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Abstract

Three types of spherical splines are presented as developed in the recent literature on
constructive approximation, with a particular view towards global (and local)
geopotential modeling.  These are the tensor-product splines formed from polynomial and
trigonometric B-splines, the spherical splines constructed from radial basis functions, and
the spherical splines based on homogeneous Bernstein-Bézier (BB) polynomials.  The
spline representation, in general, may be considered as a suitable alternative to the usual
spherical harmonic model, where the essential benefit is the local support of the spline
basis functions, as opposed to the global support of the spherical harmonics.  Within this
group of splines each has distinguishing characteristics that affect their utility for
modeling the Earth’s gravitational field.  Tensor-product splines are most
straightforwardly constructed, but require data on a grid of latitude and longitude
coordinate lines.  The radial-basis splines resemble the collocation solution in physical
geodesy and are most easily extended to three-dimensional space according to potential
theory.  The BB polynomial splines apply more generally to any sphere-like surface (e.g.,
the geoid or the Earth’s surface) and have a strong theoretical legacy in the field of spline
approximations.  This report provides a review of these three types of splines, their
application to the geodetic boundary-value problem, and formal expressions for
determining the model coefficients using data with observational errors.

1. Introduction

Surface and near surface (that is, airborne) gravity data are still the essence of very high-
resolution global gravity models (e.g., EGM96 as described by Lemoine et al., 1998) that
have become standard in physical geodesy and associated disciplines.  In contrast,
satellite-derived gravity observations define the global, longer-wavelength components.
They form the basis for spherical harmonic expansions of the field up to degree 120 with
GRACE (Tapley et al., 2004) and are expected to yield a model up to degree 250 and
higher with the upcoming satellite gradiometer mission, GOCE (Rummel et al., 2002).
However, a global model with resolution of 10 km, corresponding to spherical harmonic
degree 2160, is now being constructed (Pavlis et al., 2004), based on surface and near-
surface gravity data and satellite altimetry data in ocean areas.  The surface gravity data
do not necessarily possess uniform resolution, and in many parts of the world’s
continents they do not yet support a global 2160-degree spherical harmonic expansion.
Conversely, some areas are endowed with even greater resolution requiring some form of
decimation or averaging in order to be consistent with a 2160-degree harmonic
expansion.

When considering alternatives to the spherical harmonic model for the Earth’s gravity
field it is necessary to understand its disadvantages, as well as the desirable attributes that
any global model should possess.  Perhaps the greatest disadvantage of spherical
harmonics, from the point of view of modeling, is that they are basis functions with
global support.  That is, each spherical harmonic function is significantly different from
zero almost everywhere on the entire sphere.  This means that each spherical harmonic
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coefficient in the model, corresponding to a basis function, depends essentially on all the
data over the entire sphere.  Change the data at a single point, and in theory all the
coefficients change.  A second disadvantage (which actually is a consequence of the
global support for the basis functions) is that the evaluation of the field at any point
requires that all coefficients be accumulated even though the field at one point hardly
depends on its values half way around the world.  Related to these disadvantages is the
intractability of rigorously propagating the errors in the data through the spherical
harmonic coefficients.  Approximations (Han, 2004) or alternative techniques (Pavlis,
and Saleh, 2004) must be employed to calculate the error statistics for derived quantities
from those of the data.  Finally, as already noted, spherical harmonic models depend on
regularly gridded data, and specifically on latitude-longitude grids.  Aside from the
artificial requirements associated with the meridian convergence (where many more data
per unit area are needed near the poles than near the equator), it is clear that globally the
surface data are far from uniformly distributed.

Although a high-resolution global gravity model is based on surface data over the
entire Earth, it must be more than a representation of a surface function.  The
gravitational potential is a scalar function in three-dimensional space and many of the
gravitational quantities that we measure or wish to interpret geophysically or geodetically
are the derivatives of the potential, not just the horizontal derivatives, but, in fact, mainly
the vertical derivatives.  Since the gravitational potential is harmonic in free space, we
wish the model to be harmonic as well, although this is not as crucial from a practical
viewpoint if the ability to compute accurate derivatives is fulfilled.  Since our data are
always discrete and contain observation error, any modeling of the potential from the data
will yield only an approximation that may be greater than that associated with the non-
harmonicity of the model.  It is quite certain, that in the foreseeable future, spherical
harmonic models will always be constructed from satellite gravity mapping missions,
such as GRACE and GOCE and their successors.  It is equally clear that these models
will have limited resolution (i.e., relatively low maximum degree).  Therefore, it is
desirable that any high-resolution model be easily combinable with a low-degree
spherical harmonic model.  In theory this is always possible by referring data to a given
spherical harmonic model and representing the residuals by any other model.

To overcome the disadvantages of the spherical harmonic model, an alternative model
would allow local data to be changed or new data to be incorporated without changing
the model globally.  Data would not need to be uniformly distributed and the model
would locally reflect the significant resolution of the function.  That is, where the data are
sparse, the model would correspondingly have low resolution; and, where the function
has significant variation (and the data to support it), the model would have high
resolution.  It quickly becomes clear that such characteristics can only be fulfilled if the
basis functions have local support.  That is, the basis functions are zero everywhere
except in a local region of the sphere.  Such representations are well developed for
functions in Cartesian space (on the line, the plane, etc.) and fall under the broad category
of splines.  Table 1 provides a brief overview of the desirable characteristics of a global
geopotential model and how spherical harmonics compare with spline representations.
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Table 1: Two types of global geopotential models in terms of desirable properties.
Property Spherical harmonic

expansion
Spline representation

Faithful representation
of data (resolution and
accuracy)

always based on gridded data
(result subject to aliasing and
spectral leackage)

basis functions depend on
data distribution

Reliable error statistics rigorous error propagation is
difficult, since it passes
through the global spectrum

error propagation depends
only on local error sources

Predictive capability
(e.g., geoid undulation
from gravity anomalies)

straightforward using spectral
relationships (spherical
approximation)

computationally more
difficult, based on space
domain convolutions

Update capability
(model modification
with new data)

requires re-computation of
the entire model

affects only that part of the
model representing the data
update region

Manipulative capability
(computational &
mathematical)

relatively easy, but all
coefficients of the model
must be acumulated

only relevant part of model
requires computation

Potential theory
foundation

3-D harmonic structure of the
model is implicit

surface function model serves
as input to the boundary-
value problem

While it is the opinion of the author that spherical harmonic series will continue to
dominate global gravitational field modeling, even to extraordinarily high degree (e.g., to
degree 10,000 within the next 15-20 years), the following discussion presents an
alternative representation based on recent work in spherical splines accomplished by
mathematicians at Vanderbilt University (Alfeld et al., 1996c).  This is compared to
spherical splines also developed recently by a group at Kaiserslautern University
(Freeden et al., 1998), and to tensor-product splines, also investigated, among others, by
the Vanderbilt group (Schumaker and Traas, 1991).

The literature on splines, finite elements, and constructive approximation in general is
vast, though only a few decades in the making to a mature discipline, and it is oriented
primarily to CAGD (computer-aided geometric design).  The present report does not
offer a comprehensive review of these techniques, nor a review of geodetic applications
that have surfaced sporadically in concert with these developments.  Instead, an attempt
is made only to examine a few recent advancements by the Vanderbilt group and to
compare these to the developments by the Kaiserslautern group, which has promoted the
radial basis functions in the geodetic community for some time.  The motivation for this
analysis was the outcome of the Geopotential Modeling Workshop, organized by
DARPA, and held on 15-16 March 2001 in Arlington, Virginia.
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2. Preliminaries

Let points in 3-D space, 3¡ , be denoted by v, and their restriction to the unit sphere, Ω ,
by ξ  (or also η ), whose Cartesian components may be thought of in terms of familiar
spherical polar coordinates, co-latitude, θ , and longitude, λ :

sin cos
sin sin

cos

x

y

z

ξ θ λ
ξ ξ θ λ

ξ θ

   
   = =   
   
   

 . (2.1)

Suppose the unit sphere is populated by a finite set of points, { } 1, ,i i V
η

= … , with no

particular distribution imposed at the moment.  At each of these points, or vertices, the
value of a function, f, is given:

( ) , 1, ,i iy f i Vη= = …  . (2.2)

It is desired to represent the function, f, on the sphere using some interpolating function,
one that represents the function between the data points with some degree of smoothness
and reproduces the data values at the data points.  We may also allow errors in the
function values if they represent observations, then

( ) , 1, ,i i iy f e i Vη= + =% …  . (2.3)

The desired interpolating function, in this case, approximates the data values at the data
points in a least-squares sense (see Section 7).  In view of the introductory discussion, the
interpolating functions to be considered are splines, s, constructed from locally supported
functions, nw , on the sphere:

( ) ( )
1

M

n n
n

s c wξ ξ
=

= ∑  . (2.4)

As a matter of terminology, we call s a spline representation of the function, f; and, also
the component functions, nw , that usually are the basis functions of the spline space, are
called splines.

It is noted that spherical splines of the Vanderbilt group were developed more
generally for sphere-like surfaces, e.g., the geoid or even the Earth’s surface (if it can be
viewed as a sufficiently smooth radial projection from the sphere).  We consider only
spheres in this review.

A brief overview of spherical harmonics is necessary in order to contrast this
conventional representation with the spherical spline models.  A polynomial, ( )dp , of
degree d is called homogeneous if for constant, α :
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( ) ( ) ( ) ( )d ddp v p vα α=  . (2.5)

A general, homogenous, degree-d polynomial in 3v ∈¡  may be written as

( ) ( )d p q r
pqr

p q r d

p v a x y z
+ + =

= ∑  , (2.6)

where ( )T, ,v x y z= .  The space of homogeneous (trivariate) polynomials of degree d has

dimension ( )( )2 1 / 2d d+ +  (which can be verified by counting the number of possible
distinct summands in equation (2.6)).  Now consider harmonic, homogeneous
polynomials, which belong to a subset of the homogeneous polynomials and satisfy
Laplace’s equation:

( )2 0dp v∇ =  , (2.7)

where 2 2 2 2 2 2 2x y z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂ .  Restricted to the sphere, these harmonic
homogeneous polynomials are defined to be the spherical harmonics (Müller, 1966).
Thus, a spherical harmonic of degree l  is a harmonic homogeneous polynomial (of
degree l ), expressible as

( ) ( ) ( ) ( ) ( ) , , ,
qp rm

m pqr x y z
p q r

Y a mξ ξ ξ ξ
+ + =

= = −∑l
l

l … l  , (2.8)

where the order, m, identifies the 2 1+l  independent polynomials of degree l .  A more
conventional expression of a spherical harmonic function (polynomial) of degree l  and
order m is given by

( ) ( )cos ; , , ; 0,1,im
m mY P e mλξ θ= = − =l l l … l l …  ; (2.9)

where the associated Legendre functions (of the first kind) are fully normalized so that
the square of a spherical harmonic integrated over the unit sphere is equal to 4π :

( )
( ) ( )

( ) ( )
( )

( ) ( )

!
2 2 1 sin cos , 0 ;

! coscos

2 1 cos , 0;

m
m

nm
lm

n

n m d
n P m

n m dP

n P m

θ θ
θθ

θ

 −
+ < ≤ += 


+ =

l
(2.10)

where nP  is the usual Legendre polynomial of degree, n.
As noted, the dimension of the space of harmonic homogeneous polynomials (i.e.,

spherical harmonics) of degree l  is 2 1+l , which is well known to geodesists and proved
in (Müller, 1966) and (Freeden et al., 1998).  Therefore, the set of spherical harmonics
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{ } , , ; 0, ,m m L
Y

=− =l l … l l …  is a basis for harmonic polynomials of maximum degree L on the

sphere.  Clearly, the spherical harmonics, mYl , have global support as illustrated in Figure
1, meaning that their magnitude is different from zero almost everywhere on the unit
sphere.

Figure 1: Spherical harmonic function, 8,7Y .

The function with values given by equation (2.2) may be represented by a finite series
of spherical harmonics:

( ) ( )
0

L

SH m m

m

s c Yξ ξ
= =−

= ∑∑
l

l l
l l

 , (2.11)

where the coefficients can be determined by setting

( )SH i is yη =  , (2.12)

and hence:

( ) ( )

( ) ( )

1

0,0 0,0 1 , 1 1

, 0,0 ,

L L

L L V L L V V

c Y Y y

c Y Y y

η η

η η

−
    
    =     

         

L
M M O M M

L
 . (2.13)

Here, it is assumed that V, the number of data points, equals the number of spherical

harmonics, ( )21L + , and that the points, iη , represent an admissible set, in the sense that
the matrix in equation (2.13) is non-singular.  Furthermore, errors in the data values have
been ignored.  The spherical harmonic model (2.11) resembles our desired spline
representation (2.4), except that the harmonics have global support.
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3. Tensor-Product Spherical Splines

Borrowing directly from splines on the line, Schumaker and Traas (1991) developed
spherical splines by adapting conventional polynomial B-splines.  B-splines are piecewise
polynomials associated with a finite set of knots, or sequential, possibly identical points.
The degree of the polynomial pieces is equal to one less than the number of knots over
which the B-spline is defined.  The number of knots plus one also defines the order of the
spline and the support of the spline is the interval associated with these knots (for a
thorough mathematical treatment of B-splines, see Schumaker, 1981, Chapter 4.3).  If

( )n
kN θ , 1, ,k K= … , denotes a set of splines of order n on a meridian, and ( )m

jT λ ,
1, , 1j J m= + −…  denotes a set of mth-order splines on a circle of latitude, the tensor-

product

( ) ( ) ( ) ( )
1

,

1 1

,
J m K

m n
TP TP j k j k

j k

s s c T Nξ λ θ λ θ
+ −

= =

≡ = ∑ ∑ (3.1)

is a bivariate spline on the sphere.  The spline is to be fitted to given function values, as
in equation (2.12), which then determines the coefficients, ,j kc .

The two types of B-splines above are defined on a partition of the respective domains,
0 2λ π≤ ≤  and 0 θ π≤ ≤ .  The partition is created with a distribution of points, called
knots that, in general, have multiplicity, especially at the ends of the total domain; that is,
a single coordinate point may represent several knots.  For the co-latitude domain, we
define the knots, kθ , as shown in Figure 2a, with 2K n− +  distinct knot points.  Note
that the geographic poles have multiple knots and that the knot interval, 1k kθ θ+ − , need
not be a constant (when it is non-zero).  A B-spline of order n is defined on any interval,
( ),k k nθ θ + , such that k k nθ θ +< .  The following formulas yield (normalized) B-splines of
order n:

( ) 11 1,   
, , ,

0, otherwise
k k

kN k n K
θ θ θ

θ +≤ <
= =


…

( )

1

1
1 1

1 1 1

,
, 2, ,

0, otherwise

q

n q
q n q n
n q n n q

N q n
θ θ

θ θ θ
θ θ θ

−

+ −
+ − +

+ − + + −

 − ≤ <  = =− 



… (3.2)

( ) ( ) ( )1 1
1

1 1

, 2n n nk k n
k k k

k n k k n k

N N N n
θ θ θ θ

θ θ θ
θ θ θ θ

− −+
+

+ − + +

− −
= + ≥

− −
 ,
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where the recursion should only be applied when the splines on the right side exist ( n
kN  is

not defined if k k nθ θ += ).  It can be shown (Schumaker, 1981, pp.121-124) that n
kN  is

non-negative on the interval, ( ),k k nθ θ +  and vanishes outside it, which defines its support;

and, that the B-splines, { }1 , ,n n
KN N… , are linearly independent on the interval

( ) ( )1, 0,n Kθ θ π+ = .

…

1 1 2 10 n n n K K K nθ θ θ θ θ θ θ π+ + + += = = < < < < < = = =… … …

…

1 1 2 10 n n n K K K nθ θ θ θ θ θ θ π+ + + += = = < < < < < = = =… … …
Figure 2a: Partition of latitude and corresponding knots for the spline definition.

1 2 2 10 2m m m J m J m J mλ λ λ λ λ λ π+ + + − + − += < < < < < < =…

…

2i J iλ λ π+= − 2J m i m iλ λ π+ + += +1, , 1:i m= −…
Figure 2b: Partition of longitude and corresponding knots for the spline definition.

Instead of the same type of polynomial B-splines for the longitude, as used, e.g. by
Gmelig Meyling and Pfluger (1987), Schumaker and Traas (1991) made use of analogous
(normalized) trigonometric B-splines (Schumaker, 1981, p.452), defined on the partition
of longitude shown in Figure 2b, with J distinct knot points.  In this way one is able to
construct exact spline models that have continuous derivatives at the poles.  In our
application the knots for these splines have no multiplicity in the sense of the knots in
latitude, but are defined periodically near the zero meridian.  The following formulas
sufficiently define the normalized trigonometric B-splines:

( ) 11 1,   
, 1, , 1

0,   otherwise
j j

jT j J m
λ λ λ

λ +≤ <
= = + −


…

(3.3)

( ) ( ) ( )1 1
1

1 1

sin sin
2 2 , 2

sin sin
2 2

j j m

m m m
j j j

j m j j m j

T T T m

λ λ λ λ

λ λ λ
λ λ λ λ

+

− −
+

+ − + +

− −

= + ≥
− −

 .

As before, the jth trigonometric B-spline of order m is non-negative on the interval,

( ),j j mλ λ + , and vanishes outside it, which defines its support.  Figures 3a and 3b
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respectively show third-order polynomial and trigonometric B-splines for regular
partitions in latitude and longitude.

0 20 40 60 80 100 120 140 160 1800

0.25

0.5

0.75

1

 

θ [deg]

( )3
3N θ ( )3

5N θ ( )3
7N θ ( )3

9N θ

0 20 40 60 80 100 120 140 160 1800

0.25

0.5

0.75

1

 

θ [deg]

( )3
3N θ ( )3

5N θ ( )3
7N θ ( )3

9N θ

Figure 3a: Polynomial B-splines of third order on a partition of co-latitude, with
1 20k kθ θ+ − = ° .

0 40 80 120 160 200 240 280 320 360

0.25

0.5

0.75

1

 

λ [deg]

( )3
1T λ

( )3
3T λ ( )3

5T λ ( )3
7T λ ( )3

9T λ

0 40 80 120 160 200 240 280 320 360

0.25

0.5

0.75

1

 

λ [deg]

( )3
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5T λ ( )3
7T λ ( )3
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Figure 3b: Trigonometric B-splines of third order on a partition of longitude, with
1 45j jλ λ+ − = ° .

The coefficients, ,j kc , in equation (3.1) can be determined by solving a linear system
of equations:

( ) ( )1 1 11 V K J m K J mV
y A c

× + − + − ××
=  , (3.4)

where ( )T
1, , Vy y y= …  (similarly c is the vector of coefficients) and the elements of

matrix A are the values of the product of splines evaluated at the data points, iη .  This
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linear system is constrained by conditions that ensure the continuity of the spline, TPs ,
and its first-order derivatives across the zero meridian and at the poles.  Such conditions
were given by Dierckx (1984) and Gmelig Meyling and Pfluger (1987) as follows.  At the
zero-meridian, there must be

( ) ( )

( ) ( )

0, 2 , , 0 ;

0, 2 , , 0 ;

TP TP

TP TP

s s

s s

θ π θ θ π

θ π θ θ π
λ λ

= ≤ ≤

∂ ∂
= ≤ ≤

∂ ∂

(3.5)

and, at the poles we require that

( ) ( )

( ) ( )

,0 , , , 0 2 ;

,0 cos sin , , cos sin , 0 2 ;

TP N TP S

TP N N TP S S

s s s s

s A B s A B

λ λ π λ π

λ λ λ λ π λ λ λ π
θ θ

= = ≤ ≤

∂ ∂
= + = + ≤ ≤

∂ ∂
(3.6)

where , , , , ,N S N N S Ss s A B A B  are constants.  Condition (3.5) and the knot sequence defined

in Figure 2b imply that the coefficients associated with the trigonometric B-splines, m
iT ,

should be identified, respectively, with the coefficients associated with m
J iT + :

, , , 1, , 1, 1, ,i k J i kc c i m k K+= = − =… … . (3.7)

Schumaker and Traas (1991) provided an additional set of 4 2J +  constraints on the
coefficients to satisfy condition (3.6) for the case of third-order ( 3m = ) trigonometric
splines, of which 8 are duplicates of constraints (3.7).  With 3m = , the total number of
conditions is 4 2 6J K+ − ; and, in this case, we must solve

( ) ( )2 2 11 V K J K JV
y A c

× + + ××
=  , (3.8)

subject to constraints

( ) ( ) ( ) ( )4 2 6 2 2 1 4 2 6 1
0

J K K J K J J K
B c

+ − × + + × + − ×
=  . (3.9)

For a least-squares solution for the coefficients in the case that the observed data contain
errors, see Section 7.

Tensor-product splines are most suited for data on (co-)latitude/longitude grids (for
randomly scattered data, see the following sections).  Thus, we define the data points to
be knots; and, we have

{ } ( ){ }1, , , , 1; , , 1
,i j ki V j m J m k n K

η λ θ
= = + − = +

=… … …
 ,    { } { },1, , , , 1; , , 1i j ki V j m J m k n K

y y
= = + − = +

=… … …
.(3.10)
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The spline fitting problem as such is a global problem, with large (albeit sparse) A-
matrix.  Schumaker and Traas (1991) offered an approximate method (introduced for
planar tensor-product splines by Schumaker, 1976) to obtain the coefficients using local
data.  Figure 4 shows a local region of the data grid, where knot lines are interwoven with
between-knot lines.  At the knots we have data values, ,j ky ; between the knots, they must
be estimated by some standard procedure, such as by local biquadratic polynomial
interpolation, or even by a simple average, for example:

( )1/2 , 1 / 2 , 1, , 1 1, 1
1
4j k j k j k j k j ky y y y y+ + + + + += + + +  . (3.11)

Schumaker and Traas (1991) proved that for third-order splines, the following quasi-
interpolator spline, ( ),TPQs λ θ , satisfies the conditions (3.5) and (3.6), as well as

( ) ,, , , , 1; , , 1TP j k j kQs y j m J m k n Kλ θ ≈ = + − = +… …  . (3.12)

It can be shown (ibid.) that

( ) ( ) ( )
2

,

1 1

ˆ,
J K

m n
TP j k j k

j k

Qs c T Nλ θ λ θ
+

= =

= ∑∑  , (3.13)

where

( )

, 1, 1 1.5, 1 2, 1

1, 1.5 1.5, 1.5 2, 1.5

1, 2 1.5, 2 2, 2

11 1ˆ
4 2 4

2 1

11 1
; 1, , 2 ; 3, , 2

4 2 4

j
j k j k j k j k

j k j j k j k

j
j k j k j k

c y y y

y y y

y y y j J k K

σ

σ

σ

+ + + + + +

+ + + + + +

+ + + + + +

+
= − +

− + + −

+
+ − + = + = −… …

(3.14)

( ),1 1,1 1.5,1 2,1
1 1ˆ 2 1 ; 1, , 2
2 2j j j j jc y y y j Jσ+ + += − + + − = +… (3.15)

( ) ( ) ( ) ( )( )

( )( )

4 3
,2 1,3 1.5,3 2,3

1,3 1.5,3 2,3

ˆ 2 1
4

1
2 1 ; 1, , 2

2

j j j j j

j j j j

c y y y

y y y j J

θ θ θθ θ
σ

σ

+ + +

+ + +

−
= − + + −

+ − + + − = +…
(3.16)
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( ) ( ) ( ) ( )( )

( )( )

1
, 1 1, 1 1.5, 1 2, 1

1, 1 1.5, 1 2, 1

ˆ 2 1
4

1
2 1 ; 1, , 2

2

K K
j K j K j j K j K

j K j j K j K

c y y y

y y y j J

θ θ θθ θ
σ

σ

+
− + + + + + +

+ + + + + +

−
= − + +

+ − + + − = +…
(3.17)

( ), 1, 1.5, 2,
1 1ˆ 2 1 ; 1, , 2
2 2j K j K j j K j Kc y y y j Jσ+ + += − + + − = +… (3.18)

where ( ) ( ), ,j k j ky fθ λ θ
θ
∂

=
∂

 and 2 1cos
2

j j
j

λ λ
σ + +−

= .  Determination of the coefficients of

the (approximate) spline model thus involves only the data values in the neighborhood of
the support for the corresponding B-splines.

1kθ +

2kθ +

kθ

jλ 1jλ + 2jλ +1.5jλ +

1.5kθ +

Figure 4: Grid for local quasi-interpolation.

4. Freeden / Schreiner Spherical Splines

For these and the following spherical splines, the data points need not be gridded in
latitude and longitude – they may be distributed arbitrarily on the sphere.  Freeden et al.
(1998) developed spherical splines based on so-called radial basis functions.  These
functions depend only on the spherical distance from a given point (say, iη ) and thus can
be represented as infinite series of Legendre polynomials (i.e., spherical harmonics of
zero order):

( ) ( )2
0

2 1
i iK P

A
ξ ξ η

∞

=

+
= ⋅∑ l

l l

l
 , (4.1)
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where the numbers, Al , are non-zero and are defined such that the series can be summed.
(Freeden et al., 1998, also allowed a subset of the numbers, Al , to be zero, in which case
the development becomes slightly more complicated, but for present purposes it is not
necessary to consider this more general case.)

Consider continuous functions, f, defined on the sphere, Ω , whose spherical
harmonic expansions are formulated, as usual:

( ) ( )
0

m m
m

f F Yξ ξ
∞

= =−

= ∑ ∑
l

l l
l l

 , (4.2)

and whose harmonic coefficients satisfy:

2 2

0
m

m

A F
∞

= =−

< ∞∑ ∑
l

l l
l l

 , (4.3)

for a given set of numbers, Al .  Then, we can construct the following inner product for
these functions:

( )
2

0

, m mH A
m

f g A F G
∞

= =−

= ∑ ∑
l

l l l
l l

 . (4.4)

The square of the norm of a function is given by ( ) ( )
2 ,
H A H A

f f f= .  The subscript,

( )H A , has been appended because the space of functions satisfying equation (4.3) and
endowed with the inner product (4.4) is a Hilbert space, depending on the given set of
numbers, { }A A= l .

A function of the form of equation (4.1) is now a reproducing kernel in this Hilbert
space.  Indeed, for the kernel,

( ) ( )2
0

2 1
,AK P

A
ξ η ξ η

∞

=

+
= ⋅∑ l

l l

l
 , (4.5)

the reproducing property is readily verified:

( ) ( )
( ) ( )2
2

0

, , m
mH A

m

Y
f K A F f

A
η

η η
∞

= =−

 
⋅ = = 

 
∑ ∑

l
l

l l
l l l

 , (4.6)

where the well known decomposition formula for Legendre polynomials (addition
theorem for spherical harmonics) has been used to infer the harmonic coefficients of the
kernel:
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( ) ( ) ( )1
2 1 m m

m

P Y Yξ η ξ η
=−

⋅ =
+ ∑

l
l l l

ll  . (4.7)

The summability of the series (4.5) defining the reproducing kernel essentially depends
on the set, A; that is, we require

( ) 2
0

1
2 1

A

∞

=

+ < ∞∑
l l

l  . (4.8)

One may impose even stricter summability conditions (Freeden et al., 1998, p.88).
For example, the set A is “κ -summable”, 0κ ≥ , if

( )
2

2
0

2 1
A

κ∞

=

+ < ∞∑
l l

ll  . (4.9)

Clearly, if inequality (4.9) holds, then so does (4.8).  Consider the Laplace-Beltrami
operator, *∆ , which is just the familiar Laplacian operator restricted to the sphere; that
is, a combination of second-order horizontal derivatives:

2 2

2 2 2

1
* cot

sin
∆ θ

θ θ θ λ
∂ ∂ ∂

= + +
∂ ∂ ∂

 . (4.10)

From Heiskanen and Moritz (1967, p.20), we have

( )* 1m mY Y∆ = − +l ll l  , (4.11)

and, consequently,

( )
/ 21

* 1
4 m mY Y

κ
κ∆ − + = + 

 
l ll  . (4.12)

From the harmonic representation (4.2), we find immediately that the harmonic
coefficients of the horizontal derivatives of order κ  increase essentially by the factor,

( )1/ 2 κ+l :

( ) ( )
/ 2

0

1 1
*

4 2 m m
m

f F Y
κ κ

∆ ξ ξ
∞

= =−

   − + = +   
   

∑ ∑
l

l l
l l

l  . (4.13)

By Schwartz’s inequality, we have



15

( ) ( )

( )

2 2/ 2

0

2
2 2 2 2

0 0

1 1
*

4 2

1
,

2

m m
m

m m
m m

f F Y

A F A Y

κ κ

κ

∆ ξ ξ

ξ

∞

= =−

∞ ∞
−

= =− = =−

   − + = +   
   

    ≤ + < ∞       

∑ ∑

∑ ∑ ∑ ∑

l
l l

l l

l l
l l l l

l l l l

l

l
(4.14)

making use of the boundedness conditions (4.3) and (4.9).  In other words, with κ -
summability for A, the functions in the consequent Hilbert space have continuous
derivatives up to order κ .  This is an important result when we consider the definition of
the Hilbert space that should contain the spline representation of our data.

Any function in the Hilbert space, ( )H A , having the form

( ) ( ) ( )
1

i

V

FS i A
i

s c K ηξ ξ
=

= ∑  , (4.15)

where ( ) ( ) ( ),i

A A iK Kη ξ ξ η= , is defined to be a spherical spline.  Here, as before, the

points, iη , on the unit sphere locate data values of some function.  The coefficients, ic ,
are determined on the basis of some constraints connected with the representation
problem.  The subscript, FS, is used to distinguish these splines as those developed
primarily by the Kaiserslautern group, Freeden et al. (1998) and Schreiner (1997).

The interpolation (representation) problem is now formulated as follows.  For a given
Hilbert space, ( )H A , find the function with minimum norm that interpolates the given
data values.  In fact, it is easily shown that the spline (4.15), subject to the constraint
analogous to equation (2.12), is unique and is the function among all interpolants that has
minimum norm (see Freeden et al., 1998, pp140-141).  The linear matrix equation that
must be solved is given by

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1 1 1 1
V

V

A A

V VA V A V

y K K c

y cK K

η η

η η

η η

η η

        =     
         

L
M M O M M

L
 . (4.16)

A unique solution exists if the reproducing kernel is positive definite.  Such is our present
case, since the numbers, 2Al , are all positive.

The radial basis functions, ( ) ( )i

AK η ξ , 1, ,i V= … , are localized around the data points,

jη  (since ( )( )( )arg max cos 0nP
ψ

ψ = ).  Nevertheless, mathematically they still have

global support.  This means that the matrix in equation (4.16) is full, although it is mostly
diagonally dominant.  [Note, despite their name, these functions do not form a basis for
the Hilbert space.  An orthonormal Hilbert basis is given by the set ( ){ }1

lmA Y ξ−
l ,

0,1, ; , ,m= = −l … l … l ].
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Schreiner (1997) (see also Freeden et al. (1998)) provided truly locally supported
kernel functions defined as follows.  Consider the function (Figure 5) defined on the
interval 1 1t− ≤ ≤ :

( ) ( ) ( ) ( )
0

0, 1

2 1
, 1

1

k k
h

t h

B t P tt h
h t

h

β
∞

=

− ≤ ≤ 
 = = + −  < ≤  −  

∑ l l
l

l  ; (4.17)

where 1k ≥ ; and, then define the kernel function as the convolution of ( )kBl  with itself:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

0

, 2 1i k k
A i h i h i iK B B Pη ξ η ξ η ξ η β ξ η

∞

=

= ⋅ ∗ ⋅ = + ⋅∑ l l
l

l  , (4.18)

where, by comparison to equation (4.5), we have

1 , 0A β β−= ≠l l l  . (4.19)

Schreiner (1997) derived a recursion formula for βl  and shows that

( )3/2 ,Oβ −= → ∞l l l  , (4.20)

irrespective of the parameter k.  He also showed that these coefficients, βl , that vanish
are associated with the zeros of Gegenbauer polynomials.  Thus, depending on the
parameters, k and h, some spherical harmonics may be excluded from the Hilbert space
(the corresponding Al  is not defined).  The local support for ( ) ( )i

AK η ξ  (equation (4.18)) is
defined by the parameter, h:

cos 1
2

i
ih

ψ +
=  , (4.21)

where iψ  is the spherical radius of the support region (a spherical cap centered on iη )..
Figure 6 shows an example of kernel functions and their support regions for three
neighboring points.



17

0.05 0.025 0 0.025 0.050

0.25

0.5

0.75

1

 

(1)
hB

(2)
hB

(3)
hB

(4)
hB

Figure 5: Generating functions, ( )k
hB , for locally supported reproducing kernels;

15iψ = ° .
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Figure 6: Locally supported kernels for three points of a triangle; support regions on
right, kernels on left; 5iψ = ° .

Because of the asymptotic decrease given by equation (4.20), the numbers, Al , are
only “0-summable”, and one cannot guarantee the continuity of first-order derivatives of
the spline.  Clearly, smoother splines are obtained by choosing higher-order convolutions
of the functions, ( )kBl  (this increases the support region for fixed ih )

Writing equation (4.16) in matrix form and substituting it into equation (4.15), we
find

( ) ( ) ( ) ( ) ( )
1

ji

FS A A i js K K yηηξ ξ η
−

    =      
 , (4.22)

where the square-bracketed matrices have dimensions 1 V× , V V× , and 1V × ,
respectively.  This is precisely the minimum-norm solution in collocation theory
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developed in physical geodesy (Moritz, 1980), except that the kernel, ( )i

AK η , is not a
covariance function of the gravity field (see also Sünkel, 1984).  However, like the
usually assumed covariance function it is positive definite and depends only on the
spherical distance between observation data points.  In the limit as the support region
decreases, we may even compare the FS spline model to Bjerhammar’s impulse function
method (Bjerhammar, 1976, 1987), where Dirac delta functions replace the kernel
functions and represent splines of zero support.

5. Alfeld / Neamtu / Schumaker Spherical Splines

The spherical splines developed by the Vanderbilt group are based directly on methods
used in constructive approximation of surfaces with applications in computer-aided
geometric design (CAGD; e.g., see Farin, 2002).  We shall call these the ANS splines
after the initials of the authors whose publications lay the necessary groundwork (Alfeld
et al., 1996a,b,c).

We assume that for a given set of points, iη , the sphere has been triangulated using
well-known methods (e.g., the Delauney triangulation) yielding N triangles whose E
edges are great circle arcs.  The triangulation is further assumed to be total, meaning that
any point on the sphere belongs to a spherical triangle (or an edge or a vertex).  (Again,
the triangulation may be generalized to any sphere-like surface, but this is beyond the
present scope.)  We assume that each triangle is non-degenerate (the three vertices do not
lie on a plane that contains the center of the sphere).  The number of (non-degenerate)
triangles, N, formed on the sphere with V vertices is given by 2 4N V= − ; and the
corresponding number of edges is given by 3 6E V= − .  For example, consider the
simple “local triangulation” on the sphere formed by three nearby points.  The 3 edges
actually form 2 triangles, the obvious smaller triangle, as well as the large triangle
comprising the spherical area exterior to it.

We introduce a local coordinate system for each triangle based on its vertices,
( )1 2 3, ,η η η , so that any point on the sphere can be represented by the combination:

1 1 2 2 3 3b b bξ η η η= + +  , (5.1)

where the coefficients, ( )1 2 3, ,b b b , are the barycentric coordinates of ξ .  Writing iη  and

ξ  in terms of the usual Cartesian coordinates, e.g., i i x i y i zx y ze e eη η η η= + + , we have

immediately upon substituting these into equation (5.1):

1 2 3 1

1 2 3 2

31 2 3

x x x x

y y y y

z z z z

b
b
b

ξ η η η
ξ η η η
ξ η η η

    
    =     

        

 , (5.2)
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from which , 1,2,3jb j = , can be determined:

1

1 1 2 3

2 1 2 3

3 1 2 3

xx x x

yy y y

zz z z

b
b
b

η η η ξ
η η η ξ

ξη η η

−
    
    =     

        

 . (5.3)

As such, these barycentric coordinates are linear, homogeneous functions of ξ :

( ) ( )j jb bαξ α ξ=  . (5.4)

Note that if two of the points, iη , are on the equator, 90º apart, with the third point at a
geographic pole, then the barycentric coordinates are proportional to the usual Cartesian
coordinates.

The following polynomials of degree d:

( ) ( ) ( ) ( ) ( )1 2 3

!
,

! ! !
p q rd

pqr

d
B b b b p q r d

p q r
ξ ξ ξ ξ= + + =  , (5.5)

are called spherical Bernstein-Bézier (BB) polynomials.  They are homogeneous because
of equation (5.4).  The spherical BB polynomials are the restrictions to the sphere of the
more general trivariate homogeneous Bernstein-Bézier polynomials for 3v ∈ ¡  whose
barycentric coordinates are defined similarly using three vectors in 3¡ .  The Bernstein-
Bézier polynomials span the space of homogeneous polynomials of degree d in 3¡ ; and
the spherical BB polynomials form a basis for homogeneous polynomials of degree d on
the sphere, Ω .  From the formula (5.3), it is immediately evident that ( )j i jib η δ= ; hence
also

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

,0,0 1 1, 0, ,0 2, 0,0, 3,, , ,

0, for any two indices, , , ,  not equal to zero .

d d d
d i d i i d i i

d
pqr i

B B B

B p q r

η δ η δ η δ

η

= = =

=
(5.6)

Figure 7 shows some of the spherical BB polynomials for 5d =  and an isosceles
spherical triangle.
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Figure 7: Three typical examples of the spherical BB polynomials for 5d = .  Indicated
values are the maxima attained on the triangle.

There is the remarkable result that any homogeneous polynomial can be decomposed
into a sum of harmonic homogeneous polynomials of either even or odd degrees.  If ( )dH
denotes the space of homogeneous polynomials of degree d, and ( )Ψ l  is the space of
harmonic homogeneous polynomials of degree l , then symbolically, we have

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 2 4

1 3 5

, if  is even

, if  is odd

d
d

d

d
H

d

Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ

 ⊕ ⊕ ⊕ ⊕= 
⊕ ⊕ ⊕ ⊕

L
L

(5.7)

where ⊕  means “direct sum” of spaces.  It can readily be verified that the dimension of
either direct sum of harmonic spaces is precisely that of the homogeneous polynomials
( ( )( )2 1 / 2d d+ + ; see equation (2.6)).  This result, proved, for example in (Freeden et

al., 1998, Section 2.2), holds both for points in 3¡  as well as for the restriction to the
sphere, and it provides the relationship between the spherical Bernstein-Bézier
polynomials and our familiar spherical harmonics.  Specifically, we may write, if d is
even,

( ) ( ) ( ) ( )
/ 2

2 ,
2 ,

0

,  even
d

d m
pqr pqr m

m

B Y dξ β ξ
= =−

= ∑ ∑
l

l
l

l l
 , (5.8)

where the coefficients could be determined in the usual way through the orthogonality of
the spherical harmonics:

( ) ( ) ( ) ( )2 ,
2 ,

1
4

m d
pqr pqr mB Y d ξ

σ

β ξ ξ σ
π

= ∫∫l
l  , (5.9)

where σ  is the unit sphere.  Here, the BB polynomials must be defined globally, but in
the sequel we shall restrict their definition to one triangle of the triangulation of the
sphere based on the data points, iη .

That is, consider a spline defined by a patchwork of locally supported spherical
Bernstein-Bézier (SBB) polynomials.  Within this simple proposition lie non-trivial
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aspects.  First, it is necessary to determine the dimension of the spline space so that the
spline is properly specified.  Since the local domains of the SBB polynomials (i.e., the
triangles) will share vertices and edges, and since the spline should have a specified
smoothness across the edges and vertices, determining the dimension of the spline space
is non-trivial.  Alfeld et al. (1996a) showed that the dimension of the space of splines
with only piecewise continuous, homogeneous, SBB polynomials of degree d has
dimension

( )2
0

1
( 1) 2 2

2
d

M V d E N d V
− 

= + − + = − + 
 

 . (5.10)

If the spline should have smoothness κ  (that is continuous derivatives up to order κ ),
then if 3 2d κ≥ + , Alfeld et al. (1996a) also proved that the dimension of the
corresponding space is given by

( )( )( ) ( )( )2 2 1 2M d d Vκ κ κ κ κ µ= − − − + + + +  , (5.11)

where

( )
1 1

, 1
V d

i i i
i m

m me
κ

µ µ µ κ
−

+
= =

= = + + −∑ ∑  , (5.12)

and where ie  is the number of distinct (non-coplanar) edges at a vertex, and the
summands of iµ  are either zero or positive.  Thus, a spline with continuous first
derivatives ( 1κ = ) and comprising homogeneous polynomials of degree 5d =  comes
from a space of dimension 12 18V − , if all vertices have at least 3 distinct edges (in which
case iµ  is zero for all vertices).

We thus define a spherical ANS spline as follows:

( ) ( ) ( ) ( ), , ,d n d n
ANS pqr pqr n

p q r d

s c B Tξ ξ ξ
+ + =

= ∈∑  , (5.13)

where nT  is the nth triangle of the triangulation, 1, ,n N= … ; the subscript “ANS” is used
to identify the principal authors.  For each nT , there is a new set of coefficients associated
with the homogeneous polynomial defined using the barycentric coordinates of the
vertices.  Since there are ( )( )2 1 / 2d d+ +  coefficients for each set of SBB’s on a

triangle, the total number of coefficients is ( )( ) ( ) ( )( )2 1 / 2 2 1 2N d d d d V+ + = + + − ,

which is greater than the dimension of the space, Mκ , given in equation (5.11).  Clearly,
the coefficients must be constrained somehow in order to be uniquely determined.
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One may associate with each coefficient a domain point (analogous to the knots of B-
splines; see Section 3).  Alfeld et al. (1996a) defined these domain points for triangle, nT ,
according to

( ) ( ) ( ) ( )( )1 2 3

1
,n n n n

pqr p q r p q r d
d

ψ η η η= + + + + =  , (5.14)

(see Figure 8).  The vertices are also domain points:

( ) ( ) ( ) ( ) ( ) ( )
,0,0 1 0, ,0 2 0,0, 3, ,n n n n n n

d d dψ η ψ η ψ η= = =  ; (5.15)

and from equation (5.6), we have the following constraints:

( ) ( ) ( ) ( ) ( ) ( )
,0,0 1 0, ,0 2 0,0, 3, ,n n n n n n

d d dc y c y c y= = =  , (5.16)

where for each j, ( )n
j iy y≡ , for some { }1, ,i V∈ … .

η1η2

η3

Figure 8: Domain points defined for a triangle on which spherical BB polynomials of
degree, 5d = , are supported.

More generally, Alfeld et al. (1996b) showed that for two triangles, 1T  with vertices

{ }1 2 3, ,η η η  and 2T  with vertices { }1 3 4, ,η η η , that share an edge ( 1 3η η↔ , in this case),
the corresponding homogeneous polynomials of degree d have continuous derivatives up
to order 0κ ≥  across the edge if and only if

( ) ( ) ( ) ( )2 1 ,1
, , 4 , for all ,r

pqr p q
r

c c B r p q r dµ ν ρ µνρ
µ ν ρ

η κ+ +
+ + =

= ≤ + + =∑ , (5.17)

where ( ) ( ),1
4

rBµνρ η  is the BB basis polynomial of degree r for triangle 1T  but evaluated at

the vertex, 4η , of triangle 2T .  For example, if we wish continuity of the polynomials
across the shared edge ( 0κ = ), then we require ( 0r =  in the formula above)



23

( ) ( )2 1
0 0 ,pq p qc c p q d= + =  . (5.18)

There are 1d +  such conditions for each edge, corresponding to the 1d +  domain points
on the edge.  For a total triangulation there are ( )1d E+  conditions, but each vertex is

thus counted twice.  Hence, there are only ( )1d E V+ −  constraints of the type (5.18) on

the coefficients.  Therefore, of the total number of coefficients, 
2

2

d
N

+ 
 
 

, we can remove

( )1d E V+ −  and are left with

( ) ( )22

2
1 2 2

d
N d E V d V

+  − + + = − + 
 

 , (5.19)

precisely the dimension, 0M , of the space of continuous splines.  For continuity of
higher-order derivatives ( 0κ > ), there are additional constraints on the coefficients and
the dimension of the space of corresponding splines reduces according to formula (5.11).
The number of additional constraints per edge, Lκ , according to equation (5.17), is given
by

( ) ( ) ( )1 1 2 1
2

L d d d dκ
κ

κ κ= + − + + − + = − +L  . (5.20)

On the other hand, the total number of such constraints ( L Eκ ) again includes some
redundancies which were elaborated by Alfeld et al. (1996a).

Once the dimension, 0M , of the space of continuous splines is defined, and redundant
coefficients (on shared edges) are removed, we wish to compute the remaining
coefficients from the given data, subject to additional Lκ  smoothness constraints
(redundant constraints also removed).  However, to simplify the concepts, we retain all
coefficients and deal with their redundancies separately.  First, suppose the coefficients
associated with all N triangles are renamed:

( ), , 1, ,d n
pqr mc c m ND→ = …  , (5.21)

where ( )( )1 2 / 2D d d= + +  is the number of coefficients for one triangle.  Then identify

V of these with the domain points at the vertices.   For some im  we clearly have, in view
of equation (5.6)

, 1, ,
im ic y i V= = …  . (5.22)

We write this in terms of a matrix, A, of zeros and ones that selects the appropriate
coefficients:
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y Ac=  , (5.23)

where ( )T
1, , Vy y y= … , ( )T

1, , NDc c c= … .  The remaining coefficients are free, subject to
the constraints (5.17), which we write concisely as

0Gc =  , (5.24)

where G is a L E NDκ ×  matrix that is sparse if the order of smoothness is low, but
formally, it also contains redundancies that make the matrix less than full rank.  One can
either remove the redundant constraints or use standard techniques to solve
underdetermined (but consistent!) systems of equations.  We now assume that the
redundancies are removed so that G has full (row) rank.

These conditions still leave some coefficients free and they can be determined with
additional constraints, such as minimum energy interpolation.  Alfeld et al. (1996c)
suggested to minimize a quadratic functional of the spline, which, if the minimization
occurs independently over each triangle, is equivalent to

( )( ) ( )T
min , 1, ,n n

nc Q c n N→ = …  , (5.25)

where ( )nc  is the vector of D coefficients, ( ),d n
pqrc , for the nth triangle, and nQ  is a D D×

symmetric, positive definite matrix (see Alfeld et al., 1996c, for a discussion on the
choice and evaluation of nQ ).  In the end, one must solve for the coefficients according to
the minimization (5.25) subject to constraints (5.22) and (5.24).  Using the method of
Lagrange multipliers , we set up the cost function with constraints:

( ) ( )T T T
1 2

1
2

c Qc y Ac Gcφ λ λ= − − +  , (5.26)

where Q is the block diagonal matrix, with blocks, nQ ; and 1λ  and 2λ  are corresponding
vectors of Lagrange multipliers.  Setting partial derivatives of φ  with respect to c, 1λ ,
and 2λ , correspondingly, to zero, we find the following linear system to be solved:

T

1

2

0
0 0
0 0 0

TQ A G c
A y
G

λ
λ

    
    =    

        

 . (5.27)

It can be shown that the solution for the coefficients is given by

( )( )1T T 1 T 1c I MG GMG G Q A N y
− − −= −  , (5.28)
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where ( )1 T 1 1M Q I A N AQ− − −= −  and 1 TN AQ A−= .  See Section 7 for a solution with

data errors.

6. The Boundary-Value Problem in Geodesy

In general, considering the developments in Sections 3, 4, and 5, a spherical spline model
of a function on the sphere has the following form as a sum of locally supported splines,

( )mw ξ :

( ) ( )
1

M

m m

m

s c wξ ξ
=

= ∑  , (6.1)

where the coefficients, mc , are determined by solving a linear system of equations based
on function values distributed on the sphere (and possibly a set of other constraints).  In
physical geodesy, the function to be modeled is usually a derivative (of some order) of
the gravitational potential (more precisely, a residual or disturbing potential), and the
function is defined in the free space above the Earth’s surface according to potential
theory.  Formally, we set up a boundary value problem (BVP) for the disturbing
potential, T, that in spherical approximation is expressed as:

solve 2 0T∇ =  in the space exterior to RΩ
(6.2)

subject to 
R

LT f
Ω

=  ,

where RΩ  is a sphere of radius R, L is a linear operator and f is supposed to be a given
function on RΩ .  If L I= , the identity operator, the problem is known as the Dirichlet
boundary-value problem which has the well known solution (if the boundary is a sphere)
given by the Poisson integral:

( ) ( ) ( )2 2

3

'
, ,

4

R r R f
T r d r R

Ω

ξ
ξ Ω

π ρ

−
= ≥∫∫  , (6.3)

where ρ  is the (straight-line) distance between the integration point, ( )', Rξ , and the

evaluation point, ( ), rξ :

2 2 2 2 'r R Rrρ ξ ξ= + − ⋅  . (6.4)
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Equation (6.3) leads directly to the familiar spherical harmonic representation:

( ) ( )
1

0

, m m

m

R
T r t Y

r
ξ ξ

∞ +

= =−

 =   ∑∑
l l

l l
l l

 , (6.5)

where mtl  is the geopotential harmonic coefficient, by considering that

( ) ( ) ( )
2 2

3
0 0

1 1 1
' 2 1 '

R r R R
P P

r r r r
ξ ξ ξ ξ

ρ ρ

∞ ∞

= =

−   = ⋅ ⇒ = + ⋅      ∑ ∑
l l

l l
l l

l  , (6.6)

and making use of the decomposition formula (4.7).
If ( ),i iy T Rη= , 1, ,i V= … , is all that we have for boundary values, then the spline

representation, equation (6.1), may be used as boundary function in Poisson’s integral,
yielding the following estimate for T:

( ) ( ) ( )2 2

3
1

'ˆ ,
4

M
m

m

m

R r R w
T r c d

Ω

ξ
ξ Ω

π ρ
=

−
= ∑ ∫∫  . (6.7)

The integration region for the integrals is limited to the local support of the splines,
( )mw ξ .
In fact, for the FS splines, the integral can be evaluated directly by substituting

equations (4.5) and (6.6), and making use of equation (4.7) and the orthogonality of the
spherical harmonics:

( ) ( ) ( )
2 2 1

3 2
0

' 2 1
4

m
i

R r R w R
d P

r A
Ω

ξ
Ω ξ η

π ρ

∞ +

=

− + = ⋅  ∑∫∫
l

l
ll

l
 . (6.8)

where the index, m, in this case corresponds to a particular data point, iη .  Denoting the

right hand side as ( ) ( ),i

AK rη ξ , we have, using the FS spline coefficients:

( ) ( ) ( )
1

ˆ , ,i

V

i A

i

T r c K rηξ ξ
=

= ∑  . (6.9)

We note that the extended splines, ( ) ( ),i

AK rη ξ , mathematically do not have local support.
However, as seen in Figure 9, the support is practically local and for near-Earth radii, r,
only a small number of splines need to be included in the summation of equation (6.9).
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Figure 9: Extended kernels for FS splines; 5iψ = ° .

Using the ANS spline representation as boundary function in problem (6.2) yields a
computationally more complicated estimate for T.  The integral in equation (6.7) is now
given by substituting equation (5.13):

( ) ( ) ( ) ( )
( ) ( )2 2 2 2 ,

,
3 3

''
4 4

n

d n
d n pqrm

pqr

T

R r R R r R Bw
d c d

Ω

ξξ
Ω Ω

π ρ π ρ

− −
=∫∫ ∫∫  , (6.10)

where the index m corresponds to one of the ( )( )1 2 / 2d d+ +  ANS splines for triangle,

nT .  There should be no confusion in the notation between the triangle and the disturbing
potential, nor between the radial coordinate and the index of the BB polynomial.
Defining

( ) ( ) ( ) ( ) ( )2 2 ,
,

3

'
,

4
n

d n
d n pqr

pqr

T

R r R B
B r d

ξ
ξ Ω

π ρ

−
= ∫∫  , (6.11)

the disturbing potential is given by

( ) ( ) ( ) ( ), ,

1

ˆ , ,
N

d n d n
pqr pqr

n p q r d

T r c B rξ ξ
= + + =

= ∑ ∑  , (6.12)

where the redundancies in the coefficients (see Section 5) correspondingly reduce the
number of summands.  Note that we cannot use the harmonic expansion of the ANS
splines, equation (5.8), to take advantage of the orthogonality with respect to the
expansion for 31/ ρ , as in the case of the FS splines, since the integration is truly local.
Also, since 31/ ρ  does not have local support, more than one integral of the type (6.10)

will contribute to the evaluation of ( )ˆ ,T rξ , if r R> .
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Once the disturbing potential is estimated in external space, it is possible to apply any
linear operator to express other useful gravitational quantities, such as the gravity
disturbance, the gravity anomaly, deflections of the vertical, gravitational gradients, etc.
For higher than first-order derivatives care must be exercised for points on the boundary
since the curvature of the potential is discontinuous there.  In the case of FS splines, the
functional relationships between T and its vertical derivatives, for example, are familiar
from the spherical harmonic spectral transforms.  To illustrate, the gravity disturbance on
the sphere of radius, R, is given by

( ) ( ) ( )
1

ˆ ,i

V

i A
r Ri

g c K r
r

ηδ ξ ξ
==

∂
= −

∂∑  , (6.13)

where

( ) ( ) ( )2
0

1 2 1
,i

A i
r R

K r P
r R A

η ξ ξ η
∞

= =

∂ + +
− = ⋅

∂ ∑ l
ll

l l
 . (6.14)

Clearly, the coefficients, Al , of the FS splines must be such that the series in equation

(6.14) is summable; i.e., ( )2 , 3A O ν ν= >l l .

For the ANS splines, the gravity disturbance in free space follows from equation (6.4):

( ) ( )
( ) ( ) ( )

,
,

5

'3
, '

4
n

d n
d n pqr

pqr

T

B
B r r R d

r

ξ
ξ ξ ξ Ω

π ρ
∂

− = − ⋅
∂ ∫∫  . (6.15)

In the limit, as r R→ , we encounter a strong singularity for the triangle containing ξ ,
which requires special care in numerical applications.

7. Data Errors

Up to this point, errors (e.g., observational errors) in the data values were excluded from
consideration.  When they are present (equation (2.3)), the spline representation should
not necessarily reproduce the data values at the data points since data on neighboring
points may contribute to reduce the error in the estimation.  All the spline representations
discussed in previous sections are linear models of the data and the standard linear least-
squares estimation may be applied to obtain an optimal representation (generally, only
optimal with respect to minimizing the errors, that is, the resulting residuals, at the data
points).  Let the observations at the data points, iη , be given by

i i iy y e= +%  , (7.1)
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where, as before, ( )i iy f η= , and the covariance matrix of the random errors, ie , is eD .
For the tensor-product spline representation, equation (3.1), specialized to the case of

third-order splines (see also equation (3.8)), the least-squares solution for the coefficients

is obtained by minimizing (let s be the vector ( ) ( )( )T
1 , , Vs s sη η= … ):

( ) ( )T mins y P s y− − →% %  , (7.2)

where

2 1
eP Dσ −= (7.3)

is the weight matrix for the observations, based on the inverse covariance matrix of the
errors and scaled by the variance of unit weight.  The minimization is subject to the
constraints formalized by equations (3.8) and (3.9); and then the estimate of the vector of
coefficients is given by (e.g., Leick, 1990, p.100; see also below)

( )( )11 1 1 1ˆ T T Tc N N B BN B BN A Py
−− − − −= − %  , (7.4)

where TN A PA= .
For the quasi-interpolation scheme using tensor splines, the constraints are already

incorporated and one could set up a least-squares estimation problem just to minimize the
effect of the data errors.  The estimate (7.4) can be adopted in this case with 0B =  and A
defined by equations (3.14) through (3.18).  However, this would not minimize the
modeling errors associated with quasi-interpolation and some further development of this
case appears warranted.  We refer also to the numerical tests conducted by Schumaker
and Traas (1991) that seem to indicate potential computational instability with the global
solution, such as equation (7.4), although they did not consider data errors, and used data
scattered on the sphere, rather than at the knots.

Performing a least-squares adjustment of the observations in the case of the FS
splines is straightforward since it is a special case of the collocation methods developed
in physical geodesy.  Assuming an admissible set of data points, we borrow from the
theory of least-squares collocation (Moritz, 1980) and modify equation (4.22) as follows:

( ) ( ) ( ) ( ) ( )
1

ji

FS A A i e js K K D yηηξ ξ η
−

    = +      
 , (7.5)

where the covariance matrix of the observation errors, likewise, has elements depending
on their relative locations, i jη η− .  Assuming that the observation errors are either

uncorrelated or only correlated with their immediate neighbors, the sparseness of the
matrix to be inverted is essentially preserved, as defined by the kernels, ( )i

AK η .
In the case of the ANS splines, the minimization (5.25) is extended to include

observation errors.  The cost function to be minimized is then
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( ) ( )T T T T
1 2

1 1
2 2

c Qc v Pv y Ac Gcφ λ λ= + − − +  , (7.6)

where the residuals are defined as v y y= − %  and P is the weight matrix for the
observations, as in equation (7.3).  Estimates for the coefficients are obtained by solving
the system of equations for c:

T

1

2

0 0 0
0 0

0 0
0 0 0 0

T

vP I
cQ A G

I A y
G

λ
λ

−     
    
    =
    −
            

%  . (7.7)

One can readily derive the following:

( ) ( )( ) ( )
11 1 1T T Tc Q N I G G Q N G G Q N A Py

−− − − = + − + + 
 

%  , (7.8)

where TN A PA= , which is different here than in equation (5.28).  If P and Q are
diagonally dominant (as may be considered usual), the inverses above are easily
computed.

8. Summary

Three types of spline models have been presented to represent functions whose values are
known only at a finite number of discrete points on the sphere.  In addition to a
comparison of the splines, the main objective was to contrast these representations with
the well known and conventionally used spherical harmonic models of functions.  The
essential difference between the spline models and the spherical harmonics is the nature
of their support.  Spherical harmonic basis functions have global support and the basis
functions for the spline representations have local support defined in some sense by the
resolution or distribution of the data points.  This implies that the evaluation of the spline
model is accomplished extremely rapidly, using just coefficients pertaining to the support
region near the evaluation point, as opposed to the evaluation of the spherical harmonic
model that requires processing all its coefficients.  Moreover, if the data values are
changed (e.g., because of a more accurate observation), then the coefficients of the spline
models change only with respect to the support region of the changed data.  Another
salient feature of the spline representations is that the data points need not be regularly
distributed on the sphere, as opposed to spherical harmonics where a regular
latitude/longitude distribution is a practical requirement.  There are, however, a number
of distinguishing differences among the types of spline representations that also have
important consequences for applications in physical geodesy.
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The first spline model described above is the tensor-product of one-dimensional B-
splines with knots on a grid of co-latitude and longitude lines.  Special trigonometric B-
splines in latitude were defined to enable smoothness of the model at the poles.  These
splines are easiest to visualize and manipulate, but tests have also shown (Schumaker and
Traas, 1991) that a rigorous, global solution can be unstable.  A quasi-interpolation
procedure was developed (ibid.) that bypasses the global solution and determines with
reasonable accuracy the coefficients of the spline model strictly from local data  (some
further tests of this method confirm the suitability of this procedure (Vangani, 2005)).
One drawback of this type of representation of a function on the sphere is the requirement
of a coordinate grid of knots.  To increase the resolution of the model in some local
region requires the addition of a line of latitude or longitude (or both).  This automatically
adds resolution globally along each added line, even where it is not warranted by the
data.  The use of the tensor-product spline model in the geodetic boundary-value problem
was not specifically discussed, but is analogous to the case of the ANS spherical splines
(below).

The second type of splines are the spherical splines developed by the Kaiserslautern
group (e.g., Freeden et al., 1998) and named here the FS splines after the principal
authors.  The component splines are reproducing kernels in a Hilbert space of
interpolating functions on the sphere.  Each data point defines such a kernel and since the
kernels are isotropic and depend only on the distance from the data point (they are called
radial basis functions), the spline model is analogous to the collocation model, known
well in physical geodesy.  The model is identical to collocation if the kernel functions are
the covariance functions of the signal being represented.  Schreiner (1997) also
developed strictly locally supported kernels in order to facilitate the determination of the
corresponding coefficients of the model.  Resembling closely the collocation model,
which is constructed for the space of functions harmonic outside a sphere, the FS splines
are readily extendable to three dimensions on the basis of potential theory.  The data
points for this spline model need not be on a coordinate grid and the addition of a data
point does not affect the remote part of the model.  However, interpolation is based on no
particular characteristic of the function between the data points since the support regions
of the kernels are chosen somewhat arbitrarily.  Also, the kernel functions are expressed
only as infinite series, which may be a computational concern.

The third type of splines is the spherical spline based on the homogeneous Bernstein-
Bézier polynomials.  These splines were developed for sphere-like surfaces in a series of
papers by the Vanderbilt group (Alfeld et al., 1996a,b,c) and are named the ANS splines
here in deference to their authors.  The ANS spline representations of functions on a
sphere have a strong mathematical link to the methods and theory of constructive
approximation in CAGD.  Given a set of data points on the sphere (not necessarily on any
kind of regular grid), one first performs a triangulation of these points.  The resulting
triangles define the local support for the ANS splines.  Additional domain points on the
triangle (other than the triangle vertices) are used to impose a specified smoothness of the
spline representation across triangle edges (analogous to the knots of the tensor-product
splines).  The coefficients of the spline model correspond to these domain points; and,
therefore, the number of coefficients can be many times the number of data points
(triangle vertices); e.g., see equation (5.19), depending on the square of the degree of the
polynomials.  On the other hand, the evaluation of the spline is extremely fast using
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algorithms developed for BB polynomials (the de Casteljau algorithm; Alfeld, 1996b).
Also, the addition of one data point does not affect the model except in the immediate
neighborhood of that point.  The ANS spline representation is not as easily amenable to
the boundary-value problems in physical geodesy (when the boundary is a sphere) as are
the FS splines.  Yet, it should be noted that, unlike the FS splines, the ANS splines can be
generalized to data on any sphere-like surface because the BB polynomials are defined in
terms of barycentric coordinates, rather than the usual spherical coordinates.  Thus, one
can construct a spline representation of data on the actual surface of the Earth, which
could then be used in solutions to the boundary-value problem using boundary element
methods (Klees, 1997).

A few other comments should be made concerning the spline representation.  It is
natural to express the global, longer-wavelength part of the geopotential in terms of
(solid) spherical harmonics since they derive directly from potential theory.  Therefore, it
is equally natural to combine such a low-degree spherical harmonic model with a spline
model that represents the finer, local structure of the field.  The FS splines, in fact, were
developed more generally in the context of such a combination (Freeden et al., 1998,
Schreiner, 1997).  On the other hand, that development is most useful if the spherical
harmonic components are also estimated from the same data on the sphere.  Today,
spherical harmonic models are derived directly from satellite-borne instrumentation and
the combination is not nearly as straightforward since heterogeneous data on different
surfaces are involved.  Any of the spline representations can be applied to residuals with
respect to a given spherical harmonic model, but the optimal combination of all data
(terrestrial and satellite) for a hybrid spherical harmonic/spline model remains a topic for
future analysis and theoretical development.  Finally, it is noted that the spline basis
functions lend themselves to a multiresolution representation of the function on the
sphere, analogous to the wavelets in Cartesian space.  This has been developed for the
tensor-product splines by Lyche and Schumaker (2000), and for the FS splines by
Freeden et al., 1998; see also Fengler et al. (2004).  For the ANS splines, a multiresolution
representation has not been developed, but is possible (personal communication, L.L.
Schumaker, 2004).
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