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Automatic Recognition and Location of Civil Infrastructure Objects Using Mobile 
Mapping Technology, Neural Network and Markov Chain Monte Carlo 

 

1 Introduction 
 
Information technology is increasingly used to support civil infrastructure systems that are large 
complex heterogeneous, distributed, dynamic systems including communication systems, roads, 
bridges, traffic control facilities, and distribution of water, gas and electricity. One of the most 
important data sources for such systems is updated spatial locations, physical conditions, and 
other attributes of infrastructure objects. The new technology of mobile mapping systems 
integrates GPS receivers, INS (Inertial Navigation System), and stereo CCD (Couple Charged 
Device) cameras on a mobile platform, such as a van, for rapid high quality spatial data 
acquisition. Infrastructure objects appearing in georeferenced mobile mapping image sequences 
can be measured on computer screen and their 3-D ground locations are calculated from 
measured 2-D image coordinates using a photogrammetric model. 
 
The mobile mapping technology has been explored in Li (1997) and Tao (1997) and has been 
used in industrial to obtain spatial information about features in a much faster and easier way than 
traditional methods. The capture of stereo image sequences with georeference data is performed 
in a quite automatic fashion, the measurement of objects, however, is still far away to be full 
automation. This is because the 3D object recognition in intensity images, which has been studied 
in literature for many years, is yet unsolved and there are still many related researches going on. 
 
In this article, a framework of 3D object recognition system is proposed and some existing 3D-
Object recognition systems are discussed. We found out that most existing object recognition 
systems fit this framework. Under this framework, a new system using Multilayer Hopfield 
Neural Networks is proposed followed by our observation that this structure is a special case in 
Gibbs model that recognizes objects in stochastic relaxation.  A novel system that integrates top-
down and bottom-up methods by MCMC (Markov Chain Mote Carlo) to recognize traffic lights 
in color images is then developed. 
 

2 Object Recognition Framework and a literature review 
 
There are many 3D object recognition systems existing in literature already. We may characterize 
such systems with five aspects as the following: 
 
1. Scene acquisition 
There are many different kinds of sensors, e.g. acoustic, radar, laser, machine vision, available 
and most of them fall into two categories, active sensor or passive sensor. Active sensor like laser 
gives us depth information from the time interval between a sensor sends out a laser and it 
receives the bounded one. Passive sensor like CCD camera just records intensity value that 
objects show at every position. 
 
2. Model acquisition 
If very limited number and types of objects are going to be recognized in a system, we generally 
have the assumption that these types of objects are available. However, if we want to detect many 
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different types of objects as to allow our system to learn how to recognize innovative objects then 
same acquisitions as scene acquisition are available. 
 
3. Scene representation 
The representations of scene are different in different systems. Range data gives us 3D 
coordinates of the world that an active sensor lives in and intensity image data gives us illuminant 
of the world that a passive sensor lives with. 
 
4. Model representation 
There are many different types of model representations that lead to either object-centered or 
view-centered approach, which is a long-term debate in literature. We will give a detailed 
discussion in the later section. 
 
5. Matching strategy 
In McCane, three 3 predominant matching approach are proposed by the author as: 

• Graph matching approaches 
• Feature indexing / hash tables 
• Evidence / rule based approaches 

The method we are proposing here tries to combine them all together as solve a MAP (maxim a 
posterior) problem. 
 
The final goal of any object recognition system is to interpret every object that stands in the data 
set that sensors acquire. It’s still a long way to go to finally reach this point. Since methods in 
scene acquisition and model acquisition are quite traditional and scene representation is 
determined by what kind of sensor is used, let’s focus on model representation and matching 
strategy that tell apart different systems and control the quality of each ORS (object recognition 
system). We will discuss mainly on the recognition of objects in intensity image because the data 
captured by MMS (mobile mapping system) is color image sequences which are typical intensity 
images with georefenced information. Actually, most available systems in literature are based on 
intensity images as well. 
 
We are trying to simulate the way that human being are using in interpreting the scene where they 
live in. The stereo system that human being are using runs very fast and accurate to some extent 
to allow people survive in struggling in environment.  The question “How are 3D objects 
represented in human visual system?” (Bulthoff et al. 1994) is the major problem we should ask 
in the visual system. Different answers to this question lead to different model representations 
and thus lead to different approaches. There are two possible answers to this question: viewpoint 
invariant and viewpoint dependent, which yield object-centered and view-centered approaches 
respectively. Viewpoint invariant answer says that people actually store in brains with viewpoint 
invariant properties, which could be used to match with invariant properties extracted out from 
2D image. Bergevin and  Levine (1993), Clemens (1991), Jacobs (1992), Lamdan et al. (1990), 
Lin et al. (1991), McCane (1996), Nagao and Grimson (1997), Shufelt (1996), Slater and Healey 
(1996), Slater and Healey (1997) and Wong et al. (1989) all tried to capture invariant information 
from 2D image and use them to match 3D object. In this approach a list of invariant properties, 
either photometric or geometric, are extracted to match those rooted in 3D object. Korn and Dyer 
(1987), Pontil and Verri (1998), Seibert and Waxman (1992) and Ullman and Basri (1991) 
instead use multiple views of 3D object following view-centered theory to match 3D objects. 
Template matching is an old and well-known technology that could be used in view-centered 
approach but it’s impossible to compare 2D image with infinite number of views of object using 
simple template matching. Dickinson et al. (1991) gave a very nice framework of how to 
recognize objects through multiviews. In Bulthoff et al. (1994) the authors made a very good 
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point saying that if an object-centered reference frame can recover object independently of its 
pose, then neither recognition time nor accuracy should be related to the viewpoint of the 
observer with respect to the object. If instead model is represented as viewpoint depend as long as 
complexity scales with normalization and transformation both recognition time and accuracy 
should be systematically related to the viewpoint of the sensor with respect to the object. The 
author also made the conclusions from psychophysical and computational studies that human 
encodes 3D objects as 2D multiple viewpoint representations and subordinate-level recognition is 
achieved by employing a time-consuming normalization process to match objects seen in 
unfamiliar view points to familiar stored viewpoints. Poggio and Edelman proposed a network 
that learns how to recognize objects from sets of 2D view through regularization network using 
this idea. Because the matching of 3D invariant properties between a 3D model and 2D scene is 
faster than the matching between number of 2D images of a 3D model viewed at different poses 
and 2D scene. We argue here that although view-centered approach is the final way human uses, 
3D invariant properties are still used to guide visual system to tell how likely a model will be 
given a 2D scene. 
 
Dickinson et al. (1991) proposed a model representation hierarchy that separates 3D models into 
finite number of primitives that are further decomposed into aspects, faces etc. We here expand 
this hierarchy into a more general framework that will be consistent with most existing ORS. 
 

Invariant
properties

Invariant
properties

Invariant
properties

Invariant
properties Invariant

properties
Invariant

properties Invariant
properties

Intensity Image

Layer 6:
3D models

Layer 5:
3D primitives

Layer 4:
Major aspects

Layer 3:
Faces

Layer 2:
Grouped line

segments

Layer 1:
Original
image

Top-down Bottom-up

 
Fig. 1. The framework of a model representation. Layer 6 is the detailed 3D model descriptions from which 
3D invariants, either photometric or geometric, could be extracted. Each model is thought to be made of 
several 3D primitives from which 3D invariants could be extracted in layer 5. Each 3D primitive can be 
further decomposed into many major aspects, which are 2D projections of 3D objects in layer 4. In layer 3 
we show that combinations of different faces made different aspects. Faces in layer 3 are decomposed into 
grouped line segments in layer 2. In layer 1 intensity image may be made of both line segments and faces 
directly. Self-occlusion and occlusion within each layer are expressed implicitly. Going from layer 1 to 
layer 2 is called edge detection and perceptual organization. Going from layer 2 to layer 3 is called line-
based segmentation while going directly from layer 1 to layer 3 is called region-based segmentation. The 
process starting from layer 1, original intensity image, followed by edge detection, segmentation, 
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perceptual organization and matching is called bottom-up approach. The process worked the other way 
around starting from layer 6, 3D model, followed by decompositions and verifications is called top-down 
approach. 
 
Fig. 1 gives a general framework of model representation into which many existing 3D object 
recognition systems can be fitted. Different systems may have different jumps from one layer to 
another leading different complexity and flexibility. Dickinson et al. gave a detailed comparison, 
in primitive complexity, model complexity, search complexity, etc., among different systems. 
They showed us that 3D volumetric primitive representation method has the best overall 
performance. 
 
Drew et al. (1997), Funt and Finlayson, (1995), Nagao and Grimson, (1997), Slater and Healey, 
(1996), Slater and Healey, (1997) and Stricker (1992) were typical bottom-up methods that 
mainly used photometric, specially color, invariant properties going from layer 1 directly to layer 
6 to match objects. Some of them may use a little help of geometric invariant properties that may 
improve the accuracy and robustness of their systems. The use of photometric invariants as 
indexing greatly improves the speed of ORS because no time is spent in segmentation, 
organization and final matching. This strategy, however, suffered the problems that only one 
object should be present in the scene, 2D image of object can’t change too much at different 
views and no further verification is applied. 
 
Poggio and Edelman proposed a famous neural network system, GRBF (Generalized Radial Basis 
Function), which was trained how to recognize scene in neural networks. Although the learning 
method was very good it still suffered the same problems as those in the above. 
 
Pontil and Verri, (1998) used a new technology called Support Vector Machine going from 
original image to 2D projections of 3D object at different poses to match 3D object. This is again 
a bottom-up method. Different images of many objects at different poses were stored in database 
and every pixel of input scene was feed to the Support Vector Machine as a property in one 
dimension. Given an image with the size M×N , the recognit ion will find which is the one stored 
in database that is nearest to input scene in the M×N dimension space. Although this system ran 
very fast it suffered the same problems as stated in the above systems. 
 
Lin et al. (1991) was a bottom-up method that used extracted regions and vertices to match with 
3D model in Hopfield Neural Networks that considered 3D invariant properties as constraints 
among neurons. This system was processed in a hierarchical manner as bottom-up object-
centered method. It, however, suffered many problems as: region and vertices correspondences 
are not processed at the same time, regions may not that easy to be segmented out from real 
images, global minimization can not be guaranteed to be approached and neuron connectivity 
matrix is extremely large when the number of model and scene regions is large. Suganthan et al. 
(1995) used Hopfield networks in recognizing 2D object as graph matching. Young et al. (1997) 
used a mutilayer Hopfield networks to recognize 2D object at different scales. 
 
Ullman and Basri (1991) claimed that 2D coordinates of a 3D object under one view could be 
represented by the combination of two coordinates at other two different views. Alignment was  
used  to match object within scene in their method. 

Lamdan et al. (1990) used affine invariant properties as indexing to recognize objects. Wong et 
al. (1989) expressed 3D object model as attributed Hypergraphs and were trying to match 
extracted features with object model as labeling in attributed graphs. This was a bottom-up 
method as object-centered approach. Attributed information helps a lot in matching and we will 
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see later this idea could be generalized in stochastic relaxation where attributes are defined on 
cliques. 
 
Seibert and Waxman (1992) used multiview approach as a view-centered method that learns 
incoming novel views which made this system a typical view-centered method. 
 

3 A Mutilayer Hopfield Neural Netowrks  
 
Following the ideas of Lin et al. (1991), Suganthan et al. (1995) and Yong et al. (1997), we 
propose a new mutilayer Hopfield networks that recognize 3D object in 2D image as a bottom-up 
approach that compares 3D invariant properties of 3D model with those of extracted features. 
 

Original Image

3D Model

Extracted
edge

segments

Extracted
regions

Mutilayer Hopfield
Neural Networks

 
Fig. 2. The structure of a mutilayer Hopfield network. Edge detection and 
segmentation are applied to original image. 3D invariant properties of model and 
extracted features are compared simultaneously in the network.  

 
3.1 Single Layer Hopfield Neural Network 

 

Object recognition by graph matching, also referred to as morphism, is a mapping from a scene 
graph to a model graph. The morphism can be categorized on the basis of the constraints that are 
enforced during the mapping as follows: when the mapping is one-to-one and onto, it is an 
isomorphism; when it is one-to-one, it is a monomorphism; and when it is many-to-one, it is a 
homomorphism. Figure 3 gives a basic framework of the Hopfield neural network.  
 

Model 1

Model 2

Input featuresk

i

Input
features

Model 1

Model 2

 
Fig. 3. Neuron states and candidate model-input features correspondence. 
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Each dot in the matrix represents a neuron that stands for similarity between one input feature and 
one feature of the candidate model. Its state (1 meaning absolutely similar and 0  meaning totally 
different,) can be determined when the minimization of the energy function is reached. 
 
Energy function 
 
We use a top-down strategy to achieve object recognition. The problem is treated as an 
optimization problem, where the correct answer is given when a global minimized energy state is 
reached. Let ikC1  and ikjlC2  be unary and binary similarity measure respectively. The energy 
function is 
 

+−+−= ∑ ∑∑∑∑∑
i k

ik
i k j l

jlikikjl VBVVCAE 2)1(

.)1( 2 ∑∑∑∑ ∑∑∑∑
≠≠

×+−+×
k i ij

jkik
k i

ikil
i k kl

ik VVEVDVVC      (1) 

 
The neuron state, ikV , converges to 1.0 if the model feature i  matches the input image feature k  
perfectly, otherwise, it is equal or close to 0. Thus, the first term measures similarity between the 
model and image features. The second term ∑ ∑−

i k
ikV 2)1(  implies that the final states of neurons 

in the same row add up to 1, and the third term ∑∑∑
≠

×
i k kl

ilik VV confirms that there is at most one 

neuron that has a value greater than 0 in each row. This means that only one input image feature 
matches with each model feature. The forth term ∑ ∑−

k i
ikV 2)1(  implies that the final states of 

neurons in the same column add up to 1, and the fifth term ∑∑∑
≠

×
k i ij

jkik VV  confirms that there is at 

most one neuron that has a value greater than 0 in each column. That means that each input image 
feature matches with only one model feature. Combining the second term ∑ ∑−

i k
ikV 2)1(  with the 

third term ∑∑∑
≠

×
i k kl

ilik VV  gives a solution that forces each model feature to match only one input 

image feature. Similarly, combining the forth term ∑ ∑−
k i

ikV 2)1(  with the fifth term 

∑∑∑
≠

×
k i ij

jkik VV  gives a solution that guarantees each input image feature will match only one model 

feature. The determination of coefficients A, B, C, D and E depends on how strictly the unique 
matching conditions should be implemented. Different values of in Equation (1) apply to various 
cases of our tasks. For monomorphism, coefficients B, C, D and E are assigned with high values 
based on the assumption that one model feature will uniquely match one input feature. The final 
solution yields a one-to-one mapping. In the case of homomorphism, coefficients B and C are 
assigned with low values (even zero) based on the assumption that one model feature will match 
several image input features.  
 

The following is a detailed discussion on the single  layer Hopfield neural network. Let ikjlC  
denote similarity/disparity between a model feature pair ),( ji  and an input image feature pair 

),( lk . It is then represented as:  
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211
ikjljlikikjl CCCC ++=  .          (2) 

 
where 
 

∑
=

=
1

1

111 ),(
N

n
kninnnik yxfwC          (3) 

 

and ∑
=

=
2

1
ln

222 ),(
N

n
kijnnnikjl yxfwC .        (4) 

 

In the above equations 1
ikC  and 2

ikjlC  represent unary and binary similarity respectively. 1
ikC  

encodes compatibility between model feature i  and input feature k , and 2
ikjlC  encodes 

compatibility between the correspondence of the model feature pair ),( ji  and that of the input 
feature pair ),( lk . f is a similarity-measuring function and weighted by w that meets the condition   
 

∑ ∑
= =

=+
1 2

1 1

21 12
N

n

N

n

nn ww .         (5) 

 
Output function 
 
For neuron i, if its charge is ui that is computed in the energy minimization, its neuron state 
output is represented as 
 

Tuii ie
ugv

/1
1)(
−+

==          (6) 

 
T is the “temperature” (an annealing term) that determines the speed and quality of the final 
solution. A very large value of T will cause neuron values to be 1, while a very small a value will 
drive the network to a local minimum state, or a slow convergence. An annealing process keeps 
the value of T large at the beginning and reduces the T value as iteration progresses. This is 
important for achieving a global minimum and a fast convergence. 
 
Initialization 
 
The initial values of neuron states can be chosen randomly as described in Lin et al. (1991). The 
network may converge to a local minimum state. As stated above, an annealing process may 
overcome this problem. However, ikC  may be calculated and used as a byproduct to set the initial 
neuron states as  
 











<

>>

>>

= ∑
∑ ∑

∈
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1111
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ik
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where { }0| 1 >iki CkisS  and ∑
=

=
1

1

N

n
nww .  

 
Combining matched features 
 
After iterations using homomorphism, each neuron reached its final state 

ikV . Those final states 
close to 1 yield matches between corresponding input image features with model features. 
However, there is still a need to put the matched features to form object(s). The following 
procedure combines the features under the assumption that there are N  features forming an 
object. 
 
a) Establish N sets of { } NiVkS iki ,...,1,1| =≈= . Each set contains all the input features that matched 
the corresponding model features. 
b) Establish an empty set Q. 
c) Set i  to be 1. 
d) For each 

iSk ∈  we get iikik SkVm ∈= ,  if Q is empty, otherwise ∑
∈

+=
Qlj

jlikikjlik CCm
),(

)( . Find the 

feature nk  that satisfies 
pn ikikip mmSk ≥∈∀ , , add ),( nki  to Q.  

e) If Ni = , one object is recognized and detected, go back to step a); otherwise, 1+= ii  and go back 
to step b). 
 
3.2 Multilayer Hopfield Neural Netowrk 

 

1i
1k

2i
2k

ikjlC ikjlC

21
1122 kikiB

12
2211 kikiB

Line
Pattern

Region
Pattern

 
Fig. 4. Two-layer (line pattern and region pattern) Hopfield 
neural network 

 
Fig. 4. shows the structure of a two layer Hopfield network that comparison 3D invariant 
properties of line segments and regions simultaneously. Matching of line segments will give 
supports to the layer of regions, and vice versa. This new algorithm changes the method that 
matches object in hierarchy ways into parallel approach with more robustness and  parallelism.  
Connections among neurons in each single layer are fully dependent on geometric and 
photogrammetric constraints and are fixed before the initial iteration. During iterations the 
interconnections between the two layers vary. Let 1L  denote layer 1, which is a line pattern layer, 
and 2L  denote layer 2, which is a region pattern layer. We thus have an energy function  
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( ) ( )2211 LELEE += .         (8) 
 
where ( ) ( ) ( )2112111111 ,, LLELLELE +=  and ( ) ( ) ( )1221222222 ,, LLELLELE += . ( )1111 ,LLE  and ( )2222 ,LLE  
are same as the terms in Equation (1). The energy relevant to interlayers are  
 

2211

1 1 2 2

2211

12
112 2

1
kiki

i k i k

kiki VVBE ∑∑∑∑





−×=α        (9) 

 

1122

2 2 1 1

1122

21
221 2

1
kiki

i k i k

kiki VVBE ∑∑∑∑





−×=α .      (10) 

 

2211 kiki
12B  is a connectivity variable from neuron ( )11,ki  in layer 1L  to neuron ( )22,ki  in layer 2L .  

1122

21
kikiB is a similar term. They change dynamically during iterations. We also 

have
11222211

2112
kikikiki BB ≠  because contributions from one layer to another layer are non-symmetric. 

Using energy function (11), we can recognize the objects when a global minimized energy value 
is achieved. 
 















=∈




 −×−
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 −×

=
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B ki
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0

1
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1

22

0
2
1

22

221

221

12
22

22

2211
      (11) 

The connectivity term contributes when a model region is a truck top and an input line belongs to 
an input region or when the model region is a truck shadow and the input line belongs to an input 
region. Similarly, 

1122

21
kikiB  is defined as 

 















=∈





 −×−

=∈




 −×

=

otherwise

iandkAreakLineifV

iandkAreakLineifV

B ki

ki

kiki

0

1
2
112

0
2
1

12

221

221

21
11

11

1122
     (12) 

 
In this method, a Multilayer Hopfield Network is used to solve labeling problem which is actually 
thought as optimization problem. Because of the structure of Hopfield network, it suffers the 
following shortcomings: 
 
1. Even with careful selection of initial values it’s difficult for to the system to jump out of local 

minimal energy status. Since we can tell the similarity between input scene and model only 
by traveling to the global minimization, the fail of reach to global minimal energy status will 
lead to the fail of the system. 
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2. ijklC , 2211
12

kikiB and 1122
21

kikiB , as four dimensional matrix, are very expensive to compute and 
store when the number of features extracted from scene and features in model goes to a large 
number. 

 

4 Gibbs Distribution and Stochastic Relaxation Labeling 
 
Gibbs distribution, MRF (Markov random field) equiva lence, introduced by Geman and Geman 
(1984) receives enormous attentions in both low-level image analysis, e.g. image restoration, 
edge detection and clustering, and high-level image analysis, e.g. motion tracking and object 
recognition. As a probability distribution, it also has wide applications in other fields like 
reliability analysis, medical data analysis etc.  
 
In both low-level image analysis and high-level image analysis, we can always generalize our 
problems as NXY +Φ= )( , where Y  is the received data, X  is the true data, N  is the noise 
staying with Y  and Φ  is either a linear function or nonlinear function that projects data in 
domain of X to range of Y . Image restoration tries to find the original image X  given degraded 
image Y where Φ  is a linear one-to-one mapping; Edge detection tries to find edges X appearing 
in image Y ; Image segmentation tries to find regions X standing in image Y ; Motion tracking 
finds the real coordinate,X of an object at each time given image sequenceY ; Object recognition 
detects the most possible object X in model database that generates given image Y. Each of the 
above problems, either low-level image analysis or high-level image analysis, falls into 
estimation problems. The beauties of Gibbs distribution, local property, convergence property and 
annealing etc.  make it possible and much easier to solve the above problems. 
 
As in Winkler (1995), they gave a definition of Gibbs distribution as follows. 
 
Definition of Random Fields 
 
Let S be a finite index set – the set of sites; for every site Ss ∈  let sX  be a finite space of states 

sx . The product ∏ ∈
=

Ss sXX is the space of configurations Sssxx ∈= )( . We consider 

probability measures or distributions Π  on X , e.g. vectors Xxx ∈Π=Π ))((  such that 

0)( ≥Π x and ∑ ∈
=Π

Xx
x 1)( . Subsets  XE ⊂  are called events; the probability of an event 

E is given by ∑ ∈
Π=Π

Ex
xE ).()(  A strictly positive probability measure Π  on X , e.g. 

0)( ≥Π x  for every Xx ∈ , is called a stochastic or random field. 
 
Definition of neighborhood system and cliques 
 
A collection { }Sss ∈∂=∂ :)(  of subsets of S  is called a neighborhood system, if )()( ssi ∂∉  
and )()( tsii ∂∈  if and only if )(st ∂∈ . The sites )(ts ∂∈  are called neighbors of t. A subset 
C  of S is called a clique if two different elements of C  are always neighbors. The set of cliques 
will be denoted by C . We shall frequently write ts,  if s and t are neighbors of each other. The 

neighborhood relation induces and undirected graph with vertices Ss∈ and a bond between s 
and t if and only if s and t are neighbors. Conversely, an undirected graph induces a neighborhood 
system. The 'complete' sets in the graph correspond to the cliques. 
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Fig. 5. Different cliques. 
 
The random field Π  is a Markov field w.r.t. the neighborhood system ∂  if for all Xx ∈ , 

)).(,|(),|( srxXxXsrxXxX rrssrrss ∂∈==Π=≠==Π  
 
Definition of Potential 
A potential is a family { }SAU A ⊂: of functions on X such that 

(1) 0=φU  

(2) )()()()( yXxXifyUxU AAAA ==  

The energy of the potential U  is given by ∑
⊂

=
SA

AU UH . Given a neighborhood system ∂  a 

neighbor potential w.r.t. ∂  if 0=AU  whenever A is not a clique. Potential defines energy 
functions and thus random fields. 
 
Gibbs distribution: 

∑
∈

−
−

=Π

Xz

zH
xH

x
))(exp(

))(exp(
)(         (13) 

where Π  is Gibbs field and H is the energy function. A random field Π  is a Gibbs filed or Gibbs 
measure for the potential U  and H is the energy UH  on a potential U . If U  is a neighbor 
potential then Π  is called a neighbor Gibbs field. 
 
MRF relaxation labeling 
 
To overcome the shortcomings of our mutilayer Hopfield network, we use a neighborhood Gibbs 
field to solve the same problem as we proposed in the last section. The system approach is the 
same as Fig. 2 while the neural network is instead replaced by MRF. Modestino and Zhang 
(1989) proposed a basic MRF approach for scene labeling. Li (1996) extended Modestino and 
Zhang ‘s idea and gave an approach how a basic labeling problem could to solved as MAP 
(Maxim A Posterior) of the MRF. 
 
Suppose we have a set of extracted line segments }1|{ 1

1 miLS iL Λ== where 1m  is the number 

of line segments and a set of extracted regions }1|{ 2
1 miRS iR Λ==  where 2m  is the number of 

regions. A given model are line segments }1|{ 1
2 njlS jL Λ== where 1n  is the number of line 

segments and the set of extracted regions }1|{ 2
2 njrS jR Λ==  where 2n  is the number of 

regions. There are two kinds of cliques, first order, which corresponds to unary similarity in 
Hopfield network and the second order, which corresponds to binary similarity in Hopfield 
network. 
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Fig.6. Label extracted regions and line segments with model line segments and regions 
 
The first order cliques are as: 
 

}|}{{ 11
1 LSiiC ∈= and }|}{{ 12

1 RSjjC ∈= . 
 
The second order cliques are as: 

},|},{{ 21
1

2121
1
2 iiandSiiiiC L ≠∈= , },|},{{ 21

1
2121

2
2 jjandSjjjjC R ≠∈=  and 

},|},{{ 11113
2 RLRL SSandSjSijiC ∈∈∈= . 

 
Suppose random field F  is a mapping lL →  and ji lf =  when iL  is labeled with jl . Suppose 

random field G is a mapping rR → and ji rg =  when iR  is labeled with jr . 

Let’s define: )(1
ifD  = similarity of iL and jl  if ji lf = , )(2

igD  = similarity of iR  and jr  if 

ji rg = ; ),( 21
1

ii ffV  = similarity of ),( 21 ii LL  and ),( 21 jj ll  if 11 ji lf =  and 22 ji lf = , 

),( 21
2

ii ggV  = similarity of ),( 21 ii RR  and ),( 21 jj rr  if 11 ji rg =  and 22 ji rg = , and 



 ∈

=
otherwise

gf
gfT ji

jiji 0
1

),(, . 

 
The energy defined on cliques then becomes  

),()()(),( 321 gfHgHfHgfH ++=       (14) 

where ∑∑
∈∈⊂∈⊂

+=
1
2

1
21

1
2

1
11

1
1 2,1,

2,1
1

2,1
,

1
1 )()()(

CiCiSC
iiii

CiSC
ii fVfDfH ,     (15) 

∑∑
∈∈⊂∈⊂

+=
21
2

2
21

2
2

2
11

2
1 2,1,

2,1
2

2,1
,

2
2 )()()(

CiCiSC
iiii

CiSC
ii gVgDfH ,     (16) 

and ∑=
3
2

3
2

),(3
C

C
TkgfH         (17) 

Given the above energy defined on cliques, we thus have the probability 
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∑ −
−

=Π

gf

BgfH
BgfH

GFY

,

)/),(exp(
)/),(exp(

),|(        (18) 

where random field Y is the given extracted features. 
 
The posterior probability is then 

)(
),(),|(

)|,(
YP

GFPGFY
YGFP

Π
=        (19) 

where ),( GFP is the prior probability labels. 
 
For a given scene, )(YP is fixed and our final goal is to find the maximal value of 

),(),|( GFPGFYΠ  as the solution of MAP. The detailed description of how to travel on this 
probability space as Markov Random Chain will be discussed in the next section. 
 
Compared with mutilayer Hopfield network, this MRF approach can be guaranteed to find the 
maximal probability, in other words, the minimal energy status. Hopfield network here is only a 
special case of MRF approach when ),( GFP  is identical every where in the domain of 

GandF and EGFH =),(  where E  is the energy in equation (8). 
 

5 Integrating Top-Down and Bottom-up Processes by Markov Chain Monte Carlo for 
Object Detection 

 
In this section, a new object recognition system that uses an integrated top-down and bottom-up 
process by Markov Chain Monte Carlo is introduced. 
 
5.1 Problem definition 

 
The data we get from mobile mapping system are image sequences with georeferenced 
information, which are exterior orientation parameters and interior orientation parameters. 
 

`

CCD cameras

GPS

INS

`

 
Fig.7. The basic mobile mapping system that has two CCD cameras, left and right, one INS 

(Inertial Navigation System ) that measures orientation of the van and one GPS (Global Positioning 
System) that measures ground coordinates of the van. 
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(a) Left image sequences  (b) Right image sequence 

Fig. 8. Color image sequence taken by Mobile Mapping System. They are used as our input data in 
which civil infrastructures, e.g. traffic lights, stop signs , etc., are going to be recognized. 

 
 
5.2 General approach 

 

  
Fig. 9. Traffic light image pieces cut from color image sequences with size of 30X40 and 20X30 

respectively. 
 

Color Image

3D Model

Hypothesis regions

Edge detection Segmentation

Matching

 
Fig. 10. A general framework for recognition of traffic signs in color image. 

 
There are many civil infrastructure recognition systems existing in literature, most of which are 
designed for the purpose of autonomous driving. In Salgian and Ballard (198) color values and 
steerable filters are used in simulated scene to find traffic signs. The methods they proposed is 
quite simple since they are designed for on-line driving and won’t work in real image sequences. 
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In Yuille et al. (1998), seeded regions that have similar color as models are picked and grown to 
hypothesis regions in which geometric information like edges are detected followed with 
matching between extracted boundaries and those of models. The system we design could be off-
line instead of on-line to recognize traffic signs correctly and capture their spatial information 
accurately. The real image sequences we have are quite noisy where simple methods won’t work. 

5.2.1 Edge detection in color image  
 
Edge detection methods have been studied in literature for quite many years and different edge 
model and different criterions lead to different edge detection algorithms. Many edge detectors, 
e.g. Canny, Log, Snake etc., are available to detect edges in gray value image. Finding edges in 
color image, however, is more complicated than in gray image. This is because we are looking for 
2D edge points ),( yx in color image that has three bands and each of which has its corresponding 
edge map. In other words, each pixel in color image is a 3D vector, which will stay, under 
different considerations, in different 3D spaces, e.g., [ ]BGR , [ ]VUY  etc. The procedure 
to find edges thus is a mapping from 3D space, color image, to 2D space, edge map. Lee and Cok 
proposed a new method to detect boundaries in vector field which gives a solution that extracts 
edge map in color image. 
 
Suppose each pixel in color image is denoted as ]),(),(),([ ′yxwyxvyxu whose partial 
derivative matrix along x and y can then be denoted as  
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The matrix DDT  is denoted as 
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The largest eigenvalue λ  and its corresponding eigenvector g of DDT are the gradient 

magnitude and the gradient direction at each edge point respectively. We can compute λ  as 

( ))(4)(
2
1 22 tpqqpqp −−+++=λ       (21) 

and thus have g  as 
 









−
==

===

=
otherwisept

qandtt

qtpvectornormalizedany

g
T

T

],[
0],[

0

λ
λλ .     (22) 
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The color edge detection algorithm is as follows, 
1. Canny operator is used separately in R, G and B layer to compute gradient maps. 
2. g  is computed as equation (22). 
3. Same non-maximal suppression as Canny operator is used to get the final edge maps. 
 

   
(a) Original color image (b) Edge map at 0.1=σ  (b) Edge map at 5.2=σ  

Fig. 11. Color edge detector in mobile mapping images. 
 

5.2.2 Mean shift clustering algorithm 
 
Clustering algorithms have been explored by researchers for decades and are applied to both low-
level image processing like image segmentation and high-level image processing like object 
recognition. Among hundreds of existing clustering algorithms, k-means clustering is a very 
famous one and widely used. In Cheng (1995) the author analyzed a more generalized algorithm, 
mean shift, in which k-means algorithm is a special case. Due to the overall performance, both 
convergence property and computational issue, we try this algorithm in color image segmentation 
and use this one in vanishing points detection and analysis of generalized Hough transformation. 
 
Suppose we have a finite set S in the n-dimensional Euclidean space X in which S  is normalized 
as 1)( =∑

∈Sx

xp  where )(xp  is the value of each site x . For the sake of convenient, we treat x  

as random field defined on S . Let xB  be a ball−λ in X centered at x  as 

{ }λ≤−= xyyBx | .  Given a site x and its corresponding ball−λ  xB  we could compute the 
sample mean as 

[ ] ∫
∫

===
)(

)(
)|(|)(

x

B
xx Bp

dyyyp
dyByypByExm x .     (23) 

 
We could approximate )(yp  using taylor expansion as )()()()( xpxyxpyp T ∇−+=  so that 
the shift between )(xm  and x  is 

 
)(

)]())(()()[(

)(

)()(
)(

x

B

T

x

B

Bp

dyxpxyxyxpxy

Bp

dyypxy
xxm xx

∫∫ ∇−−+−
=

−
=−   (24) 

where ∫ =−
xB

dyxy 0)(  . The mean shift finally is 

)(
)(

))((
)( xp

Bp

dyxyxy
xxm

x

B

T

x ∇
−−

=−
∫

      (25) 
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which is propoportational to gradient )(xp∇ . We stop at a local maximal where 0)( =− xxm . 
This proves that this mean-shift algorithm is guaranteed to converge at the local maximal value. 
Detailed analysis could be found in Cheng (1995). 
 

5.2.3 Color image segmentation 
 
Many researchers have studied color image segmentation methods for many years. It is well 
known that the perfect segmentation of image, either in color or in gray value, could not be 
achieved without the full interoperation of scene. In other words, pure low-level image processing 
won’t give us perfect results without the involvement of high-level image processing.  
 
Huang et al. (1992) segmented color image by combining scale space filter and Markov random 
field together. Liu and Yang proposed a multiresolution color image segmentation method which 
actually is treated as a MAP problem to segments. Comaniciu and Meer (1997) used mean-shift 
algorithm as clustering method in classifying histogram. We test Comaniciu and Meer ‘s method 
on our color images and have the results as in Fig. 12. 
 

  
(a) Segmentation results of real image (b) Zoomed traffic light cut from (a). 

Fig. 12. Color image segmentation using mean-shift algorithm. The advantage of this algorithm is 
that it runs very fast. The disadvantage is that the results are not very good although we see well 
extracted regions when simple color images are tested. In (b) there are more than 10 regions existing 
even for a single traffic light which makes later recognition very difficult. 

 
McCane (1996) proposed an adaptive segmentation method that combines and splits regions at 
different scales in gray image. We extend this method to different channels, R, G B so that 
regions at different scales and layers compete each other. The strategy is illustrated in Fig. 13. 
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Fig. 13. Adaptive color image segmentation strategy. 
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(a) Segmentation results of left image with different 

scales, 0.1=σ , 0.2=σ  and 0.3=σ . 
(b) Segmentation results of right image with 

different scales, 0.1=σ , 0.2=σ  and 0.3=σ .  
Fig. 14. Segmentation results by adaptive algorithm. This method gives more reasonable regions than those 
given by mean-shift algorithm while spending much more time. However, the results, as we can see from 
(a) and (b),  are not stable. 
 
From above experiments we find that although the existing algorithms work fine in simulated 
scene and simple images, they all fail in real image sequences. In the next section we will propose 
a new method that runs faster than traditional segmentation method while giving much better 
results. 
 
5.3 Integrating Top-down and Bottom-up processes by Markov Chain Monte Carlo for 

Object Recognition 

 
In this section, we propose a complete new method that integrates Top-down and Bottom-up to 
recognize 3D objects, more specifically, traffic lights. 
 

5.3.1 Interpretation of scene  
 
Computer vision tries to understand 2D images, which are back-projections of 3D scenes. 
Recognition of 3D objects appearing in 2D image requires proper models to represent 2D images 
leading to proper models to represent 3D scene. Miller et al. (1995) and Miller et al. (1997) gave 
a basic random model to represent 3D scene in the recognition of objects by jump-diffusion. 
 
Suppose we have detailed 3D models }1,{ niOi Λ=  that describe every possible existing objects 
in 3D scene and each of these models is paramized by 3D coordinates, pose and other parameters. 
Any possible scene x  can be denoted as n

im
n
i Ox ∞

== ∪∪⊂∈ 01χ  where m is the occurance 
number of every object and n is the overall number of objects that may appear in the scenes. The 
imagery data could be denoted as Υ∈y  where Υ is the observation space. We then have the 
likelihood function ℜ→×•• XYL :)|( . The likelihood of y given observed scene x , 

)|( xyL , is the conditional probability. We can further define EOP (Exterior Orientation 
Parameter) and IOP (Interior Orientation Parameter) which are always given by GPS and INS as 

Ee ∈ . 
 
In Bayesian inference problems,  posterior probability density is awlays wanted to estimate x  
given y. The posterior density is 
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),|()(
),(

1
),|( exyLx

eyZ
eyx ππ =        (26) 

 
where ),( eyZ  is probability of eandy . Poor (1994) discussed the basic signal estimation 
problems, which are discussed a little bit below. Suppose we have a function ℜ→Λ×Λ:C  
such that ],[ θaC  is the cost of estimating a true value of θ  as a , for a and θ  in Λ . Given such 

a function C  we can then associate with an estimator θ̂  a conditional risk or cost averaged over 
Y  for each Λ∈θ ; e.g., we have [ ]{ }θθθ θθ ),(ˆ)ˆ( YCER = . If we now adopt the interpretation 

that the actual parameter value θ  is the realization of a random variable θ , we can define an 

average or Bayes risk as { })ˆ()ˆ( θθ θREr ∆  and the appropriate design goal is to find an estimator 

minimizing )ˆ(θr . Different choices of risk function yield different Bayes estimators. The 

function 2)(],[ θθ −= aaC  yields the Minimum-Mean-Square-Error estimator 

{ }yYEMMSE == |ˆ θθ ; The function ||],[ θθ −= aaC  yields the Minimum-Mean-Absolute-

Error estimaor )|(ˆ yYpofmedianMMSE == θθ ; The function 




∆>−
∆≤−

=
||1
||0

],[
θ
θ

θ
aif
aif

aC  

yields the Maximal-A-Posterior estimator { })|(maxargˆ yYpMAP == θθ
θ

. 

 
To recoginze 3D object in 2D images, we always choose the MAP estimator which finds the x  
that makes ),|( eyxπ to be the largest value. Since each observed image is just the 2D projection 

of we can have the expression as Nee +ℜ×ℜ×=Υ 23
21

χ  where 3
1e

ℜ is the 3D transformation in 

which 1e is EOP, where 2
2eℜ is the 2D transformation in which 2e is IOP and N is imposed noise. 

Many existing bottom-up methods try to find x , either implicitly or explicitly, with given data 
y . Among them indexing of 3D invariants is a straightforwd way to do. Generalized Hough 

transformation is another smart way that tries to find the most significant evidance by voting to 
χ  space. Direct indexing is straightword, easy to compute and runs fast but 3D invariants may 
not always, in most cases, exist. The Hough transformation sapce which is actaully a probability 
distribution, is a rough approximation of ),|( eyxπ and it works only in well defined situation. 
That’s why line detection using Hough transformation is widely used where objects—lines are 
very simple and their background is clean. The method we are proposing tries to absorb the 
advantages of indexing and hough transformation, fast approach, and estimates x  more 
accurately in Markov Chain Monte Carlo random process. 
 

5.3.2 Description of models—traffic lights 
 
If we focus on our task, recognition of traffic lights in outdoor images, the detailed description of 
parameters becomes important because we don’t know otherwise what are the parameters to 
estimate.  
 
(1) type t  
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(a) Type 1 (b) Type 2 (c ) Type 3 (d) Type 4 

Fig. 15. Different types of traffic lights 
 
Fig. 15 shows 4 different types of traffic lights that appear the most time. Generally speaking, 
different types of objects should have different parameter space to describe. In the case of traffic 
lights it just happens to be same number and items of parameters for each type. 
 
(3) illuminanc of  shell, red light, yellow light and green light which are ),,( BGRcs , 

),,( BGRcr , ),,( BGRc y  and ),,( BGRcg  respectively. 

(4) size of the primitive ),( hw  
For each model, we have the assumption that each type of traffic light is made by several 
primitives that have identical shape and size. 

(5) spatial position ),,( zyx  
(6) rotation angles  ),,( ϕκν  along X, Y and Z respectively 

ϕ+
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v+

Z

X

Y

Z ′

X ′
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Fig. 16. Absolute ground coordinates system ),,( ZYX , local coordinates ),,( ZYX ′′′ and 

occruances of traffic lights. 
 

Fig. 16 shows the basic coordinates systems in which 3D objects live where ),,( ZYX  is the  
absolute ground coordinates system and ),,( ZYX ′′′ is the local coordinates system. The 
reason why we define this local coordinates is because  the occurance of trafic lights shows 
nice propertis that meet our aspect framework in Fig.1. Let ),,( ϕκν ′′′ be the rotation angles 
of traffic light in terms of local coordinates system ),,( ZYX ′′′ . We may have the 
assumptions that 0=′ν  and 0=′κ  because traffic lights are always hung to be 
perpendicular to ground. Rotation angle ϕ ′  is close to one of four major aspects, 

0000 270180,90,0 and . We thus have the prior probability of ϕ ′  as 

Z
f )(

)(
ϕ

ϕπ
′

=′  where 
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and  ∑
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′=
360

0

)(
ϕ

ϕfZ . 

Fig. 17 shows the prior pdf of ϕ ′ . 
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Fig. 17 Prior probability of ϕ ′ . 

 
Let ),,( 111 ϕκν  be the rotation angles of local coordinates system interms of global 
coordinates system, we can compute ),,( ϕκν as follows, 

ννν ′+= 1 , 

κκκ ′+= 1 , 
and ϕϕϕ ′+= 1  where ν ′ , and κ ′  could be approximated as 0. ),,( 111 ϕκν , however, 
could be solved by vanishing points detection which we will discuss larter. 

5.3.3 Vanishing points detection 
 
As we state above, it’s important to known ),,( 111 ϕκν  to compute ),,( ϕκν . It is well known 
that a set of paralle lines in 3D scene generates a set of lines in 2D image that converge to a single 
point which is called vanishing point. Although it is true that there are infinite numbers of paralle 
line sets existing in real scene, the most dominate directions are along ),,( 111 ϕκν  in mobile 

mapping imageries. Due to this fact we may get ),,( 111 ϕκν  by detecting vanishing points in a 
single image. 
 
Brillault-O’Mahony (1991) proposed a new method to detect vanishing points in a new 
accumulator space other than Gaussian sphere. Lutton et al. (1994) tried to detect ),,( 111 ϕκν in 
Gaussian Sphere. Shufelt (1996) used vanishing point in the detection of buildings in aerial 
images. Coughlan and Yuille (1999) tried to use gradient of edge points instead of direction of 
extracted straight lines to determine ),,( 111 ϕκν  in Bayesian Inference where 11 κν and  are 
actually approximated with 0. 
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Fig. 18. Vanishing points geometry and their corresponding Gaussian sphere. (This graph is modified 

from Shufelt (1996). 
 

As stated in Lutton et al. (1994), let ),( uuU φθ
ρ

be the direction of a vanishing point direction in 

Gaussian sphere and ),( iiiN φθ
ρ

be the norm of a surface that passes the origin of the Gaussian 

sphere and two extremes of straight line segments. We have the basic knowledge 0=•UN i

ρρ
 

from which we have the equation as 0coscossinsin)cos( =+− uiuiui φφφφθθ . 
The method to detecting vanishing points we are using is: 
(1) Get edge maps using color edge detection algorithm or Canny in gray value image at large 

scale σ . 
(2) Apply edge thining and following methods to get line segments. 
(3) Use Lowe edge split method to split line segments into straight line segments. 

(4) For each extracted straight line segment, ),( iiiN φθ
ρ

is computed and thus every ),( uuU φθ
ρ

 
that meets the above equation is voted in to ),( φθ space where θ  is not equally spaced 
because same piece on different place of the Gaussian sphere cover different area. The 

interval of θ  is selected as 
)cos()1cos(

1
)(

kk
S

k
−−

⋅
∆
∆

=∆
φ

θ . 

(5) Mean-shfit clustering algorithm is applied to find vanishing points. 
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(a) A color image with the size of 720X400. (b) Voting space of ),( φθ  generated from 

extracted straight lines in (a) 

 

 
(c) A gray image with the size of 520X400. (d) Voting space of ),( φθ  generated from 

extracted straight lines in (c) 
Fig. 19. Vanishing points detection algorithm applied in both color image and gray image. 

 
This algorithm tests many images in either color or gray value and we found it’s robust under 
different circumstances. The directions of ),,( 111 ϕκν  thus can be easily computed in a signle 
image. 

5.3.4 Top-down and Bottom-up method 
 
If we go back to Fig. 1, which shows the basic framework of a 3D object recognition system, we 
could find that our conditions here nicely fit this framework. Each traffic light is made of several 
primitives and each of them has four aspects, which can be approached by vanishing points 
detection method. 
 
As we state before, color image segmentation methods are time-consuming and the results are not 
promising. To make our algorithm practical, we develop a new method that integrates bottom-up 
and top-down methods to recognize traffic lights fast and correctly. The basic bottom-up and top-
down strategy is stated below. 
 
Bottom-up approach 
1. Edges are detected from color image. 
2. ),,( 111 ϕκν  are computed using vanishing points detection algorithm. 
3. Different aspect images of primitives are used as template in histogram filtering to compute 

hot spot map at different scale. 
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4. Minimal risk signal detection method is used to get hot spot map as a typical signal detection 
problem and one image is used as training set. 

5. Image pieces that contain hot spots are extracted. 
 
Top-down approach 
1.   Markov Chain Monte Carlo is used to recognize traffic lights thus to get the best estimations 
of parameters that describe each traffic light. 
 

noise

traffic
lights

2D scene

different
types

primitives

aspects

Top-down

Bottom-up

 
Fig. 20. Realization of Fig. 1 as bottom-up and top-down method in traffic light recognition. 

 
 

5.3.5 Histogram filtering 
 
Many researchers have been trying to recognize objects in color images using color invariants and 
geometric invariants. Swain and Ballard (1991) initiated a new method called “color indexing”, 
which actually compare histograms of given image with object stored in database in black-white, 
red-green and blue-yellow spaces.  To capture more invariant information, Funt and Finlayson 
(1995) used Laplacian and four directional first derivatives to convolve with color image and 
compute the histogram again.  Slater and Healey (1996) used local color pixel distributions 
instead of whole image to recognize objects.  Nagao and Grimson (1997) combined photometric 
invariants and geometric invariants together to recognize 3D object under different views. 
 
Color values of each pixel in an image could be denoted as a vector T

m ),,( 21 ρρρρ Λ=  where 

mkk Κ1, =ρ  represents scalar response of the kth sensor channel. kρ  can be denoted as 
 

∫= λλλλρ dRxExSx kk )(),(),()(        (28) 

 
where ),( λxS is the spectral reflectance funtion of the object surface at x and ),( λxE is the 

spectal power distribution of the ambient light and )(λkR is the spectral sensitivity of the kth 
sensor. 
 
As proved in Nagao and Grimson (1997), final invariants could be awarded with 
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The local color invariants are important to us because we only want to extract the hot spots that 
are most likely to be traffic lights insead of the whole image. Using this notion we make three 
aspects of the primitives of traffic lights as 2D templates, which are specifed in Fig. 20. In the 
advoidence of segmentation, we develop a new algorithm that captures both photometric and 
geometric invariants to get hot spot maps using histogram filtering. The algorithm is as follows: 
(1) Original color image in (R, G, B) space is converted to *** ,, vuL  space (Wyszecki and stiles 

, 1982). 
(2) Several 2D image templates, niI i Λ1, = , are generated as 2D projections of traffic light 

primitives at major views. 
(3) Color template images niI i Λ1, =  are transformed from (R, G, B) to *** ,, vuL space and 

histograms are computed as 
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As for geometric invariants, edge map is obtained using color edge detection method we state 
before at 0.1=σ . A large σ value is not satisfied because aspect image is small. The set of 
edge pixels are denoted as  }|{ pixleedgeissandIssI E

i ∈= . Histogram of gradients of 
edge point is computed as 

∑
∈

=
E

iIs

E
i Z

jH 1
1

)(  where j is each bin value in the domain of discrised gradients values where 

Z is a normalization factor so that 1)( =∑
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(a) Template image at aspect 1 of primitive which is facing to us 
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(b) Histogram of template (a) in *L  (c ) Histogram of template (a) in *u  
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(d) Histogram of template (a) in *v  (e) Histogram of template (a) in edge gradients 

Fig. 21. One aspect template and its corresponding histograms in *L , *u , *v  and edge 
gradients. 

 
 
(4) Three square windows that have different sizes, in other words, under different scales, are 

moved around the image. Let )(1 sW , )(2 sW  and )(3 sW be three windows centered at pixel 
s . The histograms of each window centered at every pixel is computed as 
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(5) The histograms are actually probability distribution functions that describe the distributions 

of *** ,, vuL  and edge gradients. The overall measurements of the similarity between 
*L

iH  

and 
*

)(
L

sWi
H ′ ,  the similarity between

*u
iH  and 

*
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sWt
H ′ , and the the similarity between

*v
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sWt
H ′  tell us how likely the template iI  appears at s′  with size of tW . Let the overall 

photometric similarity be 222 ),(),(),(),(
***

tiDtiDtiDti vuL ++=η  where the distance 
of two pdf functions, ),( tiD , could be computed as  
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j
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The geometric similarity ),(),( tiDti E=∆  is computed where distance of two pdf functions 
are obtained the same way as that stated in above. 
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(a) Histogram similarity map in photometric 
invariants. 

(b) Histogram similarity map in geometric 
invariants. 

Fig. 22. Aspect template of Fig. 21 applied one image at window size 20x20. 
 
(6) Given the above similarity map we still don’t know what’s the possible hot spots. The general 
approach is to set up a thresholding method. Every value that is larger than a fixed threshold 
would be set as 1 and every one that is smaller than it would be set as 0. How to set a proper 
threshold is difficult. Here we treat this kind of problem as a typical signal detection problem in 
which noise or signal is determined in terms of some crieterias using their probability distribution 
other than just thresholding. With this mehtod, the system could be trained with training data. 
 
Several traffic lights that appear in one image known to have the same aspect as Fig. 21 are 
choosen as training samples. Same histogram similarity maps are obtained with same method 
applied. We pick up those pixels that appear in samples as object signal and all others are just 
noises so that we can have their pdf functions as shown in Fig. 23. 
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(a) pdf function of noise (b) pdf function of object signal 

Fig. 23. Pdf function of signal and noise. 
 
Let 0π be the prior probability of occurances of noise and 1π be the prior probability of 
occurances of object signal. Given a histogram map and the pdf function of noise and the pdf 
function of object signal, we are going to tell which pixels in the map are the noises and which 
are the signals. Let 10C be the risk for each pixel that being the signal while assigned as noise; Let 

00C be the risk for each pixel that being noise while assigned as noise; Let 01C be the risk for 

each pixel that being the noise while assigned as signal; Let 11C be the risk for each pixel that 
being the signal while assigned as signal; 
The overall risk we have is thus 

)()()( 10 δδδ RRr +=  
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where )()()( 0011 Γ+Γ= jjjjj PCPCR δ . 

To minize the risk )(δR we have 
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Apparently, we get the critrien as 
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With this method, it’s straightforward to have the object signal map where the dark pixels mean 
object signal and bright pixels means noise. By cominbing these maps at different window sizes 
and different aspects together, we could have the final hot spot map. 
 
This hot spot detection algorithm is robust at occlusion and illuminate. For a color image with 
720X400 it just spends 2 minutes in a pentium III 500 PC machine which is much faster than 
segmentation methods while giving better results. 
 

 
Fig. 24. Hot spot map 

 

5.3.6 Traffic light recognition by MCMC in Top-down approach 
 
Given the hot spot map as shown in Fig. 24, we may extract regions out of it. We have the 
assumption that occlusion won’t happen then several rectangle pieces of image each of which 
encloses a connected hot spot region could be extracted. The size of every piece of image may be 
larger than its enclosed region because at this point we don’t know what’s the exactly position 
and size the traffic light would be. 
 
The remaining thing we should do is just to work on every piece of image trying to recognize 
traffic lights, may or may not appear, and their corresponding parameters.  
 
Given every piece of image y and EOP and IOP parameters e , we want to find the x that 
maximize the posterior probability 
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),|()(
),(

1
),|( exyLx

eyZ
eyx ππ = . 

As our description in  5.3.1, we have Ny ee +ℜ×ℜ×=Υ∈ 23
21

χ  where 23
21 ee and ℜℜ are 3D 

transformation and 2D transformation respectively, χ  is the 3D scene in which only one traffic 
light is enclosed and N is superimposed noises.  
 
Fig. 25 shows pdf of background color image in *** ,, vuL  with imposed Gaussian function 
approximation. We can see the nice fit of them which means background could be treated as 
Gaussian distributed noise. In more general cases Zhu and Mumford (1997) proposed a more 
general statistical description of background. We may use the same method to get the model by 
training through many image samples. In this case, traffic lights are generally hung against the 
sky and we just suppose a simple Gaussian distribution of background. 
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(a) pdf of background in *L  
with imposed Gaussian 
distribution at σ =4.1. 

(b) pdf of background in 
*u with imposed Gaussian 
distribution at σ =4.2. 

(c) pdf of background in *v  with 
imposed Gaussian distribution at 

σ =5.8. 
Fig. 25 pdf of background image 

 
Suppose the parameterx is decomposed to  
 
[ t , ),,( BGRcs , ),,( BGRcr , ),,( BGRc y , ),,( BGRcg , ),,( ooo zyx , ),( hw , ),,( ϕκν ].  
 
In Ullman and Basri (1991), the authors proved that the perspective projection of a 3D object, 
when viewed from some distance could be approximated with orthogonal projection. We also 
have the assumptions that 0=ν  and 0=κ  which are true in real scene. These requirements 
could be met in our cases reasonably and the parameters are simplified as  
 
[ t , ),,( BGRcs , ),,( BGRcr , ),,( BGRc y ,  ),,( BGRcg , ),( II yx , ),( hw ,ϕ ]  
 
where ),( II yx  are the 2D corrdinates of the center of traffic light in image piece. Let ),( exF  

be the orthogonal projection of a traffic light paramterized by x . Let ),(
*

exF L
s , ),(

*

exF u
s  and 

),(
*

exF v
s  be the *** ,, vuL value at each pixel site s in )(xF . Let 

*Lµ , 
*uµ  and 

*vµ be the 

average value in *** ,, vuL of background. 
 
The likelihood is 
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The log likelihood becomes 
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where g is a constanct value which equals to ∑
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σπ

 where m is the number 

of pixels in y . 
 
The distribution that is propotationl posterior probability, ),|( eyxπ ,  we are caring about 
becomes 
 

( ) BexyLxexp /),|(log()()( += π         (34) 
 
where B is the temperature. The introduction of B won’t change the *x that maxims the posterior 
probability because expotional function is montonl. We could see here that )(xp is exactly the 
Gibbs distribution as in section 4. We may rewrite the above equation as 
 

BxHexp /)()( −=           (35) 
 
where  
 

))),|(log()(()( exyLxxH +−= π         (36) 
 
is the energy function. 
 
Gilks et al. (1996), Winkler (1995) and Li (1996) discussed MCMC in image analysis. 
Apparently, it’s impossible to search every value of x , which is in a huge space making search 
algorithm run forever. There are three ways of sampling x to find the solution to this MAP: 
(1) Gibbs sampler, whose detailed description can be found in chaper 5, Winkler (1995) 
(2) Steepest descent approach 
(3) Metropolis sampler which can be seen in Gilks et al. (1996) and Winkler (1995). 
  
Gibbs sampling algorithm runs too slow and is not efficient. Because different aspects of traffic 
light will give complete 2D images steepest descent algorithm doesn’t have a nice surface whose 
second derivative, Hessian matrix, has all negative eigen values. 
 
Metropolis sampler, specifically Metropolis-Hasting, is used here to find the solution to the MAP.    
The basic metropolis sampling method is in the following as Winkler (1995): 
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(1) A new configuration 2x is proposed by sampling from a probability distribution ),( 1 ⋅xG on 
X  where ),( 1 ⋅xG  is called proposal matrix 

(2) The energy at 2x  is computed and is compared with 1x  

(a) If )()( 12 xHxH ≤ then 2x is accepted as the new setp 
(b) If )()( 12 xHxH > then 2x is accepted with the probability )/))()(exp(( 21 BxHxH −  

(c) If 2x is not accepted then 1x  will be kept 

The transformation matrix ),( 21 xxπ becomes  
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It could easily be proven that ),()(),()( 122211 xxxpxxxp ππ = , which meets the requirement of 
the convergence of Markov Chain. 
 
A more efficient method in Metropolis algorithm is Metropolis-Hastings algorithm whose 
Markov transformation matrix can be denoted as 
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It is trival to prove the convergence of Markov random process, 
),()(),()( 122211 xxxpxxxp ππ = . 

 
The important thing remaining is how to generate proposal matrix ),( 21 xxG . As we stated 
before, traditional method like Generalized Hough Transformation votes for a solution x , may or 
may not be the solution to MAP, given image y . To combine the advantage of Generalized 
Hough Transformation, the speed, and the advantage of MCMC, perfect result, we choose the 
result of Generalized Hough Transformation as proposal matrix ),( 21 xxG . The voting space of 
Generalized Hought Transformation actually gives a distribution of every possible parameters. 
 

    
(a) image piece (b) imposed recognized 

model 
(d) image piece (e) imposed recognized 

model 
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(c ) Energy curve along MCMC of (a) and (b) (f) Energy curve along MCMC of (d) and (e) 

    
(g) image piece (h) imposed recognized 

model 
(j) image piece (k) imposed recognized 

model 

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

4

 0 100 200 300 400 500 600 700 800 900 1000
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

 
(i ) Energy curve along MCMC of (g) and (h) (l) Energy curve along MCMC of (j) and (k) 

Fig. 26. Original image pieces with the recognized traffic and the energy curve along MCMC simulations. 
We can see the nice matching between original image and imposed 3D object. In (c ) it takes around 2 

minutes to reach the final status. In (f) it takes one and a half minutes. It just takes less than one minute for 
(i) and (l) to reach the final steps. 

 

6 Conclusions  
 
In this article , the framework of a 3D object recognition is discussed. A new multilayer Hopfield 
Neural Network followed by a more general method Gibbs relaxation labeling in 3D invariants 
matching is proposed. Capturing the main heart of this framework, a novel method that integrates 
bottom-up and top-down is introduced. As to this idea, a real system that recognizes traffic lights 
in real image sequences is proposed. It takes fifteen minutes for the system to recognizes a color 
image with 720X400 starting from the low-level processing. The results we get are promising and 
show the great potential of using Markov Chain Monte Carlo method in recognizing 3D object in 
estimation problems. In this bottom-up and top-down by MCMC, we combine traditional method 
like indexing and Generalized Hough Transformation and show that they could be nicely  
integrated in random processes. 
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