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ABSTRACT 
 

An analysis is made about the feasibility of using in-situ GRACE measurements for 
local gravity field determination as an alternative to global solution methods, which 
yield solutions in terms of spherical harmonic coefficients. The method investigated is 
based on integral inversion aided with regularization techniques. The observables 
considered are potential differences (DT) and gravity disturbance differences (DGD). 

 

Both observables are affected by position, velocity and acceleration errors. With 
respect to position errors, the higher precision requirement is in relative position for 
DT, which requires about 1 cm of absolute positional accuracy to produce 0.01 m2/s2 
error. For velocities, the higher precision requirement is in relative velocity for both DT 
and DGD. The observable DT required the higher precision 510−  mgal in relative 
acceleration. 

 

The disturbing potential T at the Earth’s surface, assumed to be a sphere, can be 
obtained from values of DT and DGD given at satellite’s altitude. The process turns out 
to be ill-posed mainly due to gravity field attenuation at the operative altitude of the 
GRACE mission (300-500 km). 

 

Data error requirements are very demanding for downward continuation of both DT and 
DGD. The Tikhonov regularization method was applied for the following configuration: a 
grid of 0o.8 sampling interval for a 24o square area at 400 km altitude. Measurement 
errors smaller than 51 10x −  m2/s2 in DT are required to achieve solution errors of the level 
of 1 m2/s2 and with a relative error of about 10%. However, this increased to only 3 m2/s2 
with 0.01 m2/s2 measurement error. It is found that model errors due to discrete and finite 
sampling cause large mean solution errors.  
 
The principal inversion methods employed were the Tikhonov, singular value 
decomposition, the conjugate gradient and the 1-D fast Fourier transform (FFT) method. 
Their performance was compared using simulations by employing three test areas with 
the same configuration described above, but different geographical location. The 
regularization methods were applied for both DT and DGD observables Overall, the 
Tikhonov method performed better than the other methods. For the above configuration, 
T was obtained with about 2.5 m2/s2 precision neglecting the mean error.   
 
In the search of the best regularization parameter (α ), the L-curve method, which can be 
applied to the Tikhonov, DSVD and the 1D-FFT, combined with Tikhonov, methods, 
was analyzed and yielded good results when considering only random errors in the 



 iii 

measurements. However, when considering model errors, the method did not produce 
satisfactory results. A geometry adaptive method was formulated to find the best α . The 
method consists of determining a k factor that relates the residual norm related to the 
corner of the L-curve with the residual related to the best α .  
 
Finally, the Tikhonov regularization combined with B-spline smoothing was applied. The 
method yielded smaller solution errors using the above configuration. The solution errors 
obtained were about 1.2 and 1.1 m2/s2 for 1o.2 resolution using DT and DGD, 
respectively. The corresponding relative error was about 10%. This could potentially 
produce about 10 cm geoid for about 150 km resolution. All simulations were made using 
the geopotential model EGM96. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

The accurate determination of the Earth’s gravity field benefits sciences like geophysics 
and geodesy, among others. For instance, in geophysics a better knowledge of the gravity 
field yields better boundary conditions in the study of the Earth’s interior. In geodesy it is 
essential to obtain a more accurate geoid for the improvement of local and global vertical 
datum. Moreover, the better the knowledge of the gravity field, the more precise is the 
satellite orbit determination required for geodetic positioning using satellite methods. 
 
Terrestrial and airborne gravimetric methods do not provide global coverage in our efforts 
to map the Earth’s gravity field. The alternative is by satellite methods that, although they 
have lower resolution, have the potential of being more efficient and capable of 
producing better global solutions. In addition to that, satellite methods can be used to 
determine temporal gravity field variations. These methods are being revitalized with the 
advent of some satellite gravity mapping missions to be launched within the next five 
years; the GRACE and CHAMP (already lunched in July, 2000) missions, which are of 
satellite-to-satellite tracking (SST) type, and the GOCE mission, which is of satellite 
gravity gradiometry (SGG) type. These three missions will produce an enormous amount 
of measurements that need to be processed in order to obtain improved solutions of the 
Earth’s gravity field either for regional or global scope. The present study concentrates on 
the analysis of local gravity estimation using SST data as obtained from the GRACE 
mission to be launched in November 2001. 
 
1.1 Satellite to Satellite Tracking Methods 
As mentioned above, SST (as well as SGG) methods have the potential of playing an 
important role in gravimetric geodesy. Even though they provide solutions with less 
resolutions than terrestrial and airborne gravimetric methods they can still significantly 
contribute to precisely determine and improve the knowledge of the medium and long 
wavelengths of the terrestrial gravity field and their temporal variations in an efficient 
way. Moreover, since they are able to produce global data coverage, SST methods can 
also be used to map those areas of the world for which there are few or no other 
gravimetric measurements. 
 
There are two important SST configurations; the high low configuration formed by one or 
more high orbiting satellites (like GPS) and a low-orbiting one; and the  configuration 
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formed by two low-orbiting satellites at about 200-500 km altitude following each other 
along the same orbit separated by a few hundred kilometers. 
 
Of the two SST configuration types the low-low type is the one that appears to map the 
Earth’s gravity field with better resolution (Reigber, 1988). Unlike the high-low 
configuration, the two orbiting satellites are being more strongly perturbed by shorter-
wavelength variations of the gravity field. This is the main reason why it has received 
much more attention by geodesists. And so, in this contribution we focus on studying its 
use for regional gravity field recovery. 
 
1.2 Basic Equations 
In SST, the measurements to be considered as observable are usually the intersatellite 
range rate 12ρ!  or line of sight (LOS) velocity and the range-rate rate 12ρ!!  or LOS 
acceleration. We have, in an inertial frame, the following relationship between range rate 
and the satellite velocity vectors 
 
  12 12 12ρ = ⋅e X!!          (1.1) 
 
where 12e  is the unit vector along the LOS between both satellites and  12 2 1= −X! ! !X X  is 
the velocity difference vector. Here we assign 1 for the trailing satellite and 2 for the 
leading satellite. On the other hand, the LOS acceleration is given by 
 

12 12 12 12 12ρ = ⋅ + ⋅e X e X!! !!! !                                                                                                (1.2) 
 

or according to Seeber, (1993) 
 

2
12 12 12

12 12 12
12

ρρ
ρ

⋅ −= ⋅ + X Xe X
! ! !!!!!                                       (1.3) 

 
which can be rewritten as 
 

( )o 2 o 2
12 12 12 12 12

12

1 ( ) ( )y zρ
ρ

= ⋅ + +e X!!!! ! !   (1.4) 

  
The last term on the right-hand side is a centrifugal type term with o o

12 12and y z! !  being the 
components of 12

!X  perpendicular to the LOS direction, which means that they are 
independent of the LOS velocity 12ρ! . The vector 12 1= −X X X!! !! !!

2  represents the vector of 
acceleration differences where 2X!!  and 1X!!  are the total accelerations of the corresponding 
satellite in an inertial frame. They are given by the sum of the corresponding accelerations 

2,1a a  (the total specific forces) sensed by an accelerometer and the corresponding 
gravitational accelerations 2,1g g . Then, we can write 
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12 2 1

2 1 1

2 1

( ) ( )
= −
= + − −
= +

2

1 2

X X X
a g a g
a g

!! !! !!

2 1X X                   (1.5) 

 
 
 The main idea is to recover the terrestrial gravitational field. Thus, it is necessary to 
establish the relationships between the measurements such as 12ρ!  and 12ρ!!  and the 
parameters describing the gravitational field. For the case of 12ρ!  the relationship can be 
established, for instance, by using the energy integral of motion (Seeber, 1993), which 
 relates the potential value at the satellite’s location with the velocity vector present in 
equation (1.1). On the other hand, the relationship of 12ρ!!  with gravitation can be inferred 
from equations (1.3) and (1.5). 
 
1.3 Dedicated Missions  
In the late 1970’s and early 1980’s a couple of missions with very similar characteristics 
where proposed for the  concept. The names of the missions were the Gravitational 
Satellite GRAVSAT (Pisacane and Yionoulis 1980) and the Geopotential Research 
Mission GRM (Keating et al., 1986). For several years, NASA was pursuing the 
development of the GRM mission. However, the mission never materialized. 
 
The purpose of the GRM mission was to map the global gravity and magnetic fields to a 
half wavelength of 100 km resolution with an expected accuracy of 2.5 mgal in the 
gravity anomaly and 0.1 m in the geoid. The two co-orbiting satellites were supposed to 
be released from the Space Shuttle in 160 km altitude, circular dual polar orbits. They 
would be in a drag free orbit due to a Disturbance Compensation System (DISCOS) 
located at the center of mass of each satellite (Fischell and Pisacane, 1978). The 
intersatellite distance was considered to be adjustable from 150 to 500 km. Its variation 
would be measured with a two-way Doppler link operating at frequencies of 42-91 GHz 
in the continuous wave (CW) band using a highly stable 5 MHz oscillator. The obtained 
observables were intended to be averaged over 4 seconds and have an accuracy of 1 

m/sµ . 
 
The mission was designed for about six months providing an equatorial sub-satellite track 
spacing of 7 km. For orbit determination, the Defense Mapping Agency (DMA) tracking 
Doppler network was proposed. The expected position accuracy was about 2 meters 
(Keating, et al., 1986). 
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1.4 The GRACE Concept 
In November of 2001, the Gravity Recovery And Climate Experiment (GRACE) mission, 
which is also a satellite mission in the low-low configuration, is expected to be launched 
see (Stanton, 2000). This mission is a joint project between the National Aeronautics and 
Space Administration (NASA) and the Deutsches Zentrum fur Luft und Raumfahrt 
(DLR). Its primary objective is to obtain accurate global models for the mean and time-
variables components of the Earth’s gravity field for up to five years that would benefit 
oceanography, hydrology, glaciology and solid Earth sciences. Another science objective 
is to provide several hundred globally distributed profiles every day of the excess delay or 
bending angle of the GPS transmitted signal due to ionosphere and atmosphere using 
limb-sounding. These can be converted to total electron content and refractivity in the 
ionosphere and troposphere, respectively (ibid). In this mission the two co-orbiting 
satellites will be flying in a near polar, near circular orbit at 300-500 km altitude. The 
intersatellite distance will be nominally 220 50 km± , and it will be measured using a 
microwave (K-band) tracking system providing two one way ranges at a data rate of 10 
Hz, each obtained by comparing an on board generated phase to the received phase. Ultra 
Stable Oscillators (USO) will provide time tag for the radar measurements. Then, ranges 
will be averaged or smoothed over ten seconds to provide range rates and range 
accelerations. The total error in the measured intersatellite range will be 10 microns for 
0.1 to 0.0001 Hz. In the case of range rates, the expected accuracy is about 610  m/s− . 
Each satellite will also carry a geodetic quality GPS receiver to enable accurate orbit 
determination and a high accuracy superSTAR accelerometer in order to ensure that non-
gravitational accelerations due to atmospheric drag, solar radiation pressure, thermal 
effect, etc, can be accurately modeled and removed. The precision in the accelerometer 
measurements is about 10 210  m/s−  over 0.1 to 0.00005 Hz (Stanton, 2000). Since the 
intersatellite distance will only be a few hundred kilometers, the errors due to media 
effect will be minimized as compared to space-based or ground-based tracking, ensuring 
homogeneity of data quality over the mission lifetime. External calibration of the on 
board GPS system will be possible with a dedicated Laser Retro Reflector (LRR) on each 
satellite. The GPS, together with laser ranging from the ground will ensure precise orbit 
determination. The employment of the GPS system will actually make this mission a 
combined low-low and low-high configuration type rather than just the low-low type. 
 
 We can see from the above information that the GRACE mission will have important 
differences with respect to the previous proposed missions. Its satellites will have 300-
500 km altitude, while previous missions were considered to be at 150-250 km altitude. It 
will make use of the GPS system not available before, and unlike GRM, the satellites will 
have on board accelerometers to measure the non-gravitational forces since they will not 
be drag-free. The mission, as opposed to the 6 months planned for the previous missions, 
is projected to endure al least 5 years giving opportunity to study the time variations of 
the gravity field.  
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1.5 Low-Low SST Techniques 
Several relevant error and performance analyses (Douglas et al., 1980; Rummel, 1980; 
Jekeli and Rapp, 1980; Pisacane and Yionoulis, 1980) have been made and interesting 
methods proposed during the last 20 years for processing SST data, specifically in the 
low-low configuration, for both, global (Kaula, 1983; Colombo, 1984; Sjöberg, 1982; 
Wagner, 1983) and local applications (Hajela, 1974, 1977; Rummel, 1975; 
Wichiencharoen, 1985). While some of the methods consider the use of range rates 
through least squares (Douglas et al., 1980), least squares collocation (LSC) (Colombo, 
1981), the expansion in terms of eigenfunction series (Ilk, 1984, 1985, 1987), the energy 
integral in an approximate way (Fischell and Pisacane, 1978; Gaposchkin, 1998; Wagner, 
1983), and its use to get potential differences in a rigorous way (Jekeli, 1998a), some 
other methods consider the use of range accelerations with least squares (Pisacane and 
Yionoulis, 1980; Wichiencharoen, 1985), and with LSC (Hajela, 1977, 1978, 1979, 1981; 
Rummel, 1975, 1980; Rummel et al., 1976; Wichiencharoen, 1985). Most of these studies 
were made considering GRM type missions. Thus, these methods will yield different 
results when applied to GRACE measurements. The main reason is the higher altitude of 
the GRACE orbit. It is well known that gravity attenuates with elevation making the 
system more  unstable causing errors to amplify. 
 
In this contribution, we analyze the use of the in-situ observables potential differences 
and gravity disturbance differences, obtained from LOS velocity or LOS acceleration 
measurements, to directly compute disturbing potential values at the Earth’s surface in its 
spherical approximation instead of solving for gravity anomalies or spherical harmonic 
coefficients, as most of the methods mentioned above do. With this alternative technique, 
the solution is obtained by integral inversion that relates the in-situ observables to the 
disturbing potential. The performance of this new approach is analyzed for regional 
gravity field determination, although it has the potential to be used for global modeling. 
 
1.5.1 Use of Range Rates 
One common approach, in the use of the range rate to “map” the terrestrial gravity field 
consists of assuming that both satellites pass over the same disturbance, which requires 
ignoring the rotation of the gravity field. Another assumption often made is to consider 
the range rate to be equal to the in-along-track speed between the satellites since the 
intersatellite distance is relatively small. Then, based on the energy integral of motion 
(Seeber, 1993) or the principle of impulse momentum (Wagner, 1983), the following 
equation is obtained; see for instance, Gaposchkin (1998) and Wolff (1969): 
 

2 1
12

0 0

T T Tv
v v

ρ − ∆∆ = = =!   (1.6) 

 
where T∆  is the difference in the disturbing potential, 0v  is the nominal or scalar velocity 
of the satellite. Then the classical decomposition of the disturbing potential into Fourier 
components of ordinary Kepler elements (Kaula, 1966) can be used to relate the range 
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rate to the harmonic coefficients of the disturbing potential. The problem is that, for the 
GRACE mission, the rotation of the gravity potential has been found to be not small 
enough to be ignored (Jekeli, 1998), and it could amount to 1 m2/s2. 
 
1.5.2 Use of Range-Rate Changes  
Now we consider the changes in range-rates or the line of sight (LOS) acceleration 
between the two GRACE satellites as the measurements. The objective, here, is to derive 
gravity disturbances which can be used for local gravity modeling, or geopotential 
modeling. By using equations (1.4) and (1.5) we can write 
 
  

( )o 2 o 2
12 12 12

12

1 ( ) ( )y zρ
ρ

= + +T
12 12 12e (a + g )!! ! !   (1.7) 

      
After subtracting a normal field (not the usual one, which includes centrifugal 
acceleration due to Earth’s rotation), this equation yields differences of the component of 
the gravity disturbance vector along the line-of-sight direction. We have 
 

T T
12 12 12 12 2 1 2 1( ) ( )12 12e a + g γ e a + g g γ γ− = − − +                    (1.8) 

then 
 

T T T T
12 12 12 2 1 12 12

T T
,2 ,1 12 12

T T
,12 12 12

( ) ( )
g g

g
ε ε

ε

δ δ
δ δ

δ

12 12 12

12 12

12 12

e a + g e g g e a e γ
e a e γ

e a e γ

= − + +
= − + +

= + +

                              (1.9) 

 
 
Where 1 2and δ δg g  are gravity disturbance vectors at the corresponding satellite location, 
and ,1gεδ δT

12 1e g= , ,2 2gεδ δT
12e g=  are their projections along the LOS direction. 

Substituting equation (1.9) to (1.7) and solving for ,12gεδ , we have 
 

T T
,12 12 12 12 12gεδ ρ Φ 12 12e a e γ!!= − − −   (1.10) 

with 

( )o 2 o 2
12 12 12

12

1 ( ) ( )y zΦ
ρ

! != +   (1.11) 

 
 

 
or, subtracting a reference field 
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T T
,12 12 12 12 12 0,12

,12 0,12

DGD g g
g g

ε ε

ε ε

∆δ ρ Φ δ
δ δ

12 12e a e γ!!= = − − − −
= −

                  (1.12) 

 
In this way, we can obtain differences of gravity disturbances in the direction of 12e  in 
terms of the LOS acceleration, the inter-satellite range and the velocity components 
perpendicular to the LOS, (these two last quantities are contained in the centrifugal term), 
and the measurement of non-gravitational forces contained in 12a . The gravity 
disturbance component as in equation (1.10) can be used to obtain by integral inversion 
disturbing potential values at the Earth’s surface. According to Hotine, (1968), the 
relationship between the disturbing potential given at the Earth’s surface, considered to be 
a sphere, with the gravity disturbance at some elevation can be defined by a functional of 
Poisson’s integral, see (chapter 3).  
 
In the past, one popular method to process SST data was the computation of gravity 
anomalies from line-of-sight accelerations (Jekeli and Rapp, 1980; Colombo, 1984; 
Hajela, 1974; Rummel, 1975, 1980). Results from some studies (assuming GRM, 
GRAVSAT type missions) showed that gravity anomalies could be determined with 
about 4-6 mgal accuracy and geoid undulations with accuracy of about 10 cm for 100-140 
km resolution (Jekeli and Rapp, 1980; Hajela, 1981; Rummel, 1980).  
 
1.5.3 The Energy Integral 
The idea of using the energy integral for a satellite was introduced by Bjerhammer, 
(1968). Later on, Wolff, (1969) proposed its use for the low-low concept according to 
equation (1.6). This technique has been considered and analyzed by other geodesists, see 
for instance Fischell and Pisacane (1978); Rummel (1980); Sjöberg (1982) and Wagner 
(1983). The basic idea of this approach is to approximate the potential difference between 
both satellites by the range rate multiplied by the satellite’s total velocity. The 
assumptions involved may not make the method adequate for the GRACE mission, if 
very precise gravitation field determination is desired. The approximations would involve 
model errors up to 0.5 m2/s2 (Jekeli, 1998b). Moreover, since the rotation of the 
gravitational field, which is also neglected is of the order of 1 m2/s2 (ibid.), Jekeli (1998a) 
has derived a rigorous method to obtain potential differences from absolute and relative 
satellite velocities. No approximation in the relative velocity is made and the rotational 
gravitational potential is considered.  
 
We start with the energy equation for the satellite, which relates the total velocity  with 
the potential of gravitation at the satellite’s location in an inertial frame. For a non-
rotating Earth and with no non-conservative fields, the energy equation is given by 
(Seeber, 1993) 
 

21
2

v V E− =       (1.13) 
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where v is the scalar satellite velocity, V is the earth’s gravitational potential at the 
satellite’s location and E is a constant of energy. The Earth’s rotation causes the 
gravitation at a specific point in space to change in time. In order to account for this 
variation, the energy equation is written as follows, see Jekeli (1999): 
 

0

21
2

t

t

Vv V dt E
t

∂− = − +
∂∫   (1.14) 

          
In order to approach reality, the vector containing the specific forces )x y zF = ( F F F  
acting on the satellite also needs to be considered. Then we write 
 

0 0

21
2

t t

t t

VV v dt dt E
t

∂= − ⋅ + +
∂∫ ∫X!F

                                
(1.15) 

 
 
Assuming that we measure the satellite’s velocity along its orbit, as well as the specific 
forces acting on the satellite we can obtain the potential from equation (1.15). We ignore 
the gravitational effects from the sun, moon and other planets gravity field on the 
potential at satellite’s location. For the second integral in the right hand side of equation 
(1.15) we have the following equation (ibid):  
 

( )
0

e

t

t

V dt yx xy E
t

ω∂ = − +
∂∫ ! !   (1.16) 

 
 Then, solving for the potential in equation (1.14)  
 

21 ( )
2 eV v xy xy Eω= + − +! !   (1.17) 

          
For a pair of relatively close satellites we can compute the potential difference the point 
of location of each satellite 
 

2 21
2 1 12 2 1 2 2 2 2 1 1 1 1 122 ( ) ( )eV V V v v x y x y x y x y Eω− = = − + − − + +! ! ! !                (1.18) 

    
with ( ), ,x y z=X , ( ), ,x y z! ! ! !=X  being the position and velocity vectors, respectively; also   

2v ! != ⋅X X  and 12 2 1
! ! != −X X X . After some arrangements we obtain 

 
1

12 12 1 12 12 1 12 12 1 12 12 1 12 12 1 12 12 122 ( )eV x y x y x y x y x y x y Eω= ⋅ + ⋅ + + + − − − +! ! ! ! ! ! ! ! ! !X X X X    (1.19) 
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Equation (1.19) can be considered a model for the potential difference if the velocity 
vectors of both satellites are considered as measurements. By subtracting a reference field 
we obtain an expression for differences of disturbing potential 
 

12 012DT V V= −   (1.20) 
 
where 12V  is computed with equation (1.19) and 012V  is the potential difference computed 
from a reference field. Some initial error analyses (Jekeli, 1999) indicate that errors of 
1 10 4x −  m/s in absolute velocities and of 1 10 6x −  m/s in range-rates can yield errors of 
about 0.01 m2/s2 in potential differences, which is comparable to millimeter accuracy in 
geoid undulation differences at satellite altitude. As with gravity disturbances, potential 
differences can also be used to obtain the disturbing potential at the Earth’s surface 
through inversion, in this case directly using Poisson’s integral. 
 
1.6 Regional Integration with In-situ Measurements 
One important approach in the recovery of the gravitational field from SST observables 
consists of solving for the spherical harmonic coefficients of global geopotential models 
(Sjöberg, 1978, 1982; Wagner, 1983; Reigber, 1988; Tapley, 1973). One of the methods, 
being considered by The University of Texas to process GRACE data, is a non linear 
orbit determination and parameter recovery method (Tapley, 1973). This method makes 
use of Newton’s equation of motion, which characterize the vehicle’s trajectory:  
 

3 ( , )R tµ= +X!! X X
X

  (1.21) 

 
 
where µ  is the gravitational constant and R is the vector of perturbations. The 
acceleration vector X!!  can be considered as a function of the satellite’s position and 
velocity vector at time t, and a vector α  containing constant parameters that characterize 
the perturbing forces like the non-spherical gravitational potential, which on its own, is 
parameterized in terms of spherical harmonic coefficients. 
 

( , )f t=X α!! !X, X,   (1.22) 
 
The relationship in equation (1.22) is not linear. Then, the linearization will require some 
initial approximation of the unknown parameters. Once the initial values are available the 
quantities to be solved are the corrections (δx ) to those initial values. In the case of the 
parameters, α , the corrections are δα . The solution is obtained by least squares 
adjustment (Tapley, 1973) 
 

( ) 11 1T TH R H H Rδ δ
−− −=α x  (1.23) 
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where H is the matrix containing the partial derivatives of the observations x (composed 
of the satellite’s position and velocity vectors) with respect to the parameters α ; and R is 
the variance-covariance matrix of the observations. Since the actual observations could be 
range, range-rate, and/or range acceleration the orbital state vectors ( )!X, X ,need to be 
expressed in terms of these, which is relatively simple. 
 
 Another approach to obtain gravity parameters, consists of using gravity induced linear 
orbit perturbations. This method is based on the fact that of all perturbing forces acting on 
a satellite the force produced by the anomalous part of the geopotential is dominant, 
especially for low orbiting satellites. Thus the deviation of a satellites motion from central 
force motion will be produced mainly by the anomalous potential. The method uses the 
classical decomposition of the disturbing potential into Fourier components of ordinary 
Kepler elements (Kaula, 1966) to relate the range rates to the harmonic coefficients of the 
disturbing potential. The solution of these coefficients is also done by least squares 
adjustments. As with the previous method, the solution involves the inversion of large 
systems of equations and hence involves large amounts of computation time. This method 
has been applied in some SST analyses for gravity recovery (see e. g., Kaula, 1983; 
Wagner, 1983; Mackenzie and Moore, 1997). 
 
One alternative to the above methods is the direct use of in-situ observations as values 
given on a boundary surface. These values can be related to the geopotential gravitational 
field either through spherical harmonic expansion, which is suited for global model 
solutions or through integrals like Poisson’s, which can be used for regional gravity 
determination. This study focuses on the latter approach. As mentioned before, the 
potential and the gravity disturbance differences obtained from range rates and range rate 
rates, respectively, can be related to the potential at the Earth’s surface by using Poisson’s 
integral (Heiskanen and Moritz, 1966, Hotine, 1968). In this way, in-situ measurements 
can, in principle, be used to solve directly for the disturbing potential at the Earth’s 
surface. Some initial tests have yielded better results with this approach than with direct 
 estimation of spherical harmonic coefficients in the polar areas where the in-situ 
measurements are densest (Jekeli and Garcia, 2000). Still, a more broad and profound 
analysis is required.  
 
1.7 The Downward Continuation 
One important problem of SST and SGG methods is the downward continuation of 
measurements from satellite height to the earth’s surface where the solution is required. 
The downward continuation is an ill-posed problem, since the gravity field attenuates 
with altitude. This causes small measurement and systematic errors to amplify. Therefore, 
downward continuation of SST measurements needs to be stabilized by an appropriate 
regularization or smoothing. This fact obliges us to be more careful with measurement 
and model errors. Especially for the GRACE mission, in which the altitude will be higher 
than in previously missions contemplated, the instability of the solutions will be more 
severe. In order to illustrate the amplification of errors, Poisson’s integral was used to 
downward continue potential values given a 30x30 grid with 0o.4 sampling interval and at 
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400 km altitude. Random errors with standard deviation of  ± 0.01 m2/s2 were added to 
the potential values. The downward-continued potential values without regularization 
were in error by up to 1 106x  m2/s2 at the Earth’s surface.  
 
Some geodesists have addressed the downward continuation problem with different 
regularization techniques: least squares collocation (LSC) with smoothed data (Hajela, 
1977, 1978, 1979); stabilized integrals (Rummel, 1980); singular value decomposition, 
(Schwarz and Gerstl, 1979); the Tikhonov method (Schwarz, 1979 ; Ilk, 1993, 2000); and  
the conjugate gradient method (Schuh et al., 1996). Some of the analyses have 
concentrated on SGG, see for instance (Klees et al., 2000), (Arabelos and Tscherning, 
1990), and (Schuh, 1996). 
 
One difficulty associated with regularization methods is the determination of the 
optimum regularization parameter (α ) involved (Schwarz, 1979; Bouman, 1998; Ilk, 
1993; Hansen and O’Leary, 1993). For small α  a good approximation to the least square 
estimator is obtained but the effect of data errors are large. Large α  suppresses data 
errors but increase approximation errors. No precise recipe for the choice of α  has been 
discovered, which could be used for any problem. There are some iteration-based 
methods like the discrepancy principle (Bouman, 1998). However, they do not always 
lead to the best solution even if convergence is achieved (Ilk, 1993). The convergence is 
more difficult to achieve as the process becomes more unstable. A method, called the L-
curve method (Hansen and O’Leary, 1993), to compute the best regularization parameter 
and that is based on the trade off between perturbation and regularization errors have 
yielded relatively good results in some tests made in this research. 
 
 This study also concentrates on analyzing the performance of regularization and the 
determination of the best α  using the L-curve method. Tests were made to analyze 
effects of measurement and model errors, data altitude, sampling interval and integration 
area on solution errors.   
 
1.8. Fourier Methods 
Fourier technology can also be exploited here. The evaluation of  Stokes’ and Poisson’s 
integrals has been efficiently achieved as convolutions using 2-D Fast Fourier Transforms 
in planar and spherical approximation (Blaha et al., 1996; Forsberg and Sideris, 1993; 
Schwarz et al., 1990; Sideris and Li, 1993; Sideris and She, 1995; Tziavos, 1996). This 
has the advantage, compared to numerical integration, of being able to process large 
amounts of gridded data in a short period of time. The downward continuation can be 
performed by inverting or deconvolving the process in the frequency domain (Zhang, 
1995). Still, there are a couple of drawbacks. For example,  data need to be uniformly 
gridded  at the same satellite altitude. In the case of planar approximation, errors increase 
with the area, while with the spherical approximation, errors due to the convergence of 
meridians increase with area along meridians. Nonetheless, this effect is diminished with 
the multiband spherical approximation (Forsberg and Sideris, 1993). A method that 
avoids these errors for upward continuation is numerical integration combined with 1-D 
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FFT along parallels (Haagmans et al., 1993). The evaluation of integrals with this method 
is as exact as with numerical integration. Thus, in principle, we should be able to do 2-D 
inversion or downward continuation avoiding inversion of large systems and getting the 
same accuracy as direct integral inversion. Obviously, this method also allows the 
processing of more data, being at the same time more time-efficient than direct 
conventional inversion in the space domain. A kind of deconvolution can also be applied 
involving a matrix the same size as in numerical integration but, with a block diagonal 
structure, which makes it much easier to invert.  
 
Deconvolution is an efficient way of performing inversion. The solution is obtained by 
simple division in the frequency domain or by fast deconvolution algorithms. The 
technique has been successfully applied in some sciences like seismology, spectroscopy, 
and imaging; see, for instance, (Bertero and Boccacci, 1996) and (Lagendijk, 1997). One 
problem associated with deconvolutions is the presence of non-physical data produced by 
the non-periodic nature of real data (Jansson, 1998). Some iteration methods like the 
Projected Landweber method manage to get around this problem and have been applied 
with some success in the mentioned sciences. This approach could be employed for 
inversion of integrals used in geodesy like Poisson’s integral, allowing for processing of 
more data than regular inversion methods. 
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CHAPTER 2 
 
 

GRACE INDIRECT OBSERVABLES 
 

 
In the previous chapter, we treated equations relating GRACE measurements 12ρ!  and 12ρ!!  
with potential differences (DT) and gravity disturbance differences (DGD), see equations 
(1.12), (1.19) and (1.20). These equations involve position, velocity and acceleration 
quantities. Therefore, their errors will affect the precision of the observables. In this 
chapter we do some error analysis in the determination of DT and DGD according to 
equations (1.14) and (1.31). 
 
2.1 Potential Differences 
 
2.1.1 Effect of Position Errors 
From equation (1.19), we can see that absolute and relative position elements are 
involved in the determination of DT. All the terms related to the rotational gravitation 
include either an absolute or a relative positional element. For uncertainties in absolute 
positional elements we can write the following error equation, assuming 1 2x yδ δ=  
 
  

12 12( ) ( )eDT x x y xδ δ ω δ= − −! !   (2.1) 
 

For relative position errors we have, assuming 12 12x yδ δ=  
 

12 1 1 12( ) ( )eDT x x y xδ δ ω δ= − −! !          (2.2) 
 
In order to evaluate these formulas, we consider the following values; 

0.00007292115eω = , 1 1 7500 m/sx y! != = , 12 12 200 m/sx y! != = . With these values in 
the previous equations we obtain that, one meter of error in absolute satellite position will 
produce about 0.01 2 2m /s  of error on DT. The same error will be obtained by 1 cm of 
error on relative position. These results are in agreement with results in (Jekeli, 1998a). 
 
The presence of the reference or normal field on the equation for DT introduces the 
registration error, which seems to impose a mayor restriction for position related errors. 
This registration error can be estimated considering the gradient of the potential, that is, 
the gravitational acceleration. If we take its largest component, which along the radial 
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direction at GRACE altitude is about 8.7 2m/s , then a 1 cm radial orbit error will cause 
about 0.1 2 2m /s  error, which is larger than errors produced by 1cm of error in relative 
position. Nevertheless, if the orbits of both satellites are highly correlated, we could even 
use the gradient of the potential differences. Employing the EGM96 geopotential model, 
we estimated this gradient at 400 km altitude. The estimated values of the gradient were 
about 0.001 2m/s in the along track direction and about 0.0001 2m/s  in the radial 
direction. Thus, a 10 cm orbit error will cause about 0.01 2 2m /s  error. 
  
2.1.2 Effect of Velocity Errors 
In the computation of DT with equation (1.19) and (1.20), velocity quantities are present 
in all the terms except in the reference field term. Thus, some error analysis is also 
required here for both, absolute and relative satellite velocities. For this purpose, we 
differentiate equation (1.19) obtaining 
 

[ ]
12 1 12 1 12 1 1 12 1 12 1 12 12 12 12 12 12 12

e 12 1 12 1 1 12 12 1 12 12( ) ( )
      

DT x x y y z z x x y y z z x x y y z z
y x x y y y x x x y

δ δ δ δ δ δ δ δ δ δ
ω δ δ δ δ
! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! !

! ! ! !
= + + + + + + + +
+ − + − + + +  

                                                                                                                                  (2.3) 
Grouping common terms with respect to absolute and relative velocities we can write 
 

[ ][ ]
[ ][ ]

T
12 e 12 12 e 12 12 1 1 1

T
1 12 e 1 12 1 12 e 1 12 1 12 12 12 12( ) ( )

      

DT x y y x z x y z

x x y y y y x x z z x y z

δ ω ω δ δ δ

ω ω δ δ δ

! ! ! !! !

! ! ! ! ! !! ! !

= − + +

+ − + + + + +   

(2.4) 
which is like considering the velocity vector of satellite one and the vector of velocity 
differences as measured quantities. Assuming equal errors for components of 1

!X  and for 

12
!X . That is 

 
1 1 1 1 12 12 12 12,x y z x y zδν δ δ δ δν δ δ δ! ! ! !! != = = = = =                                                          (2.5) 

 
and substituting into (2.4) 
 

 ( ) ( )

1
2

1
2

2 2 2
1 12 e 12 12 e 12 12 1

2 2 2
12 1 12 e 1 12 1 12 e 1 12 1 12 12

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

      

DT x y y x z

DT x x y y y y x x z z

δ δν ω ω δν

δ δν ω ω δν

! ! !

! ! ! ! ! !

 = − + + +  
 = + − + + + + + + +                         

(2.6) 
These equations give a relationship between DT errors and absolute and relative position 
and relative errors. Further assuming, for error analysis purposes, that 1 1 1 1x y z v! ! != = = , 
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12 12 12 12x y z v! ! != = = , 1 1y x p= = , 12 12 12y x p= =  we obtain a more simple set of 
equations 
 

( )

1
2

1
2

2 2
1 e 12 12 1

2 2
12 e 12

( ) 2( ) 3( )

( ) 2 3  

DT p v

DT p v

δ δν ω δν

δ δν ω δν

 = +  
 = +  

  (2.7) 

 
 We now numerically estimate the effects of errors in the velocity vectors 1X!  and in 12X!  
according to equation (2.7). We assume for the involved quantities the following nominal 
values 
 

1 12

12

0.00007292115, 7500 m/s , 200 m/s,
6771 , 200

e v v
p km p km
ω = = =
= =     (2.8) 

Using these numerical values we find that for a DT error of 0.01 2 2m /s  we require errors 
of less that 41 10−⋅ m/s in absolute velocity and 51 10−⋅ m/s in relative velocity. Previous 
analyses have yielded similar results, see (Jekeli, 1998a). This means that for this 
situation errors coming from 1

!X  produce errors on DT about one order of magnitude 
smaller than errors coming from 12

!X . That is, the accuracy for velocity differences will 
be more demanding than for absolute velocity components. 
 
 This shows that the accuracy required for the vector of velocity differences 12

!X  is at 
least one order of magnitude higher than for the velocity vector 1

!X . The velocity vector 

12
!X  can be obtained using GPS differential positioning, with respect to both GRACE 

satellites. However, the range rate 12ρ! , which can be obtained with better precision, can 
also be incorporated as a measurement to improve the accuracy of 12

!X . Then, the errors 
of the relative velocity measurement produced from both systems, GRACE and GPS, will 
have different effect on the estimated vector 12

!X . Let’s do some analysis on the effect of 
errors in 12ρ! . Assuming the orbits of both GRACE satellites to be polar so the velocity 
vectors can be represented by two perpendicular components in the orbital plane say, 
along the Z-axis and along a perpendicular direction P. Then we can represent the 
absolute and relative velocity vectors as 
 

[ ] [ ] [ ]1 1 2 2 12 12, ,T T Tp z p z p z= = =! ! !! ! !! ! !1 2 12X X X                               (2.9) 
 

Now, using equation (2.4) and approximating for simplicity, , , 0, 0p x p x y y! ! !" " " " , 
then the terms containing eω  will be equal to zero. Thus, we can write the following error 
equation 
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( )
1
22 2 2 2

12 12 1 12 12 1 12 12( , ) ( ) ( ) ( )DT p z p p p z z zδ δ δ δ δ! ! ! !! ! ! ! = + + +                                 (2.10) 

 
On the other hand, the range rate 12ρ!  can be approximated by 
 

2 2 2
12 12 12z pρ ≈ +! !!   (2.11) 

 
Since 12z!  and 12p!  are perpendicular each other, we can also write 
 

12 12 12cos( ) sin( )z pρ φ φ= =! !!   (2.12) 
 

where φ  is the latitude. Applying error propagation to equation (2.12) and using equation 
(2.10) we obtain the following error equation 
 

 ( )
1
22 2 2 2

12 1 12 12 1 12 12( ) (sin( ) ) ( ) (cos( ) )DT p p z zδ δρ φ δρ φ δρ! ! !! ! ! ! ≈ + + +             (2.13) 

 
using the following approximations, 1 1p z v! != =  we arrive to the simple error equation 
 

12 12( )DT vδ δρ δρ≈! !   (2.14) 
 

For GRACE mission an error 610−  in 12ρ!  will produce about 0.01 2 2m /s  of error in DT. 
This level of error propagation is similar to the one obtained for 12v  in equation (2.7). 
Since there is no presence of eω , it is evident from equations (2.10) and (2.13) that for a 
polar orbit the rotational effect on the potential does not impose any additional precision 
requirement for 12ρ! . Since GRACE orbit is near polar, we could expect a relatively small 
effect of the rotational potential in the error requirements for 12ρ! . 
 
The effect of non-gravitational forces on the potential differences, see equations (2.19), 
(2.21) and (2.22) involves also the presence of velocity vectors. Thus, velocity errors will 
have additional effects on potential difference errors, due to the consideration of this 
effect. However, they can be expected to be smaller than the velocity errors effect 
obtained so far. From equation (2.22) we can obtain, using previous velocity values 
assumptions, the following equation 
 

12, 2, 2, 2, 12 12, 12, 12,20000 ( ) ( )a x y z x y zV F F F v F F F v= + + − + +                              (2.15) 
 
Then, applying error propagation we obtain the error equation 
 

1/ 22 2 2 2
12, 12 2, 2, 2, 12 12, 12, 12,( , ) 20000 ( ) ( ) ( )a x y z x y zV v v F F F v F F F vδ δ δ δ δ = + + − + +        (2.16) 
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Assigning 12 12F = F , F = F  we get the approximation 
 

1/ 22 2 2 2
12, 12 12 12( , ) 20000 ( ) ( )aV v v F v F vδ δ δ δ δ + "                                (2.17) 

 
or considering the effect of absolute and relative velocity errors separately we have 
 

12, 12

12, 12 12

( ) 20000
( ) 20000

a

a

V v F v
V v F v

δ δ δ
δ δ δ

"
"

  (2.18) 

 
The two main non-gravitational forces are the atmospheric drag and the solar radiation 
pressure. For GRACE orbit altitude these forces can have values up to 310−  2m/s  and 

510−  2m/s  respectively, see (Seeber, 1993; Kim, 2000). With these values and using 
equation (2.18) we find that absolute and relative velocity errors of 410−  and 510−  m/s, 
respectively, will produce potential errors smaller than 0.001 2 2m /s . 
 
2.1.3 Effect of Accelerometer Errors 
GRACE satellites will have on board accelerometers to measure accurately non-
conservative forces including atmospheric drag, solar radiation pressure, earth radiation 
pressure and thermal forces. From equation (1.15) the effect of these measured forced on 
the gravitational potential can be written as 
 

0

t

a
t

V dt= − ⋅∫ X!F   (2.19) 

 
We define the vector representing the specific forces for both satellites as ,1 2F F  for 
trailing and leading satellites, respectively, and expanding the inner product of equation 
(2.19), we can obtain 
 
 

( ) ( )

( )

0 0

0 0

12, 1 2 1 1 12

1 12 12 1

t t

a
t t

t t

t t

V dt dt

dt dt

 = ⋅ − ⋅ = ⋅ − ⋅ + 

   = − ⋅ + ⋅ = ⋅ − ⋅   

∫ ∫
∫ ∫

X X X X X

X X X X

! ! ! ! !

! ! ! !

1 2 1 2

1 2 2 2 12

F F F F

F F F F F

 (2.20) 

 
Expanding the dot products 
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0

12, 2, 12 2, 12 2, 12 12, 1 12, 1 12, 1

t

a x y z x y x
t

V F x F y F z F x F y F z dt = + + − − − ∫ ! ! ! !! !                    (2.21) 

 
The integral in this equation is difficult to evaluate since there are no analytic expressions 
for the force and velocity vectors involved. In order to be able to perform error 
estimation, we’ll assume these quantities to be constant. The expected accuracy of 
acceleration measurements is 10 210  m/s−  over 0.1 to 0.00005 Hz (Stanton, 2000). This 
would correspond to a maximum period of 20 000 seconds. Evaluating the integral for 
this period so we can estimate the maximum error produced, thus 
 

12, 2, 12 2, 12 2, 12 12, 1 12, 1 12, 1

12, 12 12 12 2 1 1 1 12

20000

20000 ( ) ( )
a x y z x y x

a

V F x F y F z F x F y F z

V x y z F x y z F

= + + − − −

= + + − + +

! ! ! !! !

! ! ! !! !
                 (2.22) 

 
where we have assumed 2, 2, 2,x y zF F F F= = = , 12 12, 12, 12,x y zF F F F= = = . Then, applying 
error propagation we obtain the error equation 
 

( ) ( )
1/ 22 22 2

12, 12 12 12 12 1 1 1 12( , ) 20000aV F F x y z F x y z Fδ δ δ δ δ = + + + + + ! ! ! !! !                     (2.23) 

 
Assigning 12 12v = X! , 1v = X!  and 2F F= we get the approximation 
 

1/ 22 2 2 2
12, 12 12 12( , ) 20000aV F F v F v Fδ δ δ δ δ = +            (2.24) 

 
or considering the effect of absolute and relative acceleration errors separately we have 
 

12, 12

12, 12 12

( ) 20000
( ) 20000

a

a

V F v F
V F v F

δ δ δ
δ δ δ

=
=

 (2.25) 

 
 
 Assuming 12 200 m/sv =  and 7500m/sv =  for the velocity quantities, we obtain that an 
error of about 0.01 2 2m /s  in DT, will be produced by an error of 8 210  m/s−  in absolute 
acceleration and by an error of 10 210  m/s−  in relative acceleration. 
 
2.2 Gravity Disturbance Differences 
 
2.2.1 Effects of Position Errors 
In equation (1.12), which gives the expression for DGD, the presence of position related 
quantities are on the four last terms of the right hand side. For the second or centrifugal 
term (see also equation (1.11)), the effects of errors in 121/ρ  will be very small due to the 
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large magnitude of 12ρ . Let’s now analyze position errors from  the terms 12
T

12e a  and 

12
T

12e γ . After differentiating equation (1.12) with respect to 12e  we obtain  
 

12 12 12( ) ( )TDGDδ δ δ= − +12e e a γ   (2.26) 
 

but 12δe can be expressed in terms of relative position errors as follows 
 

12 12
12 122

12 12

12

12

δδ δρ
ρ ρ

δ
ρ

= −X Xe

X"
  (2.27) 

 
this is assuming 12δρ  to be much smaller than δ 12X . Then, further assuming 12 12γ ≈ γ , 

12a = 12a , 12x = 12X  and substituting into equation (2.26) we arrive at the following 
simplified error equation  
 

12 12
12 12

12

( ) aDGD x xγδ δ δ
ρ
+"   (2.28) 

 
 For a meter of relative position error and assuming  12a = 0.01 2m/s  and 12γ = 0.01 2m/s  
we would obtain an acceleration error of  0.01 mgal. This value is consistent with 
previous analyses; see Jekeli (1998a).  
 
Finally for the last term in equation (1.12), the positional error is the registration error in 
computing the part representing the reference field of DGD. The gravitational gradient 
was estimated at orbit altitude using the EGM96 geopotential model. The estimated value 
for the radial component was 0.26 mgal/m, which means that for 10-cm radial orbit error 
the registration error would be about 0.03 mgal. Nevertheless, as considering for potential 
differences, if the orbits of both satellites are highly correlated, we could even use the 
gradient of the gravity difference. Using the EGM96 geopotential model, we estimated 
this gradient at 400 km altitude. The estimated values were about 0.0005 mgal/m in the 
along track direction and about 0.00001 mgal/m in the radial direction. With these 
gradient values a 10 m orbit error will cause about 0.01 mgal error. 
 
2.2.2 Effect of Velocity Errors 
Velocity quantities are only present in the centrifugal term of equation (1.14), and they 
are located in the plane perpendicular to the line-of-sight direction. After taking 
differentials of this equation, we obtain the following error equation 
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10.01 0.1 
1 10 6 
1 10 5 
1 10 4 
1 10 3 

0.01 

0.1 

1 

10 

( )o o
12 12 12 12 12 12

12 12

2 1y z xδΦ δ Φ δρ
ρ ρ
! !!≈ + −   (2.29) 

 
In this expression we have errors in the centrifugal term expressed as of range and 
velocity errors. This equation was evaluated considering a Keplerian orbit and assuming 
an inter-satellite separation of 200 km at 400 km altitude; velocity differences are then 
used in the potential difference error analysis. Figure 2.1 shows the relationships. 
 
 
 
 
 

 
 
           m   12δρ  
          m/s  12xδ !  

  
 
 
 
 

             ,  mgalsδΦ  
Figure 2.1: Error of the centrifugal acceleration term in terms of range errors and velocity 
errors orthogonal to the LOS.  
 
We can see from the above figure that in order to obtain a 0.01 mgal error, the velocity 
difference errors need to be smaller that 41 10 m/s−⋅ ; whereas, range errors, 0.1 m will  
yield that acceleration error.  
 
 
2.2.3 Effect of Acceleration Errors 
The error equation is, from equation (1.12) 
 

12 12

12

( )DGD a a
a

δ δ δ
δ

≈
≈

12e
                                  (2.30) 

 
We can see from this equation that acceleration errors coming from the accelerometer 
measurements will be relatively small since the total accelerometer errors will be about  

51 10−⋅  mgal and we can expect that the errors in computing its components along the 
LOS, as is required in equation (1.12), to be at most of the same order of the 
accelerometer error. 
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Table (2.1) summarizes position, velocity and acceleration error requirements to obtain 
potential differences and gravity disturbance differences with 0.01 2 2m /s  and 0.01 mgal 
accuracy, respectively. 
 
 
 

Error Requirements 
Position 

m 
Velocity 

m/s 
Acceleration 

mgal 

Observable 
Error 

Abs Rel Abs Rel Abs Rel 
DT (0.01 2 2m /s ) 0.1 0.01 410−  510−  0.001 510−  
DGD (0.01 mgal) 10 0.1 ----- 510−  0.01 ---- 

 
Table 2.1: Error requirements on position, velocity and acceleration to obtain potential 
and gravity disturbance differences with an accuracy of 0.01 2 2m /s  and 00.1 mgal 
respectively. 
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CHAPTER 3 

 
 
 

DISTURBING POTENTIAL DETERMINATION 
 
 
The purpose of this chapter, is to derive some relationships between the in-situ GRACE 
observables DT and DGD, as obtained from equations (1.12) and (1.20), and the 
disturbing potential and gravity anomalies values at the Earth’s surface, considered here 
to be a sphere with mean terrestrial radius. The sought-after relationships can be 
established by using integrals like those of Poisson and Stokes as seen below. 
  
3.1 From Potential Differences 
 
3.1.1 Using Poisson�s Integral 
Dirichlet’s problem is one of the main boundary value problems of physical geodesy. 
This problem consists of determining a harmonic function in space given its values on a 
boundary surface. In spherical approximation Poisson’s integral yields the solution for the 
space exterior to the sphere. According to this integral, if we have a potential function V 
given over a sphere of radius R, then the potential value in space for a point with 
spherical coordinates ( , , )r φ λ  is given by  (Heiskanen and Moritz, 1967) 

 
22 2

3
' 0 ' 0

( ) ( , ', ')( , , ) cos ' ' '
4 ( , , )P

R r R V RV r d d
r R

π π

λ φ

φ λφ λ φ λ φ
π ρ ψ= =

−= ∫ ∫                   (3.1) 

    
With: 
 

2 2 2( , , ) 2 cos( )
cos( ) cos( )cos( ') cos( ') sin( )sin( ')

r R r R rRρ ψ ψ
ψ φ φ λ λ φ φ

= + −
= − +

                     (3.2) 

       
Where: 

PV  Potential value at point p at radius r  
R Radius of a spherical earth 

,φ λ  Latitude and longitude 
ρ  Geometric distance between the point P and the integration point 
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ψ  Angle between the point P and the integration point at the Earth’s center. 
 
 
Equation (3.1) can also be written as 
 

( , )P PQ QV K r V d
σ

ψ σ= ∫∫   (3.3) 

 
where ( ), PQK r ψ represents the Poisson kernel and dσ is a surface element. They are 
given by 
 

2 2

3

( )( , ) , cos
4 ( , , )PQ Q

PQ

R r RK r d d d
r R

ψ σ φ λ φ
πρ ψ

−= =   (3.4) 

 
Poisson’s integral is defined for harmonic functions. Therefore, it can be used for the 
disturbing potential T, which is a harmonic function. Then, from equation (3.3) we can 
write 
 

( , )p PQ QT K r T d
σ

ψ σ= ∫∫   (3.5) 

 
This integral gives a simple relationship between the disturbing potential at the Earth’s 
surface (approximated by a sphere) and its value at a point in space, given that r R≥ . 
 
3.1.2 Computation of the Disturbing Potential 
The potential measurements obtained from GRACE observables at orbit altitude are not T 
but DT. Therefore, we still need to establish the relationship between DT and T at the 
Earth’s surface as follows. At a given epoch, the potential difference related to the points 
of location of both satellites (assuming 1 2p pr r r= = ) is given by 
 

1, 2 2 2 2 1 1 1( , , ) ( , , )P P P P P p P PDT T r T rφ λ φ λ= −                                          (3.6) 
 
Applying equation (3.5) to (3.6) we obtain 
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1, 2 2, 1,

2, 1,

( , ) ( , )

( , ) ( , )

P P P Q Q P Q Q

P Q P Q Q

DT K r T d K r T d

K r K r T d

σ σ

σ

ψ σ ψ σ

ψ ψ σ

= −

 = − 

∫∫ ∫∫
∫∫                         (3.7) 

 
 
or 

 

1, 2 1, 2,P P P P Q QDT K T d
σ

σ= ∆∫∫   (3.8) 

  
Since the measurements are values of DT, the solution for T has to be obtained by integral 
inversion. In practice this presents some problems. Data are given in discrete form and 
often over a limited region introducing discretization and truncation errors. Moreover, 
due to the gravity field attenuation with altitude, the inversion process involved turns out 
to be ill-posed, which means that measurement and model errors will amplify in the 
inversion. Inversion methods for the matrix representation of this type of problems are 
treated in chapter 4. 
 
Similar to equation (3.5), equation (3.8) relates the differences DT located also in space 
with T at the Earth’s surface. It happens that we are trying to obtain the function itself 
from differences. Common sense tells us that this is not possible to do without some bias 
in the solution. One possible solution to this problem is to remove from the 
measurements components (i.e. a reference field), whose wavelengths are larger than the 
dimensions of the integration area σ . The removal of the reference field implies that it 
would not be present in the estimates of T. That is, they contain only the frequencies 
present in the residual field.  
 
3.2 From Gravity Disturbance Differences 
As seen in previous chapters, another in-situ measurement that can be obtained from 
GRACE is the difference of gravity disturbances DGD. By taking the gradient Poisson’s 
integral, this observable is related to the disturbing potential at the Earth’s surface in a 
similar way as is DT (see equation (3.8)). Furthermore, following a similar procedure 
with Stokes’ integral, gravity anomalies at the Earth’s surface can also be related to DGD. 
These relationships will be demonstrated in this section.  
 
3.2.1 Using Poisson�s Integral 
The components , ,r φ λδ δ δ  of the gravity disturbance vector δg  along the coordinates 
lines of a spherical coordinate system , ,r φ λ  can be expressed in terms of the disturbing 



 25 

potential. The derivation is similar as the one made in Heiskanen and Moritz (1967) 
between gravity anomalies and the disturbing potential. The components of the gravity 
disturbance vector are the partial derivative of the disturbing potential, which in spherical 
coordinates are 
 

1 1, ,
cosr

T T T
r r rφ λδ δ δ

φ φ λ
∂ ∂ ∂= = =
∂ ∂ ∂

  (3.9) 

 
Here we will only concentrate on the components  and φ λδ δ  since, the direction of the 
component rδ  is almost perpendicular the line of sight between both GRACE satellites. 
Substituting equation (3.5) into equation (3.9), we can compute at a point P in space the 
components  and φ λδ δ from disturbing potential values at the Earth’s surface:  
 

,

,

( , )1

( , )1
cos

PQ
P Q

PQ
P Q

P

K r
T d

r

K r
T d

r

φ

σ

λ

σ

ψ
δ σ

φ

ψ
δ σ

φ λ

∂
=

∂

∂
=

∂

∫∫
∫∫

  (3.10) 

 
The partial derivatives in equation (3.10) are given by 
 

( , ) ( , ) ( , ) ( , ),K r K r K r K rψ ψ ψ ψ ψ ψ
φ ψ φ λ ψ λ

∂ ∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂ ∂

                       (3.11) 

 
Then, using equations (3.2) and (3.13) 
 

cos , cos sinψ ψα φ α
φ λ
∂ ∂=− =−
∂ ∂

  (3.12) 

 
where α is the azimuth and is given by 
 

( )
cos 'sin( ' )tan

cos sin ' sin cos 'cos '
φ λ λα

φ φ φ φ λ λ
−=

− −
                         (3.13) 

 
Using equations (3.12) and (3.13) with ' , 'Q Qφ φ λ λ= =  equation (3.10) becomes 
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,

,

( , )1 cos

( , )1 sin

PQ
P Q PQ

PQ
P Q PQ

K r
T d

r

K r
T d

r

φ

σ

λ

σ

ψ
δ α σ

ψ

ψ
δ α σ

ψ

∂
= −

∂

∂
= −

∂

∫∫
∫∫

      (3.14) 

 
where the partial derivative is given by 
 

2 2 2

5

( , ) 3 ( )sin
4

PQ PQ

PQ

K r rR r Rψ ψ
ψ πρ

∂ −
=

∂
                          (3.15) 

 
Substituting this into (3.14) we obtain the integrals that relate the gravity disturbance 
components  and φ λδ δ  to the disturbing potential at the Earth’s surface (ibid).  
 

2 2 2

, 5

2 2 2

, 5

sin3 ( ) cos
4

sin3 ( ) sin
4

PQ
P Q PQ

PQ

PQ
P Q PQ

PQ

R r R T d

R r R T d

φ

σ

λ

σ

ψ
δ α σ

π ρ

ψ
δ α σ

π ρ

−=

−=

∫∫
∫∫

  (3.16) 

 
In chapter 1 we derived an expression for DGD, which is the difference of components 

εδ  along the LOS direction with azimuth 'α . This component can be obtained from the 
components φδ  and λδ and, therefore, in terms of T as follows: 
 

, , ,cos ' sin ' ( , , )P P P PQ PQ QH r T dε φ λ

σ

δ δ α δ α ψ α σ= + =∫∫                         (3.17) 

with  
 

2 2 2

5

2 2 2

5

sin( )( , ) cos cos ' sin sin '
4

sin( ) cos( ')
4

PQ
PQ PQ PQ PQ

PQ

PQ
PQ

PQ

R r RH

R r R

ψ
ψ α α α α α

π ρ
ψ

α α
π ρ

−  = +  

−= −
               (3.18) 

 
 
Equation (3.17) is a general expression for any component of the gravity disturbance 
vector perpendicular to the radial direction. 
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3.2.2 Computation of the Disturbing Potential  
Similarly to potential differences, we only are able to obtain differences of the gravity 
disturbance as shown by equation (1.12). To relate them to the disturbing potential at the 
Earth’s surface, we proceed as with the potential differences in the previous section. 
Then, similarly to DT with equation (3.6) (also assuming that 1 2p pr r r= = )  , DGD can be 
given by 
 

1 2 , 2 2 2 2 , 1 1 1 1( , , ) ( , , )P P P P P P p P P PDGD r rε εδ φ λ δ φ λ= −                      (3.19) 
 
This equation, together with equation (3.17) yields 

 

1 2 2, 2 1, 1

2, 2 1, 1

( , , ) ( , , )

( , , ) ( , , )

P P P Q P Q Q P Q P Q Q

P Q P Q P Q P Q Q

DGD H r T d H r T d

H r H r T d

σ σ

σ

ψ α σ ψ α σ

ψ α ψ α σ

= −

 = − 

∫∫ ∫∫
∫∫

                     (3.20) 

 
Then, similar to equation (3.8) 
 

1 2 1 2P P QP P QDGD H T d
σ

σ= ∆∫∫   (3.21) 

 
The disturbing potential is obtained from the gravity disturbance differences also by 
inversion. This time, the differences correspond to a different function. 
 
3.2.3 Using Stokes� Integral 
It is well known that Stokes’ integral relates the disturbing potential to gravity anomalies. 
According to Heiskanen and Moritz (1967). 
 

( , , ) ( , )
4p
RT T r S r gd

σ

φ λ ψ σ
π

= = ∆∫∫   (3.22) 

 
where ( , )S r ψ   is the so-called Stokes' kernel. 
Following the same procedure as in the previous section, one can arrive at expressions for 

φδ  and λδ , but this time in terms of gravity anomalies 
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( , ) cos
4

( , ) sin
4

R S rg d

R S rg d

φ

σ

λ

σ

ψδ α σ
πγ ψ

ψδ α σ
πγ ψ

∂= ∆
∂

∂= ∆
∂

∫∫
∫∫

                                                       (3.23) 

 
where the derivative with respect to ψ  is given by (ibid) 
 

2 2 2 2

3 2 2 2

2 6 8 3 cos cossin ln
sin 2

S R r R R R r R r R
r r r r

ψ ρ ψ ρψ
ψ ρ ρ ρ ψ

  ∂ − − − += − − + + +  ∂   
     (3.24) 

 
Similar to equations (3.19) and (3.21) we arrive at an expression for the difference of 
gravity disturbances in terms of gravity anomalies. Thus, by integral inversion gravity 
anomalies can also be obtained from DGD. However, in order to obtain disturbing 
potential or geoid undulations we still need to evaluate Stokes’ integral. We will not 
analyze the solution for gravity anomalies. Nevertheless, this approach could be used for 
calibration purposes in areas of good dense gravity anomalies measurements.  
 
3.3 Evaluation of Integrals for Spherical Cap 
For regional gravity mapping in geodesy, when evaluating integrals theoretically over the 
sphere, but practically restricted by measurements given only over a limited area the 
results will contain truncation errors. These errors will also be present in the solutions to 
the integral inversions. One common technique used to reduce this type of error is to 
subtract a reference field from the measurements. This reference field contains those 
frequencies of the signal with wavelengths longer than the dimension of the area 
ofintegration. This idea is based in the conventional Molodensky truncation theory in its 
modified form (see, for instance, Jekeli, 1981). According to this method we have, for 
instance, for Poisson’s integral 
 

max

2

( )( ')

c

n

p n

n

T K T T d t
σ

ψ σ
=

= − +∑∫∫                (3.25) 

 
 
where nmax is the maximum degree of the reference field given in terms of a spherical 
harmonic series 
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By subtracting a low-degree reference field, the observed residual quantities are 
considered to be produced by the high frequency part of the gravitational field. Therefore, 
the measurements over a selected geographical region would be sufficient to estimate the 
residual disturbing potential within this region with satisfactory accuracy. This could also 
be helped by the attenuation of the integral’s kernel with increasing distance. 



 30 

 
 
 
 
 

CHAPTER 4 
 
 
 

THE DOWNWARD CONTINUATION (INVERSION) PROCESS 
 
 

In previous chapters, we have established the relationship, through integration, of some 
GRACE observable like disturbing potential and gravity disturbance differences with the 
disturbing potential and gravity anomalies at the Earth’s surface. In order to solve for 
either one of the last two quantities, an inversion of the corresponding integral is required 
according to equations like (3.8) and (3.21). Geodesists have used different techniques to 
evaluate integrals for data given over the sphere. The most popular methods, which will 
be treated in the following sections, are direct numerical integration, 2-D FFT and 1-D 
FFT combined with numerical integration. Each one of these methods will have a 
different inversion process associated with it. 
 
The type of integrals that we need to invert (see equations (3.8) and (3.21)) involves the 
downward continuation from satellite’s altitude to the Earth’s surface. As mentioned in 
the introductory chapter, the downward continuation is known to be an ill-posed problem.  
Which means that small measurement errors will be greatly amplified with the downward 
continuation process. However, this problem can be overcome up to certain level by the 
use of regularization techniques. They will also be reviewed here. 
 
4.1 Integral Evaluation Methods 
 
4.1.1 Direct Numerical Integration 
This method of integration is very precise. The data distribution is not required to be 
uniform. One problem is that, as the data increase in number, it quickly becomes 
computationally intensive. Let’s consider the following integral over the sphere 
 

P PQ Q Q

area

, cosQ Qg K f d d d dσ σ φ φ λ= =∫∫   (4.1) 

Where 
Pg  is the evaluated quantity at point P. 

Qf  is the integrated function at P. 

PQK  is the associated kernel function. 
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Qdσ  is an element of surface area. 
 
Integrals of this type are Poisson’s, Stokes’, and of course the ones in equations (3.8) and 
(3.21). We define by A the matrix representing the discretization of the integral in 
equation (4.1). Assuming a grid of evaluation and integration points with corresponding 
function values represented by vectors andg f respectively, we write symbolically 
 
g = Af   (4.2) 
 
If, for instance, we have a regular grid with constant intervals ,φ λ∆ ∆  for the solution and 
measurement points, going from west to east and from south to north, an element of A 
will be given by 
 

, , ( , , , ) cosi j i j i i j j jK φ λ φ λ φ φ λ= ∆ ∆A   (4.3) 
with 
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 − −   = + ∆ = + − − ∆       
 − −   = + ∆ = + − − ∆       

= =

                 (4.4) 

 
being 1 1,φ λ  the initial coordinates of the uniform grid, m the number of points along 
parallels and n the number of points along meridians. 
 
4.1.2 Integral Evaluation with 2-D FFT 
With the aid of FFT, the convolution theorem allows some integral to be evaluated in a 
much more efficient way than with direct numerical integration. By definition, a 
convolution between two functions k(t) and f(t) is given by 
 

( ) ( * )( ) ( ') ( ') 'g t k f t k t t f t dt
∞

−∞

= = −∫   (4.5) 

 
This integral can be easily evaluated by using the convolution theorem (see Brigham, 
1988): The spectrum (Fourier) transform) of the convolution equals the product of the 
spectra (Fourier transforms) of the convolved functions. That is, from 
 
ˆ ˆF( ( )) F(( * )( ))g t k f t=   (4.6) 

 
we have, using their spectral representation in the frequency domain, whose variable is ω  
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( ) ( ) ( )G K Fω ω ω=   (4.7) 
 

with F̂  representing the Fourier Transform operator, G, K, F being the Fourier 
representation of the functions g(t), k(t), f(t), respectively and ω  is the variable in the 
frequency domain. Applying the inverse Fourier Transform to equation (4.7), we obtain. 
 

-1ˆ( ) F ( ( ) ( ))g t K Fω ω=   (4.8) 
 

There are cases for which g(t) and k(t) are known and the solution for f(t) is needed. 
Applying a deconvolution can do this. From equation (4.7) we have 
 

( ) ( )-1 -1ˆ ˆ( ) F ( ) / ( ) F ( ) ( )f t G K G Hω ω ω ω= =   (4.9) 
 

with ( ) 1/ ( )H Kω ω= . The same concept can be extended for the two-dimensional 
situation where we can write, similar to equation (4.7), the 2-D version of the convolution 
integral given by 
 

' ' ' ' ' '
1 2 1 2 1 1 2 2 1 2 1 2( , ) ( * )( , ) ( , ) ( , )g t t k f t t k t t t t f t t dt dt

∞ ∞

−∞ −∞

= = − −∫ ∫          (4.10) 

 
and in spectral representation 
 

1 2 1 2 1 2( , ) ( , ) ( , )G K Fω ω ω ω ω ω=   (4.11) 
 

where 1 2,ω ω  are the two variables in the 2-D frequency domain. Similar to equation 
(4.8), the corresponding 2-D deconvolution will be 
 

( ) ( )-1 -1
1 2 1 2 1 2 1 2 1 2

ˆ ˆ( , ) F ( , ) / ( , ) F ( , ) ( , )f t t G K G Hω ω ω ω ω ω ω ω= =                 (4.12) 
 
We will discuss more about deconvolutions later. 
 
 It is clear that convolution integrals require the kernel function to be expressed in terms 
of coordinate differences. It happens that kernel functions of integrals used in geodesy 
like Poisson’s and Stokes’, which can be written as functions of latitude and longitude, 
are expressed in terms of differences with respect to longitude but not with respect to 
latitude. To achieve the required form requires that we approximate the kernels, which 
introduces errors due to the meridian convergence that grow with the extension of the 
area of integration. For our study, from equations (3.2) and (3.13) the functions that need 
to be approximated are: ( )cos ψ  and ( )tan α  which can be written as  
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( )

cos( ) cos( ) cos( ' ) cos( ' ) sin( )sin( ' )

cos( ' ) sin( ' )tan
cos sin( ' ) sin cos( ' ) cos '

ψ φ φ φ φ λ λ φ φ φ φ

φ φ φ λ λα
φ φ φ φ φ φ φ φ λ λ

= − + − + − +

− + −=
− + − − + −

               (4.13) 

 
We need to fix the second value of φ  in ( ' )φ φ φ− +  to a certain value, say 0φ  in (4.13) so 
the functions are expressed as functions of coordinate differences. Letting 
 

' , 'φ φ φ λ λ λ∆ = − ∆ = −   (4.14) 
 

we can write 
 

( )

0 0 0 0

0

0 0

cos( ) cos( )cos( )cos( ) sin( )sin( )

cos( )sin( )tan
cos sin( ) sin cos( ) cos

ψ φ φ φ λ φ φ φ

φ φα
φ φ φ φ φ φ λ

+ ∆ ∆ + + ∆

+ ∆ ∆
+ ∆ − + ∆ ∆

"

"

               (4.15) 

 
This formula will give exact results only when 0φ φ= . The meridian convergence errors 
will increase as the distance between the computation point and the parallel with latitude 

0φ  increases. A good choice for 0φ  is the mean latitude of the area. Now we can write 
integrals, like equations (3.1) and (3.17), in the fashion of a 2-D convolution with respect 
to latitude and longitude. Let’s assume that functions of latitude and longitude g, k, and f 
are related as follows 
 

( , ) ( , ) ( ', ') cos( ')g k f d d
σ

φ λ φ λ φ λ φ φ λ= ∆ ∆∫∫                               (4.16) 

 
which can be considered a 2-D convolution with respect to the coordinates φ  and λ . 
Using the convolution operator * we can write 
  

*( cos( ))g k f φ=   (4.17) 
 

Then, according to the convolution theorem their spectra are related by 
 

1 2 1 2 1 2( , ) ( , ) ( , )G K Fω ω ω ω ω ω=   (4.18) 
With F̂( cos( ))F f φ= . 
 
In order to evaluate integrals that involve differences, like the ones in equation (3.8) and 
(3.21), using the convolution theorem, the following assumptions have to be made: The 
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differences are to be given along meridians and with a constant angular distance between 
both satellites. Then using the space shifting property of Fourier Transforms (see 
Brigham, 1988) 
 

1 1,0 2 2,02
1 1,0 2 2,0 1 2( , ) ( , ) i t tf t t t t F e π ω ωω ω  − + − − ⇔                      (4.19) 

 
According to the assumptions just mentioned above, and considering potential and 
gravity disturbance differences as obtained from GRACE (see chapter 2), the grid formed 
by points of the leading satellite’s positions will be the same as those of the trailing 
satellite’s points but displaced by the angular distance separation to be designed as φ∆  
and considered to be constant. Defining the observed quantity by g∆ , and by g the related 
absolute values located at the trailing satellite’s position, their spectra, ,G G∆ , according 
to equation (4.19), are related as follows 
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      (4.20) 

 
We can see from this last equation that the zero frequencies along meridians have zero 
values for g∆  and we are not able to solve for the corresponding frequencies of g. 
However, the introduction of some reference field, as is customary in geodesy, may 
alleviate the situation. 
   
4.1.3     Integral Evaluation with 1-D FFT 
Numerical integration it is known to be computationally intensive for large numbers of 
points. On the other hand evaluation of spherical convolutions with 2-D FT has the 
problem of meridian convergence, which makes the corresponding spatial interval along 
parallels change with different latitude. Another way to evaluate integrals over the sphere 
using spherical approximation, with more efficiency than direct numerical integration and 
avoiding the meridian convergence error is by using 1-D Fourier transform combined 
with numerical integration (see Haagmans, et. at, 1993). Still, the sampling interval has to 
be uniform along parallels. Assume that functions g and f are given on a grid of m points 
from west to east and n points along the meridians from south to north and let k be the 
kernel relating both as in equation (4.1). Values of g for points along a parallel of latitude 

Pφ  are given by 
 

( ) ( )
1

1
1 1 1

ˆ ˆ ˆ( ) F F ( ) F ( ) cos
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P Q
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P PQ Q Qg k f
φ

φ φ
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=

 
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∑                (4.21) 

Where 
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1F̂   Represents the1-D Fourier transform. 
( )

P Pgφ λ  Is the 1xm vector of g along the parallel of point P with latitude Pφ . 

Q
fφ   Is the 1xm vector of f along the parallel of point Q with latitude Qφ . 

( )
Q PQkφ λ∆  Is 1xm vector of k along the parallel of point Q with latitude Pφ . 

That is, equation (4.21) will yield the evaluation of the integral in equation (4.1), after the 
appropriate discretization, for all points with latitude Pφ . 
 
4.1.4 Cyclic Convolution Errors 
Convolutions as shown by equations (4.5) and (4.10) are defined over the whole plane or 
line. In reality, only a finite amount of discrete data is usually available. This fact 
introduces discretization, truncation and edge effect errors. Furthermore, for 
computational efficiency one wants to employ discrete Fourier Transform, which implies 
an assumption of periodicity in the data and the kernel to be used. This produces the so-
called cyclic convolution error. Discretization errors can only be reduced by reducing the 
sampling interval. Truncation errors are reduced with more area coverage or by applying 
kernel modification. Edge effect errors are avoided by discarding the solution near the 
edges. One way to eliminate the convolution error is to append zeros to the data and to 
extend the kernel periodically over double the area. 
 
4.2 The Inversion Process (Inversion Methods) 
Earlier in this chapter, it was mentioned that each method of integral evaluation is related 
to a different inversion process. In this section we discuss about these inversion methods. 
We want to mention that all these methods will still be affected by the ill-posedness of 
downward continuation. We will focus on that matter in the next section. 
 
4.2.1 Space Domain Inversion 
We call space domain inversion to the inversion associated to direct numerical 
integration. Considering measurement errors we can rewrite equation (4.2) as follows 
 

1 11 nxm mx nxnx
=g A f + e   (4.22) 

 
 where n is the number of measurements and m is the number of unknowns, with n m≥ . 
Following the least squares principle, the value of the vector f is given by  

( )-1T Tf = A A A g#   (4.23) 
 

Direct numerical integration is known to be computationally intensive for large amounts 
of data. Besides that, the inversion process is very demanding on computer memory since 
A becomes a very large matrix. Still, this inversion is very accurate relative to the other 
two methods to be explained here. 
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4.2.2 Using 2-D FFT Convolution  
In principle the inversion (deconvolution) using the 2-D deconvolution equation (4.12) is 
very simple as seen from that equation. Every spectral element of f is obtained by the 
simple ratio of the corresponding spectral elements of g and k. However, there is a 
problem about that. When we evaluate a convolution we employ padding techniques in 
order to remove cyclic-convolution errors. This will produce non-sensical data over the 
padding area. It happens that for the deconvolution case we do not have access to these 
unrealistic data. This lack of data will introduce errors in the solution. Here, we call those 
errors deconvolution errors. One way to get around this problem is to perform the 
deconvolution using some iteration method like the Projected Landweber method. These 
methods will be treated in the following section. 
 
4.2.3 2-D Inversion with 1-D FFT 
With respect to computational speed for a scalar computer, numerical integration using 1-
D FFT is in the middle between direct numerical integration and the 2-D FFT method. 
While it is able to give exactly the same results in accuracy, it is faster than direct 
numerical integration. For inversion there seems to be a similar situation as we will see 
later. Apparently, nobody has tried so far to do 2-D inversion using 1-D FFT. We have 
found a way to do it that also allows to process more data than with space domain 
inversion. However, as in the 2-D FFT case there still remains the problem about the lack 
of knowledge of the unrealistic data produced in the implicit 1-D deconvolution, thus 
generating 1-D deconvolution errors. This problem could be expected to be less severe 
since it is only present along parallels. For this case, we start with equation (4.21) which, 
when solving for all parallels, can be expressed as 

 
Y AX=   (4.24) 
 
where from equation (4.21)  
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Considering the data to be over n parallels and m meridians 
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 Y will contain all the vectors of the spectral of the potential for every parallel at radius r, 
while X will have the same but at radius R. Thus they will be vectors containing nm 
elements. The size of every matrix D will be m by m and matrix A has size nm by nm. 
This matrix will be very large for larger numbers of measurements, thus, making it more 
difficult to solve for X. For instance, with a grid of 100x100 measurements the size of A 
would be 10000x10000. Furthermore, the elements of A are complex numbers since they 
are Fourier spectrum components. Still, since matrices D are diagonal matrices, matrix A 
will be a sparse banded matrix with 2mn  non-zero elements. Alternatively, can try to 
solve for the same component (i) of every spectral vector of the potential along the 
corresponding parallels. That is, 
 

i i iY A X=   (4.27) 
 
where 
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           (4.28) 

 
and ,

i
j kD  is a single element and matrix iA  is of size n by n. In this way we can solve for 

iX  which contains the spectral (i) component for every potential vector along the 
corresponding parallel at the earth surface. 
 
Another way to look at this system of equations is the following. Let X and Y contain all 
the iX ’s and iY ’s as follows 
 

( )
( )

1 2 3

1 2 3

, , , ,

, , , ,
m

m

X vec X X X X

Y vec Y Y Y Y

=

=

…

…
  (4.29) 

 
Then we have the system like equation (4.24) with A (with the same size) being a block 
diagonal matrix formed by matrices iA . 
 
4.2.4 Deconvolution Errors 
The inverse operation of convolution integrals, like equations (4.5) and (4.10), is also 
called a deconvolution. This process can also be seen as a convolution on its own; with 

-1F̂ ( )h H=  we can write, using the convolution theorem 
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( ) ( )* ( )f t h t g t=   (4.30) 

 
Thus, knowing g(t) and the deconvolution kernel h(t) we could easily solve for f(t) by 
using equation (4.6). As mentioned before, we have to take care of the cyclic convolution 
error if we want to have more accurate results and that can be done by using the 
appropriate padding strategy. However, there is a problem if we only know the analytic 
expression for the convolution kernel k(t) in the space domain. We can only obtain a 
discrete representation of h(t) for the area where data are given. Apparently, since we do 
not have access to its analytic expression we cannot use any padding technique to avoid 
the cyclic convolution errors. One common way to avoid this problem is to use some 
iterative methods like the Projected Landweber method for which we do not need to 
know the fictitious data implied by the convolution process. Furthermore, for the 1-D 
FFT case , if we are able to use data along the entire parallels we do not have to worry 
about cyclic-deconvolution errors. Extension of data along parallels will not increase the 
size of matrices iA  to be inverted, see equation (4.27), only the number of them. As a 
bonus, there will be no edge effect along parallels. 
 
4.3 Regularization Methods 
The downward continuation of quantities related to the terrestrial gravity field from the 
satellite’s altitude is known to be a highly unstable process, even for the low-low SST 
concept.  However, there are several techniques that can be employed to overcome or 
reduce the effect of the instability present on the solution of an ill-posed problem. Some 
of the most common methods used to stabilize an ill-conditioned process are: Tikhonov 
regularization method, truncated and damped singular value decomposition and least 
square collocation. Some iteration methods like Landweber and conjugate gradient 
method can also be used for systems involving large matrices. Except for the Landweber 
method, geodesists have pretty much treated these methods; see, for instance, Bouman 
(1998), Ilk (1993), Schwarz and Gerstl (1979), among others. A brief description of these 
methods is given below. 
 
The basic idea of regularization consists of considering a family of approximate solutions 
depending on a positive parameter called a regularization parameter. The main property is 
that, in the case of noise-free data, the functions of the family converge to the exact 
solution of the problem when the regularization parameter tends to zero. In the case of 
noisy data one can obtain an optimal approximation of the exact solution for a non-zero 
value of the regularization parameter. 
 
A mathematical problem is said to be well-posed if it satisfied the following conditions 
(Bertero, 1998; Hofmann, 1996; Schwarz and Gerstl 1979): 

• The solution to the problem is unique. 
• The solution exists for any data. 
• The solution depends with continuity on the data. 
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If one of the three conditions above is not satisfied the problem is said to be ill-posed. 
 
 
 
4.3.1 Tikhonov Regularization Method 
Tikhonov regularization is the most important method for regularization of discretized 
noisy data problems present in geodesy and many other sciences. Suppose we have an ill-
posed integral equation 
 

( , ) ( ) ( )
b

a

K x y f y dy g x a x b= ≤ ≤∫   (4.31) 

 
The kernel K(x,y) is continuous and integrable. First,  the system is made properly posed 
by defining the class of functions og  that will solve equation (4.31). If we have an 
element of that class of functions, the corresponding  ( )of x  can be obtained within a 
certain approximation, see (Schwarz 1977; Hofmann, 1996) 
 

of f δ− ≤   (4.32) 
 
where f  means the 2L  norm, 
 

1/ 2

2 ( )
b

a

f f x dx
  =  
  ∫   (4.33) 

 
Tikhonov now makes the assumption that ( )of y  satisfies the inequality 
 

( )( )on fΩ < ∞   (4.34) 
 
where ( )( )n fΩ  is a functional of the form 
 

1 2

0

( )( )( ) ( )
nb i

i i
a i

d f xn f a x dx
dx

+

=

 
Ω =  

 ∑∫   (4.35) 

 
( )ia x  being a positive and continuous function. The class of functions obtained will 

depend on the selection of  ( )( )n fΩ . The condition ( )( )on f pΩ <  , where p is a constant, 
determines a compact set of solutions. 
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Then, a general method is determined for arriving at a regularizing operator Bα  which, 
for any kind of function, ( )f x , will produce the solution belonging to the prescribed 
class. Toward that end, Tikhonov uses the minimum condition (ibid) 

 
2 ( )( ) minAf g n fα− + Ω →   (4.36) 

 
where 
 

( , ) ( )
b

a

Af K x y f y dy= ∫   (4.37) 

 
and 0α >  is a regularization parameter to be chosen. 
Finally, Tikhonov shows that the solution obtained converge toward the solution of the 
problem. That is, the solution 
 
f B gα α=   (4.38) 

 
minimizing (4.36) will converge uniformly to ( )og y  as 0δ → . Let us consider the 
simple case 1n = − , and 0 ( ) 1a x =  where the minimum condition (4.36) reduces to 
 

2 2 minAf g fα− + →   (4.39) 
 
where α  is the positive Lagrange multiplier imposing a condition on the solution’s norm 
in order to produce a stable solution. The solution corresponding to the minimum 
condition is 

 

( ) 1* *f A A I A gα α
−

= +   (4.40) 
 
which depends continuously on f where *A  is the adjoint of A . For a compact operator A 
with singular value decomposition (see next section) by { },n n nv u σ  the regularized 
solution can be given by. 
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where gε  is g contaminated by errors, and 
2
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  (4.42) 
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where iδ  acts like a smoothing filter, which can also can be defined for less smoothing in 
the form 
 
 

i
i

i

σδ
σ α

=
+

  (4.43) 

 
 
4.3.2 Singular Value Decomposition SVD 
Let mxnA ∈ ' be a rectangular matrix with m n≥ . Then the SVD of A is expressed as 
 

1

n

T T
i i i

i

A U V u vσ
=

= ∑ =∑   (4.44) 

 
where ( )1 2, ,..., nU u u u=  and ( )1 2, ,..., nV v v v=  are matrices with orthogonal columns, 

such that T T
nU U V V I= = , and 1 2( , , ..., )ndiag σ σ σ∑ =  with 1 2, , ..., nσ σ σ  being non-

negative numbers called the singular values. They are arranged in decreasing order such 
that 1 2 ... 0nσ σ σ≥ ≥ ≥ ≥ . The vectors  and i iu v  are the left and right eigenvectors of A, 
respectively. For discrete ill-posed problems, A turns out to be ill-conditioned and will 
have the following characteristics: 

• The singular values iσ  will decay gradually to zero. 
• The condition number given by 1/ nσ σ  will be large. 
• The left and right eigenvectors vectors  and i iu v  tend to have more sign changes 

in their elements as the index increase or iσ  decreases. 
 

  
4.3.3 Truncated Singular Value Decomposition TSVD  
In this method all the small singular values of  A, are just ignored. The closest rank-k 
approximation kA  to A can be obtained by truncating the SVD expansion at k 
 

( )
1

k

T T
k i i ik

i

A A U V u v k nσ
=

= = ∑ = ≤∑   (4.45) 

 
This means that the singular values i i kσ >  are considered to be zero. In this way, the 
almost rank deficient matrix A is replaced by an exactly rank deficient one, given by 
equation (4.44) that has a well defined null space of dimension n – k spanned by the right 
eigenvectors vectors, 1 ...k nv v+  (Hansen, 1997).  Based on this truncated  SVD expansion 
the solution to the problem 
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min  subject to min kf A f g−   (4.46) 
 
will produce a regularized estimation for f given by 

1

k T
i

k i
ii

u gf v
σ

=

=∑   (4.47) 

 
or using the filter factors iδ   
  

1

1 for 1...
,

0 for 1...

n T
i

k i i i
ii

i ku gf v
i k n

δ δ
σ

=

== =  = +∑   (4.48) 

 
This equation is similar to equation (4.41) for which δ  is given by equation (4.42) or 
(4.43). 
 
4.3.4 Damped Singular Value Decomposition DSVD  
In the damped SVD, the cut off of the singular values is smoothly made by means of the 
filter factors iδ  this time defined as: 

i
i

i

σδ
σ λ

=
+

  (4.49) 

where λ  plays the role of regularization parameter. 
 
4.3.5 Least Squares Collocation 
Given a set of observations being linear functionals of the disturbing potential, least 
squares collocation (LSC) will yield the best approximation of any linear functional of the 
disturbing potential or the potential itself at any place above the Earth’s surface (see 
Moritz, 1980). Moreover, this method is also feasible for interpolation being called least 
square prediction or interpolation. The observation equation is written as 
 

= + +y Ax s n   (4.50) 
 

where y is the observation vector of m observations, A is a known rectangular matrix of 
size mxn, x is a vector of n systematic parameters, s represents the signal to be solved, 
and n is the measurement noise vector. Assuming no systematic parameters, the vector t 
of a linear functional with respect to s at some selected points is estimated by 
 

( )−= + 1
ts sst C C D y                                                  (4.51) 

 
where D is the covariance matrix of the vector n, tsC  is the covariance matrix between 
the functional to be solved for at the corresponding points and the signal at the 
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measurement points and ssC  is the covariance matrix of the signal at the measurement 
points. The covariance matrices are computed from the covariance function of the 
potential through covariance propagation. LSC has been found (Rummel et al., 1979) to 
be related to Tikhonov regularization. The error variance/covariance matrix is given by 
 

( )−= − + 1 T
tt tt ts ss tsE C C C D C   (4.52) 

 
We have that DT and DGD are not harmonic functions. Thus, theoretically it is not 
correct to use LSC to upward or downward continue them. Therefore, we are not 
considering this method for downward continuation. Nevertheless, we still can use it for 
interpolation and extrapolation purposes since the extrapolation distances are relatively 
small even in the vertical direction. Let’s determine their covariance matrices. The 
covariance matrix Ctt  for the disturbing potential in terms of spherical harmonic 
expansion is given by 
 

1360 2

0

( , , ) (cos )
n

B
tt P Q n n

P Qn

RC r r c P
r r

ψ ψ
+

=

 
=    ∑   (4.53) 

        
where 
ψ  is the angle between the points P and Q from the origin (earth’s center) 
r rP Q,  are radial distances from the origin to P and Q, respectively 
RB  is the radius of the Bjerhammar sphere 
cn  is the degree variance of the disturbing potential 
Pn  are the Legendre polynomials. 
 
The disturbing potential degree variance can be computed by; 
 

2

n

n nm

m n

c t
=−

=∑   (4.54) 

 
where tnm  are the coefficients of the disturbing potential spherical harmonic expansion. 
They can be expressed in terms of the corresponding harmonic coefficients of the real and 
normal gravitational potential, nmv  and normal

nmv . The disturbing potential is given by 
 

( , , ) ( , , ) ( , , )NT r V r V rφ λ φ λ φ λ= −   (4.55) 
        
with: 
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1max

2

( , , ) 1 ( , )
nN n

nm nm

n m n

GM RV r v Y
r r

φ λ θ λ
+

= =−

 
  = +    

 
∑∑               (4.56) 

and 
1max

2

( , , ) 1 ( , )
nN n

normal
N nm nm

n m n

GM RV r v Y
r r

φ λ θ λ
+

= =−

 
  = +    

 
∑∑    (4.57) 

 
                 

where GM is the gravitational constant times the Earth’s mass and nmY  is a fully 
normalized surface spherical harmonic function of degree n and order m. The harmonic 
expansion of T can then be given by 
 

max 1

2

( , , ) ( , )
N n n

nm nm

n m n

RT R t Y
r

φ λ θ λ
+

= =−

 =   ∑∑                        (4.58) 

        
The expression for the harmonic coefficients tnm  is now given by; 
 

( )normal
nm nm nm nm

GM GMt v v v
R R

δ= − =   (4.59) 

        
To derive the expression of the covariance function ( , )DTDT P QC X X  we express the 
covariances in terms of the expectation operator E{ }, (E{ } )xx µ= , for a random quantity 
x.  That is; 
 

{ } { }{ }
{ }

( ) ( ){ }
{ }

2 1 2 1

2 2 2 1 1 2 1 1

p QDT DT P P Q Q

P Q

P P Q Q

P Q P Q P Q P Q

C E DT E DT DT E DT

E DT DT

E T T T T

E T T T T T T T T

 = − −    
= ⋅

= − ⋅ −

= ⋅ − ⋅ − ⋅ + ⋅

                       (4.60) 

      
Then,  
 

2 2 2 2 2 1 2 !

1 2 1 2 1 1 1 1

( , , ) ( , , )

( , , ) ( , , )
P QDT DT TT P Q P Q TT P Q P Q

TT PQ P Q TT PQ P Q

C C r r C r r

C r r C r r

ψ ψ

ψ ψ

= − −

+
                       (4.61) 

and also 
2 2 1 1

( , , ) ( , , )
P QT DT TT PQ P Q TT PQ P QC C r r C r rψ ψ= −   (4.62) 
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Similarly, for DGD the covariance matrix is given by 
 

2 2 2 2 2 1 2 1

1 2 1 2 1 1 1 1

( , , ) ( , , )

( , , ) ( , , )
P QDGD DGD P Q p Q P Q P Q

PQ P Q PQ P Q

C C r r C r r

C r r C r r
ε ε ε ε

ε ε ε ε

δ δ δ δ

δ δ δ δ

ψ ψ

ψ ψ

= − −

+
                (4.63) 

 
where is given by equation (3.17). The derivation of the covariance C

ε εδ δ  is not as 
straightforward. Knowing that the gravity disturbance is a linear functional of T, its 
covariance can be expressed in terms of TTC  using variance propagation. From equation 
(3.17) we can write 
 

( )
2 2( , , ) ( , , ) cos ( , , ) sin

( , , ) ( , , ) sin cos

P Q P Q

P Q P Q

PQ P Q PQ P Q P Q PQ P Q

PQ P Q PQ P Q

C r r C r r C r r

C r r C r r

ε ε φ φ λ λ

φ λ λ φ

δ δ δ δ δ δ

δ δ δ δ

ψ ψ α ψ α

ψ ψ α α

= +

+ +
    (4.64) 

 
 where, using the derivative operator D and covariance propagation, we have for the 
variances of the meridian and east-west components the following equations 
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           (4.65) 

 
 
 
 
 
 
Where TTK C= . Now using cos PQz ψ=  we can write 
 

2

2

'

'

'' '

'' '

Q Q

Q Q

P Q P Q P Q

P Q P Q P Q
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  (4.66) 
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with 
 

1360 2

0
1360 2

0

' '(cos )

'' ''(cos )

n

B
z n n PQ
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n

B
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∑

  (4.67) 

 
The formulas for the derivatives of z with respect to φ  and λ  using equation (3.2) are 
given by 
 

2

cos sin sin cos cos( )

sin cos cos sin cos( )

cos cos sin sin cos( )

P

Q

P Q
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  (4.68) 

 
and 
 

2

cos cos sin( )

cos cos sin( )

cos cos cos( )

P

Q

P Q

P Q Q P

P Q Q P

P Q Q P

D z
D z

D z

λ

λ

λ λ

φ φ λ λ
φ φ λ λ

φ φ λ λ

= −

= − −

= −

  (4.69) 

 
Finally, the formula for ( , , )g g PQ P QC r r

ε εδ δ ψ  can be obtained by combining equations 
(4.64), (4.65), (4.66), (4.67), (4.68) and (4.69). 
 
4.3.6 Iteration Methods 
Iterative methods have the advantage that no matrix inversion is required, thus, allowing 
the solution of systems involving larger matrices. Another advantage of these methods is 
that additional constraints can be incorporated into the solution algorithm. Some iteration 
methods can be used to regularize the solution of linear ill-posed problems. The role of 
the regularization parameter is played by the number of iterations. For the case of noisy 
data, there is a semi-convergence; when the number of iterations increases, the solution 
first approaches the true solution and then diverges. For regularization purposes, the idea 
is to stop the iteration process before the solution becomes oscillatory due to 
magnification of data errors. 
 
 
4.3.6.1 The van Citterd Method 
The van Citterd method (Jansson, 1998; Lagendijk and Biemond, 1991) is an iterative 
process applied to the original equation (4.2). In this method, the iteration starts assuming 
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g to be the first approximation 0f  of f. The difference 0g Af−  is in some way related to 
the error in the estimate of f, 0f f− . This difference of g could be applied as a correction 
to the estimate of f. Thus producing a new estimate of f : 
 

1 0 0( )f f g Afτ= + −   (4.70) 
 
One may continue the process hoping to obtain a better estimate: 
 

1 ( )k k kf f g Afτ+ = + −   (4.71) 
 

where τ  is called the relaxation parameter. This method is known for its very slow rate of 
convergence so it can only be applied to certain systems having some particular 
properties. The convergence problems are more serious when the data are band limited 
and are affected by out-of-band noise. Then, some prefiltering is required to alleviate the 
problem. The importance of this method rests in the fact that is the base of other more 
useful iterative methods like the Landweber method, which is explained below. 
 
 
4.3.6.2     The Landweber Method 
The Landweber or successive approximations method is an example of the so-called 
gradient methods (Jansson, 1998; Lagendijk and Biemond, 1991). On these iteration 
methods at each step, the new approximation is obtained by modifying the old one in the 
direction of the gradient of the discrepancy functional. The Landweber method is applied 
to the equation 
  

* * ,  or A Af A g Af g= =   (4.72) 
 
It has a faster convergence rate than the van Citterd method (ibid), and the iteration is 
done in a similar way 
 

*
1 ( )k k kf f A g Afτ+ = + −   (4.73) 

 
where τ  is a relaxation parameter to be determined. 

 
 
4.3.6.3 The Projected Landweber Method 
In the projected Landweber method the simple Landweber method is modified in order to 
take into account a priori information about the solution. This feature can be used to solve 
some constrained least squares or deconvolution problems. Some of the constraints that 
can be applied are the following (Bertero et al., 1998): 

• Non-negativity: ( ) 0f t ≥ . 
• Causality: ( ) 0 for 0 if ( ) 0 for 0f t t g t t= < = < . 
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• Finite duration ( ) 0 for f t t T= > . 
 
The iteration scheme is as follows 
 

{ }*
1 ( )k c k kf P f A g Afτ+ = + −   (4.74) 

 
The relaxation parameter for this case has to satisfy the following condition 
 

20
A

τ< <   (4.75) 

 
For our situation, where we consider data over a limited area, we can only apply the last 
one of the above constraints. This method can be used, for instance, with the 1-D FFT 
method where the convolution Af is evaluated according to equation (4.21) and the 
operator cP  will consist of removing the effects of the padding technique used in the 1-D 
FFT convolution. 
 
4.3.5.4     Conjugate Gradient Method 
The conjugate gradient method is a direction method, which can be considered as a 
special orthogonal expansion, in the Gram-Schmidt sense, of the solution of the 
minimization problem (Hanke, 1995). This expansion is generated by making use of 
information of previous iteration steps. This method starts with the solution provided by 
methods like Landweber at step k, an approximation of which is a combination of the 
functions TA g , T TA AA g , 2( )T TA A A g , …, 1( )T k TA A A g− . Regardless of the choice of the 
relaxation parameter, the result of the kth iteration will always lie in a subspace spanned 
by these functions. This is the so-called Krylov subspace; see for instance (Bouman, 
1998; Bertero and Boccacci, 1998), ( ) ( , )k T TA A A gΚ , whose dimension is k if the above-
mentioned elements are linearly independent. The conjugate gradient method provides the 
function ( ) ( , )k T TA A A gΚ   which minimizes the discrepancy functional 
 

1( : ) ( , ) ( , )
2

T Tf g A Af f A g gη = −   (4.76) 

 
 where ( , ) is the inner product operator. This method is known for its rapid convergence 
and is based on the iterative construction of two bases kr  and kp : 

• 0 0r p g= =  

• 
2

,
k

k
k k

r
r Ap

α =  

• 1k k k kr r Apα+ = −  
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• 1,

,
k k

k
k k

r Ap
p Ap

β += −  

• 1 1k k k kp r pβ+ += +  
 
Then, the iterative scheme for the computation of the approximate solution is given by 
 

0 10, k k k kf f f pα+= = +   (4.77) 
 
 
4.3.6.5     Stopping Criterion 
For any iteration method, a criterion for stopping the iteration process has to be defined. 
At the end of each iteration we can compute the relative residual error by: 
 

k
k

Af g
k

g
ε

−
=   (4.78) 

 
where k is a parameter to be determined and is commonly assumed to be one. We could 
stop the iteration if this quantity is of the order of the experimental error. This is called 
the discrepancy criterion. 
 
4.3.7 Determination of Optimum Regularization Parameter 
One of the main problems of regularization is the choice of the regularization parameter. 
We know that a small regularization parameter will yield a good approximation to the 
least squares estimator, see equation (4.22), but we may have large effects of 
measurement errors since the instability has not been sufficiently reduced. On the other 
hand, a large regularization parameter reduces the effect of measurement errors on the 
solution but, increases the regularization or approximation errors; see, for instance 
Schwarz (1979), Bouman (1998) and Ilk (1993). There are some techniques that help to 
do the search for an optimal regularization parameter; among the most popular methods 
are the discrepancy principle method (Morozov, 1984) and the L-curve method (Hansen, 
1997). Methods for finding the optimum regularization parameter don’t always lead to the 
best solution even if convergence is achieved (Ilk, 1993). The convergence is more 
difficult to achieve as the process becomes more ill-conditioned. 

 
4.3.7.1 Discrepancy Principle 
This method is considered as an posteriori method to find the regularization parameter 
(Bouman, 1998). If we are given the noisy measurements gε  of g with errors ε : 
 
g Afε ε= +                                             (4.79) 
 
 
 We choose the regularization parameter α  such that 
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* *f A Af A gε ε ε
α αα + =   (4.80) 

 
and 

,Af gε ε
α σ σ ε− = =   (4.81) 

 
The regularization parameter is obtained by solving the following equation with 
Newton’s method 
 

2 2( ) 0Z Af gε ε
αα σ= − − =   (4.82) 

 
Using equation (4.81) we can obtain an expression for the norm on equation (4.83) as 
follows 

( )

2

*

2 2*

,

, ,

,

Af g g Af g Af

g Af g A g Af f

g f A g f

ε ε ε ε ε ε
α α α

ε ε ε ε ε ε
α α α

ε ε ε ε
α αα

− = − −

= − − −

= − −

                                             (4.83) 

 
we get for equation (4.82) 
 

2 2* 2( ) ,Z g f A g fε ε ε ε
α αα α σ= − − −   (4.84) 

which has a derivative with respect to α  that is given by 
2*'( ) , 2 ,df dfZ A g f f

d d

ε ε
ε ε εα α

α αα α
α α

= − − −                (4.85) 

 
From equation (4.80), we obtain 

( ) 1*df A A I f
d

ε
εα

αα
α

−
= − +   (4.86) 

 
with the iteration scheme given by 
 

1
( )
'( )

n
n n

n

Z
Z

αα α
α+ = −   (4.87) 

 
 
We start with some initial value for α and iterate until 
 

Af gε ε
α σ− =   (4.88) 
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4.3.7.2 The L-curve Method  
The L-curve method consists of plotting the norm Lf ε

α  of the regularized solution, 
where L is the differential operator (see Bouman, 1998 and Hansen, 1993), with respect to 
the residual norm (res), which is given by 
 
res Af gε ε

α= −   (4.89) 
 
 
The differential operator L is defined as  
 

n

n
dL
dx

=   (4.90) 

 
 
In the simple case of n = 0 , L is equal to the identity operator. For ill-posed problems, 
when plotted in log-log scale, the plot will have an L-shaped curve. Given the 
measurement gε , there will be an optimal α  that balances the effects of the measurement 
and the regularization error on the solution. A characteristic of the L-curve is that the 
optimal regularization parameter is not far from the regularization parameter that 
corresponds to the L-curve corner. That is, by locating the corner of the curve we can 
obtain a regularized solution with good balance between the two error types. 
 
 In order to verify this, we consider the true solution f. The associated error of a 
regularized solution is given by 
 

( ) ( )f f A g g A A gε ε
α α α

+ + +− = − + −              (4.91) 
 
with 
 

* 1 * * 1 *( ) , ( )A A A I A A A A Aα α+ − + −= + =   (4.92) 
 
 Equation (4.91) shows that the error f fε

α −  in the regularized solution consists of two 
components, namely, a perturbation error from the error ε  in the measurements and a 
regularization error due to the regularization of the error free component g.  When only a 
small regularization parameter is introduced, the error f fε

α −  is dominated by 
perturbation errors. On the other hand, with a large value of the regularization parameter 
the error f fε

α −  will be dominated by regularization errors. This method is also called 
the Miller method (Bertero, 1998). 
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The L-curve displays the trade-off between the regularized solution and residual norms. 
The vertical part of the curve corresponds to solutions where the effect of the ill-condition 
of the system due to data errors dominates. The horizontal part corresponds to solutions 
where regularization errors dominate. Thus, the best trade-off will be given by solutions 
located at the corner of the curve. This, allows us to compute a regularized solution with a 
good balance between the two error types. Figure (4.1) shows a typical shape of the L-
curve.  
 
 
 
 
 
                              log Lf ε

α  
 
 
 
                               log Af gε ε

α −  
 
 
 
 
 
Figure 4.1: The L-curve in log-log scale, according to Hansen, 1997. 
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CHAPTER 5 
 
 

NUMERICAL TESTS 
 
 
5.1 The ill-posedness of the problem 
We start our numerical analysis, by looking at the ill-posedness of the downward 
continuation process or the ill-condition of the matrices obtained after discretizing the 
integrals of equation (3.8) and (3.21). These integrals relate our observables, disturbing 
potential differences, DT, and differences of the gravity disturbance, DGD, given at 
satellite altitude, to the disturbing potential at zero altitude. A way to measure the ill-
condition of a system is by using the condition number of the matrix to be inverted. For 
the inversion methods employed in this study, the solutions are obtained by the inverting 
matrix ( )TN A A= . The 1L  condition number of a matrix N, with nxn size, is defined to 
be 1

1 1
( )condn N N N −= , where 

1
( )⋅  represents the 1L  norm operator. For a matrix, 

this operator is given by 
 

,1 1 1 1
max , 1, ,

ni i
j i

j
N N i m N N

=
= = = ∑                             (5.1) 

 
When the condition number is greater than 1/e (where e is the computer precision) then, 
the matrix is considered to be ill-conditioned and very small changes in the data will 
cause very large changes in the solution. For the following tests, the condition number 
was computed using a TUDU  or diagonal pivoting factorization for real, symmetric, 
indefinite coefficient matrices. That is 

 
TN UDU=                                                             (5.2)  

 
where U is an upper triangular matrix and D is a diagonal one. It is known that, in the 
discretization of integrals like Poisson’s integral, the main factors affecting the ill-
condition of the associated matrix are altitude, sampling interval and area coverage 
(number of data points). The higher the measurements the more unstable is the system 
due to the attenuation of the gravity signal with altitude. On the other hand, the ill-
condition will also increase with a reduction in the sampling interval and with an increase 
of the solution and integration areas. Each of these factors will make the columns of the 
matrix numerically more similar. 
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5.1.1 Effects of Data Configuration Variations on System Stability 
In order to analyze the altitude dependency of the system stability, the following 
geometric configuration was employed. Considering the unknown values of T to be at the 
Earth’s surface on a regular grid with respect to meridians and parallels with 0.4o 
sampling interval over a 12o square area. The geographical location of the initial solution 
point is 0 45oφ = , 0 0oλ = . The measurements, DT or DGD, were generated considering 
the middle point between the two satellites for every measurement to lie over the same 
grid of the unknowns but at constant altitude. We also assume that both satellites are on 
the same meridian and have a constant angular separation of 2o (230 km); this 
intersatellite configuration will be assumed for all our tests, unless otherwise specified. 
The elements of the design matrices relating T with DT and DGD, of the above 
configuration, were computed according to equations (3.8), (3.21), (4.3) and (4.4). The 
condition number of the corresponding ( TA A ) matrix was computed considering the 
measurements to be given at different altitudes. In Figure 5.1 we have the relationship 
between the condition number and the altitude of the data for both DT and DGD kernels. 
Here, we are assuming the numerical computer precision of 16 digits. Thus, according to 
the criteria mentioned above, it seems that the systems are ill-conditioned for altitudes 
greater than 150 km where the condition number is about 151 10x  for both type of kernels. 
Furthermore, since the operational altitude of the GRACE mission is projected to be 
within the 300-500 km range, we could expect according to Figure 5.1, the condition 
numbers of the related systems to be about 19 211 10 1 10x x−  for the given geometrical 
configuration. 
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Figure 5.1: Condition number with respect to altitude of TA A  for a grid with 0.4o 
sampling interval covering 12o square area and using kernels for DT (cnDT) and for DGD 
(cnDGD). The mid-latitude of the area is 51o

mφ = . 
 
For the sampling interval variation effects, the condition number was computed for 
different data sampling intervals at 400 km altitude. Figure 5.2a shows the corresponding 
condition numbers for both kernels. As expected, the condition number increases as the 
sampling interval gets smaller, going from 208 10x and 219 10x at 0.2o interval, respectively, 
for the DT and DGD kernels to about 188 10x  at 1o.2 interval for both kernels. However, 
for the range of sampling intervals considered in the Figure (0o.2-1o.2) the instability of 
the systems is approximately the same for either kernel. 
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Figure 5.2: Condition number a) in terms of sampling interval for 12o square and b) in 
terms of area coverage with 0o.4 sampling interval, using kernels for DT (cnDT) and for 
DGD (cnDGD), H=400 km 51o

mφ = . 
 

With respect to dependency on area coverage, as mentioned before, the ill-condition 
increases with the area for a given sampling interval, provided the solution area increases 
correspondily. That is, more area means more points involved and a larger matrix to be 
inverted. This fact is supported by Figure 5.2b. Using 0o.4 constant intervals and with the 
same altitude of the data as in the previous test, the DT and DGD kernels were computed 
for several areas from 4o to 24o squares. The condition number increased from 181 10x  to 

223 10x , respectively, for the DT kernel. On the other hand, the DGD kernel yielded 
relatively larger values, going from 191 10x  to 224 10x , respectively, for 4o and 24o square 
areas.  
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Figure 5.3: Condition number in terms of latitude (mid-latitude of the area) using kernels 
for DT (cnDT) and for DGD (cnDGD), H=400 km, sampling interval of 0o.4 and for 12o 
square area.  
 
For a grid of points being regular with respect to latitude and longitude, the ill-posedness 
tends to increase toward the polar regions due to the meridian convergence, which makes 
data points to get closer along parallels. Using the same regular grid as before, the 
condition number was computed for the DT and DGD kernels considering different mean 
latitudes. Figure 5.3 displays the condition numbers obtained. The variation is relatively 
small in going from the equator to 80o latitude. The DGD kernel consistently yields larger 
condition numbers, from 196 10x  at the equator to 202 10x  at 80o latitude, whereas the 
corresponding condition numbers of the DT kernel were 191 10x  and 195 10x , respectively.  
 
 
5.1.2 Effects of Measurement and Model Errors 
 
5.1.2.1 Measurement Errors 
Next, we study the performance of regularization with the presence of measurement 
errors. In order to use a system of manageable size but having a relatively large area, a 
grid of 0o.8 sampling interval was employed, covering a 24o square area. DT values were 
generated at 400 km altitude using the EGM96 geopotential model (Lemoine et al.,1998) 
with spherical harmonic coefficients with degree and order in the range 20-180 (from 
now on, unless otherwise specified, this gravitational field model will generate the 
quantities involved in all tests).  
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In order to determine the performance of regularization when only random errors in the 
measurement are present, we generated the DT by upward continuating to 400 km altitude 
(using equation 3.8) of disturbing potential values computed on the grid mentioned above 
at zero altitude. Then, we added random noise of different standard deviations to the DT 
thus generated. Subsequently, we estimated values of T at zero altitude using equation 
(4.39). By trial, we obtained the best α  for every measurement noise level, that is, the 
one that yields the smallest standard deviation of the solution errors. Figure 5.4 plots the 
errors and the best α  in terms of measurement errors considering the whole grid. 
Apparently, for this case, measurement errors smaller than 51 10x −  m2/s2 are required to 
obtain solution errors of 1 m2/s2 and a relative error of less than 10 % with respect to the 
signal. The associated best α  is about 301 10x − . Figure 5.5 plots the dependency between 
α  and the condition number of the system ( )T

bestA A Iα+ .  It can be seen in the figure 
that for the above α , the system will have a condition number of 101 10x . 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 m2/s2 
 
Figure 5.4: Relationship between the best α  ( 2910x − ) and measurement and solution 
errors, in m2/s2, and relative solution errors, using kernel for DT, H=400 km, sampling 
interval of 0.8o and for 24o square area. 51o

mφ = . 
 
Obviously, an ill-conditioned system will also amplify computational or round-off errors. 
For the previous test, when using errorless data and zero regularization parameter, the 
r.m.s. of the solution error was about 35 10−⋅  m2/s2. The value of the optimum α found 
was about 401 10−⋅  which yielded solution errors with a r.m.s. of 51 10−⋅  m2/s2, which is 
relatively small. Therefore, we can say that errors of Figure (5.4) tests exclude model 
errors. 
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Figure 5.5: Condition number in terms of regularization parameter for DT kernel, H=400 
km, sampling interval of 0.8o and for 24o square area 51o

mφ = . 
 
Next, we apply the same procedure to several data sets generated at different locations 
along the same parallels so the same matrix can be used. Nine different and independent 
data sets from 0o to 192o longitude were generated. Then, the corresponding regularized 
solutions were obtained considering only random errors in the same way as in the 
previous test, but only with standard deviation of 0.01σ = m2/s2. From now on we will 
only consider the measurement errors to have Gaussian distribution with 0.01σ = m2/s2 
for DT and 0.01σ = mgal for DGD, since they correspond to the achievable accuracy of 
GRACE as derived in chapter 2. Figure 5.6 displays the statistics of the solution errors. 
The value of the standard deviation varies between 2 and 9 m2/s2 with an average value of 
3 m2/s2. The relative error varies from 8 to 40 % of the signal with an average value of 
20%. These results agree with the relationships of Figure 5.4. 
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Figure 5.6: Solution errors and regularization parameters for different locations with 
respect to longitude for the DT kernel, H=400 km, sampling interval of 0o.8 and for 24o 
square area. 51o

mφ = . Only random errors affect the solution (no model errors). 
 
 
5.1.2.2 Model Errors 
 Now, we analyze regularization performance considering also model errors. That is, 
generating measurements at orbit altitude and then adding random noise and solving for T 
according to equation (4.39). In the solution of ill-posed problems, model errors are 
difficult to quantify due to the regularization required. This is not a problem for the direct 
process and it is illustrative to compare the associated model errors with data errors in 
this case. Figures 5.7 and 5.8 show the errors of computing DT and DGD, respectively, at 
400 km altitude from errorless T values at ground level with 0o.4 sampling interval for 
different areas. Both Figures plot the standard deviation of errors for the central 4o square 
area in terms of the data area size (plots a) and the corresponding relative errors (plots b). 
Two areas with different geographical location were tested. For instance, we can see that 
for both data types an area of 24o square produces relative errors of about less than 5% 
and standard deviation of about 0.01-0.05 m2/s2 and 0.004-0.01 mgal, respectively, for DT 
and DGD. The related edge effect is relatively large. For instance, for the DT values 
computed for the area located at latitude 48o, the total standard deviation of the errors of 
the whole grid was 0.8 m2/s2 with a mean value of 0.2 m2/s2. Figure 5.9 shows these 
errors. Figure 5.10 shows the errors of DGD obtained for the same area. The mean and 
standard deviation are, respectively, 0.06 and 0.26 mgal. 
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Figure 5.7 a) Standard deviation and b) relative errors on DT at 400 km altitude computed 
from T at the ground using different area coverage with 0o.4 sampling interval. Results 
for central 4o square area. For two locations, at the equator and at latitude 48o. 
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Figure 5.8 a) Standard deviation and b) relative errors in DGD at 400 km altitude 
computed from errorless T at ground level using different area coverage with 0o.4 
sampling interval. Results are for central 4o square area, at the equator and at latitude 48o. 
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Figure 5.9: Errors of DT computed from errorless T at ground level with 0o.8 sampling 
interval.  
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Figure 5.10: Errors of DT computed from errorless T at ground level with 0o.8 sampling 
interval. 
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Figure 5.11: Solution errors and best α  for different geographical locations with respect 
to longitude for the DT kernel, H=400 km, sampling interval of 0o.8 and for 24o square 
area. 51o

mφ = , using EGM96(20-180). Only model errors affect the solution. 
 
For all of our regularization tests, when considering model errors, the error analysis will 
be made for the central 4o square area in order to avoid model errors associated mainly 
with the edge effects.  
 
Larger errors (than in the case of only measurement error case) are obtained for the 
regularized downward continuation solution of T from DT when considering only model 
errors and the data configuration corresponding to Figure 5.6. Large mean values where 
also observed. The results for the central 4o area are displayed in Figure 5.11. The average 
standard deviation and relative error are 5.0 m2/s2 and 20%. Thus, in the average, the 
standard deviation is almost twice as large as when only random noise affects the 
solution. The mean value varied from 4 to 11 m2/s2 with an average of 6.8 m2/s2. On the 
other hand, the average value of α  was 253 10x − , whereas in the previous test it was of 

251 10x − . 
 
5.1.2.3 Edge Effect and Truncation Errors 
Two problems related to the evaluation or inversion of discretized integrals restricted to a 
region are the edge effect and the truncation error. One way to deal with the edge effect is 
to disregard solution points near the edges. For the present tests, this effect seems to be 
severe, as we can see from Figures 5.12 and 5.13 where plots of the errors in T, obtained 
from DT in two different geographical locations, show values larger than 100 m2/s2 near 
the edges with a total standard deviation of about 48 m2/s2 in both figures. This is also 
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corroborated by Table 5.1 in Section (5.2.2) where some of the standard deviations 
corresponding to the total area are even larger than 48 m2/s2.  
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
             λ  
 
m2/s2      φ  
Figure 5.12: Plot of solution errors in T using DT with 258 10xα −= , H=400 km, sampling 
interval of 0o.8 and 24o square data. 51o

mφ = , 0 0oλ = , using EGM96(20-180).  
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Figure 5.13: Plot of solution errors in T using DT with 258 10α −= ⋅ , H=400 km, sampling 
interval of 0o.8 and 24o square data. 0o

mφ = , 0 0oλ = , using EGM96(20-180).  
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One common practice to reduce the truncation errors is to subtract a reference field from 
the measurements according to equation (3.25). Another way to reduce this type of error 
is to follow Meissl’s modification and Molodensky’s truncation theory (see for instance 
Jekeli, 1981), which consist in modifying the kernel to reduce the Gibbs’ phenomenon. 
However, this may not be as effective when dealing with differences of kernels since they 
are not symmetric and isotropic. Therefore, the simple remove/restore method is the only 
method considered here to reduce truncation errors for the kernels involved in this 
analysis.  
 
5.1.2.4 Considering Model and Measurement Errors 
Next, we obtained the regularized downward continuation solution of T from DT 
considering both model and random errors and the data configuration corresponding to 
Figures 5.6 and 5.11. The results for the central 4o area are displayed in Figure 5.14. The 
average value obtained for the standard deviation and relative value of the errors were 5.9 
m2/s2 and 23% respectively, which are slightly larger than the only model error case. The 
mean value varied from 1 to 11 m2/s2 with an average of 6 m2/s2. On the other hand, the 
average value of α  was 256 10x − .  
 
The same test, considering random and model errors, was repeated for the DGD kernel 
(Figure 5.15). The estimation errors obtained are similar as those from DT. The averages 
of the standard deviation and mean of the errors are 5.3 and 8.7 m2/s2, respectively. The 
average value of the relative error is 24%. 
 
 
 
 
        
       m2/s2 
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degrees 
 
Figure 5.14: Solution errors and best α  for different geographical locations with respect 
to longitude for the DT kernel, H=400 km, sampling interval of 0o.8 and for 24o square 
area. 51o

mφ = , using EGM96(20-180). Both random and model errors affect the solution. 
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Figure 5.15: Solution errors and optimum α  for different geographical locations with 
respect to longitude for DGD kernel, H=400 km, sampling of 0o.8 and for 24o square area. 

51o
mφ = , using EGM96(20-180). Both random and model errors affect the solution. 

 
From tests made so far, we could conclude that our systems are ill-conditioned for the 
GRACE operational altitude (300-500 km), as seen in Figure 5.1. To some extend, the ill-
condition of the systems is also affected by sampling interval and size of the integration 
area. The smaller the data separation, the more unstable the system. The same can be 
observed with the increase of the integration area (see Figure 5.2). 
 
Some of the results obtained indicate that, for a given grid of points being regular with 
respect to latitude and longitude, the ill-posedness tends to increase toward the polar 
regions due to the meridian convergence, which brings the points closer along parallels. 
Using the same configuration as for Figure 5.1, relatively small variation resulted in 
going from the equator to 80o latitude for both kernels as seen in Figure 5.3. 
 
 For the systems analyzed here, requirements on data accuracy seems to be very 
demanding.  For instance, errors smaller than 51 10x −  m2/s2 are required on DT to obtain 
solution errors of the level of 1 m2/s2 with a relative error of about 10 % with respect to 
the signal (see Figure 5.4). However, the solution is not very sensitive to measurement 
errors, since 0.01 m2/s2 error in DT yields solution errors of about 2 m2/s2. 
 
Apparently, model errors seem to introduce also large mean values in the errors of both, T 
using DT and DGD. For a 24o square area of integration, the mean value of the errors in T 
is about 5 m2/s2 for both DT and DGD kernels, see Figures 5.11, 5.14, 5.15 and Table 5.1. 
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5.2 Some Analysis on Regularization Performance 
 
5.2.1 Solution Errors in terms of Altitude 
As the ill-condition of the system increases with altitude as seen in Figure 5.1, so will the 
solution errors. This can also be appreciated in Figure 5.16 which displays the best 
solution of T obtained from DT and DGD measurements given at different altitudes in the 
300-500 km range. In both cases, the errors in the central region increase from about 1 
m2/s2 at 300 km to 3.5 m2/s2 at 500 km. The Figure also plots the errors for the total area 
which area considerably larger, ranging from about 40 m2/s2 at 300 km to 58 m2/s2 at 500 
km, mainly due to the edge effect. 
 
 
 
 
 
 
 
           
 
 
 
 
 
         m2/s2   
 
 
 
 
Figure 5.16: Solution errors in term of altitude H for central area ( centralσ ) 4o square and  
the total area ( totalσ ). Kernel: a) DT and, and b) DGD; sampling of 0o.8 and for 24o 
square data. 51o

mφ = ; 0 0oλ = ; EGM96(20-180). 
 
 
5.2.2     Solution Errors in terms of Sampling Interval 
We now look at the error behavior with respect to sampling interval. Considering the 
same configuration, but with H = 400 km, we solve for T using different sampling 
intervals. The results are displayed in Table 5.1. The standard deviation of the central area 
increases systematically from 2.2 m2/s2 at 0o.2 interval to 3.5 m2/s2 at 1o.2 interval. As 
expected, more regularization is required as the sampling interval decreases. The α -value 
also decreases from 243 10x −  to 251 10x −  as the sampling interval increases from 0o.2 to 
1o.2. In Figure 5.14 we display the error variations in terms of α  for solutions using the 
intervals 0o.4o, 0o.8 and 1o.2. The three plots show that a displacement of one order of 
magnitude of α  with respect to its best value can increase the solution error more than 1 
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m2/s2. The same pattern was observed when using DGD as measurements, with 0.01 mgal 
level of random noise, as can be seen on Figure 5.15. 
 
 
 

                 Solution Errors 2 2/m s  
Central area Total Area 

Sampling  
interval 

mean stdev mean stdev 

Rel 
Error. 
Centra
l 
area 

bestα  
 

0.2 o  7.5 2.2 6.5 48 0.20 243 10x −  
0.4 o  7.6 2.5 6.5 49 0.22 241 10x −  
0.6 o  7.7 2.7 6.6 49 0.24 258 10x −  
0.8 o  7.7 2.9 6.8 48 0.26 255 10x −  
1.0 o  7.9 3.3 7.1 66 0.3 253 10x −  
1.2 o  8.1 3.5 7.5 88 0.32 251 10x −  

 
Table 5.1: Errors in T regularized solution in terms of sampling interval and the 
corresponding regularization parameter for H = 400 km and from DT. Central area 
corresponds to 4o square. 
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Figure 5.17: Errors in terms of α  for different sampling intervals (0o.4, 0o.8, 1.2o), using 
DT kernel, H=400 km, for 24o square area. 51o

mφ = , 0 0oλ = , using EGM96(20-180). 
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Figure 5.18: Errors in T in terms of α  for different sampling intervals; 0o.4, 0o.8, 1o.2, 
using DGD kernel, H=400 km, for 24o square area. 51o

mφ = , 0 0oλ = , using EGM96(20-
180).  
 
5.2.3 Solution Errors in terms of Area Coverage 
The third main factor affecting a system’s ill-condition as analyzed before is the area 
coverage. For this factor we considered three different area sizes; 12o, 24o and 36o squares 
with 0o.8 sampling interval. The ill-posedness tends to increase with the area. This fact is 
supported by Figures 5.19 and 5.20. In the first Figure, we have the solution of T obtained 
from DT. The best α -values obtained were 250.75 10x − , 257.5 10x − , and 2520 10x −  for the 
three area sizes, respectively. The corresponding estimation errors were 3.6, 2.7, and 2.1 
m2/s2. In Figure 5.20 we have the solution of T obtained from DGD. The best α -values 
obtained were 263 10x − , 268 10x − , and 2695 10x −  for the three area sizes, respectively. The 
corresponding error values were 4.7, 2.8 and 2.6 m2/s2 respectively.  
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Figure 5.19: Errors in terms of α  for different areas of data; 12o, 24o and 36o squares, 
using DT kernel, H=400 km, for 24o square area. 51o

mφ = , 0 0oλ = , using EGM96(20-
180). 
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Figure 5.20: Errors in T in terms of α  for different areas of data; 12o, 24o and 36o, using 
DGD kernel, H=400 km, for 24o square area. 51o

mφ = , 0 0oλ = , using EGM96(20-180). 
 
 
5.2.4 Effect of nmax variations of reference field 
As mentioned in the previous section, one way to diminish effects of truncation errors due 
to the limited integration area is by employing the remove/restore technique, which 
implies not considering the lower frequencies of the signal in the downward continuation 
process. 
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 Now, we do some analysis of the effect in the regularized solution errors by varying the 
maximum degree and order of the reference field subtracted. The regularization was 
performed with different degrees of reference field subtracted from the measurements. It 
was observed that, by increasing the maximum degree of this field from nmax = 20 to 
nmax = 40 the errors were reduced by up to 1 m2/s2 in our tests as seen in Figures 5.21 and 
5.22. Figure 5.21a displays the solution errors with nmax = 20, 30, 40 in terms of α . We 
can see from the graph, that the lower the nmax the larger is the error, ranging from about 
1.7 to about 2.7 m2/s2. Similarly, when using DGD the error ranged from 1.8 to 2.8 m2/s2 
as shown in Figure 5.22a. Nonetheless, the relative errors do not show a systematic 
decrease or increase with nmax variation for both type of kernels (see Figures 5.21b and 
5.22b). 
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Figure 5.21: a) Standard deviation and b) relative errors in T in terms of α  for different 
reference fields (nmax = 20,30,40), using DT kernel, H=400 km, for 24o square 
area. 51o

mφ = , 0 0oλ = , using EGM96(20-180).  
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Figure 5.22: a) Standard deviation and b) relative errors in T in terms of α  for different 
reference fields (nmax = 20,30,40), using DGD kernel, H=400 km, for 24o square 
area. 51o

mφ = , 0 0oλ = , using EGM96(20-180).  
 
Tests have been made in this section to analyze the solution accuracy in terms of 
variations in sampling interval, integration area and altitude. For all these cases, the 
solution errors increase together with the ill-condition of the system, see Table 5.1 and  
Figures; 5.16, 5.17, 5.18, 5.19 and 5.20. 
 
With respect to solution errors in terms of maximum degree and order of the reference 
field subtracted from both types of measurements, the solution errors tend to decrease as 
the nmax increases. However, this was not observed with the relative errors as shown by 
Figures 5.21 and 5.22. 
 
5.3 Interpolation Errors 
In this study, for simplicity in the analysis and computations and to be able to use the 
traditional fast Fourier transform, it is assumed, as mentioned before, that measurements 
are given on a regular grid with respect to geographical coordinates at a constant altitude 
H with respect to a boundary that approximates the Earth’s surface. Furthermore, it is also 
assumed that both satellites fly with a constant angular central distance between them and 
along meridians, that is, a constant orientation. In order to generate this type of 
geometrical data configuration from measurements produced over real orbits, some 
interpolations and extrapolations will be required. We now analyze the associated 
interpolation and/or extrapolation errors.  
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Figure 5.23: Ground track of a 30-day GRACE-type Keplerian orbit at about 430 km of 
altitude. For a 12o square window in the equatorial area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5.24: Ground track of a 30-day GRACE-type Keplerian orbit at about 430 km of 
altitude. For a 12o square window in the near pole area. 
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5.3.1 Interpolation to a Regular Grid 
First, to estimate errors in interpolating to a regular grid with respect to latitude and 
longitude, we generated a 50-day circular Keplerian orbit with 89o inclination and radius 
of 6771 km that corresponds to an altitude of 430 km; the sampling rate for the output 
was 1 Hz (although GRACE output is 0.1 Hz). A real orbit will produce a data 
distribution that will deviate from a regular latitude-longitude grid approximately as does 
a Keplerian orbit, although the Keplerian orbit produces regularity in longitude. We 
computed values of DT and DGD, with the same assumptions considered so far, at the 
points generated by the orbit. In 12o square windows at different latitudes the potential 
differences were interpolated to a regular grid of 0o.4 interval in both directions. The 
interpolation was done with a cubic spline approximation, using the Delawny 
triangulation method, and considering 30, 40 and 50-day data. The respective rms 
distances of interpolation were about 0o.2, 0o.15, and 0o.12. Figures 5.23 and 5.24 show 
the data for 30-day orbit for the window in the equator and near the pole. 
 
 
 

Central latitude of  areas 
Number of points in each area 

Days  
Of 
orbit 

Number 
     of 
Seconds 0 20 40 60 80 

30 259200
0 

580
9 

598
3 6428 7049 1080

9 

40 345600
0 

770
2 

818
6 8460 9250 1439

6 

50 432000
0 

950
5 

984
9 

1044
0 

1153
7 

1784
4 

 
Table 5.2: Data generated for each interpolation window of 12o square for 30, 40 and 50-
day Keplerian orbit.  
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Figure 5.25: Errors in interpolation of DT to a regular grid of 0o.4 interval from data 
generated by 30, 40 and 50-days orbits over 12o square areas at different latitudes. 
 
 
In order to analyze errors in interpolating to a regular grid with respect to latitude and 
longitude, windows at different latitudes, from the equator to the 80o parallel were 
considered for the data. Table 5.2 displays the number of points obtained for each 
interpolation window and the orbit duration. We can see that the number of points 
increases as the data window moves toward the pole. For instance, for the 30-day orbit 
the number of points is 5860 at the equator and 10809 at 80o latitude. On the other hand, 
the number of points generated at the equator increases to 9505 for a 50-day orbit. The 
interpolation errors obtained were relatively small as shown by Figures 5.25 and 5.26. 
Figure 5.25 shows the interpolation errors for DT measurements. The errors decrease 
almost systematically toward the pole, but within the same order of magnitude. For 
example, with a 40-day orbit they range between 0.003 m2/s2 and 0.001 m2/s2 at latitude 
80. The improvement with latitude is expected since more data are generated in the polar 
region due to the meridian convergence, as shown in Table 5.2. The improvement of 
interpolation with a 50-day orbit compared to a 30-day orbit is significant. For instance, at 
mid-latitude a 30-day orbit produced interpolation errors of about 0.005 m2/s2, half of the 
standard deviation in the measurement error adopted in this study; whereas a 50-day orbit 
yielded 0.001 m2/s2 interpolation error, which is 5 times smaller. A similar situation was 
observed when interpolating DGD values. As in the DT case, errors also generally 
decrease toward the pole. Next, random noise of 0.01 m2/s2 and 0.01 mgal was added, 
respectively, to the DT and DGD values and then the same interpolation procedure was 
applied. The errors of the interpolated values obtained tend to decrease with respect to 
both latitude and number of data points as shown by Figures 5.27 and 5.28. 
 
 



 76 

0 10 20 30 40 50 60 70 80
0

0.001

0.002

0.003

0.004

0.005

0.006

orb30

orb40

orb50

lat

.

0 10 20 30 40 50 60 70 80
0.007

0.008

0.009

0.01

orb30

orb40

orb50

lat

.

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
mgal 

 
    degrees 

 
Figure 5.26: Errors in interpolation of DGD to a regular grid of 0o.4 interval from data 
generated by 30, 40 and 50-day orbits over 12o square areas at different latitudes. 
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Figure 5.27: Errors in interpolation of DT to a regular grid of 0o.4 interval from data 
generated by 30, 40 and 50-day orbits over 12o square areas at different latitudes. Random 
noise was added to the measurements. 
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Figure 5.28: Errors in interpolation of DGD to a regular grid of 0o.4 interval from data 
generated by 30, 40 and 50-day orbits over 12o square areas at different latitudes. Random 
noise was added to the measurements. 
 
 
5.3.2 Interpolation to same Altitude and Intersatellite Distance 
For the analysis of errors of interpolation to the same altitude and inter-satellite distance 
we generated orbits for both satellites employing the spherical harmonic model of the 
geopotential, EGM96, up to degree and order 180 by means of numerical orbit integration 
according to the Adams-Cowell multistep predictor-corrector algorithm. Again, the 
satellite’s state vector was produced at one-second intervals. The initial parameters of the 
orbits were 400 km altitude above the Earth’s mean radius, zero eccentricity, and 89o  
inclination. The initial inter-satellite distance was 230 km. We chose a 200-second orbital 
of arc (about 12o along the meridian) at different latitudes. At every epoch, the DT and 
DGD values related to the actual locations of both satellites were computed using the 
EGM96 geopotential model up to degree and order 180.  
 
 

Initial latitude of each segment 
Standard deviation of interpolation errors 

m2/s2 

Type of 
interpolation 

      0 20 45 75 
To same H 41 10x −  44 10x −  41 10x −  44 10x −  
To same 

12ρ  
42 10x −  32 10x −  42 10x −  35 10x −  

 
Table 5.3: Errors of interpolating DT from 12o arcs at different latitude to same altitude 
and intersatellite distance using LSC.  
 



 78 

Initial latitude of each segment 
Standard deviation of interpolation errors 

(mgal) 

Type of 
interpolation 

      0 20 45 75 
To same H 42 10x −  43 10x −  41 10x −  43 10x −  
To same 

12ρ  
43 10x −  31 10x −  44 10x −  35 10x −  

 
Table 5.4: Errors of interpolating DGD from 12o arcs at different latitude to same altitude 
and intersatellite distance using LSC.  
 
 
Next, the computed observables were interpolated to the same mean inter-satellite 
distances and mean altitude of satellites. LSC was used according to equations (4.61) and 
(4.63) to interpolate the data to the desired regular configuration. The covariance matrices 
employed were based on the degree variance as computed with equation (4.54) and using 
the spherical harmonic coefficients of the EGM96 geopotential model limited to degree 
and order 20-180.  
 
Tables 5.3 and 5.4 show the results for the different arcs, considering DT and DGD as 
measurements, respectively. Both types of measurements produced similar interpolation 
errors. Also both type of interpolation yielded similar errors. The interpolation errors of 
DT were of the order of 410−  m2/s2 with respect to H for all latitudes considered and 
ranged from 42 10x −  m2/s2 at the equator to 35 10x −  m2/s2 at 75o latitude with respect to 
intersatellite distance. One fact that can be appreciated is that all errors are relatively 
small near the equator ( 32 10x −≤ m2/s2).    
 
In the interpolation to same altitude, the r.m.s. of the differences of the true H’s with 
respect to the average H was about 100 m for all arcs considered. However, data 
generated over an area will consist of orbit arcs with much larger height variations with 
respect to each other. In order to have a better assessment about the errors associated with 
the extrapolation of the measurements to the same altitude, a 10-day orbit was generated 
using the EGM(2-180) field. The elevations of DT values generated over a 10o square 
area at the equator had an average of about 400 km with a standard deviation of 4 km. 
Then, the same interpolation procedure, using LSC, was applied to data produced over 
one orbital arc of about 12o. The DT values were then extrapolated to different altitudes 
below and above the data mean altitude. Figure 5.29 shows the extrapolation errors 
obtained. The errors increase steadily as the extrapolation altitude moves away from the 
mean elevation. We can see from the figure that for 4 km extrapolation the errors are 
about half the magnitude of the measurement errors considered in this study (0.01 m2/s2). 
Nevertheless, smaller extrapolation errors could be expected when considering more data 
in the process. 
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Figure 5.29: Errors in extrapolating DT values to same attitude in terms of height 
difference between the mean H = 400 km and the H of extrapolation. 
 
5.4    Performance of Regularization Methods 
In chapter 4, we discussed some of the more popular regularization methods. Beside the 
Tikhonov method, which we have considered so far, other methods are the conjugate 
gradient (GC) method, the truncated singular value decomposition (TSVD) method, and 
the damped singular value decomposition (DSVD) method; see equations (4.48), (4.49) 
and (4.77).  
 
In this section we compare their performance in obtaining the disturbing potential T at 
zero altitude from DT and DGD values given at orbital altitude. We also compare these to 
the performance of inversion with the 1D-FFT according to equations (4.25), (4.27) and 
(4.40). The same orbital geometry is assumed; constant altitude H = 400 km; constant 
LOS orientation, south-north direction, constant intersatellite distance, 230 km; and a 
regular grid with 0.8 intervals covering 24o square area. The true values of the quantities 
involved where obtained from the EGM96 field using spherical harmonic coefficients of 
degree and order in the range 20-180. 
 
In order to compare and analyze the performances with different geographical locations 
and different signal content, we chose three test areas with the same configuration 
described above, but different geographical location. Test area #1 is centered at 

50 , 0o o
m mφ λ= = . Test area #2 is centered at 0 , 0o o

m mφ λ= =  and test area #3 is centered 
at the Himalaya at 27 , 87o o

m mφ λ= = . We applied the regularization methods with both 
DT and DGD as measurements for each test area. Errors in the solution with TSVD were 
found to be considerably larger (about three times larger) than in the solutions with other 
methods for all test areas. Therefore, we do not consider this method further. 
 
5.4.1 Considering only Measurement Errors 
First, we compared the performances considering only random errors (no model errors). 
The comparison was done for test area #1. Tables 5.5 and 5.6 show the errors statistics 
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for the case of using DT and DGD, respectively. Tikhonov method produced the smallest 
errors for the central area namely, 2.1 and 2.4 m2/s2 for DT and DGD, respectively, with  
corresponding relative errors of 18% and 21%. We could say that, in general, all methods 
yielded the same level of errors, considering both tests. The largest error (s.d.) was 3.0 
m2/s2 obtained with DSVD when using DGD data. 
 
 

Total area 
m2/s2 

Central area 
m2/s2 

Method 

Mean Stdev Mean stdev 

Rel 
erro
r 

Reg 
param 

Tikhonov 0.00 3 0.1 2.1 0.18 251 10−⋅  
DSVD 0.00 7.4 0.4 2.5 0.22 213 10−⋅  
CG 0.4 10 0.5 2.6 0.23 13 iter 
1D FFT 
with 
 Tikhonov 

0.03 6.0 0.1 2.5 0.22 216 10−⋅  

 
 
 
Table 5.5: Errors in T from DT using different regularization methods considering only 
random errors, H=400 km, sampling interval of 0o.8 and for 24o square area, area test #1, 
using EGM96 field (20-180). 
 
 

Total area 
m2/s2 

Central area 
m2/s2 

Method 

Mean Stdev Mean stdev 

Rel 
erro
r 

Reg 
param 

Tikhonov 0.01 4.9 0.1 2.4 0.21 264 10−⋅  
DSVD 0.60 10 0.5 3.0 0.27 278 10−⋅  
CG 0.07 6.7 0.12 2.5 0.22 31 iter 
1D FFT 
with 
Tikhonov 

0.01 7.38 0.9 2.7 0.24 312 10−⋅  

 
 
Table 5.6: Errors in T from DGD using different regularization methods considering only 
random errors, H=400 km, sampling interval of 0o.8 and for 24o square area, area test #1, 
using EGM96 field (20-180). 
 
 
5.4.2 Considering Measurement and Model Errors 
Next, we repeated both tests but this time also considering model errors. Results are 
tabulated in Tables 5.7 and 5.8. As in previous tests with model errors, a large mean error 
is observed with all the methods. With respect to the standard deviation in the central 
area, the best result was produced by the DSVD method with DT data, namely 2.3 m2/s2 
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with 21% relative error. The worst result, for both data types, was obtained with the CG 
method, yielding standard deviation in the central area of 3.3 and 4.5 m2/s2 with DT and 
DGD, respectively. 
 
 

Total area 
m2/s2 

Central area 
m2/s2 

Method 

Mean Stdev Mean stdev 

Rel 
erro
r 

Reg 
param 

Tikhonov 0.4 49 7.7 2.7 0.26 255 10−⋅  
DSVD 4.7 26 10 2.3 0.21 213 10−⋅  
CG 0.5 80 5.8 3.3 0.30 47 iter 
1D FFT 
with 
Tikhonov 

3.6 19 10 3.0 0.28 294 10−⋅  

 
 
Table 5.7: Errors in T from DT using different regularization methods considering 
random and model errors, H=400 km, sampling interval of 0o.8 and for 24o square area, 
area test #1, using EGM96 field (20-180). 
 
 
 

Total area 
m2/s2 

Central area 
m2/s2 

Method 

Mean Stdev Mean stdev 

Rel 
erro
r 

Reg 
param 

Tikhonov 7 23 9 2.9 0.26 269 10−⋅  
DSVD 4 15 6.5 2.8 0.25 261 10−⋅  
CG 4 15.2 0.1 4.5 0.4 11 iter 
1D FFT 
with 
Tikhonov 

5 18 5 3.5 0.32 313 10−⋅  

 
 
Table 5.8: Errors in T from DGD using different regularization methods considering 
random and model errors, H=400 km, sampling interval of 0o.8 and for 24o square area, 
area test #1, using EGM96 field (20-180). 
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Total area 
m2/s2  

Central area 
m2/s2 

Method 

Mean Stdev Mean stdev 

Rel 
erro
r 

Reg 
param 

Tikhonov 07.6 37 6.5 1.7 0.09 254 10−⋅  
DSVD 6 19 6.4 2.6 0.14 214 10−⋅  
CG 7 28 7.4 2.9 0.16 27 
1D FFT 
with 
Tikhonov 

5 33 6 3.0 0.16 303 10−⋅  

 
 
Table 5.9: Errors in T from DT using different regularization methods considering 
random and model errors, H=400 km, sampling interval of 0o.8 and for 24o square area, 
area test #1, using EGM96 field (20-180). 
 
 
 In test area #2, the Tikhonov method gave the best results with the DT data, where the 
error (s.d) is 1.7 m2/s2 with a relative error of 0.9%; and, the CG method was best with 
DGD data, yielding an error (s.d.) of 2.3 m2/s2. On the other hand, the 1D-FFT method 
yielded larger errors using DT data. The error (s.d.) was 3.0 m2/s2, and the DSVD method 
with DGD data yielded 4.1 m2/s2, see Tables 5.9 and 5.10. 
 
 Finally, the comparison for test area #3 is represented in Tables 5.11 and 5.12. The 
Tikhonov method produced the smallest error for DT, 10.2, while the 1D-FFT method 
yielded the smallest error for DGD, 13.0 m2/s2. The 1D-FFT method produced the largest 
errors with DT data producing a 19.2 m2/s2 error (s.d.) and, the DSVD method yielded the 
worst result with DGD data, having an error (s.d.) of 17.5 m2/s2. 
 
 

Total area 
m2/s2 

Central area 
m2/s2 

Method 

Mean Stdev Mean stdev 

Rel 
erro
r 

Reg 
param 

Tikhonov 7.1 24 8.6 3.3 0.19 263 10−⋅  
DSVD 4.5 13.4 7.3 4.1 0.21 276 10−⋅  
CG 7 24 7.4 2.3 0.12 41 
1D FFT 
with 
Tikhonov 

5 34 8.3 3.4 0.18 322 10−⋅  

 
 
Table 5.10: Errors in T from DGD using different regularization methods considering 
random and model errors, H=400 km, sampling interval of 0o.8 and for 24o square area, 
area test #1, using EGM96 field (20-180). 
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Total area 
m2/s2 

Central area 
m2/s2 

Method 

Mean Stdev Mean stdev 

Rel 
erro
r 

Reg 
param 

Tikhonov 11 171 18.5 10.2 0.09 262 10−⋅  
DSVD 11 96 19 26 0.21 223 10−⋅  
CG 19 103 19 15.7 0.13 55 
1D FFT 
with 
Tikhonov 

2.0 92 2.3 19.2 0.22 226 10−⋅  

 
 
Table 5.11: Errors in T from DT using different regularization methods considering 
random and model errors, H=400 km, sampling interval of 0o.8 and for 24o square area, 
area test #1, using EGM96 field (20-180). 
 
 
 

Total area 
m2/s2 

Central area 
m2/s2 

Method 

Mean Stdev Mean stdev 

Rel 
erro
r 

Reg 
param 

Tikhonov 8.7 68 13 13.0 0.11 272 10−⋅  
DSVD 8.5 55.6 12 17.5 0.15 289 10−⋅  
CG 8.7 76 8.7 13.6 0.12 85 
1D FFT 
with 
Tikhonov 

10 102 12 10.8 0.09 331 10−⋅  

 
 
Table 5.12: Errors in T from DGD using different regularization methods considering 
random and errors, H=400 km, sampling interval of 0o.8 and for 24o square area, area test 
#1, using EGM96 field (20-180). 
 
 
Overall, the Tikhonov method performed better than the other methods as evaluated by 
the given tests. This method did not produce the largest error in any of the tests and, on 
the other hand, produced the smallest error in almost all the tests.  The other three 
methods yielded similar results among them. With this method, also slightly better results 
were obtained using DT rather than DGD. 
 
5.5     Finding the Best Regularization Parameter 
So far, we have determined the best regularization parameter just by trial for the different 
regularization methods considered. We have been able to do this since we have access to 
the true solution. In real life, one only has access to the measurements. Therefore, we 
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have to define a way to find the optimum α  for the Tikhonov, DSVD and 1D-FFT 
methods and the optimum iteration number for the CG method. Two of the most common 
methods used for this task are the discrepancy principle method and the L-curve method, 
see (chapter 4).  
 
The discrepancy method was tried for the Tikhonov and the DSVD methods, but yielded 
poor results. No convergence could be achieved toward the correct results even when 
starting with a good approximation of α . Thus, this method is not further discussed. On 
the other hand the L-curve method which can be applied to the Tikhonov, the DSDV and 
the 1D-FFT methods produced relatively acceptable results in the tests made. 
 
For the following tests, we define sol = f  and assuming for equation (4.90), n = 0 so the 
solution norm used in the application of the L-curve method is given by sol f= . The 

residual norm res  required by this method is defined by equation (4.89). Also here we 
define the log operator to be the natural logarithmic of base e. 
 
 
5.5.1 Considering only Measurement Errors 
The L-curve method yielded relatively good results when considering only random errors. 
The corner of the curve was sharp enough and the corresponding residual’s norm res , 
corresponds on its own to the best α  with good accuracy, about 0.5 m2/s2 for test area #1 
using both DT and DGD. Figure 5.30a displays the log-log plot, expected to have an L-
shape, of the solution norm, sol  (see section 4.3.6.2), obtained using DT as 
measurements, and the residual norm. In the Figure, the corner of the curve corresponds 
to about –3.387 on the abscissa. This value corresponds in Figure 5.30b to an α  of 

272.3 10x − , which is related to 2.7 m2/s2 of solution error in Figure 5.31. The difference of 
this solution error value with respect to the minimum error value is about 0.5 m2/s2. The 
uncertainty of the log res  value obtained from Figure 5.30 is about 0.001. The 

associated uncertainty of α  is about 270.2 10x −  which is translated to 0.1 m2/s2  of 
uncertainty in solution errors. Similar results were obtained with data of the other areas 
and also employing DGD values. That is, these tests showed that the optimal α  does not 
correspond exactly to the corner of the curve, but it is reasonably close.  
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Figure 5.30: a) Plot of the L-curve in the solution of T from DT at H=400 km on 24o 
square area with 0o.8 sampling interval in Test area #1 considering only measurement 
errors. Using Tikhonov’s method; b) Plot of  log res  in terms of α . 
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Figure 5.31: Corresponding solution errors for the α  values of Figure 5.27b. 
 
 
5.5.2     Considering Measurement and Model Errors 
 However, in the presence of model errors, the method did not perform as well. The 
method presented a couple of problems. One problem is that around the corner region the 
curve is not sharp enough to determine the right location of the corner. Figure 5.32 
displays the L-curve obtained when both random and model errors are included and when 
considering only the central area (test area #1). The other problem found was that the 
log res  of the best α  its considerably displaced to the right of the curve’s corner.  
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Figure 5.32: a) Plot of the L-curve in the solution of T from DT at H=400 km on 24o 
square area with 0o.8 sampling interval in Test area #1 considering measurement and 
model errors. Using Tikhonov’s method; b) Plot of log res  in terms of α . 
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Figure 5.33: Corresponding solution errors for the α  values of Figure 5.29b. 
 
With respect to the uncertainty of defining the L-curve’s corner, if the uncertainty of the 
related log res  value (-3.07) obtained from Figure 5.32 is about 0.05, then the 

associated uncertainty of  α  ( 260.08 10x − ) is about 260.04 10x −  which translates to about 5 
m2/s2  of uncertainty with respect to the related solution error value (7.5 m2/s2 in Figure 
5.33). From Figure 5.33 we can see that the solution error (7.5 m2/s2) related to the L-
curve’s corner has a difference of 4.6 m2/s2 with respect to the minimum error (2.9 m2/s2). 
On the other hand the best α  value, or the one that corresponds to this minimum error 
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value, is about 265 10x − . The related log res  values is about –1.96 which is displaced 
1.07 units to the right of the curve’s corner in Figure 5.32a.   
 
 
5.5.3     Computation of the k Factor 
Now, the problem is to characterize the extra regularization imposed by model errors. 
Toward this, we express the residuals norm, res , related to the best α  in terms of the 

res  related to the L-curve corner by using a factor k as follow 
 

( ) ( )best cornerres k resα α=      (5.3) 
 
Thus, we end up searching not for the cornerα  but for the best α  or the k parameter that 
relates the norms associated with bestα  and cornerα . In order to find or estimate k for a 
given configuration, different sets of independent data (the same ones used before) that 
can be processed with the same kernel were used. For every data set a ik  was computed 
according to equation (5.3), then an average and standard deviation for the set { }ik  was 
found: 2.3, 0.9k kµ σ= = . Subsequently, for every data set the kµ  was used, instead, to 
solve for the corresponding ( ( ))best kres α µ  from equation (5.3). This will produce 
variations fδ  in the solution. This variation and its relative values are defined as 
 

( ) ( ) , ( )
ik

ff f f rel f
f

ε ε
α α µ

δδ δ= − =   (5.4) 

 
  The computed ( )best kα µ  values were employed to obtain the solution of T. Figure 5.34 
shows the ik  values and the solution variations fδ   produced by using ( )best kα µ  instead 
of  ( )best ikα . The figure also shows the relative solution variations ( )rel fδ . The 
variations obtained are relatively small. The average values of fδ  and  ( )rel fδ  are 1.6 
m2/s2 and 4.3% respectively. Smaller variations in the solution were obtained when using 
DGD values. The average values obtained were 1.3 m2/s2 and 4.0%, for fδ  and ( )rel fδ , 
respectively (see Figure 5.35). When applying this type of analogies to DSVD method 
even smaller variations were obtained. The results are displayed in Figure 5.36. The 
average solution variation is 0.4 m2/s2 and the average relative solution variation is 2.6%. 
The statistics of k are 6.8, 2.5k kµ σ= = . 
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Figure 5.34: Plot of the k coefficient for the residual’s norm associated with the best α  
according to the L-curve, using Tikhonov method and the DT kernel for different 
longitudes; configuration of area test #1  
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Figure 5.35: Plot of the k coefficient for the residual’s norm associated with the best α  
according to the L-curve, using Tikhonov method and the DGD kernel for different 
longitudes; configuration of area test #1  
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Figure 5.36: Plot of the k coefficient for the residual’s norm associated with the best α  
according to the L-curve, using DSDV method and the DGD kernel for different 
longitudes; configuration of area test #1  
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Figure 5.37: Plot of the k coefficient for the residual’s norm associated with the best α  
according to the discrepancy principle, using CG method and the DGD kernel for 
different longitudes; configuration of area test #1  
 
 
With respect to the CG method, the search of the best iteration number was more difficult 
to perform. The k value to determine here is defined according to equation (4.78). We use 
the same data sets as for the Tikhonov and DSVD methods. The variation in the solution 
produced by using the associated kµ  instead of the ik  are relatively large, see Figure 5.37. 
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The average of the variations in the solution was 4.9 m2/s2 and the average of the relative 
variation was 24%. These values are of the same level of the solution errors themselves. 
Moreover, even when considering only measurement errors, the variations produced in 
the solution by using the average k  yielded unacceptable results. 
 
5.5.4     Validation of the k Factor 
In order to get a better understanding of the solution variations fδ , see equation (4.4), 
associated with the estimated kµ  value of the previous section, we use results of the test 
in section (5.5.2). Using Figures 5.32 and 5.33 we have already found the values 
log 3.07

corner
res = − , log 1.96

best
res = − . With these values we obtain from Figure 5.38 

the corresponding res  values, which are 0.047
corner

res = , 0.14
best

res =  Now, using 

equation (5.3), we obtain 3.0ik = . From figure (5.39) we can see that this 
best

res  value 

corresponds to 265 10best xα −= . Nevertheless, if we instead use 2.3kµ =  to compute the 
best residual’s norm with equation (5.3) and the value of the above 

corner
res , we obtain 

the value ( ) 0.108kbest
res µ = , this corresponds, in Figure 5.39, to an ( )best kα µ  value of 

262.5 10x − . The variation in the solution produced by using ( )best kα µ  rather than bestα  will 
be of 0.2 m2/s2, see Figure 5.33. Figure 5.40 shows, for the present test, the relationship 
between k and solution variations produced. 
 
 
 
 
 
 
 
 
         res  
 
 
 
 
 
 log res  
Figure 5.38: Relationship between the residual’s norm and its logarithmic value of data in 
Figure 5.29. 
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Figure 5.39: Relationship between the residual’s norm and the α values of data in Figure 
5.29. 
 
 
 
 
 
 
 
 
 
 
 
 
 kµ  
Figure 5.40: Variations produced in terms of k in the solution of T from DT at H=400 km 
on 24o square area with 0o.8 sampling interval in Test area #1 considering measurement 
and model errors. Tikhonov’s method is used. 
 
 
5.5.5     The k Factor in terms of Geometrical Configurations 
The value of k will depend mainly on model errors. We know that model errors tend to 
increase as the sampling interval gets larger (Figures 5.17 and 5.18), requiring more 
regularization and causing the k value to become larger. On the other hand, model errors 
will tend to decrease as we increase the area of integration (Figures 5.19 and 5.20). 
Therefore, the k value will tend to 1, as the area gets larger. Figures 5.41 and 5.42 support 
these facts. Figure 5.41 shows the relationship between k and the sampling interval for 
both data types, DT and DGD. Values of k using DT are relatively larger, going from 2.3 
at 0o.2 grid interval to 3.3 at 1o.2 grid interval; whereas, when using DGD, they increase 
from 1.7 to 2.6, respectively. Figure 5.42 shows the k dependency on area coverage for 
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both types of kernels, DT and DGD. For DT k decreases from 3.1 at 12o square to 1.7 at 
48o square. 
 
 
 
 
 
 
 
 
 

a)      b) 
                                degrees            degrees 

 
Figure 5.41: Plot of the k coefficient for the residual error in terms of sampling interval to 
find the best α  according to the L-curve with Tikhonov method using the DT and DGD 
kernel with configuration of area test #1. 
 
 
 
 
 
 
 
 
 
 

a)      b) 
                                degrees            degrees 

 
Figure 5.42: Plot of the k coefficient for the residual error in terms of area coverage to 
find the best α  according to the L-curve with Tikhonov method using the DT and DGD 
kernel Configuration of area test #1.  
 
 
The determination of the kµ  factor relating the residual’s norm that corresponds to the L-
curve corner with the residual’s norm than corresponds to bestα  was done with knowledge 
of the true solutions that allowed finding bestα . Since for actual situations the true 
solutions are not known, one can only hope that the use of kµ , obtained from these 
simulations based on the given geometrical configurations, will produce near optimal 
solutions. In order to further check the sensitivity of the kµ  factor, set of measurements 
was simulated with the same geometrical configuration used so far but centered at 
longitude 230o, being different from the data sets used to obtain kµ . The true k obtained 
was 1.22, and the additional error produced in the solution by using the previously 
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computed 2.3kµ =  instead of the true k was 0.3 m2/s2, which is about 0.02% of the 
solution signal. 
 
5.6     Regularization combined with B-Spline Smoothing 
Now, we stabilize the inversion process by combining Tikhonov type regularization with 
2-D B-spline smoothing. The justification of this method is the following. In principle, 
applying an appropriate smoother to the data or solution in order to remove of the high 
frequencies, which are contaminated by random errors, can do the job of regularization. If 
this is the case, we just apply the same smoother to the true solution and compare. 
However, there is a drawback for smoothers like B-spline, cubic splines and frequency 
domain smoothers. They tend to perform better with greater amount of data and higher 
data density. In many situations the available density and amount of data is not enough to 
achieve the desired accuracy with a certain amount of smoothing.  
  
 
 
 
 
 
 
 
 
 
 
 
 
     m2/s2            m2/s2 
 

resolution, degrees       resolution, degrees 
 
Figure 5.43: Errors from applying Tikhonov regularization with B-spline smoothing. For 
area test #1 grid of 24o square, 0o.4 sampling interval with DT and DGD. H=400km 
EGM96 (20-180) central 4o square. 
 
For our situation we wanted to use a smoother that can also be applied to the true values. 
Using B-splines the data is smoothed in a least squares sense. However, when applied to 
our systems, it was not enough to overcome the ill-posedness of the problem. Therefore, 
we have to combine it with some regularization to improve the performance. For the tests, 
this time, we used 0o.4 sampling interval since smoothing methods tend to perform poorly 
with less data density. In order to keep the same area as with previous tests we used a 
60x60 grid producing a system with computational requirements near the limits of the 
capabilities of a PC with respect to memory and speed. The system to solve involves the 
solution of 3600 unknowns. The method was applied to test area #1 and for both data 
type, DT and DGD. The solution errors obtained for 1o.2-1o.6 resolutions were about 1 
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m2/s2, which would corresponds to a 10 cm geoid with 150 km resolution. These results 
were obtained with both kernels, DT and DGD, see Figure 5.43. 
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CHAPTER 6 
 
 

DISCUSSION AND CONCLUSIONS 
 
In this study we have analyzed the feasibility of using in-situ GRACE measurements 
for local gravity field determination as an alternative to global solution methods, which 
yield solutions in terms of spherical harmonic coefficients. The method analyzed is 
based on integral inversion aided with regularization techniques. The observables 
considered are potential differences DT and the LOS component of the gravity 
disturbance differences DGD as they are given by equations (1.20) and (1.12) 
respectively. 

 

Both observables are affected by position, velocity and acceleration errors. With 
respect to position errors, the higher precision requirement is on relative position for 
DT. About 1 cm of relative positional accuracy will yield DT with 0.01 m2/s2 of 
precision. For velocities, the higher precision requirement is for relative velocity for 
both DT and DGD.  

 Using DT and DGD according to equations (3.8) and (3.21), respectively, the solution 
of the disturbing potential T at the Earth’s surface in spherical approximation can be 
obtained by integral inversion through appropriate discretization. For the operational 
altitude of the GRACE mission, which is projected to be 300-500 km, the process turns 
out to be very ill-conditioned mainly due to gravity field attenuation with altitude. For 
instance, the discretization of the associated kernels, for a 0o.4 interval regular grid 
over a 12o square area, will produce systems with condition numbers of about 

19 211 10 1 10x x−  for the GRACE operative altitudes. 

To some extend, the ill-condition of our systems is also affected by sampling interval 
and area coverage of the measurements. For the sampling interval of the tests made, the 
condition number increases as the sampling interval becomes smaller, ranging from 

208 10x and 219 10x at 0.2o sampling interval, respectively, for the DT and DGD kernels 
to about 188 10x  at 1o.2 sampling interval for both kernels (see Figure 5.2a).  However, 
for the range of sampling intervals considered in the Figure the instability of the 
systems was relatively the same. 
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In the case of size of integration area, the ill-condition increases with the area since, for 
a given sampling interval, more area means more points involved producing larger 
condition number. This fact is supported by Figure 5.2b. Using 0o.4 constant interval, 
the condition number varied from 181 10x  to 223 10x , respectively, for 4o and 24o square 
area for the DT kernel. On the other hand, the DGD kernel showed larger values, going 
from 191 10x  to 224 10x  respectively for the same grids.   

For a given grid of points being regular with respect to latitude and longitude, the ill-
condition tends to increase toward the polar regions due to the meridian convergence, 
which brings the points closer along parallels. Using the same configuration as for Figure 
5.1, the change of the condition number is relatively small in going from the equator to 
80o latitude for both kernels as seen in Figure 5.3. 
 
Data error requirements seem to be very demanding for downward continuation of both 
DT and DGD. The Tikhonov regularization method was applied for the following 
configuration a grid with 0o.8 sampling interval over a 24o square area at 400 km altitude. 
Measurement errors smaller than 51 10x −  m2/s2 are required to obtain errors of the level of 
1 m2/s2 with a relative error of about 10 %. Nevertheless, when using 0.01 m2/s2 
measurement errors the solution errors obtained were about 3 m2/s2 with a relative error of 
20 %, which indicates that the system is not too sensitive to measurement errors. These 
results can be appreciated in Figures 5.4 and 5.6.  

 
When considering model errors, large mean values of the solution errors were observed. 
For all the tests considered in Figure 5.14, the average of the solution errors mean values 
is 6 m2/s2. The average of the standard deviation and relative error are 5.9 m2/s2 and 23%, 
respectively. Thus, in the average the standard deviation was twice larger than in the case 
of only random noise. Similar results were obtained for the DGD kernel, for which the 
averages of the standard deviation and mean are 5.3 and 8.7 m2/s2, respectively. The mean 
value of the relative error was 24% (see Figure (5.15)). 

 
In the case of the edge effect, solution errors greater than 100 m2/s2 on the southern limits 
of the area with a total standard deviation of 48 m2/s2 were observed for the given 
configuration. This is also corroborated by Table 5.1 where some of the standard 
deviations corresponding to the total area are even larger than 48 m2/s2. 

 
Solution errors tend to decrease with lower data altitude. This can be appreciated on 

Figure 5.16, which displays the best solution of T obtained at different altitudes in the 
300-500 km range using DT and DGD measurements. In both cases, the errors varies 
from about 1 m2/s2 at 300 km to 3.5 m2/s2 at 500 km. The Figure also plots the errors for 
the total area which area considerably large, from about 40 m2/s2 at 300 km to 58 m2/s2 at 
500 km, mainly due to the edge effect. 

 
With respect to sampling interval the solution errors increase with the size of data 
interval. Disturbing potential values were estimated from DT values at 400 km altitude 
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with data over a 24o square area with different sampling intervals. Table 5.1 displays 
errors statistics. The standard deviation of the central area increases systematically from 
2.2 m2/s2 at 0o.2 interval to 3.5 m2/s2 at 1o.2 interval. As expected, more regularization is 
required with the interval reduction. The α  value also varies from 423 10x −  to 431 10x −  at 
0o.2 and 1o.2 respectively. Similar results were obtained for the DGD kernel. 

 
The third factor affecting the ill-condition analyzed before is the area coverage. For this 

factor, we considered three different area size; 12o, 24o and 36o square for 0o.8 interval. 
The ill-condition tends to increase with the area. Plots in figures 5.19 and 5.20 support 
this fact. In the first figure, we have the solution of T obtained from DT for 12o, 24o and 
36o square areas. The corresponding estimated errors were 3.6, 2.7 and 2.1 m2/s2. In the 
last figure we have the solution of T obtained from DGD. The corresponding error values 
were 4.7, 2.8 and 2.6 m2/s2.  
 
There are three types of interpolation involved in the geometric configurations employed 
in this study. They are interpolation to a regular grid in latitude and longitude, same 
altitude, and to the same intersatellite distance. Each interpolation will have an error 
associated. 
 
For interpolation to a regular grid in latitude and longitude, the errors associated were 
relatively small. Figures 5.25 and 5.26 show the errors in interpolating values of DT and 
DGD, respectively, to a grid of 0o.4 intervals using data from 30, 40 and 50-day Keplerian 
orbits. The interpolation was made with cubic spline approximation using Delaunay 
triangulation method. The errors obtained seem to decrease almost systematically toward 
the pole. However they stay within the same order of magnitude from the equator to 
latitude 80o. For example, with a 40-day orbit they range from 0.002 m2/s2 at the equator 
to 0.001 m2/s2 at latitude 80o. The improvement with latitude is expected since more data 
is generated in the polar region due to the meridian convergence, this is supported by 
Table 5.2. The improvement of interpolation with a 50-day orbit with respect to a 30-day 
orbit is significant. For instance, at mid-latitude a 30-day orbit will produce interpolation 
error of about 0.005 m2/s2, half of the measurement error adopted in this study, whereas a 
50-day orbit yielded about 0.001 m2/s2 interpolation error, which is 5 times smaller. 
  
For the other 2 types of interpolation made, LSC was used to interpolate the data to the 
desired regular configuration. Both types of observables, DT and DGD produced similar 
results. When considering data over a 12o orbital arc, interpolation errors to same altitude 
and distance were relatively small. The errors in interpolating to the same H are of the 
order of 41 10x −  m2/s2 for all latitudes considered on Table 5.3, whereas the error of 
interpolation to the same intersatellite distance was 42 10x −  m2/s2 at the equator and 

35 10x −  m2/s2 at 75o latitude. However, when considering data for a 10-day orbit the 
altitude of different orbital arc varied about 12 km requiring extrapolation of data. The 
extrapolation errors obtained, when extrapolating data of a 12o orbital arc to a different 
altitude, were up to 0.008 m2/s2 for 6 km extrapolation distance. 
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The inversion methods treated in chapter 4 were tested and their performance compared 
by employing three test areas with the same configuration described above, but different 
geographical location. The regularization methods were applied with both, DT and DGD 
for every test area. The methods that performed better were: The Tikhonov methods, the 
damped singular value decomposition methods (DSVD), the conjugate gradient method 
(CG) and the 1-D FFT with Tikhonov methods. 
  
We could say that these 4 methods yielded the same level of errors when considering only 
random errors for test area #1, see Tables 5.5 and 5.6. The errors were about 2.5 m2/s2 in T 
with 0.8 resolution with relative error of 23%. Next, the methods were applied for the 3 
test areas considering model errors. From the results, which are displayed in Tables 5.7-
5.12 we could conclude the following. Overall, Tikhonov method performed better than 
the other 3 methods for the given tests. This method did not produced the largest error in 
any of the tests and, on the other hand, produced the smallest error in almost all the tests.  
The other three methods could be considered to yield similar results among them. The 
projected Landweber iteration method applied to 1-D FFT did not offer any improvement 
in the solution. Convergence was never achieved for the tests considered. 
 
One important aspect for the regularization methods is to find the best regularization 
parameter. Two popular methods considered here are the discrepancy principle and the L-
curve method. The discrepancy method was tried for the Tikhonov, DSVD and 1-D FFT 
combined with Tikhonov regularization methods and gave poor results. No convergence 
could be achieved toward the optimal regularization even when starting with a good 
approximation of α . The L-curve method, which can be applied to Tikhonov, DSVD and 
the 1D-FFT with Tikhonov method, yielded good results when considering only random 
errors. The corner of the curve was sharp enough and the residual’s norm corresponding 
the best α  was relatively near the L-curve corner. The additional error on T produced by 
using the cornerα  instead of the bestα  was about 0.2 m2/s2 for test area #1 using both DT and 
DGD. Figure 5.27a displays the L-curve plot obtained when considering only random  
errors, using DT as measurements. However, when considering model errors, the method 
did not perform as good. The additional error on T produced by using the cornerα  instead 
of the bestα  was about 5 m2/s2. This may be due to the severe presence of model errors, 
specifically the edge effect. A couple of problems were found when searching for the best 
α  with the L-curve in the presence of model errors. One problem was that around the 
corner region the curve is not smooth enough to determine the right position of the 
corner. Figure (5.29) display the L-curve obtained when contemplating random and 
model errors and considering only the central area. The other problem found was that the 
best α  does not correspond to the norm value related to the corner of the curve. It is 
displaced to the right of the corner. This is most likely due to the extra regularization 
required by the model errors. 
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A geometry adaptive method was employed to find the best α . The method consists of 
determining a k parameter that relates the residual norm corresponding to the corner of 
the L-curve with the residual for to the best α , according to equation (5.3).  
 
The additional errors in the solution produced by the uncertainty of the estimated of k 
were relatively small. The statistics for k are; 2.3, 0.9k kµ σ= = . The average of the 
variations in the solution and the relative variation are 1.6 m2/s2 and 4.3% respectively. 
Slightly better results were obtained when using DGD values. The average of the 
variations in the solution and the relative variation are 1.3 m2/s2 and 4.0% respectively.  
When applying the method to DSVD method even smaller errors were obtained. The 
results are displayed in Figure 5.33. The mean variation on the solution is 0.4 m2/s2 and 
the mean relative solution variation is 2.6%. The k statistics were 6.8, 2.5µ σ= = . 
 
Apparently, the value of k depends mainly on model errors. We know that model errors 
increase as the sampling interval gets larger. This will also require more regularization to 
reduce the effect of the measurement error in the solution making the k value larger. On 
the other hand, model errors will be reduced as we increase the area coverage. Therefore, 
the k value will tend to one, as the area gets larger, see Figures 5.38 and 3.39. 
 
For the CG method, the role of regularization parameter is played by the iteration number 
so, the task here is to find the optimum number of iterations. This number was more 
difficult to find. The k value to determine here is defined according to equation (4.78). 
The same data sets as for the Tikhonov and DSVD methods were used. The additional 
errors in the solution produced by the uncertainty of the estimated of k were relatively 
large. The average variation in the solution was 4.9 m2/s2 and the average relative 
variation was 24%. These values are of the same level of solution errors themselves. 
Moreover, even when considering only measurement errors, the uncertainty of k yielded 
unacceptable results. 
 
Finally, we applied Tikhonov regularization combined with B-spline smoothing. The 
method yielded smaller errors using the above configuration but with 0.4o sampling 
interval. An error of 1.2 and 1.1 m2/s2 from DT and DGD, respectively, for 1.2o length 
resolution. The corresponding relative error was about 10%, see Figure 5.40. This could 
potentially produce about 10 cm geoid for about 150 km resolution. 
 
Some recommendations for future studies are: To further analyze the performance other 
methods to find the best α  as well as the best number of iterations for the CG method. 
The empirical L-curve method proposed here was found to produce up to 10% additional 
error in the solution. Further research should concentrate on refining the empirical 
relationship, like using the solution norm and the residual norm in a combined way rather 
than only the residual norm.  
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Another possible line of investigation could be to apply, either to the measurements or to 
the solution, other smoothing method like low-pass filters, Gaussian kernel etc, in order 
to reduce effect of measurement errors on the solution. 
 
Effects of model errors have been found to be of concern. One way to reduce them is to 
employ data over larger area, which implies to use more data producing larger inverting 
matrices. The use of the 1-D FFT inversion, which allows the use of more data than 
conventional regularization methods, can also be further investigated. 
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