor. ψ0 ⇒ theor. POF emp. ψ0 ⇒ theor. POF emp. POF 

1 m 21.351 0.00 21.322 0.00 0.0 
2 m 1.982 0.91 2.278 0.69 0.99 
3 m -0.588 1.00 1.761 0.98 1.00 

{Γ33} 
 

4 m -1.122 1.00 1.588 0.99 1.00 
1 m 9.085 0.00 9.069 0.00 0.0 
2 m 0.475 0.31 0.488 0.54 0.66 
3 m -0.036 1.00 0.231 0.98 0.99 
4 m -0.127 1.00 0.221 0.99 0.96 

{Γ13, Γ33} 
 

5 m -0.186 1.00 0.227 1.00 0.96 
 
 
 The performance of the hypothesis tests is often evaluated using so-called receiver-operating 
characteristic (ROC) curves (these curves have their origin in the application of radar detection 
of signals in background noise, but now they are used anywhere such tests are applied, 
particularly in biomedical decision making; Centor, 1991).  The ROC curves relate the power of 
the test, 1p β= − , to the probability of a Type-I error, α .  For Setup A, the power of the test is 
also the probability of detection (the complement of the probability of a miss), and for Setup B, 
the power is the probability of no detection (the complement of the probability of a false alarm). 
 Figure 15 shows the ROC curves for Setup A and different anomaly depths, as well as 
different observation sets (the corresponding figure for Setup B is similar, but not shown).  The 
power of the test increases as the ROC curve approaches the upper left corner of the plot.  As 
expected, the tests are most powerful when the signal is strongest compared to the background 
noise, and when more than one gradient is observed.  The curves are much more sensitive to 
errors in the statistics of the filter output if the signal-to-noise ratio is small. 
 Figure 16 compares the tests for the two hypothesis setups, showing that for typical (small) 
adopted significance levels (e.g., 0.05α = ), the test under Setup A is more powerful than the test 
under Setup B.  That is, all things being equal, the probability of a miss is smaller than that of a 
false alarm.  This is due to the asymmetry of the ROC curves, which derives from the fact that 
the shape of the probability density of the maximum filter output depends on the assumed 
presence or absence of the signal.  That is, if the signal is strongly present, the density is 
Gaussian; if the signal is absent, the density is distinctly asymmetric (non-Gaussian).  This result 
is borne out by the simulations, as well (e.g., compare the last columns of Tables 9 and 10). 
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Figure 15: ROC curves under Setup A for anomalies at depths 2 m and 3 m, using 
predicted and empirical statistics for the filter output.  Dashed curves are for the 
observations {Γ33}; solid curves are for the observations {Γ13, Γ33}. 
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Figure 16: ROC curves for anomalies at depths 2 m and 3 m, using empirical 
statistics for the filter output, and based on observations {Γ33} and {Γ13, Γ33}.  
Solid curves correspond to Setup A and dashed curves correspond to Setup B. 

 
 
 
XI Summary 
The theory was presented for the detection of a linear subsurface anomaly using the matched 
filter applied to observations of gravity gradients that include correlated background noise and 
the putative signal of the anomaly.  The anomaly is assumed to be a long, right-rectangular prism 
of negative density contrast with a given (much smaller) cross-section and located at a given 
depth and orientation.  Various cases were considered, including single or multiple observations 
per point along a single track or multiple parallel tracks.  Also, the tracks could be either 
orthogonal to the anomaly or at an arbitrary azimuth.  The maximum output of the matched filter, 
which presumably locates the signal, is also a test statistic for the Neyman-Pearson hypothesis 
test of the existence of the signal.  Thus, using the statistics for the filter output one can test 
whether the indicated location is indeed the true location of the anomaly. 
 Numerical examples of simulated gradients demonstrated the algorithms and the assignment 
of probabilities of a miss and a false alarm.  The examples verified the more general conclusion 
derived from extensive Monte Carlo simulations (see below) that the calculation of the 
probability of a miss is more reliable than that of the probability of a false alarm.  It was also 
shown that the filter output is highly correlated in the cross-track direction due to the invariance 
of the assumed signal in that direction, and that the statistical analysis in this case is not 
applicable. 
 Two setups of the Neyman-Pearson hypothesis testing were analyzed.  Under Setup A, the 
null hypothesis posits no anomaly; under Setup B, the null hypothesis assumes that the anomaly 
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exists (at a given depth and orientation).  By simulation analyses, using 1000 realizations of the 
background noise, it was verified that the test under Setup A is generally more powerful than the 
test under Setup B, a conclusion that is predicted by corresponding receiver-operating-
characteristic (ROC) curves.  In general, the decisions to identify the location of the anomaly 
among the 1000 simulated cases were more robust (accurate) based on the threshold associated 
with hypothesis Setup A.  Still, under Setup B, designed to yield the probability of a false alarm 
(POF), the theoretical and calculated POF increased appropriate to the nearly indiscriminate 
acceptance of the signal-existence hypothesis. 
 From the simulations as well as the ROC curves, we find, as expected, that correct 
identification of the signal location improves with added observations and with an increase in the 
signal-to-noise ratio (shallower anomaly or reduced background noise).  We showed that care 
must be exercised when assigning statistics to the output of the matched filter under the 
competing hypotheses of the Neyman-Pearson test.  Absent a signal in the background field, the 
maximum output of the filter has the statistics of an ordered random variable, which are 
significantly different from the statistics of the arbitrary output of the filter.  This causes some 
asymmetry in the hypothesis setups and a difference in the power of the corresponding tests. 
 Finally we observed that multiple parallel tracks are not amenable to the statistical testing 
since the prerequisites for determining the correct statistics of the order statistic are not fulfilled 
(independent distributions for the filter output).  Moreover, the 2-D matched filter formulation 
does not perform well if the anomaly is oriented obliquely with respect to multiple parallel 
tracks.  Therefore, it is recommended that for the present application these methods (matched 
filter and corresponding probability computations) be limited to single tracks of data (but 
multiple data types per observation point are allowed and beneficial). 
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Appendix A – Formulas for the Gravitational Gradient due to Right Rectangular Prism 
 
A.1 Preliminary Considerations 
In accord with Newton’s law of gravitation, the gravitational potential due to a closed volume, v, 
with density, ρ , is given by 
 

 ( ) ( )
1 2 3

'
' ' '

'
v

V G dx dx dx
ρ

=
−∫∫∫
x

x
x x

, (A.1) 

 
where G is Newton’s gravitational constant and x  and 'x  are vectors of (for convenience) 
Cartesian coordinates; e.g., ( )T

1 2 3, ,x x x=x .  We will assume that the density is a constant: 

( ) 0'ρ ρ=x , and that the volume v is a rectangular block with faces parallel to the coordinate-
planes (Figure A.1).  With constant limits for the edges of the prism and units chosen so that 

0 1Gρ = , the formula (A.1) becomes more explicitly: 
 

 ( )
2 2 2

1 1 2 1 3 1

1 2 3

' ' '

1 ' ' '
'

a b c

x a x b x c

V dx dx dx
= = =

=
−∫ ∫ ∫x

x x
, (A.2) 

 
where the sides of the prism have lengths, 2 1a a− , 2 1b b− , and 2 1c c− , respectively.  Because the 
limits are constants, we may treat the integral as indefinite and apply the limits at the end. 
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Figure A.1: Geometry of the right-rectangular prism. 

 
 
 For the derivation of the second-order gradients of the potential, V, we need one essential 
result.  Noting that 
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 ( ) ( ) ( )2 2 2
1 1 2 2 3 3' ' ' 'x x x x x x− = − + − + −x x , (A.3) 

 
we find 
 

 1 1 , 1, 2,3
' ' 'j j

j
x x
∂ ∂= − =
∂ − ∂ −x x x x

. (A.4) 

 
With this we are ready to derive the gravitational gradients: 
 

 
2

, , 1, 2,3jk
j k

V j k
x x

Γ ∂= =
∂ ∂

. (A.5) 

 
Because of the symmetry of the kernel function, 1 '−x x , and the constant integration limits, 
we need to consider only two gradients, a cross-gradient, 12Γ , and an in-line gradient, 11Γ .  
Once formulas have been derived for these gradients, the other cross-gradients and in-line 
gradients can be obtained by cyclically permuting the indices on the coordinates.  Since the 
gradients are not continuous on the mass boundary, we will always assume that '≠x x ; that is, 
the computation point is never on (or inside) the volume surface. 
 
 
A.2 Reduction to Single and Double Integrals 
From equations (A.2) and (A.4), we have: 
 

 
2 2 2

1 12 1 3 1

3 2
1 '' '

1 ' '
'

b c a

x ax b x c

V dx dx
x

== =

∂ = −
∂ −∫ ∫ x x

. (A.6) 

 
Then, again using equation (A.4), the cross-gradient, 12Γ , is 
 

 
2

2 2

1 13 1 2 1

2

3
1 2 '' '

1 '
'

bc a

x ax c x b

V dx
x x

== =

∂ =
∂ ∂ −∫ x x

. (A.7) 

 
The in-line gradient, 11Γ , is 
 

 ( ) 22 2

2 1 3 1 1 1

2
1 1

3 22 3
1 ' ' '

'
' '

'

ab c

x b x c x a

x xV dx dx
x

= = =

−∂ =
∂ −∫ ∫ x x

. (A.8) 

 
Simple analytic expressions are available for integrals (A.7) and (A.8), as seen in the next 
Section. 
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A.3 Anti-Derivatives 
Because the integration limits are constants, these integrals may be considered as indefinite until 
the end.  Furthermore, to simplify the evaluation we may temporarily define dummy variables 
 
 1 1 2 2 3 3', ', 'x x x y x x z x x= − = − = − . (A.9) 
 
Then, the integrals (A.7) and (A.8) are of the following two types: 
 

 
( )3 22 2 2 2 2 2

1 1,
z y z

I dz J dzdy
x y z x y z

= =
+ + + +∫ ∫ ∫ , (A.10) 

 
The analytic evaluation of J with respect to z is given by Gradshteyn and Ryzhik (1980, 2.271-
5): 
 

 
( ) ( )3 2 2 2 2 2 22 2 2

1

z

zdz
x y x y zx y z

=
+ + ++ +∫ . (A.11) 

 
Now, factoring the first quadratic in the denominator of equation (A.11), we find 
 

 2 2

1 1
1 2 2x x

x y x iy x iy
= +

+ − +
. (A.12) 

 
Hence, 
 

 
( ) ( )2 2 2 2 2 2

1 1
2 2

y y

z zJ dy dy
x xx iy x y z x iy x y z

= +
− + + + + +∫ ∫ . (A.13) 

 
Changing variables of integration to u x iy= ± , equation (A.13) becomes 
 

 
( ) ( )2 22 2 2 2

1 1
2 2

y y

z zJ du du
i x i xu x u x z u x u x z

= − +
− − + − − +∫ ∫ . (A.14) 

 
The integrals do not cancel because the limits of integration are different. 
 We now define 
 

 

( )

( )

1 2

0 2

1, ,
2
1, ,

2

I dx
x x x

I dx
x x

α β γ
α β γ

α β γ
α β γ

− =
+ +

=
+ +

∫

∫
 (A.15) 
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From Gradshteyn and Ryzhik (1980, 2.266), we have (leaving out constants) 
 

 ( )

( )2
2

2
1

2

21 ln , 0, 0;

1, , 2 , 0, 0;

1 ln 0, 0.

x x x

x

I x x
x

x
x

α β α α β γ
α β αγ

α

α β γ β γ α β
β

α β αγ
α βα

−

 + + + +− ≠ − ≠


= − + = ≠



≠ − = +

 (A.16) 

 
And, from Gradshteyn and Ryzhik (1980, 2.261), we have (again, leaving out constants) 
 

 ( )

( )( )

( )

2 2

0

2
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α β γ α β γ β
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+ ≠ − =


 (A.17) 

 
Hence, the integral in J becomes 
 

 
( )

( )22 2 2

22 2

1 1 ln
z xu z x u x z

du
z uu x u x z

+ + − − +
= −

− − +∫ . (A.18) 

 
Now substituting y back into these solutions, we find 
 

 
2 2 2 2 2 2 2 2 2 21 1ln ln

2 2
z x ixy z x y z z x ixy z x y z

J
i x x iy i x x iy

+ − + + + + + + + +
= −

− +
. (A.19) 

 
With some rearrangement of terms we also have 
 

 
2 2 2 2 2

2 2 2 2 2

1 1ln ln
2 2

z x z x y z ixyx iyJ
i x x iy i x z x z x y z ixy

+ + + + ++= −
− + + + + −

. (A.20) 

 
Using 
 

 1 1 1tan ln
2 1

iww
i iw

− +=
−

, (A.21) 

 



43 

we obtain 
 

 1 1
2 2

1 1tan tany xyJ
x x x z x zr

− −= −
+ +

, (A.22) 

 
where 2 2 2r x y z= + + .  These inverse tangents can be combined using the addition formula for 
tangents, yielding 
 

 11 tan yzJ
x xr

−= . (A.23) 

 
 Noting that 3 2' 'dzdy dx dx= , we see that by combining equations (A.8), (A.9), (A.10), and 
(A.23), we finally obtain 
 

 ( )( )
( )

2
2

2

1 1
2 1

3 1

2 2 3 31
11

1 1 ' ' '

' '
tan

'

cba

x a x b x c

x x x x
x x r

Γ −

= = =

− −
=

−
, (A.24) 

 
where now 
 

 ( ) ( ) ( )2 2 2
1 1 2 2 3 3' ' 'r x x x x x x= − + − + − . (A.25) 

 
 Applying equation (A.17) to I, defined in equation (A.12), we have 
 

 ( )2 2 2lnI z x y z= + + + . (A.26) 

 
Again, using (9) and noting that 3 'dz dx= − , the cross-gradient, equation (A.7), is seen to be 
 

 ( )
2

2
2

1 1
2 1

3 1

12 3 3 ' ' '

ln '
cba

x a x b x c

x x rΓ
= = =

= − − + , (A.27) 

 
where r is given by equation (A.25). 
 Clearly, by the symmetry already mentioned and the constant integration limits, the 
remaining gradients follow by cyclic permutation of the coordinates.  In summary, we have 
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23 1 1 ' ' '

ln '
cba

x a x b x c

x x rΓ
= = =

= − − + , (A.32) 
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2
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1 1
2 1

3 1

31 2 2 ' ' '

ln '
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= − − + . (A.33) 

 
And, of course, 13 31Γ Γ= , 21 12Γ Γ= , and 32 23Γ Γ= . 



45 

Appendix B – Gradients for an Arbitrarily Oriented Prism 
 
The previous Appendix derived simple formulas for the gravitational gradients due to a 
rectangular prism, provided the edges of the prism are parallel to the coordinate axes.  But 
suppose the prism is rotated arbitrarily with respect to these axes. 
 Let ( )1 2 3, ,x x x=x  be the system of coordinates in which we wish to compute the 
gravitational gradients due to the prism.  We assume for the moment that the prism has its center 
at the coordinate origin.  Let ( )1 2 3, ,u u u=u  be the system obtained by rotating the x -system so 

that the axes are now parallel to the prism.  Let u
xC  be the rotation matrix that describes this 

rotation. 
 We can compute the gravitational gradients, uΓ , at an point in the u -system using equations 
(A.28) through (A.33), replacing ( )1 2 3, ,x x x=x  by ( )1 2 3, ,u u u=u  and assuming that the limits 
of integration refer to the u -system.  Then, the gradients for the corresponding point in the x -
system are determined by the following standard transformation of a tensor from one system ( u -
system) to another ( x -system): 
 
 x x u u

u xC CΓ Γ= . (B.1) 
 
This transformation refers to changes in directions of derivatives at a point. 
 More specifically, we have a right, rectangular prism oriented by three angles with respect to 
the x -system.  A dip angle, ξ , from the horizontal, an azimuth, α , from north, and a rotation, 
η , about the longitudinal axis of the prism, as seen in Figure B.1.  That is, we start with the 
prism with its long axis parallel to the 1x -axis and centered on the ( )2 3,x x -plane.  This is rotated 
by the azimuth angle, α ; then dipped by the angle, ξ ; and finally twisted by the angle, η .  The 
coordinate system, ( )1 2 3, ,u u u , defined by the axes of the prism is thus obtained by the rotation 
(following the rotations as defined in Figure 1): 
 
 ( ) ( ) ( )1 2 3

u
xR R R Cη ξ α= − − − =u x x . (B.2) 

 
In order to compute the gradients of the rotated prism in the x  system, we first compute the 
coordinates, ( )1 2 3, ,u u u , given the coordinates ( )1 2 3, ,x x x , according to the transformation (B.2).  
Then, we compute the gradients in the u -system at that point (using parameters for the prism 
defined in the u -system).  Finally, we change directions of the derivatives at the computation 
point by applying the transformation (B.1). 
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Figure B.1: Original prism aligned with coordinate axes and subsequent rotation by azimuth, α , 
dip, ξ , and twist, η . 
 
 
 For a prism not centered at the origin of the x -system, we apply the alternative 
transformation to the given x -system coordinates: 
 
 ( )0

u
xC= −u x x , (B.3) 

 
where 0x  is the location of the center of the prism.  For these coordinates, ( )1 2 3, ,u u u , we 
compute the gradients (again, using limits of integration in the u -system, where the prism is 
centered at the origin of the u -system).  Then we apply the transformation (B.1) to obtain the 
gradients in the x -system.  Note that transformation (B.3) is used to obtain the needed 
coordinates of the computation point in the u -system, while transformation (B.1) suffices to 
transform the directions of the derivatives, irrespective of 0x . 
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Appendix C – The Test Statistic for the Matched Filter 
 
With Gaussian noise, the observations (N in number) have the following joint density: 
 

 ( )
( )

( ) ( )( )

( )
( ) ( )

T 1 T 1
1 1,
2 2

2 2
1 1
2 2

j j m k k m
m mj k

j k

N Nf e e
φ φ

φ π φ π

−
−− −

− −
− − − − − −∑∑

= =
z s z s z s z s

z z . (C.1) 

 
where m−s  is the vector of signals displaced by m.  For the hypotheses of Setup A (hypotheses 
(57) and (58)), the likelihood ratio is  
 

 ( ) ( )
( )

( ) ( )T 1 T 1

1

0

1 1
| 1 2 2

| 0

|
|

m mH
m

H

f H
LR x e

f H
φ φ− −

− −− − − +
= =

z s z s z zz

z

z
z

. (C.2) 

 
To simplify, consider the natural logarithm of this expression, since the right side is a monotonic 
positive function: 
 

 ( ) T 1 T 11ln
2m m m mLR φ φ− −

− − −= −s z s s . (C.3) 

 
By reversing the signs on the coordinates, shifting the origin by m, and noting that the noise is 
stationary, it is readily shown with equations (30) and (29) that 
 

 ( ) 21ln
2mLR yλ λ= − , (C.4) 

 
where my y≡ .  Clearly, the same result holds for Setup B (hypotheses (59) and (60)), provided 
the LR is reversed. 
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Appendix D – Covariance Matrix of the Matched Filter Output 
 
The covariance of the output is defined as (we consider only a single track of data with one type 
of observation at each data point) 
 
 ( ) ( ) ( )( )' ' 'cov ,r r r r r ry y y yµ µ= − −E  (D.1) 
 
where the mean, rµ , is given by equation (61).  Combining equations (30) and (61), we simplify, 
in view of equation (3), 
 

 ( )11 ,r r k r j
j k

y s j k nµ φ
λ

−
− − −− = ∑∑ . (D.2) 

 
Then 
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 (D.3) 

 
which is independent of the actual signal in the observations. 
 If the noise is uncorrelated, e.g., Iφ=  (the identity matrix), then 
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 (D.4) 

 
which shows that the output is uncorrelated in this case only if the assumed signal is also very 
localized.  Specifically, if it is the delta (impulse) function, 
 

 
1, 0
0, 0j j

j
s

j
δ

=
= =  ≠

 (D.5) 
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then, since 2 1λ = , 
 

 ( )' ' '

1, '
cov ,

0, 'r r r r j j r r
j

r r
y y

r r
δ δ δ− − − −

=
= = = ≠∑  (D.6) 

 
 The variance in the general case is ( 'r r=  in equation (D.3)): 
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where 
 

 ( ) ( )1

'

0, '
, ' ', '

1, '
j

j k
j j j k

j k
φ φ−− −

≠
=  =∑  (D.8) 

 
Hence 
 

 
( ) ( )1

2
1var ,

1

r k j
j k

y s j k sφ
λ

−
− − −=

=

∑∑  (D.9) 

 
in view of equation (26).  We see that the variance is independent of r, the location of the filter 
output. 
 For the signal modeled as an impulse (equation (D.5)), the covariance of the output, equation 
(D.3) becomes 
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1 1
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1 1
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'
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 (D.10) 

 
Again, we have with equation (D.8) and ( )2 1 0,0λ φ−

−=  
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We see again that the output is correlated unless both φ  is proportional to the identity function 
and the signal is the delta function. 
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Appendix E – Gradient Field Realizations 
 
The background gravity field was realized from a correlated two-dimensional random process on 
the plane.  The mutual consistency of different second-order gradients must be embedded in the 
construction of the covariance matrix, φ , appearing in equations (28) and (30), and can be 
ensured by designing an appropriate covariance model or, equivalently, a power spectral density 
(psd) model for the potential, W, (more precisely, a residual potential excluding long-wavelength 
features) of the gravity field.  We used the model described by Jekeli (2003), who also showed 
how to construct corresponding, mutually consistent models (for both psd’s and covariance 
functions) for the gravity gradients.  Similar models were developed, e.g., by Heller and Jordan 
(1979) and Forsberg (1987).  The covariance matrix thus constructed is invertible, as required in 
equation (27), since the model is positive definite by design (the psd is positive for all 
frequencies). 
 It is noted that in the case of observations with correlated noise, the matched filter often is 
applied only after the observations are whitened.  Such a procedure was employed in the case of 
gravity gradients by Driscoll et al. (1990).  This simplifies the filter equations, but in essence 
requires a determination of the covariance of the field.  Since our background gravitational field 
is simulated from a given covariance model, we need not perform this two-step process and can 
apply the matched filter directly to the correlated observations according to equation (30).  In this 
case, φ  is the sum of the covariance model for the correlated background gravitational field and 
the variance of the (uncorrelated) measurement noise (equation (4)). 
 If T is the (disturbing) gravitational potential, T, a particular (disturbing) gradient in a local 
Cartesian coordinate system is given by 
 

 
2

jk
j k

T
x x

Γ ∂=
∂ ∂

. (E.1) 

 
Therefore, given a model for the psd of T, the psd of a gradient, ( )1 2,n nΓΦ , is readily modeled 
using the transform of the corresponding derivative operator in the frequency domain (Jekeli, 
2003). 
 We wish to generate an 1 2M M×  grid of gradients ( 1 2 100M M= = ) with data spacing, 1x∆  
and 2x∆  ( 1 2 1 mx x∆ ∆= = ).  The spectrum of the gradient thus depends on the 2-D frequency 
vector, ( ) ( )( )1 1 1 2 2 2,n M x n M x∆ ∆  and may be synthesized on this grid according to 
 
 ( ) ( )

1 2 1 2 1 2, , , 1 1 2 2 1 2,n n n n n nG b ic M x M x n nΓ∆ ∆ Φ= + , (E.2) 
 
where 

1 2,n nb  and 
1 2,n nc  are normally distributed random variables: 

 
 ( ) ( )1 2 1 2, ,~ 0,1 2 , ~ 0,1 2n n n nb cN N , (E.3) 
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The standard deviations, 1 2 , ensure that the standard deviation of the square-root of the 

periodogram of 
1 2,n nG  is ( )1 2,n nΓΦ , for all 1n , 2n .  The inverse discrete Fourier transform of 

1 2,n nG  thus yields a realization of the corresponding gradient field.  For mutual consistency the 
same random numbers, 

1 2,n nb  and 
1 2,n nc , were used for all gradients belonging to a particular 

realization of the field. 
 Figure E.1 shows a synthesis (one realization) of the background gradient, 33Γ , on the 
100 m 100 m×  grid (1 m spacing).  The covariance model used for the gradient has a variance of 

( )294.2 E  (1 E = 1 Eötvös = 9 210  s− − ), and a correlation length of about 9 km (1 e  point).  A 
total of 1000 such realizations were generated to determine the probabilities of success and 
failure in detecting a particular anomaly buried in this background.  Similar results were 
achieved even with as few as 100 realizations; therefore, we believe that 1000 realizations 
provide an adequate assessment of the methods. 
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Figure E.1: Vertical-vertical gradients, 33Γ , synthesized using a psd model and normally 
distributed spectral components (equations (E.2) and (E.3)).  The horizontal black line indicates 
the profile used in Figure 14. 


