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ABSTRACT

The determination and the representation of the gravity field of the Earth are some of the most impor-
tant topics of physical geodesy. Traditionally in satellite gravity recovery problems the global gravity
field of the Earth is modeled as a series expansion in terms of spherical harmonics. Since the Earth’s
gravity field shows heterogeneous structures over the globe, a multi-resolution representation is an
appropriate candidate for an alternative spatial modeling. In the last years several approaches were
pursued to generate a multi-resolution representation of the geopotential by means of spherical base
functions.

Spherical harmonics are mostly used in global geodetic applications, because they are simple and the
surface of Earth is nearly a sphere. However, an ellipsoid ofrotation, i.e., a spheroid, means a better
approximation of the Earth’s shape. Consequently, ellipsoidal harmonics are more appropriate than
spherical harmonics to model the gravity field of the Earth. However, the computation of the coeffi-
cients of a series expansion for the geopotential in terms ofboth, spherical or ellipsoidal harmonics,
requires preferably homogeneous distributed global data sets.

Gravity field modeling in terms of spherical (radial) base functions has long been proposed as an
alternative to the classical spherical harmonic expansionand is nowadays successfully used in re-
gional or local applications. Applying scaling and waveletfunctions as spherical base functions a
multi-resolution representation can be established. Scaling and wavelet functions are characterized
by the ability to localize both in the spatial and in the frequency domain. Thus, regional or even local
structures of the gravity field can be modeled by means of an appropriate wavelet expansion. To be
more specific, the application of the wavelet transform allows the decomposition of a given data set
into a certain number of frequency-dependent detail signals. As mentioned before the spheroid means
a better approximation of the Earth than a sphere. Consequently, we treat in this report the ellipsoidal
wavelet theory to model the Earth’s geopotential.

Modern satellite gravity missions such as the Gravity Recovery And Climate Experiment (GRACE)
allow the determination of spatio-temporal, i.e., four-dimensional gravity fields. This issue is of
great importance in the context of observing time-variablephenomena, especially for monitoring the
climate change. Global spatio-temporal gravity fields are usually computed for fixed time intervals
such as one month or ten days. In the last part of this report weoutline regional spatio-temporal
ellipsoidal modeling. To be more specific, we represent the time-dependent part of our ellipsoidal
(spatial) wavelet model by series expansions in terms of one-dimensional B-spline functions. Thus,
our concept allows to establish a four-dimensional multi-resolution representation of the gravity field
by applying the tensor product technique.
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Chapter 1

Introduction

The determination and the representation of the gravity field of the Earth are some of the most im-
portant topics of physical geodesy. Traditionally in satellite gravity recovery problems the global
gravity field of the Earth is modeled as a series expansion in terms of spherical harmonics (Reigber
et al., 2005). Since the Earth’s gravity field shows heterogeneous structures over the globe, amulti-
resolution representationis an appropriate candidate for an alternative spatial modeling. In the last
years several approaches were pursued to generate a multi-resolution representation of the geopoten-
tial by means of spherical base functions; see e.g. Freeden (1999), Freeden et al. (1998), Freeden and
Michel (2004), Kusche (2002), Prijatna and Haagmans (2001), Haagmans et al. (2002), Panet el al.
(2005) or Schmidt et al. (2006, 2007a).

Spherical harmonics are mostly used in geodetic applications, because they are simple and the surface
of Earth is nearly a sphere (Heiskanen and Moritz, 1967). However, an ellipsoid of rotation, i.e., a
spheroid, means a better approximation of the Earth’s shape. Consequently, ellipsoidal harmonics are
more appropriate than spherical harmonics to model the gravity field of the Earth and the region of
divergence of an ellipsoidal harmonic expansion is smallerthan the corresponding one of a spherical
harmonic expansion. However, the computation of the coefficients of a series expansion for the
geopotential in terms of both, spherical or ellipsoidal harmonics, requires preferably homogeneous
distributed global data sets. Since a wavelet function is characterized by its ability to localize both
in the spatial and in the frequency domain, regional or even local structures can be modeled by
means of an appropriate wavelet expansion. Applying the wavelet transform, a given data set can
be decomposed into a certain number of frequency-dependentdetail signals, i.e. a multi-resolution
representation is performed.

In order to consider the Laplacian differential equation our approaches are based on an ellipsoidal
wavelet theory. In chapter 2 we present the mathematical foundations. The basic formalism ofellip-
soidal signal representationis introduced in section 2.1. Since spherical coordinates and spherical
harmonics are still standard in modern gravity field modeling, we additionally introduce basic spher-
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ical relations in section 2.2.

Themulti-resolution representationis treated in detail in chapter 3. After introducing generalellip-
soidal kernels in section 3.1 their properties are specialized in the following section 3.2 to ellipsoidal
scaling functions and wavelets, which mean the basic components of the multi-resolution representa-
tion. As a special topic subsection 3.3 is dedicated to isotropic wavelets, which are generally definable
only on spheres.

One of the main applications of the spherical wavelet theorylies in theregularizationof inverse prob-
lems related to the sphere. In Earth’s gravity field studies regularization is needed for the downward-
continuation of the gravity data, e.g., from a satellite orbit to the Earth’s surface. Thus, after intro-
ducing Sobolev spaces in section 4.1 we discuss regularization in the context of ellipsoidal wavelet
theory in section 4.2.

In chapter 5 we treat the multi-resolution representation of bandlimited signalsas a kind of speciali-
sation. To be more specific we transfer the integal equation to series expansions, because in geodesy
one is always interested in estimating the target coefficients by parameter estimation procedures, for
instance, least-squares techniques. After presenting basic relations in section 5.1 we discuss the de-
composition and the reconstruction of signals on the ellipsoid in detail in subsection 5.2. In the
following section 5.3 we complete the chapter by a numericalexample.

In chapter 6 we outline thespatio-temporal ellipsoidal modelingof the gravity field. This issue is
of great importance in the context of observing time-variable phenomena, especially for monitoring
the climate change by modern satellite missions like the Gravity Recovery And Climate Experiment
(GRACE). We start with the definition of the spatio-temporaltensor product approach in section
6.1. The time-dependent part of our model is based on B-splines introduced in section 6.2. Finally
we outline the four-dimensional (4-D) multi-resolution representation of spatio-temporal signals in
section 6.3.

As mentioned before the ellipsoidal wavelet theory is more appropriate for modeling the Earth’s
geopotential than spherical base functions. However, all results based on the ellipsoidal theory and
presented in this report can be easily transferred to the spherical case. This fact means another reason
why we decided to derive our approaches in the ellipsoidal context.

Heiskanen and Moritz (1967) presented basic relations on ellipsoidal series expanisons of the gravity
field. An extensive introduction to a spheroidal1 harmonic model of the terrestrial gravity field was
published by Thong and Grafarend (1989); the exact transformation formula between ellipsoidal and
spherical harmonic expansions is given by Jekeli (1987).

1as mentioned before a spheroid means an ellipsoid of revolution
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Chapter 2

Mathematical Foundations

The basic idea of themulti-resolution representationis to split a given input signal into a smoothed
version and a certain number of band-pass signals bysuccessive low-pass filtering. In the context
of wavelet theory, this procedure consists of thedecompositionof the signal into wavelet coefficients
and the(re)constructionof the (modified) signal by means ofdetail signals. The latter are the spectral
components of the multi-resolution representation because they are related to certain frequency bands.
In the sequel we want to transfer the concept of the multi-resolution representation from the well-
known spherical theory into the ellipsoidal setting.

2.1 Basic Ellipsoidal Settings

First we introduce the gravitational potentialU(x), which is assumed to be harmonic in the exterior
of the Earth, i.e., it fulfills theLaplacian differential equation. The geocentric position vector

x =
[√

u2 + ǫ2 cosφ cos λ,
√
u2 + ǫ2 cosφ sin λ, u sinφ

]T
= |x| r (2.1)

of any arbitrary observation pointP = P (x) may be expressed by means of theJacobi ellipsoidal
coordinates(λ, φ, u) with λ = spheroidal longitude,φ = spheroidal latitude andu = spheroidal
height; for details on the Jacobi ellipsoidal coordinates we refer to Thong and Grafarend (1989).
Furthermore, in Eq. (2.1)

ǫ =
√
a2 − b2 (2.2)

denotes the absolute eccentricity of thereference ellipsoid

E
2
a,b = {x | 0 ≤ λ < 2π,−π/2 ≤ φ ≤ π/2 , u = b } (2.3)

3



of Somigliana-Pizetti type with semi-major axisa and semi-minor axisb. Finally, with |x| =√
u2 + ǫ2 cos2 φ the unit vectorr = x/|x|, introduced in Eq. (2.1), reads

r =

[√
u2 + ǫ2

u2 + ǫ2 cos2 φ
cosφ cos λ,

√
u2 + ǫ2

u2 + ǫ2 cos2 φ
cosφ sinλ,

√
u2

u2 + ǫ2 cos2 φ
sinφ

]T

.

(2.4)

Expanding the three components ofr into geometric series we obtain

r =




(
1 + 1

2 sin2 φ ǫ2

u2 + O( ǫ4

u4 )
)

cosφ cos λ
(
1 + 1

2 sin2 φ ǫ2

u2 + O( ǫ4

u4 )
)

cosφ sinλ
(
1 − 1

2 cos2 φ ǫ2

u2 + O( ǫ4

u4 )
)

sinφ




= ξ + δr (2.5)

with the ”spherical” unit vector

ξ = [ cosφ cos λ, cosφ sinλ, sinφ ]T (2.6)

and the latitude-dependent ellipsoidal correctionδr = δr(φ, u), which vanishes forǫ = 0. Besides
the reference ellipsoid (2.3) we define theunit sphere

S
2
1 = { ξ | 0 ≤ λ < 2π,−π/2 ≤ φ ≤ π/2 } =: S

2 . (2.7)

In the sequel we additionally need the family of confocal ellipsoids

E
2√

u2+ǫ2,u
= {x | 0 ≤ λ < 2π,−π/2 ≤ φ ≤ π/2 , u > 0 } (2.8)

as well as the family of concentric spheres

S
2
r = { r · ξ | 0 ≤ λ < 2π,−π/2 ≤ φ ≤ π/2 , r > 0 } . (2.9)

of radiusr. Recall, that in analogy to the definition (2.9) of spheresS
2
r as the collection of all points

P (r · ξ) with the same radial coordinater, the spheroidal coordinateu is chosen to define ellip-
soids (2.8) as level sets. Since only ellipsoids of revolution are considered, the spheroidal longi-
tudeλ agrees with the spherical longitude. While the coordinate pair (λ, u) therefore has an ob-
vious geometric background, the definition of the spheroidal latitude φ is more subtle. Actually it
has no direct geometric interpretation, instead it is motivated by the attempt to have nice solutions
of the Laplacian differential equation. Indeed, the spheroidal latitudeφ is chosen so that solving
the Laplacian differential equation via separation of variables again leads to the spherical harmon-
ics. To be more specific, we split the gravitational potential U(λ, φ, u) into separable functions, i.e.,
U(λ, φ, u) = Λ(λ)Φ(φ)U(u), and obtain the solution of theboundary value problemfor the outer
spaceE2,ext

a,b of the reference ellipsoidE2
a,b asFourier series

U(λ, φ, u) =
∞∑

n=0

n∑

m=−n

unm

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)
enm(λ, φ) (2.10)
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in terms of thesurface ellipsoidal harmonics

enm(λ, φ) = P ⋆
n|m|(sinφ)

{
cosmλ ∀ m ≥ n

sin |m|λ ∀ m < 0

}
= enm(ξ) , (2.11)

see e.g. Heiskanen and Moritz (1967). The functionsP ⋆
nm( · ) andQ⋆

nm( · ) are the normalized asso-
ciated Legendre functions of the first and of the second kind,respectively;n means the degree andm
the order. Defining theouter ellipsoidal harmonics

hb
nm(λ, φ, u) =

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)
enm(λ, φ) = hb

nm(x) (2.12)

the Fourier series (2.10) can be rewritten as

U(λ, φ, u) =

∞∑

n=0

n∑

m=−n

unm hb
nm(λ, φ, u) . (2.13)

On the level ellipsoid, i.e., foru = b, the Eqs. (2.10) and (2.13) reduce to

U(λ, φ, b) =

∞∑

n=0

n∑

m=−n

unm enm(λ, φ) (2.14)

with

hb
nm(λ, φ, b) = enm(λ, φ) . (2.15)

Hence, the representations (2.10) and (2.13) hold for allx ∈ E
2,ext
a,b , wherein

E
2,ext
a,b = E

2,ext
a,b ∪ E

2
a,b (2.16)

means the union of the outer spaceE
2,ext
a,b and the reference ellipsoidE2

a,b. Obviously, the outer
ellipsoidal harmonics (2.12) are the harmonic continuation of the surface ellipsoidal harmonics (2.11)
into the outer spaceE2,ext

a,b of the reference ellipsoidE2
a,b. OnE

2
a,b the surface ellipsoidal harmonics

(2.11) fulfill the orthonormality condition with respect tothe weighted scalar (inner) product

〈
epq(λ, φ) | enm(λ, φ)

〉
w

=
1

Sa,b

∫

E
2

a,b

dSa,b(φ)w(φ) epq(λ, φ) enm(λ, φ) = δpm δqn .

(2.17)

Herein

Sa,b = area(E2
a,b) = 4π a2

(
1

2
+

1

4

b2

aǫ
ln
a+ ǫ

a− ǫ

)

=
2π ab2

ǫ

(aǫ
b2

+ arcsinh
( ǫ
b

))
(2.18)
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means the total area of the reference ellipsoid and

dSa,b(φ) = d{area(E2
a,b)} = a

√
b2 + ǫ2 sin2 φ cosφdλ dφ (2.19)

the corresponding ellipsoidal surface element. The weightfunctionw(φ) is defined as

w(φ) =
a√

b2 + ǫ2 sin2 φ

(
1

2
+

1

4

b2

aǫ
ln
a+ ǫ

a− ǫ

)
; (2.20)

see e.g. Ardalan and Grafarend (2001). The procedure presented before can be interpreted as follows:
due to the weight function (2.20) we remove the ellipsoidal part of both the ellipsoidal surface element
(2.19) and the total area (2.18). What remains is the orthonormality condition for the (spherical)
harmonicsenm(λ, φ) given on the unit sphereS2. Hence, we summarize that in the sense of the
weighted scalar product (2.17) the set of surface ellipsoidal harmonics (2.11) constitutes a complete
orthonormal basis of the spaceL2(E

2
a,b) of square-integrable functions on the reference ellipsoid

(2.3).

Theseries coefficientsunm of the Fourier series (2.13) are computed by theellipsoidal Fourier trans-
form

unm =
〈
f(λq, φq, b) | enm(λq, φq)

〉
w

=
1

Sa,b

∫

E
2

a,b

dSa,b(φq)w(φq) f(λq, φq, b) enm(λq, φq) (2.21)

from given boundary values

f(λq, φq, b) = f(xq) = U(xq) ∀ xq ∈ E
2
a,b . (2.22)

Inserting Eq. (2.21) into Eq. (2.13) yields under the consideration of the Eqs. (2.15) and (2.22)

U(λ, φ, u) =
1

Sa,b

∫

E
2

a,b

dSa,b(φq)w(φq) ×

×
( ∞∑

n=0

n∑

m=−n

hb
nm(λq, φq, b)h

b
nm(λ, φ, u)

)
f(λq, φq, b)

=
1

Sa,b

∫

E
2

a,b

dSa,b(φq)w(φq) K
e
AP(λq, φq, b, λ, φ, u) f(λq, φq, b)

=
1

Sa,b

∫

E
2

a,b

dSa,b(φq)w(φq) K
e
AP(x,xq) U(xq)

=
〈
Ke

AP(x,xq) |U(xq)
〉
w

(2.23)
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with x ∈ E
2,ext
a,b andxq ∈ E

2
a,b. In this inner product we find theellipsoidal Abel-Poisson kernel

Ke
AP(x,xq) =

∞∑

n=0

n∑

m=−n

hb
nm(x)hb

nm(xq)

=

∞∑

n=0

n∑

m=−n

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)
enm(ξ) enm(ξq) . (2.24)

At the surface of the reference ellipsoid, i.e. foru = b, the ellipsoidal Abel-Poisson kernel reduces to

Ke
AP(x,xq) =

∞∑

n=0

n∑

m=−n

enm(ξ) enm(ξq) . (2.25)

Inserting theaddition theorem

n∑

m=−n

enm(ξ) enm(ξq) = (2n + 1) Pn(ξT ξq) (2.26)

into Eq. (2.25) yields theLegendre series

Ke
AP(x,xq) =

∞∑

n=0

(2n + 1) Pn(ξT ξq) (2.27)

of thedelta functionδ( · ), i.e.Ke
AP(x,xq) = δ(ξ − ξq).

For numerical applications we deal now with the quotientQ⋆
nm(u

ǫ
)/Q⋆

nm( b0
ǫ
). In the sequel we as-

sume that the reference ellipsoid (2.3) is defined by the valuesa =: a0 andb =: b0 for the semi-major
and the semi-minor axis, respectively; thus, the eccentricity (2.2) is given asǫ =

√
a2

0 − b20. Accord-
ing to Martinec and Grafarend (1997) we may write

Q⋆
nm(u

ǫ
)

Q⋆
nm( b0

ǫ
)

=

en+1
∞∑

k=0

anmke
2k

en+1
0

∞∑

k=0

anmke
2k
0

(2.28)

with

e =
ǫ√

u2 + ǫ2
=

ǫ√
u2 + a2

0 + b20
=
ǫ

a
, (2.29)

e0 =
ǫ√

b20 + ǫ2
=

ǫ

a0
. (2.30)

The coefficientsanmk can, for instance, be computed by the recurrence relation

anmk =
(n+ 2k − 1)2 −m2

2k (2n + 2k + 1)
anm,k−1 for k ≥ 1 (2.31)

7



starting withanm0 = 1. Thus, it follows from Eq. (2.28) considering the right-hand sides of the Eqs.
(2.29) and (2.30)

Q⋆
nm(u

ǫ
)

Q⋆
nm( b0

ǫ
)

=
(a0

a

)n+1
1 +

∞∑

k=1

anmke
2k

1 +

∞∑

k=1

anmke
2k
0

. (2.32)

Expanding the denominator into a geometric series yields

Q⋆
nm(u

ǫ
)

Q⋆
nm( b0

ǫ
)

=
(a0

a

)n+1
(

1 +

∞∑

k=1

anmke
2k

) (
1 −

∞∑

k=1

anmke
2k
0 + . . .

)

=
(a0

a

)n+1 (
1 + anm1e

2 + . . .
) (

1 − anm1e
2
0 + . . .

)

=
(a0

a

)n+1 (
1 + anm1(e

2 − e20) + . . .
)

=
(a0

a

)n+1
+
(a0

a

)n+1
anm1 (a−2 − a−2

0 ) ǫ2 + . . . . (2.33)

According to Eq. (2.31) the coefficientsanm1 are given asanm1 = ((n+1)2−m2)/(4n+6). In case
that the reference ellipsoidE2

a0,b0
corresponds to the reference sphereS

2
R with radiusR = a0 = b0

Eq. (2.33) reduces withǫ = 0 to

Q⋆
nm(u

ǫ
)

Q⋆
nm( b0

ǫ
)

=

(
R

r

)n+1

(2.34)

with a = u = r.

Due to the relation (2.34) between the ellipsoidal and the spherical theory we at first study in the next
section some spherical features in more detail.

2.2 Basic Spherical Settings

In the spherical theory we choose according to Eq. (2.34) thesphere

S
2
R = {R · r | 0 ≤ λ < 2π,−π/2 ≤ β ≤ π/2 , R > 0 } . (2.35)

as defined in Eq. (2.9) withr = R as the reference sphere; in order to avoid a mix-up between the
ellipsoidal and the spherical scenarios we substitute the greek letterβ for φ andr for the unit vector
ξ. Hence, the coordinate triple(λ, β, r) consists ofλ = spherical longitude,β = spherical latitude
andr = radius. Note, that the spherical longitude is equivalent tothe ellipsoidal longitude introduced

8



in Eq. (2.1). Usually in Eq. (2.35)R is defined as a mean Earth radius. However,S
2
R can also be

identified with theBrillouin sphereor theBjerhammer sphere; see e.g. Torge (2001). In spherical
coordinates the position vectorx of an arbitrary pointP = P (x) reads

x = r ·
[

cos β cos λ, cos β sinλ, sinβ
]T

= r · r (2.36)

with |x| = r. Analogous to Eq. (2.10) and considering the result (2.34) we obtain the solution

U(λ, β, r) =

∞∑

n=0

n∑

m=−n

us
nm

(
R

r

)n+1

enm(λ, β) = U(x) (2.37)

of the Laplacian differential equation for the gravitational potentialU(x) in a pointP (x) with x ∈
S

2,ext
R = S

2,ext
R ∪ S

2
R, whereinS

2,ext
R means the exterior of the sphereS

2
R, cf. Eq. (2.16). Thesurface

spherical harmonics

enm(λ, β) = P ⋆
n|m|(sin β)

{
cosmλ ∀ m ≥ n

sin |m|λ ∀ m < 0

}
= enm(r) , (2.38)

(see e.g. Heiskanen and Moritz (1967, p. 21)) fulfill the orthonormality condition

〈
epq(λ, β) | enm(λ, β)

〉
=

1

SR

∫

S
2

R

dSR(β) epq(λ, β) enm(λ, β) = δpm δqn (2.39)

with respect to the sphereS2
R. Herein

SR = area(S2
R) = 4π R2 (2.40)

means the total area of the sphere and

dSR(β) = d{area(S2
R)} = R2 cos β dλ dβ (2.41)

the corresponding spherical surface element; cf. Eqs. (2.18) and (2.19) as well as the comments
following Eq. (2.20). From Eq. (2.39) we conclude that the set of surface spherical harmonics (2.38)
constitutes a complete orthonormal basis of the spaceL2(S

2
R) of square-integrable functions on the

reference sphere (2.35).

Defining theouter spherical harmonics

hR
nm(λ, β, r) =

(
R

r

)n+1

enm(λ, β) = hR
nm(x) (2.42)

the Fourier series (2.37) can be rewritten as

U(λ, β, r) =
∞∑

n=0

n∑

m=−n

us
nm hR

nm(λ, β, r) . (2.43)
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On the reference sphereS2
R, i.e., forr = R, the Eqs. (2.37) and (2.43) reduce to

U(λ, β,R) =
∞∑

n=0

n∑

m=−n

us
nm enm(λ, β) (2.44)

with hR
nm(λ, β,R) = enm(λ, β). Theseries coefficientsus

nm are computable via thespherical Fourier
transform

us
nm =

〈
f(λq, βq, R) | enm(λq, βq)

〉

=
1

SR

∫

S
2

R

dSR(βq) f(λq, βq, R) enm(λq, βq) (2.45)

from given boundary values

f(λq, βq, R) = f(xq) = U(xq) ∀ xq = R · rq ∈ S
2
R . (2.46)

Inserting Eq. (2.45) into Eq. (2.43) yields under the consideration of the Eqs. (2.42) and (2.46)

U(λ, β, r) =
1

SR

∫

S
2

R

dSR(βq)

( ∞∑

n=0

n∑

m=−n

hR
nm(λq, βq, R)hR

nm(λ, β, r)

)
f(λq, βq, R)

=
1

SR

∫

S
2

R

dSR(βq) K
s
AP(λq, βq, R, λ, β, r) f(λq, βq, R)

=
1

SR

∫

S
2

R

dSR(βq) K
s
AP(x,xq) U(xq)

=
〈
Ks

AP(x,xq) |U(xq)
〉

(2.47)

with x = r · r ∈ S
2,ext
R andxq = R · rq ∈ S

2
R. Thespherical Abel-Poisson kernel

Ks
AP(x,xq) =

∞∑

n=0

n∑

m=−n

hR
nm(x)hb

nm(xq)

=
∞∑

n=0

n∑

m=−n

(
R

r

)n+1

enm(r) enm(rq) (2.48)

reduces on the sphereS2
R, i.e. forr = R, to

Ks
AP(x,xq) =

∞∑

n=0

n∑

m=−n

enm(r) enm(rq) . (2.49)

Inserting the addition theorem

n∑

m=−n

enm(r) enm(rq) = (2n + 1) Pn(rTrq) (2.50)
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yields the Legendre series

Ks
AP(x,xq) =

∞∑

n=0

(2n + 1) Pn(rT rq) . (2.51)

In the spherical theory the argumentrTrq of the Legendre polynomialPn( · ) in Eq. (2.51) defines
the spherical distanceα = arccos(rTrq) between two pointsP (r) andP (rq) on the unit sphere
S

2. Thus, if we keepx = R · r fixed and varyxq = R · rq the spherical Abel-Poisson kernel is
rotational symmetric, i.e. isotropic. However, for the level ellipsoidE2

a,b, i.e. for Eq. (2.27), this
statement holds only, if the position vectorx, Eq. (2.1), points either to the north or to the south pole.
The deviation from the rotational symmetry depends on the ellipsoidal correctionδr defined in Eq.
(2.5). But due to the formal identity of the Eqs. (2.27) and (2.51) we conclude that wavelet theory for
functions on the ellipsoid mostly agrees with the wavelet theory for functions on the sphere. Another
excellent feature, already mentioned, is the fact that according to the Eqs. (2.39) and (2.17) the surface
harmonicsenm( · ) constitute orthonormal bases of the Hilbert spacesL2(S

2
R) andL2(E

2
a,b).

Next, we introduce the generalspherical kernel

Ks(x,xq) =

∞∑

n=0

n∑

m=−n

kn h
R
nm(x)hR

nm(xq)

=
∞∑

n=0

n∑

m=−n

(
R2

r rq

)n+1

kn enm(r) enm(rq). (2.52)

with x,xq ∈ S
2,ext
R . Since theLegendre coefficientskn depend exclusively on the degreen, the

addition theorem (2.50) can be applied. Thus, the kernel (2.52) is rotational symmetric and can be
expanded as the Legendre series

Ks(x,xq) =
∞∑

n=0

(2n+ 1)

(
R2

r rq

)n+1

kn Pn(rTrq) . (2.53)

Note, that in the Abel-Poisson case (2.48) all Legendre coefficientskn are equal to one.

Eq. (2.47) can be rewritten asspherical convolution

U(x) =
(
Ks

AP ⋆ U
)
(x) (2.54)

generally defined as

Ksf(x) :=
(
Ks ⋆ f

)
(x) =

〈
Ks(x,xq) | f(xq)

〉

=
1

SR

∫

S
2

R

dSR(βq) K
s(x,xq) f(xq) (2.55)
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for a functionf ∈ L2(S
2
R) and a kernelKs(x,xq) according to (2.52) withx ∈ S

2,ext
R andxq ∈ S

2
R.

For studying this convolution in the spectral domain we needthe

Lemma (Funk-Hecke formula): Letf ∈ L2(S
2
R), i.e.,

f(xq) =

∞∑

n=0

n∑

m=−n

f s
nm enm(rq) (2.56)

with xq ∈ S
2
R , andKs a spherical kernel, i.e.,

Ks(x,xq) =
∞∑

n=0

n∑

m=−n

kn h
R
nm(x)hR

nm(xq)

=
∞∑

n=0

n∑

m=−n

(
R

r

)n+1

kn enm(r) enm(rq) (2.57)

with x ∈ S
2,ext
R andxq ∈ S

2
R . Then the spherical convolution

Ksf(x) =
(
Ks ⋆ f

)
(x) =

1

SR

∫

S
2

R

dSR(βq) K
s(x,xq) f(xq) (2.58)

is given from the products of the spherical Fourier coefficientsf s
nm andkn of f andKs, i.e.

Ksf(x) =
(
Ks ⋆ f

)
(x) =

∞∑

n=0

n∑

m=−n

kn f
s
nm hR

nm(x) . (2.59)

This statement can be proven by introducing Eqs. (2.56) and (2.57) into Eq. (2.58) and considering
the orthonormality condition (2.39).

The comparison of the result (2.59) with the representation(2.43) shows, that the spherical Fourier
coefficients(Ksf)snm of the spherical convolutionKsf(x) are defined as

(Ksf)snm = kn f
s
nm . (2.60)

Forx,xq ∈ S
2
R, i.e.,r = rq = R the kernel (2.57) reads

Ks(x,xq) =

∞∑

n=0

n∑

m=−n

kn enm(r) enm(rq) . (2.61)

Considering the orthonormality condition (2.39) we obtain

Ks(x,xq) =
∞∑

n=0

(2n+ 1) kn Pn(rTrq) =: Ks(rTrq) , (2.62)
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cf. the Abel-Poisson kernel (2.51). Sinceα = arccos(rTrq) the argumentrTrq = cosα =: t is
restricted to−1 ≤ t ≤ 1. Thus, the kernelKs(rTrq) = Ks(t) is a member of the spaceL2([−1, 1])

spanned by the Legendre polynomialsPn( · ). Equation (2.62) is known as theinverse Legendre
transform. Consequently, theLegendre transformis defined as

kn =

∫ 1

−1
Ks(t) Pn(t) dt . (2.63)

From the results presented before we conclude, that according to Eq. (2.58)Ks means anintegral
operatorwith the rotational symmetric kernelKs(rTrq) =: Ks(t) defined in Eq. (2.62). Nearly all
operators in gravimetry with the sphere as reference surface are from the above type. Examples in-
clude the spherical Abel-Poisson as already studied, the radial derivatives on the sphere, the spherical
Stokes operator or the operators computing spherical single-/double-layer potentials.

Next, we study thespherical scalar product

〈
f(x) | g(x)

〉
=

1

SR

∫

S
2

R

dSR(β) f(x) g(x) (2.64)

of two functionsf, g ∈ L2(S
2
R) with x ∈ S

2
R in more detail. Expanding both functions into spherical

Fourier series, i.e.,

f(x) =
∞∑

n=0

n∑

m=−n

f s
nm enm(r) , (2.65)

g(x) =
∞∑

n=0

n∑

m=−n

gs
nm enm(r) (2.66)

according to Eq. (2.44) yields under the consideration of the orthonormality condition (2.39)

〈
f(x) | g(x)

〉
=

1

SR

∫

S
2

R

dSR(β)

( ∞∑

n=0

n∑

m=−n

f s
nm enm(r)

)( ∞∑

p=0

p∑

q=−p

gs
pq epq(r)

)

=

( ∞∑

n=0

n∑

m=−n

∞∑

p=0

p∑

q=−p

f s
nm gs

pq

)
1

SR

∫

S
2

R

dSR(β) enm(r) epq(r)

=

∞∑

n=0

n∑

m=−n

f s
nm gs

nm . (2.67)

Thus, the scalar product
〈
f(x) | g(x)

〉
, defined in the spatial domain on the sphere, corresponds in

the spectral domain to the sum of the products of the spherical Fourier coefficientsf s
nm andgs

nm. This
relation is known asParseval’s identity. TheL2(S

2
R)-norm‖f‖L2(S2

R) of the functionf(x) is defined
as

‖f‖L2(S2
R) =

√〈
f(x) | f(x)

〉
. (2.68)
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Applying Parseval’s identity (2.67) we finally obtain

‖f‖L2(S2
R) =

√√√√
∞∑

n=0

n∑

m=−n

(f s
nm)2 . (2.69)

Note, that the norm can also be interpreted as the energy content or the global root-mean-square (rms)
value of the functionf(x).

From Eq. (2.61) we conclude that besides the complete set of spherical harmonicsenm(r) the func-
tionsKs(rTrq) as defined in Eq. (2.62) span the spaceL2(S

2
R). For this reason, they are called

spherical base functions. Hence, the function (2.65) can be modeled as

f(x) =
1

SR

∫

S
2

R

dSR(βq) K
s(rTrq) c

s(xq) =
(
Ks ⋆ cs

)
(x) (2.70)

with an unknown functioncs(xq) andxq ∈ S
2
R.
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Chapter 3

Multi-Resolution Representation on the
Ellipsoid

As already mentioned the fundamental idea of a multi-resolution representation is to split a given
input signal into a smoother version and a number of detail signals by successive low-pass filtering;
this procedure, which provides a sequence of signal approximations at different resolutions, is also
known as multi-resolution analysis (Mertins, 1999). The detail signals are the spectral components or
modules of the multi-resolution representation because they are related to specific frequency bands.

3.1 Ellipsoidal Kernels

We already mentioned that we can study functions on the ellipsoid as functions on the sphere via
introducing an appropriate weighted inner product, cf. theorthonormality condition (2.17). However,
we also have seen from the discussion in the context of Eq. (2.51), that the exclusive restriction to
rotational symmetric kernels on the ellipsoid is no longer natural and appropriate. In the following
we present the natural multi-resolution representation based on the ellipsoidal harmonics. For this we
start with introducing thegeneralized ellipsoidal kernel

Ke(x,xq) =

∞∑

n=0

n∑

m=−n

knm hb
nm(x)hb

nm(xq)

=

∞∑

n=0

n∑

m=−n

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)

Q⋆
nm(

uq

ǫ
)

Q⋆
nm( b

ǫ
)
knm enm(ξ) enm(ξq) (3.1)
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with x,xq ∈ E
2,ext
a,b , cf. Eq. (2.52). On the reference ellipsoid, i.e., for the special casex,xq ∈ E

2
a,b,

Eq. (3.1) reads

Ke(x,xq) =
∞∑

n=0

n∑

m=−n

knm enm(ξ) enm(ξq) . (3.2)

Next, we define theellipsoidal convolution

Kef(x) =
(
Ke ⋆ f

)
w
(x) =

〈
Ke(x,xq) | f(xq)

〉
w

=
1

Sa,b

∫

E
2

a,b

dSa,b(φq) w(φq) K
e(x,xq) f(xq) (3.3)

for a functionf ∈ L2(E
2
a,b) and a kernelKe(x,xq) according to (3.1) withx ∈ E

2,ext
a,b andxq ∈ E

2
a,b,

cf. Eq. (2.23). For studying the relation (3.3) in the spectral domain we need the

Lemma (generalized Funk-Hecke formula):Letf ∈ L2(E
2
a,b), i.e.,

f(xq) =

∞∑

n=0

n∑

m=−n

fnm enm(ξq) (3.4)

with xq ∈ E
2
a,b , andKe a generalized ellipsoidal kernel, i.e.,

Ke(x,xq) =

∞∑

n=0

n∑

m=−n

knm hb
nm(x)hb

nm(xq)

=

∞∑

n=0

n∑

m=−n

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)
knm enm(ξ) enm(ξq) (3.5)

with x ∈ E
2,ext
a,b andxq ∈ E

2
a,b . Then the ellipsoidal convolution

Kef(x) =
(
Ke ⋆ f

)
w
(x) =

1

Sa,b

∫

E
2

a,b

dSa,b(φq) w(φq) K
e(x,xq) f(xq) (3.6)

is given from the products of the ellipsoidal Fourier coefficientsfnm andknm of f andKe, i.e.

Kef(x) =
(
Ke ⋆ f

)
w
(x) =

∞∑

n=0

n∑

m=−n

knm fnm hb
nm(x) . (3.7)

This statement can be proven by introducing the Eqs. (3.4) and (3.5) into Eq. (3.6) and considering
the orthonormality condition (2.17).

The comparison of the result (3.7) with the representation (2.13) shows, that the ellipsoidal Fourier
coefficients(Kef)nm of the ellipsoidal convolutionKef(x) are defined as

(Kef)nm = knm fnm . (3.8)
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Analog to the spherical theory the ellipsoidal scalar product, already introduced in Eq. (2.17), of two
functionsf, g ∈ L2(E

2
a,b) with x ∈ E

2
a,b, i.e.,

f(x) =
∞∑

n=0

n∑

m=−n

fnm enm(ξ) , (3.9)

g(x) =
∞∑

n=0

n∑

m=−n

gnm enm(ξ) (3.10)

is defined as

〈
f(x) | g(x)

〉
w

=
1

Sa,b

∫

E
2

a,b

dSa,b(φ)w(φ) f(x) g(x) . (3.11)

Inserting the representations (3.9) and (3.10) into Eq. (3.11) and considering the orthonormality
condition (2.17) yields

〈
f(x) | g(x)

〉
w

=
1

Sa,b

∫

E
2

a,b

dSa,b(φ)w(φ)

( ∞∑

n=0

n∑

m=−n

fnm enm(ξ)

)( ∞∑

p=0

p∑

q=−p

gpq epq(ξ)

)

=

( ∞∑

n=0

n∑

m=−n

∞∑

p=0

p∑

q=−p

fnm gpq

)
1

Sa,b

∫

E
2

a,b

dSa,b(φ)w(φ) enm(ξ) epq(ξ)

=
∞∑

n=0

n∑

m=−n

fnm gnm . (3.12)

Thus, the scalar product
〈
f(x) | g(x)

〉
w

, defined in the spatial domain on the reference ellipsoid,
corresponds in the spectral domain to the sum of the productsof the ellipsoidal Fourier coefficients
fnm and gnm. We denote this relation as theellipsoidal Parseval identity. The L2(E

2
a,b)-norm

‖f‖L2(E2
a,b)

of the functionf(x) is defined as

‖f‖L2(E2
a,b)

=
√〈

f(x) | f(x)
〉
w
. (3.13)

Applying the ellipsoidal Parseval identity (3.12) we finally obtain

‖f‖L2(E2
a,b)

=

√√√√
∞∑

n=0

n∑

m=−n

(fnm)2 . (3.14)

Besides the ellipsoidal harmonicsenm(ξ) the functionsKe(x,xq) for x,xq ∈ E
2
a,b as defined in Eq.

(3.5) span the spaceL2(E
2
a,b). For this reason, they are calledellipsoidal base functions. Thus, the
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Eq. (3.2) means a transformation between different sets of base functions. Analog to Eq. (2.70) a
functionf(x) with x ∈ E

2,ext
a,b can be modeled as

f(x) =
1

Sa,b

∫

E
2

a,b

dSa,b(φq) w(φq) K
e(x,xq) c(xq) =

(
Ke ⋆ c

)
w
(x) (3.15)

with the unknown functionc(xq) andxq ∈ E
2
a,b. We will deal with such kind of series expansions in

chapter 4.

3.2 Ellipsoidal Scaling Functions and Wavelets

In order to derive an ellipsoidal multi-resolution representation we identify the kernelKe(x,xq), as
defined in Eq. (3.1), with thegeneralized ellipsoidal scaling function

Φj(x,xq) =

∞∑

n=0

n∑

m=−n

φj;nm hb
nm(x)hb

nm(xq)

=

∞∑

n=0

n∑

m=−n

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)

Q⋆
nm(

uq

ǫ
)

Q⋆
nm( b

ǫ
)
φj;nm enm(ξ) enm(ξq) (3.16)

of resolution level (scale)j ∈ N0. In other words we define scaling functions and wavelets via the
series coefficientsφj;nm. In the sequel we also want to deal withbandlimited ellipsoidal scaling
function. Such a function is defined by finite sums, i.e., Eq. (3.16) reduces to

Φj(x,xq) =

n′

j∑

n=0

n∑

m=−n

φj;nm hb
nm(x)hb

nm(xq) , (3.17)

= h(x)TBj h(xq) . (3.18)

With nj = (2n′j + 1)2 thenj × 1 vectorsh(x) andh(xq) are defined as

h(x) =
[

(hb
00(x), hb

1,−1(x), . . . , hb
n′

j ,n′

j
(x)

]T
, (3.19)

for h(xq) replacex byxq. Furthermore,Bj means annj × nj diagonal matrix given as

Bj = diag(φj;00, φj;1,−1, φj;10, φj;11, . . . , φj;n′

j ,n′

j
) . (3.20)

In the following we introduce additional restrictions on the Legendre coefficientsφj;nm.
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3.2.1 Ellipsoidal Multi-Resolution Representation of theSecond Kind

In the ellipsoidal multi-resolution representation of thesecond kind we choose coefficientsφj;nm for
j ∈ N0 with n ∈ N0 and−n ≤ m ≤ n such that

(φj;00)
2 = 1 , 0 ≤ (φj;nm)2 ≤ 1 , (φj+1;nm)2 ≥ (φj;nm)2 , lim

j→∞
(φj;nm)2 = 1 ; (3.21)

for the spherical analogon in case of rotational symmetric base functions see Freeden et al. (1998a),
Freeden (1999); cf. section 3.3. Since the squares of the Legendre coefficientsφj;nm are used within
the conditions (3.21), we call this approach multi-resolution representation of thesecondkind. We
notice from the conditions (3.21), that the scaling functions forj = 0, 1, . . . establish a set of consec-
utive low-pass filterswith

lim
j→∞

Φj(x,xq) = δ(ξ − ξq) (3.22)

according to Eq. (2.27). The fundamental idea of the multi-resolution representation of the second
kind is the decomposition of a signalfj+1(x) of level j + 1 with x ∈ E

2
a,b, defined as a double

convolution of the input signalf ∈ L2(E
2
a,b) with the level−(j + 1) scaling functionΦj+1(x,xq),

i.e.

fj+1(x) =
(

Φj+1 ⋆ Φj+1 ⋆ f
)
w
(x) =: Pj+1f(x) , (3.23)

into the low-pass filtered level−j signal

fj(x) =
(

Φj ⋆ Φj ⋆ f
)
w
(x) =: Pjf(x) (3.24)

and the level−j detail signal

gj(x) =
(

Ψ̃j ⋆ Ψj ⋆ f
)
w
(x) =: Rjf(x) (3.25)

absorbing all the fine structures offj+1(x) missing infj(x) with x ∈ E
2
a,b. In other words the signal

fj(x) means the level−j approximation of the level−(j+1) signalfj+1(x) or the input signalf(x),
respectively. In this approach, the decomposition

fj+1(x) = fj(x) + gj(x) . (3.26)

is performed via theellipsoidal wavelet functionΨj(x,xq) of level j and its dual̃Ψj(x,xq) defined
as

Ψj(x,xq) =

∞∑

n=0

n∑

m=−n

ψj;nm enm(ξ) enm(ξq) , (3.27)

Ψ̃j(x,xq) =

∞∑

n=0

n∑

m=−n

ψ̃j;nm enm(ξ) enm(ξq) . (3.28)
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Applying Eq. (3.7) to the Eqs. (3.23), (3.24) and (3.25) yields

fj+1(x) =
∞∑

n=0

n∑

m=−n

(φj+1;nm)2 fnm enm(ξ) , (3.29)

fj(x) =
∞∑

n=0

n∑

m=−n

(φj;nm)2 fnm enm(ξ) , (3.30)

gj(x) =
∞∑

n=0

n∑

m=−n

ψj;nm ψ̃j;nm fnm enm(ξ) . (3.31)

Considering these results in Eq. (3.26) the (ellipsoidal)two-scale relation

ψj;nm ψ̃j;nm = (φj+1;nm)2 − (φj;nm)2 (3.32)

between the coefficients of the wavelet functions and the scaling functions is derived. Since the
scaling functionsΦj+1(x,xq) andΦj(x,xq) act as low-pass filters, the spherical wavelet function
(3.27) and its dual (3.28) can be interpreted asband-pass filters. The successive application of Eq.
(3.26) yields the ellipsoidal multi-resolution representation

f(x) = fj′(x) +
∞∑

j=j ′

gj(x) with j′ ∈ N0 (3.33)

of the input signalf ∈ L2(E
2
a,b) as an alternative to the series expansion (3.9) in terms of ellipsoidal

harmonics (2.11). By substituting the Eqs. (3.30) and (3.31) into the right-hand side of Eq. (3.33)
and comparing the result with Eq. (3.9) we obtain the condition

(φj′;nm)2 +

∞∑

j=j′

ψj;nm ψ̃j;nm = 1 (3.34)

for the series coefficients of the ellipsoidal scaling and wavelet functions. If we restrict the series
coefficientsψj;nm andψ̃j;nm to

ψj;nm = ψ̃j;nm ∀ n ∈ N0 , −n ≤ m ≤ n (3.35)

it follows

Ψj(x,xq) = Ψ̃j(x,xq) =

∞∑

n=0

n∑

m=−n

ψj;nm enm(ξ) enm(ξq) (3.36)

for the spherical wavelet function (3.27) and its dual (3.28), respectively. Furthermore, the condition
(3.34) reduces to

(φj′;nm)2 +

∞∑

j=j′

(ψj;nm)2 = 1 . (3.37)
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According to Eq. (3.32) the coefficientsψj;nm of the ellipsoidal wavelet function are calculable from

ψj;nm =
√

(φj+1;nm)2 − (φj;nm)2 . (3.38)

Equation (3.25) allows the introduction of theellipsoidal wavelet coefficients

cj(x) =
(

Ψj ⋆ f
)
w
(x) =: Ψjf(x) . (3.39)

Finally we summarize that theellipsoidal multi-resolution representation of the second kind reads

f(x) =
(

Φj′ ⋆ Φj′ ⋆ f
)
w
(x)

︸ ︷︷ ︸
+

∞∑

j=j ′

(
Ψj ⋆ cj

)
w
(x)

︸ ︷︷ ︸
with j′ ∈ N0 . (3.40)

= fj′(x) + gj(x)

3.2.2 Ellipsoidal Multi-Resolution Representation of theFirst Kind

In case of the ellipsoidal multi-resolution representation of the first kind we replace the conditions
(3.21) for the coefficientsφj;nm of the level−j scaling function (3.16) by the conditions

φj;00 = 1 , 0 ≤ φj;nm ≤ 1 , φj+1;nm ≥ φj;nm , lim
j→∞

φj;nm = 1 . (3.41)

Note, that these conditions affect that the diagonal matrixBj defined in Eq. (3.20) for the bandlim-
ited case is at least positive semi-definite. In this approach we avoid the computation of ellipsoidal
wavelet coefficients (3.39) and, consequently, the multi-resolution representation (3.40) reduces to
theellipsoidal multi-resolution representation of the first kind, i.e.,

f(x) =
(

Φj′ ⋆ f
)
w
(x)

︸ ︷︷ ︸
+

∞∑

j=j ′

(
Ψj ⋆ f

)
w
(x)

︸ ︷︷ ︸
with j′ ∈ N0 . (3.42)

= fj′(x) + gj(x)

Thus, the smoother level−j signalfj(x) and the level−j detail signalgj(x) are defined as

fj(x) =
(

Φj ⋆ f
)
w
(x) , (3.43)

gj(x) =
(

Ψj ⋆ f
)
w
(x) . (3.44)

In the frequency domain both signals can be rewritten analogously to the Eqs. (3.30) and (3.31) as

fj(x) =

∞∑

n=0

n∑

m=−n

φj;nm fnm enm(ξ) , (3.45)

gj(x) =

∞∑

n=0

n∑

m=−n

ψj;nm fnm enm(ξ) . (3.46)
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Consequently, the two-scale relation (3.32) reads now

ψj;nm = φj+1;nm − φj;nm . (3.47)

In the same manner as for the multi-resolution representation of the second kind we obtain the condi-
tion

φj′;nm +
∞∑

j=j′

ψj;nm = 1 (3.48)

for the coefficients of the scaling and wavelet functions by introducing the representations (3.45) and
(3.46) into (3.42).

For numerical investigations we rewrite the Eqs. (3.40) and(3.42) as

f(x) = fj′(x) +

J∑

j=j ′

gj(x)

︸ ︷︷ ︸

+

∞∑

j=J+1

gj(x)

︸ ︷︷ ︸

.

= fJ+1(x) + s(x) (3.49)

The influence of neglecting the non-stochastic high-frequency signals(x) (omission error) on the
multi-resolution representation is known asaliasing error; see e.g., Kusche (2002).

Due to the definitions (3.21) and (3.41) of the ellipsoidal scaling and wavelet functions the mean
values of the detail signalgj(x) = gj(λ, φ, b), vanish over the ellipsoidE2

a,b, i.e., it follows

1

Sa,b

∫

E
2

a,b

dSa,b(φ)w(φ) gj(λ, φ, b) = 0 (3.50)

for all j ∈ {j ′, . . . , J}. Note, that the same statement holds for the ellipsoidal wavelet coefficients
(3.39).

3.2.3 Order-Independent Coefficients

With Eq. (3.16) we introduced the generalized ellipsoidal scaling functionΦj(x,xq). However, in
the case of order-independent coefficients, i.e., the coefficientsφj;nm are restricted to the conditions

φj;nm = φj,n ∀ n ∈ N0 , −n ≤ m ≤ n , (3.51)

the ellipsoidal scaling function (3.16) reduces forx,xq ∈ E
2
a,b to

Φj(x,xq) =

∞∑

n=0

n∑

m=−n

φj;n enm(ξ) enm(ξq) ,

=

∞∑

n=0

(2n + 1) φj;n Pn(ξT ξq) . (3.52)
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As we already discussed in the context of Eq. (2.51), functions of the type (3.52) are not rota-
tional symmetric (except at the poles) on the reference ellipsoid E

2
a,b. However, since they would

be isotropic on a sphere, we denote kernel functions of the type (3.52) in the sequel asrotational
symmetricor isotropic. If we substitute the unit vectorsr andrq for the unit vectorsξ andξq, i.e., we
neglect the deviationsδr andδrq as defined in Eq. (2.5), we would obtain from Eq. (3.52) the defini-
tion equation of the spherical level−j scaling function; for an intensive study of the spherical wavelet
theory we refer here to Freeden et al. (1998a), Freeden (1999) and Freeden and Michel (2004). Recall
that the deviationδr vanishes forǫ = 0, i.e., the ellipsoid mutates to a sphere.

Under the condition (3.51) we obtain from Eq. (3.38) the relation

ψj;n =
√

(φj+1;n)2 − (φj;n)2 (3.53)

for the Legendre coefficientsψj;n = ψ̃j;n of the rotational symmetric ellipsoidal wavelet function

Ψj(x,xq) =

∞∑

n=0

n∑

m=−n

ψj;n enm(ξ) enm(ξq) ,

=

∞∑

n=0

(2n + 1) ψj;n Pn(ξT ξq) . (3.54)

In case of bandlimited scaling functions as defined in Eq. (3.17) the Eqs. (3.52) and (3.54) reduce to

Φj(x,xq) =

n′

j∑

n=0

n∑

m=−n

φj;n enm(ξ) enm(ξq) ,

=

n′

j∑

n=0

(2n + 1) φj;n Pn(ξT ξq) , (3.55)

Ψj(x,xq) =

n′

j+1∑

n=0

n∑

m=−n

ψj;n enm(ξ) enm(ξq) ,

=

n′

j+1∑

n=0

(2n+ 1) ψj;n Pn(ξT ξq) ; (3.56)

the different valuesn′j andn′j+1 for the upper summation index are due to the relation (3.53).

As a first example of such an ellipsoidal function (3.55) we introduce theShannon scaling function
defined by the Legendre coefficients

φj;n =

{
1 for n = 0, . . . , 2j − 1

0 for n ≥ 2j

}
=: φSh

j;n (3.57)
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of resolution levelj ∈ N0 with n′j = 2j − 1. In Fig. 4.1 theShannon wavelet functionΨj(x,xq) =:

ΨSh
j (x,xq) for various level valuesj is shown. The corresponding level−j Legendre coefficients are

calculated by inserting (3.57) into Eq. (3.38), i.e.,

ψj;n =





0 for n = 0, . . . , 2j − 1

1 for n = 2j , . . . , 2j+1 − 1

0 for n ≥ 2j+1





=: ψSh
j;n . (3.58)

As can be seen from the two panels a) and b) of Fig. 3.1 the Shannon wavelet functions show
global oscillations. These undesired effects can be mainlysuppressed by using theBlackman wavelet
functionΨj(x,xq) =: ΨBl

j (x,xq) shown in Fig. 3.2. To be more specific, theBlackman scaling
functionis defined by the Legendre coefficients

φj;n =





1 for n = 0, . . . , 2j−1 − 1

Aj(n) for n = 2j−1, . . . , 2j − 1

0 for n ≥ 2j





=: φBl
j;n . (3.59)

The Blackman scaling function is based on the Blackman window

Aj(n) = 0.42 − 0.50 cos

(
2πn

2j

)
+ 0.08 cos

(
4πn

2j

)
, (3.60)

which is often used in classical signal analysis; see e.g. Mertins (1999). Inserting (3.59) into Eq.
(3.53) yields the Legendre coefficients

ψj;n =





0 for n = 0, . . . , 2j−1 − 1
√

1 − (Aj(n))2 for n = 2j−1, . . . , 2j − 1
√

(Aj+1(n))2 for n = 2j , . . . , 2j+1 − 1

0 for n ≥ 2j+1





=: ψBl
j;n (3.61)

of the Blackman wavelet functionΨBl
j (x,xq).

We want to emphasize particularly, that both the Shannon andthe Blackman wavelet functions are
strictly bandlimited, i.e. only the Legendre coefficients within a finite frequency bandBj are different
from zero. In the case of the Blackman wavelet, for instance,it follows from Eq. (3.61)

Bj := {n | 2j−1 ≤ n < 2j+1 } . (3.62)

It can be taken from Fig. 4.2c, that for levelj = 7 the frequency band readsB7 = {n | 64 ≤ n ≤
255}.

For more details concerning these and other scaling and wavelet functions we refer to the textbooks
of Freeden (1999) and Freeden et al. (1998) as well as to Schmidt et al. (2007a).
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Figure 3.1: Shannon wavelet functions for different resolution levelsj ; a) one-dimensional represen-
tation in dependence on the argumentα = arccos(ξT ξq), b) two-dimensional representation on the
reference ellipsoidE2

a,b with b = 6356751.92m andǫ = 521853.58m, c) frequency representation:
since the wavelet functions are non-overlapping, they are orthogonal to each other.
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Figure 3.2: Blackman wavelet functions for different resolution levelsj ; a) one-dimensional repre-
sentation in dependence on the argumentα = arccos(ξT ξq), b) two-dimensional representation on
the reference ellipsoidE2

a,b with b = 6356751.92m andǫ = 521853.58m, c) frequency representation.
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Different detail signalsgj1(x) andgj2(x), i.e. j1 6= j2, computed by level−j1 and level−j2 Shannon
waveletsΨSh

j1
(x,xq) andΨSh

j2
(x,xq), respectively, areorthogonalto each other, since it follows

〈
gj1(x) | gj2(x)

〉
w

=

=
1

Sa,b

∫

E
2

a,b

dSa,b(φ)w(φ)

∞∑

n=0

∞∑

l=0

(ψSh
j1;n)2 (ψSh

j2;l)
2 ×

×
n∑

m=−n

l∑

k=−l

fnm flk enm(ξ) elk(ξ)

=

∞∑

n=0

∞∑

l=0

(ψSh
j1;n)2 (ψSh

j2;l)
2

n∑

m=−n

l∑

k=−l

fnm flk ×

× 1

Sa,b

∫

E
2

a,b

dSa,b(φ)w(φ) enm(ξ) elk(ξ)

=

∞∑

n=0

(ψSh
j1;n)2 (ψSh

j2;n)2
n∑

m=−n

f2
nm = 0 . (3.63)

by applying the Eqs. (3.31), (3.35), (3.51), (3.61) and considering the orthonormality condition (2.17).

3.3 Isotropic Wavelets

We outlined in the previous subsection that the spherical wavelet theory is obtained from the ellip-
soidal wavelet theory by restricting to Legendre coefficientsφj;nm andψj;nm, which are independent
of the orderm = −n, ..., n. The motivation for this was given by the conclusion that forǫ = 0,
i.e., when the ellipsoidal is a sphere, the resulting scaling and wavelet functionsΦj andΨj become
rotational symmetric or isotropic, that is, the values of

Φj(x,xq) =

∞∑

n=0

n∑

m=−n

φj;n enm(ξ) enm(ξq) ,

=

∞∑

n=0

(2n + 1) φj;n Pn(ξT ξq) . (3.64)

andΨj(x,xq) depend only on the geometric distanceα given bycosα = ξT ξq. Since this no longer
holds for an arbitrary ellipsoid withǫ 6= 0, i.e., the quantityα does not correspond to the geometric
distance betweenξ andξq, it is no longer natural to restrict ourselves to scaling andwavelet functions
with order-independent coefficients.
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On the other hand, as seen before restricting to coefficientsdepending only on the degreen, we can
benefit from the fact that the computation of the scaling and wavelet functions is drastically simplified,
cf. the definitions (3.57) to (3.61). This does not only follow from the fact that the values ofΦj(x,xq)

andΨj(x,xq) depend only onξT ξq ∈ [−1,+1] rather than on the tuple(x,xq), but also relies on
the observation that now only the Legendre polynomialsPn instead of all associated Legendre poly-
nomialsPn,m enter the computation ofΦj andΨj . When one is only interested in a multiresolution
representation of the Earth’s gravity field without downward or upward continuation of gravity data,
more generally, solving geodetic boundary value problems,it follows that one should use the special
spherical theory with its order-independent coefficients for better computational efficiency.

Besides that we emphasize in advance that we cannot get around order-dependent coefficients in the
next section when we describe regularization. Thus, we wantto finish this section by illustrating
how the general ellipsoidal wavelet theory allows us to use amultiresolution analysis, which is better
suited to the special geometry of the ellipsoid. More precisely, we want to outline the construction of
scaling and wavelet functionsΦj(x,xq) andΨj(x,xq) for a fixed reference ellipsoidE2

a0,b0
with the

fixed absolute eccentricityǫ0 =
√
a2

0 − b20 according to Eq. (2.1), which are not fully isotropic, but
depend only up to a minimal error on the geometric distance ofξ andξq with respect to the standard
metric onE

2
a0,b0

.

For this purpose let us introduce beside thefixedreference ellipsoidE2
a0,b0

a second (auxiliary) ellip-
soid E

2
a,b, which isvariable in the sense that the eccentricityǫ =

√
a2 − b2 is allowed to vary. We

identify both ellipsoidsE2
a0,b0

andE
2
a,b via the standard ellipsoidal coordinates(λ, φ), which we have

on both of them, cf. Eq. (2.3). Choosing a countable (for practical purposes still finite) sequence
of half axesu1 > . . . > uj > . . . > u∞ = b, note that we get a countable family of ellipsoidal
Abel-Poisson kernelsKe

AP,j, defined as

Ke
AP (x,xq) =

∞∑

n=0

n∑

m=−n

Q∗
nm(

uj

ǫ
)

Q∗
nm( b

ǫ
)
enm(ξ) enm(ξq)

= Ke
AP,j(ξ, ξq) (3.65)

according to Eq. (2.24) withj = 1, . . . ,∞. Now observe that the ellipsoidal kernels (3.65) natu-
rally can serve as scaling functionsΦǫ

j of an ellipsoidal multiresolution representation on the fixed
reference ellipsoidE2

a0,b0
by identifyingE

2
a0,b0

andE
2
a,b via setting

Φǫ
j(x,xq) := Ke

AP,j(ξ, ξq) (3.66)

with x,xq ∈ E
2
a0,b0

. While the sequence of half axisu1, . . . , uj , . . . , u∞ describes the different levels
of resolution, observe that the variable eccentricityǫ of the auxiliary ellipsoidE2

a,b plays the role of a
shape parameter for the scaling functionsΦǫ

j. Choosing this shape parameter in an optimal way one
can achieve that the scaling functionsφǫ

j depend only up to a minimal error on the geometric distance
of ξ andξq with respect to the standard metric onE

2
a0,b0

.
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Chapter 4

Regularization

As mentioned before one of the main applications of the spherical wavelet theory lies in theregu-
larization of inverse problems related to the sphere. In Earth’s gravity field studies regularization
usually concerns the downward-continuation of the gravitydata, e.g., from a satellite orbit to the
Earth’s surface. Since the upward-continuation can be performed by convolving the gravity function
with a rotational symmetric kernel, namely the (spherical)Abel-Poisson kernel (2.48), and therefore
represents a compact operator, the inverse operator is not everywhere defined and unbounded. Given
a spherical wavelet transform one can construct out of the rotational symmetric wavelet functions and
the rotational symmetric Abel-Poisson kernel a family of rotational symmetric regularization wavelets
to solve the inverse problem, see e.g., Freeden (1999). In the ellipsoidal case the upward-continuation
of a gravity potential from the reference ellipsoidE

2
a,b to an ellipsoidE2√

u2+ǫ2,u
, (Eq. 2.8), withu > b

again leads to an integral operator. However, in this case the ellipsoidal Abel-Poisson kernel (2.24) is
not rotational symmetric anymore, which is expressed by thequotient

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)

;

according to Eq. (2.34) the quotient(R/r)n+1 within the spherical Abel-Poisson kernel (2.48) de-
pends only on the degree valuen and not on the order valuesm.

4.1 Sobolev Spaces

With Eq. (2.58) we introduced an integral operatorKs with kernel (2.57) applied to a functionf(x)

on the sphereS2
R. The corresponding Fourier coefficients were defined with Eq. (2.60). When

moving from operators on the sphere to their ellipsoidal analogues, the essential difference is that the
coefficients for the ellipsoidal operators do no longer onlydepend on the degree valuen, but they
explicitly become functions of both degreen and ordern. Thus, an ellipsoidal integral operatorKe,
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with kernel

Ke(x,xq) =

∞∑

n=0

n∑

m=−n

knm hb
nm(x)hb

nm(xq)

=
∞∑

n=0

n∑

m=−n

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)
knm enm(ξ) enm(ξq) (4.1)

according to Eq. (3.1) withxq ∈ E
2
a,b, is defined by the set of coefficients

knm with n ∈ N0 and − n ≤ m ≤ n . (4.2)

The Fourier coefficients of the ellipsoidal convolutionKef(x) were defined in Eq. (3.8), i.e.,

(Kef)nm = knm fnm . (4.3)

Solving the equation

(Kef)(x) = g(x) , (4.4)

whereing(x) is given andf(x) the unknown target function withf ∈ L2(E
2
a,b), is called awell-posed

problem, wheneverKe is bijective and the inverse operator is bounded (reference). However, it is a
well-known fact from functional analysis, that operators of the above form arecompact, i.e., the image
of the unit ball inL2(E2

a,b) underKe is a compact subset ofL2(E
2
a,b). As an important consequence,

Ke cannot possess a bounded inverse: Provided there exists a bounded operator(Ke)−1, the unit ball
in L2(E

2
a,b) must be compact, which would prove thatL2(E

2
a,b) has a finite basis. AlthoughKe is

injective in many cases, it follows from the non-existence of the bounded inverse(Ke)−1, thatKe is
not surjective, more precisely, the image

ImKe = {Kef | f ∈ L2(E
2
a,b)} (4.5)

is not a proper subspace ofL2(E
2
a,b). In order to proof this statement we introduce the space of

functionsf ∈ L2(E
2
a,b), Eq. (3.9), with

∞∑

n=0

n∑

m=−n

(knm)−2 (fnm)2 <∞ (4.6)

and denote it byH(Ke; E2
a,b). From Eq. (3.12) we know thatf ∈ L2(E

2
a,b) is equivalent to the

condition

∞∑

n=0

n∑

m=−n

(fnm)2 <∞ . (4.7)
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Since the coefficientsknm converge to zero for growing degree valuen, it follows that the coefficients
fnm of the functionsf ∈ H(Ke; E2

a,b) must converge very fast to zero in order to keep the left-hand
side of Eq. (4.6), i.e., the norm

‖f‖H(Ke;E2
a,b)

=

√√√√
∞∑

n=0

n∑

m=−n

(knm)−2 (fnm)2 (4.8)

finite. If we introduce a function

κ(x) =
∞∑

n=0

n∑

m=−n

knm enm(ξ) (4.9)

according to Eq. (3.9), we notice that the condition (4.7) isfulfilled, i.e., κ ∈ L2(E
2
a,b), but

κ /∈ H(Ke; E2
a,b), since the condition (4.6) fails. Consequently,H(Ke; E2

a,b) is a proper subspace
of L2(E

2
a,b). Since the norm (4.8) is defined as weighted sum of Fourier coefficients, spaces of the

above form are calledSobolev spaces. Furthermore,H(Ke; E2
a,b) is naturally equipped with the inner

product

〈
f(x) | g(x)

〉
H(Ke;E2

a,b)
=

∞∑

n=0

n∑

m=−n

(knm)−2 fnm gnm (4.10)

for functionsf, g ∈ H(Ke; E2
a,b).

After this short excursion into functional analysis, we return to the study of ellipsoidal operators. As
we have seen above, solving the equation (4.4) is not a well-posed problem, i.e., it isill-posed. It
is well-known that solving ill-posed problems requires regularization. Here, aregularizationof the
ill-posed problem(Ke)−1 is defined as a countable family of linear operatorsAj such thatAj is
bounded for allj ∈ N0 and that it converges pointwise to(Ke)−1 on ImKe, i.e.,

lim
j→∞

Ajg(x) = (Ke)−1g(x) (4.11)

for all g ∈ ImKe in theL2-sense.

For a particular choice ofj, it can be seen that we are now confronted with two types of errors, namely
a regularization errorand adata error from the measurement. In general, an increase ofj leads to
a decrease of the regularization error whereas the data error increases. The optimal level valuej if
obtained by minimizing the sum of data and regularization error.

4.2 Ellipsoidal Wavelet Regularization

As mentioned before, the multi-resolution representationprovides a way to regularize ill-posed prob-
lems. In order to make this clear, fix an integral operatorKe and a multi-resolution representation of
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L2(E2
a,b) with ellipsoidal scaling functionsΦj(x,xq) and ellipsoidal wavelet functionsΨj(x,xq) ac-

cording to the Eqs. (3.16) and (3.27) forj ∈ N0. In the sequel we directly assume that all scaling and
wavelet functions arerotational symmetricas defined with the Eqs. (3.52) and (3.54), which makes
the computations much more efficient, because only Legendrepolynomials have to be evaluated.

In analogy to the definition of Sobolev spacesH(Ke; E2
a,b), we introduce the subspace

H(Ke; [−1, 1]) ⊂ L2([−1, 1]) of functions

κ(x,xq) =

∞∑

n=0

n∑

m=−n

(2n+ 1) κn Pn(ξT ξq) (4.12)

fulfilling the condition

∞∑

n=0

n∑

m=−n

(knm)−2 κ2
n <∞ . (4.13)

Note, that we writeL2([−1, 1]) in order to indicate, that the argumentt of the Legendre polynomials
Pn(t) is restricted to the interval[−1, 1], cf. Eq. (2.62). Under these assumptions we defineregular-
ized scaling functionsandregularized wavelet functions̃Φj(x,xq), andΨ̃j(x,xq), respectively, via
the series expansions

Φ̃j(x,xq) =
∞∑

n=0

n∑

m=−n

(knm)−1 φj;n enm(ξ) enm(ξq) , (4.14)

Ψ̃j(x,xq) =
∞∑

n=0

n∑

m=−n

(knm)−1 ψj;n enm(ξ) enm(ξq) . (4.15)

It is important to observe, that both regularization functions are no longer rotational symmetric, since
their coefficients

φ̃j;nm := (knm)−1 φj;n , (4.16)

ψ̃j;nm := (knm)−1 ψj;n (4.17)

now explicitely depend on the orderm.

Analogous to the Eqs. (3.24) and (3.25) we define the level−j regularized smoothed signal

fj(x) =
(

Φ̃j ⋆ Φj ⋆ f
)
w
(x) =: P̃jf(x) (4.18)

as well as the level−j regularized detail signal

gj(x) =
(

Ψ̃j ⋆ Ψj ⋆ f
)
w
(x) =: R̃jf(x) (4.19)
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of the signalf(x) with x ∈ E
2,ext
a,b . An easy calculation shows

Pjf(x) = Ke P̃jf(x) = P̃j Kef(x) , (4.20)

Rjf(x) = Ke R̃jf(x) = R̃j Kef(x) . (4.21)

LetAj be recursively defined as

Aj ′f(x) = P̃j ′f(x) , (4.22)

Aj+1f(x) = Ajf(x) + R̃jf(x) . (4.23)

Then we have under the consideration of the Eqs. (3.40) and (4.4)

lim
J→∞

AJ+1Kef(x) = lim
J→∞

AJ+1g(x) = lim
J→∞

(P̃j ′Kef(x) +

J∑

j=j′

R̃jKef(x)

= lim
J→∞


Pj ′f(x) +

J∑

j=j′

Rjf(x)




= lim
J→∞


fj ′(x) +

J∑

j=j′

gj(x)




= f(x) . (4.24)

Comparing this result with Eq. (4.11) yields

f(x) = (Ke)−1g(x) = lim
J→∞

AJ+1g(x) . (4.25)

Hence, the familyAj with j = j′, . . . , J is a regularization of(Ke)−1.
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Chapter 5

Multi-Resolution Representation of
Bandlimited Signals

So far we studied non-bandlimited functions or signalsf(x), i.e., their representation (3.9) in ellip-
soidal harmonics (2.11) means an infinite series expansion.In the sequel, however, we deal with
bandlimitedsignals.

5.1 Basic Settings

Let f(x) be abandlimitedsignalf(x) defined as the finite sum

f(x) =

n′∑

n=0

n∑

m=−n

fnm hb
nm(x) (5.1)

with x ∈ E
2,ext
a,b and highest degree valuen′ < ∞. According to Eq. (2.17) the2n + 1 ellipsoidal

harmonicsenm(ξ) of a specific degree valuen and orderm = −n, . . . , n constitute an orthonormal
basis of the finite dimensionalHilbert spaceHarmn(E2

a,b). Consequently, all ellipsoidal harmonics
enm(ξ) of degree valuesn = 0, . . . , n′ and orderm = −n, . . . , n establish an orthonormal basis of
the Hilbert space

Harm0,...,n′(E2
a,b) =

n′⊕

n=0

Harmn(E2
a,b) (5.2)

with dimension

dim(Harm0,...,n′(E2
a,b)) = (n′ + 1)2 =: n . (5.3)
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In addition, we define the space Harmn(E
2,ext
a,b ) spanned by the2n + 1 outer ellipsoidal harmonics

hb
nm(x) of the specific degree valuen and orderm = −n, . . . , n as well as the space

Harm0,...,n′(E
2,ext
a,b ) =

n′⊕

n=0

Harmn(E
2,ext
a,b ) (5.4)

of all outer ellipsoidal harmonicshb
nm(x) of the degree valuesn = 0, . . . , n′ and orderm =

−n, . . . , n. If we assume, that the potentialU(x) is bandlimited, i.e. U ∈ Harm0,...,n′(E
2,ext
a,b ),

we can rewrite Eq. (2.10) as

U(x) =

n′∑

n=0

n∑

m=−n

unm hb
nm(x)

= h(x)Tu (5.5)

with x ∈ E
2,ext
a,b . Hereinu andh(x) denoten× 1 vectors given by

u =
[
u00, u1,−1, . . . , un′,n′

]T
, (5.6)

h(x) =
[
hb

00(x), hb
1,−1(x), . . . , hb

n′,n′(x)
]T

; (5.7)

the vectorh(x) was already defined in Eq. (3.19).

Thereproducing kernel

Ke
rep(x,xq) =

n′∑

n=0

n∑

m=−n

Q⋆
nm(u

ǫ
)

Q⋆
nm( b

ǫ
)

Q⋆
nm(

uq

ǫ
)

Q⋆
nm( b

ǫ
)
enm(ξ) enm(ξq) (5.8)

of the Hilbert space Harm0,...,n′(E
2,ext
a,b ) has to fulfill the conditionsKe

rep ∈ Harm0,...,n′(E
2,ext
a,b ) and

f(x) =
(
Ke

rep ⋆ f
)
w
(x) ; (5.9)

see e.g. Moritz (1980). Recall, that forn′ → ∞ the reproducing kernelKe
rep equals theAbel-Poisson

kernelKe
AP as defined in Eq. (2.24) forx ∈ E

2,ext
a,b andxq ∈ E

2
a,b.

As mentioned before the ellipsoidal harmonics are a very suitable system of base functions for mod-
eling the geopotential globally. However, for regional or local representations we would prefer a
system of base functions which allows the computation ofU(x) mainly from signal values given in
the vicinity ofP (x), i.e. which is characterized by the ability to localize. As shown in the Figures
4.1 and 4.2 ellipsoidal scaling functions are examples for such kind of localizing functions.

In the following we study Eq. (3.23) forj = J + 1 andfJ+1 =: UJ+1 in more detail. From Eq. (3.7)
we obtain analogously to Eq. (3.30)

UJ+1(x) =
(

ΦJ+1 ⋆ ΦJ+1 ⋆ U
)
w
(x) =

∞∑

n=0

n∑

m=−n

(φJ+1;nm)2 unm hb
nm(x) (5.10)
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for x ∈ E
2,ext
a,b . As mentioned before we want to restrict our investigationsto bandlimited rotational

symmetric scaling functions according to (3.58) and (3.61); thus, Eq. (5.10) reduces to

UJ+1(x) =
(

ΦJ+1 ⋆ ΦJ+1 ⋆ U
)
w
(x) =

n′

J+1∑

n=0

n∑

m=−n

(φJ+1;n)2 unm hb
nm(x) , (5.11)

whereinn′J+1 = 2J+1 − 1. Next we define the bandlimited kernel

ΘJ+1(x,xq) =
(

ΦJ+1 ⋆ ΦJ+1

)
w
(x,xq)

=

n′

J+1∑

n=0

n∑

m=−n

θJ+1;n h
b
nm(x) hb

nm(xq) (5.12)

with Legendre coefficients

θJ+1;n = (φJ+1;n)2 (5.13)

and rewrite Eq. (5.11) as

UJ+1(x) =
(

ΘJ+1 ⋆ U
)
w
(x) =

n′

J+1∑

n=0

n∑

m=−n

θJ+1;n unm hb
nm(x) . (5.14)

Defining withnJ+1 = (n′J+1 + 1)2 = 22J+2 thenJ+1 × 1 vectors

u =
[
u00, u1,−1, . . . , un′

J+1
,n′

J+1

]T
, (5.15)

h(x) =
[
hb

00(x), hb
1,−1(x), . . . , hb

n′

J+1
,n′

J+1

(x)
]T

(5.16)

as well as thenJ+1 × nJ+1 positive definite diagonal matrix

BJ+1 = diag(θJ+1;0, θJ+1;1, θJ+1;1, θJ+1;1, θJ+1;2, . . . , θJ+1;n′

J+1
) (5.17)

we rewrite Eq. (5.14) as

UJ+1(x) =
(

ΘJ+1 ⋆ U
)
w
(x) = h(x)TBJ+1 u . (5.18)

In the context of Eq. (3.15) we argued that the infinite set of base functionsKe(x,xq) with x,xq ∈
E

2
a,b spans the spaceL2(E

2
a,b). Consequently, the finite setKe(x,xk) with x ∈ E

2,ext
a,b andxk ∈ E

2
a,b

spans the space Harm0,...,n′(E
2,ext
a,b ), i.e.,

Harm0,...,n′(E
2,ext
a,b ) = span{Ke(x,xk) |x ∈ E

2,ext
a,b , xk ∈ E

2
a,b , k = 1, . . . ,N } (5.19)

withN ≥ n. Based on this insight we conclude, that the convolution
(

ΘJ+1 ⋆ U
)
w
(x) is a member

of the space Harm0,...,n′

J+1
(E

2,ext
a,b ) and can be modeled as a series expansion

UJ+1(x) =
(

ΘJ+1 ⋆ U
)
w
(x) =

NJ∑

k=1

dJ,k ΘJ+1(x,x
J
k ) (5.20)
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in terms of ellipsoidal base functionsΘJ+1(x,x
J
k ); the level−J scaling cofficientsdJ,k are linked

to theNJ computation pointsP (xJ
k ) with k = 1, . . . ,NJ on the reference ellipsoidE2

a,b. Note
that the right-hand side of Eq. (5.20) also can be seen as a discretization of the convolution(

ΘJ+1 ⋆ U
)
w
(x) as defined in Eq. (3.3). Analogously to Eq. (5.5) we rewrite Eq. (5.20) as

the scalar product

UJ+1(x) = θJ+1(x)T dJ (5.21)

with x ∈ E
2,ext
a,b of the twoNJ × 1 vectors

dJ =
[
dJ,1, dJ,2, . . . , dJ,NJ

]T
, (5.22)

θJ+1(x) =
[

ΘJ+1(x,x
J
1 ), ΘJ+1(x,x

J
2 ), . . . , ΘJ+1(x,x

J
NJ

)
]T

. (5.23)

According to Eq. (3.17) the expression

ΘJ+1(x,x
J
k ) = h(xJ

k )T BJ+1 h(x) (5.24)

holds for each component of the vectorθJ+1(x). Hence, we obtain from the Eqs. (5.23) and (5.24)

θJ+1(x) = H BJ+1 h(x) , (5.25)

wherein

H =
[
h(xJ

1 ), h(xJ
2 ), . . . , h(xJ

NJ
)
]T

(5.26)

means anNJ × nJ+1 matrix. As mentioned before thenJ+1 components of the vectorh(x), Eq.
(5.16), establish a complete basis of the space Harm0,...,n′

J+1
(E

2,ext
a,b ). If for NJ ≥ nJ+1 the matrix

H is of full column rank, i.e. rankH = rank(HBJ+1) = nJ+1, the altogetherNJ components
ΘJ+1(x,x

J
k ) with k = 1, . . . , NJ of the vectorθJ+1(x) span the space Harm0,...,n′

J+1
(E

2,ext
a,b ), too,

as required in Eq. (5.19). In this case the system

SNJ
(E2

a,b) = {xJ
k ∈ E

2
a,b | k = 1, . . . ,NJ} (5.27)

of pointsP (xJ
k ) on the reference ellipsoidE2

a,b is calledadmissible. If even the equalityNJ = nJ+1

holds, the matrixH is regular andSNJ
(E2

a,b) is calledfundamental; see Freeden et al. (1998). In the
following we always assume that point systemsSNj

(E2
a,b) such asSNJ

(E2
a,b) are at least admissible.

Note, that the series expansion (5.20) means the desired counterpart to the representation (5.5) in
terms of ellipsoidal harmonics; the level−J scaling coefficientsdJ,k with k = 1, . . . ,NJ play the
role of the ellipsoidal harmonic coefficientsunm for n = 0, . . . , n′J+1 andm = −n, . . . , n collected
in thenJ+1 × 1 vectoru, Eq. (5.15). In order to find a relation between the two sets ofcoefficients
we insert Eq. (5.25) into Eq. (5.21) and obtain forU = UJ+1

U(x) = h(x)T BJ+1 H
T dJ . (5.28)
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Comparing the right-hand sides of the Eqs. (5.18) and (5.28)the desired relation

u = HT dJ (5.29)

follows. Note, that from this result thenJ+1 ellipsoidal harmonic coefficientsunm with n =

0, . . . , n′J+1 andm = −n, . . . , n are uniquely computable from theNJ level−J scaling coefficients
dJ,k with k = 1, . . . , NJ . However, only in case of a fundamental point system, i.e, for NJ = nJ+1

the reverse does also hold. Before we procede with the computation of the detail signals, we want to
emphasize the main difference between the representation of a signal in terms of ellipsoidal harmonics
and its decomposition into detail signals by means of ellipsoidal wavelets:

– The ellipsoidal harmonic coefficientsunm, areglobal parameters, because they do not depend on
a spatial position. On the other hand these coefficients are characterized by anoptimal frequency
localization, becauseunm is directly related to the frequency valuen.

– The scaling coefficientsdJ,k, however, arepoint parameters, because they are a function of the
position vectorxJ

k with xJ
k ∈ E

2
a,b. The frequency localization is worse than in the ellipsoidal

harmonic case, because each coefficient is related to a frequency bandBj , defined in Eq. (3.62).

The items listed before are the consequences of the so-called uncertainty principle(Mertins 1999),
originally introduced in the context of quantum mechanics.The necessity of the gravity field rep-
resentation in point parameters was already identified and discussed more than 30 years ago (Heitz
1975).

Next, we introduce the wavelet functionΨJ(x,xJ
k ) represented analogously to Eq. (5.24) as

ΨJ(x,xJ
k ) = h(xJ

k )T CJ h(x) . (5.30)

In opposite to the matrixBJ+1 we assume now that thenJ+1 × nJ+1 diagonal matrix

CJ = diag(ψJ ;0, ψJ ;1, ψJ ;1, ψJ ;1, ψJ ;2, . . . , ψJ ;n′

J+1
) (5.31)

might be just positive semidefinite since the Legendre coefficientsψJ ;n fulfill the condition

ψJ ;n ψ̃J ;n =
√

(φJ+1;n)2 − (φJ ;n)2

=
√
θJ+1;n − θJ ;n ∀ n = 0, . . . , n′J+1 (5.32)

according to the Eqs. (3.32) and (5.13). It follows from Eq. (3.39) that the convolution(
ΨJ ⋆ f

)
w
(x) has to be evaluated to calculate the level−J wavelet coefficientscJ (x). Thus, it

follows analogously to Eq. (5.18)

cJ(x) =
(

ΨJ ⋆ U
)
w
(x) = h(x)TCJ u . (5.33)
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Substituting the result (5.29) foru yields

cJ(x) =
(

ΨJ ⋆ U
)
w
(x) = h(x)T CJ H

T dJ

= ψJ(x)TdJ (5.34)

wherein

ψJ(x) =
[

ΨJ(x,xJ
1 ), ΨJ(x,xJ

2 ), . . . , ΨJ(x,xJ
NJ

)
]T
. (5.35)

means anNJ × 1 vector collecting the wavelet functionsΨJ(x,xJ
k ) as defined in Eq. (5.30). Thus,

if the coefficient vectordJ is known once, it can be used to calculate both, the ellipsoidal harmonic
coefficientsunm according to Eq. (5.29) and any convolution of the functionU(x) with kernel
functions

Ke(x,xk) =

n′

J+1∑

n=0

n∑

m=−n

kn h
b
nm(x) hb

nm(xk) (5.36)

with x ∈ E
2,ext
a,b andxk ∈ SNJ

(E2
a,b) fulfilling the condition

kn ≥ 0 ∀ n = 0, . . . , n′J+1 (5.37)

for the Legendre coefficientskn. As seen before the ellipsoidal wavelet functionΨJ means an exam-
ple for such a kernelKe. All ellipsoidal scaling functionsΦj with j ≤ J and all ellipsoidal wavelet
functionsΨj with j < J as well as their duals̃Ψj are further examples.

5.2 Decomposition and Reconstruction

Based on the definition (5.32) of an ellipsoidal wavelet function the two main steps to create a multi-
resolution representation of a given band-limited input signalf(x) can be outlined as follows:

1. Analysis: The (primal) ellipsoidal wavelet functionΨj(x,xk) with j ∈ {j′, . . . , J} decomposes
the input signalf(x) into its wavelet coefficients

cj(x) =
(

Ψj ⋆ f
)
w
(x) = ψj(x)T dj (5.38)

with theNj × 1 vector

ψj(x) =
[

Ψj(x,x
j
1), Ψj(x,x

j
2), . . . , Ψj(x,x

j
Nj

)
]T

(5.39)

of wavelet functionsΨj(x,x
j
k) and theNj × 1 vector

dj =
[
dj,1, dj,2, . . . , dj,Nj

]T
(5.40)
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of the level−j scaling coefficientsdj,k with k = 1, . . . ,Nj andNj ≥ nj+1 = (n′j+1 + 1)2.
As mentioned before we assume that the position vectorsx

j
k are related to theNj points of the

admissible systemSNJ
(E2

a,b). The decomposition of the input signal into wavelet coefficients via
Eq. (5.38) is also known asmulti-resolution analysis(MRA).

2. Synthesis: The dual ellipsoidal wavelet functioñΨj(x,xk) performs the reconstruction

f(x) = fj′(x) +
J∑

j=j′

gj(x) (5.41)

by means of thelevel−j′ approximation

fj′(x) =
(

Θj′ ⋆ f
)
w
(x) (5.42)

and thelevel−j detail signals

gj(x) =
(

Ψ̃j ⋆ cj
)
w
(x) (5.43)

with j = j′, . . . , J <∞. The ellipsoidal kernel functionΘj′(x,xk) is given as

Θj′(x,xk) =

n′

j′∑

n=0

n∑

m=−n

θj′;n h
b
nm(x) hb

nm(xq) (5.44)

according to Eq. (5.12).

In the sequel we describe at first the decomposition process (analysis) in more detail by identifying
the input signalf(x) with the gravitational potentialU(x) or the disturbing potentialT (x).

Today geopotential models are eithersatellite-only modelsmostly based on measurements from the
modern gravity space missions, namely the CHAllenging Minisatellite Payload (CHAMP), the Grav-
ity Recovery And Climate Experiment (GRACE) as well as the Gravity field and steady-state Ocean
Circulation Explorer (GOCE) or so-calledcombined models; for more details concerning these grav-
ity missions see, e.g. Reigber et al. (2000, 2005). The new high-resolution Earth Gravity Model 2007
(EGM07), for instance, is computed until degreen = 2160 from a combination of satellite and surface
data; see e.g., Pavlis et al. (2005). Nowadays, besides the classical procedures, alternative methods
such as theenergy balance approachor theFredholm integral approach(see e.g., Mayer-Gürr et al.
2005, 2006) are used to derive global and regional geopotential models.

The energy balance approach and its application to Low-Earth-Orbiting (LEO) satellites goes back
to the 60’s (Bjerhammer 1967) and was rediscovered by Jekeli(1999), van Loon and Kusche (2005),
Ilk and Löcher (2005) and others. An extensive overview about this topic is presented by Han (2003)
and Han et al. (2006).
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5.2.1 Initial Step

As the result of the energy balance approach we assume in the initial step of the decomposition process
that geopotential measurementsU(xp) ≡ UJ+1(xp) are given along the orbit of a LEO satellite.

According to Eq. (5.21) the observation equation reads

U(xp) = θJ+1(xp)
T dJ . (5.45)

The numerical value for the highest resolution level, i.e.J+1 depends on the maximum degreenmax

we want to solve for. Thus, it followsJ + 1 ≥ log2(nmax + 1). For the CHAMP case, e.g., we may
choosenmax = 120. Consequently, the valueJ + 1 = 7 follows.

Furthermore, as mentioned in the context of Eq. (5.26) the numberNJ of points P (xJ
k ) with

k = 1, . . . , NJ of the level−J admissible systemSNJ
(E2

a,b), Eq. (5.27), is restricted toNJ ≥
22J+2 = nJ+1. In order to estimate the unknownNJ × 1 vectordJ of scaling coefficientsdJ,k

with k = 1, . . . , NJ from Eq. (5.45), we need altogetherP discrete observation pointsP (xp) with
p = 1, . . . , P andP ≥ NJ . However,geodetic measurementsy(xp) =: yp are always erroneous, i.e.
U(xp) = y(xp)+ e(xp) orUp = yp + ep. Hereinep := e(xp) denotes the measurement error. Under
these assumptions Eq. (5.45) can be rewritten as theobservation equation

yp + ep = θT
J+1; p dJ (5.46)

for a single observationyp; herein we setθJ+1(xp) =: θJ+1; p. Note, that usually the observations
are reduced by so-called background models, i.e., all the informations which are a priori known are
subtracted from the original observations. This way, the observationsyp have to be interpreted as
residual observations; see e.g. Schmidt et al. (2006, 2007a).

The procedure described here allows the combination of different kinds of measurements, e.g., geopo-
tential values and gravity anomalies. In such a combinationcase additional operators, like the Stokes
operator, have probably to be considered in the vectorθJ+1; p. Introducing theP × 1 vectors

y =
[
y1, y2, . . . , yP

]T
, (5.47)

e =
[
e1, e2, . . . , eP

]T
(5.48)

of the observations and the measurement errors, respectively, theP ×NJ coefficient matrix

AJ =
[
θJ+1; 1, θJ+1; 2, . . . , θJ+1; P

]T
(5.49)

and theP × P covariance matrixD(y) = Σy of the observations, the linear model

y + e = AJ dJ with D(y) = Σy = σ2
y V

−1
y (5.50)

is established; see e.g. Koch (1999). Hereinσ2
y andV y are denoted as the variance factor and the

weight matrix, which is assumed to be positive definite. Analog to the matrixH , Eq. (5.26), and
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depending on the distribution of the observation sites the matrix AJ is of rankAJ ≤ nJ+1, i.e.
a rank deficiency of at leastNJ − nJ+1 exists. Besides the rank deficiency problem the resulting
normal equation system might beill-conditioned. If we, for instance, want to compute the gravity
field at the Earth’s surface just from satellite data,regularization procedureshave generally to be
applied. Solution strategies for these problems have been already discussed in section 4.2. However,
in the following we want to pursue a different way.

Let us assume that according to Eq. (5.5) a geopotential model

U0(x) =
n′∑

n=0

n∑

m=−n

unm;0 h
b
nm(x) = h(x)Tu0 (5.51)

with x ∈ E
2,ext
a,b in terms of outer harmonics exists. The given series coefficientsunm;0 are collected

in then× 1 vector

u0 =
[
u00;0, u1,−1;0, . . . , un′,n′;0

]T
(5.52)

with n = (n′ + 1)2. Now we interpreteu0 and the associated covariance matrixD(u0) as prior
information for the expectation vectorE(u) = µu and the covariance matrixD(u) = Σu of the
vectoru collecting the ellipsoidal series coefficientsunm for n = 0, . . . , n′ andm = −n, . . . , n and
introduce the additional linear model

µu + eu = A dJ with D(µu) = σ2
u Σu (5.53)

following Eq. (5.29) withHT =: A. In Eq. (5.53)eu is defined as the error vector of the prior
information andσ2

u the corresponding unknown variance factor. The combination of the two models
(5.50) and (5.53) gives an extended linear model with unknown variance componentsσ2

y andσ2
u,

namely
[
y

µu

]
+

[
e

eu

]
=

[
AJ

A

]
dJ with D

([ y
µu

])
= σ2

y

[
V −1

y 0

0 0

]
+ σ2

u

[
0 0

0 Σu

]
. (5.54)

The method of estimating variance components (e.g. Koch, 1999) yields the solution

d̂J = (AT
JV yAJ + λAT Σ−1

u A)−rs (AT
J V y y + λATΣ−1

u µu) (5.55)

with the covariance matrix

D(d̂J) = σ2
y (AT

JV yAJ + λATΣ−1
u A)−rs ; (5.56)

λ := σ2
y/σ

2
u might be interpreted as a regularization parameter. Note, that( · )−rs means a symmetrical

reflexive generalized inverse.

Other solution strategies can be found in the literature; see e.g. Freeden and Michel (2004) or Schmidt
et al. (2007a). In the following we assume that the vectordJ and its covariance matrixD(dJ) are
given and mean the starting point of the multi-resolution representation.
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5.2.2 Pyramid Step

In the so-called pyramid step we compute the level−j results from the level−(j + 1) results for
j = j′, . . . , J − 1. To be more specific, the(J − j)th pyramid step consists mainly of the linear
equations

dj = P j dj+1 = P j P j+1 . . . P J−1 dJ =: P j,J dJ , (5.57)

cj = Qj dj = Qj P j,J dJ , (5.58)

whereinP j , P j+1, . . . , P J−1 are low-pass filter matrices. In particularP j is anNj × Nj+1 ma-
trix, which transforms theNj+1 × 1 scaling coefficient vectordj+1 of level j + 1 into theNj × 1

scaling coefficient vectordj of level j. Next, the vectordj is used to calculate theNj × 1 level−j
wavelet coefficient vectorcj = (cj,k) of wavelet coefficientscj,k, k = 1, . . . ,Nj according to Eq.
(5.58) using theNj × Nj band-pass filter matrixQj. As mentioned in the context of Eq. (5.36)
the convolution

(
Ψj ⋆ U

)
w
(x) can be evaluated also by means of the scaling vectordJ calculated

(estimated) within the initial step. This procedure would have the drawback that in each pyramid step
the same admissible systemSNJ

(E2
a,b) would be used. But as a matter of fact coarser structures are

modelable by less terms than finer structures. Since usuallythe inequalityNj < Nj+1 holds, the
Nj ×Nj+1 transformation matrixP j in Eq. (5.57) effects a downsampling process as the key point
of thepyramid algorithmvisualized in Fig. 5.1 by means of a filter bank scheme.

a) Filter bank of the decomposition process

y → dJ
↓→ dJ−1

↓→ · · · ↓→ dj+1

↓→ dj
↓→ · · · ↓→ dj′

↓ ↓ ↓ ↓ ↓
cJ cJ−1 cj+1 cj cj′

b) Filter bank of the reconstruction process

cJ cJ−1 cj+1 cj cj′

↓ ↓ ↓ ↓ ↓
gJ + gJ−1 + · · · + gj+1 + gj + · · · + gj′

Figure 5.1: Filter banks of the multi-resolution representation using wavelets. ’
↓→ ’ means a symbol

for downsampling, e.g., from levelj + 1 to levelj by a factorNj+1/Nj .
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For the derivation of the matrixP j we start from the Eqs. (5.20) and (5.21), setJ =: j and obtain

(
Θj+1 ⋆ U

)
w
(xp) = θj+1(xp)

T dj

=: θT
j+1; p;Nj

dj . (5.59)

Recall, that theNj ×1 scaling vectorθj+1(xp) =: θj+1; p;Nj
is computed by the level−(j+1) kernel

functionΘj+1 and related to the admissible point systemSNj
(E2

a,b) defined in Eq. (5.27). Due to the
condition (5.37) it follows in addition

(
Θj+1 ⋆ U

)
w
(xp) = θj+1(xp)

T dj+1

=: θT
j+1; p;Nj+1

dj+1 . (5.60)

TheNj+1 × 1 vectorθj+1(xp) =: θj+1;p;Nj+1
is in fact also computed by the level−(j + 1) kernel

function Θj+1, but in opposite to Eq. (5.59) related to the admissible point systemSNj+1
(E2

a,b).
Equating the right-hand sides of the Eqs. (5.59) and (5.60) therefore yields

θT
j+1; p;Nj

dj = θT
j+1; p;Nj+1

dj+1 . (5.61)

Note, that due to condition (5.37) the level−(j + 1) kernel functionΘj+1 can be replaced by the
reproducing kernelKe

rep of the space Harm0,...,n′

j+1
(E

2,ext
a,b ) as defined in Eq. (5.8).

Next, we identify the vectorxp with xp ∈ E
2,ext
a,b one after another with the elements of the admissible

point systemSNj
(E2

a,b). Hence, we obtain the linear equation system

[
θj+1;1;Nj

, θj+1;2;Nj
, . . . , θj+1;Nj ;Nj

]T
dj

=
[
θj+1;1;Nj+1

, θj+1;2;Nj+1
, . . . , θj+1;Nj ;Nj+1

]T
dj+1 , (5.62)

which can be rewritten as

Aj dj = Bj+1 dj+1 (5.63)

by introducing theNj ×Nj matrix

Aj =
[
θj+1;1;Nj

, θj+1;2;Nj
, . . . , θj+1;Nj ;Nj

]T
(5.64)

with rankAj = nj+1 = 22j+2 and theNj ×Nj+1 matrix

Bj+1 =
[
θj+1;1;Nj+1

, θj+1;2;Nj+1
, . . . , θj+1;Nj;Nj+1

]T
. (5.65)

Hence, the left-hand side multiplication of Eq. (5.63) withthe matrixAT
j , i.e.

AT
j Aj dj = AT

j Bj+1 dj+1 , (5.66)
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yields a solution

dj = (AT
j Aj)

−
rs A

T
j Bj+1 dj+1 , (5.67)

wherein(AT
j Aj)

−
rs means a symmetrical reflexive generalized inverse of the matrix AT

j Aj . The
comparison of the result (5.67) with Eq. (5.57) defines the low-pass filter matrixP j as

P j := (AT
j Aj)

−
rs A

T
j Bj+1 . (5.68)

Note, that this result is not unique, because any generalized inverse(AT
j Aj)

− would solve the linear
system (5.66) for the coefficient vectordj (Koch 1999). For numerical investigations we may use the
pseudoinverse(AT

j Aj)
+, which is unique. In order to avoid the matrix calculations derived before

other strategies can be applied to compute the transformation (5.57) of the scaling coefficients; see
e.g. Freeden (1999) and Schmidt et al. (2007a).

Due to the condition (5.37) Eq. (5.59) can be rewritten as
(

Θj+1 ⋆ U
)
w
(xp) =: θT

j+1; p;NJ
dJ , i.e.

the convolution is computed by the scaling coefficient vector dJ of highest resolution levelJ . Thus,
the low-pass filter matrixP j;J , introduced in Eq. (5.57), can be computed directly by solving the
linear equation systemAj dj = BJ dJ with theNj ×NJ matrix

BJ =
[
θJ ;1;NJ

, θJ ;2;NJ
, . . . , θJ ;NJ ;NJ+1

]T
. (5.69)

analog to the procedure described before. Instead of the solution (5.68) we obtainP j,J :=

(AT
j Aj)

−
rs A

T
j BJ . A construction ofP j;J by evaluating the matrix productsP j P j+1 . . . P J−1

according to Eq. (5.57) is therefore not necessary.

TheNj ×Nj band-pass filter matrixQj, defined in Eq. (5.58), follows from Eq. (5.38) and reads

Qj =
[
ψj;1, ψj;2, . . . , ψj;Nj

]T
(5.70)

with ψj(xp) =: ψj; p andp = 1, . . . , Nj .

The different steps of the decomposition process are illustrated in the top part of the filter bank scheme
shown in Fig. 5.1. Since all computations are performed by linear equation systems thelaw of error
propagationcan be applied easily in order to calculate the corresponding covariance matrices; e.g. the
covariance matrixD(cj) of the level−j wavelet coefficient vectorcj reads under the consideration
of the right-hand side of Eq. (5.57)

D(cj) = Qj D(dj) Q
T
j

= Qj P j,J D(dJ) P T
j,J Q

T
j . (5.71)

That way, tests of hypothesis can be applied in order to checkthe wavelet coefficients for significance.
This procedure means a kind ofdata compressionbased on statistics.
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5.2.3 Reconstruction Step

In the reconstruction step we start from the wavelet coefficient vectorcj of level j ∈ {j′, . . . , J} and
compute in accordance with Eq. (5.43) theM × 1 level-j detail signal vectorgj from the matrix
equation

gj = Kj cj . (5.72)

Herein theM × Nj matrixKj works as aband-pass filterand has to be computed from the dual
ellipsoidal wavelet functioñΨj as will be demonstrated in the following. The elementsgj(xq) of the
vectorgj are related to the pointsP (xq) with xq ∈ E

2,ext
a,b andq = 1, . . . ,M . According to Eq.

(5.41) the multi-resolution representation reads

f = f j′ +
J∑

j=j′

gj , (5.73)

whereinf means theM × 1 vector offilteredor predictedsignal valuesf(xq) not necessarily being
the geopotential valuesU(xq). Since these values might also be functionals ofU we keep in the
following the letterf . Thus, the components of the vectorf j′ = (fj′(xq)) are calculated from

fj′(xq) = θj′(xq)
T dj′ (5.74)

according to Eq. (5.59) and mean the level−j′ approximation of the signal valuesf(xq). TheNj′ ×1

vectorθj′(xq) is given by Eq. (5.23) replacingJ + 1 by j′.

In order to compute theM ×Ni matrixKj , defined in Eq. (5.72), we subsitute theNj × 1 wavelet
coefficient vectorcj for theN × 1 observation vectory on the left-hand side of the linear model
(5.50). Thus, it follows withdj =: tj ande = 0

cj = Aj tj , (5.75)

wherein theNj ×Nj matrix

Aj =
[
θj+1; 1, θj+1; 2, . . . , θj+1; Nj

]T
(5.76)

with rankAj = nj+1 is defined analogously to Eq. (5.49). Recall thatnj+1 = (n′j+1 + 1)2 = 22j+2

holds. Equation (5.75) can be solved by

tj = (AT
j Aj)

−
rs A

T
j cj , (5.77)

wherein(AT
j Aj)

−
rs means a symmetrical reflexive generalized inverse of the matrix AT

j Aj.

Analog to the matrixQj, defined in Eq. (5.70), we introduce theM ×Ni matrix

Q̃j =
[
ψ̃j;1, ψ̃j;2, . . . , ψ̃j;M

]T
. (5.78)
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TheM vectorsψ̃j(xq) =: ψ̃j; q with q = 1, . . . ,M are assembled by the dual ellipsoidal wavelet
function valuesψ̃j(xq,x

j
k) with xj

k ∈ SNj
(E2

a,b). Due to the condition (5.37) we substitutẽQj for
Aj in Eq. (5.75) and obtain with the result (5.77)

gj = Q̃j tj = Q̃j (AT
j Aj)

−
rs A

T
j cj . (5.79)

The comparison of the Eqs. (5.72) and (5.79) defines the matrix Kj as

Kj := Q̃j (AT
j Aj)

−
rs A

T
j . (5.80)

As in Eq. (5.68) we may substitute the pseudoinverse(AT
j Aj)

+ in Eq. (5.80) for the symmetrical
reflexive generalized inverse(AT

j Aj)
−
rs for numerical computations.

The covariance matrixD(gj) of the detail signal vectorgj follows from Eq. (5.72) under the consid-
eration of Eq. (5.71) by applying the law of error propagation, i.e.

D(gj) = Kj D(cj)K
T
j

= Kj Qj P j,J D(dJ) P T
j,J Q

T
j K

T
j . (5.81)

The generalization of this result gives the covariance matrix

C(gj ,gk) = Kj Qj P j,J D(dJ) P T
k,J Q

T
k K

T
k (5.82)

between two detail signal vectorsgj andgk with j, k = j′, . . . , J .

As in the decomposition case the different steps of the reconstruction process (Eqs. (5.72) and (5.73))
can be illustrated by asynthesis filter bankas shown in Fig. 4-3b.

In the decomposition process, Eq. (5.57),P J−1 is the low-pass filter matrix of largest size, namely
NJ−1 × NJ . According to Eq. (5.68) the application ofP J−1 requires the computation of the
symmetrical reflexive generalized inverse(AT

J−1AJ−1)
−
rs or any other generalized inverse. In the

reconstruction process, however, the matrixKJ of highest levelJ is of sizeM × NJ with NJ >

NJ−1. As can be seen from Eq. (5.80) we have to compute the symmetrical reflexive generalized
inverse(AT

JAJ)−rs or any other generalized inverse of sizeNJ ×NJ . Thus, the reconstruction needs
more computational efforts and storage space than the decomposition. In order to avoid the calculation
of (AT

J AJ)−rs, but to perform the multi-resolution representation (5.73) we may prefer the ellipsoidal
multi-resolution representation of the first kind as explained in subsection 3.2.2.

In the latter case we replace Eq. (5.72) by

gj = Lj dj (5.83)

with j = j′, . . . , J . TheM ×Nj matrixLj works as aband-pass filterand is computed according to
Eq. (3.44) by the ellipsoidal wavelet functionΨj(xq,x

j
k) with xj

k ∈ SNj
(E2

a,b) andq = 1, . . . ,M .
To be more specific we obtain analogously to Eq. (5.70)

Lj =
[
ψj;1, ψj;2, . . . , ψj;M

]T
(5.84)
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with ψj(xq) =: ψj; q andq = 1, . . . ,M . The covariance matrix (5.82) reads now

C(gj ,gk) = Lj P j,J D(dJ) P T
k,J L

T
k . (5.85)

The main advantage of this second approach is the efficient computation of the detail signal vectors.
On the other hand the analysis step is reduced to the computation of the vectorsdj of scaling coeffi-
cients according to the Eq. (5.57).Data compression techniquesare usually applied to wavelet coef-
ficients, because these quantities express the band-pass behavior of the data with respect to the spatial
position. Since the scaling coefficients reflect the corresponding low-pass behavior, data compression
techniques applied to these values will not be as effective than in the case of wavelet coefficients.

5.3 Numerical Example

The concept presented in the last subsection shall now be applied to a simulated global data set based
on the EGM 96 gravity model. We choose a reference ellipsoidE

2
a0,b0

with a semi-minor axisb0 =

6356.75192 km and an absolute eccentricityǫ = 521.85358 km. Hence, the semi-major axis is given
asa0 = 6378.13657 km. We first compute disturbing potential valuesf(x) =: T (x) up to degree
n = 63 from EGM 96 on a standard spherical longitude-latitude gridat satellite altitudes randomly
distributed between 450 km and 500 km, i.e. the vectorx is defined by Eq. (2.36). Furthermore,
we consider additional noise for the disturbing potential values with a prior standard deviation of
0.8 m2/s2. Next, we transform the data to a Jacobian ellipsoidal coordinate system, i.e. we solve
the components of the vectorx as defined in Eq. (2.1) for the spheriodal coordinatesλ, φ andu;
cf. Grafarend et al. (1999). The altogetherP = 12960 observationsT (xp) with p = 1, . . . , P ,
shown in Fig. 5.2 neglecting the altitude variations, are collected in theP × 1 observation vector
y of the linear model (5.50) and mean the global input signal ofthe multi-resolution representation.
A diagonal weight matrixV y = (vy;p) with purely latitude-dependent elementsvy;p = cosφp was
chosen, whereinφp is the spheroidal latitude of the observation pointP (xp).

In order to construct a multi-resolution representation ofthe given disturbing potential data based on
the Blackman scaling and wavelet functions (cf. Eqs. (3.59)to (3.61)) we setJ = 5 (see Fig. 3.2) and
estimate the vectord5 = (d5,k) from the model (5.50). To be more specific, the coefficientsd5,k with
k = 1, . . . , N5 are in this example related to a level-5 Reuter gridconsisting ofN5 = 5180 points
P (x5

k) on the reference ellipsoidE2
a0,b0

. Figure 5.3 shows, for instance, a level-3 Reuter grid with
altogetherN3 = 317 points. Note, that Reuter grids are non-hierarchical but equidistributed point
systems, i.e. the corresponding integration weights are independent on the position. TheP × N5

coefficient matrixA5, defined in Eq. (5.49) is of rankn6 = 4096, i.e. a rank deficiency ofr =

N5 − n6 = 184 exists.

Figure 5.4 displays exemplarily the estimated level-5 wavelet coefficientŝc5,k collected in theN5 × 1

vector ĉ5 computed by Eq. (5.58). The related estimated covariance matrix is calculated from Eq.
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Figure 5.2: Observed disturbing potential data inP = 12960 grid pointsP (xp) with p = 1, . . . , P

at satellite altitude. Note, that due to the reason of visualization the altitude variations are neglected
in this figure.

(5.71) after replacing the variance factorσ2
y by its estimation

σ̂2
y =

êT P y ê

P − n6
, (5.86)

wherein

ê = A5 d̂5 − y (5.87)

means theP × 1 vector of the residuals.

The histogram in Fig. 5.5 depicts clearly that a large numberof level-5 wavelet coefficients is nu-
merically close to zero. A test of significance proved thatn5 = 3001 coefficients are statistically
negligible. The data compression rate

κj = nj/Nj (5.88)

of level j amounts forj = 5 thereforeκ5 = 58%. These results and the corresponding values for the
other levelsj are listed in Table 5.1. Various data compression or waveletthresholding techniques are
treated in detail, e.g., by Ogden (1997).

Fig. 5.6 shows the altogether six detail signalsĝj(x) according to Eq. (5.72) withj ′ = 0 on the
reference ellipsoidE2

a0,b0
as the building blocks of the multi-resolution representation of the input

signal shown in Fig. 5.2. Note, that in this example the points P (xq), introduced in the context of
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Figure 5.3: Level-3 Reuter grid withN3 = 317 pointsP (x3
k) andk = 1, . . . ,N3.
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Figure 5.4: Estimated level-5 wavelet coefficientŝc5,k defined on a level-5 Reuter grid with
k = 1, . . . , N5 = 5180. Note, that these discrete values were interpolated for visualization.

Eq. (5.72), are identified with the observation sitesP (xp), i.e.M = N = 12960. Whereas Table 5.1
shows some statistics for the wavelet coefficients Table 5.2presents the corresponding values for the
detail signals. The estimated standard deviationsσ̂(ĝj,k) are computed from the diagonal elements of
the covariance matrix (5.81) substituting again the estimation σ̂2

y for the variance factorσ2
y .

As can be seen from Eq. (5.73) the sum of the six detail signal vectorsgj of the levelsj = 0, . . . , 5

yields an approximation of the disturbing potential on the reference ellipsoidE2
a0,b0

, since the vector
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Figure 5.5: Histogram of the estimated level-5 wavelet coefficientŝc5,k. Almost 60% of them are
statistically non-significant.

level j Nj σ̂(ĉj,k) nj κj [%]

5 5180 0.035 – 0.043 3001 58

4 1290 ≈ 0.0049 45 4

3 317 ≈ 0.0013 0 0

2 77 ≈ 0.0005 0 0

1 20 ≈ 0.0002 0 0

0 6 ≈ 0.0002 6 100

Table 5.1: NumbersNj of wavelet coefficientscj,k of the levelsj = 0, . . . , 5, estimated standard
deviationŝσ(ĉj,k) and results for the test of significance;nj = number of non-significant coefficients,
κj = data compression rate.

f̂0 reduces to

f̂0 = µ̂y 1 , (5.89)

whereinµ̂y means the estimator of the mean value of the observations over the ellipsoid and1 =

[ 1, 1, . . . , 1 ]T denotes anM × 1 vector. Figure 5.7 shows the elements of theM × 1 vectorf̂ as the
output signal of the multi-resolution representation. Note, that these results consider all coefficients,
even those which were downgraded as non-significant by the statistical test mentioned before.
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level j M σ̂(ĝj,k) nj κj [%]

5 12960 2.61 – 3.00 6306 49

4 12960 ≈ 0.39 421 4

3 12960 ≈ 0.11 41 0.4

2 12960 ≈ 0.04 4 0.03

1 12960 ≈ 0.02 5 0.04

0 12960 ≈ 0.02 12960 100

Table 5.2: Numbers of detail signal valuesgj,q of the levelsj = 0, . . . , 5, estimated standard de-
viations σ̂(ĝj,q) in [m2/s2] and results for the test of significance;nj = number of non-significant
values,κj = data compression rate.
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Figure 5.6: Detail signalsgj of levelsj = 0, . . . , 5 at the Earth’s surface. The higher the level value
the finer the structures of the details. Each detail signal means a band-pass filtered version of the input
signal shown in Fig. 5.2.
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Figure 5.7: Disturbing potential valueŝf(xq) at the Earth’s surface in pointsP (xq) with
q = 1, . . . ,M = N , collected in theM × 1 output signal vector̂f .

54



Chapter 6

Multi-Resolution Representation of
Spatio-Temporal Signals

Mass redistributions within and between various components of the Earth system cause temporal
variations of the Earth’s gravity field which have been continuously observed by the GRACE satellite
mission since April 2002. As mentioned before in satellite gravity recovery problems the global
gravity field of the Earth is traditionally modeled as a spherical harmonic expansion. Furthermore,
spatio-temporal gravity fields from GRACE are usually computed for fixed time intervals, like one
month or one week; see e.g. Tapley et al. (2004).

6.1 Tensor Product Approach

As described in the previous sections the multi-resolutionrepresentation based on ellipsoidal scaling
and wavelet functions means an appropriate method for modeling the spatial structures of the Earth’s
gravity field. For considering the temporal variations of the gravity field within the multi-resolution
representation we rewrite Eq. (5.41) as

f(x, t) = fj′(x, t) +

J∑

j=j ′

gj(x, t) with j′ ∈ N0 (6.1)

whereint means the time. According to Eq. (3.25) each level−j detail signal is computable from

gj(x, t) =
(

Ψ̃j ⋆ cj( · , t)
)
w
(x) (6.2)

by means of the level−j wavelet coefficients

cj(x, t) =
(

Ψj ⋆ f( · , t)
)
w
(x) (6.3)
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From the Eqs. (6.2) and (6.3) in combination with the Figures3.1 and 3.2 we expect that different de-
tail signals would be more sensitive to particular input signalsf(x, t) in dependence on their spectral
behavior and noise characteristics. Schmidt et al. (2006) constructed a procedure to establish a spatio-
temporal multi-resolution representation based on this expectation; see also Prijatna and Haagmans
(2001) and Haagmans et al. (2002). To be more specific, we rewrite Eq. (5.38) as

cj(x, t) = ψj(x)T dj(t) (6.4)

and model each componentdj,k(t) of theNj × 1 vectordj(t) as an expansion

dj,k(t) =

Kj−1∑

l=0

dj,k;l φj,l(t) (6.5)

in terms of time-dependent base functionsφj,l(t) with unknown spatio-temporal (4-D) scaling coef-
ficientsdj,k;l; k = 1, . . . , Nj ; l = 0, . . . ,Kj − 1. Introducing theKj × 1 vector

φj(t) =
[
φj,0(t), φj,1(t), . . . , φj,Kj−1(t)

]T
(6.6)

and theNj ×Kj matrix

Dj =




dj,1;0 dj,1;1 . . . dj,1;Kj−1

dj,2;0 dj,2;1 . . . dj,2;Kj−1

. . . . . . . . . . . . . . . . . . . . . . . . . .
dj,Nj ;0 dj,Nj ;1 . . . dj,Nj ;Kj−1


 (6.7)

of the spatio-temporal coefficientsdj,k;l we obtain

dj(t) = Dj φj(t) (6.8)

from Eq. (6.5). Inserting Eq. (6.8) into Eq. (6.4) yields thetensor product approach

cj(x, t) = ψT
j (x) Dj φj(t)

= (φT
j (t) ⊗ψT

j (x)) vecDj ; (6.9)

a short introduction into tensor products of Hilbert spacesis given by Weidmann (1976). In Eq. (6.9)
we applied computation rules for the Kronecker product symbolized by ’⊗’ (Koch, 1999); in addition
the vec−operator orders the columns of a matrix one below the other asa vector. The matrixDj is
estimated by means of the observation equation

y(x, t) + e(x, t) = θT
j+1(x)dj(t)

= (φT
j (t) ⊗ θT

j+1(x)) vecDj (6.10)

following from Eq. (5.46) forxp = x.
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Schmidt et al. (2006) use (resolution) level-dependent piecewise constant functions, i.e., the spatio-
temporal coefficients are estimated for specific level−j-dependent time intervals such as one month
(for the finer structures) or ten days (for the coarser structures). To be more specific, the total obser-
vation interval∆T is divided intoKj non-overlapping level-dependent observation sub-intervals

∆Tj,kj
= [tj,kj

, tj,kj+1) (6.11)

of constant length, i.e.tj,kj+1 − tj,kj
= ∆Tj for kj = 0, . . . ,Kj − 1. Thus, it follows

∆T = Kj ∆Tj . (6.12)

The motivation for this partitioning scheme is that the determination of finer structures of the gravity
field requires a denser distribution of satellite observations than the computation of coarser structures.
By introducing the stepwise functionsφj,kj

(t) = χj,kj
(t) defined as

χj,kj
(t) =

{
1 if t ∈ ∆Tj,kj

0 otherwise

}
(6.13)

Eq. (6.5) reads

dj,k(t) =

Kj−1∑

kj=0

dj,k;kj
χj,kj

(t) . (6.14)

Under this assumption for a specific observation timet = tn theKj ×1 vectorφj(t) as defined in Eq.
(6.6) reduces to the unit vectorφj(tn) = en with the value ’1’ at thenth position. Choosing an ap-
propriate ellipsoidal scaling function the spatio-temporal scaling coefficientsdj,k;kj

can be estimated
from the observationsy(x, t) by means of the observation equation (6.10).

In opposite to that approach sketched before Schmidt et al. (2007b) model the time-dependency of
each scaling coefficientdJ,k(t) of the highest levelJ by a Fourier series. As disadvantages of this
approach the authors mention that a multi-resolution representation with respect to time cannot be
considered and the detail signals of different levels are characterized by the same temporal behav-
ior. In order to consider a different temporal behavior for each spatial levelj, we now introduce a
level-dependent 1-D multi-resolution representation with respect to time for each scaling coefficient
dj,k(t) analogously to the approach (6.9). To be more specific, in this 4-D multi-resolution repre-
sentation approach we distinguish between the spatial level j ∈ {j′, . . . , J} and the temporal level
ij ∈ {i′j , . . . , Ij} depending onj. Thus, we expand each time-dependent scaling coefficientdj,k(t)

by a series

dj,k(t) =

mIj
−1∑

l=0

dj,k;Ij,l φIj ,l(t) (6.15)

in terms of (temporal) level−Ij scaling functionsφIj ,l(t) with unknown spatio-temporal (4-D) scaling
coefficientsdj,k;Ij,l; k = 1, . . . , Nj ; l = 0, . . . ,mIj

− 1.

57



6.2 B-Spline Modeling

For modeling the temporal behavior of the geopotential we apply normalized quadratic B-splines
N2(τ) as 1-D base functions depending on the real-valued variableτ . Letmi be a positive integer
number,i ∈ {0, . . . , I} the temporal level and assume further that a sequence of non-decreasing knots
τ i
0, τ

i
1, . . . , τ

i
mi+2 is given, the normalized quadratic B-spline functions are defined recursively with

l = 0, . . . ,mi − 1 andm = 1, 2 as

Nm
i,l (τ) =

τ − τ i
l

τ i
l+m − τ i

l

Nm−1
i,l (τ) +

τ i
l+m+1 − τ

τ i
l+m+1 − τ i

l+1

Nm−1
i,l+1(τ) (6.16)

with the initial values

N0
i,l(τ) =

{
1 if τ i

l ≤ τ < τ i
l+1 and τ i

l < τ i
l+1

0 otherwise

}
; (6.17)

e.g., Stollnitz et al. (1995) or Schmidt (2006). A B-spline is compactly supported, i.e. its values
are different from zero only in a finite range on the real axis.SinceN2

i,l(τ) 6= 0 for τ i
l ≤ τ < τ i

l+3

andN2
i,l(τ) = 0 otherwise, this finite range is defined by the interval[τ i

l , τ
i
l+3), mathematically

abbreviated as suppN2
i,l = [τ i

l , τ
i
l+3). Since we want to use this approach for the finite time interval

∆T as defined in Eq. (6.12) we introduce theendpoint-interpolating quadratic B-splinesdefined on
the unit intervalI = [0, 1]; e.g., Lyche and Schumaker (2001), Stollnitz et al. (1995),Schmidt (2006)
and Schmidt et al. (2007c). To be more specific, we set the firstthree knots to zero and the last three
knots to one. Hence, the level−i knot sequence for endpoint-interpolating quadratic B-splines reads

0 = τ i
0 = τ i

1 = τ i
2 < τ i

3 < . . . < τ i
mi−1

< τ i
mi

= τ i
mi+1 = τ i

mi+2 = 1 (6.18)

with τ i
l+1 − τ i

l = 2−i for l = 2, . . . ,mi − 1 andmi = 2i + 2. Note, that in Eq. (6.16) under
the assumption (6.18) the factors are taken as zero if their denominators are zero. Since we apply
normalized quadratic endpoint-interpolating B-splines (6.16) as scaling functionsφIj ,l, i.e.,

φIj ,l(τ) := N2
Ij ,l(τ) (6.19)

with l = 0, . . . ,mIj
−1, we actually have to replace the time variablet in Eq. (6.15) by the normalized

time variableτ = (t− t0)/∆T ; t0 = initial time epoch. But in order to avoid too much confusion we
do not distinguish between the two variablest andτ in the sequel and use always the lettert. Figure
6.1 depicts themIj

= 2Ij + 2 B-spline scaling functions for levelIj = 3 with τ =: x.

6.3 4-D Multi-Resolution Representation

Introducing themIj
× 1 vector

φIj
(t) =

[
φIj ,0(t), φIj ,1(t), . . . , φIj ,mIj

−1(t)
]T

(6.20)
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Figure 6.1: B-spline functionsφIj ,l of resolution levelIj = 3 with l = 0, . . . ,m3 − 1 andm3 =

23 + 2 = 10. Only the B-spline functionsφ3,l for l = 2, . . . , 7 are not affected by the endpoint
interpolating procedure. The other four functions withl = 0, 1, 8, 9 are modified by the endpoint-
interpolationg procedure. The larger the level valueIj is chosen the more narrow are the B-spline
functions; for details see e.g. Schmidt (2006).

and theNj ×mIj
matrix

Dj;Ij
=




dj,1;Ij ,0 dj,1;Ij,1 . . . dj,1;Ij,mIj
−1

dj,2;Ij ,0 dj,2;Ij,1 . . . dj,2;Ij,mIj
−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dj,Nj ;Ij,0 dj,Nj ;Ij ,1 . . . dj,Nj ;Ij ,mIj

−1




(6.21)

of the spatio-temporal coefficientsdj,k;Ij,l we obtain

dj(t) = Dj;Ij
φIj

(t) (6.22)

from Eq. (6.15). Inserting Eq. (6.22) into Eq. (6.4) yields

cj(x, t) = ψT
j (x) Dj;Ij

φIj
(t)

= (φT
Ij

(t) ⊗ψT
j (x)) vecDj;Ij

= cj;Ij
(x, t) . (6.23)

Note, that the quantitycj;Ij
(x, t) means the wavelet coefficient on the spatial levelj and the temporal

level Ij ; it will be denoted in the following as level−(j; Ij) wavelet coefficient of the input signal.
According to Eq. (6.2) the detail signalgj(x, t) is computed as

gj(x, t) =
(

Ψ̃j ⋆ cj;Ij
( · , t)

)
w
(x)

= gj;Ij
(x, t) . (6.24)

With Eq. (3.32) we introduced the decomposition equation with respect to space. The corresponding
equation with respect to the time domain reads

φij
(t) = P

T
ij
φij−1(t) +Q

T
ij
ψij−1(t) , (6.25)
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wherein

φij−1(t) =
[
φij−1,0(t), φij−1,1(t), . . . , φij−1,mij−1−1(t)

]T
(6.26)

is themij−1 × 1 vector of level−(ij−1) scaling functionsφij−1,l(t) with l = 0, . . . ,mij−1 − 1. The
nij−1 × 1 vector

ψij−1(t) =
[
ψij−1,0(t), ψij−1,1(t), . . . , ψij−1,nij−1−1(t)

]T
(6.27)

contains the level−(ij − 1) B-spline wavelet functionsψij−1,l(t) with l = 0, . . . , nij−1 − 1 and
nij−1 = mij −mij−1. Themij−1 ×mij matrixP ij and thenij−1 ×mij matrixQij

are computable
from

[
P ij

Qij

]
=
[
P ij Qij

]−1
; (6.28)

the entries of themij ×mij−1 matrixP ij and themij ×nij−1 matrixQij
can be taken from Stollnitz

et al. (1995). Figure 6.2 shows two selected level−3 B-spline wavelets of the familyψ3,l with
l = 0, . . . , n3 − 1, which are compactly supported, too.

Inserting the two-scale relation (6.25) forij = Ij into Eq. (6.23) we obtain the decomposition

cj;Ij
(x, t) = ψT

j (x) Dj;Ij−1 φIj−1(t) +ψT
j (x) W j;Ij−1 ψIj−1(t)

= cj;Ij−1(x, t) + cj;Ij−1(x, t) , (6.29)

wherein

Dj;Ij−1 = Dj;Ij
P

T

Ij
(6.30)

is theNj ×mIj−1 matrix of the spatio-temporal scaling coefficientsdj,k;Ij−1,l needed to compute the
level−(j; Ij−1) approximationcj;Ij−1(x, t) of the level−(j; Ij) wavelet coefficientscj;Ij

(x, t); the
Nj × nIj−1 matrix

W j;Ij−1 = Dj;Ij
Q

T

Ij
(6.31)
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Figure 6.2: Selected waveletsψij ,l of resolution levelij = 3 for l = 0 (blue) andl = 5 (red) of
altogethern3 = m4 − m3 = 8 waveletsψ3,l(x) with l = 0, . . . , n3 − 1. The waveletψ3,0(x) is
affected by the endpoint interpolating procedure.
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contains the spatio-temporal sub-wavelet coefficientswj,k;Ij−1,l of the level−(j; Ij−1) detail-wavelet
coefficientscj;Ij−1(x, t). The recursive application of this procedure gives finally the temporal (1-D)
multi-resolution representation

cj;Ij
(x, t) = cj;i′j(x, t) +

Ij−1∑

ij=i′j

cj;ij(x, t) . (6.32)

of the level−(j; Ij) wavelet coefficientscj;Ij
(x, t). According to Eq. (6.29) the level−(j; ij) approx-

imationcj;ij(x, t) and the level−(j; ij) detail-wavelet coefficientscj;ij(x, t) are defined as

cj;ij(x, t) = ψT
j (x) Dj;ij φij

(t) , (6.33)

cj;ij(x, t) = ψT
j (x) W j;ij ψij

(t) . (6.34)

and computable via the pyramid algorithm. To be more specific, starting with the initial matrixDj;Ij

theNj × mij matrixDj;ij of level−(j; ij) scaling coefficientsdj,k;ij,l and theNj × nij matrix of
level−(j; ij) sub-wavelet coefficientswj,k;ij,l are computed recursively as

Dj;ij = Dj;ij+1 P
T

ij+1 , (6.35)

W j;ij = Dj;ij+1 Q
T
ij+1 (6.36)

for ij = ji′ , . . . , Ij − 1.

Inserting Eq. (6.32) into Eq. (6.24) yields

gj;Ij
(x, t) =

(
Ψ̃j ⋆ cj;i′j( · , t)

)
w
(x) +

Ij−1∑

ij=i′j

(
Ψ̃j ⋆ cj;ij( · , t)

)
w
(x)

= gj;i′j
(x, t) +

Ij−1∑

ij=i′j

gj;ij(x, t) . (6.37)

Herein

gj;i′j
(x, t) =

(
Ψ̃j ⋆ cj;i′j( · , t)

)
w
(x) (6.38)

means the level−(j; i′j) approximation of the level−(j; Ij) detail signalgj;Ij
(x, t). The functions

gj;ij(x, t) =
(

Ψ̃j ⋆ cj;ij( · , t)
)
w
(x) (6.39)

we will call sub-detail signal of level(j; ij).
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Next we consider Eq. (6.37) in Eq. (6.1) and obtain the spatio-temporal (4-D) multi-resolution
representation

f(x, t) = fj ′(x, t) +

J∑

j=j ′

gj;i′j
(x, t) +

J∑

j=j ′

Ij−1∑

ij=i′j

gi;ij(x, t) (6.40)

with given valuesj ′ ∈ {0, . . . , J} andi′j ∈ {0, . . . , Ij − 1}.

If we identify the functionf(x, t) with the gravitational potential, i.e.f(x, t) =: U(x, t), we may
subtract a reference potentialUref(x, t) and rewrite Eq. (6.40) as

δU(x, t) = U(x, t) − Uref(x, t)

= δUj ′(x, t) +
J∑

j=j ′

gj;i′j
(x, t) +

J∑

j=j ′

Ij−1∑

ij=i′j

gj;ij(x, t) + ∆U(x, t) . (6.41)

Herein, the signal∆U(x, t) stands for all the parts of the gravitational potential differenceδU(x, t)

not considered in the series expansion until highest spatial level J . Furthermore, in Eq. (6.41)
δUj ′(x, t) means the level−j ′ approximation of the residual gravitational potentialδU(x, t), the
signalsgj;i′j

(x, t) andgj;ij(x, t) are the corresponding level−(j; i′j) detail signal approximation and
the level−(j; ij) sub-detail signals, respectively. If the summation limitsin Eq. (6.41) are chosen ap-
propriately, the subsignalsδUj ′(x, t) and∆U(x, t) can be omitted, i.e. we defineδUJ+1;IJ

(x, t) =:

UJ+1;IJ
(x, t) − Uref(x, t) and obtain

δUJ+1;IJ
(x, t) =

J∑

j=j ′

gj;i′j
(x, t) +

J∑

j=j ′

Ij−1∑

ij=i′j

gj;ij(x, t) . (6.42)

Note, that due to the ansatz (6.15) with (spatial) level-dependent numbersIj the pyramid algorithm -
explained before in subsection 5.2.2 in detail - cannot be applied anymore.

In the following we outline the different steps of the spatio-temporal procedure:

1. In the initial step we estimate the unknown parameter matrix DJ ;IJ
as defined in Eq. (6.21) for

j = J . For that purpose we recall Eq. (6.10) forj = J sety(x, t) = δUJ+1;IJ
(x, t) + e(x, t) and

obtain the level−(J+1; IJ ) observation equation

δUJ+1;IJ
(x, t) = (φT

IJ
(t) ⊗ θT

J+1(x)) vecDJ ;IJ
. (6.43)

2. In the second step the estimatorD̂J ;IJ
of the matrixDJ ;IJ

is used to calculate the estimations
D̂J ;iJ andŴ J ;iJ for iJ = i′J , . . . , IJ −1 according to the Eqs. (6.35) and (6.36). Based on
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these results the estimatorsĉJ ;iJ and ĉJ ;iJ of the the level−(J ; iJ ) approximationscJ ;iJ and the
level−(J ; iJ ) detail-wavelet coefficientscJ ;iJ are computed via the Eqs. (6.33) and (6.34), i.e.,

ĉJ ;iJ (x, t) = ψT
J (x) D̂J ;iJ φiJ

(t) , (6.44)

ĉJ ;iJ (x, t) = ψT
J (x) Ŵ J ;iJ ψiJ

(t) . (6.45)

These results are then used to calculate the estimated level−(J ; i′J ) approximation

ĝJ ;i′
J
(x, t) =

(
Ψ̃J ⋆ ĉJ ;i′

J
( · , t)

)
w
(x) (6.46)

of the level−(J ; IJ ) detail signalgJ ;IJ
(x, t) and the estimated level−(J ; iJ ) sub-detail signals

ĝJ ;iJ (x, t) =
(

Ψ̃J ⋆ ĉJ ;iJ ( · , t)
)
w
(x) (6.47)

following the Eqs. (6.38) and (6.39). Consequently, at the end of the second step the estimation

ĝJ ;IJ
(x, t) = ĝJ ;i′

J
(x, t) +

IJ−1∑

iJ=i′
J

ĝJ ;iJ (x, t) (6.48)

of the level−(J ; IJ ) detail signal is given.

3. In the next intermediate step we subtract the estimated signal (6.43) fromδUJ+1;IJ
(x, t) =

δUJ ;IJ−1
(x, t) − ĝJ ;IJ

(x, t), define the reduced level−(J ; IJ−1) observation equation

δUJ ;IJ−1
(x, t) = (φT

IJ−1
(t) ⊗ φT

J (x)) vecDJ−1;IJ−1
(6.49)

analogously to Eq. (6.40).

4. In the fourth step we perform the same estimation process as explained in the second step. To be
more specific, with the estimator̂DJ−1;IJ−1

of the matrixDJ−1;IJ−1
we calculate the estimations

D̂J−1;iJ−1
andŴ J−1;iJ−1

for iJ−1 = i′J−1, . . . , IJ−1−1 according to the Eqs. (6.35) and (6.36).
Based on these results the estimatorsĉJ−1;iJ−1

andĉJ ;iJ−1
of the the level−(J ; iJ−1) approxima-

tionscJ ;iJ−1
and the level−(J ; iJ−1) detail-wavelet coefficientscJ ;iJ−1

are computed via the Eqs.
(6.33) and (6.34), i.e.,

ĉJ−1;iJ−1
(x, t) = ψT

J−1(x) D̂J−1;iJ−1
φiJ−1

(t) , (6.50)

ĉJ−1;iJ−1
(x, t) = ψT

J−1(x) Ŵ J−1;iJ−1
ψiJ−1

(t) . (6.51)

These results are then used to calculate the estimated level−(J − 1; i′J−1) approximation

ĝJ−1;i′
J−1

(x, t) =
(

Ψ̃J−1 ⋆ ĉJ−1;i′
J−1

( · , t)
)
w
(x) (6.52)

of the level−(J − 1; IJ−1) detail signalgJ−1;IJ−1
(x, t) and the estimated level−(J − 1; iJ−1)

sub-detail signals

ĝJ−1;iJ−1
(x, t) =

(
Ψ̃J−1 ⋆ ĉJ−1;iJ−1

( · , t)
)
w
(x) (6.53)
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following the Eqs. (6.38) and (6.39). Consequently, at the end of the fourth step the estimation

ĝJ−1;IJ−1
(x, t) = ĝJ−1;i′

J−1
(x, t) +

IJ−1−1∑

iJ−1=i′
J−1

ĝJ−1;iJ−1
(x, t) (6.54)

of the level−(J − 1; IJ−1) detail signal is given.

5. In the next intermediate step we subtract the estimated signal (6.54) fromδUJ ;IJ−1
(x, t) =

δUJ−1;IJ−2
(x, t) − ĝJ−1;IJ−1

(x, t), define the reduced level−(J − 1; IJ−2) observation equation

δUJ−1;IJ−2
(x, t) = (φT

IJ−2
(t) ⊗ φT

J−1(x)) vecDJ−2;IJ−2
(6.55)

analogously to Eq. (6.49).

6. If we proceed in the same manner as explained for the secondand the fourth step until spatial level
j = j′, we end up with estimations of all signals introduced on the right-hand side of Eq. (6.42).

Following this procedure, our final result for the geopotential U(x, t) reads

Û(x, t) = Uref(x, t) +

J∑

j=j ′

ĝj;i′j
(x, t) +

J∑

j=j ′

Ij−1∑

ij=i′j

ĝj;ij(x, t) . (6.56)

For monitoring the climate change as mentioned in the introduction mass variations estimated from
GRACE observations can be transferred to equivalent water heights or to height deformations follow-
ing Farrell’s (1972) theory. To be more specific, the geopotential U or the residual geopotentialδU
as estimated by Eq. (6.56) can be transformed into height deformations

δh(x, t) =

J∑

j=j ′

hj(x, t) (6.57)

at the Earth’s surface with respect to the reference modelUref(x, t) by evaluating the ellipsoidal
convolutions

hj(x, t) =
(
Ke ⋆ gj;Ij

( · , t)
)
w
(x) (6.58)

with respect to the detail signalsgj;Ij
as introduced in Eq. (6.37). In Eq. (6.58) the kernelKe(x,xq)

is defined as

Ke(x,xq) =
∞∑

n=0

(2n+ 1)
h′n

g (1 + k′n)
Pn(ξT ξq) (6.59)

with k′n andh′n being the static gravitational and vertical load Love numbers of degreen, respectively;
g = (mean) absolute value of the gravity acceleration; for moredetails see Schmidt et al. (2006).
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