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Abstract

Reliability analysis explains the contribution of each  observation in an estimation model
to the overall redundancy of  the model, taking into account the geometry of the network
as  well as the precision of the observations themselves. It is  principally used to design
networks resistant to outliers in the observations by making the outliers more detectible
using  standard statistical tests.It has been studied extensively, and  principally, in Gauss-
Markov models. We show how the same  analysis may be extended to various
constrained Gauss-Markov  models and present preliminary work for its use in
unconstrained  Gauss-Helmert models. In particular, we analyze the prominent  reliability
matrix of the constrained model to separate the  contribution of the constraints to the
redundancy of the  observations from the observations themselves. In addition, we  make
extensive use of matrix differential calculus to find the  Jacobian of the reliability matrix
with respect to the parameters  that define the network through both the original design
and  constraint matrices. The resulting Jacobian matrix reveals the  sensitivity of
reliability matrix elements highlighting weak  areas in the network where changes in
observations may result in  unreliable observations. We apply the analytical framework to
photogrammetric networks in which exterior orientation parameters  are directly observed
by GPS/INS systems. Tie-point observations  provide some redundancy and even a few
collinear tie-point and  tie-point distance constraints improve the reliability of these
direct observations by as much as 33%. Using the same theory we  compare networks in
which tie-points are observed on multiple  images (n-fold points) and tie-points are
observed in photo pairs  only (two-fold points). Apparently, the use of two-fold  tie-
points does not significantly degrade the reliability of the  direct exterior observation
observations. Coplanarity constraints  added to the common two-fold points do not add
significantly to  the reliability of the direct exterior orientation observations.  The
differential calculus results may also be used to provide a  new measure of redundancy
number stability in networks. We show  that a typical photogrammetric network with n-
fold tie-points was  less stable with respect to at least some tie-point movement than  an
equivalent network with n-fold tie-points decomposed into many  two-fold tie-points.
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CHAPTER 1 
 

INTRODUCTION 
 
 

Modern photogrammetric adjustment models no longer involve only tie and ground control point 
observations on stereo or convergent photography.  Additional information from geometric constraints on 
ground points,  observations of linear features, observations of camera orientation, and observations of 
ground point locations from other sources are routinely available. The theory behind integrating this 
additional information in the form of stochastic constraints is well understood and has been applied to 
GPS/INS observations of camera position and attitude, shape and position constraints on surfaces, and 
control point observations (Tamim and Schaffrin, 1995, Kraus, 1999, Schenk, 1999, Flood, 1999).  In fact, 
extending the traditional photogrammetric observation equation model with constraints can be shown to 
reduce the variance of estimated parameters, reduce correlations between various parameters (especially in 
self-calibrating bundle adjustments), and increase the redundancy of the extended model (Koch, 1999, 
Kraus, 1999, Triggs, et al. 2000).  Additional supplemental observations are becoming available as well.  
Most recently, laser profilers (terrestrial laser scanners) and airborne laser ranging (ALR) systems have 
seen use in both research and commercial mapping applications (Flood, 1999, and Schenk, et al. 2002).  
These systems provide extremely dense, and in some cases very precise, point observations of three-
dimensional surfaces such as building facades, urban landscapes, and terrain.  They suffer, however, from 
at least two important drawbacks (Baltsavias, 1999). First, individual points from the resulting point clouds 
cannot easily be traced to a corresponding feature on the surface.  Second, because these systems measure 
azimuth, elevation, and range (or equivalently direction cosine and range) between points on a surface, they 
offer no redundancy in the estimation of the three-dimensional coordinates of these points.  As a result, 
measurement accuracy is only as good as the calibration of the system (i.e. systematic errors are 
undetectible) and gross observational errors are statistically and practically undetectible.  Indeed, these 
systems provide less redundancy (zero, in fact) than a directly oriented photogrammetric system (i.e. 
relative and absolute orientation achieved by tie points observed in overlapping images and GPS/INS 
observations of exposure centers without the use of ground control points) (Schenk, 2002).  The advantages 
and limitations of laser scanners thus complement photogrammetric systems which provide interpretable 
and redundant, but relatively sparse, discrete point information about a surface.  Integration of these two 
types of observations in an adjustment model has been studied by Jaw (1999), for example, who proposed 
augmenting aerial triangulation with planar constraints, estimated from a laser surface, on tie points.   Other 
current research involves techniques to match the two surfaces (generally, but not necessarily, represented 
by a triangulated irregular network, or TIN) estimated from a photogrammetric system and a laser scanner 
(Schenk and Csathó, 2002, and Schenk, 2002).  The relative dominance of a-posteriori matching can be 
attributed primarily to the general lack of correspondence between points in the two estimated surfaces.  
This approach does, however, provide some degree of systematic and gross error detection in the laser 
generated surface (Schenk, 2002). 
 The extended photogrammetric model (i.e. traditional photogrammetric observation equations 
augmented with stochastic constraints of various forms), in particular with those cases enumerated above, 
is a flexible and powerful tool for including incongruous information into a stochastically rigorous 
adjustment model.   Another powerful tool, resulting from concepts first developed by the Dutch geodesist 
Baarda in 1968 and applied to photogrammetric networks by Förstner as early as 1985 (there exists some 
German language literature from the seventies as well), is the computation of inner and outer reliability of a 
geodetic and/or photogrammetric network.  Reliability is a measure of a model’s ability to help detect 
and/or locate gross errors (inner reliability) and of the estimated parameter’s sensitivity to un-modeled 
gross errors (outer reliability).  Both concepts make extensive use of a so-called “reliability” matrix which 
maps the observation vector to the residual vector.  Both Baarda and Förstner initially applied the concept 
to the Gauss-Markov model and assumed uncorrelated observations.  Furthermore, this early work assumed 
a gross error in a single observation.   Since these initial studies, several researchers have expanded the 
scope of the concept.  Wang and Chen (1994) studied the effects on correlated observations, and Schaffrin 
(1997) offered a similar approach that allowed better interpretation with a normalized reliability number.  
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Förstner expanded the concept by developing statistical tests for groups of observations - important for 
examining photogrammetric tie point measurements (Förstner, 1994).   Most recently Schaffrin (2000) 
developed reliability measures for predictions obtained by Kriging.   To date, there is no evidence beyond 
Schaffrin (2000) of any attempts to extend the concept of reliability beyond the Gauss-Markov model, and 
in particular to the constrained Gauss-Markov model.  Because of the growing need for integrating 
incongruous observations – just four of potentially many examples are described above – it would be 
helpful to have a tool that allows a network designer to see the effects of additional observations or 
constraints not only on the estimated variance of the parameters but also on the reliability of the model.  It 
is certainly possible to see the effects in a synthesized result by computing reliability with, and then 
without, the stochastic constraints.  However, this method may well obscure the causes of the change in 
reliability.  A truly analytical approach would separate the contribution of the observation equations from 
the effects of the stochastic constraints on model reliability.   This method is currently used to evaluate the 
effects of stochastic constraints on the parameter vector and its covariance matrix (Koch, 1999) but 
apparently has not yet been extended to the computation of reliability. 
 Another approach would have us consider the reliability matrix as a non-linear matrix function of 
matrix variables and use the theory of differential calculus, extended to matrix functions, to examine how 
the reliability matrix behaves with respect to changes in the network or the addition of constraints (Magnus 
and Neudecker, 1999).  With the “Jacobian” of the reliability matrix with respect to the design matrix or 
constraint matrix, we would have a tool to see how changes in the design matrix, resulting from changes in 
the initial parameter seed values,  effect changes in observation reliability.  We will therefore examine two 
approaches – first analytically examine the change in reliability (and consequently inner and outer 
reliability) induced by the constraints in the Gauss-Markov model and second, use the analytical results to 
develop differential relationships between the model design matrices and the reliability matrix itself to see 
how reliability measures are affected locally.   
 Chapter 2 will summarize reliability theory in the Gauss-Markov model, particularly those results 
concerning the reliability matrix, inner reliability, and outer reliability . Chapter 3 will present relevant 
results from the constrained Gauss-Markov model and will address both fixed constraints (constraints with 
zero variance) and stochastic constraints (constraints with non-zero known variance).  Both the full-rank 
Gauss-Markov model and the rank-deficient Gauss-Markov model will be addressed.  Chapter 4 will 
integrate reliability analysis into the constrained Gauss-Markov model and provide expressions for the 
reliability matrix, inner reliability, and outer reliability. A simple numerical example will be used to 
demonstrate the results.  Chapter 5 will examine differential relations between the network design matrix 
(meaning both the observation design matrix and the constraint matrix) and the reliability matrix.  In 
particular, it will express the Jacobian matrix relating these two matrices and analyze its structure.  Chapter 
6, will apply some of the results from the preceding chapters to two particularly interesting questions in 
aerial triangulation block design. Finally, Chapter 7 will provide conclusions and directions for future 
research. 

 



 
CHAPTER 2 

 
RELIABILITY ANALYSIS IN GAUSS-MARKOV MODELS 

 
2.1.  Treatment of a single outlier 
 
We will begin with a development of some of the fundamental results of reliability theory, especially those 
relevant to the developments to follow. A model for estimating the redundancy of individual observations 
frequently used in the photogrammetric and geodetic communities was developed by Baarda (1968) for 
geodetic networks.  Since its development, it has been applied to aerial triangulation (Förstner, 1985) and to 
more general photogrammetric networks in computer vision mensuration applications (Förstner, 1987).   
Given a Gauss Markov model,  
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σ

−

σ

2 1            ( , )oξ −= +y A e e 0 P∼     (2.1) 
where  

• y is a n x 1 random vector of observations (or, when A is the Jacobian of the linearized 
observation equations, a vector of incremental changes in observations),   

• A is an n x m non-random design matrix of rank q ≤  m built from the linear relationships between 
the parameters to be estimated and the observations (again, this is typically the Jacobian matrix 
defining a local differential relationship between parameters and observations),  

•  is the m x 1 non-random parameter vector (or incremental parameter vector of the linearized 
observation equations),   
ξ

• e is the n x 1 random error vector with first and second moments given, with P known but  not 
necessarily known, 

2
oσ

  the Weighted LEast Squares Solutions (WLESS) for  satisfies the normal equations ξ
ˆ                       [ , ] = [ , ]T=N c N c A PA yξ    (2.2) 

and is guaranteed to exist although it might not be unique depending on the rank of N.  If we write the 
estimate  along with dispersion , where  designates any reflexive symmetric 

generalized inverse of N, then the unique predicted residual vector is 
rsξ −= N c { } 2ˆ

o rsD ξ σ −= N rs
−N

     (2.3) ξ T
rs
−= − = −e y A y AN A Py

with its corresponding (also unique) cofactor matrix 
 .     (2.4) 1 T

rs
− −= −eQ P AN A

Using (2.4), (2.3) may be compactly written 
       (2.5) = ee Q Py

so that the matrix defines a linear mapping from the observation vector to the residual vector.  For 
reasons that will become clear later, the matrix is often called the “reliability” matrix and designated 
R. From (2.4) we know that the reliability matrix is idempotent and thus 

 .  The sum of the diagonal 
elements of the reliability matrix sum to the total redundancy of the model.  The diagonal elements of R 
can therefore be interpreted as the degree to which the corresponding observation contributes to the 
redundancy of the model.   

eQ P

eQ P

( ) ( ) ( ) ( ) ( )T
n rs n rsrk tr tr tr rk n q− −= = − = − =e eQ P Q P I AN A P I N N

 The model (2.1) assumes only small random errors (described by the second moment) in the 
observation vector.  If we assume that a single gross error (or outlier) is present in the jth observation then 
(2.1) must be re-written to account for this outlier. Following Schaffrin (1997) and 
defining , the new model accounting for the single outlier is [0  ...   0   1   0    ...   0]T

jη =

     (2.6) ξ ξ 2 1        ,            ( , ),j o oη −= + +y A e e 0 P∼
which includes a new parameter, oξ , representing the size of the expected outlier in the jth  observation.  It 
is important to note that this model may be generalized to describe systematic effects by introducing a 



possibly fully occupied matrix H before jη , spreading one or more outliers in a known (i.e. systematic) 
way throughout the observations (Förstner, 1985, and Snow and Schaffrin, 2003).  The corresponding 
normal equations for (2.6), 
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     (2.7) 

may be analytically solved for the estimate of the outlier as well as the original parameter vector.  If we 
assume that and take into account (2.5) then , jrk rk⎡ ⎤ = +⎢ ⎥⎣ ⎦A Aη 1

)

)e

)ˆ jη ξ
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and,  

  (2.9) 
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The expected size of the outlier is a function of the geometry of the network in the form of the reliability 
matrix, R, and the precision and correlation of the observations contained in P, which together create a 
complex mapping from the observation vector (or residual vector) into the estimated outlier.  Furthermore, 
because the estimate of the outlier is invariant with respect to the chosen reflexive symmetric generalized 
inverse, it depends only on the internal geometry of the network.  To understand the effect of the outlier on 
the estimated parameters it is helpful to write (2.9) as  to show that the estimated 

outlier is simply removed from the observation vector used to estimate the (outlier-free) parameter vector.   

( ) ( )(ˆ j T
rs j oξ −= −N A P y

 If we assume uncorrelated observations in which case P is diagonal, the expression for the outlier 
simplifies to 

    

( ) ( ) (ˆ j T T
o j j

j jj

j jr

ξ η η η=

=

=

Ry R

e R

e

j

     (2.10) 

where rj is designated the redundancy number of that observation. Now, as the observations are 
uncorrelated, is not only idempotent, but has the same diagonal elements as = eR Q P

1
2
eP Q P

1
2

1

−

which is 
symmetric, leading to .  Therefore the expected size of the outlier is larger than the 
corresponding residual, and r

0 jr≤ ≤

j can be interpreted as a measure of the degree to which the outlier is 
“contained within” the corresponding residual.  If rj = 1, then the full outlier is determined by the residual 
and large residuals will flag an observation as an outlier. If, on the other hand,  rj << 1 then the outlier in 
the jth observation is spread among other residuals and is much more difficult to detect and locate.  As we 
saw before, , and the individual redundancy numbers indicate 
how each observation contributes to the total redundancy of the model.   

( ) ( ) ( ) :tr tr n rk r n q= = − = =eR Q P A

 With the relations (2.8) and (2.10) defined, Baarda (1968) developed statistical testing procedures 
for the detection and localization of a single outlier.  We may do the same beginning with an analysis of the 
weighted sum of squared residuals.  Following (Schaffrin, 1997),  
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where  is the weighted sum of squared residuals resulting from model (2.1) and Ω ( )jΩ  is the weighted 
sum of residuals squared resulting from model (2.6).  It is clear that taking into account the outlier in the jth 
observation reduces the sum of squares by an amount depending, again, on the geometry of the network.  In 
order to determine if this change is statistically significant, we may use ( )( ) 2j

oσΩ−Ω as a test statistic if 

we know, or assume, its distribution.  If we assume with expectation and 

dispersion derived from (2.8), then as a quadratic equation in ,  

( ) (( 12ˆ ,j T
o o o j jξ ξ σ η η

−
Ν ePQ P∼ ) )

( )ˆ j
oξ

( )( ) 2j
oσΩ−Ω  is χ2-distributed with 

degree of freedom and a non-centrality parameter of ( )( η η
12 1T

o j jrk σ
−

=ePQ P )
( )( )η η 2 22 T

j j j oϑ ξ o= ePQ P ( )σ since (  is idempotent (see, for example, theorems in 

Searle et al. (1992) and Koch (1999)).  Or, by considering 
(again from Searle et al. (1992)), we may write the expectation 

of (2.11) following (Schaffrin, 1997) 

) { }η η 2 ˆT
j j o oDσ ξePQ P

{ } { }( ) { } { }T TE x x tr D x E x E x= +B B B

 
( )( ){ } ( )( )η η ξ 22 21

1 2

j T
o j j o

j

E σ σ

ϑ

Ω−Ω = +

= +

ePQ P o

0

.   (2.12) 

and arrive at the same χ2-distribution.  Therefore, with these assumptions (all of which depend on the 
normal distribution of e), we may form the null hypothesis under which ξ:o oH =

 ( ) ( )( ) ( )2 2 2 2            and       1j
o on rkσ χ σ χΩ − Ω−ΩA∼ ∼    (2.13) 

while under the alternative hypothesis : 0a oH ≠ξ  

 ( ) ( ) ( )( ) ( )2 2 2 2 1      and       1;2j j
o on rkσ χ σ χ ϑΩ − − Ω−ΩA∼ ∼ j .  (2.14) 

As increases, so does the “distance” between the distributions in (2.13) and (2.14).  Since is 
determined by  and P (and thus R), the design of the network as well as the precision of the 

observations has a direct impact on the detectibility of outliers.  

2 jϑ 2 jϑ

eQ
( )( ) 2j

oσΩ−Ω , as the estimated non-

centrality parameter (and note that it may be considered the square of a standardized residual which then 
has a normal distribution if is used, or student-t distribution if is used), must exceed a threshold, 

(defined as a function 

2
oσ

2
ôσ

2
oδ ( ),o o oδ α β  of the error probability, , and specified power, 1 , of a given 

hypothesis test), for the outlier to be detected.  For such an outlier we expect: 
oα oβ−

( )( )η η ξ 2 22 T
j j o oϑ = ePQ P 2

oσ δ>

)

.    (2.15) 

Rearranging this expression, we may say the outlier must satisfy 

 (ξ η η
1
2T

o o j jδ σ
−⎡ ⎤> ⋅ ⎢ ⎥

⎣ ⎦ePQ P     (2.16) 

if it is to be detected by a given hypothesis test.  In the case of uncorrelated observations, (1.16) simplifies 
to 

 ξ o
o

j jr p

σ
δ

⎡ ⎤
⎢ ⎥> ⋅ ⎢ ⎥
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      (2.17) 

Equations (2.15) and  (2.16) form the basis of “inner reliability” and answer the question – how large must 
an outlier be before it is detectible by a particular statistical test?  Note that the answer depends wholly 



upon the geometry of the model, as contained in R, and the variances and covariances of the observations, 
as contained in P and .  “Outer reliability”, on the other hand, is a measure of the effect of an 
undetectible outlier, say  just less than the threshold defined in (2.16) on the estimated parameters.  It 
may be computed using (2.2) and (1.9)  as follows 

2
oσ

oξ

      (2.18) ( ) η ξT
rs j ojδξ −= N A P

Based on (2.18), an appropriate measure of outer reliability is the quadratic form 
( ) ( ) 2T

j j jγ δξ δξ σ= N o

)o

k
⎤⎥⎦

     (2.19) 

Formula (2.18) shows the outlier’s effect on each parameter while (2.19) shows the perturbation of the 
parameter vector in its squared weighted norm due to the outlier .  Since the expression for inner 
reliability (2.15) and the expression for outer reliability (2.17) do not involve estimated parameters or 
predicted observations, both may be computed from the network design before any observations are made.  
Inner and outer reliability are thus considered “Phase Zero” design considerations, aiding the 
photogrammetrist in the design of a network resistant to observational blunders (Kraus, 1999). 

oξ

   The analysis up to this point assumes a single gross error in the observations.  In practice, it is 
possible to test a network adjustment for multiple gross errors applying the test defined in (2.13) and (2.14) 
to each observation in turn, eliminating the observation that creates the largest change (larger than the 
threshold) in the sum of squared residuals (2.11).  With the supposed outlier eliminated, the adjustment 
may be run again to achieve a new parameter estimate and tested for outliers again observation by 
observation. The procedure may be repeated until no observations have estimated outliers larger than an 
acceptable threshold.  Baarda referred to this test of standardized residuals as “data snooping”. Triggs, et al. 
(2000) made the observation that the full iterative procedure is essentially a form of M-estimation with an 
abruptly vanishing weight function.   
 
2.2 Treatment of grouped, multiple outliers 
 
The analysis above may be generalized to test for outliers in a group of observations (Förstner, 1994, Koch, 
1999, Snow and Schaffrin, 2003).  This is useful for adjustments in which a measurement blunder might 
contaminate more than one observation or in which a blunder in one observation would force the 
elimination of other observations in the group.  A misidentified image tie point in a bundle adjustment, for 
example, would affect the point’s x and y coordinate observations and force the elimination of both x and y 
coordinate observations.  Analogous to (2.6) we construct a new Gauss-Markov model 

    (2.20) (ξ ξ 2 1      ,      ,o σ −= + +y A Z e e 0 P∼

with .  The subscripts identify the c observations in which outliers are modeled, so 

that Z is an n x c matrix with rank c and 

η η η, , , ,i j
⎡= ⎢⎣Z

( )rk q c⎡ ⎤ = +⎢ ⎥⎣ ⎦A Z .  Note that, unlike the additional scalar 

parameter in (2.6), (2.20) requires an additional c x 1 parameter vector for the c outliers. The WLESS 
solutions to (2.19) are  

( ) ( ) (
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1

1
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o

T T

ξ
−

−

=

=

e

e

Z PQ PZ Z PQ Py

Z PQ PZ Z Pe

)e

ˆcξ

    (2.21) 

for the estimated outlier in terms of both y and the residual vector, , from model (2.1) and,  e
( )( )ˆ c T

rs rs oξ − −= −N c N A PZ     (2.22) 
for the new parameter vector.  Several expressions for the residual vector in (2.20),  
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lead to a formula for the increase in the weighted sum of squared residuals due to the un-modeled outliers 
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c T c
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Ω−Ω = −
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                     (2.24) 

Using (2.21) the increase may also be written in terms of the original residuals 
                            (2.25) ( ) ( ) 1c T T T−

Ω−Ω = ee PZ Z PQ PZ Z Pe

The particular χ2 -distribution for this quadratic form (scaled by 2
oσ
− ) may be derived as before, so that 
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Assuming e as normally distributed, we conclude that under the null hypothesis     ξ:o oH = 0

 ( ) ( )( ) ( )2 2 2 2      and       c
o on rk cσ χ σ χΩ − Ω−ΩA∼ ∼                     (2.27) 

while under the alternative hypothesis  ξ:a oH ≠ 0

 ( ) ( )( ) ( )2 2 2 2      and       ;2c
j o on rk c cσ χ σ χ ϑΩ − − Ω−ΩA∼ ∼ c   (2.28) 

Again, the non-centrality parameter, ( ) 22 T T
c o oϑ ξ ξ σ= eZ PQ PZ o , is a measure of the “distance” between 

the two functions while the quadratic forms in (2.24) and (2.25) may be used to estimate the distance thus 
as a test statistic for the presence of an outlying group of observations (Koch, 1999).  Note that the inner 
matrix of the non-centrality parameter in (2.26) uses a c x c block from the matrix, PR, for its 
representation and, since ( ){ } ( 12ˆ c T

o oD ξ σ
−

= eZ PQ PZ) , the non-centrality parameter is the inverse-variance-

weighted squared norm of the c x 1 outlier vector.  Förstner (1994) arrived at a similar result and noted that 
the test statistic allows the observations in the group to be correlated, but loses sharpness if the group is 
correlated with other observations or groups of observations. The first condition is generally assumed to 
hold in photogrammetric models where photo point observations are considered independent of other photo 
point observations.  However, most photo point coordinates are the result of inner orientation in which 
analog stage or digital image coordinates are transformed into the camera coordinate system defined by the 
fiducial marks.  Similarity or affine transformations certainly produce correlations between not only x and y 
coordinates of a photo point, but also among x and y coordinates of different image points.  We may, 
however, assume that in most photogrammetric environments the correlations are small and in practice are 
rarely taken into account (Kraus, 1999, Mikhail, et al., 2001). 
 In this more general case in which we must test for an outlying group of observations, we may not 
isolate the outliers as we isolated the single outlier in (2.11) to obtain the inner reliability expression (2.16) 
since they are now interlaced in the non-centrality parameter.  To get a measure of inner reliability the 
network designer can not simply compare the size of each standardized residual to the threshold, but 
instead must form the c x c block, 2T

oσeZ PQ PZ , from PR and somehow compare the quadratic form 

(2.24) to the pre-determined threshold .  The L2
oδ 2, or Frobenius, norm of this block, for example, would 



give an indication of the size of the non-centrality parameter and allow a comparison of relative separation 
formed from different network geometries.   Another possible measure is the simple sum of the block 
elements.  We may postulate a single outlier in each of the c observations in the group to get an idea of the 
upper bound of detectibility of each observation within the group.    
     To determine a measure of outer reliability we may compute the effect of the outliers on the 
parameter vector by  

             (2.29) ( ) ξT
rs ocδξ −= N A PZ

with values for that cause oξ ( ) 22 T T
c o oϑ ξ ξ σ= eZ PQ PZ o to be just less than the minimum detectible 

threshold .  Or, as we did when c = 1, we may form the measure 2δ
( ) ( ) 2T

c c c

T T T
o rs

γ δξ δξ σ

ξ ξ−

=

=

N

Z PAN A PZ

o

o

    (2.30) 

allowing us to see the effect of the outliers on the entire weighted norm of the parameter vector.  
 
2.3.  Reliability in the Gauss-Helmert model 
 
Before considering the extended (i.e. the constrained) Gauss-Markov model we should note that, while the 
Gauss-Markov model has many applications in photogrammetry (e.g. the collinearity bundle adjustment 
without self-calibration) and geodesy (e.g. a leveling network),  we often encounter relations in which the 
Gauss-Markov model does not apply.  Consider the relatively straightforward affine transformation used in 
inner orientation to transform between photo coordinates and digital image coordinates: 
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where (u , v) represents an image point (line and sample) and (x , y) represent the corresponding photo 
coordinates (the coordinates in the frame defined by the fiducial marks).  Both of the points should be 
treated as observations corrupted with random error and both are modeled to reflect that fact.  However, 
this relation is not compatible with the Gauss-Markov model because of the non-linear relationship 
between the observations and the parameters (the transform coefficients aij).  The Gauss-Helmert (also 
mixed or condition equations with parameters) model 

   (2.31) ( 2 1                            , oξ σ −= = +w By A Be e 0 P∼ )

11 −

)

yy
1− y

TB

))

is often used for these relations in which for this particular example w is a 2p x 1 vector of linear 
combinations of the random vector, y,  A is a 2p x 6 non-random matrix, B is a 2p x 2p non-random matrix 
and p is the number of points measured. The WLESS to (2.31) is 

( )( ) ( )
111T T T Tξ

−−− −= A BP B A A BP B w    (2.32) 

with dispersion 

      (2.33) ( )(
112 1{ } .T T

oD ξ σ
−−−= A BP B A

These solutions are very similar to (2.1) and, in fact, the Gauss-Helmert model may be transformed into the 
Gauss-Markov with the appropriate variable substitutions (Koch, 1999).  In particular, from (2.1) 

 so that we may re-write (2.2) as ( ) .  Now in the Gauss-

Helmert model, , so that we transform (2.26) into a Gauss-Markov 
model  

{ }2 1
o Dσ − = = ΣP y 1 ˆT T

yy yyξ−Σ = ΣA A A

{ } 2 1 T
ww o yyD σ −= Σ = = Σw BP B B

   .   (2.34) (( 2 1               , T
w w oξ σ −= +w A e e 0 BP B∼

and the WLESS agrees with (2.32) and (2.33).  In practice, linearizing non-linear relations as was done in 
(2.31) with respect to all parameters to be estimated (whose Jacobian is A) and the observations (whose 
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e

)̂ξ

Jacobian is B) leads directly to the Gauss Helmert model if and to the Gauss Markov model if B is 
the identity matrix (Leick, 1995, Pope, 1972).  The ability to transform the Gauss-Helmert model to a 
Gauss-Markov model allows estimation of the parameter vector and its covariance matrix.  However, the 
transformation from (2.31) to (2.34) makes the true observation residuals, , in , unrecoverable.  
To recover e , note that the normal equations of (2.31) which lead to (2.32) also provide a solution to the 
Lagrange vector .  One Lagrange-Euler necessary condition, , 

allows the observation residual vector to be computed directly as   

n≠B I

e w =e B

( ) (11ˆ Tλ
−−= − −BP B w A ˆTλ−Pe B 0

( ) ( )

( ) ( )( ) ( )
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P B P I AN A P w

1−
  (2.35) 

with ( ) 11T T −−=N A BP B A  and ( 11 T −−=P BP B ) .  The residual cofactor matrix may be computed from 
(2.35), 

( )1 1T T
e

− −= −Q P B P I AN A P BP 1−

)o

,      (2.36) 
which, combined with (2.35), allows us to express, as we did for the Gauss-Markov model, a 
transformation from the observation vector to the residual vector in terms of the residual cofactor matrix: 

= ee Q Py .       (2.37) 
In obvious analogy to (2.5), we now have a reliability matrix, R, for the Gauss-Helmert model. We extend 
the model (2.31) to include the possibility of multiple outliers 

    (2.38) ( ) ( 2 1                   ,oξ ξ σ −= + +w A BZ Be e 0 P∼

and, with the reliability matrix defined in (2.37), we may use formulas (2.21) – (2.28) to test for outliers in 
model (2.31).    
We will not address the Gauss-Helmert model further, except to note the numerous photogrammetric 
operations (affine transforms for inner orientation, three-dimensional similarity transforms for absolute 
orientation, coplanarity conditions for relative orientation, least-squares matches of gray scale patches in 
automated orientation procedures, and more) that require the Gauss-Helmert model. 



 
 

CHAPTER 3 
 

THE GAUSS-MARKOV MODEL WITH STOCHASTIC AND FIXED CONSTRAINTS 
 

 
 We will consider two types of constraints on the Gauss Markov (GM) model: stochastic and fixed.  
Stochastic constraints may be considered as additional observation equations in the GM model – expressing 
observations as a (non-)linear function of the model parameters - which differ from the “original” 
observation equations only in that they are considered to come from another measurement source entirely.  
Therefore, the observations typically are uncorrelated with the “original” observations and exhibit a 
perhaps significantly different covariance matrix.  Examples of external observations that may be modeled 
as stochastic constraints in a photogrammetric bundle adjustment include but are certainly not limited to:  

i. GPS observations in the form of Cartesian coordinates of ground points or baselines between two 
ground points,  

ii. GPS observations of exposure centers, 
iii. total station observations of distance, azimuth, or angle between two points,  
iv. relationships between ground points or between ground points and orientation parameters arising 

from the implicit scene geometry such as four or more points known to lie in a plane, 
v. inertial navigation system (INS) observations of platform orientation, and 
vi. photo-coordinate observations from additional imagery from another source (e.g. air-borne frame 

camera imagery “constraining” space-borne pushbroom array imagery). 
Stochastic constraints are also treated as additional uncorrelated observations used to “update” a parameter 
estimate (see for example, Leick, 1995).   
 Fixed constraint equations, unlike stochastic constraints which are modeled with random error, 
must be satisfied exactly by the estimated parameter vector.  This type of constraint may result from any of 
the examples cited previously by ignoring the random errors associated with the observations.  In many 
cases, fixed constraints are used to provide datum information to an otherwise rank-deficient model or to 
test hypotheses concerning parameter estimates. 
 

3.1 Background and summary of results 
 
Stochastic constraints on model parameters extend the Gauss-Markov model as follows, 

 ξ
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y e e 0 PA
z e e 0K 0 P

∼
0

    (3.1) 

where 
• y, A, and ξ  remain unchanged from model (2.1), 
•  ey is the unknown random error vector with second moment  (equivalent to e and 

P in model (2.1)),  

2 1
o yσ −P

• z is an l  x 1 random vector of observations related to the constraint equations (or, when 
K is the Jacobian of the linearized constraint equations, a vector of incremental changes 
in observations),  

• K is an l x m non-random design matrix, typically of rank l, built from the linear 
relationships between the parameters to be estimated and the constraint observations 
(again, this is typically the Jacobian matrix defining a local differential relationship 
between parameters and observations), and 

• ez is the l x 1 unknown random error vector with first and second moments given, with 
the positive definite matrix Pz known and  not necessarily known. 2

oσ
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When written this way, model (3.1) emphasizes the structural equivalency of the stochastic constraint 
equations with the original observation equations while at the same time partitioning them so that the 
effects of constraints on (3.1) may be analyzed and tested for consistency.  The two sets of equations share 
a standard variance component (often considered unity, though this isn’t required), have distinct cofactor 
matrices, and are uncorrelated.  From here forward, we will refer to the “original” observation equations 
(contained in y, A and ey ) as the base equations, the base partition, or the base observations.  The 
stochastic or fixed constraints we refer to as simply the constraints with their nature being clear from the 
context.  
 The WLESS principle requires us to make the Lagrange target function  

 11

)z    (3.2) ( ) ( ) (2T
y z z zξ ξ λ ξΦ = − − + − − −y A P y A e P e z K e

stationary with respect to  yielding the normal equations ,  ,  and zeξ λ
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     (3.3) 

and the weighted least squares solution to (3.1).  If the target function (3.2) is modified so that the second 
sum of residuals is zero, the resulting normal equations are valid in the case of fixed constraints, i.e. 
constraints in which .  In this case, (3.3)  becomes 1

z
− →P 0
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     (3.4) 

Solutions for the constrained parameter vectors and their dispersion matrices are developed by eliminating 
and  from (3.3) and (3.4) respectively. The solutions of both (3.3) and (3.4) depend upon the rank of 

A and K so we will consider the following four cases, all more or less occurring in practice, for the normal 
equations in both (3.3) and (3.4).  After examining each case and summarizing solutions to the normal 
equations, we will look at a simple but practical example of an adjustment of a small trilateration network. 

ŝλ f̂λ

 

Case 1:  , .  The base equations alone are sufficient to estimate the 

parameters, while the additional constraints serve to strengthen the solution by improving the precision of 
the estimate, , and/or increasing the reliability of the observations (we shall investigate 
this possibility in the next chapter).  These and other relevant expressions are summarized in Tables 3.1 and 
3.2 below.  Derivations of these expressions are readily found in the literature (Koch,1999, Leick, 1995).  
Because the base partition is sufficient to estimate a unique parameter vector, all the expressions in Tables 
3.1 and 3.2 may be written in terms of the unconstrained estimate .  A close look at the results in 
the tables shows in this case, the fixed constraint results are fully equivalent with the stochastic constraint 
results when .  The one expression that may not be used interchangeably is (3.3) since it requires 
the non-existent . However, (3.2) is valid and correctly produces 

( )rk q m= =N ( )T Trk m⎡ ⎤ =⎢ ⎥⎣ ⎦A K

ˆ{ } or { }sD Dξ f̂ξ

0

1ξ̂ −= N c

1
z
− →P

zP z =e 0

c c

.  The same restriction applies 
to the two formulas in (3.15). 
 

Case 2: , , rk .  The base observations are not 

sufficient to uniquely estimate the parameter vector (in photogrammetric and geodetic applications this is 
usually due to the lack of a datum) while the constraints add more than enough information to estimate the 
parameter vector – that is, the constraints not only add datum information, they add redundant model 
information.  While it is possible to estimate the parameter vector from the base observations by the choice 
of an appropriate reflexive symmetric generalized inverse of N (see Case 3 below), the resulting estimate 
will be biased by the choice of datum implied by the generalized inverse.  Now, while any subset of the m-
q constraints (since K has full row rank) will serve to define the datum without invalidating the base 
normal equations (that is, maintaining  and ), the remaining redundant constraints on the 

( )rk q m= <N ( )T Trk m⎡ ⎤ =⎢ ⎥⎣ ⎦A K rk q l m+ = + >A K

ŝξ =N f̂ξ =N
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c c

m

q

parameter vector do indeed invalidate the base normal equations (  and ), perturbing both 
the residual vector and its covariance matrix.  For this reason it is not possible to analytically show the 
change from the unconstrained results to the constrained results as we did in Case 1. This is true even if we 
introduce the generalized inverse into the expressions in Tables 3.1 and 3.2 because the chosen generalized-
inverse will, in general, be inconsistent with the datum specified by the constraints.  However, there are 
conditions in which replacing with  in the expressions is consistent.  Case 4 examines these 
conditions.  

ŝξ ≠N f̂ξ ≠N

1−N rs
−N

 

Case 3: , , rk .  The base observations are not 

sufficient to uniquely estimate the parameter vector while the constraints add exactly enough information to 
uniquely estimate the parameter vector.  These restrictions may be considered a special case of Case 2.  The 
restrictions on K – that - along with the introduction of the null-space spanning m  

x (m-q) matrix E

( )rk q m= <N ( )T Trk m⎡ ⎤ =⎢ ⎥⎣ ⎦A K rk q l m+ = + =A K

( ) ( )T Tℜ ⊕ℜ =K A
T (  and thus ) result in the relationships T =AE 0 T =NE 0

     (3.5) 

( )

( ) ( )

( ) ( )

1

1 1

T T T T
z z

T T T T
z z

T T T T
z z

−

− −

+ =

+ =

= +

N K PK E K PKE

N K PK E KE K P

E KE N K PK K P

which may be used to simplify the expressions in Tables 3.3 and 3.4.  By setting , the relations 
may be used for the fixed constraint case.  In particular, introducing the third and fourth equalities into the 
expressions in Table 3.3 and 3.4 result in the new expressions in Tables 3.5 and 3.6.  If z = 0  then the 
stochastic results in this case are identical to Case 2. The constraints in this case are often called the 
minimal constraints and while they “select” a particular parameter vector from the general (particular plus 
homogenous) solution, they do not disturb the residual vector nor its covariance matrix since 

z m−=P I

( )1 T
y y rs y

− −= −e P AN A P y  and 1

y

T
y rs
− −= −eQ P AN A  are invariant with respect to the choice of 

generalized inverse – or equivalently, to the choice of K.  This is different from both Cases 1 and 2 where 
ye  is indeed disturbed by the additional constraints.  Minimal constraints therefore will not affect the 

observation reliability and will only be considered in the context of filling the rank-deficiency of the 
normal equations.   In fact, minimal constraints are addressed in Chapter 2 by the use of a reflexive 
symmetric generalized inverse. 
 

Case 4: , .   The constraints do not add any datum-defining 

information but do provide additional redundancy to the estimable parameters.  Note that the constrained 
residual vectors (3.10, 3.11, 3.12, 3.13, and 3.23, 3.24, 3.25) and their covariance matrices (3.14, 3.15, 3.16 
and 3.26)  are invariant with respect to the choice of generalized inverse of N because the rows of K are 
elements of the column space of A

( )rk q m= <N ( )T Trk q⎡ ⎤ =⎢ ⎥⎣ ⎦A K

T (that is, ).  While this violates the conditions in Case 

2, in particular the assumptions 

( ) (Tℜ ⊂ ℜK A )T

( )T Trk m⎡ ⎤ =⎢ ⎥⎣ ⎦A K  and rk , it occurs often enough 

in practice to be examined.  As we will see in the trilateration example later in this chapter, this can occur 
in practice when constraints which do not provide datum information are added to the Gauss-Markov 
model.  Under the conditions of Case 4, therefore, the expressions in Tables 3.1 and 3.2 are valid even 
when a reflexive symmetric generalized inverse is used in place of the full-rank normal equation inverse. 

rk q l m+ = + >A K

 
 
 
 
 
 
 



 
Value Formula(s) : Case 1-Full-rank N, Stochastic Constraints 
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 Table 3.1.  Case 1: full-rank N, stochastic constraint results, rk(K)= l. 
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Value Formula(s) : Case 1-Full-rank N, Fixed Constraints 
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ôσ  ( )f n m lΩ − +                                                                                                                            (3.29) 

Table 3.2. Case 1: full-rank N, fixed constraint results, rk(K)=l 
 
 
 
 
Value Formula(s) :  Case 2-Rank-deficient N, Stochastic Constraints 

ŝξ ( ) ( )1T T
z z

−
+ +N K PK c K P z                                                                                              (3.30)   

ˆ{ }sD ξ  ( 12 T
o zσ

−
+N K PK)                                                                                                              (3.31) 

ye  ( ) (1ˆ T
s zξ

−
− = − + +y A y A N K PK c K P z)T

z                                                                 (3.32) 

ze  ( ) (1ˆ T
s zξ

−
− = − + +z K z K N K PK c K P z)T

z                                                                  (3.33) 

y y

z y z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

e e e

e e e

Q Q

Q Q
z

T

T

 ( ) ( )

( ) ( )

1 11

1 11

T T T
y z z

T T T
z z z

− −−

− −−

⎡ ⎤− + − +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − +⎢ ⎥⎣ ⎦

P A N K PK A A N K PK K

K N K PK A P K N K PK K
                                  (3.34) 

sΩ  
T T
y y y z z z+e P e e P e                                                                                                                 (3.35) 

2
ôσ  ( )s n m lΩ − +                                                                                                                   (3.36) 

Table 3.3.  Case 2: rank-deficient N, stochastic constraint results. 
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Value Formula(s) :  Case 2-Rank-deficient N, Fixed Constraints  

f̂ξ ( ) ( ) ( )( ) ( )( )
11 1 1 1T T T T T T

−− − − −
+ + + + − +N K K c N K K K K N K K K z K N K K c                

(3.37)                                      
ˆ{ }fD ξ  ( ) ( ) ( )( ) (

11 1 12 T T T T T
oσ

−− − −⎛ ⎞⎟⎜ + − + + + ⎟⎜ ⎟⎜⎝ ⎠
N K K N K K K K N K K K K N K K) 1T −

                     (3.38)   

ye  
f̂ξ−y A                                                                                                                                        (3.39) 

( ) ( ) ( )( ) ( )( )
11 1 1T T T T T

−− − −
− + − + + − +y A N K K c A N K K K K N K K K z K N K K c

1T −
(3.40) 

( ) ( )(
11

y

T T T T
y

−− −
− + +eQ P y A N K K K K N K K K z)1

                                                            (3.41) 

ye
Q  ( ) ( ) ( )( ) ( )

11 1 11 T T T T T T T
y

−− − −− − + + + + +P A N K K A A N K K K K N K K K K N K K A
1 T−

         (3.42) 

fΩ  
T
y y ye P e                                                                                                                                          (3.43) 

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

1 1

11

ˆ ˆ

ˆwith 

T
T T T T T T
y

T T T

λ λ

λ

− −

−− −

− + − + − + −

− = + − +

y P y c N K K c z z z K N K K K z

z K N K K K z K N K K c
1

                                (3.44) 

2
ôσ  ( )f n m lΩ − +

                                                                                                                           (3.45) 
Table 3.4.  Case 2: rank-deficient N, fixed constraint results. 

 
 
 
 
 
Value Formula(s) : Case 3-Rank-deficient N, Stochastic Minimum Constraints 
ξ̂ ( ) ( )1 1T T T

z

− −
+ +N K PK c E KE z                                                                                     (3.46)   

ˆ{ }D ξ  ( ) ( ){12    |  ,  
TT

o z s s s sσ
− − − − −+ ∈ = =N K PK N NN N N N N }                                           (3.47)   

ye  ξ̂−y A                                                                                                                                (3.48) 

( 1T
z

−
− +y A N K PK c)                                                                                                      (3.49) 

ze  ξ̂−z K                                                                                                                                 (3.50) 

( ) ( )1T T T
z

−
− + + =z K N K PK c KE KE z 0

1−
                                                                (3.51) 

y y

z y z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

e e e

e e e

Q Q

Q Q
z  ( ) ( )

1 11 1

1 1

T T T T
y z y z

z z

− −− −

− −

⎡ ⎤ ⎡ ⎤⎡ ⎤ + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ − =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

P 0 A N K PK A 0 P A N K PK A

0 P 0 00 P

0
           (3.52) 

Ω  T
y y ye P e                                                                                                                                 (3.53) 

2
ôσ  ( )n qΩ −                                                                                                                            (3.54) 

Table 3.5.  Case 3 rank-deficient N, minimum stochastic constraint results. 
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Value Formula(s) : Case 3-Rank-deficient N,  Fixed Minimum Constraints 
ξ̂ ( ) ( )1 1T T T− −

+ +N K K c E KE z 
                                                                                                 (3.55) 

ˆ{ }D ξ  ( ) ( ) ( ){ }1 12      |  ,   ,  
TT T

o rs rs rs rsσ
− − − − − − − − −+ + ∈ = = =N K K N N K K N NN N N N NN N N N  rs rs rs

)1−

                                                                                                                                                     (3.56) 

( ) ( )( 12 T T T T
oσ

−
+ −N K K E EK KE E                                                                                    (3.57) 

ye  ξ̂−y A                                                                                                                                         (3.58) 

ye
Q  ( ) 11 T

y

−− − +P A N K K AT                                                                                                           (3.59) 

Ω  T
y y ye P e                                                                                                                                          (3.60) 

2
ôσ  ( )n qΩ −                                                                                                                                     (3.61) 

Table 3.6.  Case 3: rank-deficient N, minimum fixed constraint results 

3.2 Trilateration example 
 

To show how constraints might be applied in practice, some results from (2.5 – 2.61) may be 
applied to a simple but illustrative example.  We consider a five station trilateration network (Figure 3.1) 
with eight distance observations (made with some type of EDM) among the five stations.  This two-
dimensional network, like many photogrammetric and geodetic networks, is datum-deficient. It lacks a 
point of origin and orientation, resulting in a rank-deficiency of three in the design matrix.   Furthermore, 
the constraints do not provide information to fix any of the three orientation parameters.  With only the 
information given in Figure 1, this network meets the conditions of Case 4.      

   
Figure 3.1.  Five station trilateration network with constraints. 

Distance Observations 

(meters) 

L45 = 34.94 

L35 = 34.61 

L23 = 66.52 

L34 = 69.29 

L12 = 89.00 

L14 = 76.97 

L24 = 105.53 

L13 = 106.95 

 

Constraint Observations 

(meters) 

C15 = 89.3085 

C25 = 83.5083

Base Observations variance 

0.0001 meters
2

 

Constraint variance 

0.0004 meters
2 

 

Initial Point Approximations 

 (X,Y, meters) 

P1 = 100 , 100 

P2 = 187 , 117 

P3 = 117 , 181 

P4 = 110 , 177 

P5 = 135 , 182 

 

 
The eight non-linear observation equations relating parameters to observations  are 

 for points i j  . The total differentials of these equations, ( ) (22
ij j i j ix x y yρ = − + − )2 =, 1...5

( ) ( ) ( ) ( )i j j i i j j i
ij i j i j

ij ij ij ij

x x x x y y y y
d dx dx dyρ

ρ ρ ρ ρ

− − − −
= + + + dy

ijρ= −

, allow us to construct the (rank-

deficient) 8x10 design matrix, while the 8x1 observation vector is formed as y L where k o
k ij
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T Tξ ξ ⎤
⎥⎦

⎥
⎥ 2

−⎤

− −

− −

−

−

−

∞ ∞⎢⎣

represents any of the eight observations shown in the figure in the order listed in the figure.  All of the point 
coordinates (absent the datum definition) are over-determined except point P5. Perhaps the simplest way to 
define the datum is to fix the x and y coordinates of P1 and the x coordinate of P2.  To do this we define the 
parameter vector as  and partition it as  

 so that the generalized inverse would take the form 

 and the unconstrained solution  and . Using the Gauss-

Markov results in Chapter 1 we find the relevant unconstrained solutions:  
 

1 1 2 2 5 5
T dx dy dx dy dx dyξ ⎡ ⎤= ⎢ ⎥⎣ ⎦

1 1 2 2 1 2
T Tx y xξ ξ⎡ ⎤ ⎡= =⎢ ⎥ ⎢⎣ ⎦ ⎣

11 12

1
21 22 22

−

−

⎡ ⎤⎡ ⎤
⎢⎢ ⎥ = ⎢⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

0 0N N

N N 0 N 1
oξ = 0 1

2 22ξ̂ −= N c

2̂ 0.0059 0.2939 0.1230 0.4610 0.0294 0.1084 0.0465Tξ ⎡ ⎤= − − − −⎢ ⎥⎣ ⎦
with dispersion matrix 

{ } 2
2

0.246

0.201 0.177

0.185 0.154 0.146

ˆ 0.183 0.158 0.139 0.148

0.003 0.005 0.003 0.006 0.009

0.203 0.178 0.155 0.160 0.006 0.186

0.130 0.130 0.104 0.074 0.011 0.161 1.002

oD ξ σ

⎡ − − − − −
⎢ ⎥
⎢− − − −⎢
⎢ − − −⎢
⎢
⎢− − − −= ⎢
⎢− − −⎢
⎢
⎢− −
⎢
⎢ − − −⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 . 

The residual vector  shows the 

effect of zero redundancy in the measurements to P5.  The weighted sum of squared residuals is estimated 
at 0.122, while the reliability numbers of the observations, 

, reveal zero reliability of these same 

two observations L45 and L35 – that is, errors in these two observations would be completely absorbed by 
the coordinates of P5 and could not be detected with the previously described tests.  In the language of 
Förstner (1994) outliers or blunders in these observations would go undetected while observation L14 
would be the least locatable of the observations with a redundancy of 0.10. In terms of inner reliability, it is 
typical to establish a threshold of , corresponding to an error probability of  (implying that 
we are willing to accept all observations less than 2.56 standard deviations away from the mean), and a 
power .  Therefore, from (2.17) each of the observations must be 

⎤
⎥⎦  times larger than  or its estimate, , to be detected in 

such a test.  Errors in the first two observations may not be detected at all.  With an average redundancy of 
0.12 per observation and no reliability number greater than 0.25, this network would be considered 
unreliable without constraints. 

0 0 0.0013 0.0015 0.0013 0.0011 0.0018 0.0017T ⎡ ⎤= − − − − −⎢ ⎥⎣ ⎦e

( )r vecdiag≡ R 0 0 0.13 0.17 0.11 0.10 0.25 0.24
T⎡ ⎤= ⎢ ⎥⎣ ⎦

4oδ = 1%α =

93%β =

11.1 9.7 12.0 12.6 8.0 8.2⎡
oσ ôσ

 If an undetectible error in L14 did occur, one that was, say, 12.0 times larger than the square root 
of the variance (0.02 meters), then applying (2.18), we obtain 

 and see that the outlier affects all 

coordinates except those of the fixed point P1 and the partially fixed P2. However, we see significant 
changes in the y coordinate of P4.   

( )ˆ 0 0 0 0 0.03 0.03 0.02 0.21 0.04 0.04
Tjδξ ⎡ ⎤⎡ ⎤ = − − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 The constraints take the same form as the observation equations. Considering the random errors 
we use the expressions in Table 1 and see that the changes to the parameter vector 

 are uniformly small 

(millimeter or less) except in the y coordinate of P5.  This was the weakest parameter in the unconstrained 
solution with a variance of 1.002 m

( )2 2
ˆ ˆ 0.0014 0.0001 0.0006 0.0032 0.0011 0.0021 0.0692

s

T
ξ ξ ⎡ ⎤− = − − −⎢ ⎥⎣ ⎦

2.  which with the addition of the stochastic constraints improved to 
0.032 m2.  However, the weighted sum of squared residuals increases almost five-fold to 0.677.  If we do 



not consider the random error associated with the constraint equations we use the expressions in Table 2 to 
estimate the parameter vector and obtain the change 

( )2 2
ˆ ˆ 0.0041 0.0021 0.0027 0.0055 0.0012 0.0000 0.0720

f

T
ξ ξ ⎡ ⎤− = − − − −⎢ ⎥⎣ ⎦  in the parameter 

vector along with the dispersion of the weak parameter which improves to 0.0006 m2 .  This is to be 
expected considering the assumed strength of the constraints.  As in the stochastic case the addition of the 
fixed constraints increased the weighted sum of squared residuals to 0.720.    
 It is important to note that, although we adjusted the network to the observations, we could have 
analyzed the reliability of the network based only on the model and the initial values of the parameters. In 
the next chapter we will look into the change in reliability of the observations when these constraints are 
taken into account.   
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CHAPTER 4 

ANALYTICAL RELIABILITY IN CONSTRAINED GAUSS-MARKOV MODELS 
 
 Having examined important concepts first from reliability analysis in the Gauss Markov model 
and then summarized results from the constrained Gauss Markov model, we are ready to integrate the two 
concepts to produce expressions for the reliability matrix, inner reliability, and outer reliability in the 
constrained Gauss Markov model.  Again we have two general forms to consider: stochastic and fixed 
constraints and within these forms we must consider both full-rank and rank-deficient design matrices. We 
will not address Case 3 (the case of minimum constraints can be naturally handled by the choice of in 
the rank deficient Gauss-Markov model) and will concern ourselves with estimable parameters only so that 
Case 4 reduces to Case 1.  For both forms we begin with the reliability matrix (defined consistently as the 
matrix which maps the observation vector to the predicted residual vector) and use it in expressions with 
which to test the outlier hypothesis and expressions for inner and outer reliability.  Expression of the 
reliability matrices is straightforward since the residual dispersion matrices were defined in the previous 
chapter. However, in order to fully develop expressions for inner and outer reliability we must start with the 
equivalent of expression (2.6) in which a presumed outlier in the base observation vector (or possible in the 
stochastic constraints) is modeled as an additional parameter and integrate it first with the normal equations 
of the stochastically constrained Gauss-Markov model (3.3) and then with those of the fully constrained 
Gauss-Markov model (3.4). 

rs
−N

4.1. Reliability considering stochastic constraints 
 
The reliability matrix for the stochastically constrained Gauss-Markov model, both with full-rank and with 
rank-deficiency, may be formed by writing (3.10) and (3.13) in terms of (3.14)-(3.16)    

 

( ) ( )

( ) ( )

1 11

1 11

y y z

z y z

T T T T
y z z yy

T T T Tz z
z z z

e e e y y yz

e e e z zy z

− −−

− −−

⎡ ⎤ ⎡ ⎤− + − +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− + − + ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

P A N K PK A A N K PK K P 0 ye
ze 0 PK N K PK A P K N K PK K

Q Q P 0 y R R y
z zQ Q 0 P R R ⎥

 (4.1) 

in which the yR and yzR  blocks map the observations into the base residuals and the zyR and zR   blocks 
map the observations into the constraint residuals.  Under the conditions of Case 2, we may go no farther.  
However, if the model meets the conditions of Case 1 (where all the parameters are estimable and 

) or Case 4 (in which we are working only with the estimable part of the parameters, defined by 
), we may factor out the unconstrained reliability matrix, R, and write 

1
rs
− =N N−

ξT
est rs yξ −≡ N A P A

y yz y yz

zy zzy z

δ δ

δ δ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

R R R RR 0

0 0 R RR R
        (4.2) 

where several formulas are available the changes 

              . 

( )

( )

( )

11

1

1

T T
y rs z rs rs y

T T
rs z l rs z rs y

T T T
rs z z y

δ
−− − − −

−− −

−−

= +

= +

= +

R AN K P KN K KN A P

AN K P I KN K P KN A P

AN K PK N K PK A P

T

T−
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T( )

( )

( )

( )

( )

( )

11

1

11

1

11

1

T T T
z l rs z rs z rs rs z

T
l rs z

T T T T
yz rs z rs z rs rs z

T T
rs z l rs z

T T T T
zy rs y rs z rs rs y

T
l rs z rs

δ

δ

δ

−− − − − −

−−

−− − − − −

−− −

−− − − − −

−− −

= − + +

= +

= − + +

= − +

= − + +

= − +

R I KN K P KN K P KN K KN K P

I KN K P

R AN K P AN K P KN K KN K P

AN K P I KN K P

R KN A P KN K P KN K KN A P

I KN K P KN T
yA P

 

From the changes it seems that since is positive semi-definite the constraints increase the 
redundancy and reliability of the model.  Note that this does not necessarily mean that every the 
redundancy of every observation is increases. It is clear, too, that as the constraints become more precise, 
that is as decreases, reliability for y increases, but not for z. Finally, we note that the reliability matrix 
must map both the observation vector, y, and the constraining observations, z, into the residuals 

yδR yδR

1
z
−P

ye . We do 
not consider the residuals ze here because model (4.1) assumes that outliers are present only in the base 
observations.  We will fully derive the reliability matrix for the fixed constraint model in the next section, 
but notice here that as approaches 0, and  also approach 0 as we would expect since the fixed 
constraints are satisfied exactly, not leaving room for any effect through outliers.  Considering the trace 

elements of 

1
z
−P zδR zyδR

y yz

zy z

⎡ ⎤
⎢
⎢
⎢ ⎥
⎣ ⎦

R R

R R
⎥
⎥  and their relationship to redundancy, we may show from (4.1) that the constrained 

reliability matrix is idempotent and therefore, 

( ) ( )
( ) ( )

1 1

1 1

T T T T
z y z zy yz n

T T T Tlzy z z y z z

tr tr rk n l q

− −

− −

⎛ ⎞⎡ ⎤⎛ ⎞ ⎟⎡ ⎤ ⎜⎛ ⎞ + +⎡ ⎤ ⎢ ⎥⎟⎟ ⎜⎜ ⎟⎜ ⎟⎢ ⎥⎟ ⎜⎜ ⎢ ⎥⎟ ⎢ ⎥⎟⎜⎟ ⎜⎜ = − = +⎟ ⎟⎢ ⎥⎟ ⎜⎢ ⎥⎟ ⎜⎜ ⎢ ⎥⎟⎟ ⎜ ⎟ ⎜⎜ ⎟⎢ ⎥⎟ ⎟⎜⎢ ⎥⎟⎜ ⎝ ⎠ ⎢ ⎥⎟⎜ + +⎣ ⎦⎝ ⎠⎣ ⎦ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

A N K P K A P A N K P K K PR R I 0

0 IR R K N K P K A P K N K P K K P
− .  Thus 

( )ytr n q l< − +R so that the additional redundancy coming from the constraints is spread among the 

constraints as well as the base observations.  If ( )T
z+N K P K  is singular (Case 4), then we may use (4.2) to 

arrive at the same results.    
 With the extended reliability matrix defined we are now in a position to revisit the extended 
Gauss-Markov model, written to accommodate a group of c outliers – because most photogrammetric 
observations involve image points or lines with at least two observations per measurement – in the base 
observations as additional parameters 

 
1

2
0 1

             ,
y y y

o
z z

z

ξ ξ σ
−

−

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎟⎜ ⎢ ⎥⎟⎢ ⎥ ⎜⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎟= + + ⎜ ⎢ ⎥⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎟⎜ ⎢ ⎥⎟⎜⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦

y e e 0 PA Z
z e e 00K 0 P

∼
0

,  (4.3) 

with Z and  as defined in (2.20), and the outliers assumed to be in the base observations.  The WLESS is 
the solution to the normal equations 

oξ

 

( )

( )

1

ˆ

ˆ

ˆ

ZT T T
Toy y y
y

ZT T T
y s y

z s

ξ

ξ

λ−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

Z P Z Z P A 0 Z P y Z P y
A PZ N K A P y c

z z0 K P

 .  . (4.4) 

From here we follow the same path as with the Gauss-Markov model: First find the WLESS to the 
unknown parameters and the corresponding residual vectors and then find the increase in the weighted sum 
of squared residuals when the outlier is not modeled.  This increase will provide a test statistic to determine 
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T

1

y o

−

)z

if a group of observations should be treated as outliers.  From the second and third parts of the normal 
equations we find and ( ) , leading to the 

estimate for the parameter vector   

( )( )ˆ ˆZ
s z sλ ξ= − −P z K ( ) ( ) ( )ˆ ˆZ ZT T

y o z s zξ ξ+ + = +A PZ N K PK c K P z

    (4.5) 

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

1

1

1

ˆ ˆ

ˆ

ˆ ˆ

Z ZT T T
s z z y o

ZT T T T
z z z

ZT T
s z y o

ξ ξ

ξ

ξ ξ

−

−

−

= + + −

= + + − +

= − +

N K PK c K P z A P Z

N K PK c K P z N K PK A P Z

N K PK A P Z

which is equivalent in form to (2.22) and shows the change in the parameter vector due to the effects of the 
outliers.  Conditions in Case 1 or Case 4 allow us to expand (4.5) to 

     .                               (4.6) ( ) ( )( ) ( )11ˆ ˆ ˆZ ZT T T
s s rs rs z rs rs y oξ ξ ξ

−− − − − −= − − +N N K P KN K K N A PZ

Likewise, an estimate for the outlier may be written 
( ) ( )( ) ( ) (( )

11 1ˆZ T T T T T T T T
o y y z y y y zξ

−− −
= − + − + +Z P Z Z P A N K PK A P Z Z P y Z P A N K PK c K P z  (4.7) 

or more simply, using y y

z y z

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

e e e

e e e

Q Q

Q Q
z ⎥
⎥  from (3.34) 

( )

1

ˆ y y z y y z

z y z z y z

y y y yZ T T
o

z z z z

T
y

ξ

−⎛ ⎞ ⎛⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎞⎡ ⎤⎟ ⎟⎜ ⎜⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎟ ⎟⎜ ⎜ ⎢ ⎥= ⎟ ⎟⎜ ⎜⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎟ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

e e e e e e

e e e e e e

e

P 0 Q Q P 0 P 0 Q Q P 0 yZ
Z 0 Z 0 z00 P Q Q 0 P 0 P Q Q 0 P

Z PQ( )

⎠

( )

( ) ( )

1

1

y y y z

T T
y y y y z

T T T
y y y y y yz

−

−

+

= +

e e eP Z Z PQ P y Z PQ P z

Z P R Z Z P R y Z P R z

 (4.8) 

which is in form equivalent to (2.21).  The difference between (2.21) and (4.8) lies in the definition of the 
reliability matrix and the influence of the constraining observations.  Note that, since we modeled the 
outlier in the base observations only,  the last l rows of the combined reliability matrix, zy z

⎡ ⎤
⎢ ⎥⎣ ⎦R R  do not 

enter into the estimation of the outlier.  We may relax this assumption and model for outliers in both the 
base partition and in the stochastic constraints (which is not inappropriate given the shared variance 
component).  In this case (4.3) may be treated as a partitioned Gauss-Markov model using results from 
Chapter 2.  It is also important to remember that while y y≠R y e  and yz z≠R z e , (4.7) is consistent with 

(3.1), (3.4), and (4.1) since y yz+ =R y R z ey . 
 The change in the weighted sum of squared residuals may now be expressed as 

( ) ( ) ( )( ) ( )( )
( ) ( )

( )

( )

ˆ ˆ
ˆ ˆ ˆ

ˆ

ˆ y y z

z y z

Z Z
T Ty y syZ Z Z ZT T

s s y z s o s Zzz z s

T y yZ T
o

z z

ξ ξ
ξ ξ ξ

ξ

ξ

⎡ ⎤⎡ ⎤ ⎡ ⎤ − −⎡ ⎤ ⎢ ⎥⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥Ω −Ω = − − − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦

e e e

e e e

P 0 P 0 y A Ze
e e y A Z z Ke0 P 0 P z K

P 0 Q Q P 0
Z 0

0 P Q Q 0 P
( )ˆZ
oξ

⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥

s

⎢ ⎥⎣ ⎦

Z

0

   

or 

  

( ) ( ) ( )

( ) ( )

ˆ ˆ

ˆ ˆ

y

TZ Z T
s s o y y o

TZ ZT
o y y o

ξ ξ

ξ ξ

⎡ ⎤Ω −Ω = ⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

eZ P Q P Z

Z P R Z

Z

,                                                                              (4.9) 

in a form identical to the unconstrained Gauss-Markov model with the differences again encapsulated in the 
estimate of the outlier and the reliability matrix.  We may also write the change in the sum of squared 
residuals in terms of the original residuals themselves 



     

( ) ( ) ( ) ( )

( )

1

1

y

y

TZ T T
s s y yz y y y y y yz

T T T
y y y y y y

−

−

Ω −Ω = + +

=

e

e

R y R z P Z Z PQ P Z Z P R y R z

e P Z Z PQ P Z Z P e
. 

As before, we use the expectation of (3.9),  
  ( )( ){ } ξ ξ2 2

y

Z T T
s s o o y y o oE cσ σΩ −Ω = + = +eZ P Q P Z 2

Zc ϑ                               (4.10) 

to find the redundancy and non-centrality of the distribution of ( )( ) 2Z
s s σΩ −Ω o . It is important to note here 

that the non-centrality parameter involves only yR but that our estimate of the outlier requires the first full 

n rows of the extended reliability matrix, that is yzR  in addition.  From (3.8) and (3.9), and assuming both 
ey and ez are normally distributed, we may find under the hypothesis  that                              ξ:o oH = 0

( ) ( )( ) ( )( ) ( )2 2 2 2      and       Z
s o s s on rk rk cσ χ σ χΩ − + Ω −ΩA K∼ ∼              (4.11) 

while under the alternative hypothesis  ξ:a oH ≠ 0

( ) ( )( ) ( )( ) (2 2 2 2      and       ;2Z
s o s s o jn rk rk c cσ χ σ χ ϑΩ − + − Ω −ΩA K∼ ∼ )         (4.12) 

Aside from the increase in degrees of freedom due to the inclusion of constraints and the change in the 
expression for the sum of squared residuals, these tests are identical to the outlier tests in the Gauss-Markov 
model detailed in Chapter 2.  With R replaced by yR , the discussion of inner reliability in the Gauss-
Markov model applies to the constrained model.  Outer reliability may be computed accordingly, 
depending on which stochastic constraint case applies.  For example, using (2.30) 

( ) ( ) ( )(1ˆ ˆ ˆ ˆZ T T
s s s z y oδξ ξ ξ ξ

−
= − = +N K PK A P Z )Z  .   (4.13) 

we see the effects on the constrained estimate when N has full rank and/or N is rank-deficient but K 
provides sufficient information to remove the rank-deficiency (Cases 1, 2, or 3). 

4.2. Reliability considering fixed constraints 
 
We begin by describing the reliability matrix of the constrained model in Cases 1 and 4. Beginning with 
(3.25) from Table 3.2, 

          
( ) ( )

( )( ) ( )

1

1 11 1  ,

T T T T
y rs y rs rs rs y

T T T T T T
y rs rs rs rs y rs

−− − − −

− −− − − − − − −

= − − −

= − + −

e y AN A P y AN K KN K z KN A P y

P AN A AN K KN K KN A P y AN K KN K z
     (4.14) 

we may extract part of the partitioned reliability matrix and write it in terms of the unconstrained reliability 
matrix, R, 

( ) ( )1 1
  |T T T T T

y yz n rs y rs rs rs y rs rs

y yzδ δ

− −− − − − − −⎡ ⎤⎡ ⎤ = − + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R I AN A P AN K KN K KN A P AN K KN K

R 0 R R

T

       (4.15) 

with 

                  
( )

( )

1

1

T T T
y rs rs rs

T T
yz rs rs

δ

δ

−− − −

−− −

=

= −

R AN K KN K KN A P

R AN K KN K

y

0

 

in obvious analogy to (4.2) if .  The full reliability then reads  1
z
− →P

 
y yz y y

zy z

δ δ⎡ ⎤ ⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥ ⎢= +⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣⎣ ⎦

R R R 0 R R

0 0 0 0R R

z ⎤⎥
⎥
⎥⎦
       (4.16) 
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which is consistent with (2.4) in that it leads to z =e 0  and, thus maps the z vector to itself with no 

“contamination” from the observation vector, y.  Furthermore, yR is idempotent and ( )ytr n q l= − +R , 

indicating that the redundancy of the model is spread among the diagonal elements of yR . 
 The WLESS to the extended Gauss-Markov model with fixed constraints and a single group of c 
outliers 

    (4.17) ( )2 1
0              ,y y oξ ξ σ

ξ

−= + +

=

y A Z e e 0 P

z K

∼ y

is the solution to the normal equations 

 

( )

( )

ˆ

ˆ

ˆ

ZT T T
Toy y y
y

ZT T T
y f y

ξ

ξ

λ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Z P Z Z P A 0 Z P y Z P y
A P Z N K A P y c

z z0 K 0

     

From the second and third normal equations  which by 

substitution into the second normal equation leads to the parameter estimate  
( ) ( )( )1ˆ ˆZT T

rs rs rs y oλ ξ
−− − −= − − +KN K z KN c KN A P Z

( ) ( ) ( )( ) ( )( )
( ) ( )

( )( ) ( )

( )( ) ( )

1

1

1

1

ˆ ˆ

ˆ                   

ˆ ˆ

ˆ

Z Z ZT T T T
f rs rs rs rs y o y o

T T
rs rs rs rs

ZT T T T
rs rs rs y rs y o

ZT T T T
f rs y rs rs rs y o

f rs m

ξ ξ

ξ

ξ ξ

ξ

−− − − −

−− − − −

−− − − −

−− − − −

−

= + − + −

= + − +

−

= − −

= − −

N c K KN K z KN c KN A P Z A P Z

N c N K KN K z KN c

N K KN K KN A PZ N A P Z

N A P Z N K KN K KN A PZ

N I ( )( ) ( )1 ˆZT T T
rs rs y oξ

−− −K KN K KN A PZ

ξ̂

) o

f

          (4.18) 

which again is in form similar to (1.22) but with an extra term. The change in the parameter vector estimate 
may be defined explicitly as  
                 (4.19) ( ) ( ) ( )( ( )1ˆ ˆ ˆ ˆZ Z ZT T T

f f f rs m rs rs yδξ ξ ξ ξ
−− − −= − = −N I K KN K KN A P Z

Substituting (4.18) in the first part of the normal equations leads to 

       (4.20)

or, more simply by taking into account (3.26), (3.20), and the non-trivial part of the reliability matrix, 

( )( ) ( )1 ˆ

ˆ                                                                       

ZT T T T T T T
y y rs y y rs rs rs y o

T T
y y

ξ

ξ

−− − − −− +

= −

Z P Z Z P AN A P Z Z P AN K KN K KN A P Z

Z P y Z P A

y yz
⎡ ⎤
⎢ ⎥⎣ ⎦R R , 

 

( ) ( ) ( )( )
( ) ( )

1 1

1

ˆ
y y

Z T T T T T
o y y y y y rs rs

T T
y y y y yz

ξ
− −− −

−

= −

⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

e eZ P Q P Z Z PQ P y Z P AN K KN K z

y
Z P R Z Z P R R z

     (4.21) 

which differs in form from the unconstrained Gauss-Markov model only by consideration of the 
constraining vector, z. It may also be useful to write the outlier estimate in terms of the residual vector from 
the original normal equations (4.4) using (3.25), respectively (4.14), 

( ) ( ) (
1ˆ

y

Z T T
o y y yξ

−
= eZ P Q P Z Z P e )y         (4.22) 

The residual vector in the model with estimated outliers is  
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( ) ( ) ( )

( )( ) ( )

( )( ) ( )

( )

11 1 1 1

11 1 1 1 1

ˆ ˆ

ˆ ˆ

ˆ

ˆ   ,
y

Z Z Z
f o

ZT T T T
f y

ZT T T T
y y y o

Z
y y o

ξ ξ

ξ ξ

ξ

ξ

−− − − −

−− − − − −

= − −

= − − − + −

= − − +

= − e

e y A Z

y A AN K KN K KN A PZ AN A PZ Z

e P AN A AN K KN K KN A PZ

e Q P Z

y o

            (4.23) 

implying that the change in the residual vector resulting from the addition of the outlier parameter is 
( ) ( ) ( )ˆ

y

Z Z
yδ = − = ee e e Q P Z

y oξ .   As in the case of stochastic constraints, these results show a strong 
similarity to the Gauss-Markov model with the primary differences encapsulated in the definition of 

( )ˆ, ,  and 
y

j
oξeQ ye . Using the results from (1.24), we may write the reduction in the sum of squared residuals 

resulting from the included outlier as 
( ) ( ) ( )

( )
1

ˆ ˆ

  .

y

y

TZ Z ZT
o y e y o

T T T
y y y e y y y

ξ ξ
−

⎡ ⎤Ω−Ω = ⎢ ⎥⎣ ⎦

=

Z PQ P Z

e P Z Z PQ PZ Z P e
                               (4.24) 

In order to use ( )( ) 2Z
oσΩ−Ω as a test statistic as before we need the expectation and dispersion of . 

From (3.21) 

( )ˆZ
oξ

{ } ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 1

1 1

ˆ
y y

y

y

T T T T T
o y y y y o y rs rs

T T T T T T T T
o y y y y rs y y rs rs rs y

T T T T T T
o y y y y y rs rs

o

E ξ ξ ξ

ξ ξ ξ

ξ ξ ξ ξ

ξ

− −− −

− −− − − −

− −− −

= + −

= + − + −

= + − + −

=

e e

e

e

Z P Q P Z Z PQ P A Z Z P AN K KN K z

Z PQ P Z Z P A Z P AN A P A Z P AN K KN K KN A P A z

Z PQ P Z Z P A Z P A Z P AN K KN K K z

ξ

 
while ( ){ } ( )

1
2ˆ

y

Z T
o o y yD ξ σ

−
= eZ P Q P Z is also determined from (3.22).  Assuming a normal distribution for ey 

in the model (3.10) and thus a normal distribution for , we may use the same theorems from Searle 
(1992) as before to find the degrees of freedom and non-centrality of the χ

( )ˆZ
oξ

2-distribution of (3.24)  
   ( )( ){ } ξ ξ2 2

y

Z T T
s s o o y o oE cσ σΩ −Ω = + = +eZ PQ P Z 2

Zc ϑ                          (4.25) 

It is important to note here that while the combined reliability matrix (3.16) plays a role in the change of the 
weighted sum of squared residuals (3.24) through ye  , only yR  is used to determine the non-centrality 
parameter.  We see no difference in basic form from the Gauss-Markov model with stochastic constraints 
and so we use the result described in (3.11) and (3.12) but with the outlier expression from (3.21) or (3.22).  
Inner and outer reliability may be evaluated as in the case of stochastic constraints but with the appropriate 
formulas for the reliability matrix and parameter vector estimates. 
 
4.3 Trilateration example continued 
 
We continue with the example begun in Section 2.3 to demonstrate how reliability is affected by the 
addition of stochastic or fixed constraints.  We remember that the reliability numbers (or the diagonal of the 
reliability matrix) of the observations in the absence of constraints was 

.  We may compute the change in 

reliability due to the addition of the stochastic constraining distance observations C15 and C25 (see Figure 
1) by applying (3.2) to find 

( ) 0 0 0.13 0.17 0.11 0.10 0.25 0.24
T

r vecdiag ⎡ ⎤= = ⎢ ⎥⎣ ⎦R

( ) 0.37 0.30 0.01 0.25 0.77 0.04 0.08 0.01
T

y svecdiag r rδ ⎡ ⎤= − = ⎢ ⎥⎣ ⎦R .  Notice that the elements 

of ( yvecdiag δR ) sum to 1.82 while the elements of ( ) 0.18ztr =R  indicate that some of the additional 

 24



redundancy provided by the constraints is used to predict ze . As we expected, the observations that share 
parameters with the constraints are affected the most, with observations L45 and L25 receiving all of their 
redundancy contribution from the constraints.  The average redundancy of the network increases to a more 
acceptable value of 0.35. 
      Likewise, we may use (3.16) to compute the change in reliability due to the addition of fixed constraints 

to find  ( ) 0.39 0.32 0.01 0.26 0.87 0.05 0.09 0.01
T

y fvecdiag r rδ ⎡ ⎤= − = ⎢ ⎥⎣ ⎦R  which shows the 

full redundancy increase of two provided by the constraints (since none of the redundancy is used to 
compute errors in z) and thus a slight improvement over the stochastic results.  Notice that, with the 
constraints, observation L12 now has a very strong redundancy, only 13% below 1.0 in the fixed case.  The 
average redundancy with these fixed constraints rises to 0.38. 
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CHAPER 5 

DIFFERENTIAL RELIABILITY 
 
  In the previous chapter we derived a method to analytically look at the change in reliability of a 
model as constraints are added using only the current network geometry contained in the non-random 
design matrices A and K. In the case of purely linear models, in which the elements of the design matrices 
are constant (such as in leveling networks) we have a fairly complete picture of the network’s reliability.  
However, in linearized models, in which the elements of the design matrices – now Jacobian matrices of 
the observations and constraint equations – depend upon the initial approximations (or “seed” values) of the 
parameters, we do not yet have a complete picture.  The reliability matrix of the network also depends on 
seed values but we do not yet know how sensitive the reliability numbers are to small changes in seed 
values.  Knowing this would aid in network design, allowing the practitioner to build redundancy into the 
network to stabilize the reliability matrix..   
 In this chapter we will develop a familiar measure that tells us the sensitivity of any given 
reliability number to changes in both A and K design matrices.   We may consider the reliability matrices 
from (2.5), (4.2), and (4.16) as matrix functions of A and/or K, and construct the Jacobian matrix of these 
functions with respect to the design matrices.  Large values in this Jacobian matrix indicate high 
sensitivities to the corresponding design matrix element.  Throughout this section we will rely heavily upon 
the results from Magnus and Neudecker (1999). 
 
5.1 Differential reliability in the Gauss-Markov model 
 
In linearized models (including most geodetic and photogrammetric models) the elements of A are 
computed from the parameter “seed” values (we do not use the expression “estimates” to avoid confusion 
with the stochastic estimates resulting from the various models) in a first order Taylor series 
approximation – only the incremental changes of the estimated ξ in (2.1), (3.1), and (4.3) are considered 
random.  These “seed” values, which may represent interior and exterior orientation parameters, ground 
point coordinates, ground-line parameters etc., have an effect on model reliability by changing the values in 
A.   Incremental model changes, dA, which occur due to incremental changes in seed values, cause 
incremental changes in the reliability matrix.  The effects on the reliability matrix can be examined for a 
given dA and large changes, especially on the diagonal elements of R, would indicate which seed values 
(which, of course, correspond to parameter values) have large effects on the reliability (either positively or 
negatively) of particular observations.  This information might also be used to guide the addition of 
observations or constraints to control these parameters. 

oΞ

 We will follow the approach of Magnus and Neudecker (1999) to compute a Jacobian matrix 
without trying to differentiate the complicated n2 elements of R.  First, we compute the differential of R 
and yR with respect to A, then vectorize the resulting matrix to obtain the expression 

( ) (( ) ( ) ( )d vec J d vec=R R A )

TP

.    (5.1)   
From this relation, J(R) follows as the Jacobian of vecR with respect to vec(A)T.    
 Considering the Gauss-Markov model, the explicit relationship between the reliability matrix and 
the design matrix may be written 
  (5.2)  T

n rs
−= −R I AN A P

noting that the reliability matrix is non-linear in A and that  is also a function of A.  If we denote 
differential changes in a generic matrix, M,  as dM, then from the total derivative we find 

rs
−N

( ) ( )T T
rs rs rsd d d d− − −= − − −R A N A P A N A P AN A .   (5.3)  

Expression (5.2) is invariant with respect to the choice of generalized inverse, but (5.3) requires  as a 
function of dA.   

rsd −N
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5.1.1 The differential of reflexive symmetric generalized inverses 
 
 Before we derive a general expression for  we mention two specific generalized inverses, 

, available when N is non-singular, and , the Moore-Penrose (or pseudo-) inverse (Magnus and 
Neudecker, 1999, Koch, 1999, Golub and Van Loan, 1996).  

rsd −N
1−N +N
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1−

1T −

)

1
K
−

=
1
K
−

T

) 1
K
−

) 1
K
−

 If N has full-rank then and, since we may write  

and write in terms of dN, 

1
rsd d− =N N 1− =NN I 1 1d d− −+ =NN N N 0

1d −N
1 1d d− −= −N N NN       (5.4) 

which may in turn be written in terms of dA since .  The second case is 
somewhat more involved but has been addressed by Magnus and Neudecker (1999, pages 152-154).  Their 
derivation of d makes use of the symmetry properties of projections involving the pseudo-inverse, 
namely and , to arrive at the expression 

T Td d d= +N A PA A P A

+N

( )T+ +=N N N N ( )T+ +=NN NN

( ) ( ) ( ) ( )2 2
m md d d I I d+ + + + + + += − + − + −N N NN N N NN NN N N  . (5.5) 

Either (5.4) or (5.5), may be substituted into (5.3) .   
  To compute  we express  in terms of minimum constraints as described in Chapter 3 
(Case 3, fixed constraints), 

rsd −N rs
−N

( ) ( )

( ) ( ) ( )

1 1

1 1

T T
rs

T T T

− −−

− −

= + +

= + − + +

N N K K N N K K

N K K N K K K K N K K
   (5.6) 

To simplify notation in the expressions to follow, we let .  Now we may write the 

differential of the generalized inverse in terms of  and dK,   

( T
K = +N N K K

1
Kd
−N

( )1 1 1 1 1 1T T T T
rs K K K K K Kd d d d d d− − − − − − −= − − − +N N N K KN N K K N N K K K K N   (5.7) 

Since  ,  which may be rearranged to obtain 1
K K m

− =N N I 1 1
K K K Kd d− −+N N N N 0

1 1
K K Kd d− −= −N N N N .          (5.8) 

If we expand the differential  and insert it into (5.8) then  T
Kd d d d= + +N N K K K K

(1 1 1 1 T T
K K K Kd d d d− − − −= − − +N N NN N K K K K N      (5.9) 

Expression (5.9) may be substituted into (5.7) to obtain 
( )

( )

( ) ( )

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 11 1 1 1 1

2

2

T T T T
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Or, written entirely in terms of dN and dK 
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   (5.10) 

We may also, of course, express (5.10) in terms of dA.  Note that (5.10) has a form similar to the form of 
the differential for the pseudo-inverse in (5.5).  By replacing K with E in (5.10) we could write (5.5) in 
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E

T

)

terms of E, noting that ( )  and that 
. 

( ) ( ) ( ) 11 1T T T
m m E E

−+ − −− = − = =I NN I NN E EN E EE

d d= → = −EN 0 EN E N
  
5.1.2 Full-rank Gauss-Markov model 
 
We may substitute (5.4) into (5.3) to obtain the total differential of R in A 

( )1 1 1 1T T T Td d d d d− − − −= − − + +R AN A P AN A P AN A PA A P A N A P .  (5.11) 
Unlike scalar or vector differentials in which the Jacobian matrix is explicit in the total derivative, we must 
write (5.11) in the form of (5.1) in order to express the Jacobian matrix, .  Our goal then is to 
vectorize each of the four terms of (5.11) with respect to dA to achieve this explicit representation.  
Beginning with the first two terms of (5.11) 
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with  and  as “commutation” matrices (cf. Appendix B).  The third and fourth terms become nmK 2n
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and 
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Combining these terms results in an expression for  ( )d vecR

( ) ( ) ( )( ) ( )

( ) ( )

2

2

1 1 1 1

1 1

T T
n nn

n

d vec d vec

d vec

− − − −

− −

⎡ ⎤= − ⊗ − + ⊗ −⎢ ⎥⎣ ⎦
⎡ ⎤= − ⊗ + ⊗⎢ ⎥⎣ ⎦e e

R PAN I AN A P K AN P I AN A P A

PAN Q P K AN PQ P A
 (5.12) 

from which we conclude that the Jacobian of R with respect to A is 
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Again, we should be clear that (5.10) models the changes in the n2 elements of vecR with respect to changes 
in the nm elements of vecA – but not to changes in the parameter seed values that are used to compute the 
elements of vecA.  Since the elements of the (nm x 1) vector are functions of the m 
seed values, , we may relate to by identifying the Jacobian of vecA with respect to Ξ ,  

.  We may approach this directly by examining each element of dA, which are related 
to as follows 
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for and .  We may compactly write these elements as the nm x 1 vector d(vecA)  1..i n= 1..j =
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If we designate as the vector of approximate non-linear observations, then and each 

element of  A ,
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f , for and .  By substituting these elements into (5.15) we 

recognize the matrix 
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Since (5.12) is written in terms of , we may express the elements of (5.15) directly through (5.16) 
as  

(d vecA

( ) od vec d= ΞA H .      (5.17) 
 Forming the required Hessian matrix can be tedious.  In the case of the collinearity equations with 
three unknowns of interior orientation, six unknowns of exterior orientation, and three ground coordinate 
unknowns, this requires 144 second partial derivatives of the collinearity equations. Indeed, if it were easy 
to form, it would almost certainly be used more often in the Taylor series expansion and iteration procedure 
in a pure Newton approach rather than the analytical approximation of a H with N in the Gauss-Newton 
approach (cf. Triggs, et al., 2000).  While symbolic mathematics software may relieve the burden 
somewhat, numerical differentiation is straightforward and also effective (Lanczos, 1956).   We will use 
this approach to compute the Hessian matrix (4.16) in the numerical work to follow.  
 
5.1.3 Rank-deficient Gauss-Markov model 
 
We may substitute (5.10) into (5.3) to obtain 
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This expression may be simplified because of the condition .  Furthermore, by substituting 
 and into expression (5.18) and taking into 

account the relations  and  we finally arrive at an expression for dR in terms 
of dA, 

T =AE 0
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Note that (5.19) is made identical to (5.11) by replacing with N.  Therefore, we may 
apply the results from the previous section to obtain an expression for the Jacobian of R with respect to A, 

( T
K = +N N K K
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and 

( )( ) ( )

( )( ) ( )

2

2

1 1

 x  x 

1

 x  x 

( ) T
n n K n Kn
nn nn nn nm

n n Kn
nn nmnn nn

J − −

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= ⊗ + ⊗ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ⊗ + ⊗⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
e

R P I I K AN I AN A P

P I I K AN Q P

.   (5.21) 

 
5.2. Constrained Gauss-Markov model 
 
5.2.1 Stochastic constraints 
 
We may extend (5.11) to include stochastic constraints in Cases 1,2, and 4 as follows 
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 (5.22) 

or, with R  partitioned as in (3.1), 
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(5.23) 
Although we could vectorize the entire expression (5.23), for now we focus primarily on the trace elements 
of ydR , that is the differential changes in the reliability numbers (or blocks of reliability values in the case 
of grouped observations) of the base observations.  In analogy to (5.8) and (5.9), but with the two 
additional terms in dK and dKT, we may vectorize the upper-left block of (5.23) to obtain 
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Or, to simplify (5.24) we may write it in terms of the cofactor matrix of residuals, 
ye

Q and 
z ye e

Q  from 
(3.34), 
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   (5.25) 
The Jacobian follows and the discussion leading to (5.17) may be applied to write  in terms of 

. 
(d vecK
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5.2.2 Fixed Constraints  
 
Again, we concentrate on ydR and begin with that part of (4.15) expressing the reliability of the base 

observations in Cases 1 and 4: ( ) 1T T T
y n rs y rs rs rs

−− − − −= − +R I AN A P AN K KN K KN A PT y .  The differential 

ydR with respect to dA and dK could be derived directly from this expression.  However,  we recall that a 

fixed constraint may be expressed as a stochastic constraint in which  so that, rather than 
computing the differential of (4.15) and vectorizing the result, we may rewrite (5.25) in a form involving 

.  In Case 1 we find 
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which is expressed in terms of 
ye

Q from (3.26).  Note that the last terms of (5.24) and (5.25), those  in 

d(vecK), reduce to zero due to the relation  as P  .  Case 2 

may be addressed by replacing  with (  and using (3.42) for 
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5.3 Trilateration Example Continued 
 

To demonstrate how the differential relations derived in the preceding sections may be used in a 
simple network, we look again to the trilateration example from Section 3.2.  For the unconstrained 
network and the Gauss-Markov model, we may use formulas (5.12), (5.13), (5.16), and (5.17) to compute 
incremental changes in the redundancy of the distance observations when incremental changes occur in the  
x, y coordinates of P1, P2, P3, P4, and P5.   Figure 5.1 graphs incremental changes to the redundancy 
numbers (the diagonal elements of each dR) of the distance observations in our network observation caused 
by a 1-meter shift in both x and y coordinates of points P1 and P2.  These numbers indicate that changes in 
P1 – which was not estimated and helped establish the datum – cause large (relative to the other points) 
changes to all of the observations, in effect shifting the redundancy of the network to different 
observations.   Note that the zero-redundancy observations are not affected by either movement in point 
coordinates.  Figure 5.2 shows similar changes cause by movement of P3 and P4.  P5 is not shown because 
it has no effect on the redundancy numbers. 

L45 L35 L23 L34 L12 L14 L24 L13
-0.006

-0.004

-0.002

0

0.002

0.004

0.006

L45 L35 L23 L34 L12 L14 L24 L13
-0.006

-0.004

-0.002

0

0.002

0.004

0.006

 
Figure 5.1.  Change in distance observation redundancy numbers based on a 1-meter change in the x and y 
coordinates of P1 (left) and P2 (right). 
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Figure 5.3.  Change in distance observation redundancy numbers based on a 1-meter change in the x and y 
coordinates of P3 (left) and P4 (right). 
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 It is important at this point to take note of the sizes of the matrices required to compute these 
differential changes in R.  The Hessian matrix, H, of the observation equations is of order 80 x 10 while the 
Jacobian matrix, , is of order 64 x 80.  While these particular matrices are relatively small, we must 
consider that we are working with only 8 observations to estimate 7 of the 10 parameters – a very small 
network.  In even modestly sized networks, both H and  will quickly become difficult to manage, 
unless their special pattern can be exploited.  In geodetic and photogrammetric networks, the Hessian 
matrix, H, like the design matrix, A, is often sparse (Figure 5.3) and modern matrix algebra systems based 
on LAPACK provide sparse matrix operations that increase speed and reduce memory requirements (Golub 
and Van Loan, 1996).  However,  will rarely, if ever be sparse, since it is formed by the fully-
populated, cofactor matrices of both the parameter estimates and the residuals. 

( )J R

( )J R

( )J R

Observation Jacobian  Matrix (A),  8 x 10 Observation Hessian Matrix (H), 80 x 10  
Figure 5.3.  Sparseness of the observation equations Jacobian matrix (left) and Hessian matrix (right).
 Non-zero elements are shown in blue. 
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CHAPTER 6 

 
RELIABILITY IN PHOTOGRAMMETRIC NETWORK DESIGN 

 
 To demonstrate how the results from the preceding chapters may be used in practice, we will 
apply the derived formulas to two interesting aspects of modern photogrammetric mapping.  Aerial 
surveying is one of the most cost-effective methods available to update existing maps or Geographic 
Information Systems.  It is still quite expensive, though, with most of the cost related to 

i. the time and equipment required to collect ground control-points using ground-based methods 
such as total station or GPS surveys,  

ii. the time required by a human operator to measure enough conjugate, or tie-, points on the 
images comprising the block, to orient the block with aerial triangulation procedures, and 
finally, 

iii. the time required to manually measure features, contours, and elevation grids on the 
overlapping stereo-pairs that comprise the block.   

Extensive research into supplementing aerial surveys (including ground control surveys) with GPS/INS-
based systems used to directly observe the exterior orientation of each image in the block has been 
conducted with some success (cf. Grejner-Brzezinska, 1999 and 2001).   In fact, direct orientation systems 
similar to those described in the references now see common commercial use. Likewise, research into 
automating tie-point selection and matching across overlapping images has resulted in so-called automatic 
aerial triangulation, or AAT, algorithms finding there way into not only research-oriented, but commercial, 
photogrammetry software (Heipke and Eder, 1999, Schenk, 1999).   Matching errors occur relatively 
frequently in these systems, especially in large-scale, high-relief aerial surveys.  However, the autonomous 
selection and matching processes result in a relatively large total number of matches.  AAT relies on this 
large number (usually more than a hundred per stereo pair) of possibly low quality (low with respect to 
what can be attained by a trained human operator) tie-points to precisely estimate the exterior orientation 
parameters of the block, relying on the principle of repeated measurements for precise parameter 
estimation.  Precise exterior orientation parameter estimates are thus possible even when many of the tie-
point measurements themselves are poor (Heipke and Eder, 1999, Schenk, 1999).  Despite this success, 
AAT results are still somewhat suspect and in practice require human quality control and continual 
intervention.  The last cost factor, feature extraction, will not be addressed here. 
 It is possible that constraints, inferred from existing scene knowledge or developed from ground-
based observations, on the object-space coordinates of the tie-points might improve the reliability of the 
exterior orientation estimates.  This would enable properly designed networks to detect and eliminate 
outliers in these observations and thus further reduce the need for more extensive ground surveys.  In 
indirect orientation, in which no direct EO observations exist, a check of reliability would necessarily 
involve outer reliability – determining the degree to which undetected outliers in the tie-point matches 
perturb the parameters.  However, because of the increasing use of GPS- and GPS/INS-oriented camera 
systems, we will consider the case in which all blocks are directly oriented with varying degrees of 
accuracy. We will examine the effect of several geometric constraints (described in Appendix A) on the 
reliability of exterior orientation observations – using the theory developed in Chapters 2-4 – in two 
circumstances that may be applied to modern orientation systems:   

i. the reliability of the exterior orientation observations in directly oriented blocks when no 
ground control is available, and  

ii. the reliability of the exterior orientation observations when tie-points are measured 
autonomously.   

 
6.1 Description of experimental data 
 
Because reliability is a network design characteristic we will make extensive use of a synthetic data set, 
simulating two block networks based on a simple 1:6,000 scale, 3 x 2 image block, with 60% overlap and 
39% sidelap.  The camera is assumed to have a focal length of 150 mm with a 200 mm x 200 mm format 
size digitized with a resolution of 15 microns.  The base-to-height ratio is approximately 0.5:1, resulting in 
relatively strong networks.     



 
Parameters Covariance Matrix 

GPS Ground Control Point 
Observations 

{ }Tgcp gcp gcpCov X Y Z⎡ ⎤
⎢ ⎥⎣ ⎦  

2

0.0004

0.0000 0.0004

0.0000 0.0000 0.0004

meters

⎡ ⎤− −⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

GPS Exterior Orientation 
Direct Observations 

{ }To o oCov X Y Z⎡ ⎤
⎢ ⎥⎣ ⎦  

2

0.004

0.000 0.004

0.0000 0.000 0.004

meters

⎡ ⎤− −⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

INS Exterior Orientation 
Direct Observations 

{ }TCov ω ϕ κ⎡ ⎤
⎢ ⎥⎣ ⎦  

2

0.0001

0.0000 0.0001

0.0000 0.0000 0.0001

degrees

⎡ ⎤− −⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Horizontal Collinear-Point 
Constrained Tie Point 

{ }Ttie tieCov X Y⎡ ⎤
⎢ ⎥⎣ ⎦  

meters2
9.0

0.0 9.0

⎡ − ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Manually measured image 
point  

{ }TCov u v⎡ ⎤
⎢ ⎥⎣ ⎦  

2
20.25 0

0 20.25
microns

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Automatically measured 
image point 

{ }TCov u v⎡ ⎤
⎢ ⎥⎣ ⎦  

2
2025.0 0

0 2025.0
microns

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Table 6.1.  Various observation covariance matrices used in the synthetic data sets. 
 

The first network, which we designate network N9, or simply N9, is a six-image block with nine tie-points 
per image, arranged in a pattern that reflects traditional, manual tie-point measurements (Figure 6.1).  This 
network takes full advantage of the image overlap so that tie-points are measured in all images in which 
they appear.  Throughout the remainder of this chapter, we will use the term n-fold to describe a tie-point 
that is measured in n images, for .  So, for example, point 13 in network N9 is a six-fold tie-point 
while point 7 is not a 2-fold tie-point. (2+)-fold tie-points are important to the overall geometric stability 
and accuracy of the aerial triangulation (Heipke and Eder, 1999, Schenk, 1999).   

2n ≥
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point\photo 101 102 103 201 202 203 
 2 x x     
 4  x x    
22    x x  
24     x x 
 3 x x x    
 7 x x     
 8 x x x    
 9  x x    
11 x   x   
12 x x  x x  
13 x x x x x x 
14  x x  x x 
15   x   x 
17    x x  
18    x x x 
19     x x 
23    x x x 

Table 6.2.  Tie point observations from network N9. 
 

Table 6.2 shows the available tie-points and the images in which they are measured.  We assume that tie-
points in N9 are measured with a relatively high precision of 0.3 pixels, or 4.5 microns.  The resulting 
covariance matrix shown in Table 6.1 assumes no correlation between the u and v coordinates. 
 The second network, N25, is formed with the same 3 x 2 image arrangement but with 25 tie-points 
per image and is meant to reflect either a more intensive manual aerial triangulation effort or an automatic 
aerial triangulation effort in which a relatively large number of tie-points is automatically selected and 
matched in multiple images (Figure 6.2).  This network also contains several n-fold tie-points.  We 
distinguish two forms of N25 based on the precision with which tie points are measured, 

i. N25a, representing the manually measured network, with a tie-point precision of 4.5 
microns and  

ii. N25b, representing the automatically measured network, with a relatively poor tie-point 
precision of 3.0 pixels. 

 The exterior orientation parameters of the images in both networks are directly observed, say with 
an integrated and calibrated GPS/INS system.  We assume that calibration includes estimation of the biases 
of the GPS phase center and INS origin relative to the perspective center of the camera.  Ground control 
points are available at the corners of the networks as shown in Figures 6.1 and 6.2, but in keeping with the 
goal of this experiment the points will most often be treated simply as tie-points.  For the sake of simplicity, 
GPS derived coordinates are considered here to be uncorrelated.  However, we should note that GPS 
coordinates, in general, exhibit significant correlations depending upon the estimation method.  Orientation 
angle estimates derived from an on-board INS are also assumed to be uncorrelated with a standard 
deviation of approximately 30 arc seconds.  Table 6.2 summarizes the assumed quality of additional 
observations as well as the precision of the image tie-point observations in each network. 

±
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Figure 6.1. Network N9 tie-point configuration showing points 2, 4, 22, and 24 as ground control points.  
 
Since N9 and N25 represent design data the measured image coordinates of tie-points are not required, and 
we may form the matrices required by (3.1) from the data uncorrupted by random error.  We may compute 
the network’s reliability directly from these matrices without performing a bundle adjustment since they 
contain all the information required to evaluate a particular network design.  
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Figure 6.2.  Network N25a-b tie-point configuration showing points 103, 107, 903, and 907 as ground 
control points. 
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 In addition to the simulated, or design, networks N9 and N25, we will also examine, albeit in less 
detail, an actual 1:20,000 scale network consisting of a 3 x 2 block with 60% overlap and 20% sidelap. The 
RC30 aerial camera used in the survey was calibrated to a focal length 152.3 mm and flown at 3,000 meters 
above mean terrain flying height, resulting in a in a base-to-height ratio of approximately 0.5:1. The block, 
taken over a sparsely settled portion of the Mayflower quadrangle northwest of Little Rock, Arkansas, was 
flown by the Arkansas Highway and Transportation Department in April, 2003.  The 9” x 9” color aerial 
film was scanned on a Zeiss PS2 scanner with a pixel size of 14 microns yielding approximately 0.33 meter 
ground sample distance.  Airborne GPS perspective center points were available for each image although 
covariance information was unavailable.  We will use the precision provided by the manufacturer: 

 and .  INS observations were not available. However, we 

will assume they are observed with poor precision ( )  so that we may 
include them as pseudo-observations in the adjustment.  Tie-points were measured manually with a 
precision of 14 microns. The configuration of network R9, as we shall refer to it from this point on, is 
shown in Figure 6.3.   

1.0  meter
o oX Yσ σ= = ± 3.0 meters

oZ
σ = ±
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Figure 6.3.  Network R9 tie-point configuration showing points ga, gb, gc, and gd as ground control points. 
 
The four ground control points in R9 were derived from existing GIS vector information and are of 
relatively poor quality with assumed precision  and .   5 meters

o oX Yσ σ= = ± 7.0 meters
oZ

σ = ±

R9 represents a different network from the design networks N9 and N25 with significant differences in 
photo-scale, tie-point distribution, and availability of quality of direct orientation. 
 
6.2  Increasing the reliability of directly-oriented blocks with geometric constraints 
 
Direct observation of exterior orientation (EO) with integrated GPS/INS systems, or direct orientation, is 
becoming more common in photogrammetric systems because, under optimal circumstances, it can reduce 
or eliminate the need for expensive ground control.  However, with current GPS/INS technology, direct EO 
observations are subject to errors due to GPS cycle slips, INS drift, and other causes (Grejner-Brzezinska, 
1999 and 2001).  Errors in position and orientation caused by cycle-slips and INS drift, for example, can 
deform a block and, in the absence of redundancy, these deformations may go undetected by current outlier 
detection schemes.  Even with steady improvement in the reliability of GPS/INS systems, it is still true that 
errors arise in EO estimation often enough that photogrammetric mapping firms measure tie-points and 
ground control point observations to verify the accuracy of direct orientation systems (correspondence with 
representatives of EarthData, Inc).  With this in mind, we address the question of whether geometric 
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constraints on a selected number of tie-points would improve the ability of the adjustment to detect direct 
orientation observation outliers, especially in the absence of ground control points.  Geometric constraints 
are generally plentiful, at least in urban areas, but we will focus on one that commonly appears in both rural 
and urban areas – “roadway” linearity constraints.  It is often possible to measure tie points along a road 
surface which may be constrained to lie along a horizontal (i.e. 2D in the xy mapping plane) or slant (i.e. 
3D in xyz space) line.  Note that this geometric constraint, containing shape information, does not provide 
datum information so we are relying on it to strengthen the relative orientation of the block. In particular, 
we expect the redundancy of the exterior orientation parameters of images, in which the constrained tie-
points appear, to increase. 
 A natural extension to this “collinearity” constraint is to use a straight tie-feature extracted, say, 
from the edge of the road.  Edge features can be reliably extracted from digital images and feature-based 
matching routines exist to find conjugate edge features in overlapping images (Schenk, 2004).  However, 
Schenk also points out that unless the extracted edges lie in the epipolar plane of the stereo pair, a straight 
line tie feature provides no orientation information unless it is measured and matched in more than two 
images.  So while it is certainly appropriate to pursue an investigation into the reliability provided by “tie-
lines”, we will only address the presumably stronger “collinear-point” constraint among tie-points. 
 In order to test the effect of collinear-point constraints on the reliability of directly observed 
exterior orientation parameters, we will examine network designs N9, N25a, N25b (remember that we 
consider reliability a design issue so that simulated data are acceptable and, at this point, preferred).  After 
computing the reliability of the three unconstrained networks we will insert into each of them one or more 
horizontal, collinear-point constraints (see Appendix A.3.1 for the mathematical formulation) in varying 
orientations relative to the block.  

1. Along-strip (Figure 6.4) - a single constraint passing along the center of the strip crossing 
strip and stereo-pairs.  This simulates a block flown so that the two strips are parallel and 
overlap a road straight segment. 

2. Two-along-strip (Figure 6.5) - two constraints passing along the edges of the strips.   
3. Across-strip (Figure 6.6) - two constraints perpendicular to the direction of flight and crossing 

stereo-pairs but not strips. 
4. X-pattern (Figure 6.7) - four constraints in a double “X” pattern crossing both strips and 

stereo-pairs. 
In each of the four orientations, every image contains a measured, constrained tie-point.  Each set of 
collinear-point constraints is treated as a stochastic constraint, with a covariance matrix computed from the 
assumed covariance of each point along the constraining line listed in Table 7.  We use model (2.1) and 
include direct EO observations as “base” observations so that base normal equations have full-rank and the 
formulas in Section 3.1 (Case 1) apply.     
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Figure 6.4. Networks N9 (left) and N25a-b (right). Position of “along-strip” horizontal collinear-point 
constraints.  No ground control points are included. 
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Figure 6.5. Networks N9 (left) and N25 (right). Position of multiple “along-strip” horizontal collinear-point 
constraints.  No ground control points are included. 
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Figure 6.6. Networks N9 (left) and N25a-b (right).  Position of two “across-strip” horizontal collinear-point 
constraints.  No ground control points are included. 
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Figure 6.7. Networks N9 (left) and N25 (right).  Position of “x-pattern” horizontal collinear-point 
constraints.  No ground control points are included. 
 
 For the unconstrained networks, the contribution of each set of direct EO observations to the 
overall redundancy of the block may be computed by extracting the appropriate diagonal elements from the 
Gauss-Markov model reliability matrix defined in (1.5).   These redundancy numbers are graphed in Figure 
6.8 by parameter and by image. 
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Figure 6.8. Networks N9 (left), N25a (middle) and N25b (right).  Redundancy numbers in the 
unconstrained blocks (Direct EO observations provide only datum information). 
 
We may make several remarks about the redundancy numbers. 

1. In the networks with high-precision tie-points, N9 and N25a, the EO parameters show fair 
reliability in the sense that about 40% to 80% of any error in these observations is mapped into the 
corresponding residual. In the poor-precision network, N25b, only Zo shows good reliability. Only 
about 20% of errors in Xo and Yo are mapped to the corresponding residual.   

2. Xo and Yo add the least redundancy to the system.  This is likely due to the fact that, in the absence 
of control points, these parameters, along with Zo , define the network datum. Zo also contributes 
to the datum but adds a great deal more redundancy to the system than the horizontal parameters.  
This seeming inconsistency is related to the fact that Zo has a larger variance than the horizontal 
components and thus contributes less to its own estimation.  If the EO observations are treated as 
constraints, this result is predicted by (4.2). 
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3. The orientation angles of the images have little or no affect on the datum determination (that is, 
they can be estimated by the tie-point measurements alone) so they tend to add more redundancy 
to the network. 

4. The redundancy numbers change little between networks N9 and N25a.  However, the redundancy 
numbers in N25b are significantly lower.  Essentially, what we see in N25a is the larger role 
played by the exterior orientation observations in their own estimates due to the lower precision of 
the tie-point observations. 

5. All EO parameters in images 102 and 202 exhibit relatively strong reliability.  We also expect this 
since these images are in the middle of the block and thus contain more n-fold tie-points. 

 We may now compute the incremental increase in the redundancy numbers from the introduction 
of the horizontal collinear-point constraints using (3.2). The redundancy increase resulting from the 
addition of collinear-point constraints are shown in Figures 6.9, 6.10, 6.11 and 6.12 corresponding to the 
four configurations in Figures 6.4, 6.5, 6.6 and 6.7, respectively. 
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Figure 6.9.  Networks N9 (left), N25a (middle) and N25b (right).  Redundancy increase due to single 
along-strip constraint (configuration in Figure 6.4). 
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Figure 6.10.  Networks N9 (left), N25a (middle) and N25b (right).  Redundancy increase due to two along-
strip constraints (configuration in Figure 6.5). 
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Figure 6.11.  Networks N9 (left), N25a (middle) and N25b (right).  Redundancy increase due to across-strip 
constraints (configuration in Figure 6.6). 
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Figure 6.12.  Networks N9 (left), N25a (middle) and N25b (right).  Redundancy increase due to X-pattern 
constraint (configuration in Figure 6.7). 
 
We may draw several conclusions from the incremental increases in redundancy. 

1. The additional constraints significantly increased the redundancy of at least some of the exterior 
orientation parameters.   

2. The across-strip constraints generally had a larger effect on the outer four images of the block 
(101, 103, 201, 203).  

3. Across-strip constraints aided in the estimation of Xo and ϕ  subsequently making outliers in the 
direct observations of these parameters more detectible. 

4. In every case, the constraints added less redundancy to the orientation parameters of N25b. 
5. Along-strip constraints had a larger effect on Yo and  subsequently making outliers in the direct 

observations of these parameters more detectible.   
ω

6. Multiple along-strip constraints improved the reliability of Yo and ω  observations over a single 
along-strip constraint but added relatively less redundancy to κ  observation.  This is likely due to 
the fact that the single along-strip constraint connected the strips (i.e. constrained tie-points 
appearing in every image to a single line) while the multiple constraints did not connect tie-points 
across the strip. 
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7. X-pattern constraints have a consistent effect on redundancy (except for Zo) since they are 
essentially a combination of both across- and along-strip constraints.  Furthermore, they constrain 
a relatively large number of tie-points.  

  We turn now to network R9 and graph the redundancy numbers of the exterior orientation 
parameters in Figure 6.13a.  The results with respect to the GPS observed exposure center generally agree 
with our design networks except for the orientation angle results which show almost full redundancy (the 
values are 0.9999 to four significant figures).  Evidently, the quality of these observations (which we added 
only so that they would be included in the bundle adjustment to perhaps stabilize the block) is such that 
they contribute virtually nothing to their own estimation and are thus completely redundant.  Another 
notable result is that the redundancy of the exposure center observations are rather poor except for images 
R033 and R204 in the middle of the block.  
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Figure 6.13.  (a) Network R9, exterior orientation redundancy numbers. (b) Change in redundancy numbers 
due to the addition of two 3D distance constraints. 
 
 Next we use (3.2) to model the effects of absolute distance constraints (Appendix A.3.3).  These 
constraints, unlike the collinear-point constraints, require actual measurements corrupted by random error, 
rather than geometric inferences.  In addition, the absolute distance constraints contribute to the 
determination of the datum scale.  Points t11 and t1 are constrained to a distance of 2,693.9 meters with a 
variance of 0.0002 meters2 while points t4 and t7 are constrained to a distance of 4,923.8 meters with the 
same variance (Figure 14).   
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Figure 6.14.  Absolute distance constraints in network R9. 

 The effect of these two constraints are shown in Figure 6.13b. Apparently these constraints have a 
significant, positive effect on the redundancy numbers of Xo  and Yo, but only for the images on the outer 
block border.         
 
6.3  Reliability of aerial triangulation with 2-fold tie-points only 
 
A persisting problem with automatic aerial triangulation (AAT) is that it is still difficult to autonomously 
measure and match a tie-point in more than two images.  This is perhaps a critical short-coming because we 
know that tie-points measured in more than two images provide geometric strength to the block (Kraus, 
1997, Mikhail et al., 2001, Förstner, 1985).  AAT algorithms tend to address this problem by selecting and 
matching a large number of two-fold tie points across the block and rely on this large quantity of 
observations to achieve reliable and precise estimates of exterior orientation.  So, in place of a single n-fold 
tie-point (for example, point 13 in Figure 6.1 and Table 6.2), we substitute multiple two-fold tie-points.   
The redundancy added by an n-fold point is 2 , so that the six measurements of point 13 contribute 9 
to the total redundancy of the network.   A two-fold point contributes only 1 to the total redundancy, so that 
in general, we need 2  two-fold tie-points to “make up” the redundancy contributed by an n-fold 
point.  Two aspects of this practice need to be addressed:  1) Are the EO parameter estimates as precise as 
those estimated with n-fold points?, and 2) Are we still able to detect outliers in direct observations of the 
exterior orientation parameters?  We will attempt to address the second question with some of the tools 
developed in this paper, particularly the differential relations from Chapter 5.  We recall that these relations 
determine how changes in parameter seed values – and hence the network design – affect the reliability 
matrix of the observations.   It may be that some redundancy numbers are sensitive to changes to the 
locations of a particular set of tie-points, ground control points, or image exposure stations.  This sensitivity 
in the neighborhood around a design parameter may be expressed through the Jacobian matrix (5.13).  If 
small changes in one or more of the coordinates of a tie-point affect the reliability on the exterior 
orientation parameters, proper care should be taken when relying on AAT algorithms to match points in 
this region.  This would provide information about how poor tie-point matches - which cause movement in 
the design or seed values of the tie-point object space coordinates - might affect the reliability of exterior 
orientation observations.  

3

3

n −

n −

 To gain a better understanding of these circumstances we will address the following questions:  
(i).  In the case of direct EO observations, do multiple two-fold tie-points or a single n-fold  tie-point 

contribute more to the redundancy numbers of the EO observations? 
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(ii).  How does the redundancy number of an n-fold tie-point change with respect to changes in 
 its XYZ ground coordinates, and what is the outer reliability of the exterior orientation 
 parameters relative to this point? 

(iii). How do the redundancy numbers of the exterior orientation observations change with  respect 
to changes in a particular tie-point’s XYZ ground coordinates?   

(iv). Will a reasonable geometric constraint, such as coplanarity in object space, on two-fold  tie 
points contribute to the redundancy of their observations? 
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3
Again, we are dealing with a network design problem, so we will begin with networks N9 and from it 
derive network N9c, in which every n-fold tie-point has been decomposed into at least  two-fold 
points.  For example, tie-point 13 in N9 is replaced by points 13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h, and 
13i in N9c. Table 6.3 shows how the decomposed point measurements are spread across the block.  We 
follow the same procedure to derive network N25c form N25a. Note that the tie-point precision remains 
fixed throughout this section. 

2n −

 
point/photo 101 102 103 201 202 203 
3a x x     
3b x  x    
3c  x x    
8a x x     
8b x  x    
8c  x x    
12a x x     
12b    x x  
12c x   x   
12d  x   x  
12e x    x  
13a x x     
13b x  x    
13c  x x    
13d    x x  
13e    x  x 
13f     x x 
13g x   x   
13h  x   x  
13i   x   x 
14a  x x    
14b     x x 
14c  x   x  
14d   x   x 
14e  x    x 
18a    x x  
18b    x  x 
18c     x x 
23a    x x  
23b    x  x 
23c     x x 

Table 6.3.  Network N9c. Distribution of decomposed n-fold two-fold tie-points. 
 
 To answer question (i), we may use the reliability matrix defined in (1.5) to compare, for example, 
the reliability numbers of image observations of points 13 and 23 in network N9 to image observations of 
points 13a – 13i, and 23a – 23c in network N9c.  Each of these points consists of two observations, but as 
we discussed in Chapter 2, they may practically be treated as a single 2D-observation.  Therefore, we will 
not simply consider the redundancy of each coordinate of the point measurement, but rather its 2 x 2 
block, , in the reliability matrix.  For a scalar measure, we will use the sum of the redundancy numbers 

in the block, defined by 
i iu vR

i i

T
i u vr τ= R τ  for tie-point observation i.  Such redundancy numbers may now 

exceed 1 even though the observation weight matrix is diagonal. 
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Figure 6.15.  Comparison of redundancy numbers of n-fold points versus two-fold points. 
 
 The graphs in Figure 6.15 confirm our intuition that the n-fold points 13 and 23 have very high 
redundancies, while the decomposed, two-fold points add somewhat less redundancy individually.  
However, since a major purpose of aerial triangulation is to determine exterior orientation parameters for 
subsequent operations, tie-point object coordinate accuracy is not typically required.  In addition, outer 
reliability of the EO parameters may be estimated through (2.18).  Förstner (1985) reported extensively on 
outer reliability in block bundle adjustments, but we will not pursue an outer reliability measure in network 
N9c here. Instead, we will take the approach of determining the reliability of direct observations of the EO 
parameters.  
 We address question (ii) by graphing the difference between the exterior orientation redundancy 
numbers when n-fold tie-points are measured and when they are decomposed into many two-fold tie-points.  
Figure 6.16 graphs the changes from N9 to N9c and from N25a to N25c.  In the network with few tie-
points (left graph), there is a small but significant advantage in using n-fold tie-points.  However, as the 
number of tie points increases (right graph), the advantage of n-fold tie-points in this context seems less 
clear.  It seems that the  rotation angle is slightly more reliable when n-fold points are measured but the κ
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changes in the reliability of all other exterior orientation parameters are insignificant.  
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Figure 6.16.  Change in redundancy due to the transition from N9 – N9c (left) and N25a – N25c (right). 
 
We should note that in both cases, the effect of a few n-fold points measured instead of many two-fold 
points is not usually negative in terms of reliability and may even be slightly advantageous.  For example, 
the increase in redundancy of κ in image 102 due to the inclusion of n-fold points – one of the larger 
increases – represents an approximately 10% redundancy improvement.  
 Decomposing n-fold tie-points as we have done results in several closely spaced two-fold points in 
object-space.  In many circumstances, it might be reasonable to assume that these points are coplanar.  For 
example, several two-fold points might occur on the roof of a building or on the painted surface of a 
parking lot.  In any case, we address question (iv) and explore whether constraining the decomposed points 
in this way improves the reliability of the exterior orientation using the same formula as in the preceding 
section.  For network N9c, we constrain decomposed points to be coplanar with a single plane of unknown 
orientation using the constraint model for coplanar points in Appendix A. For example, points 13a-i are 
constrained to a plane, points 12a-12d to another plane, and so on, for all the decomposed points listed in 
Table 6.3).  The resulting change (from N9c to the constrained N9c) in exterior orientation redundancy 
numbers are graphed in Figure 6.17. 
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Figure 6.17.  Exterior orientation redundancy numbers in N9c (left) and the change caused by applying 
coplanarity constraints on the decomposed points (right). 
 
From these results we see that while the coplanarity constraints add some information to the exterior 
orientation estimates – they increased the redundancy of the direct observations of these parameters – the 
effect on exterior orientation redundancy is small compared to the collinear-point constraint considered 
earlier.  Part of the reason for this must be related to the degree of proximity of the points relative to the 
covariance of the coplanarity constraints.  The results in Figure 6.17 assumed a point covariance matrix as 
described in Table 6.1.  We may strengthen the constraint by assuming a much smaller covariance matrix, 

say , equivalent to a ground control point in 

the data set.  Even with the increased precision, the constraints have a similarly small effect on the exterior 
orientation redundancy (Figure 6.18). 
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Figure 6.18.  Change of exterior orientation redundancy in Network N9c after applying tight coplanarity 
constraints.  
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6.4 Differential reliability in photogrammetric networks 
 
We may also compare the stability of the observation redundancy numbers in n-fold and two-fold networks 
in the presence of small changes in tie-point position using the differential relations developed in Chapter 5, 
specifically (5.12), (5.13), (5.16), and (5.17).  In particular, we are interested in answering the question 
whether the redundancy of the exterior orientation observations are more or less sensitive to small changes 
in the position of an n-fold tie-point and its decomposed two-fold constituents.  
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 Before detailing the experiment, we should mention the size of the matrices involved in the 
differential forms. In Section 5.3 we stated that the matrices required for this analysis, in particular H and 
J(R), grow large as the number of observations and parameters increase.  Our design network N9 consists 
of 87 parameters and 128 observations leading to a 11,136 x 87 H matrix and a 16,384 x 11,136 J(R) 
matrix.  Network N25 consists of 159 parameters (the increase over N9 is due to the multiple decomposed 
tie-point coordinates) and 200 observations leading to a 31,800 x 159 H matrix and a 40,000 x 31,800 J(R) 
matrix.  In both networks H is relatively sparse, but J(R) is full which can create memory problems even in 
relatively small networks.  However, we may exploit the sparseness of H by computing the second 
Kronecker product in (5.13) one observation, i, at a time to build the (somewhat) sparse nm x n matrices  

.  The resulting matrices may be stacked and exploited as required, thus avoiding the 

need to form and store in memory the full matrix inside the brackets. 
( )1

i

−⎡ ⊗⎢⎣ eAN Q P H

 We will first look exclusively at network N9 to see how small positional changes (1 meter in x, y 
and z) of points 13 (a six-fold point) and 22 (a two-fold point observed on images 201 and 202) affect the 
redundancy numbers of the exterior orientation observations.     
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Figure 6.19. Differential changes in exterior orientation observation redundancy due to a 1-meter change of 
the coordinates of point 13 (left) and point 22 (right). 
     
 The resulting changes are graphed in Figure 6.19 which shows relative changes in orientation 
observations of photos 201, 202, and 203 compared to the first strip.  This is to be expected perhaps in the 
case of point 22, but is unusual – and unexplained so far – in the case of point 13 which presumably would 
affect all images equally, considering its location and the symmetry of the block.  We are dealing with 
changes in a small neighborhood (small by necessity since (5.12) is a first-order approximation of the non-
linear mapping from vecA to vecR) around the “seed” values and, because of this, the size of the changes in 
Figure 6.19 are less important than the relative changes among images and parameters. 
 Next, we compare changes to the exterior orientation redundancy numbers in networks N9 and 
N25a, and try to answer whether the stability of the exterior orientation redundancy numbers in response to 
changes in the network geometry is larger in network N9 or in N25.  Whereas in the previous sections of 
this chapter we were looking for an increase in exterior orientation redundancy, here we are most interested 
in stability and thus small changes in response to movements in tie-point coordinates.  Stability of the 



exterior orientation redundancy in response to changes in tie-point locations could give the network 
designer confidence that small departures from the design, whether due to AAT algorithms automatically 
selecting points or due to unavailable natural tie-points, will not adversely affect the orientation 
redundancy.   
 We recall that point 13 in N9 was decomposed into nine two-fold tie-points 13a-i.  We will use 
this point to measure the stability of the networks N9 and N25.  A 1-meter shift of tie-point 13 within N9 
should be equivalent to a 1-meter shift of the tie-points 13a-I within N25.  The results of these changes are 
graphed in Figure 6.19.  Apparently these supposedly equivalent shifts affect the exterior orientation 
redundancy in N9 more than that in N25, thus indicating that N25 is perhaps more stable in the presence of 
small changes in the location of the tie-points.  However, this does not necessarily mean that the overall 
redundancy is better in N25 (although in the discussion concerning Figure 6.8 we have shown that it is 
indeed marginally better), only that small changes in points 13 and 13a-i from the design values seem to 
have little effect on exterior orientation redundancy.  These results may be repeated in turn for all points in 
the network  and provide an important additional measure of reliability in any network. 
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Figure 6.20.  Differential redundancy changes in network N9 (left) and in network N25 (right) resulting 
from a 1-meter shift in the points 13 and 13a-i, respectively.  
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CHAPTER 7 
 

CONCLUSIONS 
 
 Reliability analysis explains the contribution of each observation to the total redundancy of an 
estimation model, taking into account the geometry of the network as well as the precision of the 
observations themselves.  It is principally used to design networks that are resistant to outliers in the 
observations by making them more detectible when using standard statistical tests.  This approach has been 
studied extensively, and principally, in (linearized) Gauss-Markov models.  Here it has been shown how 
the same analysis may be extended to various rank-deficient and constrained (linearized) Gauss-Markov 
models, beside preliminary work for its use in unconstrained Gauss-Helmert models.  In particular, the 
prominent “reliability matrix” of the constrained model has been analyzed in order to separate the 
contribution of the constraints to the redundancy of the observations from the contribution of the 
observations themselves. 
 In addition, extensive use of matrix differential calculus has been made to find the Jacobian of the 
reliability matrix with respect to the parameters that define the network, through both the original design 
matrix and the constraint matrix.  The resulting Jacobian matrix reveals the sensitivity of elements of the 
observation reliability matrix (and the redundancy numbers along its diagonal) to particular design 
parameters and allows the model to identify weak areas in the network where changes in observations may 
result in unreliable observations. 
 We have applied this analytical framework to photogrammetric networks in which the exterior 
orientation parameters of images comprising a block are directly observed by calibrated GPS/INS systems.  
Such directly oriented blocks offer the potential of significantly reduced ground control survey cost, but 
suffer from lack of redundancy.  Tie-point observations provide some redundancy (for relative orientation 
only), and even a few collinear tie-point and tie-point distance constraints improve the reliability of these 
direct observations by as much as 33%.  Using the same theory we have compared networks in which tie-
points are observed on multiple photos (n-fold points) and tie-points are observed in photo pairs only (two-
fold points).  Apparently, the use of n-fold tie-points does not significantly degrade the reliability of the 
direct exterior orientation observations.   Coplanarity constraints added to the common two-fold points do 
not improve significantly the reliability of the direct exterior orientation observations. 
 The differential calculus results may be used to provide a new measure of redundancy number 
stability in networks. We have shown that a typical photogrammetric network with n-fold tie-points is not 
as stable with respect to at least some tie-point movement as an equivalent network with n-fold tie-points 
decomposed into many two-fold tie-points.  
 However, we have left several questions unanswered which require future work.   

1. Although we have provided some insight into extending the theory to the Gauss-Helmert model, 
real work remains as the necessary formulae to fully analyze the reliability matrix still need to be 
developed.   

2. In Chapter 4 we focused on the reliability of the original observations in the analysis of the 
reliability matrix and consequently did not fully explore the effects on the constraint observations 
themselves. 

3. The differential analysis of Chapter 5 also did not explore the reliability matrix of the constraints 
and focused solely on the original observations.  While we were able to put this theory to some 
practical use, more analysis and experimentation remains necessary for the incorporation of any 
constraints. 

4. The practical application of this theory to photogrammetric networks only explored the most 
obvious questions.  It is, for example, not clear if other network configurations behave similarly to 
the addition of constraints and the decomposition of n-fold points.   

5. We only touched the surface of n-fold decomposition using differential analysis.  Network  
stability in terms of reliability is promising and more research needs to be done, for example, as to 
how much the addition of constraints on the decomposed points (as was examined with the 
analytical results) would affect the stability of the network. 

6. Can other constraints be applied in practice that have similar positive effects on the direct 
observation redundancy?   For example,  do epipolar line constraints add more or less redundancy 
to these observations? 
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7. Finally, much more work with real data that harbor known outliers would be recommended to test 
the assumptions on which the theory is based and to further refine its practical application.
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APPENDIX A 
 

BUNDLE ADJUSTMENT AND SELECTED CONSTRAINT EQUATIONS 
 
A.1 Collinearity model 
 
The collinearity equations form the foundation for photogrammetric bundle adjustments.  They are based 
on the central perspective principle and describe the straight line path of the principle optic ray from point i 
on the ground through the camera optic system to the image plane: 
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where u, v are the observed image coordinates of point i, here, assumed to be noise-free, and uo, vo are the 
coordinates of the principle point; f is the focal length of the optical system.  The equations  

   ,     (A.2) ( ), ,

i i

i

i i

U X

V R Y Y

W Z

ω ϕ κ

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

describe the path of the principle ray from the ground point (  to the exposure center ( )  
, rotated into image space through the Cardan angles ( .  The additional parameters 

describe deviations from the straight line path caused by radial lens distortions, tangential 
lens distortions, and atmospheric refraction, respectively.  They may be included as estimable parameters in 
so-called self-calibrating bundle adjustments to calibrate, or refine the calibration of, metric and non-metric 
cameras; alternatively, estimates from a previous calibration may be introduced.  Note that, in the absence 
of these additional parameters, the linearized collinearity equations are linear in the image coordinate 
observations and may be modeled using the Gauss-Markov model.  A self-calibrating adjustment requires 
the Gauss-Helmert model.  The linearization of the collinearity equations using the linear terms of the 
Taylor series expansion has been thoroughly presented and will not be covered here (Kraus, 1997, Schenk, 
1999). 
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A.2 Handling rank-deficiency in the collinearity model 
 
Many photogrammetric operations make use of observation equations derived from the photogrammetric 
collinearity equations that are inherently rank-deficient in that they do not establish a datum for the block of 
photographs. This datum deficiency may be covered in several ways.  One method is to separate the 
photogrammetric triangulation process into two steps:  1) relative orientation, in which seven exterior 
orientation parameters are fixed and stereo models are formed based on the datum so defined, followed by 
2) absolute orientation, in which the stereo models (model points) undergo a Helmert transformation to 
align them with fixed or stochastic ground control (Schenk, 1999).   Another method, often preferred in 
analytical and digital photogrammetry, is to augment the linearized collinearity equations with direct 
observations of control point coordinates and their associated covariance matrices in the form of stochastic 
constraints and solve both relative and absolute orientation in a single adjustment step (Kraus, 1997, 
Schenk, 1999).  However, minimum constraints often play a role in bundle adjustment theory and are used 
in situations where datum-invariant quantities such as relative distances, are under consideration.  For that 
reason we will consider the following datum definitions.  Considering model (2.1),  we may apply the 
minimum constraints 

 ( ) ( )ξ
7

         7        T T

xm
rk m q rk m⎡ ⎤= = − = ⎢ ⎥ =⎣ ⎦K 0 K A K   (A.3) 
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and define K in one of potentially many ways.  First, to implement direct relative orientation (DRO) of a 
stereo-pair, we may fix one photograph’s exterior orientation parameters ( ) to zero or 
some other constants, and fix the baseline (often in stereo-pairs X

1 1 1 1 1 1, , , , ,o o oX Y Z ω ϕ κ

o2) to a known or assumed distance.  In the 
linearized model, this amounts to linearizing around the fixed parameters and not allowing the parameters 
to change, or equivalently, to applying the minimum constraints  

7

droξ

ξ

⎡ ⎤
⎡ ⎤ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
I 0 0      (A.4) 

where the parameter vector is partitioned to isolate the appropriate elements. Indirect relative orientation 
(IRO) may be implemented by fixing the length and orientation of the baseline vector  

between the images and the rotation of one of the images about the baseline 
(usually accomplished by setting ,  , and .  The 
constraint equations are identical to (A.4) except for the repartitioning of the parameter vector.   We may 
also apply the free net constraints (Kraus, 1997, Koch, 1999),  in which the datum is defined by fixing the 
seven Helmert parameters that relate the coordinate system of the ground points’ initial approximations 
(and possibly the camera station’s initial approximations as well) to the coordinate system of the estimated 
ground points.  This is achieved by defining 

( ) (1 1 1 2 2 2, , , ,o o o o o oX Y Z X Y Z− )

1 01 01 0oX Y Z= = = 02 02 0Y Z= = 02X D= 2 0κ =

    (A.5) 
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0 0 0 0 0
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0 0 0 0 0

0 0 0

i i j j

i i j j

i i j j

i i i j j j

Z Y Z Y

Z X Z X

Y X Y X

X Y Z X Y Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −= ⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

where the columns are placed so that they correspond to the like ground points and/or perspective centers in 
the design matrix and parameter vector.  It can be shown that these constraints on a bundle adjustment 
based on the collinearity equations result in a parameter dispersion matrix with minimum partial trace 
where only the diagonal elements corresponding to ground points are considered (Koch, 1999).  These 
minimum constraints, if so defined, also constitute a partial MInimum NOrm LEast Squares Solution 
(partial MINOLESS) to the bundle adjustment.   If points only are treated as parameters to be estimated as 
is the case with most total station-based triangulation or trilateration networks, then there are no zero 
columns in K and K = E.  This result, indeed is the MINOLESS and (3.55) may be computed as  
with  as the “pseudo-inverse” of N.    

ξ̂ += N c
+N

 Any one of these three definitions of K provide a means of overcoming the datum deficiency 
associated with the collinearity equations and K can thus be substituted into the expressions in Table 3.6.  
When constraints are added to the Gauss-Markov model in addition to these minimal constraints, care must 
be taken that the added constraints are consistent with the minimal constraints.  For example, if absolute 
distance constraints between two ground points are applied along with free-net constraints, the last row of 
K as defined in (A.5) (which fixes the scale of the resulting ground point system to the scale of the initial 
approximations) supplies redundant information possibly inconsistent with the datum information in the 
distance constraints.  Finally, since the inclusion of these minimal constraints perturb neither the residuals 
nor their dispersion, they will likewise not affect their reliability. 
 
A.3  Constraints on object points 
 
We detail here two “geometric” constraints, in which we model alternative geometric conditions that must 
be met by multiple points, or an observational constraint between points.  All three options have proven 
useful for photogrammetric networks (Mikhail, 2001).   
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A.3.1 Collinear points. 
 
Because straight lines often occur across the rural and urban landscapes where aerial surveys are usually 
conducted, constraining three or more points to be collinear might prove to be useful in two forms.  First, 
we may constrain only the x and y coordinates to be collinear. This horizontal (in the xy-map plane) only 
constraint is useful for road surfaces which are straight but not necessarily flat.  The relation 
( )
( )

( )
( )

j i j i

k j k j

x x y y

x x y y

− −
=

− −
 among any three points i, j, and k, forces equality of the slope of the line between 

points i and j and the slope of the line between points j and k.  The relation may be rearranged to form the 
constraint equation 

( )( ) ( )( ) 0ijk j i k j k j j ig x x y y x x y y= − − − − − = .    (A.6) 
The collinearity of more than three points may be enforced by forming additional constraints.  For example, 
points i, j, and k would lead to gijk  while points j, k, and l would lead to gjkl .  If the constraint is considered 
to be stochastic, we replace “0” in (A.6) by an error term with zero expectation and variance that reflects 
the presumed relative accuracy of the constrained points.  If the combined coordinates of n constrained 
points are allowed a covariance of  (of order 2n x 2n) then the we may compute xyΣ T

g xyσ = ΣJ J  where J 
is the (n-2) x 2n Jacobian matrix of g with respect to the coordinates.  
 Collinearity of three points along an unknown three-dimensional line provides two relations 
representing horizontal collinearity (as before) and vertical collinearity.  The second constraint equation 
may be written using the z coordinates, 

( )( ) ( )( ) 0ijk j i k j k j j ih x x z z x x z z= − − − − − =     (A.7a) 
or  

( )( ) ( )( ) 0ijk j i k j k j j ih y y z z y y z z= − − − − − = ,   (A.7b) 
either (but not both since one of the three constraints is dependent on the other two) of which may be 
chosen.  The uncertainty of hijk may be computed as before with the (n-1) x 3n Jacobian matrix. 
 
A.3.2 Coplanar points 
 
We may enforce the coplanarity of four three-dimensional points by applying the scalar triple product 

( ) 0ijkl il ij ikg = ⋅ × =p p p       (A.8) 

where , 
i j i j

ij i j i j

i j i j

x x x

y y y
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z z z

⎡ ⎤ ⎡ − ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= = − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ − ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

p

⎦
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il i l

il il i l

il i l

x x x

y y y

z z z

⎡ ⎤ ⎡ − ⎤
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⎢ ⎥ ⎢= = − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ − ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

p

⎦

 for points i, j, k, and l.  

No three of the four points may be collinear.  More than four points may be constrained to lie on the same 
plane by forming an additional constraint from each set of four points.  For example, points i, j, k, and l 
form one constraint, while j, k, l and m form a second constraint.  In general, n – 3 constraints are formed 
from n points.  If the constraint is allowed to have random error, its variance (and the covariance among 
multiple constraints formed from a group of points) may be computed from the (n-3) x 3n Jacobian matrix 
of the constraint equations and the assumed covariance matrices of the constrained points. 
 The total differential of the scalar triple product, 
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( ) ( )

( ) ( ) ( )
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il ij ik il ij ik ij ik
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dx dx dx

x y z dy x y z dy dy

dz dz dz

= ⋅ × + ⋅ ×

⎡ ⎤= ⋅ × + ⋅ × + ×⎢ ⎥⎣ ⎦

⎛⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣

p p p p p p

p p p p p p p p

S S S 0

⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠⎦

x
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⎥
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   (A.9) 

with, for example, , may be used to generate the Jacobian matrix required for 

linearization and error propagation. 

0

0

0

ij ij

ij ij ij

ij ij

z y

z

y x
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⎢

= −⎢
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

S

                   
A.3.3 Distance between points 
 
The observed distance between two three-dimensional points, i and j, may be modeled as 

( ) ( ) (2 22
ij i j i j i jx x y y z zρ = − + − + − .  The variance of this constraint should be based on the 

observation method and instrument.  An example of this constraint and its total derivative is given in 
Section 2.2.  
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APPENDIX B  
 

MATRIX OPERATIONS 
 

B.1 Kronecker product and vec operator 
 
Let A be an n x m matrix and B a p x q matrix.  The nm x pq matrix 

11 12 1

21 22 2

1 2

m

m

m m nm

a a a

a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⊗ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B B B

B B B
A B

B B B

…

…

…

    (B.1) 

is called the Kronecker product of A and B.   
The vec operator creates a column vector from a matrix A by stacking the column vectors of 

 below one another 1 2 m⎡= ⎢⎣A a a a… ⎤
⎥⎦

( )

1

2

m

vec

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a

a
A

a

.       (B.2) 

These two operators together yield the useful property  
( ) ( ) ( )Tvec vec= ⊗AXB B A X .     (B.3) 

More details may be found in Magnus and Neudecker (1999) and Koch (1999). 
 
B.2 Commutation Matrices 
 
For any n x m matrix A we define Knm as the nm x nm commutation matrix satisfying 

 .     (B.4) ( )Tnmvec vec=A K A

The commutation matrix derives its name from the relation  that holds for any 
p x q matrix B.   

( ) ( )pn qmK K⊗ = ⊗A B B A

 
B.3 Matrix Derivatives 
 
 For any n x m matrix A whose elements are differentiable functions of the q elements, x,  
the nmq derivatives may be written in the nm x q matrix 

  
( )
( )

( ) ( ) ( )

1 2
T

q

vec vec vec vec⎡ ⎤∂ ∂ ∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂ ∂∂ ⎢ ⎥⎣ ⎦

A A A
x x xx

A
.   (B.5) 

This form is convenient for expressing the total differential, dA, 

( )
( ) ( ) ( ) ( )

( )

1

2

1 2
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q
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dxvec vec vec vec
d vec d

x x x

dxq

⎡ ⎤
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x
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