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Abstract

Moving-base gravimetry systems require multiple sensors to extract the gravitational signal – an
accelerometer (or gravimeter), or a set of mutually orthogonal accelerometers that sense the action
forces on the vehicle; a suite of gyroscopes (or a stabilized platform) that provides proper
orientation for the accelerometers; and a geometric (kinematic) positioning system (e.g., GPS)
from which the kinematic acceleration may be derived, and that also provides geospatial
referencing of the signals.  The error in the recovered gravitational signal depends on the individual
sensor errors, but also on the coupling of the sensor errors to the actual acceleration environment
of the system.  The error analysis is fairly well known and documented in the literature and agrees
largely with experimental and operational results.  This report reviews the analysis in detail and
extends it to moving-base gravity gradiometry.  In the latter case the system comprises a set of
gradiometers (or differential accelerometers), a suite of gyros for orientation (stabilization), and a
geospatial referencing system (GPS).  The errors in the recovered gravitational gradients depend
on the sensor errors, but also on the coupling of these errors to the angular rate environment of the
system.  The analyses specifically target airborne systems used for gravity and gravity gradient
mapping.  While the orientation bias error is especially detrimental to airborne gravimetry, it is the
random noise in the gyro angular rate that contributes most to airborne gradiometry, as it couples

with the total angular rate.  The analysis shows that a gradiometer with  1 E/ Hz  sensitivity will
not be adversely compromised (at medium and high frequencies) if the required gyros have bias

repeatability of   0.0015 °/hr  and sensitivity of   0.01 °/hr/ Hz    ≈ 0.00015 °/ hr , and if the
orientation bias is   0.06 ° .  The latter numbers all reflect an order of magnitude lower than

commensurate gradient error effects of  1 E/ Hz .  This report also provides detailed models for
the various error sources, as well as for the accelerations and angular rates of the aircraft and for
the gravitational signal to wavelengths as short as 1 m.



I . Introduction

The purpose of this report is to understand the requirements and limitations of moving-base
gravimetry systems, specifically those based on the accelerometer and the differential accelerometer
(or gradiometer), to sense local and regional gravity anomalies.  Much of this type of analysis was
performed by many investigators in the past, and in that respect this report serves as a review.
However, the gradiometry part is relatively new as it incorporates an analysis of the entire system,
including the gyros that provide an orientation of the sensor platform and are needed to account for
the angular velocities and accelerations.  The analysis is presented starting from first principles,
and particular attention is paid to developing appropriate models for the sensor errors and the
gravitational field, the latter, especially, at very short spatial wavelengths, to which the gradiometer
is particularly sensitive.  Indeed, the gravitational field modeling is offered in the Appendices in
complete detail in order to serve as reference for many different applications.  In addition, models
are developed for the acceleration and angular rate environment of a typical small airplane that
might be used to carry such gravitational sensors.

The properties of the gravitational field are governed by Newton’s Law of Gravitation which
says that gravitational acceleration due to mass attraction attenuates with the inverse of the squared
distance from the sources.  The spatial derivatives of the gravitational acceleration, that is, its
gradients, attenuate with the cube of the inverse distance.  On the other hand, since the derivatives
of a function describe its local behavior, the gravitational gradients, in some sense, compensate for
the effect of attenuation; and, the gravitational gradiometer is viewed as particularly useful in
detecting near-field (shallow) mass anomalies.  Of course, the biggest advantage of the gradiometer
is its insensitivity to common mode accelerations of the moving vehicle, meaning that no
independent acceleration sensor is required as in the case of moving-base gravimetry.  To have
useful precision, however, the accelerometers in the pair that constitutes a gradiometer must be
very well matched and aligned to avoid significant differential biases.

- 1 -



I I . Mathematical Models for Measurements

This section develops the basic mathematical models for the gravitation vector and the gravity
gradient tensor as determined from sensor system measurements.  We consider several inertial
sensors: the accelerometer as a primary sensor, the gravitational gradiometer (or, more precisely,
the acceleration gradiometer) as a “derived” sensor (being a combination of accelerometers), and
the gyroscope as an auxiliary sensor (providing orientation of the frame, as well as angular rates).
A “position sensor” is also needed, and GPS is the now common utility for that function.
According to Newton’s Second Law of Motion, in an inertial (i.e., non-rotating) frame, the i-
frame, we have

   x i = g i + a i  , (1)

where  g i  is the gravitational acceleration,  x i  is the total kinematic acceleration of the body, and  a i

is the acceleration resulting from action forces ( a i  is also called the specific force, and it is the
acceleration actually sensed by an accelerometer).  The superscript identifies the frame in which the
vector is coordinatized; and, each dot on the vector, x , denotes a differentiation with respect to
time.

Let the b-frame (body-frame) be the coordinate frame in which the sensor operators.  This can

be an arbitrary frame that rotates (and accelerates) with respect to the i-frame.  Let  Cb
i

 denote the

  3 × 3  matrix that rotates coordinates from the b-frame to the i-frame. This transformation matrix
is orthogonal, and we have

  
Cb

i –1
= Cb

i T

= Ci
b

, and Ci
b

Cb
i

= I  , (2)

where I is the identity matrix.  To rotate a vector from one frame to the other involves multiplying
by this transformation matrix, e.g.:

   a i = Cb
i

ab  . (3)

For later application, we note that, with the over-scripted dot denoting time-differentiation, as
before,

   

Cb
i

= Cb
i Ω

ib
b

, where Ω
ib
b

=

0 – ω3 ω2

ω3 0 – ω1

– ω2 ω1 0

 , (4)
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and    ωω
ib
b

= ω1 ω2 ω3
T

 is the vector of angular rates of the b-frame axes with respect to the i-

frame axes, coordinatized in the b-frame.
Substituting (3) into (1) yields:

   g i = x i – Cb
i

ab  . (5)

Thus, in order to determine the gravitation vector from accelerometer data (in the b-frame), it is

necessary to determine also  x i , derived from the position,  x i , and to know the orientation of the
sensor platform with respect to inertial space.  Once obtained in the i-frame, the gravitational
vector can always be rotated into any other frame whose orientation with respect to the inertial
frame is known, e.g.

   gn = Ci
n

g i  , (6)

where the n-frame is the local north-east-down frame, and the elements of the rotation matrix,
 Ci
n

, are functions of latitude, longitude, and Earth’s rotation rate.

Modern gradiometers are based mostly on pairs of accelerometers whose outputs are
differenced to yield the spatial gradient of acceleration, or the difference in acceleration per unit
length (i.e., over the length of separation between the reference points of the accelerometers).  We
use the following, mathematically loose, notation to define the partial derivatives of components of
a vector, say a , with respect to components of another vector, say x :   ∂a ∂x∂a ∂x , given by:

    

∂a
∂x

=

∂a1

∂x1

∂a1

∂x2

∂a1

∂x3

∂a2

∂x1

∂a2

∂x2

∂a2

∂x3

∂a3

∂x1

∂a3

∂x2

∂a3

∂x3

 . (7)

Before applying this type of gradient operator to an expression like equation (5), we must first
express Newton’s Law of Motion in the b-frame, the frame in which the spatial differentiation
takes place (i.e., the frame of the sensor).  Toward this end, we differentiate
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   x i = Cb
i

xb (8)

twice with respect to time and substitute equation (5):

   gb = xb – ab + 2 Ci
b

Cb
i

xb + Ci
b

Cb
i

xb  . (9)

Now, differentiating with respect to   xb , we find

    ∂gb

∂xb
= –

∂ab

∂xb
+ Ci

b
Cb

i
 , (10)

since neither   xb ,   xb , nor  Cb
i

 depend explicitly on   xb .  That is, the linear acceleration,   xb ,

disappears, and the gravitational gradient can be obtained from the combination of gradiometer-

sensed components,    ∂ab ∂xb∂ab ∂xb , and the rotational acceleration,   Ci
b

Cb
i

.  It is important, therefore,

that one is able to measure or otherwise determine the rotational dynamics of the platform on which
the accelerometer pairs of a gradiometer are mounted.  If the platform is stabilized in the i-frame,

i.e., the b-frame is the i-frame, then, of course,   Cb
i

= Ci
i
= 0 , and the measurements yield

directly the gravitational gradients.

Let    Γ b  denote the matrix of gravitational gradients in the b-frame, that is, the tensor,
   ∂gb ∂xb∂gb ∂xb .  Applying equation (4) twice in succession, we find that equation (10) is equivalent to

    
Γ b = –

∂ab

∂xb
+ Ω

ib
b Ω

ib
b

+ Ω ib
b

 . (11)

If all components of the matrix,    ∂ab ∂xb∂ab ∂xb , are measured, then we may take advantage of the facts

that    Γ b  is symmetric, while   Ω ib
b

 is anti-symmetric, and thus eliminate the latter according to:

    Γ b =
1
2

Γ b + Γ b T

= –
1
2

∂ab

∂xb
+

∂ab

∂xb

T

+ Ω
ib
b Ω

ib
b

= – Bb + Ω
ib
b Ω

ib
b

,

(12)
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where

    
Bb =

1
2

∂ab

∂xb
+

∂ab

∂xb

T

 . (13)

We note that    ∂ab ∂xb∂ab ∂xb  is not symmetric and so the relationship (12) yields all gravity gradients
only if the gradiometer is a “full-tensor” gradiometer (all nine elements are measured

independently).  Of course, if one is interested merely in a subset of gradients, e.g.,    Γ13
b

 and    Γ23
b

,

then avoiding the angular acceleration terms requires only measurements of    ∂a1
b ∂x3

b∂a1
b ∂x3

b
,    ∂a2

b ∂x3
b∂a2

b ∂x3
b

,

   ∂a3
b ∂x1

b∂a3
b ∂x1

b
, and    ∂a3

b ∂x2
b∂a3

b ∂x2
b

.  Or, if only    Γ33
b

 is desired, then the only gradient to be measured is

   ∂a3
b ∂x3

b∂a3
b ∂x3

b
.  If elements of  Γ  are needed in another frame, such as the n-frame, then additional

body-frame gradients must be measurements.
Indeed, to rotate the gradients into any other frame requires a further transformation.  While

vectors transform (rotate) according to (8), matrices, such as  Γ , transform according to

   Γ i = Cb
i Γ b Ci

b
 . (14)

Thus, we have

   Γ i = – Cb
i

Bb – Ω
ib
b Ω

ib
b

Ci
b

 . (15)

It may be noted that the term with the angular velocity (squared) within the parentheses is
substantial compared to the gravitational gradients of the Earth.  A body rotational rate of as little as

  ω = 10– 3 rad/s = 3.5 arcmin/s  implies an effect of   ω2 = 10– 6 1/s = 1000 Eötvös .
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III. Error Equations

To develop error equations from the relationships between observables or sensor quantities and
gravitational quantities, we use the δ -notation to denote small errors (i.e., errors are approximated
by differential elements).  (The notation,   δg , here used to represent the error in g , is often used to
denote the gravity disturbance vector.  We denote the latter by   ∆g , even though this notation is
usually reserved to denote the gravity anomaly vector.  But, in the planar approximation that we
have adopted, the disturbance and the anomaly are almost the same.)  Neglecting second-order
terms, we have from equation (5):

    
δg i +

∂g i

∂x i
δx i = δx i – δCb

i
ab – Cb

i δab  , (16)

where the second term on the left side is due to the fact that the gravitational signal depends on
position, and position is one of our observables that may be in error.  This term is also known as a

registration error.  The error in the transformation matrix,   δCi
b
, can be expressed (Jekeli, 2000,

p.149) in terms of the orientation errors of the coordinate axes of the b-frame with respect to the

i-frame,   ψψ = ψ1 ψ2 ψ3
T :

   
δCb

i
= –

0 – ψ3 ψ2

ψ3 0 – ψ1

– ψ2 ψ1 0

Cb
i

= – Ψ Cb
i

, δCi
b

= δCb
i T

 . (17)

The orientation errors are related to the errors in the angular rates,   Ω
ib
b

, according to

   d
dt

Ψ = – Cb
i δΩ

ib
b

Ci
b

 . (18)

With equation (17), equation (16) becomes:

    δg i = δx i + Ψ Cb
i

ab – Cb
i δab – Γ i δx i  . (19)

Similarly, from equation (15) (using also equation (12)):

   
δΓ i +

∂Γ i

∂xj
i

δxj
iΣ

j

= δCb
i Γb Ci

b
– Cb

i δBb – δΩ
ib
b Ω

ib
b

– Ω
ib
b δΩ

ib
b

Ci
b

+ Cb
i Γb δCi

b
 . (20)
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Substituting equation (17) into equation (20) and making use of equation (14) yields

   δΓ i = Γ i Ψ – Ψ Γ i – Cb
i δBb – δΩ

ib
b Ω

ib
b

– Ω
ib
b δΩ

ib
b

Ci
b

– Ξ
j
i δxj

iΣ
j

 , (21)

where    Ξ
j
i
 is the gradient with respect to  xj

i
 of the gradient,    Γ i , and the last term, again, is a

registration error.
For the simple error analyses to be conducted here, we may assume that the b-frame and i-

frame coincide and are approximately equal to the local north-east-down frame (n-frame).  This
merely says that the platform of the instrument is aligned with the n-frame and the n-frame is
approximately an inertial frame (for a short period of time, say, less than an hour).  In that case the

transformation matrix,  Cb
i

, is the identity matrix, and we can omit the sub- and superscripts that

identify the different frames.  Equations (19) and (21) become, in this special case,

   δg = δx + Ψ a – δa – Γ δx  , (22)

   δΓ = Γ Ψ – Ψ Γ – δB + δΩ Ω +Ω δΩ – Ξ δxjΣ
j

 . (23)

Furthermore, from equation (18), we obtain, in this case,

   
Ψ = Ψ0 – δΩ dt  , (24)

where   Ψ0  is a constant orientation error.

The error equations (22) and (23) are based on direct measurements of the acceleration
components, their spatial derivatives, and angular rate components, which are typical, respectively,
of accelerometers, differential accelerometers, and gyros.  However, other types of sensors or
sensor configurations may yield these basic quantities indirectly.  For example, some gradiometers
(for example, existing units used for airborne operations, Jekeli (1988), Talwani (2000)) yield
measurements of combinations of in-line gradients (much like the Eötvös torsion balance, Nettleton
(1976, pp.66-69).  Also, Zorn (2002) recently proposed using a set of 12 accelerometers to sense
both the linear and angular accelerations of a platform, thus eliminating the need for gyros.  In
these cases the error equations must be re-constructed to reflect the basic sensed quantities.  Also,
as considered above, one often desires not a particular component of the gradient tensor, but a
combination of gradients, such as defined by the differential field curvature (Nettleton, 1976,
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pp.70-71) (this may also be the case rarely for the gravity vector).  The error equations for such
quantities are simply combinations of errors already derived (based on a linearization), since these
quantities are derived and not sensed directly.

Finally, it is noted that even though the gravitational gradients, according to equation (15) with
  Cb
i

= I , are derived from a combination of elements of the measurement tensor,    ∂ab ∂xb∂ab ∂xb , the

variance-covariance matrix of the gradient errors due to errors in    ∂ab ∂xb∂ab ∂xb  is a diagonal matrix if
the measurement errors are uncorrelated (Appendix A), implying that also the computed gradients
are uncorrelated (disregarding errors in the rotation rates).
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IV. Power Spectral Density and Covariance Function

This section introduces the functions to be modeled for a statistical analysis of the errors in
airborne gravimetry and gradiometry.  Covariance functions and power spectral densities are
needed not just for the sensor errors, but also for the signals being sensed, due to the fact that the
error equations, though linear in the errors, nevertheless involve coupling terms containing the
signal.  The error analysis can be done most conveniently in the temporal frequency domain, since
the sensor errors are usually characterized in terms of their behavior over different resolutions of
time (e.g., long-period and short-period behavior).  Analyzing the error with respect to frequencies
yields its characterization in the spectral domain.

We denote by f the temporal frequency and by  Φ  the power in the signal per frequency, that

is, the power spectral density (psd).  The psd is the spectral equivalent of the covariance;
specifically, the spectral decomposition of the covariance function of a signal is its psd.  Formally,
the psd is the Fourier transform of the covariance function,   φ(τ) , and vice versa:

    

F φ ≡ Φ(f) = φ(τ) e–i 2π f τ dτ

–∞

∞

, F– 1 Φ ≡ φ(t) = Φ(f) ei 2π f τ df

–∞

∞

 , (25)

where the covariance is the statistical expectation of the product of a zero-mean signal, say g, at
two different times, t and    t + τ :

    φg(τ) = E g t g t + τ  . (26)

Here, we assume a) that the signal is a stochastic process (one whose values at any time are
associated with a probability function); b) that the statistics of this process are stationary (or, time-
invariant; hence the covariance only depends on the time difference, τ ); and c) that the statistics

over time are equivalent to the statistics over probability space (this last property is known as
ergodicity).  Finally, as noted we assume that the mean (or statistical average) of the signal is zero;
this is not essential, but simplifies the discussion and is the condition on which equation (26) is
predicated.  Since the psd is a density of signal power (the covariance) relative to frequency, its
units are squared signal units per frequency units.  In the temporal frequency domain, the units of
frequency are usually cycles per second, or Hertz [Hz].

There is, of course, a rich theory associated with the psd and covariance functions, which we
can hardly touch upon here (for additional details, the reader may consult any textbook on
stochastic processes, signal analysis, or probability theory (e.g., Papoulis, 1977; Priestley, 1981;
see also Jekeli, 2001), but a number of special cases and facts must be illustrated.  In analogy to
the component wavelengths (inverse frequencies) of light, white noise is formally defined as the
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error whose psd is constant over all frequencies (like white light that contains equal amounts of all
colors, each color corresponding to a different frequency or wavelength).  White noise is a
perfectly uncorrelated stochastic process, since at any time it is completely random, independent of
its value at any previous (or subsequent) time.  An bias error, on the other hand, is a constant
error and its psd is non-zero only at a single frequency, the zero-frequency.  Such an error is
perfectly correlated in time since it is known for all time once it is known for any instant in time.

Although the white noise and random bias processes will play significant roles in the
subsequent analyses, other forms of partially correlated processes will be considered, such as red
noise (also called correlated noise, where the error is dominated by components at the longer
wavelengths or lower frequencies).  In fact, similar to such errors, we assume that the signals
themselves are correlated stochastic processes.  That is, the (residual) accelerations and angular
rates of an aircraft in straight and level flight are more or less random, as are the gravitational
gradients (residual to some reference field).  In all these cases, we assume the processes are of the
type discussed above, that is, stationary and ergodic, and in most cases having zero mean.
Furthermore, we assume that the errors are not correlated between the different sensors and that, in
general, sensor errors are not correlated with the quantities being sensed.

The power spectral density of the gravitational field, assumed to be a correlated process on the
sphere, is defined over the spectral domain of two-dimensional spatial frequencies, or harmonic
orders and degrees (or, wavenumbers).  Specifically, the spectral decomposition of the
gravitational potential, V, on any sphere of radius, r, is an infinite series of spherical harmonics:

   
V r,θ,λ = Σ

n = 0

∞
R
r

n + 1

vn,m Yn,m θ,λΣ
m = –n

n

 , (27)

where   θ,λ  are spherical co-latitude and longitude,   Yn,m  is a spherical harmonic function of degree

n and order m, and the set of coefficients,   vn,m , constitutes the spectrum of V.  The radius,

R, is some mean Earth radius, and we may choose   r = R when considering the spherical spectrum

of V on the Earth’s surface.    Yn,m  is the product of Legendre functions of the first kind and sines

and cosines (see any book on mathematical physics or physical geodesy, such as Heiskanen and
Moritz, 1967).

For our more local analyses, the spherical frequencies may be approximated by spatial
frequencies in the (horizontal) plane:

   n n + 1
2πR

= µ , µ = µ1
2

+ µ2
2

 , (28)

where µ  is the “amplitude” of the horizontal (Cartesian) spatial frequencies,   µ1  and   µ2 .

The spherical psd of the function, such as V, is given, usually, as the cumulative density per
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degree, or the degree variance:

   
σ

V
2

n = vnm
2Σ

m = – n

m

 . (29)

It can be shown (Jekeli, 2001) that the relationship between the degree variance and the isotropic
psd,   ΦV µ , of signals on the plane is given by

   σ
V
2

n ≈ n

2π R2
ΦV µ  . (30)

Note that, even, though   ΦV µ  is the psd depending only on the amplitude frequency, µ , it is

nevertheless the psd for a signal in two dimensions (on the plane), and as such its units are the
square units of V per the square of the frequency units.

Modeling the power spectral density of the gravitational signal usually involves the analysis of
different types of data.  For the medium to longer wavelengths, satellite tracking data and mean
terrestrial gravity anomalies estimated on a uniform grid (e.g.,   0.5° × 0.5° ) serve to generate
spectral decompositions of V, as given by equation (27).  One such global representation is
EGM96 (Lemoine et al., 1998), where the maximum degree is   nmax = 360  (corresponding to a

spatial resolution of about 25 km).  To model the field at higher resolution we must rely on more
dense gravimetric data.  Alternatively, over land areas, we may utilize detailed grids of terrain
elevation under the assumption that the very-high frequency anomalies of the gravity field are
generated principally by the visible terrain variations, and possibly by corresponding isostatic
compensations, e.g., according to the Airy model.

To simplify the relationship between the gravitational field and the topographic heights, we
approximate the topography by its Helmert condensation onto the geoid.  The topographic masses
thus are “condensed” onto the geoid in the form of a two-dimensional mass layer with density
given at any point by

   κ = ρh  , (31)

where ρ  is the crustal density (assumed constant, in our model) and h is the terrain elevation at

this point.  The potential, V, at a point, P, due to such a layer is given by

   
V(P) = Gρ R2 h

dσ

σ

 , (32)
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where G is Newton’s gravitational constant,  σ  represents the unit sphere, h is a function of

spherical coordinates, being approximations of some curvilinear coordinates on the geoid, and  is
the distance between P and the integration point.  The potential and its derivatives are continuous,
as long as P is located above the surface.

Equation (32) is a convolution of h with the inverse distance,   – 1 .  Further approximating the
coordinates as planar coordinates, where now

  
= x1 – x1'

2 + x2 – x2'
2 + x3

2
 , (33)

and   x1',x2'  are coordinates of points on the geoid, one may apply the convolution theorem to

show that the Fourier transform of the potential at the level of    x3 ≥ 0  is given by (Jekeli, 2001,

pp.1-32)

    
F V =

kρ
µ F h e– 2πµx3  , (34)

where µ  is given by equation (28).  Therefore, the (cross-) psd of the potential at two levels,   x3

and   x3' , is given by

   
ΦV µ; x3,x3' =

kρ
µ

2

Φh(µ) e– 2πµ x3 + x3'  . (35)

And, consequently, the psd of the vertical derivative of V (the gravitational acceleration of a layer)
is given by

   Φδg µ; x3,x3' = 2πkρ 2 Φh(µ) e– 2πµ x3 + x3'  . (36)

If one includes a model for isostatic compensation of the topographic layer, say, according to
Airy’s hypothesis, then another layer can be formed on the underside of the zone of compensation,

extending a depth, D, below the geoid.  This layer has density    κ' = – ρm – ρ h' , representing a

condensation of material deficient in density with respect to the mantle density,   ρm , and extending

a depth,  h' , below the level   – D  (see Figure 1).  The Airy model is based on the buoyancy of the
topographic masses floating in the mantle; thus we have

   ρ h = ρm – ρ h'  . (37)

Including this anomalous layer, with density    κ' = – ρ h , the Fourier transform of the total potential
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due to both topography and its isostatic compensation, approximated as surface layers, is given by

    
F V =

kρ
µ F h e– 2πµx3 – e– 2πµ D + x3  . (38)

And, the (cross-) psd at two arbitrary levels,   x3  and   x3' , is given by

   
ΦV µ; x3,x3' =

kρ
µ

2

Φh(µ) e– 2πµ x3 + x3' 1 – e– 2πµD 2
 . (39)

Finally, the psd of the corresponding vertical gravitational acceleration is given by

   Φδg µ; x3,x3' = 2πkρ 2 Φh(µ) e– 2πµ x3 + x3' 1 – e– 2πµD 2
 . (40)

It is noted that equations (36) and (40) basically state that the gravity disturbance (or anomaly) is
linearly related to elevation, which is a common (though not necessarily legitimate) assumption
made in short-wavelength analyses of the gravity field.  Also, if the isostatic compensation should
be omitted, equation (40) can be used as well simply by setting    D → ∞ .  In fact, for a typical
compensation depth,   D = 30 km , the isostatic compensation factor is

   e– 2πµD ≤ 0.002 , for µ ≥ 3.3×10– 5 cy/m  ; (41)

which can be neglected if the gravity is modeled from topography only at resolutions (half-
wavelengths) more detailed than   D/2 = 15 km .

geoidD

h

h’

topographic surface

crust

mantle

ρ

ρm

ρ

ρ

ρh
−(ρm−ρ)h’

density layers:

Figure 1: Airy’s isostatic compensation model and Helmert’s condensation layers
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V . Covariance and PSD Models

Having identified the types of covariance functions and psd’s to be modeled, we now develop
specific models to be used for the individual sensors and the accelerations and angular rates of a
typical aircraft, and for the gravitational signal.  Finally, a total, combined model is developed for
the error in the determined components of the gravitational vector and the gradient tensor.

The Fourier relationships (25) between the covariance and psd are problematic in the two cases
of white noise and bias, since, for example, the integral of a function that is non-zero at only a
single value of its domain is zero in the usual Riemann / Lebesque sense of an integral.  To avoid
such degeneracy, one introduces a generalized function, the Dirac function (also known as the
delta function, or the impulse function, not to be confused with the differential operator, δ , used
above), defined by the following:

   δ(t) = 0 , for t ≠ 0 ;

δ(t – t0) g(t) dt

–∞

∞

= δ(t0 – t) g(t) dt

–∞

∞

= g(t0) .

(42)

Thus, if we let the covariance function of white noise be a Dirac function, scaled by a constant,
  w > 0 ; then by equations (25) and (42), with   t0 = 0  and    t ≡ τ , the psd is that constant:

   

φ(τ) = w δ τ ⇒ Φ(f) = w δ τ e– i 2π f τ dτ

–∞

∞

= w  . (43)

Similarly, if the psd is a Dirac function, scaled by   σ2 , then the covariance function is that
constant, for all τ , as desired for a random bias:

   

Φ(f) = σ2 δ f ⇒ φ(τ) = σ2 δ f ei 2π f τ df

–∞

∞

= σ2  . (44)

We note that the units of the Dirac function, as inferred from (42), are the inverse of the units of
the argument of  δ ⋅ .

On the other hand, we quickly encounter difficulties when implementing these idealizations of

- 14 -



white noise and random bias in modeling the psd’s of derived quantities, such as the psd of
kinematic acceleration error, given the psd of position error.  Mathematically, the psd of the
acceleration error is obtained with multiple differentiations of the psd of position error, which
becomes difficult when dealing with the Dirac function.  To enable straightforward manipulation of
our psd’s, we approximate the ideal white noise and random bias with processes that behave
accordingly only over a finite bandwidth of frequencies (in fact, one can argue that this is more
realistic, anyway), thus yielding analytic functions for the psd’s.

Several options exist for analytic expressions (i.e., regular, reasonably well-behaved
functions) of the psd and covariance function that are Fourier transforms of each other, according
to equation (25), and that can be tailored to approximate band-limited white noise and random bias.
One such transform pair is given by

   
φ τ = σ2

sin 2πfcτ
2πfcτ

 ; (45)

   

Φ f =

σ2

2fc
, f ≤ fc ,

0 , f > fc ;
 . (46)

where the positive parameter, fc , controls the bandwidth of the signal.  However, in this case, the

attenuation of the psd and covariance is not controllable; and, therefore, this transform pair will not
be used.

Instead, consider the following transform pair, here called type A:

   
φΑ τ =

2 fc π w

Γ m + 1
2

π fc τ m Km 2π fc τ  , (47)

   ΦΑ f =
w

1 +
f
fc

2 m + 1
2

 , (48)

where   Γ m  is the Euler-Gamma function, with    Γ m = m – 1 ! , if m is a positive integer
(confusion in notation with the gravitational gradients is not anticipated), and  Km  is the modified

Bessel function of the second kind and of order m.  The order, m, of the Bessel function may, in
this case, be a complex number with   Re(m) > – 1

2 ; we will use only real m.  That equations (47)
and (48) satisfy equation (25) can be proved using formulas 9.6.9 and 9.6.25 in (Abramowitz and
Stegun, 1972).
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This model is particularly useful when we are given the psd value, w, of the process near zero
frequency (e.g., white noise) and the cut-off frequency, fc , that determines the bandwidth of the

process.  The parameter, m, determines the degree of attenuation of the psd.  The variance of the
process according to this model is given by

   
φΑ 0 = σ2 =

w fc π Γ m

Γ m + 1
2

(49)

We also note that

   ΦΑ f > 0 , ∀f  , (50)

which means that the covariance function is positive definite as required.
Although one could use the Type A model to represent white noise as well as random bias

processes with appropriate selection of the parameters, we consider also the inverse of this model,
here called Type B:

   
φB τ =

σ2

1 +
τ
τc

2 m + 1
2

 , (51)

   
ΦB f =

2 σ2 τc π

Γ m + 1
2

π τc f m Km 2π τc f  . (52)

This model is useful if the variance,   σ2 , of the process is given.  Here, the positive parameter,  τc ,

defines the correlation length of the process.  Again, the parameter, m, is restricted as for Type
A, and the psd is always positive.  The psd of Type A is modeled after the Butterworth filter and
the covariance of Type B is a generalized inverse time function.

One must exercise some care when choosing a particular type of model.  For example, by the
propagation of covariances, with    τ = t2 – t1 , the (cross-) covariance between time-derivatives of

two processes, g and h, is given by

   
φg,h τ =

∂
∂t1

∂
∂t2

φg,h τ = –
d2

dτ2
φg,h τ  . (53)

From (Abramowitz and Stegun, 1972, 9.6.28), we find that
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   dk

dτk
2π fcτ

m Km 2π fcτ = –1 k 2π fc
k 2π fcτ

m Km – k 2π fcτ  , (54)

which yields the nonsensical result that the variances are zero for the time-derivatives of a process
whose covariance is modeled according to a Type A function, equation (47).  Thus, when
modeling the covariance or psd of the derivative of a process, the Type B model should be used.

The psd of the   k th  derivative of a process, g, is given by

   Φg(k) f = 2πf 2k Φg f  , (55)

and the covariance can be determined by applying equation (53) (repeatedly, if needed) to equation
(51).

The covariance of the integral of a process is also relatively easy to formulate analytically for
Type B models.  However, if the covariance function of the original process does not average to
zero over all τ  (i.e., the psd has non-zero value at zero frequency), the integral of the process is
non-stationary and the corresponding psd is not defined.  Nevertheless, if we exclude a small
neighborhood of frequencies at   f = 0 , then we may consider the psd of the integral of a process
according to

   Φ
g

f =
1

2πf 2
Φg f  . (56)

Usually we are interested only in a particular band of frequencies that excludes the origin and
where the psd behaves according to (56).  In this case we may fit a model of Type A to   Φ

g
 over

the bandwidth of interest.  For example, if g is white noise with psd,    Φg f = wg , for   f < fg , then

   
Φ

g
f =

wg

2πf 2
 . (57)

Fitting a Type A model (equation (48)) to this for   f > fc , we find that for   fc < f < fg  these models

approximately agree if

   
m =

1
2

, w =
wg

2πfc
2

 . (58)
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Similarly, if g is a random bias with variance,    σ
g
2

 and correlation length,   τg , then for

frequencies,    f > 1 τg1 τg , we have, approximately, according to equations (49) and (48):

   
Φg f =

σ
g
2 τg Γ mg + 1

2

π Γ mg

1

f τg
mg + 1 21 2  , (59)

for some  mg .  Again, approximating the corresponding psd of the integral by a model of Type A,

we set

   
m = mg + 1 , fc =

1
τg α , w =

σ
g
2 τg Γ mg + 1

2

π Γ mg

α2mg + 1

2π fc
2  , (60)

where  α  is a fitting parameter (e.g., close to unity) that improves the fit.

For red noise processes, we again use the model of Type A, with suitable choices for the
parameters.  Indeed, suppose the psd over a certain band of frequencies,   f >> fc , should be

modeled according to

   Φ(f) = α f– ν (61)

where  α  and ν  are positive constants with   ν > 1 .  Over this band, we find from equation (48)

that the Type A model may approximated as

   
Φ f = w

fc
f

2m + 1

1 – m +
1
2

fc
f

2

+ ...

≈ w
fc
f

2m + 1

.

(62)

Given  α , ν , and fc , one simply sets

   
m =

1
2

ν – 1  ,        w = α fc
– 2m – 1

 . (63)

For the gravitational processes, we define a covariance model analogous to Type B.  This is a
standard model for the covariance function of the disturbing potential, T, called the reciprocal
distance model (Moritz, 1980).  It is equation (51) specialized with   m = 0  and generalized by
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including the Newtonian field condition; we call it a model of Type C:

   
φT ∆x1,∆x2; x3,x3' =

σ
j
2

1 + αj x3 + x3'
2

+ α
j
2
s2

Σ
j = 1

J

 , (64)

where

   ∆x1 = x1 – x1' , ∆x2 = x2 – x2'  ,         s = ∆x1
2

+ ∆x2
2

 , (65)

and where J,   σj , and   αj  are parameters whose values are selected to fit an empirical

determination of the covariance or the psd.  The psd model corresponding to equation (64) is given
by

   
ΦT µ1,µ2; x3,x3' =

σ
j
2

e– 2πµαj
– 1

αj µΣ
j = 1

J

e– 2πµ x3 + x3'  , (66)

where µ  is given by equation (28).  Covariance and psd models for the first and second

derivatives of the disturbing potential are easily derived and listed in Appendix B.
To utilize the gravitational signal spectra along a track requires that the two-dimensional spatial

psd be collapsed to a single dimension, where it is assumed that the track  can be identified with
one of the horizontal coordinate axes.  We define the following hybrid psd/covariance function for
the disturbing potential:

   

ST µ1; ∆x2; x3,x3' = ΦT µ1, µ2; x3,x3' e i 2πµ2∆x2dµ2

– ∞

∞

= φT ∆x1, ∆x2; x3,x3' e– i 2πµ1∆x1 d∆x1

– ∞

∞

,

(67)

and this yields the along-track psd by setting    ∆x2 = 0 .  Here, without loss in generality, we

assume that   x1  represents the along-track direction.  In the case of the reciprocal-distance model

(Type C), this hybrid psd/covariance function has closed analytic expressions for the disturbing
potential and all its derivatives; these are listed in Appendix C.
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In order to proceed with the analysis, we need some additional results.  It is easy to see that the
covariance of the sum or difference of two uncorrelated processes is the sum of the covariances of
the processes:

   φA ± B(f) = φA(f) + φB(f)  . (68)

For the product of a signal, g (like a ,  Γ , or  ω ), and an error, ε  (like   δx , etc.), we make use of
the ergodic property to derive the covariance sequentially, as follows.  Assume, first, that the
covariance of the product,   gε , is obtained in the probability space (again, both are zero-mean
processes):

    φgε t,τ = E g t ε t g t + τ ε t + τ = g t g t + τ φε τ  , (69)

where  g t  and    g t + τ  are treated like constants (from a completely different probability space)

that pre-multiply the errors.  Next, average this over all possible values of t, in effect computing
the (time-averaged) covariance of g:

   

φgε τ = lim
T → ∞

1
T

g t g t + τ φε τ dt

– T/2

T/2

= φg τ φε τ .
(70)

According to well known theorems in Fourier analysis, the Fourier transform of the product,
   φg φε , is the convolution of the Fourier transforms of   φg  and  φε .  This leads to the result that the

psd of   gε  is the convolution of the psd’s of g and of ε :

   

Φgε f = Φg f ' Φε f – f ' df '

– ∞

∞

 . (71)

Unfortunately, however, our psd models of Type A, equation (48), Type B, equation (52), and
Type C, equation (66), do not yield simple analytic expressions when substituted into equation
(71).

Therefore, where necessary, the following procedure is adopted.  We first design the
covariances of the signals and errors based on appropriate models and spectral characteristics.
These are then combined according to equations (68) and (70), and the psd of the resulting
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expression is determined numerically according to equation (25).
The operative models for the gravitational estimation errors are equations (22) and (23).  In

equation (22) we consider separately the vertical and horizontal components of the gravitational
vector (and the two horizontal components are essentially equivalent):

   Φδg1
= Φδx1

+ Φψ3a2
+ Φψ2a3

+ Φδa1
+ ΦΓ11δx1

+ ΦΓ12δx2
+ ΦΓ13δx3

 , (72)

   Φδg3
= Φδx3

+ Φψ2a1
+ Φψ1a2

+ Φδa3
+ ΦΓ31δx1

+ ΦΓ32δx2
+ ΦΓ33δx3

 . (73)

For the gravitational gradients, let the indices   j, k,  denote a cyclical permutation of 1, 2, 3 (i.e.,
(1,2,3), (2,3,1), or (3,1,2)).  Then the psd’s of the errors in the diagonal gradients are given by:

   ΦδΓj,j
= 4ΦΓj,kψ + 4ΦΓ ,jψk

+ Φδ ∂aj ∂xj∂aj ∂xj

4Φδωkωk
+ 4Φω δω + Φ∂Γj,j ∂x1∂Γj,j ∂x1δx1

+ Φ∂Γj,j ∂x2∂Γj,j ∂x2δx2
+ Φ∂Γj,j ∂x3∂Γj,j ∂x3δx3

(74)

And, for the off-diagonal gradient errors:

   ΦδΓj,k
= ΦΓj,jψ + ΦΓk,kψ + ΦΓj, ψj

+ ΦΓk, ψk
+

1
4

Φδ ∂aj ∂xk∂aj ∂xk
+

1
4

Φδ ∂ak ∂xj∂ak ∂xj

Φδωjωk
+ Φωjδωk

+ Φ∂Γj,k ∂x1∂Γj,k ∂x1δx1
+ Φ∂Γj,k ∂x2∂Γj,k ∂x2δx2

+ Φ∂Γj,k ∂x3∂Γj,k ∂x3δx3

(75)
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VI. Sensor Error Covariance Models

This section defines the models and associated parameters for the sensor errors   δa ,   δ ∂a ∂x∂a ∂x ,   δx ,

and  δωω , respectively, corresponding to the accelerometer, the gradiometer, GPS, and the
gyroscope.  Each sensor may be subject to a variety of types of errors, including white noise, red
noise, random biases, scale factor errors, and errors correlated with ambient atmospheric, electro-
magnetic, and dynamic conditions.  Some of these systematic errors are specific to a particular
brand of instrument and are determined to some extent during the self-calibration phase of their
operation.  Others are significantly less important than the most basic of errors, the random bias
and white noise, that we will consider here.  Of course, there may be still other errors that elude the
discussion here and yet are decidedly important.  These contribute to the approximations and
simplifications inherent in our analyses.

Geodetically precise GPS positions are determined from the phase of the carrier wave
transmitted by the satellites and collected by the terrestrial receiver.  The noise of the phase
measurement is essentially white (uncorrelated), which has been confirmed by several investigators
( e.g., Jekeli, 1992; Bona, 2000; Bona and Tiberius, 2000), and has a standard deviation as small
as a few tenth of a millimeter.  However, the positions derived for a moving platform, such as an
aircraft, typically have errors with standard deviations of the order of a few centimeters (Grejner-
Brzezinska et al., 1998), and we adopt a conservative standard deviation,    σδx = 10 cm .  A Type

B model is used to represent the psd of the position error, assumed to be white noise for
frequencies,    f < 1 τδx1 τδx .  Then the psd of the derived acceleration is given by

   
Φδx τ = 2πf 4

2 σδx
2 τδx π

Γ mδx + 1
2

π τδx f mδx Kmδx
2π τδx f  . (76)

Values for the parameters, including the attenuation factor,   mδx , are given in Table 1.

For the inertial accelerometer, most manufacturers provide an estimate of the statistical nature
of a random bias and white noise for the error, usually in the form of variances and psd’s.  The
unknown bias, of course, primarily affects the zero-frequency in the gravitational signal, that is, its

constant part, if the trajectory is straight and level.  In general, its effect is modulated by  Cb
i

, as

seen in equation (16), but in our simplified analysis (   Cb
i ≈ I ), it is omitted.  A Type A or B

model can be used to represent the white noise, depending, respectively, on whether the psd
amplitude or the standard deviation of the noise is provided.  Assuming the standard deviation,

  σδa , is given, we model the white-nose psd as Type B:
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Φδa f =

2 σδa
2 τδa π

Γ mδa + 1
2

π τδa f
mδa Kmδa

2π τδa f , (77)

with suitably chosen time constant,   τδa , and attenuation parameter,   mδa  (see Table 1).

The gyros, which provide the orientation of the accelerometers and gradiometers, are subject at
least to a random bias,   δω0 , and white noise,   δωw , in the sensed angular rate, so that we assume

   δω = δω0 + δωw  , (78)

and, according to equation (24),

   
ψ = ψ0 – δω0 + δωw dt  . (79)

Again, manufacturers generally provide some statistical information for these basic error types.
Orientation and angular rate errors couple with the signal according to equation (22) for the gravity
components and equation (23) for the gradients.  Adopting a Type B model for the angular rate
bias and a Type A model for the white noise in the angular rate, we have

   
φδω τ =

σδω0

2

1 +
τ

τδω0

2 mδω0
+ 1

2

+
2 fδωw

π wδωw

Γ mδωw
+ 1

2

π fδωw
τ mδωw Kmδωw

2π fδωw
τ  , (80)

where parameter values are given in Table 1.
Corresponding orientation error covariances are based on equation (79) and on psd

approximations of equations (57) and (59) by Type A models:

   
φψ τ = σψ0

2 +
2 fψ/δωw

π wψ/δωw

Γ mψ/δωw
+ 1

2

π fψ/δωw
τ mψ/δωw Kmψ/δωw

2π fψ/δωw
τ

+
2 fψ/δω0

π wψ/δω0

Γ mψ/δω0
+ 1

2

π fψ/δω0
τ mψ/δω0 Kmψ/δω0

2π fψ/δω0
τ ,

(81)

where the parameters,    fψ/δωw
,    wψ/δωw

, and    mψ/δωw
 are chosen according to (58), and the
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parameters,    fψ/δω0
,    wψ/δω0

, and    mψ/δω0
, are chosen according to (60); see Table 1.  The value for

the standard deviation of the orientation bias,   σψ0
, reflects aided calibration of the attitude angles

and is somewhat more conservative than reported in Grejner-Brzezinska et al. (1998).
The gradiometers have errors characterized by red and white noise (Jekeli, 1984, Paik et al.,

1997).  Again, we start with an idealized model for the corresponding psd:

   ΦδG f = αδGf– νδG + wδG  , (82)

where we abbreviate    δG ≡ δ ∂a ∂x∂a ∂x .  The parameters,   αδG ,   νδG , and   wδG , have positive, given

values.  We approximate the components in equation (82) with psd models of Type A, using
parameters,   wδG ,   fδG , and   mδG  for the white noise model, and   αδG ,  fα , and   νδG , for the red

noise:

   
ΦδG f =

wα

1 +
f
fα

2 mν + 1
2

+
wδG

1 +
f

fδG

2 mδG + 1
2

 , (83)

where, according to equation (63):

   
mν =

1
2

νδG – 1  ,        wα = αδG fα
– 2mν – 1

 . (84)
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VII. Signal Covariance Models

The covariances of the signals (assuming they are stochastic processes) are modeled by first fitting
a corresponding analytic psd model (Type A) to the observed psd of the signal.  For the observed
acceleration and angular rate we analyze actual flight data from airborne gravimetry operations.
These were obtained, using the periodogram method (with smoothing), from one of the flights of a
Twin-Otter aircraft conducted by KMS (Kort & Matrikelstyrelsen / National Survey and Cadastre)
of Denmark as part of the Arctic Gravity Project (http://www.nima.mil/GandG/agp/readme.htm).
The flight was conducted on 3 August 1999 around the islands of Svalbard and is described in

(Jekeli and Kwon, 2001).  Figures 2 and 3 show the empirical psd’s for   a1 , a2 , a3  and

  ω1 , ω2 , ω3 , respectively, as well as the corresponding models of the form

   Φ f =
c1

1 +
f

f1c

2 m1 + 1/2
+

c2

1 +
f

f2c

2 m2 + 1/2
 . (85)

Values for the constants,   c1 ,   c2 ,   f1c ,   f2c ,   m1 ,   m2 , are shown in Table 2.  In all cases, the

very-high frequency dynamics (vibrations at frequencies greater than 10 Hz), are not modeled
under the assumption that these would be filtered from the data by appropriate smoothing.

These models for the aircraft accelerations do not include the constant accelerations sensed by
the accelerometers which account for the reactions to Coriolis, centrifugal, and gravitational
accelerations.  If an airplane is flying straight and level at constant velocity, the navigation
equations in the local NED frame and in spherical approximation (Jekeli, 2000, p.129) yield the

following sensed accelerations, since in this case,   dvN dtdvN dt = 0 ,   dvE dtdvE dt = 0 , and   vD = 0 :

   
aN

0
= 2ωe +

vE

R + h cosφ vE sinφ – gN ,

aE
0

= 2ωe +
vE

R + h cosφ vN sinφ – gE ,

aD
0

= 2ωe vE cosφ +
vE

2
+ vN

2

R + h
– – gD ,

(86)

where   ωe  is Earth’s spin rate;  vN  and  vE  are north and east velocities; R is Earth’s mean radius;

   φ, λ, h  are latitude, longitude, and height of the airplane; and   gN, gE, gD  are the north, east,
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and down gravity components.  The most significant term in these equations is    gD ≈ 9.8 m/s2 .

Next in importance are the terms with    ωe ≈ 7.292 × 10– 5 rad/s , of the order,    O 5 × 10– 3 m/s2 .

These nominal values can be substantially larger if the instrument is not level, which was the case
for the strapdown unit on the Svalbard flight, resulting in

   ab 0
= Cn

b
an 0

. (87)

If the tilt of the “horizontal” accelerometers is   6° , more than  1 m/s2  from the vertical gravity
couples to their output.
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Figure 2: Psd’s of body-frame accelerations,   a1 , a2 , a3 , of Twin-Otter aircraft.

Dots: unsmoothed psd; solid line: median-smoothed psd; dashed line: model psd.
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Figure 3: Psd’s of body-frame angular rates,   ω1 , ω2 , ω3 , of Twin-Otter

aircraft.  Dots: unsmoothed psd; solid line: median-smoothed psd; dashed line:
model psd.

Therefore, we write for the acceleration

   a = a0 + ∆a  . (88)

The covariance functions for the accelerations, thus, more properly are correlation functions:

   
φa τ = a0 2

+
2 c1 f1c π
Γ m1 + 1

2

π f1c τ m1 Km1 2π f1cτ

+
2 c2 f2c π
Γ m2 + 1

2

π f2c τ m2 Km2 2π f2cτ .

(89)

Values of   a1
0

,   a2
0

, and   a3
0

 for the Svalbard flight are also given in Table 2.

Then, for the gravity estimation error psd’s, equations (72) and (73), the component for the
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product of orientation error and acceleration is given by the Fourier transform of the covariance,
  φψφa :

    F– 1 Φψ/a = φψ φa = φψ/δω0
+ φψ/δωw

+ φψ0
φa0 + φ∆a  , (90)

where the first term is given by equation (81) and the second term is given by equation (89).
Expanding, we have

   φψ φa = σ
a0

2 φψ/δω0
+ φψ/δωw

+ φψ0
+ φ∆a φψ/δω0

+ φψ/δωw
+ σψ0

2  , (91)

meaning that psd’s need to be computed numerically only for the products,    φ∆a φψ/δω0
 and

   φ∆a φψ/δωw
.  All other psd’s are the analytic models scaled by either    σ

a0

2
 or   σψ0

2 .

Similarly, for the gradient estimation error psd’s, equations (74) and (75), the form of each
element is given by

   φΓ φψ = φΓ0 + φ∆Γ φψ/δω0
+ φψ/δωw

+ φψ0
 , (92)

where   Γ0  is the nominal gravitational gradient element (non-zero only for the in-line gradients,
with values corresponding to a mean spherical Earth; see Table 3).  Expanding, we find

   φΓ φψ = σΓ0

2 φψ/δω0
+ φψ/δωw

+ φψ0
+ φ∆Γ φψ/δω0

+ φψ/δωw
+ σψ0

2  , (93)

which requires numerical psd’s only for the products,   φ∆Γ φψ/δω0
 and    φ∆Γ φψ/δωw

.  Finally, we also

need numerical psd’s for the product,   φω φδωw
, in the error covariance component

   φω φδω = φω φδω0
+ φδωw

= φω σδω0

2 + φδωw
 . (94)

The along-track psd models for the gravitational gradients were obtained as follows.  First,
(auto-) covariance models for the gravitational gradients (with respect to a reference field) were
expressed in terms of a covariance model for the disturbing potential, each gradient model being a
linear combination, as in equation (66), respectively, of equations (B-34), (B-37), (B-39), (B-44),
(B-46), or (B-48).  Parameters for these models, in turn, were selected on the basis of a fit to the
2-D, azimuth-averaged empirical psd for the gravity disturbance, derived from the psd for the
global potential model, EGM96 (Lemoine et a., 1998), from  1′ × 1′  mean gravity anomaly data in
the U.S., and from   30″ × 30″  and   1″ × 1″  elevation data in the U.S. (the latter two by the
periodogram method).  Both rough and smooth areas could be considered and would yield
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different psd models.  A moderately rough are was selected for these studies (Montana / Wyoming
area).  Equation (36) provides the relationship between the psd’s of the gravity disturbance and
elevation (at high spatial frequencies the gravity anomaly and gravity disturbance are practically
identical).  Figure 4 shows the empirical psd’s and the model constructed therefrom, with
corresponding parameter values given in Table 3.
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Figure 4: Psd of the vertical gravitational acceleration signal from various data sets,
as indicated, plus a fitted model.

The independent variable in these cases is the relative distance, and, in order to convert this to
the time variable, we assume that the vehicle is moving with constant velocity, v:

   
v =

s
τ  . (95)

The along-track gradient covariances are evaluated at points along the track using    s = vτ .
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Subsequently, the numerically determined Fourier transforms of the covariance products,
  φ∆Γ φψ/δω0

 and    φ∆Γ φψ/δωw
, are along-track (1D) psd’s.

When comparing the along-track error psd’s (corresponding to the transforms of equation (72)
through (75)), to the along-track psd’s of the total gravitational signal, we also need a
transformation from the spatial frequency domain to the temporal frequency domain.  In this case
the models listed in Appendix C are utilized with the appropriate parameters and converted under
the assumption of constant velocity:

   Φ f =
1
v

S
1
v

f  , (96)

where f is the temporal frequency.

Table 1: Values of model parameters for the instrument error psd’s.

Error Component Parameters equ.

kin. acceleration err.:

position white noise    σδx = 0.1 m ,    τδx = 1 s ,    mδx = 10

(76)

accelerometer error:

white noise    σδa = 25 mgal ,    τδa = 1 s ,    mδa = 10

(77)

gyro rate error:

bias repeatability

white noise

  σδω0
= 0.003 °/hr ,   τδω0

= 7200 s ,    mδω0
= 10

   wδωw
= 0.06 °/hr/ Hz ,    fδωw

= 10 Hz ,    mδωw
= 10

(80)

orientation error:

bias

due to   δωw

due to   δω0

  σψ0
= 0.005 ° ,   τψ0

= 7200 s ,    mψ0
= 10

   wψ/δωw
≡ w = wδωw

/(2πfc)
2 ,    fψ/δωw

≡ fc = 10– 5 Hz ,    mψ/δωw
= 0.5

   wψ/δω0
≡ w = eq.(60) ,    fψ/δω0

≡ fc = (τδω0
*1.15)– 1 ,    mψ/δω0

= mδω0
+ 1

(81)

(58)

(60)

gradiometer error:

white noise

red noise*

   wδG = 30 E/ Hz ,    fδG = 10 Hz ,    mδG = 10

   αδG = 1.7×10– 4 ,    fα = 10– 5 Hz ,    νδG = 1.6

(83)

(84)

* parameter values yield units for psd:  E2/Hz .
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Table 2: Values of model parameters for vehicle dynamics psd’s.

Dynamics Parameters equ.

vehicle
acceleration
psd

  c1a1 = 12 m/s2 2
/Hz ,    f1ca1 = 1.5 × 10– 4 Hz ,   m1a1 = 0.22 ,

  c2a1 = 0 m/s2 2
/Hz ;

  c1a2 = 190 m/s2 2
/Hz ,    f1ca2 = 1.5 × 10– 4 Hz ,   m1a2 = 0.3 ,

  c2a2 = 0 m/s2 2
/Hz ;

  c1a3 = 4 m/s2 2
/Hz ,    f1ca3 = 2.2 × 10– 4 Hz ,   m1a3 = 0.85 ,

  c2a3 = 0.009 m/s2 2
/Hz ,   f2ca3 = 0.8 Hz ,   m2a3 = 1.1 .

(85)

nominal
vehicle
accelerations

  a1
0

= 1.3282 m/s2 ,   a2
0

= 1.0344 m/s2 ,   a3
0

= 9.6715 m/s2 . (86)

vehicle
angular rate
psd

   c1ω1 = 0.005 rad/s 2/Hz ,    f1cω1 = 3 × 10– 4 Hz ,    m1ω1 = 0.85 ,

   c2ω1 = 2.2 × 10– 6 rad/s 2/Hz ,    f2cω1 = 0.7 Hz ,    m2ω1 = 1.25 ;

   c1ω2 = 0.005 rad/s 2/Hz ,    f1cω2 = 5 × 10– 4 Hz ,    m1ω2 = 1 ,

   c2ω2 = 1.3 × 10– 5 rad/s 2/Hz ,    f2cω2 = 1 Hz ,    m2ω2 = 1.6 ;

   c1ω3 = 0.005 rad/s 2/Hz ,    f1cω3 = 1 × 10– 4 Hz ,    m1ω3 = 1 ,

   c2ω3 = 1. × 10– 5 rad/s 2/Hz ,    f2cω3 = 0.3 Hz ,    m2ω3 = 1.2 .

(85)
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Table 3: Values of model parameters for the gravitational field.

Parameters equ.

disturbing potential
psd (spatial
frequencies)

  σ1
2

= 1 × 105 m2/s2 ,   α1 = 3 × 10–7 m– 1 ,

  σ2
2

= 3500 m2/s2 ,   α2 = 7.7 × 10–7 m– 1 ,

  σ3
2

= 778 m2/s2 ,   α3 = 3 × 10– 6 m– 1 ,

  σ4
2

= 300 m2/s2 ,   α4 = 8.5 × 10– 6 m– 1 ,

  σ5
2

= 20 m2/s2 ,   α5 = 2 × 10– 5 m– 1 ,

  σ6
2

= 0.3 m2/s2 ,   α6 = 6 × 10– 5 m– 1 ,

  σ7
2

= 0.03 m2/s2 ,   α7 = 1.2 × 10– 4 m– 1 ,

  σ8
2

= 0.003 m2/s2 ,   α8 = 2 × 10– 4 m– 1 ,

  σ9
2

= 5 × 10– 4 m2/s2 ,   α9 = 5 × 10– 4 m– 1 ,

  σ10
2

= 4 × 10– 5 m2/s2 ,   α10 = 1.2 × 10– 3 m– 1 ,

  σ11
2

= 3 × 10– 6 m2/s2 ,   α11 = 3 × 10– 3 m– 1 ,

  σ12
2

= 3 × 10– 7 m2/s2 ,   α12 = 6.5 × 10– 3 m– 1 ,

  σ13
2

= 8 × 10– 9 m2/s2 ,   α13 = 1.9 × 10– 2 m– 1

  σ14
2

= 4.4 × 10– 10 m2/s2 ,   α14 = 6 × 10– 2 m– 1 ,

  σ15
2

= 8.6 × 10– 12 m2/s2 ,   α15 = 2.1 × 10– 1 m– 1 ,

  σ16
2

= 1.5 × 10– 13 m2/s2 ,   α16 = 8 × 10– 1 m– 1

(66)
  J = 16

nominal
gravitational
gradients

  Γ1,1
0

=1540 E ,   Γ2,2
0

= 1540 E ,   Γ3,3
0

= 3080 E

velocity to convert
to temporal psd’s

  v = 250 km/hr (96)

altitude of aircraft   x3 = 1000 m (66)
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VIII. Airborne Gravimetry Error Analysis

Based on typical parameter values for the errors in high-accuracy gyros and orientation bias
(Table 1), and the acceleration spectral densities and mean signal amplitudes (Table 2), Figures 5
through 8 show the contributions from the orientation error due to the coupling between gyro
error and aircraft dynamics (acceleration) according to equation (90).  In Figure 5, for 

3 2aψΦ , we

see that the dominant contributors are the coupling between an azimuth bias, 0
3ψ , and the

horizontal (east, in this case) aircraft acceleration at all frequencies.  At lower frequencies, the
coupling of the azimuth bias with the mean amplitude of the horizontal acceleration raises the
error psd significantly.  The latter contribution extends to the mid-frequencies (0.0003 Hz) only
because the psd of the bias is modeled with a time constant of 2 hr; a longer time constant would
move the amplification to even lower frequencies.
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Figure 5: Psd of down orientation error, 3ψ , due to gyro error coupling with east
acceleration, 2a .

It is also seen that all other components contribute about one order of magnitude less to the

orientation error psd.  An increase of the gyro bias variance from ( )20.003 /hr°  to ( )20.01 /hr°
would yield an equivalent level of error.  Similarly, the white noise psd of the gyro must increase
by a factor of 10 to be commensurate with the azimuth bias variance.  Yet, the assumed initial

value of this variance, ( )20.005° , is low compared to typical calibration using standard initial
alignment procedures by an inertial navigation system (INS) (we assume a more accurate
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calibration en route using GPS).  A less well-calibrated azimuth bias would make the gyro errors
even less important to this part of the overall error.  These relationships between contributions to
orientation error from azimuth bias and gyro error are largely independent of the spectrum of the
horizontal acceleration of the aircraft; but the accelerations obviously define the amplitude of the
overall high-frequency spectrum of the orientation error.
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Figure 6: Psd of east orientation error, 2ψ , due to gyro error coupling with down
acceleration, 3a .

The situation is similar for the error psd, 
2 3aψΦ , resulting from the coupling of the gyro error

with the down acceleration, with the essential difference, as seen in Figure 6, that the gyro noise,
wδω , now defines the total error at mid frequencies, owing to the large nominal down

acceleration of about 29.8 m/s .  This also elevates the error at the very low frequencies coming
from the gyro and orientation biases.  Due to the particular spectrum of the vertical acceleration
of the aircraft, in this case, the effect of the leveling bias dominates only at the high frequencies
( 0.06 Hz> ).  The same trade-off between the orientation bias, the angular rate bias, and the
white noise in the rate exist here as for 

3 2aψΦ .

The latter two error psd’s, 
3 2aψΦ  and 

2 3aψΦ , contribute to the error psd of the estimated

horizontal gravity, while those shown in Figures 7 and 8, 
2 1aψΦ  and 

1 2aψΦ , contribute to the

error psd of the estimated vertical component.  These error psd’s and their constituents are very
similar to each other and to 

3 2aψΦ .
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Figure 7: Psd of east orientation error, 2ψ , due to gyro error coupling with north
acceleration, 1a .
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Figure 8: Psd of north orientation error, 1ψ , due to gyro error coupling with east
acceleration, 2a .
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Figure 9 shows the constituents of the error psd of the estimated horizontal gravity
component.  The orientation error contribution, 

2 3aψΦ , dominated by the effect of the large down

acceleration, essentially defines the error psd at low- to mid-frequencies.  Again, with
degradation in the azimuth bias calibration and/or with a more dynamic acceleration environment
(higher psd amplitudes), the orientation error contribution, 

3 2aψΦ , would determine to total error

psd at these frequencies.  At the high frequencies, the white noise amplification resulting from
the differentiation of position errors clearly delimits the resolution to which gravity can be
recovered.  We see the well known spectral window for airborne gravimetry (Schwarz et al.,
1992).  In this scenario the accelerometer noise psd helps to shape the bottom of the error
spectrum, but any improvement in accelerometer noise would not yield a significant overall
enhancement.  The registration error psd is practically negligible in the presence of accurate

positions such as derived from GPS.  It is at the level of 
11 1

2 14 2 41.3 10  m /s /HzxΓ δΦ σ −= ×  (not

shown in the figure), and would compete with the accelerometer variance only if the latter were

reduced by a factor of 65 10−×  to about ( )27 21.2 10  m/s−× .
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Figure 9: Psd of horizontal gravity estimation error, 1gδ , due to kinematic
acceleration, gyro, and accelerometer errors.

The error psd of the estimated vertical gravity component, shown in Figure 10, has similar
characteristics, but is governed by slightly lower orientation error contributions, reflecting
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primarily the effect of the lower nominal horizontal acceleration.  However, the total acceleration
spectrum essentially determines the lower part of the error spectrum.  The noise of the
accelerometer defines the central frequencies of the overall error spectrum, somewhat more
broadly than for the horizontal gravity component.

Figure 11 depicts the total error spectra relative to the along-track psd’s of the gravity signal
as modeled by the parameters of Table 3 and the functions given by equations (C-7) and (C-12)
with 2 0x∆ = , and altitude, 3 1000 mx = .  As the aircraft velocity (assumed 250 km/hr, here)
increases, the along-track psd’s of the gravitational signals move to the right with respect to the
error psd’s.  Clearly, the signal-to-error ratio is greater than unity over a broader spectral band in
the case of the vertical gravity component, and it is greater than the signal-to-error ratio for the
horizontal gravity component.  According to the scenario implied by the given error and signal
parameters, one can expect better resolution and accuracy in the recovery of the vertical
component.  Nevertheless, it is also clear that the horizontal component may be estimated with
reasonable accuracy (see also Jekeli, 1995).
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Figure 10: Psd of vertical gravity estimation error, 3gδ , due to kinematic
acceleration, gyro, and accelerometer errors.
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corresponding signals.
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IX. Airborne Gravity Gradiometry Error Analysis

As background information for the typical gravitational gradients that may be encountered,
Figure 12 shows the along-track psd’s of the six gradients based on the reciprocal distance model
(Table 3) fitted to the empirical data shown in Figure 4.  Equations (C-29), (C-32), (C-34), (C-
39), (C-41), and (C-43) were used to compute these psd’s, with 2 0x∆ = , 1000 mh = , and

250 km/hrv =  (see also equation (96)).  A gradiometer with 30 E/ Hz  sensitivity would easily
sense gradients with wavelengths as short as 7 km to 17 km.  However, due to the attenuation
with altitude, more sensitive gradiometers quickly reach the point of diminishing returns.  With
more than an order of magnitude increased sensitivity, at 1 E/ Hz  , the recoverable wavelengths
decrease only to about 1.4 to 2.3 km.
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Figure 12: Along-track psd’s of gradients at altitude, 1000 mh = , and for aircraft
with velocity, 250 km/hrv = .

We proceed with the error analysis of a full-tensor gradiometer system as described in
Section II.  Again, based on the nominal parameter values for the gyro errors and orientation bias
(Table 1), and the angular rate spectral densities (Table 2), Figures 13 through 18 show the
contributions from the orientation error due to the coupling between gyro error and the gradient
field, according to equation (92).  As before, the orientation errors themselves are due to gyro
noise and drift bias, as well as self-bias.  Since we assume like values for each of the attitude
biases and for the gyro error parameters, the orientation error contributions depend only on the
gradient psd’s.

Clearly, these gyro and attitude errors contribute more, by several orders of magnitude, in
coupling to the in-line gradients (Figures 13 through 15) than in coupling to the cross-gradients
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(Figures 16 through 18); and, in either case, primarily the lower frequencies are affected.  This is
due to the presence of the large nominal in-line gradients.  For the cross-gradient couplings, the
orientation bias error mostly dominates the contributions.  It also dominates for the in-line
gradient couplings, but only at the very low frequencies, while at medium and high frequencies,
in this case, the coupling of the gyro noise with the nominal gradients defines the overall
coupling.  On the other hand, degradation in the orientation bias variance by an order of

magnitude, from ( )20.005 °  to ( )20.016 ° , brings its effect to that of the assumed gyro error, as
least for the medium frequencies (Figures 13 through 15).  This also depends, of course, on the
strength of the anomalous gradient field.
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Figure 13: Psd’s of errors due to coupling of orientation error, ( 2,3)j jψ = , with

gradient, 11Γ  (total psd (black) and its components (colors)).
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Figure 14: Psd’s of errors due to coupling of orientation error, ( 1,3)j jψ = , with

gradient, 22Γ  (total psd (black) and its components (colors)).
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Figure 15: Psd’s of errors due to coupling of orientation error, ( 1,2)j jψ = , with

gradient, 33Γ  (total psd (black) and its components (colors)).
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Figure 16: Psd’s of errors due to coupling of orientation error, ( 1,2,3)j jψ = ,

with gradient, 12Γ  (total psd (black) and its components (colors)).
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Figure 17: Psd’s of errors due to coupling of orientation error, ( 1,2,3)j jψ = ,

with gradient, 13Γ  (total psd (black) and its components (colors)).
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Figure 18: Psd’s of errors due to coupling of orientation error, ( 1,2,3)j jψ = ,

with gradient, 23Γ  (total psd (black) and its components (colors)).

The error psd contributions due to the coupling of the gyro errors, given by equation (78),
with the angular dynamics of the vehicle are illustrated in Figure 19.  The effect of the white
noise dominates over that of the rate biases (medium and high frequencies), and the noise psd
would have to decrease by two orders of magnitude to be commensurate with the effect of the
rate bias at the medium frequencies.  This conclusion is essentially independent of the angular
rate dynamics of the vehicle, which couple into both types of gyro error.  However, it is also
clear that the angular rate dynamics determine the amplitude of all these couplings.
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Figure 19: Psd’s of errors due to angular rate error, δω .

Finally, Figures 20 through 25 show the combined effects on the error in the computed
gradients.  For the given values of the error parameters (Table 1), the gradiometer noise
determines the error at all frequencies.  The next largest contribution is from the couplings of the
gyro errors with the angular dynamics of the vehicle; while, the orientation error couplings
hardly contribute, except at the low frequencies (due to the orientation bias and nominal in-line
gradients), and then only for the cross-gradients since only they are affected by couplings to the
in-line gradients.  The gyro noise psd’s would have to decrease by two to three orders of
magnitude before they compete with the gyro error effects, and together they would have to
decrease by two to three more orders of magnitude in order to contribute less than the orientation
bias effects.  Furthermore, the latter affect primarily the low and medium frequencies, whereas
the whiteness of the gyro noise essentially contributes equally at all frequencies.

The magnitudes of the various contributing effects essentially depend linearly on the
parameter values since the analysis is based on a linear approximation of the error equation.
Therefore, one can construct approximate, order-of-magnitude relationships between
commensurate levels of gradiometer error, gyro error, and orientation bias (Table 4).  Figure 26
shows the psd of the error, 12δΓ , and its constituents for the case of gyro and orientation errors

approximately commensurate in effect at the level of 1 E/ Hz  (the situation is similar for the
other gradients).  Clearly, in order for the gradiometer error to dominate the accuracy of the
derived gravitational gradients, the gyros and orientation bias should be an order of magnitude
better in equivalent accuracy.  As a final note, all of these results depend on the strength of the
gradient field (which is a function of geographic region and aircraft altitude) and the angular rate
dynamics of the aircraft.
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Figure 20: Total psd and its components for the gradient error, 11δΓ .
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Figure 21: Total psd and its components for the gradient error, 12δΓ .
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Figure 22: Total psd and its components for the gradient error, 13δΓ .
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Figure 23: Total psd and its components for the gradient error, 22δΓ .
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Figure 24: Total psd and its components for the gradient error, 23δΓ .
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Figure 25: Total psd and its components for the gradient error, 33δΓ .
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Table 4: Roughly commensurate sensor errors in airborne gravity gradiometry

Gwδ , Gδα * 0ψσ
0δωσ

w
wδω

30 E/ Hz , 25 10−× 20 ° 0.5 /hr° 3 /hr/ Hz°

10 E/ Hz , 21.7 10−× 6 ° 0.15 /hr° 1 /hr/ Hz°

1 E/ Hz , 41.7 10−× 0.6 ° 0.015 /hr° 0.1 /hr/ Hz°

0.1 E/ Hz , 61.7 10−× 0.06 ° 0.0015 /hr° 0.01 /hr/ Hz°

0.01 E/ Hz , 81.7 10−× 0.006 ° 0.00015 /hr° 0.001 /hr/ Hz°
* units as in Table 1
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Figure 26: Total psd and its components for the gradient error, 12δΓ , if all
constituent error sources are roughly equivalent (third entry in Table 4).
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X. Summary

A detailed error analysis in the frequency domain was presented for airborne gravimetry and
airborne gravity gradiometry.  New psd and covariance models were developed for white noise
and the random bias, which can be manipulated analytically to accommodate integration and
differentiation of errors and the requirement of stationarity in power spectral densities.  Models
were also designed for the accelerations and angular rates of an aircraft flying straight and level
for survey purposes.  Finally gravitational models were derived from actual gravimetric and
topographic data in a moderately active geographic region of the U.S. to wavelengths as short as
1 m.  Together, these error and signal models predict the recoverable spectral window in airborne
gravimetry that is already well known and they highlight the limiting sources of error.  Aside
from the principal sensor errors, the orientation error bias couples with the accelerations of the
aircraft thus bounding the recoverability at the longer wavelengths.

Similarly, in the case of a full tensor gradiometer with the necessary suite of gyros, the
coupling of the gyro rate noise to the angular rate environment of the system is the principal
competitor to the gradiometer noise.  The analysis shows that a gradiometer with 1 E Hz
sensitivity will not be adversely compromised (at medium and high frequencies) if the required
gyros have bias repeatability of 0.0015 /hr°  and sensitivity of 0.01 /hr/ Hz 0.00015 / hr° ≈ ° ,
and if the orientation bias is 0.06 ° .  The latter numbers all reflect an order of magnitude lower
than a commensurate gradient error effect of 1 E Hz .



Appendix A

Equation (23) for the error in the gravitational gradients is based on a combination of gradiometer
measurements:

   δΓ = Γ Ψ – Ψ Γ – δB + δΩ Ω +Ω δΩ – Ξ δxjΣ
j

 , (A-1)

where (see equation (13))

    
Bb =

1
2

∂ab

∂xb
+

∂ab

∂xb

T

 . (A-2)

Considering only errors in the measurement tensor,    ∂ab ∂xb∂ab ∂xb , suppose they have a   9 × 9
variance-covariance matrix that is diagonal (no correlations):

    Σ∂a/∂x = diag σ
jk
2  , (A-3)

where    σ
jk
2

 is the variance of the (j,k)-element of    ∂ab ∂xb∂ab ∂xb .  Then, the errors in the gradients can

be written as

   

δ

Γ1,1

Γ1,2

Γ1,3

Γ2,2

Γ2,3

Γ3,3

=

– 1 0 0 0 0 0 0 0 0
0 – 0.5 0 – 0.5 0 0 0 0 0
0 0 – 0.5 0 0 0 – 0.5 0 0
0 0 0 0 – 1 0 0 0 0
0 0 0 0 0 – 0.5 0 – 0.5 0
0 0 0 0 0 0 0 0 – 1

δ

∂a1 ∂x1∂a1 ∂x1
∂a1 ∂x2∂a1 ∂x2
∂a1 ∂x3∂a1 ∂x3
∂a2 ∂x1∂a2 ∂x1
∂a2 ∂x2∂a2 ∂x2
∂a2 ∂x3∂a2 ∂x3
∂a3 ∂x1∂a3 ∂x1
∂a3 ∂x2∂a3 ∂x2
∂a3 ∂x3∂a3 ∂x3

 ; (A-4)

and, the variance-covariance matrix of the gradient errors is, therefore, given by the diagonal
matrix:
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ΣΓ =

– 1 0 0 0 0 0 0 0 0
0 – 0.5 0 – 0.5 0 0 0 0 0
0 0 – 0.5 0 0 0 – 0.5 0 0
0 0 0 0 – 1 0 0 0 0
0 0 0 0 0 – 0.5 0 – 0.5 0
0 0 0 0 0 0 0 0 – 1

Σ∂a/∂x

– 1 0 0 0 0 0 0 0 0
0 – 0.5 0 – 0.5 0 0 0 0 0
0 0 – 0.5 0 0 0 – 0.5 0 0
0 0 0 0 – 1 0 0 0 0
0 0 0 0 0 – 0.5 0 – 0.5 0
0 0 0 0 0 0 0 0 – 1

T

=

σ
1,1
2

0 0 0 0 0

0
1
4

σ
1,2
2

+ σ
2,1
2

0 0 0 0

0 0
1
4

σ
1,3
2

+ σ
3,1
2

0 0 0

0 0 0 σ
2,2
2

0 0

0 0 0 0
1
4

σ
2,3
2

+ σ
3,2
2

0

0 0 0 0 0 σ
3,3
2

.

(A-5)
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Appendix B

Covariance and psd models for the gravitational field are generally modeled using simple analytic
functions that reflect certain desirable and required characteristics of the field.  Either global
(spherical) or local (planar) approximations are employed, depending on the application.  Here we
list only a planar (Cartesian) variation of the models, though corresponding spherical models can
also be derived.  Required characteristics include harmonic extension in altitude, stationarity of the
field on any horizontal plane, and positive definiteness.  Furthermore, the models of the auto- and
cross-covariance functions among all quantities derived from the disturbing potential should be
mutually self consistent.  That is, we generally start with a certain model for the covariance
function of the disturbing potential and all other models are derived from this according to the rules
of propagation of covariances.  If both spatial and spectral applications are contemplated, then it is
also required that both the covariance and psd models in each case are Fourier transforms of each
other.  If one further desires to consider along-track psd’s, then the psd in the two horizontal
frequencies should be integrable (analytically) over each frequency.

All these properties are satisfied by the reciprocal distance covariance model that for the
disturbing potential is given by

   
φT ∆x1,∆x2; x3,x3' =

σ2

1 + α x3 + x3'
2

+ α2s2
 , (B-1)

where  σ , and  α  are parameters, and where

   ∆x1 = x1 – x1' , ∆x2 = x2 – x2'  , (B-2)

and

   s = ∆x1
2

+ ∆x2
2

 . (B-3)

Linear combinations of these types of models can be used to provide as much detail and refinement
as necessary to characterize the stochastic correlation and spectrum of the field; see equation (64).
We note that this covariance model is also isotropic since it depends only on the distance, s,
between two points, not on the direction of one point with respect to the other.  Isotropy is not a
requirement but practically desirable.  However, cross-covariances of derivatives are not
necessarily isotropic, as will be seen below.

To simplify the notation, let us introduce the following:

   β = 1 + α x3 + x3' , M = β2 + α2s2  , (B-4)
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and understand that all models are functions of    ∆x1,∆x2; x3,x3' , where the primed coordinates

(see also equations (B-2)) always refer to the second function in the cross-covariance expression.
Then

   
φT =

σ2

M1 21 2
 . (B-5)

If fj  and  gk  are two derivatives of T:

   
fj =

∂T
∂xj

, gk =
∂T
∂xk'

 , (B-6)

then their covariance, according to the rules of propagation of covariances (Moritz, 1980), is given
by

   
φfj,gk

=
∂2φT

∂xj∂xk'
 . (B-7)

Now, we introduce a further simplification in notation by letting    ∂T/∂xj ≡ Txj
 and

   ∂2T/(∂xj∂xk) ≡ Txjxk
.  Then, for the first-order gradients of the disturbing potential,

   ∇∇T = Tx1
Tx2

Tx3

T
, (B-8)

we obtain the following auto-and cross-covariance models:

   
φT,Tx1

=
σ2 α2 ∆x1

M3 23 2
= – φTx1

,T  ; (B-9)

   
φT,Tx2

=
σ2 α2 ∆x2

M3 23 2
= – φTx2

,T  ; (B-10)

   
φT,∂T/∂x3

= –
σ2 α β
M3 23 2

= φ∂T/∂x3,T
 ; (B-11)

   
φ∂T/∂x1,∂T/∂x1

=
σ2 α2

M5 25 2
β2 + α2s2 – 3α2∆x1

2
 ; (B-12)
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φ∂T/∂x1,∂T/∂x2

= – 3
σ2 α4

M5 25 2
∆x1∆x2 = φ∂T/∂x2,∂T/∂x1

 ; (B-13)

   
φ∂T/∂x1,∂T/∂x3

= 3
σ2 α3 β

M5 25 2
∆x1 = – φ∂T/∂x3,∂T/∂x1

 ; (B-14)

   
φ∂T/∂x2,∂T/∂x2

=
σ2 α2

M5 25 2
β2 + α2s2 – 3α2∆x2

2
 ; (B-15)

   
φ∂T/∂x2,∂T/∂x3

= 3
σ2 α3 β

M5 25 2
∆x2 = – φ∂T/∂x3,∂T/∂x2

 ; (B-16)

   
φ∂T/∂x3,∂T/∂x3

=
σ2 α2

M5 25 2
2β2 – α2s2 = φ∂T/∂x1,∂T/∂x1

+ φ∂T/∂x2,∂T/∂x2
 . (B-17)

For the second-order gradients, we note that since the gradient tensor is symmetric, any auto- or

cross-covariance involving    ∂2T/(∂xj∂xk) ≡ Txjxk
 is the same as the auto- or cross-covariance

involving    ∂2T/(∂xk∂xj) ≡ Txkxj
.  We have:

   φT,Tx1x1
= – φTx1

,Tx1
= φTx1x1

,T  ; (B-18)

   φT,Tx1x2
= – φTx1

,Tx2
= φTx1x2

,T  ; (B-19)

   φT,Tx1x3
= – φTx1

,Tx3
= – φTx1x3

,T  ; (B-20)

   φT,Tx2x2
= – φTx2

,Tx2
= φTx2x2

,T  ; (B-21)

   φT,Tx2x3
= – φTx2

,Tx3
= – φTx2x3

,T  ; (B-22)

   φT,Tx3x3
= φTx3

,Tx3
= φTx3x3

,T  ; (B-23)

   
φTx1

,Tx1x1
=

3σ2 α4∆x1

M7 27 2
3β2 + 3α2s2 – 5α2∆x1

2
= – φTx1x1

,Tx1
 ; (B-24)
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φTx1

,Tx1x2
=

3σ2 α4∆x2

M7 27 2
β2 + α2s2 – 5α2∆x1

2
= – φTx1x2

,Tx1
= φTx2

,Tx1x1
= – φTx1x1

,Tx2
 ; (B-25)

   
φTx1

,Tx1x3
=

3σ2 α3 β
M7 27 2

– β2 – α2s2 + 5α2∆x1
2

= φTx1x3
,Tx1

= – φTx3
,Tx1x1

= – φTx1x1
,Tx3

 ; (B-26)

   
φTx1

,Tx2x2
=

3σ2 α4∆x2

M7 27 2
β2 + α2s2 – 5α2∆x2

2
= – φTx2x2

,Tx1
= φTx2

,Tx1x2
= – φTx1x2

,Tx2
 ; (B-27)

   
φTx1

,Tx2x3
=

15σ2 α5 β
M7 27 2

∆x1∆x2 = φTx2x3
,Tx1

= – φTx3
,Tx1x2

= φTx2
,Tx1x3

= – φTx1x2
,Tx3

= φTx1x3
,Tx2

 ; (B-28)

   
φTx1

,Tx3x3
=

3σ2 α4∆x1

M7 27 2
– 4β2 + α2s2 = – φTx3x3

,Tx1
= – φTx3

,Tx1x3
= φTx1x3

,Tx3
 ; (B-29)

   
φTx2

,Tx2x2
=

3σ2 α4∆x2

M7 27 2
3β2 + 3α2s2 – 5α2∆x2

2
= – φTx2x2

,Tx2
 ; (B-30)

   
φTx2

,Tx2x3
=

3σ2 α3 β
M7 27 2

– β2 – α2s2 + 5α2∆x2
2

= φTx2x3
,Tx2

= – φTx3
,Tx2x2

= – φTx2x2
,Tx3

 ; (B-31)

   
φTx2

,Tx3x3
=

3σ2 α4∆x2

M7 27 2
– 4β2 + α2s2 = – φTx3x3

,Tx2
= – φTx3

,Tx2x3
= φTx2x3

,Tx3
 ; (B-32)

   
φTx3

,Tx3x3
=

3σ2 α3 β
M7 27 2

– 2β2 + 3α2s2 = φTx3x3
,Tx3

 ; (B-33)

   
φTx1x1

,Tx1x1
=

3σ2 α4

M9 29 2
3M2 – 30Mα2∆x1

2
+ 35α4∆x1

4
 ; (B-34)

   
φTx1x1

,Tx1x2
=

15σ2 α6 ∆x1∆x2

M9 29 2
– 3M + 7α2∆x1

2
= φTx1x2

,Tx1x1
 ; (B-35)
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φTx1x1

,Tx1x3
=

15σ2 α5 β ∆x1

M9 29 2
3M – 7α2∆x1

2
= – φTx1x3

,Tx1x1
 ; (B-36)

   
φTx1x1

,Tx2x2
=

3σ2 α4

M9 29 2
M2 – 5α2s2M + 35α4∆x1

2∆x2
2

= φTx2x2
,Tx1x1

= φTx1x2
,Tx1x2

 ; (B-37)

   
φTx1x1

,Tx2x3
=

15σ2 α5 β ∆x2

M9 29 2
M – 7α2∆x1

2
= – φTx2x3

,Tx1x1
= – φTx1x3

,Tx1x2
= φTx1x2

,Tx1x3
 ; (B-38)

   
φTx1x1

,Tx3x3
=

3σ2 α4

M9 29 2
– 4M2 + 5Mα2∆x2

2
+ 35β2α2∆x1

2
= φTx3x3

,Tx1x1
= – φTx1x3

,Tx1x3
 ; (B-39)

   
φTx1x2

,Tx2x2
=

15σ2 α6 ∆x1∆x2

M9 29 2
– 3M + 7α2∆x2

2
= φTx2x2

,Tx1x2
 ; (B-40)

   
φTx1x2

,Tx2x3
=

15σ2 α5 β ∆x1

M9 29 2
M – 7α2∆x2

2
= – φTx2x3

,Tx1x2
= – φTx1x3

,Tx2x2
= φTx2x2

,Tx1x3
 ; (B-41)

   
φTx1x2

,Tx3x3
=

15σ2 α6 ∆x1∆x2

M9 29 2
– M + 7β2 = φTx3x3

,Tx1x2
= – φTx1x3

,Tx2x3
= – φTx2x3

,Tx1x3
 ; (B-42)

   
φTx1x3

,Tx3x3
=

15σ2 α5 β ∆x1

M9 29 2
– 3M + 7β2 = – φTx3x3

,Tx1x3
 ; (B-43)

   
φTx2x2

,Tx2x2
=

3σ2 α4

M9 29 2
3M2 – 30Mα2∆x2

2
+ 35α4∆x2

4
 ; (B-44)

   
φTx2x2

,Tx2x3
=

15σ2 α5 β ∆x2

M9 29 2
3M – 7α2∆x2

2
= – φTx2x3

,Tx2x2
 ; (B-45)

   
φTx2x2

,Tx3x3
=

3σ2 α4

M9 29 2
– 4M2 + 5Mα2∆x1

2
+ 35β2α2∆x2

2
= φTx3x3

,Tx2x2
= – φTx2x3

,Tx2x3
 ; (B-46)
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φTx2x3

,Tx3x3
=

15σ2 α5 β ∆x2

M9 29 2
– 3M + 7β2 = – φTx3x3

,Tx2x3
 ; (B-47)

   
φTx3x3

,Tx3x3
=

3σ2 α4

M9 29 2
8β2 – 24β2α2s2 + 3α4s4 = φTx1x3

,Tx1x3
+ φTx2x3

,Tx2x3
 . (B-48)

The power spectral densities (psd’s) corresponding to these covariance models are easily
determined from the basic psd of the disturbing potential, the Fourier transform of equation (B-5):

   
ΦT µ1,µ2; x3,x3' =

σ2

α µ e– 2πµα– 1

e– 2πµ x3 + x3'  , (B-49)

where the magnitude of spatial frequencies,   µ1  and   µ2 , is given by

  µ = µ1
2

+ µ2
2  . (B-50)

That   ΦT  depends only on µ  is a consequence of   φT  depending only on s (isotropy).  The inverse

Fourier transform of   ΦT  is   φT :

   

φT ∆x1,∆x2; x3,x3' =

– ∞

∞

σ2

α µ e– 2πµα– 1

e– 2πµ x3 + x3' e i2π µ1∆x1 + µ2∆x2 dµ1 dµ2  . (B-51)

In fact, the covariance between any two quantities is related to the psd of the same quantities by a
transform like equation (B-51).  Thus, applying the propagation of covariances, equation (B-7),
we find that for each derivative with respect to  xj ,   j = 1,2 , we multiply   ΦT  by    i2πµj , and for

each derivative with respect to   xk' ,   k = 1,2 , we multiply   ΦT  by    – i2πµk .  For derivatives with

respect to   x3  or   x3' , we multiply   ΦT  by   – 2πµ .  It can be proved (Jekeli, 2001) that these rules

hold in general, not just for this particular model.

Consider the covariance of the   q th  derivative of T with respect to variable,  xj  and the   r th

derivative of T with respect to the variable,   xk' .  Again, omitting the arguments,    µ1,µ2; x3,x3' ,

we have the following general result for the corresponding psd:

   
psd ∂qT/ (∂xj1

)q1(∂xj2
)q2 ,∂rT/ (∂xk1

')r1(∂xk2
')r2 = (λj1

)q1 (λj2
)q2 (λ

k1

*
)

r1
(λ

k2

*
)

r2 ΦT  ; (B-52)
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where * denotes complex conjugate, the indices satisfy

   j1, j2, k1, k2 ∈ 1,2,3 ; q, q1, q2, r, r1, r2 ∈ 0,1,2 , q = q1 + q2 , r = r1 + r2  ; (B-53)

and where

   λm = i2πµm , if m = 1,2 ; and λ3 = – 2πµ  . (B-54)
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Appendix C

The hybrid psd/covariance function of the disturbing potential on a plane is defined as the psd with
respect to the first variable and the covariance with respect to the second variable.  That is, we take
the 2-D psd and apply the inverse Fourier transform with respect to the second variable, or
equivalently, we take the Fourier transform of the covariance with respect to the first variable:

   

ST µ1; ∆x2; x3,x3' = ΦT µ1, µ2; x3,x3' e i 2πµ2∆x2dµ2

– ∞

∞

= φT ∆x1, ∆x2; x3,x3' e– i 2πµ1∆x1 d∆x1

– ∞

∞

,

(C-1)

The reciprocal distance model, equations (B-5), (B-49), can be integrated to yield these hybrid
functions in analytic form.  Most of these were given by Stanley K.Jordan (1982, unpublished
manuscript).  For the disturbing potential, T, we have:

   
ST µ1; ∆x2; x3,x3' =

2 σ2

α K0 2πµ1d  , (C-2)

where   K0  is the modified Bessel function of the second kind and zero order, and

   
d =

β2

α2
+ ∆x2

2
 . (C-3)

For the various derivatives of the disturbing potential, it can be shown that the corresponding

hybrid psd/covariance models have the following forms.  Again, the arguments,    µ1; ∆x2; x3,x3' ,

are omitted for simplicity in notation:

   ST,Tx1
= i2πµ1 ST = – STx1

,T  ; (C-4)

   
ST,Tx2

= –
2σ2 2πµ1 ∆x2

α d
K1 2πµ1d = – STx2

,T  , (C-5)

where   K1  is the modified Bessel function of the second kind and first order;
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ST,Tx3

= –
2σ2 2πµ1 β

α2 d
K1 2πµ1d = STx3

,T  ; (C-6)

   STx1
,Tx1

= 2πµ1
2 ST  ; (C-7)

   STx1
,Tx2

= i2πµ1 STx2
,T = STx2

,Tx1
 ; (C-8)

   STx1
,Tx3

= – i2πµ1 ST,Tx3
= – STx3

,Tx1
 ; (C-9)

   

STx2
,Tx2

=
2σ2 2πµ1

α d
1 –

2∆x2
2

d2
K1 2πµ1d – 2πµ1

∆x2
2

d
K0 2πµ1d  ; (C-10)

   
STx2

,Tx3
= –

2σ2 2πµ1 β ∆x2

α2 d3
2 K1 2πµ1d + 2πµ1 d K0 2πµ1d = – STx3

,Tx2
 ; (C-11)

  STx3
,Tx3

= STx1
,Tx1

+ STx2
,Tx2

 . (C-12)

  ST,Tx1x1
= – STx1

,Tx1
= STx1x1

,T  ; (C-13)

  ST,Tx1x2
= – STx1

,Tx2
= STx1x2

,T  ; (C-14)

  ST,Tx1x3
= – STx1

,Tx3
= – STx1x3

,T  ; (C-15)

  ST,Tx2x2
= – STx2

,Tx2
= STx2x2

,T  ; (C-16)

  ST,Tx2x3
= – STx2

,Tx3
= – STx2x3

,T  ; (C-17)

  ST,Tx3x3
= STx3

,Tx3
= STx3x3

,T  ; (C-18)

   STx1
,Tx1x1

= i 2πµ1
3 ST = – STx1x1

,Tx1
 ; (C-19)

   STx1
,Tx1x2

= 2πµ1
2 ST,Tx2

= – STx1x2
,Tx1

= STx2
,Tx1x1

= – STx1x1
,Tx2

 ; (C-20)
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   STx1
,∂2T/(∂x1∂x3) = 2πµ1

2 ST,Tx3
= STx1x3

,Tx1
= – STx3

,Tx1x1
= – STx1x1

,Tx3
 ; (C-21)

   STx1
,Tx2x2

= i2πµ1 STx2
,Tx2

= – STx2x2
,Tx1

= STx2
,Tx1x2

= – STx1x2
,Tx2

 ; (C-22)

   STx1
,Tx2x3

= i2πµ1 STx2
,Tx3

= STx2x3
,Tx1

= – STx3
,Tx1x2

= STx2
,Tx1x3

= – STx1x2
,Tx3

= STx1x3
,Tx2

 ; (C-23)

   STx1
,Tx3x3

= – i2πµ1 STx3
,Tx3

= – STx3x3
,Tx1

= – STx3
,Tx1x3

= STx1x3
,Tx3

 ; (C-24)

   
STx2

,Tx2x2
= –

2σ2 2πµ1 ∆x2

α d3

6 –
8∆x2

2

d2
– 2πµ1∆x2

2 K1 2πµ1d + 2πµ1d 3 –
4∆x2

2

d2
K0 2πµ1d

= – STx2x2
,Tx2

 ; (C-25)

   
STx2

,Tx2x3
= –

2σ2 2πµ1 β

α2 d3

2 –
8∆x2

2

d2
– 2πµ1∆x2

2 K1 2πµ1d + 2πµ1d 1 –
4∆x2

2

d2
K0 2πµ1d

= STx2x3
,Tx2

= – S∂T/∂x3,Tx2x2
= – STx2x2

,∂T/∂x3
;

(C-26)

  STx2
,Tx3x3

= – STx2
,Tx1x1

– STx2
,Tx2x2

= – STx3x3
,Tx2

= – STx3
,Tx2x3

= STx2x3
,Tx3

 ; (C-27)

  STx3
,Tx3x3

= STx1
,Tx1x3

+ STx2
,Tx2x3

= STx3x3
,Tx3

 ; (C-28)

   STx1x1
,Tx1x1

= 2πµ1
4 ST  ; (C-29)

   φTx1x1
,Tx1x2

= i 2πµ1
3STx2

,T = STx1x2
,Tx1x1

 ; (C-30)

- 61 -



   STx1x1
,Tx1x3

= – i 2πµ1
3 ST,Tx3

= – STx1x3
,Tx1x1

 ; (C-31)

   φTx1x1
,Tx2x2

= 2πµ1
2 STx2

,Tx2
= STx2x2

,Tx1x1
= STx1x2

,Tx1x2
 ; (C-32)

   STx1x1
,Tx2x3

= 2πµ1
2 STx2

,Tx3
= – STx2x3

,Tx1x1
= – STx1x3

,Tx1x2
= STx1x2

,Tx1x3
 ; (C-33)

   STx1x1
,Tx3x3

= – 2πµ1
2 STx3

,Tx3
= STx3x3

,Tx1x1
= – STx1x3

,Tx1x3
 ; (C-34)

   STx1x2
,Tx2x2

= i2πµ1 STx2x2
,Tx2

= STx2x2
,Tx1x2

 ; (C-35)

   STx1x2
,Tx2x3

= – i2πµ1 STx2
,Tx2x3

= – STx2x3
,Tx1x2

= – STx1x3
,Tx2x2

= STx2x2
,Tx1x3

 ; (C-36)

   STx1x2
,Tx3x3

= – i2πµ1 STx2x3
,Tx3

= STx3x3
,Tx1x2

= – STx1x3
,Tx2x3

= – STx2x3
,Tx1x3

 ; (C-37)

  STx1x3
,Tx3x3

= STx1x1
,Tx1x3

– STx1x3
,Tx2x2

= – STx3x3
,Tx1x3

 ; (C-38)

   

STx2x2
,Tx2x2

=
2σ2 2πµ1

α d3
2πµ1d 3 –

24∆x2
2

d2
+

24∆x2
4

d4
+ 2πµ1∆x2

2
∆x2

2

d2
K0 2πµ1d

+ 2 3 –
24∆x2

2

d2
– 3 2πµ1∆x2

2 +
24∆x2

4

d4
+ 4 2πµ1∆x2

2
∆x2

2

d2
K1 2πµ1d ;

(C-39)
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STx2x2
,Tx2x3

= –
2σ2 2πµ1 β ∆x2

α2 d5
2πµ1d 12 –

24∆x2
2

d2
– 2πµ1∆x2

2 K0 2πµ1d

+ 24 –
48∆x2

2

d2
+ 3 2πµ1d

2 – 8 2πµ1∆x2
2 K1 2πµ1d

= – STx2x3
,Tx2x2

;

(C-40)

  STx2x2
,Tx3x3

= – STx1x1
,Tx2x2

– STx2x2
,Tx2x2

= STx3x3
,Tx2x2

= – STx2x3
,Tx2x3

 ; (C-41)

  STx2x3
,Tx3x3

= STx1x1
,Tx2x3

+ STx2x2
,Tx2x3

= – STx3x3
,Tx2x3

 ; (C-42)

  STx3x3
,Tx3x3

= STx1x3
,Tx1x3

+ STx2x3
,Tx2x3

 . (C-43)
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