Applications of Parameter Estimation and Hypothesis Testing to GPS Network Adjustments

Report No. 465

Geodetic and GeoInformation Science
Department of Civil and Environmental Engineering and Geodetic Science The Ohio State University
Columbus, Ohio 43210-1275
December 2002

APPLICATIONS OF PARAMETER ESTIMATION AND HYPOTHESIS TESTING TO GPS NETWORK ADJUSTMENTS

by
Kyle B. Snow

Report No. 465

Department of Civil and Environmental Engineering and Geodetic Science The Ohio State University
Columbus, Ohio 43210

December, 2002

Abstract

It is common in geodetic and surveying network adjustments to treat the rank deficient normal equations in a way that produces zero variances for the so-called "control" points. This is often done by placing constraints on a minimum number of the unknown parameters, typically by assigning a zero variance to the a priori values of these parameters (coordinates). This approach may require the geodetic engineer or analyst to make an arbitrary decision about which parameters to constrain, which may have undesirable effects, such as parameter error ellipses that grow with distance from the constrained point.

Constraining parameters to a priori values is only one way of overcoming the rank deficiency inherent in geodetic and surveying networks. There are more preferable ways, which this thesis presents, namely Minimum Norm Least-Squares Solution (MINOLESS) and Best Linear Minimum Partial Bias Estimation (BLIMPBE). MINOLESS not only minimizes the weighted norm of the observation error vector but also minimizes the norm of the parameter vector, while BLIMPBE minimizes the bias for a subset of the parameters. In this thesis, these techniques are applied to a geodetic network that serves as a datum access for GPS-buoy work in Lake Michigan. The GPSbuoy has been used extensively in recent years by NOAA, The Ohio State University (OSU), and other organizations to determine lake and ocean surface heights for marine navigation and scientific studies. The work presented in this paper includes 1) parameter estimation using (Weighted) MINOLESS and hypothesis testing for the purpose of determining if recent observations are consistent with published coordinates at an earlier epoch; 2) a discussion of the BLIMPBE estimation technique for three new points to be used as GPS-buoy fiducial stations and a comparison of this technique to the "Adjustment with Stochastic Constraints" method; 3) usage of standardized reliability numbers for correlated observations; 4) a proposal for outlier detection and minimum outlier computation at the GPS-baseline level. The work may also be used as an example to follow for establishing new fiducial points with respect to a geodetic reference frame using observed GPS baseline vectors.

The results of this work lead to the following conclusions: 1) MINOLESS is the parameter estimation techniques of choice when it is required that changes to all a priori coordinates be minimized while performing a minimally constrained adjustment; 2) BLIMPBE appears to be an attractive alternative for selecting subsets of the parameter vector to adjust. BLIMPBE solutions using various selection-matrix types are worthy of further investigation; 3) outlier detection at the GPS-baseline level permits the entire observed baseline to be evaluated at once, rather than making decisions regarding the
hypothesis at the baseline-component level. It is shown that the two approaches can yield different results.

Dedicated to my wife Karla and daughters Kyla and Kate

PREFACE

This report was prepared by Kyle Snow while a student in the Department of Civil and Environmental Engineering and Geodetic Science. It was submitted to the Graduate School of The Ohio State University in the Autumn of 2002 in partial fulfillment of the requirements of the Master of Science degree. Prof. Burkhard Schaffrin served as advisor and Prof. C.K. Shum as co-advisor, both in the program for Geodetic Science and Surveying. The research was funded in part by the Office of Naval Research Naval Oceanographic Partnership Program (NOPP), under the Ohio State University component of the Gulf of Mexico Monitoring System, and the NASA Physical Oceanography program under the TOPEX/POSEIDON Extended Mission project.

ACKNOWLEDGMENTS

I would like to thank Mr. Robert J. Bittel, licensed surveyor in the state of California, for teaching me the fundamentals of field surveying and for presenting me with a business opportunity, the earnings from which made it possible for me to return to full time academic study.

I would also like to thank Drs. Musthaq Hussain and Fareed Nader of the California State University, Fresno. Their respective courses in geodesy and satellite geodesy were taught with such excellence and made so interesting as to inspire me to study geodesy at the graduate level.

I am grateful to The Ohio State University for providing me with research and teaching associate positions, without which the move to Ohio for fulltime studies would not have been possible. In particular, I am grateful to my co-advisor Dr. C.K. SHUM for providing the research funds to conduct the field campaign for collecting the data used in this study. These funds were supplied in part by the Office of Naval Research Naval Oceanographic Partnership Program (NOPP), under the Ohio State University component of the Gulf of Mexico Monitoring System, and the NASA Physical Oceanography program under the TOPEX/POSEIDON Extended Mission project.

I am also very grateful for the opportunity to be the student of my advisor Dr. BURKHARD SChaffrin, and especially for the opportunity to take advanced courses from Dr. Schaffrin, where the theories behind the discussions of this thesis were learned. I acknowledge Mr. Steve Hilla, M.Sc., of the NGS for his time in working with me with PAGES software. Finally, I thank Mr. Douglas Bruce for pointing out several grammatical errors and inconsistencies in the final draft. Any remaining errors in the text are solely my responsibility.

TABLE OF CONTENTS

Page

Abstract ii
Dedication iv
Preface V
Acknowledgments vi
List of Tables \underline{x}
List of Figures xi
List of Abbreviations xii
Chapters:
1 Introduction 1
2 Mathematical Models for Adjustments and Hypothesis Testing 3
2.1 Least-Squares Adjustment Models 3
2.1.1 Gauss-Markov Model, LESS, and BLUUE 4
2.1.2 RLESS 6
2.1.3 MINOLESS and the Equivalent BLUMBE 7
2.1.4 Weighted MINOLESS 9
2.1.5 (Weighted) Partial MINOLESS and BLIMPBE 9
2.1.6 Adjustment with Stochastic Constraints 11
2.2 Hypothesis Testing and Outlier Detection 13
2.2.1 Estimated Reference Variance and Global Test of the Adjustment 13
2.2.2 Reliability Numbers for Correlated Observations 14
2.2.3 Studentized Residuals 16
2.2.4 Outlier Detection at the GPS-Baseline-Vector Level 17
2.2.5 Internal Reliability: Computation of Minimum Detectible Outliers 20
2.2.6 External Reliability: Effects of Minimum Detectible 22
Outliers on the Parameter Estimates
2.2.7 Hypothesis Testing of the Estimated Heights $\underline{23}$
3 Data Collection and Processing $\underline{24}$
3.1 Data for CORS Height Validation 24
3.2 Field Survey for New Fiducial Points 26
3.3 Data Processing 27
4 CORS Height Validation 31
4.1 CORS Validation Adjustment 33
4.2 Outlier Detection and Hypothesis Tests for CORS Adjustments 34
4.3 Comparison of RLESS, MINOLESS, Weighted MINOLESS, 49
and Adjustment with Stochastic Constraints
4.4 Hypothesis Testing for CORS Heights 42
4.5 Summary of CORS Adjustments 42
5 Coordinate Estimation of New (Fiducial) Points 44
5.1 Estimation of Fiducial Point Heights Using RLESS 46
5.2 Estimation of Fiducial Point Heights Using BLIMPBE and 59
Adjustment with Stochastic Constraints
5.3 Summary of New Fiducial Point Adjustments 56
6 Conclusions 58
End Notes 60
List of References 62
Appendices
APPENDIX A-CORS Data Sheets 64
APPENDIX B - Data File for CORS Validation Adjustment 68
APPENDIX C - Data File for New Fiducial Points Adjustment 72
APPENDIX D- RLESS for CORS Validation, 45 Observed Baseline Vectors 75
APPENDIX E - WMINOLESS for CORS Validation, 41 Observed 80
Baseline Vectors
APPENDIX F - SCLESS for CORS Validation, 41 Observed Baseline Vectors. 86
APPENDIX G- RLESS for New Fiducial Points, 23 Observed Baseline 92
Vectors
APPENDIX H- Weighted BLIMPBE for New Fiducial Points, 22 Observed $\underline{66}$
Baseline Vectors, with \bar{S} formed per (23)
APPENDIX I - BLIMPBE for New Fiducial Points, 22 Observed Baseline $\underline{100}$
Vectors, with $\bar{S}=(S+N)^{-1}$
APPENDIX J - SCLESS for New Fiducial Points, 22 Observed Baseline 104
Vectors

LIST OF TABLES

Table Page
1 Baseline and data DOY listing $\underline{25}$
2 Baseline lengths in km 26
3 New fiducial point data from NGS data base $\underline{26}$
4 Valid adjustment-type codes for the network adjustment program 29
5 NGS published coordinates ITRF96 (1997.0) 32
6 Published ITRF96 (1997.0) and updated coordinates (1999.312) 32
7 Block diagonal elements of Q_{0} in units of mm^{2} in X, Y, Z system 33
8 CORS estimated outliers, test statistics, and minimum detectible outliers 35
9 CORS external reliability values from RLESS in units of m^{2} 39
10 CORS estimated geodetic coordinates (ϕ, λ, h) 40
11 CORS changes from a priori coordinates $(d n, d e, d u)$ in units of mm 41
12 CORS estimated standard deviations (n, e, u) in units of mm 41
13 Test-statistic values for CORS height hypothesis test 42
14 Published ITRF96 (1997.0) and updated coordinates (1999.442) 45
15 Estimated outliers, test statistics, and minimum detectible outliers 46
16 Predicted error statistics in units of cm 50
17 Difference in minimum detectible outliers (SCLESS - BLIMPBE) 53
18 Estimated geodetic coordinates (ϕ, λ, h) 54
19 Comparison of RLESS, BLIMPBE, and SCLESS to a priori coordinates 55
20 Difference of BLIMPBE solution from SCLESS 55
21 Estimated standard deviations (n, e, u) in units of mm 56

LIST OF FIGURES

Figure Page
1 CORS network map 25
2 Network diagram for new fiducial points 27
3 Density of weight matrix for CORS validation network 28
4 Density of weight matrix for new fiducial point network 28
5 Predicted-error histogram for RLESS CORS adjustment, 41 observed 38
baseline vectors
6 Studentized-residual histogram for RLESS CORS adjustment, 41 observed 38
baseline vectors
7 Predicted-error histogram for RLESS adjustment, 22 observed baseline 48
vectors
8 Studentized-residual histogram for RLESS adjustment, 22 observed 48
baseline vectors
9 Studentized-residual histogram for BLIMPBE adjustment, 22 observed 50baseline vectors
10 Studentized-residual histogram for WBLIMPBE adjustment, 22 observed 51baseline vectors
11 Studentized-residual histogram for SCLESS adjustment, 22 observed 51
baseline vectors
12 NGS CORS data sheet for station Detroit 1 64
13 NGS CORS data sheet for station Milwaukee 1 65
14 NGS CORS data sheet for station North Liberty 65
15 Excerpt from IERS Technical Note 24 66
16 NGS CORS data sheet for station Saginaw 1 66
17 NGS CORS data sheet for station Sturgeon Bay 1 67
18 NGS CORS data sheet for station Wolcott 67

LIST OF ABBREVIATIONS

BIQUUE	Best Invariant Quadratic Uniformly Unbiased Estimation
BLIMPBE	Best LInear Minimum Partial Bias Estimation
BLUMBE	Best Linear Uniformly Minimum Bias Estimation
BLUP	Best Linear Unbiased Prediction
BLUUE	Best Linear Uniformly Unbiased Estimation
CORS	Continuous Operating Reference Station
DOY	Day Of Year
GMM	Gauss--Markov Model
GPS	Global Positioning System
IGS	International GPS Service
LESS	LEast-Squares Solution
LHS	Left Hand Side
IERS	International Earth Rotation Service
ITRF	International Terrestrial Reference Frame
ITRS	International Terrestrial Reference System
MINOLESS	MInimum NOrm LEast-Squares Solution
NAD83	North American Datum of 1983
NAVD 88	North American Vertical Datum of 1988
NIMA	National Imagery and Mapping Agency
NGS	National Geodetic Survey
NOAA	National Oceanic and Atmospheric Administration
OSU	The Ohio State University
PAGES	Program for Adjustment of GPS Ephemerides
RHS	Right Hand Side
RLESS	Restricted LEast-Squares Solution
RMS	Root Mean Square
SCLESS	Stochastically Constrained LESS
WMINOLESS	Weighted MINOLESS

CHAPTER 1

INTRODUCTION

The primary objective of this study is to estimate the coordinates of three stations along the shore of Lake Michigan that are intended to be used as GPS-buoy fiducial stations (hereinafter referred to as fiducial stations). The chief interest is in the estimated ellipsoidal heights of the new fiducial stations. The survey method is static GPS with dual-frequency phase observables. The geodetic reference system is the ITRS96 (International Terrestrial Reference System - 1996), which is realized through the ITRF96 (International Terrestrial Reference Frame - 1996). Though this work was done in support of concurrent GPS-buoy data collection (Cheng et al., 2001), it is also offered as an example of how fiducial point coordinates can be established for future GPS-buoy projects. Different least-squares techniques for estimating parameters will be presented and compared. Standardized reliability numbers for correlated observations and an approach for detecting outliers in observed baseline vectors at the baseline level are also presented.

In the United States, the network of GPS Continuously Operating Reference Stations (CORS) managed by the National Geodetic Survey (NGS) provides the best local access to the ITRF96, indirectly through nearly 200 CORS and directly through nine of these that are also International GPS Service (IGS) stations. ${ }^{1}$ Data from the IGS stations are used by the International Earth Rotation Service (IERS) in the computation of the ITRF. ${ }^{2}$ The NGS uses a minimum of ten days of 24 -hour observation sessions, but typically many more, to estimate the coordinates and velocity vectors of the CORS with respect to the ITRF. ${ }^{\underline{3}}$ The NGS publishes geodetic and Cartesian coordinates and velocity vectors in both the ITRF and the North American Datum of 1983 (NAD83) systems (see data sheets in Appendix A). The estimates are with respect to epoch 1997.0, which is the official epoch of these systems (NIMA, 2000). Dispersions of the estimated coordinates (parameters) are not published by the NGS. However, the author has learned through correspondence with NGS personnel that the nominal standard deviations of the coordinates are considered to be $\pm 1 \mathrm{~cm}$ in the horizontal components and $\pm 2 \mathrm{~cm}$ in the vertical direction; these values are considered to be at the 2 -sigma confidence level. ${ }^{4}$ Although the NGS estimates both the horizontal- and vertical-velocity vector components, due to "the fact that CORS data span too short of a time period to provide statistically meaningful vertical velocities," the vertical velocity is listed as zero (see data sheets in Appendix A). ${ }^{5}$ Only those stations included in the ITRF have published vertical velocities, which were estimated by the IERS (see NLIB data sheet in Appendix A).

As noted above, the estimated heights of the new stations are of primary interest. Without the means to project the published heights (1997.0 epoch) to the project epoch (June 1999) through a known velocity vector, one may question whether the published heights of the CORS stations represent a homogeneous data set at the time of the field campaign. Therefore, the first task is to validate the published height values through new estimates and subsequent hypothesis testing to see if the published values agree with current observational data. The second task described in this paper is the coordinate estimation of the three new fiducial points. These two tasks are treated individually and are presented in Chapters $\underline{4}$ and $\underline{5}$ respectively.

Before beginning with either of the above mentioned tasks, all formulae used in this thesis are presented in Chapter 2.

CHAPTER 2

MATHEMATICAL MODELS FOR ADJUSTMENTS AND HYPOTHESIS TESTING

The fundamental Gauss-Markov Model (GMM) is presented first in this chapter, followed by the equations and solutions for all the particular adjustment models used herein. All models are given in their linear form. In general, the development of each adjustment solution begins with a Lagrange target function to be minimized using the techniques of calculus. Typically, the weighted norm of the predicted error vector is minimized under certain prescribed conditions. Statistical and geometric properties of the adjustment solutions are mentioned briefly. Finally, equations used for outlier detection and hypothesis testing are shown.

The following comments are made about the symbolic notation used in this text. Lowercase Greek letters are used for nonrandom variables only. Lowercase letters are used for scalars and column vectors while uppercase letters are reserved for matrices. Whether a variable (or the digit 0) represents a scalar or vector should be clear from the context. Estimated nonrandom variables have hats on top, and tildes are used to denote predicted random variables. The definition of all variables used throughout the paper will be given in Chapter 2. The symbol $\hat{\xi}$ is sometimes used with a subscripted name to denote the type of solution it represents. When no subscript is shown, the type of solution is assumed to be clear from the context. The following symbols are also used: $\mathcal{R}(\cdot)$ denotes the range (column) space of its argument; $\mathrm{rk}(\cdot)$ means the rank of the matrix; $\operatorname{tr}(\cdot)$ is used for the trace of a matrix; \mathbb{R}^{m} denotes the m-dimensional field of real numbers; \oplus and $\stackrel{\perp}{\oplus}$ are used for the direct sum and complementary (orthogonal) sum, respectively, of two column spaces.

2.1 Least-Squares Adjustment Models

From the models given in each section, the LEast-Squares Solutions (LESS) are developed or given, and formulae for the parameter dispersions are shown. Important characteristics of the model, such as the rank of the normal matrix, the constraints imposed, or the bias properties of the solution, are typically noted. Frequent references are made to the literature where these characteristics are discussed in greater detail.

2.1.1 Gauss-Markov Model, LESS, and BLUUE

The Gauss-Markov Model (GMM) expresses the vector of observations as a function of the parameters and states the random nature of the observation errors. The linearized form of the model is

$$
\begin{equation*}
\underset{n \times 1}{y}=\underset{n \times m}{A} \xi+e, \quad e \sim\left(0, \sigma_{0}^{2} P^{-1}\right), \quad \operatorname{rk}(A)=: q \leq\{m, n\} . \tag{1}
\end{equation*}
$$

This is the general case, where A may or may not be of full column rank. Because of linearization, y is the vector of n observations minus the zero-order terms, A is the (known) $n \times m$ coefficient matrix containing first-order derivatives of the observations with respect to the m unknown parameters, ξ is the parameter vector to estimate (corrections to a priori coordinates), and e is the vector of observation errors that are considered to be random and have zero expectation. The $n \times n$ matrix P contains weights of the observations, which may be correlated. The inverse of P shown in (1) implies that P is a positive definite matrix; this inverse matrix is called the cofactor matrix and is often denoted by Q in the literature. The symbol σ_{0}^{2} is the a priori reference variance, which can also be estimated. The letter q denotes the rank of matrix A. The redundancy of the system of equations in (1) is defined as

$$
\begin{equation*}
r:=n-\operatorname{rk}(A)=n-q . \tag{2}
\end{equation*}
$$

A least-squares solution of (1) can be derived by minimizing the quadratic form $e^{\mathrm{T}} P e$ while simultaneously satisfying the relation between the errors and observations expressed in (1). This leads to the following Lagrange target function to be minimized:

$$
\begin{equation*}
\Phi(e, \xi, \lambda)=e^{\mathrm{T}} P e+2 \lambda^{\mathrm{T}}(y-A \xi-e)=\underset{(e, \xi, \lambda)}{\operatorname{stationary}} \tag{3}
\end{equation*}
$$

Here, λ is a $n \times 1$ vector of Lagrange multipliers. The term "stationary" over the variables denotes that point in the domain of the function where $\Phi(e, \xi, \lambda)$ becomes stationary, i.e., where the derivative of the function is zero (global minimum sought in this case). The Euler-Lagrange necessary conditions are formed by setting the partial derivatives of (3) equal to zero as follows:

$$
\begin{align*}
& \frac{1}{2} \frac{\partial \Phi}{\partial e}=P \tilde{e}-\hat{\lambda} \doteq 0 \\
& \frac{1}{2} \frac{\partial \Phi}{\partial \xi}=-A^{\mathrm{T}} \hat{\lambda} \doteq 0 \tag{4}\\
& \frac{1}{2} \frac{\partial \Phi}{\partial \lambda}=y-A \hat{\xi}-\tilde{e} \doteq 0
\end{align*}
$$

The hat symbols now denote particular vectors, i.e., solutions to the homogeneous system of equations. The second partial-derivative of Φ with respect to e yields the positive definite P matrix, which satisfies the sufficient conditions of the minimization problem. After algebraic manipulation of (4), the following normal equations can be written

$$
N \hat{\xi}=c, \text { with } \quad\left[\begin{array}{ll}
\mathrm{N}, & c
\end{array}\right]=A^{\mathrm{T}} P\left[\begin{array}{ll}
A, & y \tag{5}
\end{array}\right] .
$$

From (5), any LESS with its dispersion matrix (by variance propagation) is represented by

$$
\begin{gather*}
\hat{\xi}=N^{-} c \tag{6a}\\
D\{\hat{\xi}\}=\sigma_{0}^{2} N^{-} N\left(N^{-}\right)^{\mathrm{T}}=\sigma_{0}^{2} N_{r s}^{-} . \tag{6b}
\end{gather*}
$$

The corresponding predicted error vector and its associated dispersion matrix are

$$
\begin{gather*}
\tilde{e}=y-A \hat{\xi}=\left(I_{n}-A N^{-} A^{\mathrm{T}} P\right) y \tag{7a}\\
D\{\tilde{e}\}=\sigma_{0}^{2}\left(P^{-1}-A N^{-} A^{\mathrm{T}}\right)=D\{y\}-D\{A \hat{\xi}\}=\sigma_{0}^{2} Q_{\tilde{e}} . \tag{7b}
\end{gather*}
$$

Equations (7a) and (7b) for the predicted error vector and its dispersion are computed the same way for all the models presented herein unless noted otherwise, with the appropriate substitution for $\hat{\xi}$ and N^{-}, respectively. The symbol $Q_{\tilde{e}}$ denotes the cofactor matrix of \tilde{e}. The symbol N^{-}represents a generalized inverse of N. The generalized inverse is not unique; it is only required that it satisfies the definition of a generalized inverse: $N N^{-} N=N$. It can be shown that the matrix product in (6b) is a symmetrical reflexive generalized inverse $\left(N_{r s}^{-}\right)$of $N .{ }^{\underline{6}}$ Such a generalized inverse has the properties: $N N_{r s}^{-} N=N, N_{r s}^{-} N N_{r s}^{-}=N_{r s}^{-}$, implying $\operatorname{rk}\left(N_{r s}^{-}\right)=q$ and $N_{r s}^{-}=\left(N_{r s}^{-}\right)^{\mathrm{T}}$. Therefore, any solution of (6a) can be represented by $\hat{\xi}=N_{r s}^{-} c$ if the dispersion matrix becomes $D\{\hat{\xi}\}=\sigma_{0}^{2} N_{r s}^{-}$.

If A were of full column rank, then the equation $N^{-}=N^{-1}$ would hold. Under such a condition, the LESS is a Best Linear Uniformly Unbiased Estimate (BLUUE) of ξ (SChAFFRIN, 1997), where "Best" is used in the sense of a minimum trace of the dispersion matrix, and "Uniformly Unbiased" means the solution is unbiased for all $\xi \in \mathbb{R}^{m}$. But since (1) does not necessarily require that A be full column rank, and since A and N are of the same rank (KOCH, 1999, pg. 20), equation (5) cannot be uniquely solved without additional a priori information (i.e., some minimum constraint associated with $\xi)$.

The potential rank deficiency of A is also referred to as "datum deficiency," which gets its name from the geometric quantities comprising a geodetic or surveying network (in a three-dimensional network: scale, three rotations, and three orientations). Thus, treating the rank deficiency is also referred to as "defining the datum." The following sections discuss various methods for handling rank deficiency in a geodetic network.

2.1.2 RLESS

Oftentimes, the minimally constrained solution for LESS is computed by the technique of Restricted LESS (RLESS). The development of RLESS is based upon the constraint equation $K \xi=\kappa_{0}$, which imposes a minimum number of constraints and thus removes the datum deficiency inherent in (1). In order to have a set of minimum constraints, the $l \times m$ matrix K must satisfy the following conditions.

$$
\begin{gather*}
\mathcal{R}\left(K^{\mathrm{T}}\right) \cap \mathcal{R}\left(A^{\mathrm{T}}\right)=\{0\} \text { and } \mathcal{R}\left(K^{\mathrm{T}}\right) \cup \mathcal{R}\left(A^{\mathrm{T}}\right)=\mathbb{R}^{m} \Leftrightarrow \tag{8a}\\
\mathcal{R}\left(K^{\mathrm{T}}\right) \oplus \mathcal{R}\left(A^{\mathrm{T}}\right)=\mathbb{R}^{m} \Leftrightarrow \tag{8b}\\
m=r \mathrm{k}\left[A^{\mathrm{T}}, K^{\mathrm{T}}\right]=\operatorname{rk}(A)+\operatorname{rk}(K)=q+(m-q) \Rightarrow \tag{8c}\\
\operatorname{rk}(K)=: l=m-q \tag{8d}
\end{gather*}
$$

Given these properties for K, the following Lagrange target function is minimized:

$$
\begin{equation*}
\Phi(\xi, \lambda)=e^{\mathrm{T}} P e+2 \lambda^{\mathrm{T}}\left(K \xi-\kappa_{0}\right)=\text { stationary } . \tag{9}
\end{equation*}
$$

Again, λ is a vector of Lagrange multipliers. The Euler-Lagrange necessary conditions are formed by setting the partial derivatives of (9) equal to zero as follows:

$$
\begin{align*}
& \frac{1}{2} \frac{\partial \Phi}{\partial \xi}=N \hat{\xi}-c+K^{\mathrm{T}} \hat{\lambda} \doteq 0 \tag{10}\\
& \frac{1}{2} \frac{\partial \Phi}{\partial \lambda}=K \hat{\xi}-\kappa_{0} \doteq 0
\end{align*}
$$

The sufficient condition is confirmed by $\frac{1}{2} \frac{\partial^{2} \Phi}{\partial \xi \partial \xi^{\mathrm{T}}}=N$, which is positive (semi) definite. Equation (10) can be written in matrix form as

$$
\left[\begin{array}{cc}
N & K^{\mathrm{T}} \tag{11}\\
K & 0
\end{array}\right]\left[\begin{array}{l}
\hat{\xi} \\
\hat{\lambda}
\end{array}\right]=\left[\begin{array}{c}
c \\
\kappa_{0}
\end{array}\right]
$$

The normal matrix in (11) is regular, owing to the relationships of (8). The solution of (11) and its associated dispersion matrix is:

$$
\begin{gather*}
\hat{\xi}=\left(N+K^{\mathrm{T}} K\right)^{-1}\left(c+K^{T} \kappa_{0}\right)=\hat{\xi}_{\mathrm{RLESS}} \tag{12a}\\
D\{\hat{\xi}\}=\sigma_{0}^{2}\left(N+K^{\mathrm{T}} K\right)^{-1} N\left(N+K^{\mathrm{T}} K\right)^{-1} . \tag{12b}
\end{gather*}
$$

There is no BLUUE for ξ in the solution space of RLESS; all solutions are biased because of the constraints (datum choice) defined via K. However, from RLESS the product $A \hat{\xi}$ does provide the BLUUE of $A \xi$; thus the "corrected" observations are uniformly unbiased and invariant with respect to the chosen datum. Also, the predicted errors and the estimated reference variance are invariant with respect to the chosen datum. ${ }^{7}$

It is natural to seek a minimum bias for the parameters in this solution space of the minimally constrained LESS. The following development of MINOLESS shows a particular minimum constraint that satisfies the minimum bias condition.

2.1.3 MINOLESS and the Equivalent BLUMBE

MINOLESS is the MInimum NOrm LESS. It is so called because the estimated parameter vector (i.e., changes to initial coordinate values) has a minimum length amongst all other minimally constrained LESS solutions. In addition to the minimum norm property, it can be shown that MINOLESS yields a minimum trace of the dispersion matrix amongst these LESS solutions. Using a statistical approach, MINOLESS can be derived as the Best Linear Uniformly Minimum Bias Estimation (BLUMBE) of ξ (Schaffrin and Iz, 2002). MINOLESS has also been called the "inner constraint" solution by some authors.

To determine MINOLESS, an $l \times m$ matrix E having rank l is used, where $l=m-q$, and the constraint $E \xi=0$ is imposed (i.e., some linear combination of the parameters is constrained to zero). E is defined such that its transpose forms a basis for the null space (or kernel) of A, so that

$$
\begin{equation*}
A E^{\mathrm{T}}=0 \text { and } \mathcal{R}\left(E^{\mathrm{T}}\right) \stackrel{\perp}{\oplus} \mathcal{R}\left(A^{\mathrm{T}}\right)=\mathbb{R}^{m} \tag{13}
\end{equation*}
$$

The notation of (13) means that not only are the respective column spaces of E^{T} and A^{T} a direct sum of \mathbb{R}^{m}, but also that E^{T} is the orthogonal complement of A^{T} in \mathbb{R}^{m}. The dimensions of the respective column spaces sum to m (KOCH, 1999, pg. 13). The Lagrange target function to be minimized is then

$$
\begin{equation*}
\Phi(\xi, \lambda)=e^{\mathrm{T}} P e+2 \lambda^{\mathrm{T}}(E \xi)=\underset{(\xi, \lambda)}{\text { stationary }} . \tag{14}
\end{equation*}
$$

The Euler-Lagrange necessary conditions are formed by setting the partial derivatives of (14) equal to zero as follows:

$$
\begin{align*}
& \frac{1}{2} \frac{\partial \Phi}{\partial \xi}=N \hat{\xi}-c+E^{\mathrm{T}} \hat{\lambda} \doteq 0 \tag{15}\\
& \frac{1}{2} \frac{\partial \Phi}{\partial \lambda}=E \hat{\xi} \doteq 0
\end{align*}
$$

The sufficient condition is confirmed by $\frac{1}{2} \frac{\partial^{2} \Phi}{\partial \xi \partial \xi^{\mathrm{T}}}=N$, which is positive (semi) definite. The equations in (15) can be written in matrix form as

$$
\left[\begin{array}{cc}
N & E^{\mathrm{T}} \tag{16}\\
E & 0
\end{array}\right]\left[\begin{array}{l}
\hat{\xi} \\
\hat{\lambda}
\end{array}\right]=\left[\begin{array}{l}
c \\
0
\end{array}\right] .
$$

The normal matrix in (16) is no longer singular, owing to the complementary sum of $\mathcal{R}\left(E^{\mathrm{T}}\right)$ and $\mathcal{R}\left(A^{\mathrm{T}}\right)$. Considering the properties of E defined above, the solution of (16) reduces to that shown in (17a), and from the law of variance propagation, the dispersion matrix is written in (17b):

$$
\begin{align*}
\hat{\xi} & =\left[\left(N+E^{\mathrm{T}} E\right)^{-1}-E^{T}\left(E E^{T} E E^{T}\right)^{-1} E\right] c \tag{17a}\\
& =\left(N+E^{\mathrm{T}} E\right)^{-1} c=N^{+} c=\hat{\xi}_{\text {MINOLESS }} \\
D\{\hat{\xi}\} & =\sigma_{0}^{2}\left(N+E^{\mathrm{T}} E\right)^{-1} N\left(N+E^{\mathrm{T}} E\right)^{-1}=\sigma_{0}^{2} N^{+} . \tag{17b}
\end{align*}
$$

Here, the symbol N^{+}denotes the pseudoinverse (or Moore-Penrose inverse) of N. The pseudoinverse is a special generalized inverse having the following four properties:

$$
N N^{+} N=N, N^{+} N N^{+}=N^{+}, N N^{+} \text {is symmetric, } N^{+} N \text { is symmetric. }
$$

It is noted that $\left(N+E^{\mathrm{T}} E\right)^{-1}-E^{\mathrm{T}}\left(E E^{\mathrm{T}} E E^{\mathrm{T}}\right)^{-1} E=N^{+}$; however $\left(N+E^{\mathrm{T}} E\right)^{-1} \neq N^{+}$. The matrix products of (17a) are only equivalent due to multiplication by c. It is also mentioned that, though N^{+}is unique, there are other ways to represent it analytically and other ways to compute it numerically (SCHAFFRIN, 1985, pp. 554,555); however, for a network comprised of GPS baselines only, the formula $\hat{\xi}=\left(N+E^{\mathrm{T}} E\right)^{-1} c$ together with (18) below is quite simple. In this case, the structure of the matrix E is merely

$$
E=\left[\begin{array}{lll}
I_{3}, & \cdots, & I_{3} \tag{18}
\end{array}\right] .
$$

It can be shown that the solution in (17a) is equivalent to that derived by beginning with the target function

$$
\begin{equation*}
\Phi(\xi, \lambda)=\xi^{\mathrm{T}} \xi+2 \lambda^{\mathrm{T}}(N \xi-c)=\underset{(\xi, \lambda)}{\text { stationary }} \tag{19}
\end{equation*}
$$

which obviously minimizes the length of ξ, as is required by MINOLESS. ${ }^{8}$

2.1.4 Weighted MINOLESS

In some cases, a priori information about the parameters exists, including stochastic information (variances). Known coordinate variances can be used in the parameter estimation by way of a Weighted MINOLESS solution. Letting P_{0} be a positive definite weight matrix for the parameters, and beginning with a target function analogous to (14), where the constraint is now $E P_{0} \xi=0$, leads to the following system of normal equations for the Weighted MINOLESS:

$$
\left[\begin{array}{cc}
N & \left(E P_{0}\right)^{\mathrm{T}} \tag{20}\\
E P_{0} & 0
\end{array}\right]\left[\begin{array}{l}
\hat{\xi} \\
\hat{\lambda}
\end{array}\right]=\left[\begin{array}{l}
c \\
0
\end{array}\right] .
$$

Here again the matrix on the LHS is nonsingular, since $\operatorname{rk}\left(E P_{0}\right)=\operatorname{rk}(E)=l=$ $\operatorname{rk}\left(\left(E P_{0}\right) E^{\mathrm{T}}\right)$. The solution of (20) and the associated dispersion matrix is

$$
\begin{gather*}
\hat{\xi}=\left(N+P_{0} E^{\mathrm{T}} E P_{0}\right)^{-1} c=\hat{\xi}_{\text {WMINOLESS }} \tag{21a}\\
D\{\hat{\xi}\}=\sigma_{0}^{2}\left(N+P_{0} E^{\mathrm{T}} E P_{0}\right)^{-1} N\left(N+P_{0} E^{\mathrm{T}} E P_{0}\right)^{-1} . \tag{21b}
\end{gather*}
$$

It can be shown that the solution in (21a) is equivalent to that derived by beginning with the Lagrange target function

$$
\begin{equation*}
\Phi(\xi, \lambda)=\xi^{\mathrm{T}} P_{0} \xi+2 \lambda^{\mathrm{T}}(N \xi-c)=\underset{(\xi, \lambda)}{\operatorname{stationary}} \tag{22}
\end{equation*}
$$

which obviously minimizes the norm of the weighted parameter vector. ${ }^{9}$

2.1.5 (Weighted) Partial MINOLESS and BLIMPBE

In the work that follows (Chapter 5), it is required to minimize the changes in only a subset of the parameter vector. This can be done using a (Weighted) Partial MINOLESS solution. The Partial MINOLESS model differs from MINOLESS by the use of a selection matrix which picks a subset of the parameter vector for which it is desired to have minimum norm. The solution gives a best partial trace of the dispersion matrix among all other minimally constrained LESS solutions. However, the Partial MINOLESS does not yield a uniformly minimum biased estimate of the parameters (SChAFFRIN and $\mathrm{Iz}, 2002$). The minimum (partial) bias characteristic is only realized through the Best

LInear Minimum Partial Bias Estimation (BLIMPBE) (Schaffrin and Iz, 2002), which follows Partial MINOLESS below.

1) Partial MINOLESS

Letting lowercase s represent the number of parameters to be selected, and rearranging the order of the parameter vector if necessary, the selection matrix S for the Partial MINOLESS can be written as

$$
\underset{m \times m}{S}:=\left[\begin{array}{cc}
I_{s} & 0 \tag{23}\\
0 & 0
\end{array}\right], s \geq m-q .
$$

Of the elements chosen by $S, m-q$ of them must correspond to $m-q$ linearly independent columns of N. In other words, S must successfully remove the network datum deficiency. For the Weighted Partial MINOLESS, the sub-matrix I_{s} in (23) can be replaced by a weight matrix representing the weights of the selected coordinates. For instance, $S P_{0} S$ would contain, in lieu of I_{s}, the respective submatrix of the matrix P_{0} introduced in Section 2.1.4, corresponding to the selected parameters, and hence reduced in size to $s \times s$. The constraint criterion is $E S \xi=0$, resp. $E\left(S P_{0} S\right) \xi=0$. Beginning with a target function analogous to (14), the solution and dispersion for (Weighted) Partial MINOLESS can be expressed as

$$
\begin{gather*}
\hat{\xi}=\left(N+S E^{\mathrm{T}} E S\right)^{-1} c=\hat{\xi}_{\text {PMINOLESS }} \tag{24a}\\
D\{\hat{\xi}\}=\sigma_{0}^{2}\left(N+S E^{\mathrm{T}} E S\right)^{-1} N\left(N+S E^{\mathrm{T}} E S\right)^{-1} . \tag{24b}
\end{gather*}
$$

2) BLIMPBE

In the development of BLIMPBE by SCHAFFRIN and Iz (2002), a selection matrix \bar{S} is defined as "a suitable positive-semidefinite" matrix, (i.e., $\bar{S}+N$ must be invertible). The solution and dispersion for BLIMPBE given there (ibid.) are

$$
\begin{gather*}
\hat{\xi}_{\text {BLIMPBE }}=\left[\bar{S} N(N \bar{S} N \bar{S} N)^{-} N \bar{S}\right] c \tag{25a}\\
D\left\{\hat{\xi}_{\text {BLIMPBE }}\right\}=\sigma_{0}^{2}\left[\bar{S} N(N \bar{S} N \bar{S} N)^{-} N \bar{S}\right] . \tag{25b}
\end{gather*}
$$

The formulae in (25a) and (25b) are invariant with respect to the choice of the g-inverse. SCHAFFRIN and Iz (2002) show that, if the selection matrix is altered so that

$$
\begin{equation*}
\bar{S} \rightarrow(S+N)^{-1} \tag{26}
\end{equation*}
$$

with S being the same as for the Partial MINOLESS in (23) - (24b), then this "special" BLIMPBE solution yields results identical to that of Partial MINOLESS. Following

SCHAFFRIN and Iz (2002), with a slight modification to the notation, this relationship is expressed as follows:

$$
\begin{align*}
{\underset{\bar{S}}{\mathrm{BLIMPBE}}(S+N)^{-1}}_{\hat{\mathrm{B}}^{-1}} & \rightarrow(S+N)^{-1} N\left[N(S+N)^{-1} N(S+N)^{-1} N\right]^{-} N(S+N)^{-1} c \\
& =(S+N)^{-1} N\left[N(S+N)^{-1} N\right]^{-} c \tag{27}\\
& =\hat{\xi}_{\text {PMINOLESS }} .
\end{align*}
$$

It can be shown that the second line in (27) fulfills the Partial MINOLESS constraint $E S \xi=0$, which was used to generate the solution in (24a). Thus we have an intersection of the solution spaces of Partial MINOLESS and BLIMPBE. However, this intersection is subject to the relationship in (26), which is an unnecessary restriction upon the solution space of BLIMPBE. One should ask the more general question: Is there a minimally constrained LESS which uses a selection (or weight) matrix for the parameters that generates an equivalent solution to BLIMPBE? So far, it seems that there is not, owing to the loss of uniform minimum bias associated with the minimally constrained LESS solution (with the exception of MINOLESS itself).

It should also be noted that (25a) will not belong to the class of LESS unless $\bar{S} N(N \bar{S} N \bar{S} N)^{-} N \bar{S} \in\left\{N^{-}\right\}$, which is satisfied if, and only if, $\mathcal{R}(N \bar{S})=\mathcal{R}(N)$. This means that necessarily $\operatorname{rk}(N \bar{S})=\operatorname{rk}(N) \Rightarrow \operatorname{rk}(\bar{S}) \geq \operatorname{rk}(N)$ must hold in order for BLIMPBE to belong to the class of LESS. However, this is by no means a sufficient condition, and would not be fulfilled by most \bar{S} selection matrices. Thus, the particular form of \bar{S} may require careful consideration, depending on the objective of the estimation problem at hand. In the work of Chapter 5, the special form of BLIMPBE that generates Partial MINOLESS will be discussed along with a second BLIMPBE solution that uses a different selection matrix entirely.

2.1.6 Adjustment with Stochastic Constraints

The final method of adjustment used in this study incorporates prior information on the parameters by using a priori coordinate variances as stochastic constraints. This is done as an alternative to Weighted MINOLESS and BLIMPBE for comparison purposes. With prior information on all or some of the parameters, the Adjustment with Stochastic Constraints (SCLESS) model is written as

$$
\begin{align*}
& \begin{array}{c}
y \times 1 \\
n \times 1
\end{array}=\underset{n \times m}{A} \xi+e \tag{28a}\\
& z_{0}=\underset{l \times m}{K} \xi+e_{0}, \quad\left[\begin{array}{l}
e \\
e_{0}
\end{array}\right] \sim\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \sigma_{0}^{2}\left[\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{0}^{-1}
\end{array}\right]\right), \tag{28b}\\
& \operatorname{rk}(A)=: q \leq\{m, n\}, \operatorname{rk}(K)=: l \geq m-q, \operatorname{rk}\left(\left[A^{\mathrm{T}}, K^{\mathrm{T}}\right]\right)=m .
\end{align*}
$$

For this study, the positive definite matrix P_{0} is the same weight matrix used in the Weighted MINOLESS or BLIMPBE problem, depending on whether all or only a subset of the parameters are weighted. In this model, it is assumed that the reference variance is the same for both e and e_{0}. The range space of $\left[A^{\mathrm{T}}, K^{\mathrm{T}}\right]$ spans \mathbb{R}^{m} as is evident from (28b). The redundancy of the system is computed by

$$
\begin{equation*}
r:=n-m+\operatorname{rk}(K)=n-m+l . \tag{29}
\end{equation*}
$$

It is noted that l and K are defined differently here than in the preceding sections; we now allow $l \geq m-q$. The particular usage of l and K in the adjustments that follow should be apparent from the context.

The Lagrange target function to now minimize is, according to SCHAFFRIN (1995), written as

$$
\begin{equation*}
\Phi(\xi, \lambda)=e^{\mathrm{T}} P e-2 \lambda^{\mathrm{T}}\left(K \xi-z_{0}\right)-\lambda^{\mathrm{T}} P_{0}^{-1} \lambda=\underset{(\xi, \lambda)}{\text { stationary } .} \tag{30}
\end{equation*}
$$

Upon setting the first derivatives to zero, the Euler-Lagrange necessary conditions are

$$
\begin{align*}
& \frac{1}{2} \frac{\partial \Phi}{\partial \xi}=N \hat{\xi}-c+K^{\mathrm{T}} \hat{\lambda} \doteq 0 \tag{31}\\
& \frac{1}{2} \frac{\partial \Phi}{\partial \lambda}=K \hat{\xi}-z_{0}-P_{0}^{-1} \hat{\lambda} \doteq 0
\end{align*}
$$

which, in matrix form, gives the following system of normal equations

$$
\left[\begin{array}{cc}
N & K^{\mathrm{T}} \tag{32}\\
K & -P_{0}^{-1}
\end{array}\right]\left[\begin{array}{l}
\hat{\xi} \\
\hat{\lambda}
\end{array}\right]=\left[\begin{array}{c}
c \\
z_{0}
\end{array}\right]
$$

The solution and dispersion for the parameter vector with a singular matrix N is

$$
\begin{align*}
& \hat{\xi}=\left(N+K^{\mathrm{T}} P_{0} K\right)^{-1} c \\
& +\left(N+K^{\mathrm{T}} P_{0} K\right)^{-1} K^{\mathrm{T}}\left[P_{0}^{-1}+K\left(N+K^{\mathrm{T}} P_{0} K\right)^{-1} K^{\mathrm{T}}\right]^{-1}\left(z_{0}-K\left(N+K^{\mathrm{T}} P_{0} K\right)^{-1} c\right) \tag{33a}\\
& D\{\hat{\xi}\}=\sigma_{0}^{2}\left[N+K^{\mathrm{T}} P_{0} K\right]^{-1} . \tag{33b}
\end{align*}
$$

The predicted error vector \tilde{e} is computed as in the first identity of (7a), however its dispersion is different from (7b). This difference is due to the fact that $\left(N+K^{\mathrm{T}} P_{0} K\right)^{-1}$ is a generalized inverse for N if and only if $\operatorname{rk}\left(\left[A^{\mathrm{T}}, K^{\mathrm{T}}\right]\right)=\operatorname{rk}(A)+\operatorname{rk}(K)$, which is not required in $\underline{(28 \mathrm{~b})}$. The formulae for \tilde{e}, \tilde{e}_{0}, and the associated dispersion matrices are as follows:

$$
\begin{gather*}
\tilde{e}=y-A \hat{\xi} \tag{34a}\\
\tilde{e}_{0}=z_{0}-K \hat{\xi} \tag{34b}\\
\mathrm{D}\{\tilde{e}\}=\sigma_{0}^{2}\left(P^{-1}-A\left(N+K^{\mathrm{T}} P_{0} K\right)^{-1} A^{\mathrm{T}}\right)=\sigma_{0}^{2} Q_{\tilde{e}} \tag{34c}\\
\mathrm{D}\left\{\tilde{e}_{0}\right\}=\sigma_{0}^{2}\left(P_{0}^{-1}-K\left(N+K^{\mathrm{T}} P_{0} K\right)^{-1} K^{\mathrm{T}}\right)=\sigma_{0}^{2} Q_{\tilde{e}_{0}} \tag{34d}\\
\mathrm{C}\left\{\tilde{e}, \tilde{e}_{0}\right\}=-\sigma_{0}^{2} A\left(N+K^{\mathrm{T}} P_{0} K\right)^{-1} K^{\mathrm{T}} \tag{34e}
\end{gather*}
$$

The model in (28a) and (28b) obviously does not provide RLESS (minimum number of constraints) since it is an over-constrained problem, in general.

2.2 Hypothesis Testing and Outlier Detection

In addition to parameter and dispersion estimations, the models above permit estimation of the reference variance, estimation of observation outliers, and computation of reliability numbers, as well as other quantities of interest. Such quantities are introduced and their formulae given in the following sections. These sections will include the concepts of reliability numbers for correlated observations as well as data snooping and outlier detection at the GPS-baseline-vector level.

2.2.1 Estimated Reference Variance and Global Test of the Adjustment

A value for the reference variance is stated a priori. This value should be known or else assigned based on some legitimate assumption or standard practice. It can also be estimated as a function of the predicted errors, the a priori weight matrix, and the redundancy of the system. Equation (35) gives the formula for the estimated reference variance associated with LESS, which is a Best Invariant Quadratic Uniformly Unbiased Estimation (BIQUUE) for σ_{0}^{2} (Grafarend and Schaffrin, 1993).

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\tilde{e}^{\mathrm{T}} P \tilde{e}}{n-q} \tag{35}
\end{equation*}
$$

Note that for all LESS, $n-q=\operatorname{tr}\left(P Q_{\tilde{e}}\right)$, a relationship that is lost for some cases of BLIMPBE, which is addressed in Section 5.2. For the Adjustment with Stochastic Constraints (Section 2.1.6), the estimated reference variance is written as

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\tilde{e}^{\mathrm{T}} P \tilde{e}+\tilde{e}_{0}^{\mathrm{T}} P_{0} \tilde{e}_{0}}{n-m+l} \tag{36}
\end{equation*}
$$

The global test of the adjustment is performed by means of a hypothesis test on the estimated reference variance. This has been called "the most fundamental statistical test in least-squares estimation" by LEICK (1995, pg. 142). The value of the estimated reference variance of (35) is independent of the chosen datum (minimal-constraint). If the observation functional model and the stochastic model are both correct, we would expect $\mathrm{E}\left\{\hat{\sigma}_{0}^{2}\right\}=\sigma_{0}^{2}$. If the equality is not confirmed by statistical testing, we may suspect that P was chosen incorrectly or the observations contain gross errors or both. The hypothesis test for the global check is

$$
\begin{equation*}
\mathrm{H}_{0}: \mathrm{E}\left\{\hat{\sigma}_{0}^{2}\right\}=\sigma_{0}^{2} \text { versus } \mathrm{H}_{\mathrm{a}}: \mathrm{E}\left\{\hat{\sigma}_{0}^{2}\right\} \neq \sigma_{0}^{2}, \tag{37}
\end{equation*}
$$

where σ_{0}^{2} must be specified. H_{0} is called the null hypothesis, and H_{a} is the alternative hypothesis. The test statistic has a chi-square distribution with r degrees of freedom and is written as:

$$
\begin{equation*}
T=r \frac{\hat{\sigma}_{0}^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(r) \tag{38}
\end{equation*}
$$

where r is the redundancy of the system as defined above. With a chosen level of significance α, the null hypothesis is accepted if the following inequality holds:

$$
\begin{equation*}
\chi_{1-\alpha / 2}^{2} \leq T \leq \chi_{\alpha / 2}^{2} . \tag{39}
\end{equation*}
$$

The far right and left terms are taken from the chi-square tables. If (39) is satisfied, the null hypothesis H_{0} is accepted. It is possible that hypothesis testing will lead to the wrong conclusion. If H_{0} is rejected when in fact it is true, a Type I error is made. On the other hand, if a false H_{0} is accepted, a Type II error is committed. The probability of making a Type I error is α.

2.2.2 Reliability Numbers for Correlated Observations

Each observation in the network contributes a certain amount to the redundancy of the system. This contribution has been called the observation "redundancy number." These numbers have traditionally been used as an aid in identifying potential outliers amongst
uncorrelated observations (BAARDA, 1968), hence the alternate name reliability number. The j th reliability number r_{j} is defined as the corresponding diagonal element of the projection matrix $Q_{\tilde{e}} P$, i.e.,

$$
\begin{equation*}
r_{j}=\left(Q_{\tilde{e}} P\right)_{j j}, \text { with } \operatorname{tr}\left(Q_{\tilde{e}} P\right)=r, \tag{40}
\end{equation*}
$$

which explains the term "redundancy number" for it. Here, $Q_{\tilde{e}}$ is the cofactor matrix associated with the predicted error vector \tilde{e}. In the rank deficient GMM, the matrix product $Q_{\tilde{e}} P$ is nothing more than the projection matrix that multiplies y in the computation of \tilde{e}, i.e.,

$$
\begin{equation*}
\left(Q_{\tilde{e}} P\right) y=\left[I_{n}-A N^{-} A^{\mathrm{T}} P\right] y=y-A \hat{\xi}=\tilde{e} . \tag{41}
\end{equation*}
$$

The redundancy numbers can be characterized for diagonal P by (LEICK, 1995, pg. 162)

$$
\begin{equation*}
0 \leq r_{j} \leq 1, \quad j \in\{1, \ldots, n\}, \tag{42}
\end{equation*}
$$

a property that is lost in the case of correlated observations. From the inequality of (42), we say that r_{j} belongs to the unit interval. Redundancy numbers are invariant with respect to the choice of datum. Ideally, each redundancy number would contribute equally to the system redundancy and therefore have a value of $(n-q) / n$. Furthermore, it is said that large values for r_{j} (i.e., near 1 or at least near the "ideal" value) are an indicator for quality-control potential for uncorrelated observations (SCHAFFRIN, 1997), hence the interpretation as "reliability numbers."

A commonly used estimate for potential outliers is shown in the next section, where the j th estimated outlier can be expressed as inversely proportional to the reliability number as defined in (40). In this sense, the reliability number indicates the relative magnitude of the corresponding estimated outlier, with the implication that small reliability numbers make outlier detection difficult. Therefore, analysts typically consider not only the magnitude of the estimated outlier but also the reliability of the observation as reflected in the reliability number, in view of the inequality in (42), when deciding if an observation should be flagged as an outlier. However, since the bounds for r_{j} shown in (42) only hold in the case of a diagonal weight matrix, this approach may lead to wrong conclusions in the presence of correlated observations, unless the concept of reliability number is redefined, resp. generalized.

For networks that include observed GPS baseline vectors, the weight matrix P is not diagonal, and so the reliability number defined in (40) for uncorrelated observations may no longer belong to the unit interval. WANG and CHEN (1994) show that these traditional "redundancy numbers" lead to results that are too optimistic when used with correlated
observations. A generalized reliability number (not necessarily belonging to the unit interval) as suggested by WANG and ChEn (1994) has been standardized by Schaffrin (1997) so that the bounding values of (42) are restored. In the following, the j th $n \times 1$ unit vector $\eta_{j}:=[0, \ldots, 0,1,0, \ldots, 0]^{\mathrm{T}}$ is used in a quadratic form to extract the j th diagonal value from a square matrix. The formula for the generalized reliability number given by WANG and CHEN (1994) is

$$
\begin{equation*}
\bar{r}_{j}=\left(\eta_{j}^{T} Q \eta_{j}\right)\left(\eta_{j}^{T} P Q_{\tilde{e}} P \eta_{j}\right) \tag{43}
\end{equation*}
$$

After the standardization proposed by SCHAFFRIN (1997), the reliability number becomes

$$
\begin{equation*}
\overline{\bar{r}}_{j}=\left(\eta_{j}^{\mathrm{T}} Q^{-1} \eta_{j}\right)^{-1}\left(\eta_{j}^{\mathrm{T}} P Q_{\tilde{e}} P \eta_{j}\right) . \tag{44}
\end{equation*}
$$

The standardized reliability number $\overline{\bar{r}}_{j}$ belongs to the unit interval. Equations (40), (43), and (44) are equivalent if all observations are uncorrelated. Equation (44) is used for reliability number computations in the analysis in Chapters $\underline{4}$ and $\underline{5}$. It is still open as to how to define reliability numbers in the GMM with Stochastic Constraints (from Section 2.1.6). Perhaps, it is sufficient to implement the cofactor matrix $Q_{\tilde{e}}$ from (34c) into the above formulae, a procedure that is conjectured here.

2.2.3 Studentized Residuals

The stochastic characterization of the GMM given in (1) does not specify a probability density function; only an a priori dispersion matrix for the observations is required to compute the least-squares solution. However, to perform hypothesis testing on the predicted errors, one must specify a probability density function. Experience has shown that errors in surveying observations often tend to be normally distributed. Thus, the assumption may be made that $e \sim \mathcal{N}\left(0, \sigma_{0}^{2} P^{-1}\right)$, which denotes a normal distribution. Analytically, the predicted error in equation (7a) may be rewritten as $\tilde{e}=\left(I_{n}-A N^{-} A^{\mathrm{T}} P\right)(A \xi+e)$, which reduces to $\tilde{e}=\left(I_{n}-A N^{-} A^{\mathrm{T}} P\right) e$. Thus, the predicted error is written as the product of a projection matrix and the true (unknown) vector of errors. Therefore, the assumption of a normal distribution can be extended to the predicted errors (or "residuals"), which is written as $\tilde{e} \sim \mathcal{N}\left(0, \sigma_{0}^{2} Q_{\tilde{e}}\right)$. In practice, the assumption of a normal distribution may be verified by a histogram plot of the predicted errors, resp. scaled residuals.

The term "residual" is introduced here as a synonym to the term "predicted error." Some authors use the term residual to mean "correction" (i.e., opposite sign of error). However, keeping with the sign convention of e in the GMM introduced in (1), the term residual is used here as predicted error. Since the least-squares criterion minimizes the residuals
(sum of weighted squares), inspection and evaluation of the residuals is a critical part of the adjustment validation. Depending on the type and relative precision of the observations, the elements of the residual vector may vary significantly in magnitude. Therefore, a means to standardize the residuals is most helpful.

In statistics, a normally distributed sample mean \bar{x}, computed from a sample size n and having a known value of μ_{0} and a standard deviation σ, is transformed to a standardized normal random variable by $z=\left(\bar{x}-\mu_{0}\right) /(\sigma / \sqrt{n})$ (MIKHAIL and ACKERMANN, 1976, pg. 55). In an analogous manner, the standardized residual for the j th observation is written as

$$
\begin{equation*}
z_{j}=\frac{\tilde{e}_{j}}{\sqrt{\sigma_{0}^{2}\left(Q_{\tilde{e}}\right)_{j j}}} . \tag{45}
\end{equation*}
$$

The double $-j$ subscript denotes the j th diagonal element of the matrix. Since the reference variance is generally considered to be an unknown quantity, it is replaced by the estimated reference variance (35) or (36) to form the following studentized residual:

$$
\begin{equation*}
t_{j}=\frac{\tilde{e}_{j}}{\sqrt{\hat{\sigma}_{0}^{2}\left(Q_{\tilde{e}}\right)_{j j}}} . \tag{46}
\end{equation*}
$$

Note that in the case of the GMM with Stochastic Constraints, the residual vector \tilde{e}_{0} may also be standardized using the diagonal elements of the cofactor matrix $Q_{\tilde{e}_{0}}$ from (34d). The statistic in (46) is characterized as having a Student's t distribution, owing to the random properties of both the numerator and denominator. Studentized residuals are computed and listed in the numerical analysis of Chapters $\underline{4}$ and $\underline{5}$.

2.2.4 Outlier Detection at the GPS-Baseline-Vector Level

Explicit in the GMM is the assumption that the observations contain only random errors without bias. This assumption is expressed as $\mathrm{E}\{e\}=0$. After the adjustment, we have at our disposal some formulae that we may use to validate our a priori assumptions about the observation errors. For instance, we may assume the presence of one outlier in our data set at a particular observation, estimate this outlier, and then check to see if the estimate is statistically equivalent to zero. If we confirm an outlier value of zero, one observation at a time for every observation, then we may have some assurance that our data set indeed contains only errors of random type without bias (or perhaps gross errors that are too small to detect). BAARDA (1968) presented this procedure as a data snooping technique. Again, it is based on the assumption that only one outlier exists in the data set. This might be somewhat problematic if multiple outliers exist, since the testing of a
particular observation with an assumed outlier is no longer tested against an outlier-free data set. However, this procedure is often used in practice and is employed herein as presently described. (Note: ADUOL and SChAFFRIN (1988) have described a procedure for multiple outlier testing. More recently, Grafarend and Awange (2002) have proposed a Gauss-Jacobi combinatorial algorithm to detect all outliers in a data set without the presumption of only one outlier being present. This procedure, however, is extremely computer intensive.)

In a geodetic network containing GPS baseline observations, we might like to consider an entire baseline vector as "one" contributing observation. But obviously the observed GPS baseline is comprised of three observational components, which, in a Cartesian parameterization, consist of coordinate differences $d X, d Y$, and $d Z$. It was already mentioned that Baarda's data snooping algorithm is used to detect outliers in a single observation. This begs the question of what to do with the observed baseline vector if an outlier appears in one or two of the observation components but not in all three. Should the entire observed baseline be flagged for possible rejection or just the components with outliers? There seems to be no basis for using only one or two GPS-baseline observation components while rejecting the other(s), especially when there may be high correlation between the three components (particularly when using a Cartesian parameterization). A proposed solution to the problem is to adopt an approach analogous to the single observation testing wherein the entire observed GPS baseline is considered as an individual observation triplet, and thus the test computations are carried out with triples (i.e., vectors) rather than scalars. The two GMM models that lead to the outlier estimate and corresponding test statistic by comparison are as follows:

Model I: Assumed outlier vector in the k th observed GPS baseline with this outlier constrained to zero.

$$
\begin{gather*}
\underset{n \times 1}{y}=\underset{n \times m}{A} \xi+H_{k} \delta^{(k)}+e, e \sim\left(0, \sigma_{0}^{2} P^{-1}\right), \tag{47a}\\
0=\left[\begin{array}{ll}
0 & I_{3}
\end{array}\right]\left[\begin{array}{c}
\xi \\
\delta^{(k)}
\end{array}\right] \tag{47b}
\end{gather*}
$$

Here, $\delta^{(k)}$ is a 3×1 outlier vector, associated with the k th observed GPS baseline, which is immediately set to zero. Let b represent the number of observed GPS baselines vectors in the network, then $k \in\{1, \ldots, b\}$. (In the present case, with a network comprised of only GPS baselines, $b=n / 3$.) The matrix H_{k} is a $3 b \times 3$ matrix that, when transposed, can be used to extract the k th observed GPS baseline vector from the observation vector y. It is assumed that the observations have been ordered in triples so that each consecutive triple of observations represents a GPS baseline vector. Equation (47b) shows that the outlier has been constrained to zero. This constraint ensures the model will yield estimation results identical to the model given in (1). The following symbol for the P-weighted inner product of \tilde{e} is used later: $\Omega:=\tilde{e}^{\mathrm{T}} P \tilde{e}$.

Model II: Assumed outlier in the k th observed GPS baseline vector without imposing constraints on its value.

$$
\begin{equation*}
\underset{n \times 1}{y}=\underset{n \times m}{A} \xi+H_{k} \delta^{(k)}+e, e \sim\left(0, \sigma_{0}^{2} P^{-1}\right) \tag{48}
\end{equation*}
$$

In both Models \underline{I} and II we still have $\operatorname{rk}(A)=: q \leq\{m, n\}$, and it is noted that $\operatorname{rk}\left(\left[A, \mathrm{H}_{k}\right]\right)=q+3$. So there is no additional rank deficiency in the system introduced by the additional outlier parameter vector $\delta^{(k)}$ (which, again, has 3 components). For clarity, the form of H_{k} is shown below.

$$
H_{k}:=\left[\begin{array}{lllllll}
0, & \cdots & 0, & I_{3}, & 0, & \cdots, & 0 \tag{49}
\end{array}\right]^{\mathrm{T}}
$$

The least-squares solution of $\delta^{(k)}$ from Model II yields

$$
\begin{equation*}
\hat{\delta}_{3 \times 1}^{(k)}=\left[H_{k}^{\mathrm{T}}\left(P Q_{\tilde{e}} P\right) H_{k}\right]^{-1} H_{k}^{\mathrm{T}} P \tilde{e}, \tag{50}
\end{equation*}
$$

which represents an estimated outlier triple in the $k t$ th observed baseline vector. The hypothesis that the expected outlier triple is a vector of zeros is written as

$$
\mathrm{H}_{0}^{k}: \mathrm{E}\left\{\hat{\delta}^{(k)}\right\}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{\mathrm{T}} \text { versus } \mathrm{H}_{\mathrm{a}}^{k}: \mathrm{E}\left\{\hat{\delta}^{(k)}\right\} \neq\left[\begin{array}{lll}
0 & 0 & 0 \tag{51}
\end{array}\right]^{\mathrm{T}} .
$$

The corresponding test statistic is computed by

$$
\begin{equation*}
T_{k}=\frac{R_{k} / 3}{\left(\Omega-R_{k}\right) /(n-q-3)} \sim F(\alpha ; 3, n-q-3), \tag{52}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{k}:=\hat{\delta}^{(k)^{\mathrm{T}}}\left[H_{k}^{\mathrm{T}}\left(P Q_{\tilde{e}} P\right) H_{k}\right] \hat{\delta}^{(k)} \tag{53}
\end{equation*}
$$

and Ω coming from Model I. The symbol F denotes a Fisher distribution and α the chosen Type I error probability.

The hypothesis test is performed for each of the k observed baseline vectors. The null hypothesis is accepted if

$$
\begin{equation*}
T_{k} \leq F_{(\alpha ; 3, r-3)} \tag{54}
\end{equation*}
$$

where $F_{(\alpha ; 3, r-3)}$ is the critical value from statistical tables, otherwise the alternative hypothesis is accepted. We would expect to make an error of the first type α percent of the decisions, i.e., reject H_{0} when it should have been accepted.

2.2.5 Internal Reliability: Computation of Minimum Detectible Outliers

In addition to estimating outliers and performing hypothesis tests on these estimates, it is important to know what the minimum detectible outlier is for each observed baseline vector. Outliers smaller than the minimum detectible outlier remain in the data set and have an effect on the parameter estimates. Minimum detectible outliers $\delta_{\text {min }}^{(k)}$ may be determined with a certainty of some prescribed value β. When the estimated outlier is less than $\delta_{\min }^{(k)}$, a Type II error is made $1-\beta$ percent of the time, i.e., H_{0} of (51) is accepted when it is in fact wrong and should have been rejected; see, e.g., Koch (1999, pg. 280). For a given significance level α and for a given "test power" β, a noncentrality parameter λ^{\prime} may be determined (e.g., from statistical tables), which can then be used to compute a range for $\delta_{\min }^{(k)}$. The value of λ^{\prime} also depends upon the degrees of freedom r_{1} and r_{2}, with $r_{1}=3$ being the dimension of the outlier vector and $r_{2}=r-3$, where r denotes the redundancy of the system as defined in (2). The applicability to the GMM with Stochastic Constraints remains to be investigated, but is conjectured here via (29).

According to CASPARY (1987, pg. 72), λ^{\prime} is "the offset of the expectation which the test statistic has to attain, in order that the sample value exceeds the critical value with a probability of $1-\beta$ ". The formula for the univariate variable is straightforward. However, if the problem of outlier estimation is viewed from the baseline-vector level as described above, investigation of minimum detectible outliers at the vector-triple level is also required. The following is a proposal for computing the minimum detectible outlier at the baseline-vector level.

The functional relationship between the minimum detectible outlier and the noncentrality parameter $\left(\lambda^{\prime}=\lambda^{\prime}\left(\alpha, \beta, r_{1}, r_{2}\right)\right)$ is

$$
\begin{equation*}
\lambda^{\prime}=\delta_{\min }^{(k)^{\mathrm{T}}}\left[H_{k}^{\mathrm{T}}\left(P Q_{\tilde{e}} P\right) H_{k}\right] \delta_{\min }^{(k)} \tag{55}
\end{equation*}
$$

The unknown vector $\delta_{\text {min }}^{(k)}$ is of size 3×1; thus the problem is underdetermined with one equation and three unknowns. The proposed solution is to apply some subjective, and reasonable, constraint on the vector components. In doing so, typical relative-precisions of GPS-baseline observation components may be considered. From experience, one may consider that the height component is only half as precise as the horizontal components and that the precisions of the horizontal components are equal, i.e., $\sigma_{n}=\sigma_{e}=\sigma_{u p} / 2$.

This relationship has already been seen in the nominal standard error of the CORS coordinates noted in Chapter 1. Translating these relative-precision relationships into outlier vector-component relationships in the local geodetic horizon system (north, east, up), the minimum detectible outlier can be constrained to be

$$
\left(\delta_{\min }^{(k)}\right)_{n, e, u p}=\gamma\left[\begin{array}{lll}
1 & 1 & 2 \tag{56}
\end{array}\right]^{\mathrm{T}},
$$

where γ is an unknown scalar to be solved for. Assuming the adjustment has been carried out in the Cartesian system, the vector in (56) must be rotated into the Cartesian system using the following rotational matrix (RAPP, 1993, pg. 152):

$$
R=\left[\begin{array}{ccc}
-\sin \phi \cos \lambda & -\sin \lambda & \cos \phi \cos \lambda \tag{57}\\
-\sin \phi \sin \lambda & \cos \lambda & \cos \phi \sin \lambda \\
\cos \phi & 0 & \sin \phi
\end{array}\right] .
$$

Upon rotation, we get

$$
\delta_{\min }^{(k)}=R\left(\delta_{\min }^{(k)}\right)_{n, e, u p}=\gamma R\left[\begin{array}{lll}
1 & 1 & 2 \tag{58}
\end{array}\right]^{\mathrm{T}} .
$$

The integers in (58) represent relative differences in north, east, and up in the local geodetic horizon coordinate system, with ϕ and λ in (57) being the geodetic coordinates of the "baseline" in said coordinate system. A reasonable choice for ϕ and λ are the mean values of the end points of the baseline vector being considered.

With the constraint of (56) imposed, the vector $\delta_{\text {min }}^{(k)}$ is uniquely determined by solving for the scalar γ

$$
\gamma^{2}=\frac{\lambda^{\prime}}{\left(R\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right]^{\mathrm{T}}\right)^{\mathrm{T}}\left[H_{k}^{\mathrm{T}}\left(P Q_{\tilde{e}} P\right) H_{k}\right] R\left[\begin{array}{lll}
1 & 1 & 2 \tag{59}
\end{array}\right]^{\mathrm{T}}}
$$

and then substituting into

$$
\delta_{\min }^{(k)}=\gamma R\left[\begin{array}{lll}
1 & 1 & 2 \tag{60}
\end{array}\right]^{\mathrm{T}} .
$$

The signs of the components in (56) are arbitrary because the imposed constraints were based on the relative magnitudes of error in north, east, and up; e.g., changing the signs of any component in the vector (56) would result in the same numerical solution for γ in (59).

LEHMER (1944) gives tables for λ^{\prime} in terms of α, β, r_{1}, and r_{2}. The tables list critical values for $\alpha=0.01,0.05$ and $\beta=0.7,0.8$. In LEHMER's paper, β is defined as "the probability of detecting the falsehood of the hypothesis tested." The tables actually provide values for an auxiliary variable ϕ, and the publication gives a formula for λ^{\prime} in terms of ϕ and r_{1}.

2.2.6 External Reliability: Effects of Minimum Detectible Outliers on the Parameter Estimates

External reliability is a measure of the effect of undetected outliers on the estimated parameters. If the parameter solution with an undetected outlier in the k th observed baseline is denoted as $\hat{\xi}^{(k)}$, then the difference in the parameter vectors with and without said undetected outlier can be expressed as $\delta=\hat{\xi}^{(k)}-\hat{\xi}$. The normal equations for $\hat{\xi}^{(k)}$ can be expressed as a function of the associated minimum detectible outlier. From the normal equations for $\hat{\xi}^{(k)}$, the N-weighted inner product of the difference between $\hat{\xi}^{(k)}$ and $\hat{\xi}$ can be obtained as follows:

$$
\begin{aligned}
& N \hat{\xi}^{(k)}=A^{\mathrm{T}} P\left(y-H_{k} \delta_{(\text {min })}^{k}\right) \\
& \hat{\xi}^{(k)}=N_{r s}^{-}\left[A^{\mathrm{T}} P\left(y-H_{k} \delta_{(\text {min })}^{k}\right)\right]=\hat{\xi}-N_{r s}^{-} A^{\mathrm{T}} P H_{k} \delta_{(\text {min })}^{k} \Rightarrow \\
& \hat{\xi}^{(k)}-\hat{\xi}=-N_{r s}^{-} A^{\mathrm{T}} P H_{k} \delta_{(\text {min })}^{k} \Rightarrow \\
& \left\|\hat{\xi}^{(k)}-\hat{\xi}\right\|_{N}^{2}=\left(H_{k} \delta_{(\text {min })}^{k}\right)^{\mathrm{T}}\left(P A N_{r s}^{-} A^{\mathrm{T}} P\right) H_{k} \delta_{(\text {min })}^{k},
\end{aligned}
$$

where the relation $N_{r s}^{-} N N_{r s}^{-}=N_{r s}^{-}$given in Section 2.1.1 has been used. It is not difficult to show that the above expression for the weighted inner product is equivalent to

$$
\begin{equation*}
\left\|\hat{\xi}^{(k)}-\hat{\xi}\right\|_{N}^{2}=\left(H_{k} \delta_{\min }^{(k)}\right)^{\mathrm{T}}\left(P-P Q_{\tilde{e}} P\right) H_{k} \delta_{\min }^{(k)} . \tag{61}
\end{equation*}
$$

The weighting by N is chosen to remove the datum dependency. The square root of (61) is the magnitude of the weighted displacement of the estimate of ξ due to an undetected outlier. It is noted that (61) is unitless.

The quantity in (61) contributes to a change in the quadratic form $\Omega=\tilde{e}^{\mathrm{T}} P \tilde{e}$, and thus also a change in the estimated reference variance. The analytical expression of this change is shown in the following. From $7(\mathrm{a}), \Omega$ can also be written as $\Omega=(y-A \hat{\xi})^{\mathrm{T}} P(y-A \hat{\xi})$, which, after algebraic manipulation, can be expressed as $\Omega=y^{\mathrm{T}} P y-\hat{\xi}^{\mathrm{T}} N \hat{\xi}$. Analogously, the same quadratic form can be written for the solution
containing an undetected outlier in the k th observed baseline as $\Omega_{k}=\tilde{e}_{k}^{\mathrm{T}} P \tilde{e}_{k}=$ $y^{\mathrm{T}} P y-(\hat{\xi}+\delta)^{\mathrm{T}} N(\hat{\xi}+\delta)=y^{\mathrm{T}} P y-\left[\hat{\xi}^{\mathrm{T}} N \hat{\xi}+2 \hat{\xi}^{\mathrm{T}} N \delta+\delta^{\mathrm{T}} N \delta\right]$. The change in the quadratic form, due to the undetected outlier, is then given by the difference $\Delta \Omega=\tilde{e}_{k}^{\mathrm{T}} P \tilde{e}_{k}-\tilde{e}^{\mathrm{T}} P \tilde{e}=\delta^{\mathrm{T}} N \delta+2 \hat{\xi}^{\mathrm{T}} N \delta=\left\|\hat{\xi}^{k}-\hat{\xi}\right\|_{N}^{2}+2 c^{\mathrm{T}} \delta$. When considering the change in the estimated reference variance due to (61), the redundancy of the system and the mixed product $2 \hat{\xi}^{\mathrm{T}} N \delta$ must also be taken into account.

2.2.7 Hypothesis Testing of the Estimated Heights

After performing the global test of the estimated reference variance and testing for observation outliers, the parameters may be tested against a priori values, e.g. published coordinates. The entire set of estimated coordinates may be tested at once, or, alternatively, a subset may be tested, including individual testing of the estimated coordinate values. Since heights are of primary interest in this study, they will be tested individually.

Using the symbols \hat{h}_{k} and h_{k}^{0} for the k th estimated and published height values respectively, the hypothesis test for comparing estimated to published values is expressed as

$$
\begin{equation*}
\mathrm{H}_{0}: \mathrm{E}\left\{\hat{h}_{k}\right\}=h_{k}^{0} \quad \text { versus } \quad \mathrm{H}_{\mathrm{a}}: \mathrm{E}\left\{\hat{h}_{k}\right\} \neq h_{k}^{0} . \tag{62}
\end{equation*}
$$

Note that this is not the same use of k as in Sections 2.2.3 and 2.2.4 where it represents the selected baseline number. The test statistic has a Student's t distribution and is computed by

$$
\begin{equation*}
T_{k}=\frac{\left|\hat{h}_{k}-h_{k}^{0}\right|}{\sqrt{\hat{\mathrm{D}}\left\{\hat{h}_{k}\right\}}} \sim t(r) \tag{63}
\end{equation*}
$$

Here, r is used to denote the redundancy of the system as usual, and the symbol $\hat{\mathrm{D}}\left\{\hat{h}_{k}\right\}$ is the estimated dispersion of the k th estimated height, i.e., incorporating $\hat{\sigma}_{0}^{2}$ instead of σ_{0}^{2}.

For a chosen level of significance α, the null hypothesis is accepted if

$$
\begin{equation*}
T_{k} \leq t_{\alpha / 2}(r), \tag{64}
\end{equation*}
$$

where the value for the RHS is taken from the statistical tables.

CHAPTER 3

DATA COLLECTION AND PROCESSING

This chapter addresses data collection and processing methods used in the project. A description of the field work and the procedures used for processing the data will be discussed. The software used for computations will also be mentioned.

3.1 Data for CORS Height Validation

The following six CORS were used in the project network: DET1, MIL1, NLIB, SAG1, STB1, and WLCI. These particular CORS were chosen so as to surround the GPS-buoy project region on the east shore of the southern portion of Lake Michigan. In order to introduce a high level of network redundancy, GPS observational data (24-hour sessions) were gathered so that an independent baseline vector connected each CORS to every other CORS in the network (see Figure 1). A set of 15 unique GPS baselines is required to generate the connectivity between the six points $(5+4+3+2+1)$. Since the number of independent baselines for any GPS observation session is one less than the number of observing receivers, only five baselines could be observed from a single observation session using the six CORS. Thus it was necessary to retrieve data from at least three different observation sessions to build up the network. In this experiment, data were taken from five different days to form the network connections.

In an attempt to include data that reflected a range of various satellite constellations and environmental conditions, a total of three complete data sets of 15 observed baselines each were retrieved (i.e., three observed vectors for each baseline depicted in Figure 1). Thus the entire CORS validation network consists of 45 observed baselines comprised of data collected over 15 different days in the year 1999, between day of year (DOY) 64 and DOY 135. The CORS data are available from an NGS web site. ${ }^{10}$

Figure 1: CORS network map

The data DOY associated with each observed baseline is listed in Table 1 (direction of the observed baseline not considered in the table). Published coordinates are given for each station on NGS data sheets as shown in Appendix A.

Baseline	DOY	Baseline	DOY
DET1 - MIL1	$65,80,133$	MLI1 - WLCI	$68,82,132$
DET1 - NLIB	$64,79,134$	NLIB - SAG1	$64,79,134$
DET1 - SAG1	$67,83,131$	NLIB - STB1	$64,79,134$
DET1 - STB1	$66,81,135$	NLIB - WLCI	$68,82,134$
DET1 - WLCI	$68,82,132$	SAG1 - STB1	$66,81,135$
MLI1 - NLIB	$64,79,134$	SAG1 - WLCI	$68,82,132$
MLI1 - SAG1	$67,83,131$	STB1 - WLCI	$65,82,132$
MLI - STB1	$65,81,135$		

Table 1: Baseline and data DOY listing

Finally it is noted that the baselines of the CORS height validation network are rather long. Table 2 shows the lengths of baselines in ascending order.

SAG1 \rightarrow DET1	160	MIL1 \rightarrow DET1	401	
MIL1 \rightarrow STB1	204	WLCI \rightarrow SAG1	410	
WLCI \rightarrow MIL1	253	STB1 \rightarrow DET1	439	
STB1 \rightarrow SAG1	307	WLCI \rightarrow STB1	443	
NLIB \rightarrow MIL1	333	NLIB \rightarrow STB1	482	
SAG1 \rightarrow MIL1	336	NLIB \rightarrow SAG1	666	
$W L C I ~$	DET1	369	NLIB \rightarrow DET1	704
$W L C I ~$	\rightarrow NLIB	394		

Table 2: Baseline lengths in km

3.2 Field Survey for New Fiducial Points

A field campaign was conducted from June 9, 1999 (DOY 160) to June 11, 1999 (DOY 162) near the eastern shore of Lake Michigan for collection of the data used in the new fiducial point estimation detailed in Chapter 5 (Cheng et al., 2001). The field crew consisted of six participants from OSU and one from NGS. ${ }^{11}$ The new fiducial points were actually existing monuments established by the NGS as part of the nationwide spatial reference network; however, the published coordinates are not considered to be as accurate with respect to the ITRF as those of the CORS. Two of the points (BEHD and G317) are constructed of a steel rod driven to a depth of over 20 meters and incased in a protective sleeve with a lid at the surface; the third point is a disk set in a boat-hoist foundation. Information about the points is given in Table 3. A complete description of the points can be retrieved from the NGS database using the PID from Table 3 as a key. Data for the CORS were retrieved from the NGS database via the internet.

Point ID	PID	Rod Depth [m]	Elevation [m], NAVD 88
BEHD	AA8099	21	190.91
G317	OL0372	28	190.565
MBYC	NG0411	disk	177.786

Table 3: New fiducial point data from NGS data base

Following the NGS guidelines for obtaining $\pm 2 \mathrm{~cm}$ height accuracy (ZILKOWSKI et al., 1997), and based on advice from NGS personnel, three eight-hour observation sessions were carried out over a three-day period. ${ }^{12}$ Observations for two of the three days began at approximately the same time of the day, while the starting time for the third day was offset by four hours. Thus the entire data set spanned a 12 -hour segment of a day,
thereby permitting the entire GPS constellation, as seen from the occupied stations, to be tracked.

Figure 2: Network diagram for fiducial points

The GPS equipment consisted of Trimble 4000 SSI dual frequency receivers (manufactured by Trimble Navigation Limited of Sunnyvale, CA) and Trimble choke ring antennas. Fixed-height (2 meters) GPS tripods were used to ensure accurate antenna heights, and sand bags were placed at the tripod feet to stabilize the antenna set up. The plumbing apparatus for each tripod was checked for proper adjustment before the work began. The data were downloaded to computers at the end of each observing session for safekeeping. A network diagram showing the connections between the new fiducial points and the CORS, along with approximate baseline distances, is shown in Figure 2.

The figure shows eight baselines. Since data collection was repeated over three days, the total number of observed baselines in the network should have been 24. However, data were not available from station WLCI on DOY 160; so the number of observed baselines in the network for fiducial point determination is 23 .

3.3 Data Processing

NGS software, PAGES (Program for Adjustment of GPS Ephemerides), was used to process the GPS data files. ${ }^{13}$ Precise GPS orbit ephemeris computed by IGS were used for processing. The PAGES program has the desirable feature of processing all observed baselines in "session mode" so that not only covariances between baseline components are computed, but covariances between all observed baselines in a common session are
determined as well. The resulting covariance matrix generated by the PAGES baseline processor becomes the inverse of the weight matrix P for the least-squares network adjustment.

Because of session processing, the network weight matrix P has many more nonzero elements than the typical diagonal (or 3×3 block diagonal) weight matrix. The diagrams in Figures 3 and 4 provide a visualization of the density of the weight matrices for the observed baselines in the networks of Figures $\underline{1}$ and $\underline{2}$ respectively, by shading in the nonzero elements. The matrix for the CORS validation network has 8 percent (1485/18225) nonzero terms, while the matrix for the second network has 33 percent (216/5184) nonzero elements. This is in contrast to 2.2 percent and 4.2 percent, respectively, for a 3×3 block diagonal matrix used in the case of no correlation between observed baselines. The non-shaded areas in the matrix schematics represent a zero correlation between observation sessions. This implies an absence of correlation in time between successive observation days, which is not actually the case for GPS observations. However, no attempt is made in this work to correlate the sessions with one another. The correlation in time would have less influence on the CORS validation network, as the observations were collected from 15 different days over a span of 72 days (Table 1). Finally, it is noted that given the height of the antenna phase center above the mark, PAGES reduces all observed baseline vectors from the antennas to the marks, which is commonly done in baseline processing algorithms.

Figure 3: Density of weight matrix for CORS validation network

Figure 4: Density of weight matrix for new fiducial point network

All network adjustment computations were performed using routines developed by the author using Matlab. The Matlab program will read and parse a priori coordinates, observation records, and weight information. The data files for both networks are listed in Appendices \underline{B} and \underline{C}, respectively. Each record begins with a code denoting the type of record. The primary record types for this project are station coordinates, adjustment type, and GPS-baseline observation records. In addition, there are optional records used to indicate a global scale factor for the observation weights and records used to assign centering errors associated with the instrument setups. The following is a brief description of the records that appear in the listings of Appendices \underline{B} and \underline{C}.

All fields are space delimited. The symbol $\$$ denotes the beginning of a new data record. The station coordinate record contains fields for the station name, the Cartesian coordinates, and the station standard deviations; the record has the following form:
\$XYZ name $X \quad Y \quad Z \quad \sigma_{n} \quad \sigma_{e} \quad \sigma_{u}$.
The standard deviations can be given as any combination of positive real numbers and the characters ! and \&, which denote fixed and free respectively. The coordinate system for the coordinate standard deviations is the local geodetic horizon system of the point (north, east, up). The adjustment program propagates these uncertainties into the X, Y, Z coordinate system. Codes for valid adjustment types are listed in Table 4.

Code	Adjustment Type
\$RLESS	Restricted LESS
\$MINOLESS	Minimum Norm LESS
\$WMINOLESS	Weighted Minimum Norm LESS
\$PMINOLESS	Partial Minimum Norm LESS
\$WPMINOLESS	Weighted Partial Minimum Norm LESS
\$BLIMPBE	Best Linear Minimum Partial Bias Estimation
\$WBLIMPBE	Weighted Best Linear Minimum Partial Bias Estimation
\$SCLESS	Stochastically Constrained LESS
\$CLESS	Constrained LESS

Table 4: Valid adjustment-type codes for the network adjustment program

Adjustments requiring a selection matrix must contain the number of points to select as the second and final field of the record (e.g., \$PMINOLESS 6). The points specified by this second field are taken from the top of the parameter list; there is no means to select only individual coordinates of a station. The GPS-baseline observation record spans two lines and has the following form:
\$GPS tail head $d X d Y d Z$
$\operatorname{var}(d X) \operatorname{covar}(d X, d Y) \quad \operatorname{var}(d Y) \quad \operatorname{covar}(d X, d Z) \quad \operatorname{covar}(d Y, d Z) \operatorname{var}(d Z)$.
Head and tail refer to the ending and beginning baseline station names, respectively. The baseline observation components are given by the coordinate differences $d X, d Y, d Z$. The abbreviations var and covar stand for variance and covariance terms of the baseline
observation components. This input format allows for inclusion of data generated by processors that do not return correlations between observed baselines within a common session. A flag in the adjustment program indicates that a complete covariance matrix (based on session processing) is to be read from the computer disk and used instead of the values listed in the data file. A similar option could be employed for the station coordinates in case the weight matrix P_{0} was full or at least block diagonal. For this study, P_{0} is block diagonal after the transformation of the variances in the local geodetic horizon system to the Cartesian coordinate system. The record \$BEGOBS is an indicator to the adjustment program to make intermediate data validation steps before reading the observation data. The \# symbol denotes that the line is a comment and should be ignored by the processing algorithms. The record \$COVAR_SCALE XX.xx is used to scale the a priori variances/covariances. The following record is used to assign horizontal centering errors and instrument height uncertainties to a station:
\$CENTER_ERR name $\sigma_{\text {horizontal }} \sigma_{\text {vertical }}$.
Name is the station name, and the sigma values refer to horizontal centering standard errors and vertical antenna height (above the mark) standard error, respectively.

CHAPTER 4

CORS HEIGHT VALIDATION

A network comprised only of observed GPS baselines has a datum deficiency of three, owing to the unknown origin parameters of the coordinate system. Thus a datum constraint must be imposed to solve the least-squares normal equations of (5). The resulting coordinate estimates depend directly on the choice of datum. Often the datum is defined by holding three coordinates (X, Y, Z) "fixed." This is the RLESS method discussed in Section 2.1.2. RLESS results in a zero variance for the constrained coordinates and is characterized by error ellipses that grow with distance from the constrained point. Since we wish to test all of the CORS heights, a solution which does not generate a zero variance at any of the points is preferred. As noted in Section 2.1.3 above, MINOLESS generates no zero variances and also yields a minimum-length solution vector and a minimum trace of the dispersion matrix amongst all minimally constrained solutions. Since the MINOLESS solution vector represents the change in coordinate values from the initial approximate values, a solution which is closest to the published coordinates is obtained when the published values are used as the initial approximations (closest in the sense of a minimum norm of the vector of differences between the a priori and the adjusted coordinates).
Table 5 summarizes the published coordinates taken from the data sheets in Appendix A. The abbreviation ARP stands for antenna reference point, and MON stands for monument. Typically the ARP is the bottom surface of the antenna that would mate with, for example, the head of a tripod. For most CORS, the ARP is the primary reference mark that the coordinates are computed for. In the case of station NLIB, the ARP is offset from the monument, as shown in the data sheet.

The published geodetic coordinates refer to ITRF96. As noted in the introduction, NGS does not publish values for the upward component of the CORS velocity vectors. Only station NLIB has a nonzero vertical velocity-component, as computed by the IERS for inclusion in the ITRF (see data sheet in Appendix A). However, the CORS horizontal coordinates should be updated to the project epoch in order not to introduce horizontal displacement biases in the a priori coordinates for the adjustment. A mean (nominal) DOY value of 114 is used for this purpose, corresponding to epoch 1999.312. The published coordinates may then be updated by the formula $\bar{x}=x+d t \cdot v$, where x is the vector of published coordinate values in meters at epoch 1997.0, $d t$ is the difference in epochs in units of years, and v is the published velocity vector in meters per year. The updated coordinates are listed in the last two columns of Table 6, using $d t=2.312 \mathrm{yr}$.

The sub-mm deviations in height from the published values listed in Appendix A are attributed to rounding error in the computations. The Cartesian coordinates from the fourth column are used as a priori coordinates in the adjustment (including updates for all three components for station NLIB).

Station		$\mathrm{X}[\mathrm{m}] /$ Latitude N	$\mathrm{Y}[\mathrm{m}] /$ Longitude W	$\mathrm{Z}[\mathrm{m}] /$ Height $[\mathrm{m}]$
DET1 (ARP)	568024.755	-4690674.635	4270188.820	
		$42^{\circ} 17^{\prime} 50.45437^{\prime \prime}$	$83^{\circ} 05^{\prime} 43.06542^{\prime \prime}$	145.045
MIL1 (ARP)	$1^{\prime} 72136.032$	-4668696.644	4327808.348	
	$43^{\circ} 00^{\prime} 09.13101^{\prime \prime}$	$87^{\circ} 53^{\prime} 18.40750^{\prime \prime}$	147.377	
NLIB (MON)	-130934.472	-4762291.729	4226854.663	
		$41^{\circ} 46^{\prime} 17.72779^{\prime \prime}$	$91^{\circ} 34^{\prime} 29.61729^{\prime \prime}$	207.035
SAG1 (ARP)	496374.994	-4597431.512	4378421.351	
	$43^{\circ} 37^{\prime} 43.11958^{\prime \prime}$	$83^{\circ} 50^{\prime} 15.95739^{\prime \prime}$	149.223	
STB1 (ARP)	212435.716	-4528758.901	4471353.761	
	$44^{\circ} 47^{\prime} 43.74825^{\prime \prime}$	$87^{\circ} 18^{\prime} 51.58610^{\prime \prime}$	148.835	
WLCI (ARP)	248645.842	-4828261.314	4146460.096	
		$40^{\circ} 48^{\prime} 30.26922^{\prime \prime}$	$87^{\circ} 03^{\prime} 07.14856^{\prime \prime}$	180.424

Table 5: NGS published coordinates ITRF96 (1997.0)

Station Coordinate	$\begin{gathered} X / Y / Z \quad[\mathrm{~m}] \\ (1997.0) \end{gathered}$	$\begin{gathered} \text { Velocities } \\ {[\mathrm{m} / \mathrm{yr}]} \\ \mathrm{V}_{X} / \mathrm{V}_{Y} / \mathrm{v}_{Z} \\ \hline \end{gathered}$	$\begin{aligned} & X / Y / Z \quad[\mathrm{~m}] \\ & (1999.312) \end{aligned}$	$\begin{gathered} \phi, \lambda, h \\ (1999.312) \end{gathered}$
DET1 - X	568024.755	-0.0156	568024.7189	420¹7'50.45411"
DEY1 - Y	-4690674.635	-0.0043	-4690674.6449	-8305'43.06703"
DET1 - Z	4270188.820	-0.0026	4270188.8140	145.0445 m
MIL1 - X	172136.032	-0.0118	172136.0047	$43^{\circ} 00^{\prime} 09.13085^{\prime \prime}$
MIL1 - Y	-4668696.644	-0.0019	-4668696.6484	-87053'18.40870"
MIL1 - Z	4327808.348	-0.0015	4327808.3445	147.3775 m
NLIB - X	-130934.472	-0.0150	-130934.5067	$41^{\circ} 46^{\prime} 17.72752^{\prime \prime}$
NLIB - Y	-4762291.729	0.0009	-4762291.7269	-91*34'29.61878"
NLIB - Z	4226854.663	-0.0050	4226854.6514	207.0266 m
SAG1 - X	496374.994	-0.0159	496374.9572	43³7'43.11958'
SAG1 - Y	-4597431.512	-0.0017	-4597431.5159	-83050'15.95904"
SAG1 - Z	4378421.351	0.0000	4378421.3510	149.2232 m
STB1 - X	212435.716	-0.0164	212435.6781	$44^{\circ} 47^{\prime} 43.74796^{\prime \prime}$
STB1 - Y	-4528758.901	-0.0035	-4528758.9091	$-87^{\circ} 18^{\prime} 51.58784^{\prime \prime}$
STB1 - Z	4471353.761	-0.0027	4471353.7548	148.8355 m
WLCI - X	248645.842	-0.0149	248645.8076	$40^{\circ} 48^{\prime} 30.26911^{\prime \prime}$
WLCI - Y	-4828261.314	-0.0017	-4828261.3179	-8703'07.15003"
WLCI - Z	4146460.096	-0.0011	4146460.0935	180.4234 m

Table 6: Published ITRF96 (1997.0) and updated coordinates (1999.312)

The matrix Q_{0} (inverse of P_{0} introduced in Section 2.1.4) contains the a priori variances of the CORS station coordinates. Nominal values are used for five of the CORS, and IERS published values are used for station NLIB. For NLIB the published variances for X, Y, Z are respectively: $(0.002 \mathrm{~m})^{2},(0.003 \mathrm{~m})^{2}$, and $(0.003 \mathrm{~m})^{2}$. However, the velocities used to project NLIB coordinates also have associated variances (see Figure 14 in Appendix A). After propagating the velocity uncertainties into the projected coordinate variances, the a priori variances for NLIB used in the adjustments are: $\sigma_{X}^{2}=(0.00234 \mathrm{~m})^{2}, \sigma_{Y}^{2}=(0.00437 \mathrm{~m})^{2}$, and $\sigma_{Z}^{2}=(0.00403 \mathrm{~m})^{2}$. For the other CORS, the nominal values are $\sigma_{n}^{2}=\sigma_{e}^{2}=(0.005 \mathrm{~m})^{2}, \quad \sigma_{u}^{2}=(0.010 \mathrm{~m})^{2}$. The unknown covariances are set to zero. After propagation of the variances from the n, e, u system into the X, Y, Z system, the Q_{0} matrix becomes block diagonal. Table 7 shows the block diagonal entries of Q_{0} associated with each station. The data file from Appendix B is used in the CORS Validation adjustment, together with a "session-level" covariance matrix, as described in the following section.

DET1			SAG1		
25.6	-4.9	4.5	25.5	-4.2	4.0
-4.9	65.4	-37.1	-4.2	63.8	-37.2
4.5	-37.1	59.0	4.0	-37.2	60.7
MIL1			STB1		
25.1	-1.5	1.4	25.1	-1.8	1.8
-1.5	65.1	-37.4	-1.8	62.7	-37.5
1.4	-37.4	59.9	1.8	-37.5	62.2
NLIB			WLCI		
5.5	0.0	0.0	25.1	-2.2	1.9
0.0	19.1	0.0	-2.2	67.9	-37.1
0.0	0.0	16.2	1.9	-37.1	57.0

Table 7: Block diagonal elements of Q_{0} in units of mm^{2} in X, Y, Z system

4.1 CORS Validation Adjustment

As a means to ascertain the quality of the observations and associated a priori weights, the RLESS adjustment is performed first (with station NLIB held fixed). As noted above, RLESS yields BIQUUE for the reference variance; it also yields BLUP for the error vector. It is noted that the constraint matrix K (Section 2.1.2) is weighted by 10^{3} in order to maintain numerical stability in the solution. The results of the adjustment are listed in Appendix D. A rather large estimated reference variance value 145.9 was computed. Obviously the alternative hypothesis of (37) is accepted for this estimated reference variance, which warrants further investigation.

It is not uncommon for GPS baseline processing algorithms to return overly optimistic covariance matrices for their estimates. This is likely due in part to the very large formal redundancy in the observation data and the fact that not all systematic errors have been modeled (e.g., atmospheric effects and multipath are difficult to completely model or eliminate), not to mention the often overlooked time-dependent correlation between the observations (and between observation sessions). An overly optimistic covariance matrix Σ returned by the baseline processor, and subsequently used for Q in the network adjustment, will cause the estimated reference variance to be too large. An inspection of the covariance matrix Σ generated by PAGES would seem to indicate overly optimistic values. The following submatrix of Q is associated with the first observed baseline NLIB to MIL1 (see first \$GPS record of Appendix B). The values are typical of those for the other observed baselines.

$$
{ }^{1,1} Q_{3,3}=\left(10^{-6}\right)\left[\begin{array}{ccc}
0.160 & -0.005 & 0.044 \\
-0.005 & 3.240 & -2.713 \\
0.044 & -2.713 & 2.560
\end{array}\right]\left[\mathrm{m}^{2}\right]
$$

The largest variance is for $d Y$, which is equivalent to a standard deviation of $10^{-3} \sqrt{(3.24)}= \pm 0.0018 \mathrm{~m}$. Experience would suggest that the standard deviation of GPS baseline observations of the lengths represented in this project are larger than this, possibly by a factor of 10 or more. Furthermore, if the repeated observation values are inspected for this baseline (DOY's 64, 79, 134), differences in the range of -0.025 m to 0.019 m are found, a precision not reflected by Q. Therefore it is reasonable to suspect that the covariance matrix Σ (network adjustment cofactor matrix Q) returned by the baseline processor is too optimistic, and that it should be rescaled. But before doing so, a test for outliers in the observations is required, since the presence of outliers would also inflate the value of the estimated reference variance.

4.2 Outlier Detection and Hypothesis Tests for CORS Adjustments

Outlier estimation and computation of minimum detectible outliers at the GPS-baseline level is performed according to Sections 2.2.4 and 2.2.5. The results are listed in Table 8 below. The estimated outliers are computed according to (50); the test statistic is computed by (52); and equations (59) and (60) are used to compute the minimum detectible outliers. Records for which the null hypothesis is rejected (i.e., equation (54) is not satisfied) are flagged with an asterisk. In keeping with the assumption that only one outlier is present in the data set, the vector having the largest value for the test statistic (number 16) is removed and the adjustment recomputed.

Estimated baseline outliers and minimum detectible outliers in meters. $\alpha=0.01, \beta=0.80, r_{1}=3, r_{2}=117$, non-central param. $=8.08$, $F(0.01 ; 3,117)=3.95$				
Vec\#	\# from to	est. outlier [dX, dY, dZ]	T_{k}	min. detect. [$d X, d Y, d Z]$
1	NLIB-> MIL1	[-0.015, 0.010,-0.012]	$5.06 *$	0.0007,-0.0006, 0.0015]
2	NLIB-> STB1	[0.009, 0.002,-0.000]	1.77	[0.0008, -0.0006, 0.0016]
3	NLIB-> SAG1	$[-0.001,-0.024,0.021]$	0.83	[0.0008,-0.0006, 0.0016]
4	NLIB-> DET1	[0.000, 0.016, -0.003]	1.45	[0.0007, -0.0005, 0.0015]
5	WLCI-> STB1	$[-0.001,0.007,-0.008]$	0.21	[0.0005,-0.0003, 0.0009]
6	MIL1-> STB1	[-0.001,-0.011, 0.009]	0.64	[0.0004, -0.0003, 0.0008]
7	MIL1-> DET1	[0.006,-0.000, 0.001]	1.08	[0.0005,-0.0004, 0.0010]
8	STB1-> SAG1	[-0.004,-0.003, 0.004]	0.51	[0.0007, -0.0004, 0.0013]
9	STB1-> DET1	0.016,-0.005, 0.006]	3.93	[0.0007,-0.0004, 0.0014]
10	SAG1-> MIL1	[-0.001, 0.000, 0.001]	0.04	[0.0006, -0.0004, 0.0012]
11	SAG1-> DET1	0.003,-0.006, 0.005]	0.29	[0.0006,-0.0003, 0.0011]
12	WLCI-> NLIB	$[-0.006,-0.018,0.012]$	0.88	[0.0007, -0.0006, 0.0014]
13	WLCI-> MIL1	0.006,-0.005, 0.004]	2.06	[0.0004,-0.0003, 0.0009]
14	WLCI-> SAG1	[-0.000, 0.006,-0.005]	0.08	[0.0005,-0.0004, 0.0010]
15	WLCI-> DET1	[0.003, 0.001,-0.002]	0.42	[0.0005,-0.0004, 0.0010]
16	NLIB-> MIL1	[0.013,-0.010,-0.004]	6.40*	[0.0007,-0.0005, 0.0014]
17	NLIB-> STB1	[-0.005,-0.008, 0.019]	1.64	[0.0007,-0.0005, 0.0015]
18	NLIB-> SAG1	0.001, 0.018,-0.017]	0.42	[0.0009,-0.0006, 0.0018]
19	NLIB-> DET1	$[-0.018,0.003,0.005]$	5.22*	[0.0008,-0.0006, 0.0017]
20	DET1-> MIL1	$[-0.004,-0.008,0.013]$	0.52	[$0.0008,-0.0005,0.0015]$
21	STB1-> MIL1	$[-0.001,0.009,-0.003]$	0.42	[0.0006,-0.0004, 0.0012]
22	STB1-> SAG1	0.004,-0.007, 0.006]	0.62	[0.0005,-0.0003, 0.0010]
23	STB1-> DET1	$[-0.001,-0.004,-0.002]$	0.57	[0.0006,-0.0004, 0.0011]
24	WLCI-> NLIB	$[-0.003,0.001,0.004]$	0.69	[0.0006,-0.0005, 0.0012]
25	WLCI-> MIL1	$[-0.001,-0.002,0.003]$	0.15	[$0.0004,-0.0003,0.0009]$
26	WLCI-> STB1	[0.001, 0.002,-0.004]	0.15	[0.0006,-0.0004, 0.0012]
27	WLCI-> SAG1	[0.001, 0.004,-0.002]	0.18	[0.0006,-0.0004, 0.0011]
28	WLCI-> DET1	[0.000,-0.011, 0.003]	1.37	[0.0005,-0.0003, 0.0010]
29	SAG1-> MIL1	[0.001,-0.003, 0.003]	0.03	[0.0006,-0.0004, 0.0013]
30	SAG1-> DET1	$[-0.006,0.001,-0.003]$	1.15	[0.0006,-0.0003, 0.0011]
31	SAG1-> MIL1	[0.006,-0.002, 0.004]	0.44	[0.0008,-0.0005, 0.0015]
32	SAG1-> DET1	[-0.005, 0.002,-0.002]	0.74	[0.0005,-0.0003, 0.0011]
33	WLCI-> MIL1	$[-0.004,0.001,-0.002]$	0.55	[0.0006,-0.0004, 0.0012]
34	WLCI-> STB1	[0.005, 0.007,-0.004]	0.68	[0.0007,-0.0005, 0.0015]
35	WLCI-> SAG1	$[-0.003,0.004,-0.001]$	0.23	[0.0007,-0.0005, 0.0014]
36	WLCI-> DET1	[-0.004,-0.006, 0.012]	1.31	[0.0007, -0.0005, 0.0014]
37	DET1-> MIL1	0.003, 0.002, 0.003]	0.25	[0.0009,-0.0006, 0.0017]
38	NLIB-> MIL1	$[-0.002,0.007,-0.006]$	0.31	[0.0005,-0.0004, 0.0010]
39	NLIB-> STB1	[0.002,-0.008, 0.006]	0.16	[0.0007,-0.0005, 0.0014]
40	NLIB-> WLCI	[0.000,-0.004,-0.000]	0.16	[0.0006,-0.0005, 0.0013]
41	NLIB-> SAG1	[-0.002,-0.013, 0.008]	0.60	[0.0006,-0.0004, 0.0012]
42	NLIB-> DET1	[0.006, 0.010, -0.004]	1.47	[0.0006,-0.0005, 0.0012]
43	STB1-> MIL1	$[-0.000,-0.005,-0.004]$	0.99	[$0.0005,-0.0003,0.0010]$
44	STB1-> SAG1	$[-0.006,-0.001,0.000]$	1.08	[0.0006,-0.0004, 0.0011]
45	STB1-> DET1	[0.000, 0.003,-0.002]	0.03	[0.0005,-0.0003, 0.0011]

Table 8: CORS estimated outliers, test statistics, and minimum detectible outliers

After removal of vector 16, the adjustment yields the following two vectors for which the null hypothesis is rejected.

1 NLIB->MIL1 [-0.014, 0.009,-0.013] 5.08* [0.0007,-0.0006, 0.0015]
9 STB1->DET1 [0.016,-0.005, 0.006] 4.54* [0.0007,-0.0004, 0.0014]
Vector 1 is flagged again. Since it has the larger test statistic value, it is removed and vector 16 is included again for a new computation. The flagged vectors (numbered to retain their original numbers from Table 8) follow.

```
9 STB1->DET1 [ 0.016,-0.005, 0.006] 4.39* [ 0.0007,-0.0004, 0.0014]
16 NLIB->MIL1 [ 0.012,-0.010,-0.005] 6.40* [ 0.0007,-0.0005, 0.0014]
19 NLIB->DET1 [-0.018, 0.004, 0.004] 5.66* [ 0.0008,-0.0006, 0.0017]
```

The following vectors are flagged when both vectors 1 and 16 are removed from the adjustment.

```
9 STB1->DET1 [ 0.016,-0.005, 0.006] 5.11* [ 0.0007,-0.0004, 0.0014]
19 NLIB->DET1 [-0.015, 0.003, 0.002] 4.32* [ 0.0008,-0.0006, 0.0017]
```

Vector 9 is then removed along with 1 and 16 and the adjustment recomputed. Only one vector is flagged.

```
19 NLIB->DET1 [-0.014, 0.003, 0.002] 4.39* [ 0.0008,-0.0006, 0.0017]
```

Since vector 19 was flagged in the initial adjustment, it is removed by itself for yet another adjustment computation.

```
1 NLIB->MIL1 [-0.015, 0.010,-0.012] 5.50* [ 0.0007,-0.0006, 0.0015]
9 STB1->DET1 [ 0.015,-0.005, 0.006] 3.99* [ 0.0007,-0.0004, 0.0014]
16 NLIB->MIL1 [ 0.011,-0.010,-0.003] 4.98* [ 0.0007,-0.0005, 0.0014]
```

Finally it is concluded that vectors $1,9,16$, and 19 may be considered as outliers and removed from the data set. It is also noted that the reliability numbers listed in the last column of Appendix D show that the smallest value associated with the components of the four suspect vectors is 0.92 . This indicates that the measurements were well controlled and further supports removing the vectors from the data set. It is noted that vectors 1,16 , and 19 each originated at NLIB, with 1 and 16 representing the same baseline, and vectors 16 and 19 are from the same day (DOY 79). NLIB is the only station in the network distant from the Great Lakes environment, which may account for different atmospheric influences that were not modeled in the baseline processing. Again, the long length of the baselines as shown in Table 2 is mentioned.

The method of outlier estimation and detection at the baseline-vector level may be compared to the baseline-component method by use of the studentized residuals
discussed in Section 2.2.3. Using a component-wise approach, the hypothesis test of (51) is modified so the components of the estimated outlier $\hat{\delta}^{(k)}$ of equation (50) are tested one at a time using the studentized residual t_{j} of equation (46) as the test statistic (for k th observed baseline and j th observed baseline component, respectively). For a given significance level α, the null hypothesis is rejected if the magnitude of the studentized residual exceeds the critical value of the Student's t distribution, i.e., H_{0}^{j} is rejected if $\left|t_{j}\right|>t_{(\alpha / 2, r)}$. At the 0.01 significance level, the critical value for the complete data set is $t_{(\alpha=0.01 / 2, r=120)}=2.617$. All records for which the critical value is exceeded are flagged with an asterisk in the adjustment results of Appendix D. It is interesting to note that vectors 1 , 16 , and 19 were flagged in the initial adjustment using the baseline-vector method (Table 8), and components from vectors $1,9,13,19$ were flagged using the baseline-component method (Appendix D). Furthermore, with four vectors removed (1, 9, 16, and 19), the baseline-vector method produced no further flagged records; while the baselinecomponent method flagged a component of vector 11 (see Appendix E). Thus, by experiment it has been shown that testing at the baseline level rather than the component level can produce different conclusions in outlier testing.

With the four baseline outliers removed, the adjustments yields 96.2 for the value of the estimated reference variance. This corresponds to overly optimistic uncertainties by a factor of about 10 at the standard deviation level, which seems apparent from inspection of the PAGES covariance matrix and considering the repeat values of the observed baselines. Therefore, the adjustment cofactor matrix Q is scaled a priori by a constant factor of 96 . This is not to say that the a priori reference variance is changed; it must remain set to unity in order that the assumption of a common reference variance for P and P_{0} in the model with stochastic constraints (28a) remains valid. After the rescaling of Q, the adjustment yields an estimated reference variance of 1.0. This leads to the acceptance of the null hypothesis of (37), with the inequality (39) expressed numerically as $\chi_{1-\alpha / 2}^{2}=81.1 \leq T=108.2 \leq \chi_{\alpha / 2}^{2}=138.7$ (documented on the first page of Appendix E).

Owing to the invariant properties of the adjusted observations and the estimated reference variance already mentioned, the results of hypothesis testing conducted for RLESS with station NLIB fixed holds for (Weighted) MINOLESS as well. The steps of outlier detection were not repeated in the Adjustment with Stochastic Constraints. However, outliers and minimum detectible outliers were computed in that adjustment using the data set of 41 observed baseline vectors. The values are similar to those computed for Weighted MINOLESS (see Appendix F). Histogram plots of the predicted errors and the studentized residuals for the minimally constrained adjustments are shown in Figures 5 and 6 , respectively. The graphs are superimposed with a fitted normal-density curve.

Figure 5: Predicted-error histogram for RLESS CORS adjustment, 41 observed baseline vectors

Figure 6: Studentized-residual histogram for RLESS CORS adjustment, 41 observed baseline vectors

The histogram plots show a more-or-less normal distribution of the errors, which lends credence to the assumption of a normal distribution made for hypothesis testing. Both the traditional "redundancy" numbers (40) and the standardized reliability numbers (44) were computed and listed in the last two columns, respectively, of Appendix D. The difference in magnitude between the two quantities only varies by about five percent. However, the differences could be much greater for a data set with stronger correlation between the observations. Thus, it is recommended that the standardized reliability numbers be adopted for correlated observations.

After removal of the four suspect vectors, the external reliability was computed for each of the 41 observed baseline vectors and listed in Table 9. The square root of the tabulated values represents the magnitude of the displacement of ξ (weighted by N) due to the presence of an undetected outlier in the corresponding observed GPS vector. The largest value is 3.127 . These values are unitless and should be considered in a relative sense, especially compared to the quadratic form $\Omega=\tilde{e}^{\mathrm{T}} P \tilde{e}$, which is 108.2 for this adjustment.

Undetected				External Network Reliability	Undetected				External Network Reliability
Outlier					Outlier				
Vector\#	from		to		Vector\#	from		to	
1	NLIB	->	STB1	0.643	22	WLCI	->	STB1	1.079
2	NLIB	->	SAG1	0.513	23	WLCI	->	SAG1	0.987
3	NLIB	->	DET1	0.627	24	WLCI	->	DET1	1.194
4	WLCI	->	STB1	2.893	25	SAG1	->	MIL1	0.719
5	MIL1	->	STB1	1.852	26	SAG1	->	DET1	0.912
6	MIL1	->	DET1	1.172	27	SAG1	->	MIL1	0.529
7	STB1	->	SAG1	0.985	28	SAG1	->	DET1	1.027
8	SAG1	->	MIL1	0.917	29	WLCI	->	MIL1	0.702
9	SAG1	->	DET1	0.883	30	WLCI	->	STB1	0.605
10	WLCI	->	NLIB	2.032	31	WLCI	->	SAG1	0.520
11	WLCI	->	MIL1	1.730	32	WLCI	->	DET1	0.488
12	WLCI	->	SAG1	1.373	33	DET1	->	MIL1	0.460
13	WLCI	->	DET1	1.150	34	NLIB	->	MIL1	1.206
14	NLIB	->	STB1	0.836	35	NLIB	->	STB1	0.764
15	NLIB	->	SAG1	0.485	36	NLIB	->	WLCI	1.248
16	DET1	->	MIL1	0.613	37	NLIB	->	SAG1	0.848
17	STB1	->	MIL1	0.776	38	NLIB	->	DET1	0.697
18	STB1	->	SAG1	1.288	39	STB1	->	MIL1	1.617
19	STB1	->	DET1	0.845	40	STB1	->	SAG1	0.872
20	WLCI	->	NLIB	3.127	41	STB1	->	DET1	0.851
21	WLCI	->	MIL1	1.706					

Table 9: CORS external reliability values from RLESS

4.3 Comparison of RLESS, MINOLESS, Weighted MINOLESS, and Adjustment with Stochastic Constraints

After reducing the original data set from 45 to 41 observed baseline vectors and rescaling the a priori cofactor matrix by 96, station coordinates were estimated using RLESS, MINOLESS, Weighted MINOLESS, and Adjustment with Stochastic Constraints
(SCLESS). Coordinates for station NLIB were held fixed in the RLESS solution. The results are tabulated in the tables below. Table 10 lists the estimated geodetic coordinates for each solution type. It is interesting to note that WMINOLESS and SCLESS yielded the same values for the estimate coordinates within the precision of the survey, which is not necessarily expected. Table 11 lists the changes from the a priori coordinates (1999.312 epoch) rotated into the local geodetic horizon system, where it can be seen that the MINOLESS solution yielded the smallest overall change as compared to the other minimum constraint solutions (RLESS and WMINOLESS). Table 12 shows the estimated standard deviations in north, east, and up. These values are the positive square roots of the diagonal elements of the estimated dispersion matrix rotated into the north, east, up system, i.e., $\hat{\sigma}_{j}=\sqrt{\left(\hat{D}\left\{\hat{\xi}_{n, e, u}\right\}\right)_{j j}}$. The difference between the dispersion and the estimated dispersion matrices (shown with a hat over the D) is that the latter uses the estimated reference variance as opposed to the a priori value. Table 12 also lists the estimated reference variance, the trace of the estimated dispersion matrix, and the RMS of the respective coordinates. Hypothesis testing of the estimated heights is addressed in the next section.

	RLESS	MINOLESS	WMINOLESS	SCLESS
DET1	$\begin{array}{r} 42^{\circ} 17^{\prime} 50.45429^{\prime \prime} \\ -83^{\circ} 05^{\prime} 43.06695^{\prime \prime} \\ 145.0446 \mathrm{~m} \end{array}$	$\begin{array}{r} 42^{\circ} 17^{\prime} 50.45418^{\prime \prime} \\ -83^{\circ} 05^{\prime} 43.06689^{\prime \prime} \\ 145.0461 \mathrm{~m} \end{array}$	$\begin{array}{r} 42^{\circ} 17^{\prime} 50.45419^{\prime \prime} \\ -83^{\circ} 05^{\prime} 43.06691^{\prime \prime} \\ 145.0456 \mathrm{~m} \end{array}$	$\begin{array}{r} 42^{\circ} 17^{\prime} 50.45419^{\prime \prime} \\ -83^{\circ} 05^{\prime} 43.06691^{\prime \prime} \\ 145.0459 \mathrm{~m} \end{array}$
MIL1	$\begin{array}{r} 43^{\circ} 00^{\prime} 09.13089^{\prime \prime} \\ -87^{\circ} 53^{\prime} 18.40903^{\prime \prime} \\ 147.3683 \mathrm{~m} \end{array}$	$\begin{array}{r} 43^{\circ} 00^{\prime} 09.13079^{\prime \prime} \\ -87^{\circ} 53^{\prime} 18.40896^{\prime \prime} \\ 147.3696 \mathrm{~m} \end{array}$	$\begin{array}{r} 43^{\circ} 00^{\prime} 09.13080^{\prime \prime} \\ -87^{\circ} 53^{\prime} 18.40899^{\prime \prime} \\ 147.3691 \mathrm{~m} \end{array}$	$\begin{array}{r} 43^{\circ} 00^{\prime} 09.13080^{\prime \prime} \\ -87^{\circ} 53^{\prime} 18.40898^{\prime \prime} \\ 147.3706 \mathrm{~m} \end{array}$
NLIB	$\begin{array}{r} 41^{\circ} 46^{\prime} 17.72753^{\prime \prime} \\ -91^{\circ} 34^{\prime} 29.61879^{\prime \prime} \\ 207.0266 \mathrm{~m} \end{array}$	$\begin{array}{r} 41^{\circ} 46^{\prime} 17.72743^{\prime \prime} \\ -91^{\circ} 34^{\prime} 29.61871^{\prime \prime} \\ 207.0280 \mathrm{~m} \end{array}$	$\begin{array}{r} 41^{\circ} 46^{\prime} 17.72743^{\prime \prime} \\ -91^{\circ} 34^{\prime} 29.61874^{\prime \prime} \\ 207.0274 \mathrm{~m} \end{array}$	$\begin{array}{r} 41^{\circ} 46^{\prime} 17.72744^{\prime \prime} \\ -91^{\circ} 34^{\prime} 29.61874^{\prime \prime} \\ 207.0271 \mathrm{~m} \end{array}$
SAG1	$\begin{array}{r} 43^{\circ} 37^{\prime} 43.11955^{\prime \prime} \\ -83^{\circ} 50^{\prime} 15.95894^{\prime \prime} \\ 149.2208 \mathrm{~m} \end{array}$	$\begin{array}{r} 43^{\circ} 37^{\prime} 43.11944^{\prime \prime} \\ -83^{\circ} 50^{\prime} 15.95887^{\prime \prime} \\ 149.2223 \mathrm{~m} \end{array}$	$\begin{array}{r} 43^{\circ} 37^{\prime} 43.11945^{\prime \prime} \\ -83^{\circ} 50^{\prime} 15.95890^{\prime \prime} \\ 149.2217 \mathrm{~m} \end{array}$	$\begin{array}{r} 43^{\circ} 37^{\prime} 43.11945^{\prime \prime} \\ -83^{\circ} 50^{\prime} 15.95890^{\prime \prime} \\ 149.2222 \mathrm{~m} \end{array}$
STB1	$\begin{array}{r} 44^{\circ} 47^{\prime} 43.74804^{\prime \prime} \\ -87^{\circ} 18^{\prime} 51.58779^{\prime \prime} \\ 148.8377 \mathrm{~m} \end{array}$	$\begin{array}{r} 44^{\circ} 47^{\prime} 43.74793^{\prime \prime} \\ -87^{\circ} 18^{\prime} 51.58771^{\prime \prime} \\ 148.8390 \mathrm{~m} \end{array}$	$\begin{array}{r} 44^{\circ} 47^{\prime} 43.74794^{\prime \prime} \\ -87^{\circ} 18^{\prime} 51.58774^{\prime \prime} \\ 148.8385 \mathrm{~m} \end{array}$	$\begin{array}{r} 44^{\circ} 47^{\prime} 43.74794^{\prime \prime} \\ -87^{\circ} 18^{\prime} 51.58774^{\prime \prime} \\ 148.8382 \mathrm{~m} \end{array}$
WLCI	$\begin{array}{r} 40^{\circ} 48^{\prime} 30.26949^{\prime \prime} \\ -87^{\circ} 03^{\prime} 07.15037^{\prime \prime} \\ 180.4242 \mathrm{~m} \end{array}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 30.26939^{\prime \prime} \\ -87^{\circ} 03^{\prime} 07.15030^{\prime \prime} \\ 180.4257 \mathrm{~m} \end{array}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 30.26939^{\prime \prime} \\ -87^{\circ} 03^{\prime} 07.15033^{\prime \prime} \\ 180.4252 \mathrm{~m} \end{array}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 30.26938^{\prime \prime} \\ -87^{\circ} 03^{\prime} 07.15032^{\prime \prime} \\ 180.4252 \mathrm{~m} \end{array}$

Table 10: CORS estimated geodetic coordinates (ϕ, λ, h)

		RLESS	MINOLESS	WMINOLESS	SCLESS
DET1	$d n$	-5.5	-2.2	-2.4	-2.4
	$d e$	-2.1	-3.5	-2.9	-2.8
	$d u$	-0.1	-1.6	-1.1	-1.4
MIL1	$d n$	-1.1	2.1	1.9	1.9
	$d e$	7.5	5.8	6.5	6.3
	$d u$	9.3	7.9	8.4	6.9
NLIB	$d n$	0.0	3.2	3.0	2.8
	$d e$	0.0	-1.9	-1.2	-1.0
	$d u$	0.0	-1.3	-0.8	-0.5
SAG1	$d n$	1.1	4.4	4.2	4.1
	$d e$	-2.5	-4.0	-3.4	-3.4
	$d u$	2.4	1.0	1.6	1.1
STB1	$d n$	-2.1	1.2	1.0	0.9
	$d e$	-1.3	-2.9	-2.3	-2.3
	$d u$	-2.2	-3.5	-2.9	-2.6
WLCI	$d n$	-1.7	-8.5	-8.7	-8.3
	$d e$	7.9	6.3	7.0	6.7
	$d u$	-0.8	-2.4	-1.8	-1.8
norm		20.1	17.6	17.8	16.6
mean	$d n$	-1.6	0.0	-0.2	-0.2
	$d e$	1.6	0.0	0.6	0.6
	$d u$	1.4	0.0	0.6	0.3

Table 11: CORS changes from a priori coordinates $(d n, d e, d u)$ in units of mm

Station	$\begin{gathered} \text { RLESS } \\ \hat{\sigma}_{0}^{2}=1.00 \end{gathered}$			$\begin{gathered} \text { MINOLESS } \\ \hat{\sigma}_{0}^{2}=1.00 \end{gathered}$			WMINOLESS$\hat{\sigma}_{0}^{2}=1.00$			$\begin{gathered} \hline \text { SCLESS } \\ \hat{\sigma}_{0}^{2}=0.96 \end{gathered}$		
	$\operatorname{tr}(\hat{D}\{\hat{\xi}\})=396 \cdot 10^{-6} \mathrm{~m}^{2}$			$\operatorname{tr}(\hat{D}\{\hat{\xi}\})=140 \cdot 10^{-6} \mathrm{~m}^{2}$			$\operatorname{tr}(\hat{D}\{\hat{\xi}\})=186 \cdot 10^{-6} \mathrm{~m}^{2}$			$\operatorname{tr}(\hat{D}\{\hat{\xi}\})=200 \cdot 10^{-6} \mathrm{~m}^{2}$		
	$\hat{\sigma}_{n}$	$\hat{\sigma}_{e}$	$\hat{\sigma}_{u}$									
DET1	1.4	2.0	8.5	0.7	0.8	3.9	0.7	1.2	5.5	2.1	1.9	5.1
MIL1	1.4	1.5	8.4	0.7	0.6	3.8	0.7	0.8	5.4	2.0	1.8	5.1
NLIB	0.1	0.0	0.0	1.0	1.2	6.3	1.0	0.8	3.6	2.1	1.7	3.7
SAG1	1.4	1.9	8.4	0.7	0.7	3.9	0.7	1.1	5.4	2.1	1.8	5.1
STB1	1.6	1.6	8.7	0.9	0.7	4.5	0.9	0.9	5.9	2.1	1.8	5.4
WLCI	1.5	1.6	9.1	1.0	0.7	5.1	1.0	0.9	6.4	2.2	1.8	5.8
RMS	1.3	1.6	7.9	0.8	0.8	4.7	0.8	1.0	5.4	2.1	1.8	5.1

Table 12: CORS estimated standard deviations (n, e, u) in units of mm

4.4 Hypothesis Testing for CORS Heights

Hypothesis testing of the estimated heights is carried out in accordance with Section 2.2.7, with the goal being to test if the estimated heights, based on observations from the project epoch (1997.312), agree with published height values referring to the 1997.0 epoch. The hypothesis testing is done for each of the four solution types. It is noted again that the height of NLIB has been projected forward via the IERS published velocity vectors; all other heights in the vector h^{0} of (62) refer to the 1997.0 epoch. For a redundancy of 108 and a significance level of 0.05 , the critical value of the Student's t distribution is $t_{(\alpha=0.05 / 2, r=108)}=1.982$. For the stochastically constrained solution, the system redundancy is 123 and the critical value is 1.979 . Test-statistic values are listed in Table 13 for each solution type. Only the value for station MIL1 in the MINOLESS adjustment exceeded the Student's t-distribution critical value, though MIL1 values are also larger than usual for the other solution types. However, a reduction in magnitude of only 0.5 mm between the estimated and the a priori value for MIL1 would have decreased the test statistic to less than the critical value. With the exception of this one case, the null hypothesis of (62) is accepted for each station in all four adjustment methods.

Station	RLESS	MINOLESS	WMINOLESS	SCLESS
DET1	0.017	0.418	0.193	0.278
MIL1	1.097	$\mathbf{2 . 0 5 2}$	1.556	1.416
NLIB	0.000	0.213	0.232	0.138
SAG1	0.287	0.253	0.289	0.218
STB1	0.253	0.767	0.499	0.501
WLCI	0.093	0.459	0.280	0.327

Table 13: Test-statistic values for CORS height hypothesis test

4.5 Summary of CORS Adjustments

Four of the original 45 observed baseline vectors were flagged as outliers and removed from the final data set. Given the considerable length of the baselines and the possibility that station NLIB may have been susceptible to environmental influences different from those of the other stations near the Great Lakes, this does not seem to be an unusually large number of rejections. The numerical results show that MINOLESS yields a smaller length of parameter vector (smallest overall change from a priori coordinate values) and a smaller trace of the dispersion matrix as compared to RLESS, which was expected. Also, from the last part of Table 11, it is seen that the coordinate changes using MINOLESS were zero in an average sense. However, for MINOLESS the null hypothesis of (62) was "narrowly rejected" for station MIL1. RLESS is the least desirable of the four solutions, since only five of the six points absorb the larger dispersion-matrix trace in their variances. Both the Weighted MINOLESS and the Adjustment with Stochastic Constraints are appealing in that they incorporate a priori variance information about the
parameters. The author would argue that, in general, the Weighted MINOLESS is preferred, not only because it handles a priori covariance information about the parameters but also because of its minimum constraint characteristic.

The final conclusion is that the published height values from the 1997.0 epoch (with NLIB transformed to 1999.312 via the velocity vector) agree substantially with observations made at the 1999.312 epoch. Therefore, these published values will be used in the estimation of the new fiducial points addressed in Chapter 5. It should be noted that the testing of the published coordinates with respect to later GPS baseline observations can really only validate that the height differences are statistically unchanged. Any constant vertical shift over the whole network region, for example long-wave post glacial rebound phenomena, could not be detected by this method. An undetected constant change in height over the entire region could be significant for scientific studies. However, the testing conducted herein is valuable in that it indicates there have not been local vertical deformations that have significantly changed any of the station heights with respect to the others. Oftentimes, vertical deformations are strongly dependent upon local phenomena (e.g., aquifer compression).

For the record, results of the final adjustments of the 41 observed baseline vectors are listed in Appendices \underline{E} and \underline{F} for the Weighted MINOLESS and SCLESS, respectively.

CHAPTER 5

COORDINATE ESTIMATION OF NEW (FIDUCIAL) POINTS

The second part of the project treats the estimation of the coordinates (ellipsoidal heights in particular) of the new GPS-buoy fiducial sites. The station names for the new points are BEHD, G317, and MBYC. Coordinates for the new fiducial sites will be estimated by the method of RLESS, BLIMPBE, and by Adjustment with Stochastic Constraints (SCLESS), with a comparison between the results of each. In this network, only observed vectors associated with the baselines depicted in Figure 2 are used; data from the CORS validation adjustment are not considered. Furthermore, the original published horizontal coordinate values (1997.0 epoch) are now projected forward to the 1999.442 epoch, which corresponds to the nominal mean observation DOY 161.5 (including updates for all three components for station NLIB). Table 14 shows the coordinates of the CORS at the published and project epochs. The sub-mm deviations in height from the published values listed in Appendix A are attributed to rounding error in the computations. The Cartesian coordinates from the fourth column are used as a priori coordinates in the adjustment.

Station Coordinate	$\begin{gathered} X / Y / Z \quad[\mathrm{~m}] \\ (1997.0) \end{gathered}$	$\begin{gathered} \text { Velocities } \\ {[\mathrm{m} / \mathrm{yr}]} \\ \mathrm{V}_{X} / \mathrm{V}_{Y} / \mathrm{v}_{Z} \\ \hline \end{gathered}$	$\begin{aligned} & X / Y / Z \quad[\mathrm{~m}] \\ & (1999.442) \end{aligned}$	$\begin{gathered} \phi, \lambda, h \\ (1999.442) \end{gathered}$
DET1 - X	568024.755	-0.0156	568024.7169	$42^{\circ} 17^{\prime} 50.45410^{\prime \prime}$
DEY1 - Y	-4690674.635	-0.0043	-4690674.6455	-83005'43.06713"
DET1 - Z	4270188.820	-0.0026	4270188.8137	145.0446 m
MIL1 - X	172136.032	-0.0118	172136.0032	$43^{\circ} 00^{\prime} 09.13085^{\prime \prime}$
MIL1 - Y	-4668696.644	-0.0019	-4668696.6486	-8753'18.40877"
MIL1 - Z	4327808.348	-0.0015	4327808.3443	147.3775 m
NLIB - X	-130934.472	-0.0150	-130934.5086	$41^{\circ} 46^{\prime} 17.72752^{\prime \prime}$
NLIB - Y	-4762291.729	0.0009	-4762291.7268	-91³4'29.61887"
NLIB - Z	4226854.663	-0.0050	4226854.6508	207.0262 m
SAG1 - X	496374.994	-0.0159	496374.9552	$43^{\circ} 37^{\prime} 43.11958^{\prime \prime}$
SAG1 - Y	-4597431.512	-0.0017	-4597431.5162	-83050'15.95914"
SAG1 - Z	4378421.351	0.0000	4378421.3510	149.2233 m
STB1 - X	212435.716	-0.0164	212435.6760	44** ${ }^{\circ}$ '43.74795'
SYB1 - Y	-4528758.901	-0.0035	-4528758.9095	-87018'51.58794"
STB1 - Z	4471353.761	-0.0027	4471353.7544	148.8355 m
WLCI - X	248645.842	-0.0149	248645.8056	$40^{\circ} 48^{\prime} 30.26910^{\prime \prime}$
WLCI - Y	-4828261.314	-0.0017	-4828261.3182	-8703'07.15012"
WLCI - Z	4146460.096	-0.0011	4146460.0933	180.4234 m

Table 14: Published ITRF96 (1997.0) and updated coordinates (1999.442)

Since observations to the new fiducial points required the use of tripods to center the GPS antennas over the marks, the introduction of centering errors into the observational stochastic model at these stations is appropriate. Based on experience with the particular type of tripod used and on the accuracy of centering apparatus, a centering error of $\pm 0.003 \mathrm{~m}$ with respect to the horizontal axes is adopted. Since the "fixed-height" tripods are manufactured with a precise 2 -meter dimension from the tip of the centering staff to the antenna ARP surface, the height of GPS antenna above the mark is considered an errorless quantity in the adjustment. Representing the horizontal centering variances along the north and east local-horizon axes as $\sigma_{n}^{2}=\sigma_{e}^{2}=(0.003 \mathrm{~m})^{2}$ and using the rotational matrix of (57), the centering errors (assumed uncorrelated) in the horizontal plane are transformed into the X, Y, Z parameter coordinate-system by variance propagation. The resulting (full) 3×3 cofactor matrix is added to the corresponding block-diagonal sub-matrix of Q. The 3×3 matrix is referred to as a cofactor matrix here in order to imply an associated reference variance identical with that used for the observed GPS vectors. The addition of the 3×3 matrix is made once for each observed vector that either originates or terminates at a station with centering errors, and the addition is made twice if both ends of the vector are at stations having centering errors.

5.1 Estimation of Fiducial Point Heights Using RLESS

The results of the minimum constraint adjustment RLESS (12a) are used to evaluate the quality of the observations. Appendix G contains a listing of the RLESS adjustment results using the 23 -vector data set. The adjustment yields 12.86 for the estimated reference variance (35) and flags baseline vectors 9 and 17 as potential outliers according to Section 2.2.4. Table 15 shows a listing of the estimated and minimum detectible outliers computed in accordance with equations (50) and (60), respectively. The table also shows the test statistic computed by (52). Vectors number 9 and 17 are marked with an asterisk since the computed test statistic exceeds the critical value of the F distribution, and (54) is not satisfied. After removing vector 17, the larger outlier, the estimated reference variance reduces to 8.82 , and no further vectors are flagged as outliers. Still the null hypothesis for the test of the estimated reference variance (37) is rejected. A rescaling of the observation cofactor matrix Q, similar to that discussed in Section 4.2, is again necessary to consider.

Table 15: Estimated outliers, test statistics, and minimum detectible outliers

Because of the increase in Q from the centering errors, the matrix Q cannot simply be scaled by the estimated reference variance of the initial adjustment. And because the scaling is based upon the assumption that the covariance matrix associated with the observed GPS baselines (i.e., as determined by PAGES) is overly optimistic, the scaling must take place before Q is increased by the cofactors from the centering errors. It is logical to assume that the scale factor should be of the same order of magnitude as that determined in Section 4.2 for the CORS Validation adjustment. Perhaps it should be about one-third to one-half the magnitude, owing to the shorter observations sessions (8 hours instead of 24) and the lower network redundancy (42 compared to 108 , with outlier vectors removed). The following excerpt of the first 3×3 block-diagonal portion of Q (before centering errors are considered) gives a representative example of the a priori observational cofactors:

$$
{ }^{1,1} Q_{3,3}=\left(10^{-6}\right)\left[\begin{array}{ccc}
0.160 & -0.325 & 0.290 \\
-0.325 & 5.290 & -4.575 \\
0.290 & -4.575 & 4.410
\end{array}\right]\left[\mathrm{m}^{2}\right] .
$$

The square roots of the diagonal elements represent the precisions of the observed baseline-vector components as determined by the baseline processor. The average square-root value is 1.6 mm , which is arguably too small by one order of magnitude. While the choice of the particular scale-factor value to use is somewhat subjective, a value of 48 was chosen, which is one half the value used in the CORS Validation adjustment (Section 4.2).

The subsequent RLESS adjustment yields 1.02 for the estimated reference variance, which leads to an acceptance of the null hypothesis (37). Histogram plots of the predicted errors and studentized residuals for the "outlier-free" adjustment are shown in Figures $\underline{7}$ and $\underline{8}$, respectively. The graphs show that the errors are somewhat peaked in the center with a couple of high bars at the edges; overall the deviation from the superimposed normal curve is not too radical.

Figure 7: Predicted-error histogram for RLESS adjustment, 22 observed baseline vectors

Figure 8: Studentized-residual histogram for RLESS adjustment, 22 observed baseline vectors

5.2 Estimation of Fiducial Point Heights Using BLIMPBE and Adjustment with Stochastic Constraints

This section includes the selecting/weighting of a subset of points in the process of estimating the coordinates of the new points. Two BLIMPBE solutions using different types of selection matrices and the Adjustment with Stochastic Constraints (SCLESS) are computed and compared.

In order to identify the two BLIMPBE solutions, the one based on the first type of selection matrix will hereinafter be referred to as WBLIMPBE, for "Weighted" BLIMPBE. And the solution based on the second type of selection matrix will retain the original label BLIMPBE. (This is done only as a convenience, and is not meant to imply the introduction of a new estimator.) For WBLIMPBE, the \bar{S} matrix of (26) is used (i.e., $\bar{S} \rightarrow(S+N)^{-1}$), with the six CORS stations selected. In addition, the submatrix I_{s} of (23), as used in (26), is replaced by P_{0}; thus the stochastic information about the control points are incorporated as well (hence the choice of "Weighted" in the label). As discussed in Section 2.1.5, the numerical solution based on this form of \bar{S} is equivalent to that of Partial MINOLESS.

Now, for the BLIMPBE solution, a "standard" selection matrix as defined in (23) is used for \bar{S}. Note that this choice for \bar{S} will result in a zero value in $\hat{\xi}$ for all elements in the $s+1$ through m locations, as is evident by inspection of (25a) (based on the previous assumption that the parameter vector has been arranged so that the selected points appear first). In other words, the a priori coordinate values for the non-selected points will be retained (the so-called "reproducing" property). Likewise, from (25b), it can be seen that the variances of the non-selected points are zero. Consequently, for this BLIMPBE solution it is now the new points that are selected! This is in contrast to typical use of the selection matrix where the control points are selected (e.g., Partial MINOLESS). The results of using such a selection matrix can be interpreted as having a minimum bias for the new points, rather than for the control points. Finally, it is noted that the denominator of (35) must be altered to account for the change in the value of $\operatorname{tr}\left(Q_{\tilde{e}} P\right)$, which is no longer the system observational-redundancy $n-q$. This modification should also be reflected in the hypothesis test (52) for the estimated outlier. The value used for the denominator is determined by starting with the definition $\mathrm{E}\left\{\tilde{e}^{T} P \tilde{e}\right\}:=\operatorname{tr}\left(Q_{\tilde{e}} P\right) \sigma_{0}^{2}$ and proceeding as follows.

$$
\begin{aligned}
& \mathrm{E}\left\{\tilde{e}^{T} P \tilde{e}\right\}:=\operatorname{tr}\left(Q_{\tilde{e}} P\right) \sigma_{0}^{2} \\
& =\sigma_{0}^{2} \operatorname{tr}\left(I_{n}-A \bar{S} N(N \bar{S} N \bar{S} N)^{-} N \bar{S} A^{\mathrm{T}} P\right) \\
& =\sigma_{0}^{2} \operatorname{tr}\left(I_{n}-(N \bar{S} N \bar{S} N)^{-} N \bar{S}\left(A^{\mathrm{T}} P A\right) \bar{S} N\right) \quad \text { trace invariant to cyclic transformation } \\
& =\sigma_{0}^{2}\left(n-\operatorname{rk}\left((N \bar{S} N \bar{S} N)^{-} N \bar{S} N \bar{S} N\right)\right) \quad \text { trace of idempotent matrix is rank of matrix } \\
& =\sigma_{0}^{2}(n-\operatorname{rk}(N \bar{S} N \bar{S} N)) \quad \text { because } \operatorname{rk}\left(A^{-} A\right)=\operatorname{rk}(A), \text { see KoCH }(1999, \mathrm{pg} .51)
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma_{0}^{2}(n-\operatorname{rk}(N \bar{S})) \\
& \Rightarrow \hat{\sigma}_{0}^{2}=\tilde{e}^{T} P \tilde{e} /(n-\operatorname{rk}(N \bar{S})), \text { where typically } \operatorname{rk}(N \bar{S}) \leq \operatorname{rk}(A)=q
\end{aligned}
$$

The SCLESS adjustment uses the same P_{0} matrix used in WBLIMPBE. The weights are generated from the values shown in Table 7. The same a priori scaling of the cofactor matrix as described in Section 5.1 is done for all solutions in this section.
Some comparisons of the characteristics of the residuals are shown in Table 16. The BLIMPBE solution generates the largest range of residuals and comes closer to the SCLESS values then to the WBLIMPBE. The variation in the distribution of residuals can be seen from the histogram plots in Figures 9, 10, and 11.

	BLIMPBE	WBLIMPBE	SCLESS
minimum	-3.42	-3.01	-3.19
maximum	6.52	3.74	6.06
range	9.94	6.75	9.25
rms	1.61	1.15	1.47

Table 16: Residual statistics in units of cm

Figure 9: Studentized-residual histogram for BLIMPBE adjustment, 22 observed baseline vectors

Figure 10: Studentized-residual histogram for WBLIMPBE adjustment, 22 observed baseline vectors

Figure 11: Studentized-residual histogram for SCLESS adjustment, 22 observed baseline vectors

In addition to estimated outliers at the baseline-vector level, minimum detectible outliers (50) were also computed for BLIMPBE, WBLIMPBE, and SCLESS. The values are tabulated in the respective appendices. Differences between minimum detectible outliers computed in each solution are given in Table 17. The difference is in the sense of SCLESS solution minus W/BLIMPBE solutions. Overall, the WBLIMPBE yields results closer to that of SCLESS than does BLIMPBE.

The external reliability numbers for the W/BLIMPBE and SCLESS solutions are also listed in the respective appendices. The WBLIMPBE solution yields the smaller value for each vector. As discussed in Section 2.2.6, the quadratic form $\Omega=\tilde{e}^{\mathrm{T}} P \tilde{e}$ is directly affected by the presence of an undetected outlier, which is reflected in the value of the external reliability number for the corresponding observation. Therefore, the external reliability values should be considered together with the appropriate denominator of (35), (36), or the value computed for BLIMPBE, when evaluating the impact on the estimated reference variance. These denominator values are 54, 42 and 57 for the BLIMPBE, WBLIMPBE and SCLESS solutions, respectively. The respective values for Ω are 72.769, 42.708 and 56.251.

		SCLESS - BLIMPBE			SCLESS - WBLIMPBE				
Vector No.	Baseline	$\Delta d X$ $[\mathrm{~mm}]$	$\Delta d Y$ $[\mathrm{~mm}]$	$\Delta d Z$ $[\mathrm{~mm}]$	norm $[\mathrm{mm}]$	$\Delta d X$ $[\mathrm{~mm}]$	$\Delta d Y$ $[\mathrm{~mm}]$	$\Delta d Z$ $[\mathrm{~mm}]$	norm $[\mathrm{mm}]$
1	MBYC \rightarrow G317	0.9	-0.6	1.7	1.8	-1.0	0.8	-2.1	2.2
2	SAG1 \rightarrow G317	1.6	-0.9	3.1	3.4	-0.9	0.7	-1.9	2.0
3	DET1 \rightarrow MBYC	1.5	-1.1	3.0	3.4	-1.2	0.7	-2.3	2.4
4	BEHD \rightarrow MBYC	0.8	-0.6	1.6	1.7	-1.4	1.0	-2.9	3.2
5	NLIB \rightarrow BEHD	1.5	-1.2	3.1	3.6	-3.5	2.7	-7.2	11.9
6	MIL1 \rightarrow BEHD	2.0	-1.4	4.0	4.9	-1.6	1.1	-3.2	3.7
7	G317 \rightarrow STB1	1.4	-0.8	2.7	2.9	-0.6	0.5	-1.3	1.3
8	NLIB \rightarrow BEHD	1.2	-1.0	2.6	2.9	-1.0	0.8	-2.0	2.2
9	MIL1 \rightarrow BEHD	1.7	-1.2	3.4	4.0	-1.1	0.7	-2.1	2.2
10	MBYC \rightarrow BEHD	0.8	-0.5	1.5	1.6	-0.7	0.5	-1.5	1.5
11	G317 \rightarrow MBYC	0.8	-0.6	1.7	1.8	-0.7	0.5	-1.4	1.4
12	SAG1 \rightarrow G317	1.4	-0.9	2.8	3.1	-0.6	0.4	-1.2	1.2
13	DET1 \rightarrow MBYC	1.1	-0.8	2.2	2.4	-0.6	0.4	-1.1	1.1
14	STB1 \rightarrow G317	1.2	-0.8	2.4	2.6	-0.5	0.3	-0.9	0.9
15	BEHD \rightarrow WLCI	2.4	-1.8	4.7	6.4	-2.3	1.7	-4.5	6.0
16	NLIB \rightarrow BEHD	1.3	-1.0	2.6	2.9	-1.2	1.0	-2.4	2.7
17	MBYC \rightarrow BEHD	0.7	-0.5	1.3	1.3	-0.7	0.5	-1.5	1.5
18	G317 \rightarrow MBYC	0.8	-0.6	1.7	1.8	-0.7	0.4	-1.3	1.3
19	SAG1 \rightarrow G317	1.1	-0.8	2.3	2.5	-0.5	0.3	-1.0	1.0
20	DET1 \rightarrow MBYC	1.1	-0.7	2.2	2.3	-0.7	0.4	-1.3	1.3
21	STB1 \rightarrow G317	0.9	-0.6	1.9	2.0	-0.5	0.3	-0.9	0.9
22	BEHD \rightarrow WLCI	2.1	-1.6	4.1	5.3	-2.5	1.8	-4.8	6.6
	min	0.9	-0.6	1.7	1.8	-3.5	0.3	-7.2	0.9
	max	1.6	-0.9	3.1	3.4	-0.5	2.7	-0.9	11.9
	range	1.5	-1.1	3.0	3.4	3.0	2.4	6.3	11.0
	avg	0.8	-0.6	1.6	1.7	-1.1	0.8	-2.2	2.7

Table 17: Difference in minimum detectible outliers (SCLESS - W/BLIMPBE)

Table 18 shows the estimated geodetic coordinates for each solution. As an aid to viewing the differences between the solutions, Table 19 gives the CORS station coordinates from the four solutions as expressed in the local geodetic horizon system of each of the respective CORS (a priori coordinates), thereby showing the changes from the CORS a priori coordinate values. The norm values in the last column of each solution type in Table 19 represent the change in each point from the a priori coordinates, whereas the norm values on the bottom row show the changes of all the CORS coordinates along the respective axes. The bold values are the total norm of the coordinate changes. This table shows the reproducing property of BLIMPBE when using the "standard" selection matrix of (23). Table 20 lists the W/BLIMPBE coordinates for the new points as expressed in the local geodetic horizon system of SCLESS station coordinates, which highlights the differences in coordinate estimates between the W/BLIMPBE solutions and those of SCLESS. Note that both BLIMPBE and WBLIMPBE closely match the
horizontal coordinates of SCLESS, but the heights of BLIMPBE are much closer to SCLESS than are those of WBLIMPBE.

	RLESS	BLIMPBE	WBLIMPBE	SCLESS
DET1	$\begin{array}{r} 42^{\circ} 17^{\prime} 50.45439^{\prime \prime} \\ -83^{\circ} 05^{\prime} 43.06656^{\prime \prime} \\ 145.0073 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 42^{\circ} 17^{\prime} 50.45410^{\prime \prime} \\ -83^{\circ} 05^{\prime} 43.06713^{\prime \prime} \\ 145.0446 \mathrm{~m} \end{array}$	$\begin{array}{r} 42^{\circ} 17^{\prime} 50.45414^{\prime \prime} \\ -83^{\circ} 05^{\prime} 43.06676^{\prime \prime} \\ 145.0252 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 42^{\circ} 17^{\prime} 50.45414^{\prime \prime} \\ -83^{\circ} 05^{\prime} 43.06696^{\prime \prime} \\ 145.0416 \mathrm{~m} \end{array}$
MIL1	$\begin{array}{r} 43^{\circ} 00^{\prime} 09.13116^{\prime \prime} \\ -87^{\circ} 53^{\prime} 18.40883^{\prime \prime} \\ 147.3249 \mathrm{~m} \end{array}$	$\begin{array}{r} 43^{\circ} 00^{\prime} 09.13085^{\prime \prime} \\ -87^{\circ} 53^{\prime} 18.40877^{\prime \prime} \\ 147.3775 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 43^{\circ} 00^{\prime} 09.13090^{\prime \prime} \\ -87^{\circ} 53^{\prime} 18.40896^{\prime \prime} \\ 147.3430 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 43^{\circ} 00^{\prime} 09.13089^{\prime \prime} \\ -87^{\circ} 53^{\prime} 18.40893^{\prime \prime} \\ 147.3687 \mathrm{~m} \end{array}$
NLIB	$\begin{array}{r} 41^{\circ} 46^{\prime} 17.72752^{\prime \prime} \\ -91^{\circ} 34^{\prime} 29.61887^{\prime \prime} \\ 207.0262 \mathrm{~m} \end{array}$	$\begin{array}{r} 41^{\circ} 46^{\prime} 17.72752^{\prime \prime} \\ -91^{\circ} 34^{\prime} 29.61887^{\prime \prime} \\ 207.0262 \mathrm{~m} \end{array}$	$\begin{array}{r} 41^{\circ} 46^{\prime} 17.72726^{\prime \prime} \\ -91^{\circ} 34^{\prime} 29.61895^{\prime \prime} \\ 207.0445 \mathrm{~m} \end{array}$	$\begin{array}{r} 41^{\circ} 46^{\prime} 17.72739^{\prime \prime} \\ -91^{\circ} 34^{\prime} 29.61887^{\prime \prime} \\ 207.0281 \mathrm{~m} \end{array}$
SAG1	$\begin{array}{r} 43^{\circ} 37^{\prime} 43.11977^{\prime \prime} \\ -83^{\circ} 50^{\prime} 15.95891^{\prime \prime} \\ 149.2142 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 43^{\circ} 37^{\prime} 43.11958^{\prime \prime} \\ -83^{\circ} 50^{\prime} 15.95914^{\prime \prime} \\ 149.2233^{\prime} \\ \hline \end{array}$	$\begin{array}{r} 43^{\circ} 37^{\prime} 43.11950^{\prime \prime} \\ -83^{\circ} 50^{\prime} 15.95911^{\prime \prime} \\ 149.2319 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 43^{\circ} 37^{\prime} 43.11950^{\prime \prime} \\ -83^{\circ} 50^{\prime} 15.95925^{\prime \prime} \\ 149.2326 \mathrm{~m} \\ \hline \end{array}$
STB1	$\begin{array}{r} 44^{\circ} 47^{\prime} 43.74840^{\prime \prime} \\ -87^{\circ} 18^{\prime} 51.58766^{\prime \prime} \\ 148.8055 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 44^{\circ} 47^{\prime} 43.74795^{\prime \prime} \\ -87^{\circ} 18^{\prime} 51.58794^{\prime \prime} \\ 148.8355 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 44^{\circ} 47^{\prime} 43.74813^{\prime \prime} \\ -87^{\circ} 18^{\prime} 51.58781^{\prime \prime} \\ 148.8232 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 44^{\circ} 47^{\prime} 43.74804^{\prime \prime} \\ -87^{\circ} 18^{\prime} 51.58787^{\prime \prime} \\ 148.8348 \mathrm{~m} \end{array}$
WLCI	$\begin{array}{r} 40^{\circ} 48^{\prime} 30.26942^{\prime \prime} \\ -87^{\circ} 03^{\prime} 07.14981^{\prime \prime} \\ 180.3673 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 30.26910^{\prime \prime} \\ -87^{\circ} 03^{\prime} 07.15012^{\prime \prime} \\ 180.4234 \mathrm{~m} \end{array}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 30.26919^{\prime \prime} \\ -87^{\circ} 03^{\prime} 07.14995^{\prime \prime} \\ 180.3856 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 30.26918^{\prime \prime} \\ -87^{\circ} 03^{\prime} 07.15003^{\prime \prime} \\ 180.4183 \mathrm{~m} \\ \hline \end{array}$
BEHD	$\begin{array}{r} 42^{\circ} 07^{\prime} 31.98297^{\prime \prime} \\ -86^{\circ} 25^{\prime} 45.89033^{\prime \prime} \\ 156.0556^{\prime} \mathrm{m} \\ \hline \end{array}$	$\begin{array}{r} 42^{\circ} 07^{\prime} 31.982767^{\prime \prime} \\ -86^{\circ} 25^{\prime} 45.890513^{\prime \prime} \\ 156.0871 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 42^{\circ} 07^{\prime} 31.98272^{\prime \prime} \\ -86^{\circ} 25^{\prime} 45.89048^{\prime \prime} \\ 156.0737 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 42^{\circ} 07^{\prime} 31.98276^{\prime \prime} \\ -86^{\circ} 25^{\prime} 45.89053^{\prime \prime} \\ 156.0860 \mathrm{~m} \\ \hline \end{array}$
G317	$\begin{array}{r} 43^{\circ} 09^{\prime} 42.93110^{\prime \prime} \\ -86^{\circ} 13^{\prime} 14.65964^{\prime \prime} \\ 155.7060 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 43^{\circ} 09^{\prime} 42.930816^{\prime \prime} \\ -86^{\circ} 13^{\prime} 14.659882^{\prime \prime} \\ 155.7354 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 43^{\circ} 09^{\prime} 42.93084^{\prime \prime} \\ -86^{\circ} 13^{\prime} 146.5980^{\prime \prime} \\ 155.7239 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 43^{\circ} 09^{\prime} 42.93082^{\prime \prime} \\ -86^{\circ} 13^{\prime} 14.65988^{\prime \prime} \\ 155.7352 \mathrm{~m} \\ \hline \end{array}$
MBYC	$\begin{array}{r} 42^{\circ} 46^{\prime} 14.12985^{\prime \prime} \\ -86^{\circ} 11^{\prime} 55.80754^{\prime \prime} \\ 143.2190 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 42^{\circ} 46^{\prime} 14.129585^{\prime \prime} \\ -86^{\circ} 11^{\prime} 55.807829^{\prime \prime} \\ 143.2488 \mathrm{~m} \end{array}$	$\begin{array}{r} 42^{\circ} 46^{\prime} 14.12960^{\prime \prime} \\ -86^{\circ} 11^{\prime} 55.80769^{\prime \prime} \\ 143.2370 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} 42^{\circ} 46^{\prime} 14.12960^{\prime \prime} \\ -86^{\circ} 11^{\prime} 55.80778^{\prime \prime} \\ 143.2485 \mathrm{~m} \end{array}$

Table 18: Estimated geodetic coordinates (ϕ, λ, h)

station	RLESS [mm]				BLIMPBE [mm]			
	n	e	u	norm	n	e	u	norm
DET1	8.9	13.0	-37.3	40.5	0.0	0.0	0.0	0.0
MII1	9.6	-1.4	-52.5	53.4	0.0	0.0	0.0	0.0
NLIB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SAG1	5.8	5.1	-9.1	11.9	0.0	0.0	0.0	0.0
STB1	13.9	6.2	-30.1	33.7	0.0	0.0	0.0	0.0
WLCI	10.0	7.3	-56.1	57.4	0.0	0.0	0.0	0.0
norm	22.3	17.0	91.0	95.2	0.0	0.0	0.0	0.0
station	WBLIMPBE [mm]				SCLESS [mm]			
	n	e	u	norm	n	e	u	norm
DET1	1.3	8.5	-19.4	21.2	1.2	3.7	-2.9	4.9
MII1	1.5	-4.4	-34.5	34.8	1.2	-3.7	-8.8	9.6
NLIB	-7.8	-1.8	18.3	20.0	-4.0	-0.1	1.9	4.4
SAG1	-2.3	0.8	8.6	8.9	-2.3	-2.4	9.2	9.8
STB1	5.3	3.0	-12.3	13.7	2.8	1.5	-0.7	3.3
WLCI	2.6	4.1	-37.8	38.1	2.5	2.1	-5.1	6.1
norm	10.2	11.0	59.6	61.5	6.2	6.3	14.2	16.7

Table 19: Comparison of RLESS, W/BLIMPBE, and SCLESS to a priori coordinates

	BLIMPBE - SCLESS			WBLIMPBE - SCLESS		
Station	n $[\mathrm{mm}]$	e $[\mathrm{mm}]$	u $[\mathrm{mm}]$	n $[\mathrm{mm}]$	e $[\mathrm{mm}]$	u $[\mathrm{mm}]$
DET1	-1.2	-3.7	2.9	0.1	4.8	-16.5
MII1	-1.2	3.7	8.8	0.3	-0.7	-25.7
NLIB	4.0	0.1	-1.9	-3.8	-1.7	16.4
SAG1	2.3	2.4	-9.2	0.0	3.2	-0.6
STB1	-2.8	-1.5	0.7	2.5	1.5	-11.6
WLCI	-2.5	-2.1	5.1	0.1	2.0	-32.7
BEHD	0.4	0.3	1.1	-1.0	1.1	-12.3
G317	-0.2	-0.1	0.2	0.4	1.8	-11.2
MBYC	-0.4	-1.1	0.3	0.0	2.0	-11.6
rms	$\mathbf{2 . 1}$	$\mathbf{2 . 1}$	$\mathbf{4 . 7}$	$\mathbf{1 . 6}$	$\mathbf{2 . 4}$	$\mathbf{1 7 . 7}$

Table 20: Difference of W/BLIMPBE solution from SCLESS

Table 21 shows the estimated standard deviations, which, consistent with Section 4.3, are shown as the positive square roots of the estimated (parameter) dispersion matrix as expressed in the local geodetic horizon system of each point. Naturally, RLESS yields the larger standard deviations, with its trace of the estimated dispersion matrix being
considerably larger than that of the other solutions. While the horizontal standard deviation values computed by W/BLIMPBE and SCLESS for the new stations only differ at the sub-mm level, BLIMBPE and WBLIMPBE are about 1 and 2 mm larger, respectively, than the SCLESS for the standard deviations of the heights of the new points. The BLIMPBE standard deviations for the CORS are all nearly zero. This is in agreement with the "reproducing" characteristic of the selection matrix used in this BLIMPBE solution.

	RLESS			BLIMPBE		
	$\hat{\sigma}_{0}^{2}=1.02, \quad \operatorname{tr}(\hat{D}\{\hat{\xi}\})=4206 \cdot 10^{-6} \mathrm{~m}^{2}$			$\hat{\sigma}_{0}^{2}=1.28, \operatorname{tr}(\hat{D}\{\hat{\xi}\})=548 \cdot 10^{-6} \mathrm{~m}^{2}$		
	$\hat{\sigma}_{n}[\mathrm{~mm}]$	$\hat{\sigma}_{e}[\mathrm{~mm}]$	$\hat{\sigma}_{u}$ [mm]	$\hat{\sigma}_{n}[\mathrm{~mm}]$	$\hat{\sigma}_{e}[\mathrm{~mm}]$	$\hat{\sigma}_{u}$ [mm]
DET1	4.9	7.5	22.1	0.0	0.0	0.3
MIL1	4.5	4.6	21.3	0.0	0.0	0.1
NLIB	0.0	0.0	0.0	0.1	0.0	0.0
SAG1	5.7	7.6	21.4	0.0	0.0	0.3
STB1	6.3	5.8	20.4	0.0	0.0	0.2
WLCI	5.4	5.5	26.0	0.0	0.0	0.2
BEHD	3.5	4.7	19.9	2.7	2.2	13.2
G317	5.2	6.0	20.2	2.7	2.1	12.7
MBYC	4.5	5.5	20.4	2.8	2.3	13.2
RMS	4.8	5.7	20.3	1.3	1.3	7.5
	WBLIMPBE			SCLESS		
	$\hat{\sigma}_{0}^{2}=1.02, \quad \operatorname{tr}(\hat{D}\{\hat{\xi}\})=2171 \cdot 10^{-6} \mathrm{~m}^{2}$			$\hat{\sigma}_{0}^{2}=0.99, \operatorname{tr}(\hat{D}\{\hat{\xi}\})=981 \cdot 10^{-6} \mathrm{~m}^{2}$		
	$\hat{\sigma}_{n}[\mathrm{~mm}]$	$\hat{\sigma}_{e}[\mathrm{~mm}]$	$\hat{\sigma}_{u}[\mathrm{~mm}]$	$\hat{\sigma}_{n}[\mathrm{~mm}]$	$\hat{\sigma}_{e}[\mathrm{~mm}]$	$\hat{\sigma}_{u}[\mathrm{~mm}]$
DET1	3.2	4.9	15.4	3.2	3.3	8.2
MIL1	3.3	3.0	15.0	3.3	3.0	8.3
NLIB	3.2	2.7	8.8	3.0	2.1	4.1
SAG1	3.6	4.9	14.6	3.3	3.3	8.0
STB1	4.0	3.7	13.7	3.3	3.1	7.9
WLCI	4.6	3.7	20.2	3.6	3.3	9.0
BEHD	2.7	2.6	13.9	3.2	2.7	12.2
G317	3.1	3.6	14.1	3.3	3.0	11.9
MBYC	2.7	3.1	14.3	3.3	2.8	12.3
RMS	3.4	3.7	14.7	3.3	3.0	9.4

Table 21: Estimated standard deviations (n, e, u) in units of mm

5.3 Summary of New Fiducial Point Adjustments

Only one of the original 23 observed vectors was flagged as an outlier and removed from the data set. The numerical results have confirmed that for the selection matrix chosen in WBLIMPBE, an unbiased adjustment of the observations is achieved (same residuals as generated by Partial MINOLESS). The computations also confirmed the reproducing property of the control points (CORS) for the particular selection matrix used in BLIMPBE and the corresponding (nearly) zero variances. Further, it can be seen from the
residuals listed in the respective appendices that this BLIMPBE solution does not belong to the class of LESS.

Finally, the author recommends the adoption of the coordinates computed by the BLIMPBE method (second column of Table 18), using the "standard" selection matrix of (23), for work done on or near the project epoch. This decision is based mainly on the preference for the use of an estimator that generates minimum biases in the new points, when a minimum bias is the best that can be achieved, and that reproduces the control point coordinates. Arguments might also be made for adopting the SCLESS solution instead, subject to further investigations.

CHAPTER 6

CONCLUSIONS

This thesis has proposed and demonstrated a method for outlier estimation and detection at the GPS-baseline-vector level. This thesis argues that treating outliers at the baselinevector level is preferred over the traditional way of testing the vectors component-wise, which leads to decisions about the entire observed baseline vector based upon the hypothesis-test results of the individual components. In fact, the numerical example demonstrated that a contrary decision to flag an observed vector as an outlier can be made if the component-wise method is chosen over the baseline-level method. The baseline-vector level approach also permits use of the correlations between the vector components.

This thesis has also promoted the use of reliability numbers for correlated observations for networks of observed GPS baseline vectors, or other types of correlated observations. Instead of the reliability numbers promoted herein, the author has typically seen the use of the so-called redundancy numbers, which may only be of value, and indeed may only lead to correct conclusions when used as an aid in outlier detection processes, if the observations associated with them are truly uncorrelated. Thus, the author encourages geodetic scientists and analysts to use the more theoretically correct method of computing reliability numbers, which does not ignore the correlation between observations.

This thesis has also highlighted the use of the Best LInear Minimum Partial Bias Estimate (BLIMPBE) for networks with multiple control points, with two different selection matrices being presented. The solution based on the selection matrix of (23) seems very desirable due to the reproducing property of the control points and the minimization of the biases in the new points; however, it does not factor in the a priori variances of the control points as does SCLESS. Further investigation of alternative selection matrices for BLIMPBE should be a worthwhile study. (Cothren and Schaffrin (1998) have discussed the so-called "reproducing estimator," which also does not change the values of the constrained parameters). Ultimately, whether the BLIMPBE method is chosen over the Adjustment with Stochastic Constraints may depend on whether the scientist or analyst needs to give primacy to the a priori coordinates or to the observations. In some applications one is known with greater certainty than the other. It may well be that the analyst will want to explore the results of both adjustment options before adopting one over the other. With the speed of modern desktop computers, computation duplication is not nearly the concern that it used to be.

Finally, some additional comments are made about conclusions reached for the adjustments carried out in Chapters $\underline{4}$ and $\underline{5}$. The author has already acknowledged that the presumption of only one outlier existing in a data set (as was done herein) may be problematic, and when the final conclusion is that more than one of the observations are candidates for removal, it seems that the conclusion has contradicted the original premise of the test. The author would like to extend this investigation to include tests using the simultaneous outlier-detection routines cited earlier. The author also realizes that some scientific applications (possibly satellite altimetry calibrations) may require better estimates for the establishment of fiducial sites, better than what observations to stations with published CORS coordinates and velocity vectors can yield. In this case, the scientist or researcher might need to call upon the services of an agency that contributes to the ITRF to see if accurate, "current" coordinates are available or can be determined.

Based upon the best access to the ITRF available for this study (i.e., the published CORS information), the author has concluded that heights for new fiducial points can be established with a precision, relative to the CORS network, at a level of $\pm 1.5 \mathrm{~cm}$ ("onesigma" confidence interval) and even approaching $\pm 1.0 \mathrm{~cm}$ depending upon the adjustment technique. This statement is made regarding observations to a network of stations that vary in distance from 150 km to 430 km from the new stations. The claim is also made based on the field observation procedures outlined in Chapter 3.

END NOTES

1. The National Geodetic Survey, How CORS Positions and Velocities Were Derived, published on the NGS web site at http://www.ngs.noaa.gov/CORS/Derivation.html.
2. The International GPS Service, as stated on their web site at http://igscb.jpl.nasa.gov/overview/viewindex.html.
3. The minimum number of days is stated in the reference listed in end note number 1. The number of days used for a particular station is typically listed on the CORS data sheet (see Appendix A).
4. Personal correspondence with Dr. RIchard Snay of NGS.
5. The reason for setting the vertical velocities to zero is stated in the reference listed in end note number 1.
6. The use of a symmetrical reflexive generalized inverse to represent a general solution of LESS was discussed by B. Schaffrin in the course GS 762, Advanced Adjustment Computations at The Ohio State University in Autumn Quarter of 2000.
7. The invariant properties were shown by B. SchAFFRIN in the course GS 765, Analysis and Design of Geodetic Networks at The Ohio State University in Winter Quarter of 2000.
8. The equivalence of these MINOLESS solutions was shown by B. SCHAFFRIN in the course referred to in end note number 6 .
9. The equivalence of these Weighted MINOLESS solutions was shown by B. Schaffrin in the course referred to in end note number 6.
10. CORS data are available from the internet at http://www.ngs.noaa.gov/CORS.
11. The following individuals participated in the collection of GPS data at Lake Michigan: Ian Grender, John Lin, Dr. Michael Parke, Mohamed GadKarim Salim, Kyle Snow, and Hong-Zeng Tseng all of The Ohio State University; and Doug MARTIN of NGS.
12. Personal correspondence with DAvid ZiLkowski of NGS.
13. Documentation for the PAGES program can be found at the NGS web site http://www.ngs.noaa.gov/GRD/GPS/DOC/pages/pages.html.

LIST OF REFERENCES

Aduol, F.W.O. and B. Schaffrin (1986). On Outlier Identification in Geodetic Networks Using Principal Component Analysis, presented at the Conference on Influential Data Analysis, University of Sheffield, England.

Cheng, K., C. Shum, S. Han, Y. Yi, and D. Martin (2001), Application of GPS-Buoy Water Level Instrument for Radar Altimeter Calibration, IAG Symposium Series, M. Sideris (eds), Springer-Verlag Berlin Heidelberg, Vol. 123, pp. 367-372.

Cothren, J. and B. Schaffrin (1998). Towards Optimizing Hierarchical Data Revisions; in: D. Fritsch/M. Englich/M. Sester (eds.), GIS - Between Visions and Applications, ISPRS Commission IV Symposium, Stuttgart, Germany, pp. 515-521.

Batarda, W. (1968). A Testing Procedure for Use in Geodetic Networks, Neth. Geod. Com., Publ. on Geodesy, New Series 2, No. 5, Delft Netherlands.

Caspary, W.F. (1987). Concepts of Network and Deformation Analysis, Monograph 11, The University of New South Wales, Kensington, N.S.W. Australia.

Gatti, G. and M. Harwell (1998). Advantages of Computer Programs Over Power Charts for the Estimation of Power, Journal of Statistics Education, v.6, n.3.

Grafarend, E. and J. Awange (2002). The Power of the Gauss-Jacobi Combinatorial Algorithm to Detect Outliers and Solve Linear as well as Non-linear Adjustment Problems, presented at the Weikko A. Heiskanen Symposium in Geodesy, The Ohio State University, Columbus.

Grafarend, E. and B. Schaffrin (1993). Adjustment Computations in Linear Models (in German), Bibliographical Inst., Mannheim.

IERS (1998). IERS Technical Note 24, Central Bureau of IERS - Observatoire de Paris, Paris.

Koch, K.R., (1999). Parameter Estimation and Hypothesis Testing in Linear Models, $2^{\text {nd }}$ Ed., Springer, Berlin.

Kuang, S. (1996). Geodetic Network Analysis and Optimal Design, Ann Arbor Press, Chelsea, Michigan.

Lehmer, E. (1944). Inverse Tables of Probabilities of Errors of the Second Kind, Annals of Mathematical Statistics, Vol. 15, 388-98.

Leick, A. (1995). GPS Satellite Surveying, $2^{\text {nd }}$ Ed., John Wiley \& Sons, Inc, NY.
Mikhail, E.M. and F. Ackermann (1976). Observations and Least Squares, DunDonnelley, New York.

NIMA (2000). Department Of Defense World Geodetic System 1984 - Its Definition and Relationships with Local Geodetic Systems, TR8350.2, $3^{\text {rd }}$ Ed, National Imagery and Mapping Agency, St Louis, MO.

Rapp, R. (1993). Geometric Geodesy Part II, Lecture Notes, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus, OH.

Schaffrin, B. (1985). Network Design; in: E. Grafarend/F. Sansò (eds.), Optimization and Design of Geodetic Networks, Springer-Verlag, Berlin, pp. 548-597.

Schaffrin, B. (1995). A Generalized Lagrange Functions Approach to Include Fiducial Constraints, Zeitschrift für Vermessungswessen, Vol. 120, pp. 325-333.

Schaffrin, B. (1997). Reliability Measures for Correlated Observations, Journal of Surveying Engineering, Vol. 123, No. 3, pp. 123-137.

SChAFFrin, B and H.B. Iz (2002). BLIMPBE and its Geodetic Applications; in: Vistas for Geodesy in the New Millennium. J. ÁdÁm/K. Schwarz (eds.), Springer, Berlin, pp. 377-381.

Tiku, M.L. (1967). Tables of the Power of the F-Test, Journal of the American Statistical Association, 62:525-539.

Wang, J. and Y. Chen (1994). On the Reliability of Measure of Observations. Acta Geodaetica et Cartographica Sinica, English Edition, 42-45.

Zilkowski, D., J. D’Onofrio, and S. Frakes (1997). Guidelines for Establishing GPSDerived Ellipsoidal Heights (Standards: 2 cm and 5 cm) Version 4.3", NOAA Technical Memorandum NOS NGS-58, US Dept. of Commerce, National Geodetic Survey, Silver Spring, Maryland.

APPENDIX A

CORS Data Sheets

```
        Antenna Reference Point(ARP): DETROIT 1 CORS ARP
                            PID= AF9501
ITRF96 POSITION (EPOCH 1997.0)
Computed in Mar., }1998\mathrm{ using 47 days of data.
    X = 568024.755 m latitude = 42 17 50.45437 N
    Y = -4690674.635 m longitude = 083 05 43.06542 W
    Z = 4270188.820 m ellipsoid height = 145.045 m
ITRF96 VELOCITY
Computed in Mar., }1998\mathrm{ using 47 days of data.
    VX = -0.0156 m/yr northward = -0.0035 m/yr
    VY = -0.0043 m/yr eastward = -0.0160 m/yr
    VZ = -0.0026 m/yr upward = 0.0000 m/yr
L1 Phase Center of the current GPS antenna: DETROIT 1 CORS L1 PC C
The ASHTECH GEODETIC III ANTENNA - USCG V antenna (ASH 700829.A1)
was installed on 07/27/95. The L2 phase center is 0.032 m below the L1
phase center.
```

Figure 12: NGS CORS data sheet for station Detroit 1

```
        Antenna Reference Point(ARP): MILWAUKEE 1 CORS ARP
                        PID = AF9485
ITRF96 POSITION (EPOCH 1997.0)
Computed in Mar., }1998\mathrm{ using 52 days of data.
    X = 172136.032 m latitude = 43 00 09.13101 N
    Y = -4668696.644 m longitude = 087 53 18.40750 W
    Z = 4327808.348 m ellipsoid height = 147.377 m
ITRF96 VELOCITY
Computed in Mar., }1998\mathrm{ using 52 days of data.
    VX = -0.0118 m/yr northward = -0.0021 m/yr
    VY = -0.0019 m/yr eastward = -0.0119 m/yr
    VZ = -0.0015 m/yr upward = 0.0000 m/yr
L1 Phase Center of the current GPS antenna: MILWAUKEE 1 CORS L1 PC C The ASHTECH GEODETIC III ANTENNA - USCG V antenna (ASH 700829.A1)
was installed on \(10 / 03 / 95\). The L2 phase center is 0.032 m below the L1 phase center.
```

Figure 13: NGS CORS data sheet for station Milwaukee 1
Antenna Reference Point (ARP) : NORTH LIBERTY CORS
PID $=$ AF9523

Figure 14: NGS CORS data sheet for station North Liberty

```
ITRF96 COORDINATES AT EPOCH 1997.0 AND VELOCITIES
GPS STATIONS
DOMES NB. SITE NAME TECH. ID.
40465M001 NORTH LIBERTY GPS NLIB
    X/Vx Y/Vy Z/Vz Sigmas
    m/m/y
    -130934.472 -4762291.729 4226854.663 .002 .003 .003
    -.0150 .0009 -.0050 .0005 .0013 .0011
```

Figure 15: Excerpt from IERS Technical Note 24

L1 Phase Center of the current GPS antenna: SAGINAW 1 CORS L1 PC C The ASHTECH GEODETIC III ANTENNA - USCG V antenna (ASH 700829.A1)
was installed on $08 / 24 / 95$. The L2 phase center is 0.032 m below the L1 phase center.

Figure 16: NGS CORS data sheet for station Saginaw 1

```
Antenna Reference Point(ARP): STURGEON BAY 1 CORS ARP
    PID = PID = AF9553
ITRF96 POSITION (EPOCH 1997.0)
Computed in Mar., }1998\mathrm{ using 48 days of data
    X = 212435.716 m latitude = 44 47 43.74825
    Y = -4528758.901 m longitude = 087 18 51.58610
    Z = 4471353.761 m ellipsoid height = 148.835
ITRF96 VELOCITY
Computed in Mar., }1998\mathrm{ using 48 days of data
    VX = -0.0164 m/yr northward = -0.0038 m/yr
    VY = -0.0035 m/yr eastward = -0.0165 m/yr
    VZ = -0.0027 m/yr upward = 0.0000 m/yr
```

L1 Phase Center of the current GPS antenna: STURGEON BAY 1 CORS L1 PC C
The ASHTECH GEODETIC III ANTENNA - USCG V antenna (ASH 700829.A1)
was installed on $01 / 19 / 96$. The L2 phase center is 0.032 m below the L 1
phase center.

Figure 17: NGS CORS data sheet for station Sturgeon Bay 1

```
Antenna Reference Point(ARP): WOLCOTT CORS ARP
    PID = AH5611
ITRF96 POSITION (EPOCH 1997.0)
Computed in Dec. }1998\mathrm{ using 11 days of data.
    X = 248645.842 m latitude = 40 48 30.26922 N
    Y = -4828261.314 m longitude = 087 03 07.14856 W
    Z = 4146460.096 m ellipsoid height = 180.424 m
ITRF96 VELOCITY
Predicted with HTDP_2.2 in Dec. 1998.
    VX = -0.0149 m/yr northward = -0.0014 m/yr
    VY = -0.0017 m/yr eastward = -0.0150 m/yr
    VZ = -0.0011 m/yr upward = 0.0000 m/yr
The GEOD L1/L2 antenna (TRM 22020.00
was installed on 12/01/98. The L2 phase center is 0.006 m below the L1
phase center.
```

Figure 18: NGS CORS data sheet for station Wolcott

APPENDIX B

Data File for CORS Validation Adjustment

```
# Data for CORS height validation testing
# Observed baselines resolved using PAGES
#
# Adjustment type
$RLESS 3
#
# nominal standard errors in n,e,up 0.005, 0.005, 0.010
# standard error in n,e,up for NLIB transformed from values given in
# IERS TN 24 (0.003,0.002,0.003)
# the following are updated coordinates using the NGS published
# velocity vectors
#
# CORS coordinates in X,Y,Z (1999.321 epoch) and standard deviations in
n,e,up
$XYZ DET1 568024.7189 -4690674.6449 4270188.8140 0.005 0.005 0.01
$XYZ MIL1 172136.0047 -4668696.6484 4327808.3445 0.005 0.005 0.01
$XYZ NLIB -130934.5067 -4762291.7269 4226854.6514 0.003 0.002 0.003
$XYZ SAG1 496374.9572 -4597431.5159 4378421.3510 0.005 0.005 0.01
$XYZ STB1 212435.6781 -4528758.9091 4471353.7548
$XYZ WLCI 248645.8076 -4828261.3179 4146460.0935 0.005 0.005 0.01
#
$BEGOBS
#
# description of data record:
# obs type code; obs from to; dX; dY; dZ;
# var(dX); covar(dX,dY); var(dY); covar(dX,dZ); covar(dY,dZ); var(dZ)
# <-lower triagular covariance matrix
#
# Data Set 1
# DOY 064
$GPS NLIB MIL1 303070.4873 93595.0868 100953.6848
1.6000000000e-07 -5.0645520000e-09 3.2400000000e-06 4.4407872000e-08
-2.7129208320e-06 2.5600000000e-06
$GPS NLIB STB1 343370.1879 233532.8082 244499.1146
1.6000000000e-07 4.3582320000e-08 3.2400000000e-06 6.2520768000e-08
-2.6486228160e-06 2.5600000000e-06
$GPS NLIB SAG1 627309.4588 164860.1847 151566.7236
2.5000000000e-07 2.8482750000e-08 3.2400000000e-06 4.2685045000e-08
-2.8781445060e-06 2.8900000000e-06
$GPS NLIB DET1 698959.2192 71617.0870 43334.1768
3.6000000000e-07 -1.2295584000e-08 3.6100000000e-06 3.1400640000e-08
-2.8832256800e-06 2.5600000000e-06
```

```
# DOY 065
$GPS WLCI STB1 -36210.1220 299502.4067 324893.6501
4.0000000000e-08 -7.7833280000e-08 1.9600000000e-06 5.4380256000e-08
-1.4953186080e-06 1.4400000000e-06
$GPS MIL1 STB1 40299.6816 139937.7255 143545.4233
4.0000000000e-08 -4.6709256000e-08 1.4400000000e-06 5.1864216000e-08
-1.3388257440e-06 1.4400000000e-06
$GPS MIL1 DET1 395888.7290 -21978.0055 -57619.5150
1.6000000000e-07 -1.4391826400e-07 1.9600000000e-06 1.0552622400e-07
-1.6006546080e-06 1.4400000000e-06
# DOY 066
$GPS STB1 SAG1 283939.2827 -68672.6080 -92932.4050
1.6000000000e-07 -1.7677566000e-07 2.2500000000e-06 1.3086847200e-07
-1.9746165600e-06 1.9600000000e-06
$GPS STB1 DET1 355589.0576 -161915.7376 -201164.9324
2.5000000000e-07 -2.4818407500e-07 2.2500000000e-06 1.2399317000e-07
-1.9279673700e-06 1.9600000000e-06
# DOY 067
$GPS SAG1 MIL1 -324238.9628 -71265.1285 -50613.0072
1.6000000000e-07 -1.3257196800e-07 1.4400000000e-06 1.4718576400e-07
-1.2439616640e-06 1.2100000000e-06
$GPS SAG1 DET1 71649.7642 -93243.1321 -108232.5245
9.0000000000e-08 -1.5966182700e-07 1.6900000000e-06 1.3463320200e-07
-1.3262939690e-06 1.2100000000e-06
# DOY 068
$GPS WLCI NLIB -379580.3089 65969.5692 80394.5595
1.6000000000e-07 4.9139608000e-08 1.9600000000e-06 -7.0045040000e-08
-1.7078263020e-06 1.6900000000e-06
$GPS WLCI MIL1 -76509.7968 159564.6675 181348.2377
4.0000000000e-08 -3.1087034000e-08 1.2100000000e-06 2.1052280000e-08
-1.0184101400e-06 1.0000000000e-06
$GPS WLCI SAG1 247729.1634 230829.8005 231961.2424
9.0000000000e-08 -9.2176020000e-08 1.4400000000e-06 1.0280511000e-07
-1.1058626400e-06 1.0000000000e-06
$GPS WLCI DET1 319378.9265 137586.6704 123728.7143
9.0000000000e-08 -9.7659720000e-08 1.4400000000e-06 1.0050243000e-07
-1.1195924400e-06 1.0000000000e-06
#
# Data Set 2
# DOY 079
$GPS NLIB MIL1 303070.5095 93595.0682 100953.6897
1.6000000000e-07 1.8379840000e-09 3.6100000000e-06 2.1211308000e-08
-3.0461057640e-06 2.8900000000e-06
$GPS NLIB STB1 343370.1774 233532.7983 244499.1267
1.6000000000e-07 8.0924116000e-08 3.6100000000e-06 1.3284864000e-08
-3.1643276400e-06 3.2400000000e-06
$GPS NLIB SAG1 627309.4586 164860.2095 151566.6960
3.6000000000e-07 8.3331738000e-08 4.4100000000e-06 1.6241472000e-08
-3.5352612540e-06 3.2400000000e-06
$GPS NLIB DET1 698959.2059 71617.0780 43334.1791
3.6000000000e-07 3.7522548000e-08 4.4100000000e-06-1.5540366000e-08
-3.7877895930e-06 3.6100000000e-06
# DOY 080
$GPS DET1 MIL1 -395888.7275 21977.9926 57619.5322
```

```
2.5000000000e-07 -2.5716393000e-07 2.8900000000e-06 1.6463520000e-07
-2.4044462550e-06 2.2500000000e-06
# DOY 081
$GPS STB1 MIL1 -40299.6831 -139937.7257 -143545.4248
9.0000000000e-08 -5.6522928000e-08 1.9600000000e-06 6.4589304000e-08
-1.6909913020e-06 1.6900000000e-06
$GPS STB1 SAG1 283939.2848 -68672.6097 -92932.4075
9.0000000000e-08 -1.4471078700e-07 1.6900000000e-06 1.1028700800e-07
-1.5886196040e-06 1.6900000000e-06
$GPS STB1 DET1 355589.0432 -161915.7338 -201164.9447
1.6000000000e-07 -1.9381936000e-07 1.9600000000e-06 1.0652548400e-07
-1.6880652880e-06 1.6900000000e-06
# DOY 082
$GPS WLCI NLIB -379580.3079 65969.5812 80394.5528
9.0000000000e-08 -5.2675140000e-09 1.9600000000e-06 2.3285880000e-09
-1.5938727840e-06 1.4400000000e-06
$GPS WLCI MIL1 -76509.8036 159564.6650 181348.2391
4.0000000000e-08 -5.7735696000e-08 1.4400000000e-06 4.6844006000e-08
-1.2333800160e-06 1.2100000000e-06
$GPS WLCI STB1 -36210.1200 299502.4000 324893.6528
9.0000000000e-08 -3.7628604000e-08 1.6900000000e-06 4.0373208000e-08
-1.4250367560e-06 1.4400000000e-06
$GPS WLCI SAG1 247729.1604 230829.7950 231961.2460
9.0000000000e-08 -1.0248220800e-07 1.4400000000e-06 1.2835036500e-07
-1.2224098920e-06 1.2100000000e-06
$GPS WLCI DET1 319378.9210 137586.6583 123728.7187
9.0000000000e-08 -1.2816870300e-07 1.6900000000e-06 1.2581319300e-07
-1.3462579130e-06 1.2100000000e-06
# DOY 083
$GPS SAG1 MIL1 -324238.9627 -71265.1298 -50613.0076
1.6000000000e-07 -1.4546688800e-07 1.9600000000e-06 1.6109860000e-07
-1.7206199920e-06 1.6900000000e-06
$GPS SAG1 DET1 71649.7560 -93243.1265 -108232.5321
9.0000000000e-08 -2.3168502000e-07 1.9600000000e-06 1.9676389200e-07
-1.6999389680e-06 1.6900000000e-06
#
# Data Set 3
# DOY 131
$GPS SAG1 MIL1 -324238.9561 -71265.1293 -50613.0039
2.5000000000e-07 -1.7593350000e-07 2.2500000000e-06 2.1520142000e-07
-1.9788363000e-06 1.9600000000e-06
$GPS SAG1 DET1 71649.7569 -93243.1248 -108232.5287
9.0000000000e-08 -2.4079855800e-07 1.9600000000e-06 1.9997729700e-07
-1.7024309120e-06 1.6900000000e-06
# DOY 132
$GPS WLCI MIL1 -76509.8078 159564.6742 181348.2370
9.0000000000e-08 -1.4289067200e-07 2.5600000000e-06 1.1302569600e-07
-2.0721341760e-06 1.9600000000e-06
$GPS WLCI STB1 -36210.1189 299502.4108 324893.6546
1.6000000000e-07 -1.9592568000e-07 2.8900000000e-06 1.5777210000e-07
-2.2607999100e-06 2.2500000000e-06
$GPS WLCI SAG1 247729.1551 230829.8032 231961.2481
1.6000000000e-07 -1.8938727600e-07 2.8900000000e-06 2.4126618000e-07
-2.3193884550e-06 2.2500000000e-06
$GPS WLCI DET1 319378.9159 137586.6688 123728.7271
```

```
1.6000000000e-07 -1.5015086800e-07 2.8900000000e-06 1.9830762000e-07
-2.3827432050e-06 2.2500000000e-06
# DOY 133
$GPS DET1 MIL1 -395888.7206 21978.0014 57619.5230
3.6000000000e-07 -3.5597242800e-07 3.2400000000e-06 2.8532851200e-07
-2.7329063040e-06 2.5600000000e-06
# DOY 134
$GPS NLIB MIL1 303070.5033 93595.0934 100953.6803
9.0000000000e-08 3.9536955000e-08 2.2500000000e-06 -3.4111740000e-09
-1.8535740600e-06 1.6900000000e-06
$GPS NLIB STB1 343370.1892 233532.8166 244499.1077
1.6000000000e-07 7.1691420000e-08 2.2500000000e-06 1.2568024000e-08
-1.9596895500e-06 1.9600000000e-06
$GPS NLIB WLCI 379580.3079 -65969.5853 -80394.5519
1.6000000000e-07 -1.0675648000e-08 2.5600000000e-06 -1.2579784000e-08
-2.1218162560e-06 1.9600000000e-06
$GPS NLIB SAG1 627309.4673 164860.2071 151566.6992
1.6000000000e-07 7.9700608000e-08 2.5600000000e-06 -1.0493616000e-08
-2.1185758720e-06 1.9600000000e-06
$GPS NLIB DET1 698959.2342 71617.0964 43334.1605
2.5000000000e-07 5.1904320000e-08 2.5600000000e-06 -2.5639740000e-08
-2.1376425280e-06 1.9600000000e-06
# DOY 135
$GPS STB1 MIL1 -40299.6839 -139937.7382 -143545.4220
4.0000000000e-08 -6.2861036000e-08 1.9600000000e-06 6.9019468000e-08
-1.8266721760e-06 1.9600000000e-06
$GPS STB1 SAG1 283939.2732 -68672.6091 -92932.4100
1.6000000000e-07 -2.1714600000e-07 2.2500000000e-06 1.6058100800e-07
-1.9860199800e-06 1.9600000000e-06
$GPS STB1 DET1 355589.0380 -161915.7331 -201164.9407
1.6000000000e-07 -2.1795834000e-07 2.2500000000e-06 1.2143768000e-07
-1.9525413600e-06 1.9600000000e-06
```


APPENDIX C

Data File for New Fiducial Points Adjustment

```
# Data for new fiducial points survey
# Observed baselines resolved using PAGES
#
# Adjustment type
$RLESS 3
#
# CORS coordinates in X,Y,Z (1999.442 epoch) and std dev in n,e,up
$XYZ DET1 568024.7169 -4690674.6455 4270188.8137 0.005 0.005 0.01
$XYZ MIL1 172136.0032 -4668696.6486 4327808.3443 0.005 0.005 0.01
$XYZ NLIB -130934.5086 -4762291.7268 4226854.6508 .00418 .00235 .00422
$XYZ SAG1 496374.9552 -4597431.5162 4378421.3510 0.005 0.005 0.01
$XYZ STB1 212435.6760 -4528758.9095 4471353.7544 0.005 0.005 0.01
$XYZ WLCI 248645.8056 -4828261.3182 4146460.0933 0.005 0.005 0.01
#
# a priori coordinates for new fiducial points
\begin{tabular}{lllllll} 
\$XYZ G317 & 307138.848 & -4649646.701 & 4340747.247 & \(\&\) & \(\&\) & \(\&\) \\
\(\$ X Y Z\) & BEHD & 295059.735 & -4728575.241 & 4256061.833 & \(\&\) & \(\&\) \\
\$XYZ MBYC & 310880.092 & -4679085.806 & 4308925.673 & \(\&\) & \(\&\) & \(\&\)
\end{tabular}
#
# stations with centering errors (name horizontal vertical)
$CENTER_ERR G317 0.003 0.000
$CENTER_ERR BEHD 0.003 0.000
$CENTER ERR MBYC 0.003 0.000
#
$BEGOBS
#
# description of data record:
# on/off code; obs from to; dX; dY; dZ;
# var(dX); covar(dX,dY); var(dY); covar(dX,dZ); covar(dY,dZ); var(dZ)
#
# DOY 160
$GPS MBYC G317 -3741.2376 29439.0952 31821.5696
1.6000000000e-07 -3.2477453600e-07 5.2900000000e-06 2.8992961200e-07
-4.5752170170e-06 4.4100000000e-06
$GPS SAG1 G317 -189236.1424 -52215.1555 -37674.1125
2.5000000000e-07 -4.8443945500e-07 5.2900000000e-06 4.8305323000e-07
-4.7892616640e-06 4.8400000000e-06
$GPS DET1 MBYC -257144.6615 11588.8525 38736.8600
2.5000000000e-07 -5.3013500000e-07 6.2500000000e-06 4.6678960000e-07
-5.4494664750e-06 5.2900000000e-06
$GPS BEHD MBYC 15820.3572 49489.4463 52863.8501
1.6000000000e-07 -3.6881330000e-07 6.2500000000e-06 3.1879716000e-07
```

```
-5.2199576000e-06 4.8400000000e-06
$GPS NLIB BEHD 425994.2056 33716.5182 29207.1549
3.6000000000e-07 1.1911430400e-07 1.0240000000e-05 -1.3411759200e-07
-8.5999952640e-06 7.8400000000e-06
$GPS MIL1 BEHD 122923.6979 -59878.6067 -71746.5038
1.6000000000e-07 -2.3454748800e-07 5.7600000000e-06 1.6015742400e-07
-4.7683596240e-06 4.4100000000e-06
$GPS G317 STB1 -94703.1397 120887.7846 130606.5082
1.6000000000e-07 -3.2950793600e-07 5.2900000000e-06 2.7098913600e-07
-4.7494657760e-06 4.8400000000e-06
# DOY 161
$GPS NLIB BEHD 425994.1987 33716.5441 29207.1454
1.0240000000e-05 4.1382374400e-06 2.0250000000e-05 -1.9865111040e-06
-1.6156820430e-05 1.4440000000e-05
$GPS MIL1 BEHD 122923.6872 -59878.5719 -71746.5240
1.0000000000e-06 -7.5661111000e-07 9.6100000000e-06 -1.8105108000e-07
-7.7596604680e-06 7.8400000000e-06
$GPS MBYC BEHD -15820.3673 -49489.4261 -52863.8515
2.5000000000e-07 -5.9511216000e-07 1.0240000000e-05 5.2836927000e-07
-8.4754472000e-06 8.4100000000e-06
$GPS G317 MBYC 3741.2373 -29439.1032 -31821.5683
2.5000000000e-07 -6.1664549000e-07 9.6100000000e-06 4.9177953500e-07
-8.3942362960e-06 8.4100000000e-06
$GPS SAG1 G317 -189236.1416 -52215.1569 -37674.1254
2.2500000000e-06 -3.8544000000e-07 1.0240000000e-05 1.1512840500e-06
-8.5739924480e-06 8.4100000000e-06
$GPS DET1 MBYC -257144.6734 11588.8359 38736.8742
3.6100000000e-06 -1.2204525550e-06 1.2250000000e-05 4.0914569600e-07
-1.0462760000e-05 1.0240000000e-05
$GPS STB1 G317 94703.1393 -120887.7727 -130606.5306
6.4000000000e-07 -9.8079486400e-07 9.6100000000e-06 -2.7710404000e-07
-7.4499324310e-06 9.6100000000e-06
$GPS BEHD WLCI -46413.8842 -99686.0721 -109601.7420
4.9000000000e-07 -5.6362261200e-07 1.4440000000e-05 9.0787365900e-07
-1.0561932876e-05 1.0890000000e-05
# DOY 162
$GPS NLIB BEHD 425994.2335 33716.5709 29207.1412
1.0240000000e-05 3.7531000320e-06 1.9360000000e-05 -1.3934442240e-06
-1.4923440576e-05 1.2960000000e-05
$GPS MIL1 BEHD 122923.7390 -59878.6232 -71746.5195
1.2100000000e-06 -1.3677123900e-06 1.1560000000e-05 2.4549857200e-07
-8.7115002980e-06 8.4100000000e-06
$GPS MBYC BEHD -15820.3763 -49489.4339 -52863.8539
2.5000000000e-07 -5.3892870000e-07 9.0000000000e-06 5.3268975000e-07
-7.3769648400e-06 7.2900000000e-06
$GPS G317 MBYC 3741.2415 -29439.1022 -31821.5851
2.5000000000e-07 -5.5178778500e-07 8.4100000000e-06 4.6384065000e-07
-7.0073691220e-06 6.7600000000e-06
$GPS SAG1 G317 -189236.1477 -52215.1632 -37674.1318
2.2500000000e-06 -7.8022395000e-07 1.0890000000e-05 1.4010932400e-06
-8.8124148750e-06 8.4100000000e-06
$GPS DET1 MBYC -257144.6977 11588.8736 38736.8391
4.0000000000e-06 -1.4652187200e-06 1.2960000000e-05 6.3041724000e-07
-1.0512817092e-05 9.6100000000e-06
$GPS STB1 G317 94703.1446 -120887.7869 -130606.5361
```

```
8.1000000000e-07 -6.8160015000e-07 9.0000000000e-06 -5.2916895000e-07
-6.9304932000e-06 9.0000000000e-06
$GPS BEHD WLCI -46413.8783 -99686.1022 -109601.7399
6.4000000000e-07 -1.7321676800e-07 1.4440000000e-05 5.9135872000e-07
-1.0363120448e-05 1.0240000000e-05
```


APPENDIX D

RLESS for CORS Validation, 45 Observed Baseline Vectors

```
The 3x3 block diagonal covariance matrix is replaced by a full
(session) matrix
Adjustment type: (RLESS) Restricted Least-Squares Solution
Ellipsoid: WGS84
Units: dms, meters
No of observations : 135
Rank of A : - 15
System redundancy : 120
Estimated parameters: Cartesian (meters)
Name X Y Z
DET1 568024.7204 -4690674.6401 4270188.8175
MIL1 172135.9968 -4668696.6404 4327808.3376
NLIB -130934.5067 -4762291.7269 4226854.6514
SAG1 496374.9593 -4597431.5138 4378421.3477
STB1 212435.6792 -4528758.9083 4471353.7567
WLCI 248645.7991 -4828261.3107 4146460.1022
Estimated parameters: geodetic (ddd.mmsssssss)
Name latitude longitude height
DET1 42.175045429 -83.054306694 145.0434
MIL1 43.000913087 -87.531840903 147.3668
NLIB 41.461772752 -91.342961878 207.0266
SAG1 43.374311954 -83.501595894 149.2196
STB1 44.474374803 -87.185158779 148.8363
WLCI 40.483026948 -87.030715037 180.4233
Trace of estimated dispersion matrix: 0.000576
Estimated reference variance: 145.9125
Estimated standard errors (scaled by sqrt estimated reference variance)
Name std(X) std(Y) std(Z) std(n) std(e) std(up)
DET1 0.0021 0.0077 0.0068 0.0016 0.0024 0.0101
MIL1 0.0017 0.0076 0.0067 0.0016 0.0018
NLIB 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
SAG1 0.0020 0.0078 0.0069 0.0017 0.0023 0.0102
STB1 0.0018 0.0080 0.0072 0.0019 0.0019
WLCI 0.0019 0.0084 0.0074 0.0019 0.0019 0.0110
```

Observation Estimates							
Obs\# From-To							
Obs\#	$d \mathrm{X} / \mathrm{dY} / \mathrm{dZ}$	Obs. Error	Adjusted Obs.	Obs. Std. Dev	Stu. Res.	Trad. Red \#	Std. Rel \#
Vec01: NLIB -> MIL1							
1	303070.4873	-0.0162	303070.503	0.00171	-3.580	0.90	0.93 *
2	93595.0868	0.0003	93595.087	0.00755	0.014	0.92	0.95
3	100953.6848	-0.0014	100953.686	0.00669	-0.079	0.92	0.94
Vec02: NLIB -> STB1							
4	343370.1879	0.0020	343370.186	0.00183	0.449	0.87	0.90
5	233532.8082	-0.0104	233532.819	0.00797	-0.516	0.96	0.92
6	244499.1146	0.0093	244499.105	0.00723	0.520	0.84	0.90
Vec03: NLIB -> SAG1							
7	627309.4588	-0.0072	627309.466	0.00205	-1.266	0.92	0.95
8	164860.1847	-0.0284	164860.213	0.00776	-1.396	0.82	0.93
9	151566.7236	0.0273	151566.696	0.00688	1.412	1.01	0.94
Vec04: NLIB -> DET1							
10	698959.2192	-0.0079	698959.227	0.00214	-1.136	0.97	0.96
11	71617.0870	0.0002	71617.087	0.00774	0.010	0.99	0.94
12	43334.1768	0.0107	43334.166	0.00679	0.594	0.85	0.93
Vec05: WLCI -> STB1							
13	-36210.1220	-0.0020	-36210.120	0.00132	-1.010	0.70	0.74
14	299502.4067	0.0043	299502.402	0.00709	0.280	0.91	0.81
15	324893.6501	-0.0044	324893.655	0.00629	-0.339	0.70	0.80
Vec06: MIL1 -> STB1							
16	40299.6816	-0.0008	40299.682	0.00111	-0.377	0.80	0.82
17	139937.7255	-0.0066	139937.732	0.00547	-0.493	0.71	0.83
18	143545.4233	0.0042	143545.419	0.00532	0.315	1.01	0.84
Vec07: MIL1 -> DET1							
19	395888.7290	0.0054	395888.724	0.00136	1.169	0.92	0.88
20	-21978.0055	-0.0058	-21978.000	0.00485	-0.356	0.98	0.89
21	-57619.5150	0.0052	-57619.520	0.00435	0.374	0.84	0.88
Vec08: STB1 -> SAG1							
22	283939.2827	0.0026	283939.280	0.00137	0.560	0.92	0.93
23	-68672.6080	-0.0024	-68672.606	0.00562	-0.140	0.93	0.91
24	-92932.4050	0.0040	-92932.409	0.00546	0.251	0.88	0.91
Vec09: STB1 -> DET1							
25	355589.0576	0.0164	355589.041	0.00145	2.801	0.95	0.95 *
	-161915.7376	-0.0057	-161915.732	0.00557	-0.333	0.92	0.92
27	-201164.9324	0.0068	-201164.939	0.00531	0.426	0.92	0.92
Vec10: SAG1 -> MIL1							
28	-324238.9628	-0.0003	-324238.963	0.00127	-0.062	0.93	0.93
29	-71265.1285	-0.0020	-71265.127	0.00497	-0.144	0.90	0.89
30	-50613.0072	0.0028	-50613.010	0.00462	0.228	0.87	0.89
Vec11: SAG1 -> DET1							
31	71649.7642	0.0031	71649.761	0.00118	0.914	0.90	0.90
32	-93243.1321	-0.0058	-93243.126	0.00495	-0.391	0.97	0.92
33	-108232.5245	0.0057	-108232.530	0.00450	0.457	0.84	0.91
Vec12: WLCI -> NLIB							
34	-379580.3089	-0.0031	-379580.306	0.00187	-0.685	0.85	0.85
35	65969.5692	-0.0146	65969.584	0.00845	-0.994	0.64	0.80
36	80394.5595	0.0103	80394.549	0.00738	0.740	0.94	0.82
Vec13: WLCI -> MIL1							
37	-76509.7968	0.0056	-76509.802	0.00115	2.620	0.80	0.82 *
38	159564.6675	-0.0028	159564.670	0.00648	-0.240	0.71	0.86

39	181348.2377	0.0022	181348.235	0.00561	0.208	0.93	0.87
Vec14: WLCI -> SAG1							
40	247729.1634	0.0033	247729.160	0.00141	0.974	0.88	0.90
41	230829.8005	0.0037	230829.797	0.00676	0.287	0.98	0.86
42	231961.2424	-0.0031	231961.246	0.00582	-0.295	0.68	0.84
Vec15: WLCI -> DET1							
43	319378.9265	0.0053	319378.921	0.00144	1.590	0.86	0.88
44	137586.6704	-0.0001	137586.671	0.00668	-0.011	0.90	0.88
45	123728.7143	-0.0010	123728.715	0.00562	-0.094	0.79	0.87
Vec16: NLIB -> MIL1							
46	303070.5095	0.0060	303070.503	0.00171	1.331	0.89	0.93
47	93595.0682	-0.0183	93595.087	0.00755	-0.845	0.93	0.95
48	100953.6897	0.0035	100953.686	0.00669	0.179	0.92	0.95
Vec17: NLIB -> STB1							
49	343370.1774	-0.0085	343370.186	0.00183	-1.898	0.86	0.90
50	233532.7983	-0.0203	233532.819	0.00797	-0.945	0.88	0.92
51	244499.1267	0.0214	244499.105	0.00723	1.044	0.95	0.93
Vec18: NLIB -> SAG1							
52	627309.4586	-0.0074	627309.466	0.00205	-1.064	0.97	0.96
53	164860.2095	-0.0036	164860.213	0.00776	-0.147	0.98	0.96
54	151566.6960	-0.0003	151566.696	0.00688	-0.013	0.90	0.95
Vec19: NLIB -> DET1							
55	698959.2059	-0.0212	698959.227	0.00214	-3.057	0.96	0.96 *
56	71617.0780	-0.0088	71617.087	0.00774	-0.363	0.91	0.95
57	43334.1791	0.0130	43334.166	0.00679	0.595	0.97	0.95
Vec20: DET1 -> MIL1							
58	-395888.7275	-0.0039	-395888.724	0.00136	-0.666	0.95	0.94
59	21977.9926	-0.0071	21978.000	0.00485	-0.357	0.95	0.94
60	57619.5322	0.0120	57619.520	0.00435	0.684	0.93	0.94
Vec21: STB1 -> MIL1							
61	-40299.6831	-0.0007	-40299.682	0.00111	-0.200	0.92	0.92
62	-139937.7257	0.0064	-139937.732	0.00547	0.401	0.95	0.92
63	-143545.4248	-0.0057	-143545.419	0.00532	-0.389	0.87	0.92
Vec22: STB1 -> SAG1							
64	283939.2848	0.0047	283939.280	0.00137	1.399	0.83	0.85
65	-68672.6097	-0.0041	-68672.606	0.00562	-0.281	0.82	0.89
66	-92932.4075	0.0015	-92932.409	0.00546	0.103	0.95	0.90
Vec23: STB1 -> DET1							
67	355589.0432	0.0020	355589.041	0.00145	0.440	0.93	0.92
	-161915.7338	-0.0019	-161915.732	0.00557	-0.122	0.92	0.92
69	-201164.9447	-0.0055	-201164.939	0.00531	-0.370	0.89	0.91
Vec24: WLCI -> NLIB							
70	-379580.3079	-0.0021	-379580.306	0.00187	-0.662	0.73	0.75
71	65969.5812	-0.0026	65969.584	0.00845	-0.175	0.83	0.74
72	80394.5528	0.0036	80394.549	0.00738	0.285	0.64	0.73
Vec25: WLCI -> MIL1							
73	-76509.8036	-0.0012	-76509.802	0.00115	-0.582	0.81	0.82
74	159564.6650	-0.0053	159564.670	0.00648	-0.407	0.77	0.87
75	181348.2391	0.0036	181348.235	0.00561	0.301	0.94	0.88
Vec26: WLCI -> STB1							
76	-36210.1200	-0.0000	-36210.120	0.00132	-0.013	0.90	0.91
77	299502.4000	-0.0024	299502.402	0.00709	-0.171	0.82	0.84
78	324893.6528	-0.0017	324893.655	0.00629	-0.133	0.86	0.84
Vec27: WLCI -> SAG1							
79	247729.1604	0.0003	247729.160	0.00141	0.076	0.88	0.89
			77				

80	230829.7950	-0.0018	230829.797	0.00676	-0.142	0.72	0.85
81	231961.2460	0.0005	231961.246	0.00582	0.040	0.94	0.86
Vec28: WLCI -> DET1							
82	319378.9210	-0.0002	319378.921	0.00144	-0.065	0.85	0.87
83	137586.6583	-0.0122	137586.671	0.00668	-0.862	0.93	0.88
84	123728.7187	0.0034	123728.715	0.00562	0.282	0.80	0.88
Vec29 SAG1 -> MIL1							
85	-324238.9627	-0.0002	-324238.963	0.00127	-0.040	0.93	0.93
86	-71265.1298	-0.0033	-71265.127	0.00497	-0.202	0.92	0.92
87	-50613.0076	0.0024	-50613.010	0.00462	0.163	0.91	0.92
Vec30: SAG1 -> DET1							
88	71649.7560	-0.0051	71649.761	0.00118	-1.479	0.89	0.89
89	-93243.1265	-0.0002	-93243.126	0.00495	-0.014	0.89	0.92
90	-108232.5321	-0.0019	-108232.530	0.00450	-0.125	0.95	0.93
Vec31: SAG1 -> MIL1							
91	-324238.9561	0.0064	-324238.963	0.00127	1.086	0.96	0.95
92	-71265.1293	-0.0028	-71265.127	0.00497	-0.158	0.93	0.93
93	-50613.0039	0.0061	-50613.010	0.00462	0.377	0.92	0.93
Vec32: SAG1 -> DET1							
94	71649.7569	-0.0042	71649.761	0.00118	-1.216	0.88	0.88
95	-93243.1248	0.0015	-93243.126	0.00495	0.091	0.89	0.91
96	-108232.5287	0.0015	-108232.530	0.00450	0.101	0.94	0.92
Vec33: WLCI -> MIL1							
97	-76509.8078	-0.0054	-76509.802	0.00115	-1.582	0.91	0.92
98	159564.6742	0.0039	159564.670	0.00648	0.215	0.92	0.93
99	181348.2370	0.0015	181348.235	0.00561	0.095	0.90	0.93
Vec34: WLCI -> STB1							
100	-36210.1189	0.0011	-36210.120	0.00132	0.227	0.94	0.94
101	299502.4108	0.0084	299502.402	0.00709	0.436	0.92	0.92
102	324893.6546	0.0001	324893.655	0.00629	0.004	0.89	0.92
Vec35: WLCI -> SAG1							
103	247729.1551	-0.0050	247729.160	0.00141	-1.092	0.93	0.93
104	230829.8032	0.0064	230829.797	0.00676	0.329	0.92	0.94
105	231961.2481	0.0026	231961.246	0.00582	0.150	0.93	0.94
Vec36: WLCI -> DET1							
106	319378.9159	-0.0053	319378.921	0.00144	-1.153	0.92	0.92
107	137586.6688	-0.0017	137586.671	0.00668	-0.090	0.88	0.93
108	123728.7271	0.0118	123728.715	0.00562	0.685	0.97	0.93
Vec37: DET1 -> MIL1							
109	-395888.7206	0.0030	-395888.724	0.00136	0.419	0.96	0.96
110	21978.0014	0.0017	21978.000	0.00485	0.079	0.95	0.95
111	57619.5230	0.0028	57619.520	0.00435	0.150	0.94	0.95
Vec38: NLIB -> MIL1							
112	303070.5033	-0.0002	303070.503	0.00171	-0.057	0.78	0.85
113	93595.0934	0.0069	93595.087	0.00755	0.418	0.97	0.90
114	100953.6803	-0.0059	100953.686	0.00669	-0.418	0.78	0.89
Vec39: NLIB -> STB1							
115	343370.1892	0.0033	343370.186	0.00183	0.739	0.90	0.91
116	233532.8166	-0.0020	233532.819	0.00797	-0.125	0.77	0.85
117	244499.1077	0.0024	244499.105	0.00723	0.158	0.92	0.86
Vec40: NLIB -> WLCI							
118	379580.3079	0.0021	379580.306	0.00187	0.461	0.90	0.90
119	-65969.5853	-0.0015	-65969.584	0.00845	-0.088	0.80	0.84
120	-80394.5519	-0.0027	-80394.549	0.00738	-0.174	0.87	0.84
Vec41: NLIB -> SAG1							

121627309.4673	0.0013	627309.466	0.00205	0.298	0.84	0.88
122164860.2071	-0.0060	164860.213	0.00776	-0.336	0.95	0.91
123151566.6992	0.0029	151566.696	0.00688	0.189	0.85	0.90
Vec42: NLIB -> DET1						
124698959.2342	0.0071	698959.227	0.00214	1.264	0.96	0.93
125 71617.0964	0.0096	71617.087	0.00774	0.543	0.88	0.91
126 43334.1605	-0.0056	43334.166	0.00679	-0.359	0.90	0.91
Vec43: STB1 -> MIL1						
127 -40299.6839	-0.0015	-40299.682	0.00111	-0.695	0.79	0.80
128 -139937.7382	-0.0061	-139937.732	0.00547	-0.380	0.84	0.91
129 -143545.4220	-0.0029	-143545.419	0.00532	-0.183	0.99	0.92
Vec44: STB1 -> SAG1						
130283939.2732	-0.0069	283939.280	0.00137	-1.490	0.93	0.92
131 -68672.6091	-0.0035	-68672.606	0.00562	-0.204	0.96	0.91
$132-92932.4100$	-0.0010	-92932.409	0.00546	-0.062	0.84	0.90
Vec45: STB1 -> DET1						
133355589.0380	-0.0032	355589.041	0.00145	-0.688	0.91	0.91
$134-161915.7331$	-0.0012	-161915.732	0.00557	-0.072	0.93	0.92
$135-201164.9407$	-0.0015	-201164.939	0.00531	-0.091	0.90	0.92
Sum of traditional redundancy numbers $=120.00$						
Sum of standardized	reliabil	ty numbers =	121.26			

APPENDIX E

WMINOLESS for CORS Validation, 41 Observed Baseline Vectors

```
GPS observation variances and covariances scaled by 96.0 beginning at
observation 1.
The 3x3 block diagonal covariance matrix is replaced by a full
(session) matrix.
Adjustment type: Weighted Minimum Norm Least-Squares Solution
Units: dms, meters
No of observations : 123
Rank of A : - 15
System redundancy : 108
Adjustment PASSED the Chi Square test at the 95% Confidence Level
Lower bound: 81.133
Chi Sq stat: 108.236
Upper bound: 138.651
Centering errors: NONE
Estimated parameters: Cartesian (meters)
Name X Y Z
DET1 568024.7216 -4690674.6437 4270188.8165
MIL1 172135.9981 -4668696.6438 4327808.3373
NLIB -130934.5056 -4762291.7295 4226854.6497
SAG1 496374.9607 -4597431.5173 4378421.3469
STB1 212435.6805 -4528758.9117 4471353.7562
WLCI 248645.8004 -4828261.3139 4146460.1013
Estimated parameters: geodetic (ddd.mmsssssss)
Name latitude longitude height
DET1 42.175045419 -83.054306691 145.0456
MIL1 43.000913079 -87.531840898 147.3691
NLIB 41.461772743 -91.342961873 207.0274
SAG1 43.374311944 -83.501595889 149.2217
STB1 44.474374793 -87.185158774 148.8385
WLCI 40.483026939 -87.030715032 180.4252
Trace of estimated dispersion matrix: 0.000186
Estimated reference variance: 1.0022
```

Name	std (X)	std (Y)	(scaled std(Z)	$\begin{gathered} \text { by sqrt } \\ \text { std(n) } \end{gathered}$	std (e)	std (up)
	m	m	m	m	m	m
DET1	0.0011	0.0041	0.0037	0.0007	0.0012	0.0055
MIL1	0.0008	0.0040	0.0037	0.0007	0.0008	0.0054
NLIB	0.0008	0.0029	0.0024	0.0010	0.0008	0.0036
SAG1	0.0010	0.0040	0.0037	0.0007	0.0011	0.0054
STB1	0.0009	0.0043	0.0041	0.0009	0.0009	0.0059
WLCI	0.0009	0.0049	0.0043	0.0010	0.0009	0.0064

Observation Estimates
Obs\# From-To
Obs\# $\quad \mathrm{dX} / \mathrm{dY} / \mathrm{dZ}$

Obs. Obs.

	Obs.	Error
Vec01:	NLIB $->$ STB1	
1	343370.1879	0.0018
2	233532.8082	-0.0096
3	244499.1146	0.0082

Adjusted Obs.	Obs. Std. Dev.	Stu. Res.	$\begin{aligned} & \text { Trad. } \\ & \text { Red \# } \end{aligned}$	Rel \#
343370.186	0.00151	0.499	0.85	0.88
233532.818	0.00653	-0.586	0.96	0.91
244499.106	0.00592	0.561	0.84	0.90
627309.466	0.00169	-1.631	0.91	0.94
164860.212	0.00637	-1.674	0.81	0.92
151566.697	0.00564	1.684	1.01	0.93
698959.227	0.00179	-1.430	0.96	0.95
71617.086	0.00648	0.066	0.97	0.92
43334.167	0.00568	0.684	0.84	0.91
-36210.120	0.00108	-1.273	0.70	0.74
299502.402	0.00580	0.361	0.92	0.81
324893.655	0.00515	-0.456	0.70	0.80
40299.682	0.00093	-0.489	0.79	0.81
139937.732	0.00462	-0.605	0.69	0.82
143545.419	0.00449	0.410	1.01	0.83
395888.724	0.00115	1.448	0.91	0.87
-21978.000	0.00413	-0.426	0.98	0.88
-57619.521	0.00369	0.521	0.82	0.87
283939.280	0.00111	0.659	0.92	0.92
-68672.606	0.00457	-0.176	0.93	0.89
-92932.409	0.00444	0.328	0.86	0.89
-324238.963	0.00105	-0.036	0.93	0.92
-71265.127	0.00416	-0.181	0.89	0.89
-50613.010	0.00388	0.236	0.86	0.88
71649.761	0.00099	1.190	0.89	0.90
-93243.126	0.00418	-0.471	0.97	0.92
-108232.530	0.00379	0.583	0.83	0.90
-379580.306	0.00156	-0.804	0.84	0.84
65969.584	0.00695	-1.283	0.62	0.79
80394.548	0.00607	0.983	0.94	0.81

31	-76509.7968	0.0056	-76509.802	0.00095	3.234	0.79	$0.81 *$
32	159564.6675	-0.0027	159564.670	0.00532	-0.283	0.71	0.85
33	181348.2377	0.0016	181348.236	0.00462	0.187	0.93	0.86
Vec12: WLCI -> SAG1							
34	247729.1634	0.0031	247729.160	0.00115	1.142	0.88	0.90
35	230829.8005	0.0038	230829.797	0.00550	0.369	0.98	0.86
36	231961.2424	-0.0033	231961.246	0.00473	-0.379	0.67	0.84
Vec13: WLCI -> DET1							
37	319378.9265	0.0053	319378.921	0.00120	1.968	0.86	0.87
38	137586.6704	0.0002	137586.670	0.00550	0.016	0.89	0.87
39	123728.7143	-0.0010	123728.715	0.00463	-0.112	0.78	0.86
Vec14: NLIB -> STB1							
40	343370.1774	-0.0087	343370.186	0.00151	-2.401	0.84	0.88
41	233532.7983	-0.0195	233532.818	0.00653	-1.117	0.86	0.91
42	244499.1267	0.0203	244499.106	0.00592	1.218	0.94	0.92
Vec15: NLIB -> SAG1							
43	627309.4586	-0.0077	627309.466	0.00169	-1.368	0.95	0.95
44	164860.2095	-0.0028	164860.212	0.00637	-0.141	0.97	0.95
45	151566.6960	-0.0012	151566.697	0.00564	-0.071	0.88	0.93
Vec16: DET1 -> MIL1							
46	-395888.7275	-0.0039	-395888.724	0.00115	-0.825	0.94	0.94
47	21977.9926	-0.0073	21978.000	0.00413	-0.453	0.95	0.94
48	57619.5322	0.0114	57619.521	0.00369	0.799	0.93	0.94
Vec17: STB1 -> MIL1							
49	-40299.6831	-0.0007	-40299.682	0.00093	-0.234	0.91	0.92
50	-139937.7257	0.0063	-139937.732	0.00462	0.491	0.95	0.91
51	-143545.4248	-0.0060	-143545.419	0.00449	-0.500	0.85	0.91
Vec18: STB1 -> SAG1							
52	283939.2848	0.0046	283939.280	0.00111	1.682	0.83	0.85
53	-68672.6097	-0.0042	-68672.606	0.00457	-0.350	0.82	0.88
54	-92932.4075	0.0018	-92932.409	0.00444	0.148	0.96	0.90
Vec19: STB1 -> DET1							
55	355589.0432	0.0021	355589.041	0.00122	0.557	0.92	0.91
56	-161915.7338	-0.0018	-161915.732	0.00476	-0.142	0.91	0.91
57	-201164.9447	-0.0050	-201164.940	0.00451	-0.423	0.88	0.91
Vec20: WLCI -> NLIB							
58	-379580.3079	-0.0019	-379580.306	0.00156	-0.760	0.71	0.73
59	65969.5812	-0.0032	65969.584	0.00695	-0.270	0.82	0.72
60	80394.5528	0.0043	80394.548	0.00607	0.429	0.63	0.71
Vec21: WLCI -> MIL1							
61	-76509.8036	-0.0012	-76509.802	0.00095	-0.722	0.79	0.81
62	159564.6650	-0.0052	159564.670	0.00532	-0.491	0.76	0.85
63	181348.2391	0.0030	181348.236	0.00462	0.309	0.93	0.86
Vec22: WLCI -> STB1							
64	-36210.1200	-0.0001	-36210.120	0.00108	-0.032	0.90	0.91
65	299502.4000	-0.0022	299502.402	0.00580	-0.194	0.81	0.84
66	324893.6528	-0.0021	324893.655	0.00515	-0.201	0.86	0.84
Vec23: WLCI -> SAG1							
67	247729.1604	0.0001	247729.160	0.00115	0.035	0.88	0.88
68	230829.7950	-0.0017	230829.797	0.00550	-0.160	0.72	0.85
69	231961.2460	0.0003	231961.246	0.00473	0.035	0.94	0.86
Vec24: WLCI -> DET1							
70	319378.9210	-0.0002	319378.921	0.00120	-0.078	0.85	0.86
71	137586.6583	-0.0119	137586.670	0.00550	-1.037	0.92	0.87
72	123728.7187	0.0034	123728.715	0.00463	0.352	0.80	0.87

Vec25: SAG1 -> MIL1							
73	-324238.9627	-0.0000	-324238.963	0.00105	-0.009	0.93	0.93
74	-71265.1298	-0.0033	-71265.127	0.00416	-0.251	0.92	0.91
75	-50613.0076	0.0020	-50613.010	0.00388	0.162	0.90	0.91
Vec2 SAG1 -> DET1							
76	71649.7560	-0.0049	71649.761	0.00099	-1.770	0.88	0.88
77	-93243.1265	-0.0001	-93243.126	0.00418	-0.005	0.88	0.91
78	-108232.5321	-0.0017	-108232.530	0.00379	-0.140	0.95	0.92
Vec27: SAG1 -> MIL1							
79	-324238.9561	0.0066	-324238.963	0.00105	1.371	0.96	0.95
80	-71265.1293	-0.0028	-71265.127	0.00416	-0.198	0.93	0.93
81	-50613.0039	0.0057	-50613.010	0.00388	0.431	0.92	0.93
Vec28: SAG1 -> DET1							
82	71649.7569	-0.0040	71649.761	0.00099	-1.445	0.87	0.87
83	-93243.1248	0.0016	-93243.126	0.00418	0.125	0.88	0.91
84	-108232.5287	0.0017	-108232.530	0.00379	0.139	0.94	0.92
Vec29: WLCI -> MIL1							
85	-76509.8078	-0.0054	-76509.802	0.00095	-1.953	0.91	0.91
86	159564.6742	0.0040	159564.670	0.00532	0.274	0.92	0.93
87	181348.2370	0.0009	181348.236	0.00462	0.071	0.90	0.93
Vec30: WLCI -> STB1							
88	-36210.1189	0.0010	-36210.120	0.00108	0.269	0.94	0.94
89	299502.4108	0.0086	299502.402	0.00580	0.550	0.92	0.92
90	324893.6546	-0.0003	324893.655	0.00515	-0.023	0.89	0.92
Vec31: WLCI -> SAG1							
91	247729.1551	-0.0052	247729.160	0.00115	-1.388	0.93	0.93
92	230829.8032	0.0065	230829.797	0.00550	0.415	0.92	0.94
93	231961.2481	0.0024	231961.246	0.00473	0.175	0.93	0.94
Vec32: WLCI -> DET1							
94	319378.9159	-0.0053	319378.921	0.00120	-1.421	0.91	0.92
95	137586.6688	-0.0014	137586.670	0.00550	-0.091	0.87	0.93
96	123728.7271	0.0118	123728.715	0.00463	0.847	0.97	0.93
Vec33: DET1 -> MIL1							
97	-395888.7206	0.0030	-395888.724	0.00115	0.514	0.96	0.96
98	21978.0014	0.0015	21978.000	0.00413	0.086	0.94	0.94
99	57619.5230	0.0022	57619.521	0.00369	0.143	0.94	0.94
Vec34: NLIB -> MIL1							
100	303070.5033	-0.0003	303070.504	0.00147	-0.136	0.75	0.83
101	93595.0934	0.0076	93595.086	0.00640	0.577	0.97	0.89
102	100953.6803	-0.0073	100953.688	0.00569	-0.641	0.75	0.87
Vec35: NLIB -> STB1							
103	343370.1892	0.0031	343370.186	0.00151	0.858	0.90	0.91
104	233532.8166	-0.0012	233532.818	0.00653	-0.091	0.77	0.85
105	244499.1077	0.0013	244499.106	0.00592	0.101	0.92	0.85
Vec36: NLIB -> WLCI							
106	379580.3079	0.0019	379580.306	0.00156	0.526	0.90	0.90
107	-65969.5853	-0.0009	-65969.584	0.00695	-0.064	0.79	0.83
108	-80394.5519	-0.0034	-80394.548	0.00607	-0.278	0.87	0.84
Vec37: NLIB -> SAG1							
109	627309.4673	0.0010	627309.466	0.00169	0.279	0.84	0.88
110	164860.2071	-0.0052	164860.212	0.00637	-0.360	0.95	0.91
111	151566.6992	0.0020	151566.697	0.00564	0.161	0.85	0.90
Vec38: NLIB -> DET1 0.0070							
112	698959.2342	0.0070	698959.227	0.00179	1.530	0.95	0.92
113	71617.0964	0.0106	71617.086	0.00648	0.739	0.87	0.90

| 114 | 43334.1605 | -0.0063 | 43334.167 | 0.00568 | -0.503 | 0.90 | 0.90 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vec39: STB1 -> MIL1 | | | | | | | |
| 115 | -40299.6839 | -0.0015 | -40299.682 | 0.00093 | -0.841 | 0.78 | 0.79 |
| 116 | -139937.7382 | -0.0062 | -139937.732 | 0.00462 | -0.476 | 0.82 | 0.90 |
| 117 | -143545.4220 | -0.0032 | -143545.419 | 0.00449 | -0.244 | 0.98 | 0.91 |
| Vec $40:$ STB1 -> SAG1 | | | | | | | |
| 118 | 283939.2732 | -0.0070 | 283939.280 | 0.00111 | -1.866 | 0.93 | 0.92 |
| 119 | -68672.6091 | -0.0036 | -68672.606 | 0.00457 | -0.255 | 0.96 | 0.90 |
| 120 | -92932.4100 | -0.0007 | -92932.409 | 0.00444 | -0.057 | 0.84 | 0.90 |
| Vec41: STB1 -> DET1 | | | | | | | |
| 121 | 355589.0380 | -0.0031 | 355589.041 | 0.00122 | -0.837 | 0.90 | 0.90 |
| 122 | -161915.7331 | -0.0011 | -161915.732 | 0.00476 | -0.082 | 0.92 | 0.91 |
| 123 | -201164.9407 | -0.0010 | -201164.940 | 0.00451 | -0.080 | 0.89 | 0.91 |

Sum of traditional redundancy numbers $=108.00$
Sum of standardized reliability numbers $=109.03$
Estimated baseline outliers and minimum detectible outliers in meters alpha $=0.01$, beta $=0.80, r 1=3, r 2=105$, non-central param. $=8.08$ $\mathrm{F}(0.01 ; 3,105)=3.97$
No. from to est. outlier[dX,dY,dZ] T min. detect.[dX,dY,dZ] Ex Rel
1 NLIB->STB1 [0.006, 0.003,-0.003] 1.35 [0.0077,-0.0058,0.0161] 0.643
2 NLIB->SAG1 [-0.005,-0.022, 0.019] 1.94 [0.0081,-0.0059,0.0164] 0.513
3 NLIB->DET1 [-0.004, 0.017,-0.003] $2.26[0.0075,-0.0056,0.0151] 0.627$
4 WLCI->STB1 [-0.001, 0.008,-0.009] 0.36 [0.0046,-0.0032,0.0092] 2.893
5 MIL1->STB1 [-0.001,-0.012, 0.009] 1.03 [0.0039,-0.0027,0.0080] 1.852
6 MIL1->DET1 [0.007, 0.000, 0.002] 1.82 [0.0052,-0.0035,0.0103] 1.172
7 STB1->SAG1 [0.003,-0.003, 0.005] 0.25 [0.0069,-0.0043,0.0139] 0.985
8 SAG1->MIL1 [-0.001, 0.000, 0.000] 0.03 [0.0059,-0.0039,0.0118] 0.917
9 SAG1->DET1 [0.004,-0.006, 0.006] 0.50 [0.0056,-0.0034,0.0108] 0.883
10 WLCI->NLIB [-0.006,-0.020, 0.014] 1.35 [0.0068,-0.0056,0.0140] 2.032
11 WLCI->MIL1 [0.006,-0.005, 0.004] 3.27 [0.0043,-0.0032,0.0086] 1.730
12 WLCI->SAG1 [-0.000, 0.006,-0.005] 0.12 [0.0052,-0.0036,0.0102] 1.373
13 WLCI->DET1 [0.003, 0.001,-0.002] 0.67 [0.0050,-0.0035,0.0098] 1.150
14 NLIB->STB1 [-0.007,-0.016, 0.021] 2.51 [0.0079,-0.0060,0.0165] 0.836
15 NLIB->SAG1 [-0.001, 0.015,-0.017] 0.44 [0.0094,-0.0068,0.0190] 0.485
16 DET1->MIL1 $[-0.004,-0.008,0.012] \quad 0.68[0.0075,-0.0050,0.0147] 0.613$
17 STB1->MIL1 [-0.001, 0.009,-0.004] 0.52 [0.0058,-0.0040,0.0118] 0.776
18 STB1->SAG1 [0.004,-0.007, 0.007] 0.88 [0.0050,-0.0031,0.0100] 1.288
19 STB1->DET1 [-0.001,-0.004,-0.002] $0.70[0.0055,-0.0035,0.0109] 0.845$
20 WLCI->NLIB [-0.003,-0.000, 0.006] 1.16 [0.0060,-0.0049,0.0122] 3.127
21 WLCI->MIL1 [-0.001,-0.002, 0.002] 0.19 [0.0042,-0.0031,0.0084] 1.706
22 WLCI->STB1 [0.001, 0.002,-0.005] 0.25 [0.0059,-0.0042,0.0118] 1.079
23 WLCI->SAG1 [0.001, 0.004,-0.002] 0.26 [0.0054,-0.0037,0.0107] 0.987
24 WLCI->DET1 [0.000,-0.011, 0.003] 1.89 [0.0049,-0.0034,0.0095] 1.194
25 SAG1->MIL1 [0.001,-0.003, 0.002] 0.04 [0.0064,-0.0042,0.0127] 0.719
26 SAG1->DET1 [-0.006, 0.001,-0.003] 1.63 [0.0055,-0.0034,0.0106] 0.912
27 SAG1->MIL1 [0.006,-0.002, 0.004] 0.64 [0.0074,-0.0049,0.0147] 0.529
28 SAG1->DET1 [-0.005, 0.002,-0.002] 1.04 [0.0054,-0.0033,0.0104] 1.027
29 WLCI->MIL1 [-0.004, 0.001,-0.002] 0.85 [0.0059,-0.0044,0.0118] 0.702
30 WLCI->STB1 [0.005, 0.007,-0.004] 1.04 [0.0072,-0.0051,0.0146] 0.605
31 WLCI->SAG1 [-0.003, 0.004,-0.001] 0.39 [0.0071,-0.0048,0.0139] 0.520
32 WLCI->DET1 [-0.004,-0.006, 0.012] 2.13 [0.0070,-0.0049,0.0136] 0.488
33 DET1->MIL1 [0.003, 0.002, 0.002] 0.29 [0.0086,-0.0058,0.0170] 0.460
34 NLIB->MIL1 [-0.002, 0.007,-0.007] 0.48 [0.0049,-0.0039,0.0103] 1.206

```
35 NLIB->STB1 [ 0.002,-0.007, 0.005] 0.23 [0.0067,-0.0051,0.0139] 0.764
36 NLIB->WLCI [ 0.000,-0.004,-0.001] 0.26 [0.0061,-0.0050,0.0124] 1.248
37 NLIB->SAG1 [-0.002,-0.013, 0.008] 0.94 [0.0060,-0.0043,0.0121] 0.848
38 NLIB->DET1 [ 0.006, 0.010,-0.004] 2.49 [0.0060,-0.0045,0.0121] 0.697
39 STB1->MIL1 [-0.000,-0.005,-0.004] 1.80 [0.0049,-0.0034,0.0100] 1.617
40 STB1->SAG1 [-0.006,-0.001, 0.001] 1.75 [0.0056,-0.0035,0.0112] 0.872
41 STB1->DET1 [ 0.000, 0.003,-0.001] 0.09 [0.0054,-0.0034,0.0106] 0.851
```


APPENDIX F

SCLESS for CORS Validation, 41 Observed Baseline Vectors

```
GPS observation variances and covariances scaled by 96.000 beginning at
observation 1.
The 3x3 block diagonal covariance matrix is replaced by the full
(session) matrix.
Adjustment type: Stochastically Constrained Least-Squares Solution
Units: dms, meters
No of observations : 123
No. parameters : - 18
Rank of K : + 18
System redundancy : }12
Adjustment PASSED the Chi Square test at the 95% Confidence Level
Lower bound: 94.195
Chi Sq stat: 118.150
Upper bound: 155.589
Centering errors: NONE
Estimated parameters: Cartesian (meters)
Name X Y Z
DET1 568024.7218 -4690674.6439 4270188.8167
MIL1 172135.9983 -4668696.6449 4327808.3384
NLIB -130934.5057 -4762291.7292 4226854.6496
SAG1 496374.9608 -4597431.5176 4378421.3473
STB1 212435.6806 -4528758.9115 4471353.7560
WLCI 248645.8007 -4828261.3142 4146460.1010
Estimated parameters: geodetic (ddd.mmsssssss)
Name latitude longitude height
DET1 42.1750454190 -83.0543066907 145.0459
MIL1 43.0009130796 -87.5318408978 147.3706
NLIB 41.4617727438 -91.3429618743 207.0271
SAG1 43.3743119448 -83.5015958896 149.2222
STB1 44.4743747940 -87.1851587739 148.8382
WLCI 40.4830269382 -87.0307150316 180.4252
Trace of estimated dispersion matrix: 0.000200
Estimated reference variance: 0.9606
```

Name	d stan std (X)	std (Y)	(scaled std (Z)	$\begin{gathered} \text { by sqrt } \\ \text { std(n) } \end{gathered}$	std (e)	std (up)
	m	m	m	m	m	m
DET1	0.0019	0.0041	0.0037	0.0021	0.0019	0.0051
MIL1	0.0018	0.0040	0.0038	0.0020	0.0018	0.0051
NLIB	0.0017	0.0032	0.0029	0.0021	0.0017	0.0037
SAG1	0.0018	0.0040	0.0038	0.0021	0.0018	0.0051
STB1	0.0018	0.0042	0.0040	0.0021	0.0018	0.0054
WLCI	0.0018	0.0046	0.0041	0.0022	0.0018	0.0058

Observation Estimates

Obs\#	From-To
Obs\#	$d X / d Y / d Z$

Obs.
Vec01: NLIB -> STB1

1	343370.1879	0.0016
2	233532.8082	-0.0095
3	244499.1146	0.0082

Vec02: NLIB -> SAG1
$\begin{array}{rrr}4 & 627309.4588 & -0.0078 \\ 5 & 164860.1847 & -0.0269 \\ 6 & 151566.7236 & 0.0259\end{array}$
Vec03: NLIB -> DET1
$7 \quad 698959.2192-0.0083$
$\begin{array}{lll}8 & 71617.0870 & 0.0018 \\ 9 & 43334.1768 & 0.0097\end{array}$
Vec04: WLCI -> STB1
$10-36210.1220 \quad-0.0019$
$11 \quad 299502.4067 \quad 0.0040$
$12324893.6501 \quad-0.0049$
Vec05: MIL1 -> STB1

13	40299.6816	-0.0007
14	139937.7255	-0.0080
15	143545.4233	0.0058

Vec06: MIL1 -> DET1
$\begin{array}{rrr}16 & 395888.7290 & 0.0055 \\ 17 & -21978.0055 & -0.0065 \\ 18 & -57619.5150 & 0.0068\end{array}$
Vec07: STB1 -> SAG1
$19 \quad 283939.2827 \quad 0.0024$
$\begin{array}{rrr}20 & -68672.6080 & -0.0018 \\ 21 & -92932.4050 & 0.0036\end{array}$
Vec08: SAG1 -> MIL1
$22-324238.9628-0.0003$
$\begin{array}{rrr}23 & -71265.1285 & -0.0011 \\ 24 & -50613.0072 & 0.0017\end{array}$
Vec09: SAG1 -> DET1
$\begin{array}{rrr}25 & 71649.7642 & 0.0033 \\ 26 & -93243.1321 & -0.0057 \\ 27 & -108232.5245 & 0.0061\end{array}$
Vec10: WLCI -> NLIB
$\begin{array}{rrr}28 & -379580.3089 & -0.0024 \\ 29 & 65969.5692 & -0.0158 \\ 30 & 80394.5595 & 0.0109\end{array}$
Vec11: WLCI -> MIL1

Adjusted Obs.	Obs. Std. Dev.	Stu. Res.	Trad. Red \#	Std. Rel
343370.186	0.00136	0.438	0.87	0.89
233532.818	0.00452	-0.571	0.95	0.92
244499.106	0.00421	0.558	0.89	0.91
627309.467	0.00151	-1.712	0.92	0.95
164860.212	0.00436	-1.606	0.88	0.93
151566.698	0.00392	1.633	0.98	0.94
698959.228	0.00160	-1.505	0.96	0.96
71617.085	0.00444	0.102	0.96	0.93
43334.167	0.00390	0.653	0.89	0.92
-36210.120	0.00104	-1.150	0.71	0.74
299502.403	0.00500	0.318	0.93	0.82
324893.655	0.00447	-0.462	0.74	0.81
40299.682	0.00090	-0.384	0.79	0.81
139937.734	0.00413	-0.746	0.73	0.83
143545.417	0.00401	0.537	0.99	0.84
395888.723	0.00110	1.507	0.92	0.87
-21977.999	0.00377	-0.504	0.98	0.88
-57619.522	0.00338	0.615	0.84	0.87
283939.280	0.00107	0.657	0.92	0.92
-68672.606	0.00410	-0.134	0.93	0.90
-92932.409	0.00398	0.284	0.88	0.89
-324238.963	0.00101	-0.073	0.93	0.93
-71265.127	0.00379	-0.104	0.90	0.89
-50613.009	0.00353	0.166	0.87	0.88
71649.761	0.00095	1.204	0.89	0.90
-93243.126	0.00381	-0.482	0.97	0.92
-108232.531	0.00346	0.614	0.85	0.90
-379580.306	0.00140	-0.680	0.86	0.86
65969.585	0.00490	-1.263	0.78	0.81
80394.549	0.00426	0.925	0.93	0.82

31	-76509.7968	0.0056	-76509.802	0.00091	3.310	0.79	0.82*
32	159564.6675	-0.0017	159564.669	0.00464	-0.180	0.75	0.86
33	181348.2377	0.0002	181348.238	0.00406	0.022	0.92	0.87
Vec12: WLCI -> SAG1							
34	247729.1634	0.0033	247729.160	0.00110	1.226	0.88	0.90
35	230829.8005	0.0039	230829.797	0.00478	0.374	0.96	0.86
36	231961.2424	-0.0040	231961.246	0.00414	-0.457	0.72	0.84
Vec13: WLCI -> DET1							
37	319378.9265	0.0054	319378.921	0.00114	2.057	0.86	0.87
38	137586.6704	0.0002	137586.670	0.00478	0.018	0.90	0.88
39	123728.7143	-0.0014	123728.716	0.00405	-0.164	0.81	0.87
Vec14: NLIB -> STB1							
40	343370.1774	-0.0089	343370.186	0.00136	-2.486	0.86	0.89
41	233532.7983	-0.0194	233532.818	0.00452	-1.099	0.91	0.92
42	244499.1267	0.0203	244499.106	0.00421	1.213	0.94	0.92
Vec15: NLIB -> SAG1							
43	627309.4586	-0.0080	627309.467	0.00151	-1.439	0.96	0.95
44	164860.2095	-0.0021	164860.212	0.00436	-0.105	0.97	0.95
45	151566.6960	-0.0017	151566.698	0.00392	-0.102	0.92	0.94
Vec16: DET1 -> MIL1							
46	-395888.7275	-0.0040	-395888.723	0.00110	-0.866	0.95	0.94
47	21977.9926	-0.0064	21977.999	0.00377	-0.403	0.95	0.94
48	57619.5322	0.0104	57619.522	0.00338	0.745	0.94	0.94
Vec17: STB1 -> MIL1							
49	-40299.6831	-0.0008	-40299.682	0.00090	-0.310	0.91	0.92
50	-139937.7257	0.0078	-139937.734	0.00413	0.612	0.95	0.92
51	-143545.4248	-0.0073	-143545.417	0.00401	-0.618	0.87	0.91
Vec18: STB1 -> SAG1							
52	283939.2848	0.0045	283939.280	0.00107	1.691	0.83	0.85
53	-68672.6097	-0.0035	-68672.606	0.00410	-0.301	0.84	0.89
54	-92932.4075	0.0011	-92932.409	0.00398	0.097	0.95	0.90
Vec19: STB1 -> DET1							
55	355589.0432	0.0020	355589.041	0.00116	0.546	0.93	0.91
56	-161915.7338	-0.0013	-161915.733	0.00424	-0.100	0.92	0.91
57	-201164.9447	-0.0054	-201164.939	0.00402	-0.459	0.89	0.91
Vec20: WLCI -> NLIB							
58	-379580.3079	-0.0014	-379580.306	0.00140	-0.569	0.76	0.76
59	65969.5812	-0.0038	65969.585	0.00490	-0.305	0.87	0.74
60	80394.5528	0.0042	80394.549	0.00426	0.388	0.75	0.74
Vec21: WLCI -> MIL1							
61	-76509.8036	-0.0012	-76509.802	0.00091	-0.714	0.80	0.81
62	159564.6650	-0.0042	159564.669	0.00464	-0.399	0.79	0.86
63	181348.2391	0.0016	181348.238	0.00406	0.163	0.93	0.87
Vec22: WLCI -> STB1							
64	-36210.1200	0.0001	-36210.120	0.00104	0.053	0.90	0.91
65	299502.4000	-0.0027	299502.403	0.00500	-0.239	0.84	0.84
66	324893.6528	-0.0022	324893.655	0.00447	-0.207	0.87	0.84
Vec23: WLCI -> SAG1							
67	247729.1604	0.0003	247729.160	0.00110	0.100	0.88	0.89
68	230829.7950	-0.0016	230829.797	0.00478	-0.151	0.76	0.86
69	231961.2460	-0.0004	231961.246	0.00414	-0.037	0.93	0.86
Vec24: WLCI -> DET1							
70	319378.9210	-0.0001	319378.921	0.00114	-0.022	0.85	0.87
71	137586.6583	-0.0119	137586.670	0.00478	-1.033	0.92	0.87
72	123728.7187	0.0030	123728.716	0.00405	0.304	0.83	0.87
			88				

Vec25: SAG1 -> MIL1							
73	-324238.9627	-0.0002	-324238.963	0.00101	-0.046	0.93	0.93
74	-71265.1298	-0.0024	-71265.127	0.00379	-0.188	0.92	0.91
75	-50613.0076	0.0013	-50613.009	0.00353	0.105	0.91	0.91
Vec26: SAG1 -> DET1							
76	71649.7560	-0.0049	71649.761	0.00095	-1.810	0.88	0.88
77	-93243.1265	-0.0001	-93243.126	0.00381	-0.010	0.90	0.91
78	-108232.5321	-0.0015	-108232.531	0.00346	-0.123	0.95	0.92
Vec27: SAG1 -> MIL1							
79	-324238.9561	0.0064	-324238.963	0.00101	1.369	0.96	0.95
80	-71265.1293	-0.0019	-71265.127	0.00379	-0.139	0.94	0.93
81	-50613.0039	0.0050	-50613.009	0.00353	0.382	0.92	0.93
Vec28: SAG1 -> DET1							
82	71649.7569	-0.0040	71649.761	0.00095	-1.479	0.88	0.87
83	-93243.1248	0.0016	-93243.126	0.00381	0.122	0.89	0.91
84	-108232.5287	0.0019	-108232.531	0.00346	0.161	0.94	0.92
Vec29: WLCI -> MIL1							
85	-76509.8078	-0.0054	-76509.802	0.00091	-1.978	0.91	0.92
86	159564.6742	0.0050	159564.669	0.00464	0.341	0.93	0.93
87	181348.2370	-0.0005	181348.238	0.00406	-0.039	0.91	0.93
Vec30: WLCI -> STB1							
88	-36210.1189	0.0012	-36210.120	0.00104	0.336	0.94	0.94
89	299502.4108	0.0081	299502.403	0.00500	0.519	0.93	0.92
90	324893.6546	-0.0004	324893.655	0.00447	-0.029	0.90	0.92
Vec31: WLCI -> SAG1							
91	247729.1551	-0.0050	247729.160	0.00110	-1.368	0.93	0.93
92	230829.8032	0.0066	230829.797	0.00478	0.424	0.93	0.94
93	231961.2481	0.0017	231961.246	0.00414	0.126	0.93	0.94
Vec32: WLCI -> DET1							
94	319378.9159	-0.0052	319378.921	0.00114	-1.406	0.91	0.92
95	137586.6688	-0.0014	137586.670	0.00478	-0.090	0.89	0.93
96	123728.7271	0.0114	123728.716	0.00405	0.822	0.96	0.93
Vec33: DET1 -> MIL1							
97	-395888.7206	0.0029	-395888.723	0.00110	0.504	0.96	0.96
98	21978.0014	0.0024	21977.999	0.00377	0.142	0.95	0.94
99	57619.5230	0.0012	57619.522	0.00338	0.082	0.94	0.94
Vec34: NLIB -> MIL1							
100	303070.5033	-0.0008	303070.504	0.00132	-0.303	0.77	0.84
101	93595.0934	0.0092	93595.084	0.00436	0.671	0.94	0.89
102	100953.6803	-0.0086	100953.689	0.00393	-0.723	0.83	0.88
Vec35: NLIB -> STB1							
103	343370.1892	0.0029	343370.186	0.00136	0.800	0.91	0.92
104	233532.8166	-0.0011	233532.818	0.00452	-0.082	0.84	0.86
105	244499.1077	0.0013	244499.106	0.00421	0.105	0.91	0.86
Vec36: NLIB -> WLCI							
106	379580.3079	0.0014	379580.306	0.00140	0.400	0.90	0.91
107	-65969.5853	-0.0003	-65969.585	0.00490	-0.020	0.85	0.85
108	-80394.5519	-0.0033	-80394.549	0.00426	-0.255	0.88	0.85
Vec37: NLIB -> SAG1							
109	627309.4673	0.0007	627309.467	0.00151	0.197	0.86	0.88
110	164860.2071	-0.0045	164860.212	0.00436	-0.303	0.93	0.91
111	151566.6992	0.0015	151566.698	0.00392	0.115	0.89	0.91
Vec38: NLIB -> DET1							
112	698959.2342	0.0067	698959.228	0.00160	1.474	0.95	0.93
113	71617.0964	0.0112	71617.085	0.00444	0.762	0.90	0.91

| 114 | 43334.1605 | -0.0066 | 43334.167 | 0.00390 | -0.512 | 0.91 | 0.90 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vec39: STB1 -> MIL1 | | | | | | | |
| 115 | -40299.6839 | -0.0016 | -40299.682 | 0.00090 | -0.971 | 0.78 | 0.79 |
| 116 | -139937.7382 | -0.0047 | -139937.734 | 0.00413 | -0.365 | 0.85 | 0.91 |
| 117 | -143545.4220 | -0.0045 | -143545.417 | 0.00401 | -0.351 | 0.98 | 0.91 |
| Vec $40:$ STB1 -> SAG1 | | | | | | | |
| 118 | 283939.2732 | -0.0071 | 283939.280 | 0.00107 | -1.917 | 0.93 | 0.92 |
| 119 | -68672.6091 | -0.0029 | -68672.606 | 0.00410 | -0.213 | 0.96 | 0.91 |
| 120 | -92932.4100 | -0.0014 | -92932.409 | 0.00398 | -0.106 | 0.86 | 0.90 |
| Vec41: STB1 -> DET1 | | | | | | | |
| 121 | 355589.0380 | -0.0032 | 355589.041 | 0.00116 | -0.874 | 0.90 | 0.90 |
| 122 | -161915.7331 | -0.0006 | -161915.733 | 0.00424 | -0.042 | 0.93 | 0.91 |
| 123 | -201164.9407 | -0.0014 | -201164.939 | 0.00402 | -0.111 | 0.90 | 0.91 |

Sum of traditional redundancy numbers $=123.00$
Sum of standardized reliability numbers $=123.22$

Estimated baseline outliers and minimum detectable outliers in meters alpha $=0.01$, beta $=0.80, r 1=3, r 2=120$, non-central param. $=8.08$ $\mathrm{F}(0.01 ; 3,120)=3.95$

1	NLIB->STB1	006, 0.002,-0.003]	1.32		0.589
2	NLIB->SAG1	[-0.005,-0.021, 0.018]	1.98	[0.0081, -0.0059,0.0163]	0.477
3	NLIB->DET1	[-0.004, 0.017,-0.004]	2.43	[0.0075,-0.0055, 0.0150]	58
4	WL	[-0.001, 0.008, 0.009$]$	0.	[0.0045,-0.0032,0.0091]	46
5	MI	-0.001,-0.012, 0.010]		[0.0039, 0.0027,0.0080]	
6	MIL1->DET1	07, 0.000, 0.002	2.07	[0.0052, -0.0035, 0.0103]	1.131
7	STB1->SAG1	02, 0.004	0.25		7
8	SAG1->MIL1	[-0.001, 0.001,-0.001]	0.04	[0.0059, -0.0039,0.0118]	88
9	SA	,]	
10	WL	$[-0.005,-0.018,0.012]$	1.	[0.0067, -0.0055, 0.0138]	1.737
11	WL	003, 0.002$]$	3.24	[0.0043,-0.0032,0.008	70
12	WLCI->SAG1	[-0.000, 0.006,-0.005]	0	[0.0052,-0.0036, 0.0102]	96
13	WL	.004, 0.001,-0.002]		[0.	1.102
14	NLIB->STB1	[-0.007,-0.015, 0.021]		[0.0079,-0.0059,0.0164]	
15	NL	[-0.001, 0.015,-0.017]			3
16	DET1->MIL1	[-0.004,-0.007, 0.011]	0.67	[0.0074,-0.0050,0.0147]	595
17	ST	[-0.001, 0.010,-0.005]	0.	[0.0058, -0.0039,0.0118]	49
18	STB1->SAG1	0.004,-0.007, 0.006]	0.	[0.0050, -0.0031, 0.0100]	1.256
19	STB1->D	[-0.001,-0.004,-0.002]		[0.0055,-0.0035, 0.0108]	0
20	WLCI->NLIB	[-0.002,-0.000, 0.005]	3	[0.0058, -0.0048, 0.0119]	2.594
	WL	[-0.001,-0.001, 0.001]	0.	[0.0042, -0.0031, 0.0084]	1.644
22	WLCI->STB1	0.001, 0.001,-0.004]	0.	[0.0059,-0.0042,0.0118]	1.013
	WLCI->SAG1	0.001, 0.004,-0.0		[0	58
	WLCI->DET1	0.000,-0.011, 0.002]		[0.0049,-0.0034,0.0095	
	SAG1->MIL1	0.001,-0.002, 0.001]		[0.0063,-0.0042, 0.0126]	
	SAG1->DET1	[-0.006, 0.001,-0.002]		[0.0055, -0.0034, 0.0106]	
	SAG1->MIL1	0.006,-0.001, 0.003]	0.	[0.0074, -0.0049,0.0147]	15
	SAG1->DE	[-0.005, 0.002,-0.001]		[0.0053,-0.0033, 0.0104]	08
9	WLCI->MIL1	[-0.004, 0.002,-0.003]	0.93	[0.0059,-0.0044,0.0118]	684
30	WLCI->STB1	0.005, 0.006,-0.003]	1.09	[0.0072,-0.0051, 0.0146]	579
31	WLCI->SAG1	[-0.003, 0.004,-0.001]	0.35	[0.0071, -0.0048, 0.0139]	0.506
32	WLCI->DET1	[-0.004,-0.006, 0.012]		[0.0070,-0.0049,0.0136]	
33	DET1->MIL1	0.003, 0.003, 0.001]	0.29	[0.0086,-0.0058, 0.0170]	0.449

```
34 NLIB->MIL1 [-0.003, 0.009,-0.008] 0.64 [0.0049,-0.0039,0.0102] 1.122
35 NLIB->STB1 [ 0.002,-0.007, 0.006] 0.25 [0.0067,-0.0050,0.0139] 0.729
36 NLIB->WLCI [ 0.000,-0.004,-0.000] 0.19 [0.0060,-0.0050,0.0124] 1.172
37 NLIB->SAG1 [-0.002,-0.012, 0.007] 0.94 [0.0059,-0.0043,0.0121] 0.791
38 NLIB->DET1 [ 0.006, 0.011,-0.004] 2.67 [0.0060,-0.0045,0.0121] 0.666
39 STB1->MIL1 [-0.001,-0.004,-0.005] 1.85 [0.0049,-0.0033,0.0100] 1.582
40 STB1->SAG1 [-0.006,-0.001, 0.000] 1.78 [0.0056,-0.0035,0.0112] 0.847
41 STB1->DET1 [ 0.000, 0.003,-0.001] 0.10 [0.0054,-0.0034,0.0106] 0.829
```


APPENDIX G

RLESS for New Fiducial Points, 23 Observed Baseline Vectors

```
The 3x3 block diagonal covariance matrix is replaced by a full
(session) matrix
Adjustment type: Restricted Least-Squares Solution
Ellipsoid: WGS84
Units: dms, meters
No of observations : 69
Rank of A : - 24
System redundancy : 45
Adjustment FAILED the Chi Square test at the 95% Confidence Level
Lower bound: 28.366
Chi Sq stat: 578.584
Upper bound: 65.410
Centering errors:
Name horiz[m] vert [m]
BEHD 0.003 0.000
G317 0.003 0.000
MBYC 0.003 0.000
Estimated parameters: Cartesian (meters)
Name X Y Z
DET1 568024.7380 -4690674.6058 4270188.7941
MIL1 172135.9921 -4668696.5884 4327808.3152
NLIB -130934.5086 -4762291.7268 4226854.6508
SAG1 496374.9671 -4597431.4948 4378421.3478
STB1 212435.6860 -4528758.8706 4471353.7460
WLCI 248645.8175 -4828261.2670 4146460.0581
BEHD 295059.6979 -4728575.1879 4256061.8012
G317 307138.8258 -4649646.6527 4340747.2254
MBYC 310880.0646 -4679085.7523 4308925.6514
Estimated parameters: geodetic (ddd.mmsssssss)
Name latitude longitude height
DET1 42.1750454433 -83.0543066003 145.0041
MIL1 43.0009131499 -87.5318409158 147.3134
NLIB 41.4617727516 -91.3429618869 207.0262
SAG1 43.3743119950 -83.5015958511 149.2066
STB1 44.4743748635 -87.1851587407 148.8023
```

WLCI	40.4830269308	-87.0307149496	180.3622
BEHD	42.0731983055	-86.2545890069	156.0511
G317	43.0942931211	-86.1314659342	155.7018
MBYC	42.4614129938	-86.1155807242	143.2145

Trace of estimated dispersion matrix: 0.003497
Estimated reference variance: 12.8574

Esti Name	standa std (X) m	$\begin{gathered} \text { d errors } \\ \text { std(Y) } \\ m \end{gathered}$	$\begin{gathered} \text { (scaled } \\ \text { std }(Z) \\ m \end{gathered}$	$\begin{gathered} y \text { sqrt es } \\ \text { std (n) } \\ m \end{gathered}$	$\begin{gathered} \text { imated r } \\ \text { std (e) } \\ \mathrm{m} \end{gathered}$	$\begin{gathered} \text { reference v } \\ \text { std(up) } \\ \text { m } \end{gathered}$
DET1	0.0141	0.0123	0.0119	0.0125	0.0143	0.0115
MIL1	0.0094	0.0101	0.0095	0.0091	0.0094	0.0104
NLIB	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000
SAG1	0.0164	0.0136	0.0134	0.0154	0.0165	0.0111
STB1	0.0156	0.0134	0.0134	0.0157	0.0157	0.0105
WLCI	0.0106	0.0123	0.0116	0.0102	0.0106	0.0135
BEHD	0.0076	0.0090	0.0082	0.0064	0.0076	0.0103
G317	0.0146	0.0125	0.0124	0.0141	0.0146	0.0105
MBYC	0.0116	0.0110	0.0106	0.0109	0.0117	0.0105

Observation Estimates
Obs\# From-To

Obs\#	$\begin{gathered} \mathrm{dX} / \mathrm{dY} / \mathrm{dZ} \\ \text { Obs. } \end{gathered}$	$\begin{aligned} & \text { Obs. } \\ & \text { Error } \end{aligned}$	Adjusted Obs.	Obs . Std. Dev.	Stu. Res.	Trad. Red \#	Std. Rel
Vec01: MBYC -> G317							
1	-3741.2376	0.0012	-3741.239	0.00910	0.092	0.67	0.67
Vec01: MBYC -> G317							
1	-3741.2376	0.0012	-3741.239	0.00883	0.096	0.67	0.66
2	29439.0952	-0.0045	29439.100	0.00820	-0.428	0.59	0.55
3	31821.5696	-0.0044	31821.574	0.00821	-0.413	0.60	0.55
Vec02: SAG1 -> G317							
4	-189236.1424	-0.0011	-189236.141	0.00657	-0.127	0.64	0.64
5	-52215.1555	0.0024	-52215.158	0.00722	0.286	0.57	0.55
6	-37674.1125	0.0099	-37674.122	0.00701	1.140	0.60	0.58
Vec03: DET1 -> MBYC							
7	-257144.6615	0.0119	-257144.673	0.00678	1.399	0.61	0.62
8	11588.8525	-0.0010	11588.853	0.00761	-0.110	0.56	0.55
9	38736.8600	0.0027	38736.857	0.00730	0.311	0.59	0.58
Vec04: BEHD -> MBYC							
10	15820.3572	-0.0095	15820.367	0.00883	-0.762	0.67	0.66
11	49489.4463	0.0108	49489.436	0.00837	0.997	0.61	0.54
12	52863.8501	-0.0002	52863.850	0.00836	-0.015	0.62	0.55
Vec05: NLIB -> BEHD							
13	425994.2056	-0.0009	425994.206	0.00756	-0.109	0.53	0.53
14	33716.5182	-0.0207	33716.539	0.00900	-2.040	0.57	0.58
15	29207.1549	0.0045	29207.150	0.00822	0.462	0.61	0.61
Vec06: MIL1 -> BEHD							
16	122923.6979	-0.0078	122923.706	0.00640	-0.894	0.65	0.65
17	-59878.6067	-0.0072	-59878.599	0.00725	-0.839	0.57	0.56
18	-71746.5038	0.0103	-71746.514	0.00695	1.212	0.60	0.58
Vec07: G317 -> STB1							
19	-94703.1397	0.0001	-94703.140	0.00635	0.013	0.66	0.66
20	120887.7846	0.0025	120887.782	0.00707	0.298	0.60	0.58
21	130606.5082	-0.0124	130606.521	0.00712	-1.446	0.59	0.58

Vec08: NLIB -> BEHD							
22	425994.1987	-0.0078	425994.206	0.00756	-0.564	0.73	0.70
23	33716.5441	0.0052	33716.539	0.00900	0.341	0.72	0.69
24	29207.1454	-0.0050	29207.150	0.00822	-0.367	0.71	0.69
Vec09: MIL1 -> BEHD							
25	122923.6872	-0.0185	122923.706	0.00640	-1.981	0.67	0.67
26	-59878.5719	0.0276	-59878.599	0.00725	2.485	0.69	0.68
27	-71746.5240	-0.0099	-71746.514	0.00695	-0.920	0.70	0.69
Vec10: MBYC -> BEHD							
28	-15820.3673	-0.0006	-15820.367	0.00883	-0.048	0.67	0.67
29	-49489.4261	0.0094	-49489.436	0.00837	0.730	0.70	0.70
30	-52863.8515	-0.0012	-52863.850	0.00836	-0.096	0.70	0.70
Vec11: G317 -> MBYC							
31	3741.2373	-0.0015	3741.239	0.00883	-0.120	0.67	0.67
32	-29439.1032	-0.0035	-29439.100	0.00820	-0.276	0.71	0.72
33	-31821.5683	0.0057	-31821.574	0.00821	0.444	0.71	0.72
Vec12: SAG1 -> G317							
34	-189236.1416	-0.0003	-189236.141	0.00657	-0.030	0.68	0.67
35	-52215.1569	0.0010	-52215.158	0.00722	0.086	0.70	0.70
36	-37674.1254	-0.0030	-37674.122	0.00701	-0.278	0.70	0.69
Vec13: DET1 -> MBYC							
37	-257144.6734	0.0000	-257144.673	0.00678	0.002	0.69	0.67
38	11588.8359	-0.0176	11588.853	0.00761	-1.419	0.71	0.70
39	38736.8742	0.0169	38736.857	0.00730	1.427	0.71	0.70
Vec14: STB1 -> G317							
40	94703.1393	-0.0005	94703.140	0.00635	-0.056	0.67	0.67
41	-120887.7727	0.0094	-120887.782	0.00707	0.828	0.70	0.70
42	-130606.5306	-0.0100	-130606.521	0.00712	-0.866	0.71	0.70
Vec15: BEHD -> WLCI							
43	-46413.8842	-0.0039	-46413.880	0.00781	-0.494	0.50	0.50
44	-99686.0721	0.0070	-99686.079	0.01039	0.618	0.50	0.50
45	-109601.7420	0.0011	-109601.743	0.00953	0.099	0.51	0.51
Vec16: NLIB -> BEHD							
46	425994.2335	0.0270	425994.206	0.00756	1.961	0.74	0.70
47	33716.5709	0.0320	33716.539	0.00900	2.156	0.71	0.69
48	29207.1412	-0.0092	29207.150	0.00822	-0.717	0.69	0.68
Vec17: MIL1 -> BEHD							
49	122923.7390	0.0333	122923.706	0.00640	3.507	0.68	$0.67 *$
50	-59878.6232	-0.0237	-59878.599	0.00725	-1.947	0.74	0.73
51	-71746.5195	-0.0054	-71746.514	0.00695	-0.487	0.71	0.70
Vec18: MBYC -> BEHD							
52	-15820.3763	-0.0096	-15820.367	0.00883	-0.769	0.67	0.67
53	-49489.4339	0.0016	-49489.436	0.00837	0.134	0.68	0.70
54	-52863.8539	-0.0036	-52863.850	0.00836	-0.297	0.68	0.69
Vec19: G317 -> MBYC							
55	3741.2415	0.0027	3741.239	0.00883	0.216	0.67	0.67
56	-29439.1022	-0.0025	-29439.100	0.00820	-0.208	0.69	0.71
57	-31821.5851	-0.0111	-31821.574	0.00821	-0.927	0.68	0.70
Vec20: SAG1 -> G317							
58	-189236.1477	-0.0064	-189236.141	0.00657	-0.637	0.68	0.68
59	-52215.1632	-0.0053	-52215.158	0.00722	-0.445	0.73	0.72
60	-37674.1318	-0.0094	-37674.122	0.00701	-0.861	0.70	0.70
Vec21: DET1 -> MBYC							
61	-257144.6977	-0.0243	-257144.673	0.00678	-2.208	0.70	0.68
62	11588.8736	0.0201	11588.853	0.00761	1.581	0.73	0.72
			94				

| 63 | 38736.8391 | -0.0182 | 38736.857 | 0.00730 | -1.577 | 0.70 | 0.69 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vec22: STB1 -> G317 | | | | | | | |
| 64 | 94703.1446 | 0.0048 | 94703.140 | 0.00635 | 0.518 | 0.67 | 0.67 |
| 65 | -120887.7869 | -0.0048 | -120887.782 | 0.00707 | -0.441 | 0.70 | 0.70 |
| 66 | -130606.5361 | -0.0155 | -130606.521 | 0.00712 | -1.381 | 0.70 | 0.69 |
| Vec23: BEHD -> WLCI | | | | | | | |
| 67 | -46413.8783 | 0.0020 | -46413.880 | 0.00781 | 0.258 | 0.50 | 0.50 |
| 68 | -99686.1022 | -0.0231 | -99686.079 | 0.01039 | -2.022 | 0.50 | 0.50 |
| 69 | -109601.7399 | 0.0032 | -109601.743 | 0.00953 | 0.309 | 0.49 | 0.49 |
| | | | | | | | |
| Sum of traditional redundancy numbers $=$ | 45.00 | | | | | | |
| Sum of standardized reliability numbers $=$ | 44.43 | | | | | | |

Appendix H

BLIMPBE for New Fiducial Points, 22 Observed Baseline Vectors, with \bar{S} formed per (23)

```
GPS observation variances and covariances scaled by 48.0 beginning at
observation 1.
The 3x3 block diagonal covariance matrix is replaced by the full
(session) matrix.
Adjustment type: Best LInear Minimum Bias Estimation with the first 3
points selected
No of observations : 66
Rank of A : - 24
System redundancy : 42
Adjustment PASSED the Chi Square test at the 95% Confidence Level
Lower bound: 38.027
Chi Sq stat: 72.769
Upper bound: 79.752
Centering errors:
Name horiz vert
            m m
G317 0.003 0.000
BEHD 0.003 0.000
MBYC 0.003 0.000
Estimated parameters: Cartesian (meters):
Name X Y Z
BEHD 295059.6897 -4728575.2211 4256061.8187
G317 307138.8157 -4649646.6862 4340747.2395
MBYC 310880.0534 -4679085.7858 4308925.6667
DET1 568024.7169 -4690674.6455 4270188.8137
MIL1 172136.0032 -4668696.6486 4327808.3443
NLIB -130934.5086 -4762291.7268 4226854.6508
SAG1 496374.9552 -4597431.5162 4378421.3510
STB1 212435.6760 -4528758.9095 4471353.7544
WLCI 248645.8056 -4828261.3182 4146460.0933
Estimated parameters: geodetic (ddd.mmsssssss):
Name latitude longitude height
BEHD 42.0731982767 -86.2545890513 156.0871
G317 43.0942930816 -86.1314659882 155.7354
MBYC 42.4614129585 -86.1155807829 143.2488
\begin{tabular}{llll} 
DET1 & 42.1750454097 & -83.0543067125 & 145.0446 \\
MIL1 & 43.0009130849 & -87.5318408768 & 147.3775 \\
NLIB & 41.4617727516 & -91.3429618869 & 207.0262 \\
SAG1 & 43.3743119579 & -83.5015959139 & 149.2233 \\
STB1 & 44.4743747953 & -87.1851587942 & 148.8355 \\
WLCI & 40.4830269102 & -87.0307150116 & 180.4234
\end{tabular}

Trace of estimated dispersion matrix: 0.000548
Estimated reference variance: 1.2766
Estimated standard errors (scaled by sqrt estimated reference variance)
\begin{tabular}{lcccccc} 
Name & std (X) & std(Y) & std(Z) & std(n) & std(e) & std(up) \\
& m & m & m & m & m & m \\
BEHD & 0.0023 & 0.0101 & 0.0088 & 0.0027 & 0.0022 & 0.0132 \\
G317 & 0.0022 & 0.0096 & 0.0088 & 0.0027 & 0.0021 & 0.0127 \\
MBYC & 0.0024 & 0.0100 & 0.0091 & 0.0028 & 0.0023 & 0.0132 \\
DET1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0003 \\
MIL1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 \\
NLIB & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 \\
SAG1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0003 \\
STB1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0002 \\
WLCI & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0002
\end{tabular}

Observation Estimates
Obs\# From-To
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Obs\# & \[
\begin{gathered}
d X / d Y / d Z \\
\text { Obs. }
\end{gathered}
\] & \begin{tabular}{l}
Obs. \\
Error
\end{tabular} & Adjusted Obs. & \begin{tabular}{l}
Obs. \\
Std. Dev
\end{tabular} & \begin{tabular}{l}
Stu. \\
Res.
\end{tabular} & \begin{tabular}{l}
Trad. \\
Red \#
\end{tabular} & \begin{tabular}{l}
Std. \\
Rel \#
\end{tabular} \\
\hline \multicolumn{8}{|l|}{Vec01: MBYC -> G317} \\
\hline 1 & -3741.2376 & 0.0001 & -3741.238 & 0.00284 & 0.012 & 0.82 & 0.87 \\
\hline 2 & 29439.0952 & -0.0043 & 29439.100 & 0.01222 & -0.318 & 0.66 & 0.86 \\
\hline 3 & 31821.5696 & -0.0031 & 31821.573 & 0.01120 & -0.249 & 0.67 & 0.85 \\
\hline \multicolumn{8}{|l|}{Vec02: SAG1 -> G317} \\
\hline 4 & -189236.1424 & -0.0029 & -189236.139 & 0.00221 & -0.629 & 0.85 & 0.88 \\
\hline 5 & -52215.1555 & 0.0145 & -52215.170 & 0.00955 & 0.940 & 0.82 & 0.89 \\
\hline 6 & -37674.1125 & -0.0010 & -37674.112 & 0.00882 & -0.064 & 0.89 & 0.89 \\
\hline \multicolumn{8}{|l|}{Vec03: DET1 -> MBYC} \\
\hline 7 & -257144.6615 & 0.0020 & -257144.663 & 0.00236 & 0.433 & 0.80 & 0.81 \\
\hline 8 & 11588.8525 & -0.0072 & 11588.860 & 0.01000 & -0.427 & 0.84 & 0.87 \\
\hline 9 & 38736.8600 & 0.0070 & 38736.853 & 0.00910 & 0.443 & 0.87 & 0.87 \\
\hline \multicolumn{8}{|l|}{Vec04: BEHD -> MBYC} \\
\hline 10 & 15820.3572 & -0.0065 & 15820.364 & 0.00297 & -1.327 & 0.79 & 0.83 \\
\hline 11 & 49489.4463 & 0.0109 & 49489.435 & 0.01284 & 0.723 & 0.72 & 0.87 \\
\hline 12 & 52863.8501 & 0.0021 & 52863.848 & 0.01148 & 0.157 & 0.69 & 0.86 \\
\hline \multicolumn{8}{|l|}{Vec05: NLIB -> BEHD} \\
\hline 13 & 425994.2056 & 0.0073 & 425994.198 & 0.00231 & 1.372 & 0.87 & 0.90 \\
\hline 14 & 33716.5182 & 0.0125 & 33716.506 & 0.01012 & 0.544 & 0.90 & 0.91 \\
\hline 15 & 29207.1549 & -0.0130 & 29207.168 & 0.00885 & -0.645 & 0.90 & 0.91 \\
\hline \multicolumn{8}{|l|}{Vec06: MIL1 -> BEHD} \\
\hline 16 & 122923.6979 & 0.0114 & 122923.687 & 0.00231 & 2.851 & 0.80 & \(0.86 *\) \\
\hline 17 & -59878.6067 & -0.0342 & -59878.573 & 0.01012 & -2.137 & 0.87 & 0.88 \\
\hline 18 & -71746.5038 & 0.0218 & -71746.526 & 0.00885 & 1.546 & 0.81 & 0.87 \\
\hline \multicolumn{8}{|l|}{Vec07: G317 -> STB1} \\
\hline 19 & -94703.1397 & 0.0000 & -94703.140 & 0.00221 & 0.011 & 0.81 & 0.85 \\
\hline 20 & 120887.7846 & 0.0079 & 120887.777 & 0.00955 & 0.511 & 0.86 & 0.90 \\
\hline 21 & 130606.5082 & -0.0067 & 130606.515 & 0.00882 & -0.450 & 0.87 & 0.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Vec08: NLIB -> BEHD} \\
\hline 22 & 425994.1987 & 0.0004 & 425994.198 & 0.00231 & 0.015 & 0.97 & 0.97 \\
\hline 23 & 33716.5441 & 0.0384 & 33716.506 & 0.01012 & 1.136 & 0.95 & 0.96 \\
\hline 24 & 29207.1454 & -0.0225 & 29207.168 & 0.00885 & -0.790 & 0.95 & 0.96 \\
\hline \multicolumn{8}{|l|}{Vec09: MIL1 -> BEHD} \\
\hline 25 & 122923.6872 & 0.0007 & 122923.687 & 0.00231 & 0.083 & 0.87 & 0.92 \\
\hline 26 & -59878.5719 & 0.0006 & -59878.573 & 0.01012 & 0.028 & 0.91 & 0.94 \\
\hline 27 & -71746.5240 & 0.0016 & -71746.526 & 0.00885 & 0.078 & 0.90 & 0.94 \\
\hline \multicolumn{8}{|l|}{Vec10: MBYC -> BEHD} \\
\hline 28 & -15820.3673 & -0.0036 & -15820.364 & 0.00297 & -0.666 & 0.81 & 0.85 \\
\hline 29 & -49489.4261 & 0.0093 & -49489.435 & 0.01284 & 0.426 & 0.78 & 0.90 \\
\hline 30 & -52863.8515 & -0.0035 & -52863.848 & 0.01148 & -0.176 & 0.83 & 0.91 \\
\hline \multicolumn{8}{|l|}{Vec11: G317 -> MBYC} \\
\hline 31 & 3741.2373 & -0.0004 & 3741.238 & 0.00284 & -0.066 & 0.85 & 0.90 \\
\hline 32 & -29439.1032 & -0.0037 & -29439.100 & 0.01222 & -0.173 & 0.77 & 0.90 \\
\hline 33 & -31821.5683 & 0.0044 & -31821.573 & 0.01120 & 0.221 & 0.84 & 0.91 \\
\hline \multicolumn{8}{|l|}{Vec12: SAG1 -> G317} \\
\hline 34 & -189236.1416 & -0.0021 & -189236.139 & 0.00221 & -0.178 & 0.89 & 0.92 \\
\hline 35 & -52215.1569 & 0.0131 & -52215.170 & 0.00955 & 0.564 & 0.95 & 0.94 \\
\hline 36 & -37674.1254 & -0.0139 & -37674.112 & 0.00882 & -0.658 & 0.88 & 0.94 \\
\hline \multicolumn{8}{|l|}{Vec13: DET1 -> MBYC} \\
\hline 37 & -257144.6734 & -0.0099 & -257144.663 & 0.00236 & -0.657 & 0.89 & 0.89 \\
\hline 38 & 11588.8359 & -0.0238 & 11588.860 & 0.01000 & -0.931 & 0.92 & 0.94 \\
\hline 39 & 38736.8742 & 0.0212 & 38736.853 & 0.00910 & 0.902 & 0.93 & 0.94 \\
\hline \multicolumn{8}{|l|}{Vec14: STB1 -> G317} \\
\hline 40 & 94703.1393 & -0.0004 & 94703.140 & 0.00221 & -0.066 & 0.85 & 0.88 \\
\hline 41 & -120887.7727 & 0.0040 & -120887.777 & 0.00955 & 0.179 & 0.89 & 0.94 \\
\hline 42 & -130606.5306 & -0.0157 & -130606.515 & 0.00882 & -0.688 & 0.94 & 0.94 \\
\hline \multicolumn{8}{|l|}{Vec15: BEHD -> WLCI} \\
\hline 43 & -46413.8842 & -0.0001 & -46413.884 & 0.00231 & -0.014 & 0.90 & 0.94 \\
\hline 44 & -99686.0721 & 0.0250 & -99686.097 & 0.01012 & 0.890 & 0.96 & 0.97 \\
\hline 45 & -109601.7420 & -0.0166 & -109601.725 & 0.00885 & -0.679 & 0.94 & 0.96 \\
\hline \multicolumn{8}{|l|}{Vec16: NLIB -> BEHD} \\
\hline 46 & 425994.2335 & 0.0352 & 425994.198 & 0.00231 & 1.398 & 0.96 & 0.95 \\
\hline 47 & 33716.5709 & 0.0652 & 33716.506 & 0.01012 & 1.976 & 0.94 & 0.95 \\
\hline 48 & 29207.1412 & -0.0267 & 29207.168 & 0.00885 & -0.995 & 0.93 & 0.95 \\
\hline \multicolumn{8}{|l|}{Vec17: MBYC -> BEHD} \\
\hline 49 & -15820.3763 & -0.0126 & -15820.364 & 0.00297 & -2.325 & 0.80 & 0.83 \\
\hline 50 & -49489.4339 & 0.0015 & -49489.435 & 0.01284 & 0.074 & 0.74 & 0.86 \\
\hline 51 & -52863.8539 & -0.0059 & -52863.848 & 0.01148 & -0.326 & 0.80 & 0.88 \\
\hline \multicolumn{8}{|l|}{Vec18: G317 -> MBYC} \\
\hline 52 & 3741.2415 & 0.0038 & 3741.238 & 0.00284 & 0.699 & 0.83 & 0.88 \\
\hline 53 & -29439.1022 & -0.0027 & -29439.100 & 0.01222 & -0.137 & 0.80 & 0.88 \\
\hline 54 & -31821.5851 & -0.0124 & -31821.573 & 0.01120 & -0.713 & 0.74 & 0.87 \\
\hline \multicolumn{8}{|l|}{Vec19: SAG1 -> G317} \\
\hline 55 & -189236.1477 & -0.0082 & -189236.139 & 0.00221 & -0.686 & 0.92 & 0.93 \\
\hline 56 & -52215.1632 & 0.0068 & -52215.170 & 0.00955 & 0.283 & 0.94 & 0.94 \\
\hline 57 & -37674.1318 & -0.0203 & -37674.112 & 0.00882 & -0.962 & 0.89 & 0.94 \\
\hline \multicolumn{8}{|l|}{Vec20: DET1 -> MBYC} \\
\hline 58 & -257144.6977 & -0.0342 & -257144.663 & 0.00236 & -2.159 & 0.93 & 0.93 \\
\hline 59 & 11588.8736 & 0.0139 & 11588.860 & 0.01000 & 0.524 & 0.92 & 0.93 \\
\hline 60 & 38736.8391 & -0.0139 & 38736.853 & 0.00910 & -0.616 & 0.91 & 0.93 \\
\hline \multicolumn{8}{|l|}{Vec21: STB1 -> G317} \\
\hline 61 & 94703.1446 & 0.0049 & 94703.140 & 0.00221 & 0.648 & 0.89 & 0.90 \\
\hline 62 & -120887.7869 & -0.0102 & -120887.777 & 0.00955 & -0.472 & 0.90 & 0.93 \\
\hline
\end{tabular}
\begin{tabular}{crrrrrrr}
63 & -130606.5361 & -0.0212 & -130606.515 & 0.00882 & -0.966 & 0.91 & 0.93 \\
Vec22: BEHD -> WLCI & & & & & & \\
64 & -46413.8783 & 0.0058 & -46413.884 & 0.00231 & 0.864 & 0.91 & 0.93 \\
65 & -99686.1022 & -0.0051 & -99686.097 & 0.01012 & -0.183 & 0.94 & 0.94 \\
66 & -109601.7399 & -0.0145 & -109601.725 & 0.00885 & -0.614 & 0.91 & 0.94
\end{tabular}

Sum of traditional redundancy numbers \(=57.00\)
Sum of standardized reliability numbers \(=59.86\)
Estimated baseline outliers and minimum detectible outliers in meters alpha \(=0.01\), beta \(=0.80, r 1=3, r 2=54\), non-central param. \(=8.74\) \(\mathrm{F}(0.01 ; 3,54)=4.17\)
No.from to est. outlier [dX,dY,dZ] \(T\) min. detect.[dX,dY,dZ] Ex Rel
1 MBYC->G317 [ 0.001,-0.014, 0.002] 0.68 [0.0101,-0.0069,0.0202] 1.518
2 SAG1->G317 [-0.002, 0.022,-0.006] 2.05 [0.0097,-0.0062,0.0192] 0.894
3 DET1->MBYC [ 0.005,-0.008, 0.003] 0.35 [0.0099,-0.0065,0.0193] 1.418
4 BEHD->MBYC \([-0.005,-0.006,0.014] 0.81[0.0102,-0.0072,0.0204] 1.503\)
5 NLIB->BEHD [ 0.004, 0.023,-0.018] 0.45 [0.0096,-0.0076,0.0197] 1.005
6 MIL1->BEHD [ 0.011,-0.033, 0.023] 3.39 [0.0086,-0.0062,0.0174] 1.446
7 G317->STB1 [ 0.001, 0.006,-0.005] 0.08 [0.0090,-0.0059,0.0182] 1.186
8 NLIB->BEHD [-0.007, 0.032,-0.021] 0.83 [0.0135,-0.0107,0.0278] 0.374
9 MIL1->BEHD [ 0.001,-0.004, 0.006] 0.05 [0.0095,-0.0068,0.0190] 0.782
\(10 \mathrm{MBYC}->\) BEHD \([-0.004,0.007,-0.000] 0.29[0.0113,-0.0079,0.0224] 1.357\)
\(11 \mathrm{G} 317->\mathrm{MBYC}[0.000,0.014,-0.012] 0.33[0.0110,-0.0075,0.0221] 0.991\)
12 SAG1->G317 [ 0.002, 0.022,-0.017] 0.59 [0.0108,-0.0069,0.0213] 0.602
13 DET1->MBYC \([-0.010,-0.021,0.020] 1.82[0.0122,-0.0080,0.0237] 0.731\)
14 STB1->G317 [-0.002, 0.004,-0.012] 0.39 [0.0097,-0.0064,0.0197] 0.853
15 BEHD->WLCI \([-0.001,0.034,-0.016] 0.85[0.0115,-0.0085,0.0228] 0.395\)
16 NLIB->BEHD [ 0.000, 0.048,-0.018] 2.56 [0.0142,-0.0112,0.0292] 0.350
17 MBYC->BEHD \([-0.012,0.001,-0.007] 1.26[0.0118,-0.0083,0.0235] 1.527\)
18 G317->MBYC [ 0.005, 0.003,-0.016] 1.05 [0.0111,-0.0075,0.0221] 1.237
19 SAG1->G317 [ 0.013, 0.015,-0.019] 2.39 [0.0119,-0.0076,0.0235] 0.544
20 DET1->MBYC [-0.016, 0.012,-0.012] 1.28 [0.0125,-0.0082,0.0244] 0.624
21 STB1->G317 [-0.005,-0.011, 0.000] 0.78 [0.0107,-0.0071,0.0217] 0.692
22 BEHD->WLCI [ 0.008, 0.019,-0.011] 0.74 [0.0116,-0.0086,0.0230] 0.542

\section*{Appendix I}

\section*{Weighted BLIMPBE for New Fiducial Points, 22 Observed Baseline Vectors, with \(\bar{S}=(S+N)^{-1}\)}
```

GPS observation variances and covariances scaled by 48.0 beginning at
observation 1.
The 3x3 block diagonal covariance matrix is replaced by the full
(session) matrix.
Adjustment type: Weighted Best LInear Minimum Bias Estimation with the
first 6 points selected
No of observations : 66
Rank of A : - 24
System redundancy : 42
Adjustment PASSED the Chi Square test at the 95% Confidence L
Lower bound: 25.999
Chi Sq stat: 42.708
Upper bound: 61.777
Centering errors:
Name horiz [m] vert [m]
BEHD 0.003 0.000
G317 0.003 0.000
MBYC 0.003 0.000
Estimated parameters: Cartesian (meters):
Name X Y Z
DET1 568024.7235 -4690674.6294 4270188.8016
MIL1 172135.9978 -4668696.6225 4327808.3219
NLIB -130934.5109 -4762291.7456 4226854.6572
SAG1 496374.9568 -4597431.5239 4378421.3553
STB1 212435.6784 -4528758.8969 4471353.7495
WLCI 248645.8081 -4828261.2877 4146460.0706
BEHD 295059.6899 -4728575.2121 4256061.8087
G317 307138.8170 -4649646.6773 4340747.2321
MBYC 310880.0559 -4679085.7766 4308925.6589

```
\begin{tabular}{lccc} 
Estimated parameters: & geodetic (ddd.mmssssss): \\
Name longitude & height
\end{tabular}

Trace of estimated dispersion matrix: 0.002171
Estimated reference variance: 1.0169
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name & std (X) & std (Y) & \[
\begin{gathered}
\text { (scaled } \\
\text { std(Z) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { by sqrt } \\
& \text { std }(n)
\end{aligned}
\] & std (e) & std (up) \\
\hline & m & m & m & m & m & m \\
\hline DET1 & 0.0049 & 0.0116 & 0.0106 & 0.0032 & 0.0049 & 0.0154 \\
\hline MIL1 & 0.0030 & 0.0113 & 0.0104 & 0.0033 & 0.0030 & 0.0150 \\
\hline NLIB & 0.0027 & 0.0073 & 0.0058 & 0.0032 & 0.0027 & 0.0088 \\
\hline SAG1 & 0.0049 & 0.0110 & 0.0102 & 0.0036 & 0.0049 & 0.0146 \\
\hline STB1 & 0.0037 & 0.0103 & 0.0099 & 0.0040 & 0.0037 & 0.0137 \\
\hline WLCI & 0.0038 & 0.0157 & 0.0135 & 0.0046 & 0.0037 & 0.0202 \\
\hline BEHD & 0.0026 & 0.0105 & 0.0095 & 0.0027 & 0.0026 & 0.0139 \\
\hline G317 & 0.0036 & 0.0106 & 0.0098 & 0.0031 & 0.0036 & 0.0141 \\
\hline MBYC & 0.0031 & 0.0107 & 0.0098 & 0.0027 & 0.0031 & 0.0143 \\
\hline
\end{tabular}

Observation Estimates
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{From-To} \\
\hline Obs\# & dX/dY/dZ & Obs. & Adjusted & Obs. & Stu. & Trad. & Std. \\
\hline & Obs. & Error & Obs & Std. Dev. & Res. & Red & Rel \# \\
\hline \multicolumn{8}{|l|}{Vec01: MBYC -> G317} \\
\hline 1 & -3741.2376 & 0.0013 & -3741.239 & 0.00309 & 0.317 & 0.64 & 0.65 \\
\hline 2 & 29439.0952 & -0.0041 & 29439.099 & 0.01099 & -0.337 & 0.57 & 0.60 \\
\hline 3 & 31821.5696 & -0.0036 & 31821.573 & 0.01009 & -0.322 & 0.57 & 0.60 \\
\hline \multicolumn{8}{|l|}{Vec02: SAG1 -> G317} \\
\hline 4 & -189236.1424 & -0.0026 & -189236.140 & 0.00333 & -0.812 & 0.52 & 0.55 \\
\hline 5 & -52215.1555 & -0.0021 & -52215.153 & 0.01130 & -0.180 & 0.42 & 0.55 \\
\hline 6 & -37674.1125 & 0.0107 & -37674.123 & 0.01044 & 0.928 & 0.66 & 0.58 \\
\hline \multicolumn{8}{|l|}{Vec03: DET1 -> MBYC} \\
\hline 7 & -257144.6615 & 0.0061 & -257144.668 & 0.00364 & 2.147 & 0.41 & 0.47 \\
\hline 8 & 11588.8525 & -0.0003 & 11588.853 & 0.01230 & -0.026 & 0.45 & 0.53 \\
\hline 9 & 38736.8600 & 0.0027 & 38736.857 & 0.01111 & 0.224 & 0.60 & 0.56 \\
\hline \multicolumn{8}{|l|}{Vec04: BEHD -> MBYC} \\
\hline 10 & 15820.3572 & -0.0088 & 15820.366 & 0.00308 & -2.162 & 0.64 & 0.63 \\
\hline 11 & 49489.4463 & 0.0109 & 49489.435 & 0.01157 & 0.810 & 0.62 & 0.59 \\
\hline 12 & 52863.8501 & -0.0001 & 52863.850 & 0.01039 & -0.013 & 0.56 & 0.59 \\
\hline \multicolumn{8}{|l|}{Vec0 NLIB -> BEHD} \\
\hline 13 & 425994.2056 & 0.0048 & 425994.201 & 0.00456 & 1.959 & 0.26 & 0.33 \\
\hline 14 & 33716.5182 & -0.0153 & 33716.534 & 0.01532 & -0.935 & 0.47 & 0.52 \\
\hline 15 & 29207.1549 & 0.0034 & 29207.151 & 0.01327 & 0.235 & 0.59 & 0.53 \\
\hline \multicolumn{8}{|l|}{Vec06: MIL1 -> BEHD} \\
\hline 16 & 122923.6979 & 0.0058 & 122923.692 & 0.00315 & 2.188 & 0.43 & 0.44 \\
\hline 17 & -59878.6067 & -0.0171 & -59878.590 & 0.01255 & -1.514 & 0.41 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 18 & -71746.5038 & 0.0094 & -71746.513 & 0.01116 & 0.959 & 0.37 & 41 \\
\hline \multicolumn{8}{|l|}{Vec07: G317 -> STB1} \\
\hline 9 & -94703.1397 & -0.0011 & -94703.139 & 0.00272 & -0.355 & 0.57 & 0.58 \\
\hline 20 & 120887.7846 & 0.0042 & 120887.780 & 0.01090 & 0.351 & 0.55 & 0.56 \\
\hline 21 & 130606.5082 & -0.0092 & 130606.517 & 0.01047 & -0.804 & 0.54 & 0.56 \\
\hline \multicolumn{8}{|l|}{Vec08: NLIB -> BEHD} \\
\hline , & 425994.1987 & -0.0021 & 425994.201 & 0.00456 & -0.096 & 0.86 & . 71 \\
\hline 23 & 33716.5441 & 0.0106 & 33716.534 & 0.01532 & 0.383 & 0.74 & 0.73 \\
\hline 24 & 29207.1454 & -0.006 & 29207. & 0.0 & -0.263 & 0.7 & 0.73 \\
\hline \multicolumn{8}{|l|}{Vec09: MIL1 -> BEHD} \\
\hline 25 & 122923.6872 & -0.0049 & 22923.692 & 0.00315 & -0.706 & 0.57 & 0.55 \\
\hline 26 & -59878.5719 & 0.0177 & -59878.590 & 0.01255 & 0.995 & 0.59 & 0.57 \\
\hline 27 & -71746.5240 & -0.0108 & -71746.513 & 0.01116 & -0.6 & 0.63 & 0.58 \\
\hline \multicolumn{8}{|l|}{Vec10: MBYC -> BEHD} \\
\hline 28 & -15820.3673 & -0.0013 & 15820.36 & 0.00308 & -0.285 & 0.68 & . 67 \\
\hline 29 & -49489.4261 & 0.0093 & -49489.435 & 0.01157 & 0.483 & 0.71 & 0.68 \\
\hline 30 & -52863.8515 & -0.0013 & -52863.850 & 0.01039 & -0.071 & 0.73 & 0.68 \\
\hline \multicolumn{8}{|l|}{Vec11: G317 -> MBYC} \\
\hline 31 & 3741.2373 & -0.0016 & 3741.239 & 0.00309 & -0.347 & 0.68 & 0.67 \\
\hline 32 & -29439.1032 & -0.0039 & -29439.099 & 0.01099 & -0.208 & 0.70 & 0.68 \\
\hline 33 & -31821.5683 & 0.0049 & -31821.573 & 0.01009 & 0.273 & 0.77 & 0.70 \\
\hline \multicolumn{8}{|l|}{Vec12: SAG1 -> G317} \\
\hline 34 & -189236.1416 & -0.0018 & -189236.140 & 0.00333 & -0.174 & 0.70 & 0.67 \\
\hline 35 & -52215.1569 & -0.0035 & -52215.153 & 0.01130 & -0.180 & 0.76 & 0.70 \\
\hline 36 & -37674.1254 & -0.0022 & -37674.123 & 0.01044 & -0.128 & 0.68 & 0.69 \\
\hline \multicolumn{8}{|l|}{Vec13: DET1 -> MBYC} \\
\hline 37 & -257144.6734 & -0.0058 & -257144.668 & 0.00364 & -0.442 & 0.74 & 0.68 \\
\hline 38 & 11588.8359 & -0.0169 & 11588.853 & 0.01230 & -0.797 & 0.73 & 0.73 \\
\hline 39 & 38736.8742 & 0.0169 & 38736.857 & 0.01111 & 0.863 & 0.76 & 0.74 \\
\hline \multicolumn{8}{|l|}{Vec14: STB1 -> G317} \\
\hline 40 & 94703.1393 & 0.0007 & 94703.139 & 0.00272 & 0.121 & 0.67 & 0.66 \\
\hline 41 & -120887.7727 & 0.0077 & -120887.780 & 0.01090 & 0.409 & . 69 & . 69 \\
\hline 2 & -130606.5306 & -0.0132 & -130606.517 & 0.01047 & -0.691 & 76 & 70 \\
\hline \multicolumn{8}{|l|}{Vec15: BEHD -> WLCI} \\
\hline & -46413.8842 & -0.002 & -46413.882 & 0.00381 & -0.546 & 0.43 & 0.42 \\
\hline & -99686.0721 & 0.0036 & -99686.076 & 0.01753 & 0.179 & 0.50 & 0.54 \\
\hline 5 & -109601.7420 & -0.0039 & -109601.738 & 0.01469 & -0.216 & 0. 54 & \\
\hline \multicolumn{8}{|l|}{Vec16: NLIB -> BEHD} \\
\hline 46 & 425994.2335 & 0.0327 & 425994.201 & 0.00456 & 1.479 & 0.89 & 0.76 \\
\hline 47 & 33716.5709 & 0.0374 & 33716.534 & 0.01532 & 1.398 & 0.79 & 0.70 \\
\hline 48 & 29207.1412 & -0.0103 & 29207. 151 & 0.01327 & -0.479 & 0.66 & 0.69 \\
\hline \multicolumn{8}{|l|}{Vec17: MBYC -> BEHD} \\
\hline 49 & -15820.3763 & -0.0103 & -15820.366 & 0.00308 & -2.251 & 0.68 & 0.68 \\
\hline 50 & -49489.4339 & 0.0015 & -49489.435 & 0.01157 & 0.087 & 0.68 & 0.68 \\
\hline 51 & -52863.8539 & -0.0037 & -52863.850 & 0.01039 & -0.227 & 0.71 & 0.68 \\
\hline \multicolumn{8}{|l|}{Vec18: G317 -> MBYC} \\
\hline 52 & 3741.2415 & 0.0026 & 3741.239 & 0.00309 & 0.571 & 0.68 & 0.68 \\
\hline 53 & -29439.1022 & -0.0029 & -29439.099 & 0.01099 & -0.170 & 0.73 & 0.70 \\
\hline 54 & -31821.5851 & -0.0119 & -31821.573 & 0.01009 & -0.773 & 0.66 & 0.68 \\
\hline \multicolumn{8}{|l|}{Vec19: SAG1 -> G317} \\
\hline 55 & -189236.1477 & -0.0079 & -189236.140 & 0.00333 & -0.761 & 0.79 & 0.75 \\
\hline 56 & -52215.1632 & -0.0098 & -52215.153 & 0.01130 & -0.484 & 0.82 & 0.74 \\
\hline 57 & -37674.1318 & -0.0086 & -37674.123 & 0.01044 & -0.494 & 0.66 & 0.71 \\
\hline \multicolumn{8}{|l|}{Vec20: DET1 -> MBYC} \\
\hline 58 & -257144.6977 & -0.0301 & -257144.668 & 0.00364 & -2.177 & 0.84 & 0.79 \\
\hline & & & 102 & & & & \\
\hline
\end{tabular}
\begin{tabular}{llrrrrrr}
59 & 11588.8736 & 0.0208 & 11588.853 & 0.01230 & 0.943 & 0.82 & 0.72 \\
60 & 38736.8391 & -0.0182 & 38736.857 & 0.01111 & -0.975 & 0.64 & 0.69 \\
Vec21: & STB1 -> G317 & & & & & & \\
61 & 94703.1446 & 0.0060 & 94703.139 & 0.00272 & 0.933 & 0.76 & 0.75 \\
62 & -120887.7869 & -0.0065 & -120887.780 & 0.01090 & -0.361 & 0.76 & 0.73 \\
63 & -130606.5361 & -0.0187 & -130606.517 & 0.01047 & -1.021 & 0.70 & 0.71 \\
Vec22: BEHD -> WLCI & & & & & & & \\
64 & -46413.8783 & 0.0036 & -46413.882 & 0.00381 & 0.699 & 0.57 & 0.57 \\
65 & -99686.1022 & -0.0265 & -99686.076 & 0.01753 & -1.323 & 0.50 & 0.45 \\
66 & -109601.7399 & -0.0018 & -109601.738 & 0.01469 & -0.104 & 0.46 & 0.44
\end{tabular}

Sum of traditional redundancy numbers \(=42.00\)
Sum of standardized reliability numbers \(=41.23\)

Estimated baseline outliers and minimum detectible outliers in meters alpha \(=0.01\), beta \(=0.80, r 1=3, r 2=39\), non-central param. \(=8.90\) \(\mathrm{F}(0.01 ; 3,39)=4.33\)
No.from to est. outlier [dX,dY,dZ] \(T\) min. detect. [dX,dY,dZ] Ex Rel
1 MBYC->G317 [ 0.003,-0.002,-0.012] 0.98 [0.0121,-0.0083,0.0242] 5.836
2 SAG1->G317 [-0.007, 0.002, 0.013] 1.86 [0.0123,-0.0079,0.0244] 6.578
3 DET1->MBYC [ 0.017,-0.003, 0.000] 2.86 [0.0127,-0.0083,0.0248] 7.843
4 BEHD->MBYC [-0.012,-0.000, 0.007] 1.61 [0.0125,-0.0088,0.0250] 6.494
5 NLIB->BEHD [ 0.008,-0.010,-0.004] 1.06 [0.0147,-0.0116,0.0302]13.995
6 MIL1->BEHD [ 0.009,-0.024, 0.014] 1.14 [0.0123,-0.0088,0.0247]11.656
7 G317->STB1 [-0.002, 0.005,-0.012] 0.37 [0.0110,-0.0073,0.0223] 5.996
8 NLIB->BEHD [-0.008,-0.003, 0.001] 0.27 [0.0159,-0.0126,0.0326] 3.643
9 MIL1->BEHD [-0.009, 0.024,-0.014] 1.14 [0.0123,-0.0088,0.0247] 7.116
\(10 \mathrm{MBYC}->\) BEHD \([-0.001,-0.002,0.012] \quad 0.45[0.0129,-0.0090,0.0257] 4.315\)
11 G317->MBYC [-0.001, 0.003,-0.001] 0.02 [0.0127,-0.0087,0.0254] 4.041
12 SAG1->G317 [-0.002,-0.002,-0.002] 0.10 [0.0129,-0.0082,0.0255] 4.405
13 DET1->MBYC [-0.009,-0.017, 0.020] 1.32 [0.0140,-0.0092,0.0273] 3.646
14 STB1->G317 [ 0.001, 0.009,-0.013] 0.16 [0.0115,-0.0076,0.0232] 4.476
15 BEHD->WLCI [-0.009, 0.018,-0.008] 0.61 [0.0163,-0.0121,0.0322] 9.379
16 NLIB->BEHD [-0.002, 0.019, 0.002] 1.18 [0.0168,-0.0133,0.0344] 3.739
17 MBYC->BEHD [-0.012, 0.002,-0.005] 1.19 [0.0133,-0.0093,0.0265] 4.152
18 G317->MBYC [ 0.004,-0.005,-0.012] 1.27 [0.0127,-0.0086,0.0253] 4.129
19 SAG1->G317 [ 0.013,-0.006,-0.008] 2.23 [0.0136,-0.0087,0.0270] 3.365
20 DET1->MBYC [-0.014, 0.026,-0.023] 1.06 [0.0144,-0.0094,0.0281] 3.471
21 STB1->G317 [-0.004,-0.003,-0.002] \(0.25[0.0122,-0.0080,0.0247] 3.346\)
22 BEHD->WLCI [ 0.009,-0.018, 0.008] 0.61 [0.0163,-0.0121,0.0322] 9.250

\section*{APPENDIX J}

\section*{SCLESS for New Fiducial Points, 22 Observed Baseline Vectors}
```

GPS observation variances and covariances scaled by 48.0 beginning at
observation 1.
The 3x3 block diagonal covariance matrix is replaced by a full
(session) matrix.
Adjustment type: Stochastically Constrained Least-Squares Solution
No of observations : 66
No. parameters : - 27
Rank of K : + 18
System redundancy : 57
Adjustment PASSED the Chi Square test at the 95% Confidence Level
Lower bound: 38.027
Chi Sq stat: 56.251
Upper bound: 79.752
Centering errors:
Name horiz [m] vert [m]
BEHD 0.003 0.000
G317 0.003 0.000
MBYC 0.003 0.000
Estimated parameters: Cartesian (meters):
Name X Y Z
DET1 568024.7202 -4690674.6421 4270188.8126
MIL1 172135.9992 -4668696.6415 4327808.3392
NLIB -130934.5088 -4762291.7309 4226854.6491
SAG1 496374.9537 -4597431.5247 4378421.3557
STB1 212435.6774 -4528758.9069 4471353.7559
WLCI 248645.8074 -4828261.3126 4146460.0919
BEHD 295059.6893 -4728575.2206 4256061.8177
G317 307138.8157 -4649646.6859 4340747.2395
MBYC 310880.0544 -4679085.7852 4308925.6668
Estimated parameters: geodetic (ddd.mmsssssss):
Name latitude longitude height
DET1 42.1750454135 -83.0543066963 145.0416
MIL1 43.0009130887 -87.5318408933 147.3687
NLIB 41.4617727387 -91.3429618874 207.0281
SAG1 43.3743119503 -83.5015959245 149.2326

```

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Vec08: NLIB -> BEHD} \\
\hline 22 & 425994.1987 & 0.0005 & 425994.198 & 0.00296 & 0.025 & 0.91 & 0.80 \\
\hline 23 & 33716.5441 & 0.0338 & 33716.510 & 0.00980 & 1.147 & 0.88 & 0.81 \\
\hline 24 & 29207.1454 & -0.0232 & 29207.169 & 0.00860 & -0.936 & 0.87 & 0.81 \\
\hline \multicolumn{8}{|l|}{Vec09: MIL1 -> BEHD} \\
\hline 25 & 122923.6872 & -0.0029 & 122923.690 & 0.00280 & -0.422 & 0.65 & 0.65 \\
\hline 26 & -59878.5719 & 0.0071 & -59878.579 & 0.01032 & 0.378 & 0.75 & 0.69 \\
\hline 27 & -71746.5240 & -0.0025 & -71746.521 & 0.00913 & -0.148 & 0.75 & 0.69 \\
\hline \multicolumn{8}{|l|}{Vec10: MBYC -> BEHD} \\
\hline 28 & -15820.3673 & -0.0022 & -15820.365 & 0.00283 & -0.476 & 0.74 & 0.75 \\
\hline 29 & -49489.4261 & 0.0093 & -49489.435 & 0.01133 & 0.486 & 0.75 & 0.79 \\
\hline 30 & -52863.8515 & -0.0024 & -52863.849 & 0.01016 & -0.139 & 0.78 & 0.79 \\
\hline \multicolumn{8}{|l|}{Vec11: G317 -> MBYC} \\
\hline 31 & 3741.2373 & -0.0014 & 3741.239 & 0.00285 & -0.306 & 0.74 & 0.76 \\
\hline 32 & -29439.1032 & -0.0040 & -29439.099 & 0.01079 & -0.212 & 0.73 & 0.78 \\
\hline 33 & -31821.5683 & 0.0044 & -31821.573 & 0.00990 & 0.251 & 0.80 & 0.79 \\
\hline \multicolumn{8}{|l|}{Vec12: SAG1 -> G317} \\
\hline 34 & -189236.1416 & -0.0036 & -189236.138 & 0.00277 & -0.347 & 0.74 & 0.72 \\
\hline 35 & -52215.1569 & 0.0043 & -52215.161 & 0.00966 & 0.218 & 0.84 & 0.76 \\
\hline 36 & -37674.1254 & -0.0092 & -37674.116 & 0.00894 & -0.515 & 0.76 & 0.76 \\
\hline \multicolumn{8}{|l|}{Vec13: DET1 -> MBYC} \\
\hline 37 & -257144.6734 & -0.0076 & -257144.666 & 0.00289 & -0.580 & 0.78 & 0.74 \\
\hline 38 & 11588.8359 & -0.0210 & 11588.857 & 0.01018 & -0.959 & 0.83 & 0.79 \\
\hline 39 & 38736.8742 & 0.0200 & 38736.854 & 0.00928 & 0.996 & 0.83 & 0.80 \\
\hline \multicolumn{8}{|l|}{Vec14: STB1 -> G317} \\
\hline 40 & 94703.1393 & 0.0010 & 94703.138 & 0.00249 & 0.171 & 0.71 & 0.71 \\
\hline & -120887.7727 & 0.0063 & -120887.779 & 0.00950 & 0.327 & 0.78 & 0.75 \\
\hline 42 & -130606.5306 & -0.0142 & -130606.516 & 0.00898 & -0.730 & 0.83 & 0.76 \\
\hline \multicolumn{8}{|l|}{Vec15: BEHD -> WLCI} \\
\hline 43 & -46413.8842 & -0.0022 & -46413.882 & 0.00326 & -0.478 & 0.59 & 0.59 \\
\hline 44 & -99686.0721 & 0.0200 & -99686.092 & 0.01130 & 0.843 & 0.81 & 0.73 \\
\hline 45 & -109601.7420 & -0.0162 & -109601.726 & 0.00981 & -0.785 & 0.76 & 0.72 \\
\hline \multicolumn{8}{|l|}{Vec16: NLIB -> BEHD} \\
\hline 46 & 425994.2335 & 0.0353 & 425994.198 & 0.00296 & 1.605 & 0.93 & 0.84 \\
\hline 47 & 33716.5709 & 0.0606 & 33716.510 & 0.00980 & 2.109 & 0.88 & 0.80 \\
\hline 48 & 29207.1412 & -0.0274 & 29207.169 & 0.00860 & -1.174 & 0.85 & 0.79 \\
\hline \multicolumn{8}{|l|}{Vec17: MBYC -> BEHD} \\
\hline 49 & -15820.3763 & -0.0112 & -15820.365 & 0.00283 & -2.415 & 0.74 & 0.75 \\
\hline 50 & -49489.4339 & 0.0015 & -49489.435 & 0.01133 & 0.085 & 0.71 & 0.77 \\
\hline 51 & -52863.8539 & -0.0048 & -52863.849 & 0.01016 & -0.304 & 0.76 & 0.78 \\
\hline \multicolumn{8}{|l|}{Vec18: G317 -> MBYC} \\
\hline 52 & 3741.2415 & 0.0028 & 3741.239 & 0.00285 & 0.601 & 0.74 & 0.76 \\
\hline 53 & -29439.1022 & -0.0030 & -29439.099 & 0.01079 & -0.174 & 0.76 & 0.78 \\
\hline 54 & -31821.5851 & -0.0124 & -31821.573 & 0.00990 & -0.814 & 0.70 & 0.76 \\
\hline \multicolumn{8}{|l|}{Vec19: SAG1 -> G317} \\
\hline 55 & -189236.1477 & -0.0097 & -189236.138 & 0.00277 & -0.934 & 0.81 & 0.79 \\
\hline 56 & -52215.1632 & -0.0020 & -52215.161 & 0.00966 & -0.095 & 0.86 & 0.79 \\
\hline 57 & -37674.1318 & -0.0156 & -37674.116 & 0.00894 & -0.871 & 0.76 & 0.78 \\
\hline \multicolumn{8}{|l|}{Vec20: DET1 -> MBYC} \\
\hline 58 & -257144.6977 & -0.0319 & -257144.666 & 0.00289 & -2.314 & 0.86 & 0.83 \\
\hline 59 & 11588.8736 & 0.0167 & 11588.857 & 0.01018 & 0.735 & 0.86 & 0.78 \\
\hline 60 & 38736.8391 & -0.0151 & 38736.854 & 0.00928 & -0.780 & 0.77 & 0.77 \\
\hline \multicolumn{8}{|l|}{Vec21: STB1 -> G317} \\
\hline 61 & 94703.1446 & 0.0063 & 94703.138 & 0.00249 & 0.981 & 0.79 & 0.79 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrr}
62 & -120887.7869 & -0.0079 & -120887.779 & 0.00950 & -0.429 & 0.82 & 0.78 \\
63 & -130606.5361 & -0.0197 & -130606.516 & 0.00898 & -1.053 & 0.79 & 0.77 \\
Vec22: BEHD -> WLCI & & & & & & & \\
64 & -46413.8783 & 0.0037 & -46413.882 & 0.00326 & 0.689 & 0.69 & 0.70 \\
65 & -99686.1022 & -0.0101 & -99686.092 & 0.01130 & -0.428 & 0.79 & 0.67 \\
66 & -109601.7399 & -0.0141 & -109601.726 & 0.00981 & -0.710 & 0.71 & 0.65
\end{tabular}

Sum of traditional redundancy numbers \(=57.00\)
Sum of standardized reliability numbers \(=56.64\)
Estimated baseline outliers and minimum detectable outliers in meters alpha \(=0.01\), beta \(=0.80, r 1=3, r 2=54\), non-central param. \(=8.90\) \(\mathrm{F}(0.01 ; 3,54)=4.17\)
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline 7 & & & & \\
\hline 7 & 007 0.014 0.0011 & 1.96 & & \\
\hline & 6, 0.003 & 1 & & \\
\hline & 3 & & & \\
\hline D & & & & \\
\hline 6 MIL1->BEHD & 010,-0.031, 0.021 ] & & ] & \\
\hline & , & & & \\
\hline & & & & \\
\hline 9 MIL1->BEHD & \([-0.005,0.004,0.002]\) & & & \\
\hline 0 MBYC->BEHD & 002, 0.004, & & & \\
\hline & [-0.001, & & & \\
\hline SAG1->G317 & -0.002, 0.012,-0.0 & 0.18 & & \\
\hline & 0.018, & & & \\
\hline & 000, 0.007, 0.011 & & 23] & \\
\hline & [-0.005, 0.032, & & & \\
\hline & \([-0.000,0.043,-0.018]\) & & & \\
\hline & , & & & \\
\hline MBYC & 4,-0.001,-0.014] & & 40] & \\
\hline & 0.012, 0.005,-0.016] & & 131,-0.0084,0.0260] & \\
\hline & -0.014, 0.018,-0.016] & & 0131, \(0.0084,0.0260]\) & \\
\hline & \([-0.004,-0.007,0.001]\) & & ] & \\
\hline & 0.008, 0.014,-0.012] & & & \\
\hline
\end{tabular}```

