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Automatic Recognition and L ocation of Civil Infrastructure Objects Using M obile
Mapping Technology, Neural Network and Markov Chain Monte Carlo

1 Introduction

Information technology is increasingly used to support civil infrastructure systems that are large
complex heterogeneous, distributed, dynamic systems including communication systems, roads,
bridges, traffic control facilities, and distribution of water, gas and electricity. One of the most
important data sources for such systems is updated spatia locations, physical conditions, and
other attributes of infrastructure objects. The new technology of mobile mapping systems
integrates GPS receivers, INS (Inertial Navigation System), and stereo CCD (Couple Charged
Device) cameras on a mobile platform, such as a van, for rapid high quaity spatial data
acquisition. Infrastructure objects appearing in georeferenced mobile mapping image sequences
can be measured on computer screen and their 3-D ground locations are calculated from
measured 2-D image coordinates using a photogrammetric model.

The maobile mapping technology has been explored in Li (1997) and Tao (1997) and has been
used in industrial to obtain spatial information about featuresin a much faster and easier way than
traditional methods. The capture of stereo image sequences with georeference data is performed
in a quite automatic fashion, the measurement of objects, however, is still far away to be full
automation. This is because the 3D object recognition in intensity images, which has been studied
in literature for many years, is yet unsolved and there are still many related researches going on.

In this article, a framework of 3D object recognition system is proposed and some existing 3D-
Object recognition systems are discussed. We found out that most existing object recognition
systems fit this framework. Under this framework, a new system using Multilayer Hopfield
Neura Networks is proposed followed by our observation that this structure is a specia case in
Gibbs model that recognizes objects in stochastic relaxation. A novel system that integrates top-
down and bottom-up methods by MCMC (Markov Chain Mote Carlo) to recognize traffic lights
in color images is then developed.

2 Object Recognition Framework and a literature review

There are many 3D object recognition systems existing in literature already. We may characterize
such systems with five aspects as the following:

1. Sceneacquisition

There are many different kinds of sensors, e.g. acoustic, radar, laser, machine vision, available
and most of them fall into two categories, active sensor or passive sensor. Active sensor like laser
gives us depth information from the time interval between a sensor sends out a laser and it
receives the bounded one. Passive sensor like CCD camera just records intensity value that
objects show at every position.

2. Modd acquisition
If very limited number and types of objects are going to be recognized in a system, we generally
have the assumption that these types of objects are available. However, if we want to detect many



different types of objects asto alow our system to learn how to recognize innovative objects then
same acquisitions as scene acquisition are available.

3. Scene representation

The representations of scene are different in different systems. Range data gives us 3D
coordinates of the world that an active sensor livesin and intensity image data gives us illuminant
of the world that a passive sensor lives with.

4. Mode representation

There are many different types of model representations that lead to either object-centered or
view-centered approach, which is a long-term debate in literature. We will give a detailed
discussion in the later section.

5. Matching strategy
In McCane, three 3 predominant matching approach are proposed by the author as:
Graph matching approaches
Feature indexing / hash tables
Evidence/ rule based approaches
The method we are proposing here tries to combine them al together as solve a MAP (maxim a
posterior) problem.

The final goa of any object recognition system is to interpret every object that stands in the data
set that sensors acquire. It's still a long way to go to finaly reach this point. Since methods in
scene acquisition and model acquisition are quite traditional and scene representation is
determined by what kind of sensor is used, let’s focus on model representation and matching
strategy that tell apart different systems and control the quality of each ORS (object recognition
system). We will discuss mainly on the recognition of objects in intensity image because the data
captured by MM S (mobile mapping system) is color image sequences which are typica intensity
images with georefenced information. Actualy, most available systems in literature are based on
intensity images as well.

We are trying to simulate the way that human being are using in interpreting the scene where they
live in. The stereo system that human being are using runs very fast and accurate to some extent
to alow people survive in struggling in environment. The question “How are 3D objects
represented in human visua system?’ (Bulthoff et al. 1994) is the maor problem we should ask
in the visua system. Different answers to this question lead to different model representations
and thus lead to different approaches. There are two possible answers to this question: viewpoint
invariant and viewpoint dependent, which yield object-centered and view-centered approaches
respectively. Viewpoint invariant answer says that people actually store in brains with viewpoint
invariant properties, which could be used to match with invariant properties extracted out from
2D image. Bergevin and Levine (1993), Clemens (1991), Jacobs (1992), Lamdan et a. (1990),
Linet a. (1991), McCane (1996), Nagao and Grimson (1997), Shufelt (1996), Slater and Healey
(1996), Slater and Healey (1997) and Wong et a. (1989) al tried to capture invariant information
from 2D image and use them to match 3D object. In this approach a list of invariant properties,
either photometric or geometric, are extracted to match those rooted in 3D object. Korn and Dyer
(1987), Pontil and Verri (1998), Seibert and Waxman (1992) and Ullman and Basri (1991)
instead use multiple views of 3D object following view-centered theory to match 3D objects.
Template matching is an old and well-known technology that could be used in view-centered
approach but it's impossible to compare 2D image with infinite number of views of object using
smple template matching. Dickinson et a. (1991) gave a very nice framework of how to
recognize objects through multiviews. In Bulthoff et al. (1994) the authors made a very good



point saying that if an object-centered reference frame can recover object independently of its
pose, then neither recognition time nor accuracy should be related to the viewpoint of the
observer with respect to the object. If instead model is represented as viewpoint depend as long as
complexity scales with normalization and transformation both recognition time and accuracy
should be systematically related to the viewpoint of the sensor with respect to the object. The
author also made the conclusions from psychophysical and computational studies that human
encodes 3D objects as 2D mulltiple viewpoint representations and subordinate-level recognition is
achieved by employing a time-consuming normalization process to match objects seen in
unfamiliar view points to familiar stored viewpoints. Poggio and Edelman proposed a network
that learns how to recognize objects from sets of 2D view through regularization network using
this idea. Because the matching of 3D invariant properties between a 3D model and 2D scene is
faster than the matching between number of 2D images of a 3D model viewed at different poses
and 2D scene. We argue here that although view-centered approach is the final way human uses,
3D invariant properties are still used to guide visual system to tell how likely a model will be
given a 2D scene.

Dickinson et al. (1991) proposed a model representation hierarchy that separates 3D models into
finite number of primitives that are further decomposed into aspects, faces etc. We here expand
this hierarchy into a more genera framework that will be consistent with most existing ORS.

Layer 6:
3D models

Layer 5:
3D primitives

Layer 4:

T
op-down Major aspects

Bottom-up

A

Layer 3:
Faces

Layer2:
Grouped line
segments

Layer 1:
Original Intensity Image
image

Fig. 1. The framework of amodel representation. Layer 6 is the detailed 3D model descriptions from which
3D invariants, either photometric or geometric, could be extracted. Each model is thought to be made of
several 3D primitives from which 3D invariants could be extracted in layer 5. Each 3D primitive can be
further decomposed into many major aspects, which are 2D projections of 3D objectsin layer 4. In layer 3
we show that combinations of different faces made different aspects. Faces in layer 3 are decomposed into
grouped line segments in layer 2. In layer 1 intensity image may be made of both line segments and faces
directly. Self-occlusion and occlusion within each layer are expressed implicitly. Going from layer 1 to
layer 2 is called edge detection and perceptual organization. Going from layer 2 to layer 3 is called line-
based segmentation while going directly from layer 1 to layer 3 is called region-based segmentation. The
process starting from layer 1, origina intensity image, followed by edge detection, segmentation,



perceptual organization and matching is called bottomup approach. The process worked the other way
around starting from layer 6, 3D model, followed by decompositions and verifications is called top-down
approach.

Fig. 1 gives a genera framework of model representation into which many existing 3D object
recognition systems can be fitted. Different systems may have different jumps from one layer to
another leading different complexity and flexibility. Dickinson et a. gave a detailed comparison,
in primitive complexity, model complexity, search complexity, etc., among different systems.
They showed us that 3D volumetric primitive representation method has the best overall
performance.

Drew et a. (1997), Funt and Finlayson, (1995), Nagao and Grimson, (1997), Sater and Healey,
(1996), Slater and Healey, (1997) and Stricker (1992) were typica bottom-up methods that
mainly used photometric, specialy color, invariant properties going from layer 1 directly to layer
6 to match objects. Some of them may use alittle help of geometric invariant properties that may
improve the accuracy and robustness of their systems. The use of photometric invariants as
indexing greatly improves the speed of ORS because no time is spent in segmentation,
organization and final matching. This strategy, however, suffered the problems that only one
object should be present in the scene, 2D image of object can’'t change too much at different
views and no further verification is applied.

Poggio and Edelman proposed a famous neural network system, GRBF (Generalized Radia Basis
Function), which was trained how to recognize scene in neural networks. Although the learning
method was very good it still suffered the same problems as those in the above.

Pontil and Verri, (1998) used a new technology called Support Vector Machine going from
original image to 2D projections of 3D object at different poses to match 3D object. Thisis again
a bottom-up method. Different images of many objects at different poses were stored in database
and every pixel of input scene was feed to the Support Vector Machine as a property in one
dimension. Given an image with the size N x M, the recognition will find which is the one stored
in database that is nearest to input scene in the N x M dimension space. Although this system ran
very fast it suffered the same problems as stated in the above systems.

Lin et al. (1991) was a bottom-up method that used extracted regions and vertices to match with
3D modd in Hopfield Neural Networks that considered 3D invariant properties as constraints
among neurons. This system was processed in a hierarchica manner as bottom-up object-
centered method. It, however, suffered many problems as: region and vertices correspondences
are not processed at the same time, regions may not that easy to be segmented out from real
images, globa minimization can not be guaranteed to be approached and neuron connectivity
matrix is extremely large when the number of model and scene regions is large. Suganthan et al.
(1995) used Hopfield networks in recognizing 2D object as graph matching. Young et al. (1997)
used a mutilayer Hopfield networks to recognize 2D object at different scales.

Ullman and Basri (1991) claimed that 2D coordinates of a 3D object under one view could be
represented by the combination of two coordinates at other two different views. Alignment was
used to match object within scene in their method.

Lamdan et al. (1990) used affine invariant properties as indexing to recognize objects. Wong et
a. (1989) expressed 3D object model as attributed Hypergraphs and were trying to match
extracted features with object model as labeling in attributed graphs. This was a bottom-up
method as object-centered approach. Attributed information helps a lot in matching and we will



see later this idea could be generalized in stochastic relaxation where attributes are defined on
cliques.

Seibert and Waxman (1992) used multiview approach as a view-centered method that learns
incoming novel views which made this system atypica view-centered method.

3 A Mutilayer Hopfield Neural Netowrks

Following the ideas of Lin et a. (1991), Suganthan et al. (1995) and Yong et a. (1997), we
propose a new mutilayer Hopfield networks that recognize 3D object in 2D image as a bottom-up
approach that compares 3D invariant properties of 3D model with those of extracted features.

@ e
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Neural Networks

Extracted |
racte ;‘: QI:' Extracted
regions
segments
@E Original Image

Fig. 2. The structure of a mutilayer Hopfield network. Edge detection and
segmentation are applied to original image. 3D invariant properties of model and
extracted features are compared simultaneously in the network.

31 SingleLayer Hopfield Neural Network

Object recognition by graph matching, also referred to as morphism, is a mapping from a scene
graph to amodel graph. The morphism can be categorized on the basis of the constraints that are
enforced during the mapping as follows. when the mapping is one-to-one and onto, it is an
isomorphism; when it is one-to-one, it is a monomorphism; and when it is many-to-one, it is a
homomorphism. Figure 3 gives a basic framework of the Hopfield neura network.
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Fig. 3. Neuron states and candidate model-input features correspondence.



Each dot in the matrix represents a neuron that stands for similarity between one input feature and
one feature of the candidate model. Its state (1 meaning absolutely similar and 0 meaning totally
different,) can be determined when the minimization of the energy function is reached.

Energy function

We use a top-down strategy to achieve object recognition. The problem is treated as an
optimization problem, where the correct answer is given when a global minimized energy state is
reached. Let C'% and C% be unary and binary similarity measure respectively. The energy
function is

E=- Aé é. é. é CiijViijI + Bé (1' é\/ik)z +
ik i k

cdaavi Vi+Da - avi)’+Ea davi Vi (1)
i k k i

11k ko0t

The neuron state, V, , converges to 1.0 if the model feature i matches the input image feature k
perfectly, otherwise, it is equal or close to 0. Thus, the first term measures similarity between the
model and image features. The second term é (1- é\/ik)2 implies that the final states of neurons
i k
in the same row add up to 1, and the third term é é g';ol\/ik "V, confirms that there is at most one
ik Itk
neuron that has a value greater than 0 in each row. This means that only one input image feature
matches with each model feature. The forth term é_ - é_\/ik)2 implies that the fina states of
k i

neurons in the same column add up to 1, and the fifth term éé é_\(k' V. confirms that there is at
ko0t

most one neuron that has a value greater than 0 in each column. That means that each input image

feature matches with only one mode! feature. Combining the second term g (1- § V,)? with the

i k

third term é_éé\(k' V, gives a solution that forces each model feature to match only one input
ik 1tk
image feature. Similarly, combining the forth term é - é\/ik)2 with the fifth term
k i

aaavi Vi givesasolution that guarantees each input image feature will match only one model
ko0

feature. The determination of coefficients A, B, C, D and E depends on how strictly the unique
matching conditions should be implemented. Different values of in Equation (1) apply to various
cases of our tasks. For monomorphism, coefficients B, C, D and E are assigned with high values
based on the assumption that one model feature will uniquely match one input feature. The final
solution yields a one-to-one mapping. In the case of homomorphism, coefficients B and C are
assigned with low values (even zero) based on the assumption that one model feature will match
severa image input features.

The following is a cttailed discussion on the single layer Hopfield neural network. Let Qk“
denote similarity/disparity between a model feature pair (i, j) and an input image feature pair
(k,1) . It isthen represented as:



Cui :qlk +C}| +C1ijl : @

where
o 1
q1k :aV\}” fn (Xin!ykn) (3)
n=1
¢ 2
and qzij:aV\f” f, ()ﬁjn’ykln)- (@)
n=1

In the above equations(fk and Qi“ represent unary and binary similarity respectively. C,lK
encodes compatibility between model feature i and input feature k, and Cy €ncodes

compatibility between the correspondence of the model feature pair (j,j) and that of the input
feature pair (k,I). f isasimilarity-measuring function and weighted by w that meets the condition

N, N,
28 Wh + W =1. ©)
n=1 =1

Output function

For neuron i, if its charge is y that is computed in the energy minimization, its neuron state
output is represented as

\ =g(q)=# (6)

1+e4'7

T is the “temperature” (an annealing term) that determines the speed and quality of the fina
solution. A very large value of T will cause neuron valuesto be 1, while avery small avaue will
drive the network to a loca minimum state, or a dow convergence. An annealing process keeps
the value of T large at the beginning and reduces the T value as iteration progresses. This is
important for achieving a globa minimum and afast convergence.

Initialization

Theinitial values of neuron states can be chosen randomly as described in Lin et a. (1991). The
network may converge to a loca minimum state. As stated above, an annealing process may

overcome this problem. However, G, may be calculated and used as a byproduct to set the initial
neuron states as

C./aC., ifaC,>wandC, >w
irs iTs
C, if § CL >wandC}, >0 7
is
0 ifCL <0

\o

i

|

1

ik —1
i

t
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ol
where § is{k [on >0} and W=a W,
n=1

Combining matched features

After iterations using homomorphism, each neuron reached its find state v, . Those final states

close to 1 yield matches between corresponding input image features with model features.
However, there is still a need to put the matched features to form object(s). The following

procedure combines the features under the assumption that there are N features forming an
object.

a) Establish N sets of $={KkV, »1},i=1,...N. Each set contains &l the input features that matched

the corresponding model features.

b) Establish an empty set Q.

C)Setitobel

d) For each ki § we get m, =V, ki § if Qisempty, otherwise m, = § (G, +C,;)- Find the
(i Q

festure k, that satisfies " k,T §, m, 2 m, ,add (k) to Q

e) If i =N, one object is recognized and detected, go back to step a); otherwise, i =i+1 and go back

to step b).

3.2 Multilayer Hopfield Neural Netowrk

Region
Pattern

Pattern

Fig. 4. Two-layer (line pattern and region pattern) Hopfield
neural network

Fig. 4. shows the structure of a two layer Hopfield network that comparison 3D invariant
properties of line segments and regions simultaneously. Matching of line segments will give
supports to the layer of regions, and vice versa. This new agorithm changes the method that
matches object in hierarchy ways into parallel approach with more robustness and parallelism.
Connections among neurons in each single layer are fully dependent on geometric and
photogrammetric congtraints and are fixed before the initia iteration. During iterations the
interconnections between the two layers vary. Let L, denote layer 1, which is aline pattern layer,

and L, denote layer 2, which is aregion pattern layer. We thus have an energy function



E=E(L)+E(L). ®

where £ (1) = B,(Ly, L)+l L) and E,(L,) =E, (L, L)+ E, (L, L). Byl L) and EyylL, L)
are same as the terms in Equation (1). The energy relevant to interlayers are

_ ,&160

Eo=a," ¢ 5-0.4aa B MM ©
ik iy ko
__.®10c 0 0 o
E,=a, gE‘?aaaBﬁkzﬁh\ézkz\/w (10)
b kb b ok

B kik, is a connectivity variable from neuron (i, k) inlayer L toneuron (i, k) in layer L.
leizkzilklis a smilar teem. They change dynamicaly during iterations. We aso

have B' i, 1 B¥ix,x, because contributions from one layer to another layer are non-symmetric.

Using energy function (11), we can recognize the objects when a global minimized energy value
is achieved.

i 16., . . A .
: 2 $sz2- —22 if Linek | Areak,andi,=0

B2 ik, =I 74 ?’22@ - %glf Line kT Area k,andi,=1 (11)
|
70 otherwise
{

The connectivity term contributes when a model region is a truck top and an input line belongs to
an input region or when the model region is a truck shadow and the input line belongs to an input
region. Similarly, B#,;, isdefined as

N

1., . - ,
::: 2 {?111,(1- Egllenekll Areak,andi, =0

B = 1- 2 F1, - %Qif Linek 1 Areak,andi, =1 (12
'|' e {7
i O otherwise

;

In this method, a Multilayer Hopfield Network is used to solve labeling problem which is actualy
thought as optimization problem. Because of the structure of Hopfield network, it suffers the
following shortcomings:

1. Even with careful selection of initia vauesit's difficult for to the system to jump out of local
minimal energy status. Since we can tell the smilarity between input scene and mode only
by traveling to the global minimization, the fail of reach to global minimal energy status will
lead to the fail of the system.

10



2. Cyy» BYkik and Bk, as four dimensional matrix, are very expensive to compute and
store when the number of features extracted from scene and features in model goesto alarge
number.

4  GibbsDigtribution and Stochastic Relaxation Labeling

Gibbs digtribution, MRF (Markov random field) equivalence, introduced by Geman and Geman
(1984) receives enormous attentions in both low-level image analysis, e.g. image restoration,
edge detection and clustering, and high-level image analysis, e.g. motion tracking and object
recognition. As a probability distribution, it aso has wide applications in other fields like
reliability analysis, medical data analysis etc.

In both low-level image analysis and high-level image analysis, we can aways generalize our
problemsas Y =F (X)+ N, where Y isthereceived data, X isthetruedata, N isthe noise

staying with Y and F is either a linear function or nonlinear function that projects data in
domain of X torangeof Y . Image restoration tries to find the origina image X given degraded
image Y where F isalinear one-to-one mapping; Edge detection tries to find edges X appearing
inimage Y ; Image segmentation tries to find regions X standing in image Y ; Motion tracking
finds the real coordinate, X of an object at each time given image sequenceY ; Object recognition
detects the most possible object X in model database that generates given image Y. Each of the
above problems, either low-level image anaysis or high-level image andyss, falls into
estimation problems. The beauties of Gibbs distribution, local property, convergence property and
annealing etc. make it possible and much easier to solve the above problems.

Asin Winkler (1995), they gave a definition of Gibbs distribution as follows.

Definition of Random Fields

Let She afiniteindex set — the set of sites; for every site s S let X _ be afinite space of states
Xs. The product X = (N)SISXS is the space of configurations X =(X,)gs. We consider
probability measures or distributions P on X, eg. vectors P = (P (X));x such that
P (x)3 0and é ixP (=1 subsets EI X are called events; the probability of an event
Eis given by P (=3 P A dtrictly positive probability measure P on X, e.g.
P (x)3 O forevery x| X ,iscaled astochastic or random field.

Definition of neighborhood system and cliques

A collection 1 ={1(s) : sT S} of subsetsof S is called aneighborhood system, if (i) T 1(s)
and (ii) T (t) if and only if tT §(s). Thesites sT q(t) are caled neighbors of t. A subset
C of Siscaled acliqueif two different elements of C are aways neighbors. The set of cliques
will be denoted by C. We shall frequently write (s,t) if s and t are neighbors of each other. The

neighborhood relation induces and undirected graph with vertices sl Sand a bond between s
and tif and only if sand t are neighbors. Conversdly, an undirected graph induces a neighborhood
system. The 'complete’ setsin the graph correspond to the cliques.

1
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Fig. 5. Different cliques.

The random field P is a Markov field w.r.t. the neighborhood system 9 if for all xI X,
P(X, =% X, =%,,1 1 9 =P(X, =%, X, =x.,r1 1(9)).

Definition of Potential
A potentia is afamily {UA TAl S} of functions on X such that

M U, =0

@ UA(x) =UL(y) if Xa(x) =X,(Y)

The energy of the potentiadl U isgivenby H, = é U, . Given a neighborhood system { a
Al S

neighbor mtential w.rt. I if U, =0 whenever A is not a clique. Potential defines energy

functions and thus random fields.

Gibbsdistribution:

P (%) = oeXID(- H (X)) 13
X =8 el H () @

where P isGibbsfidd and H isthe energy function. A random field P isa Gibbs filed or Gibbs
measure for the potential U and H is the energy H,, on apotentid U . If U is a neighbor
potential then P iscalled aneighbor Gibbs field.

MRF relaxation labeling

To overcome the shortcomings of our mutilayer Hopfield network, we use a neighborhood Gibbs
field to solve the same problem as we proposed in the last section. The system approach is the
same as Fig. 2 while the neura network is instead replaced by MRF. Modestino and Zhang
(1989) proposed a basic MRF approach for scene labeling. Li (1996) extended Modestino and
Zhang ‘s idea and gave an approach how a basic labeling problem could to solved as MAP
(Maxim A Posterior) of the MRF.

Suppose we have a set of extracted line segments S} ={L, |i =1L m,} where m, is the number
of line segments and a set of extracted regions Sy ={R |i =1L m,} where m, is the number of
regions. A given model are line segments S/ ={l;|j =1L n} where n, is the number of line

segments and the set of extracted regions S ={r;|j =1L n,} where n, is the number of

regions. There are two kinds of cliques, first order, which corresponds to unary similarity in
Hopfield network and the second order, which corresponds to binary similarity in Hopfield
network.
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Fig.6. Label extracted regions and line segments with model line segments and regions

Thefirst order cliques are as:

Cr={{i}|iT Si}andC? ={{j}|jT Si}.
The second order cliques are as:
C; ={{in. i} ii, T Stand iy * i}, CF ={{in i}l .l Sgand j;* j,}  and
C3={{i,}1il S.,jT StandS!T Si}.
Suppose random field F isamapping L ® | and f; =1, when L; islabded with ;. Suppose
random field Gisamapping R® rand g; =r; when R islabeled with ;.
Let'sdefine: D*(f,) = similarity of L, and |, if f, =1, D?(g,) = similaity of R and ry if
g, =r;; Vi(fy, ) = smilaity of (Lg,L,) and (1) if f, =1, ad f, =1,
V*(0,4,9,,) = smilaity of (R;,R,) and (r.r,) if g,=r, ad g, =r;,, ad

T (f.9.)= i 1f1 g,
nitlind; 10 otherwise”

The energy defined on cliques then becomes

H(f,g) =H,(f)+H,(9) +H,(f,9) (14)
where H (f)= A DI(F)+ A Viro(fip), (15)
cli st ct cii §,il G,id i}
Ho(f)= aDbig)+  aVi(Gus), (16)
c?l sl c? C3l gl cZ,id c3*
and H,(f,g) = kaT 17)

Given the above energy defined on cliques, we thus have the probability
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exp(- H(f,9)/B)

IO = e H(T.g)/B) "
where random fifélgd Y isthe given extracted features.

The posterior probability is then

P(F,G|Y):P(Y|F’G)P(F’G) (29

P(Y)
where P(F,G) is the prior probability labels.

For a given scene, P(Y)is fixed and our find god is to find the maximal vaue of

P(Y|F,G)P(F,G) as the solution of MAP. The detailed description of how to travel on this
probability space as Markov Random Chain will be discussed in the next section.

Compared with mutilayer Hopfield network, this MRF approach can be guaranteed to find the
maximal probability, in other words, the minimal energy status. Hopfield network here is only a

special case of MRF approach when P(F,G) is identica every where in the domain of
FandGand H(F,G) = E where E isthe energy in equation (8).

5 Integrating Top-Down and Bottom-up Processes by Markov Chain Monte Carlo for

Object Detection

In this section, a new object recognition system that uses an integrated top-down and bottom-up
process by Markov Chain Monte Carlo is introduced.

5.1 Problem definition

The data we get from mobile mapping system are image sequences with georeferenced
information, which are exterior orientation parameters and interior orientation parameters.

cCcD camera/

Fig.7. The basic mobile mapping system that has two CCD cameras, |eft and right, one INS
(Inertial Navigation System ) that measures orientation of the van and one GPS (Global Positioning
System) that measures ground coordinates of the van.
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(a) Left image sequences (b) Right image sequence
Fig. 8. Color image sequence taken by Mobile Mapping System. They are used as our input datain
which civil infrastructures, e.g. traffic lights, stop signs, etc., are going to be recognized.

52 General approach

Fig. 9. Traffic light image pieces cut from color image sequences with size of 30X40 and 20X 30
respectively.

3D Model
—Kacting)

| Hypothesis regions|

Edge detection Segmentation

Color Image

Fig. 10. A general framework for recognition of traffic signsin color image.

There are many civil infrastructure recognition systems existing in literature, most of which are
designed for the purpose of autonomous driving. In Salgian and Ballard (198) color vaues and
steerable filters are used in ssimulated scene to find traffic signs. The methods they proposed is
quite simple since they are designed for on-line driving and won't work in real image sequences.



InYuille et a. (1998), seeded regions that have similar color as models are picked and grown to
hypothesis regions in which geometric information like edges are detected followed with
matching between extracted boundaries and those of models. The system we design could be off-
line instead of on-line to recognize traffic signs correctly and capture their spatial information
accurately. The real image sequences we have are quite noisy where ssimple methods won’t work.

521 Edgedetection in color image

Edge detection methods have been studied in literature for quite many years and different edge
model and different criterions lead to different edge detection agorithms. Many edge detectors,
e.g. Canny, Log, Snake etc., are available to detect edges in gray value image. Finding edges in
color image, however, is more complicated than in gray image. This is because we are looking for
2D edge points(X, y) in color image that has three bands and each of which has its corresponding
edge map. In other words, each pixel in color image is a 3D vector, which will stay, under
different considerations, in different 3D spaces, eg., [R G B|, [y U V] etc. The procedure
to find edges thus is a mapping from 3D space, color image, to 2D space, edge map. Lee and Cok
proposed a new method to detect boundaries in vector field which gives a solution that extracts
edge map in color image.

Suppose each pixel in color image is denoted as [u(X,Y) V(X,Y) W(X,Y)](whose partia
derivative matrix along x and y can then be denoted as

éfu  fuu
€a.. .. U
éﬂX Ty G
p=elv Tvg 20)
ex  yU
Sqw ﬂlvﬂ
aTx  Tyq

ép tu
Thematrix D" D isdenoted as é’? L] where

guo , dve , dwy | _afluoaud afvoedvo afwiewd

=C—+ +¢—= +0—= , t=C—
gﬂxz gﬂxz gﬂxﬂ e‘ﬂxag‘ﬂyg eﬂxﬂg‘ﬂyg e‘ﬂxéﬂYz
LV e

g‘ﬂyz gﬂ)’ﬂ gﬂ)’ﬂ
The largest eigenvalue | and its corresponding eigenvector g of D™D are the gradient

magnitude and the gradient direction at each edge point respectively. We can compute | as
1
| :E(p+q+J(p+q)2-4(pq-t2)) (21)

and thus have g as

i anynormalized vector p=t=qgq=0
g=1{[l, 1" t=0andl =q. 22
Ll - pl” otherwise
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The color edge detection algorithm is as follows,
1. Canny operator is used separately in R, G and B layer to compute gradient maps.

2. g iscomputed as equation (22).
3. Same non-maximal suppression as Canny operator is used to get the final edge maps.

(a) Original color image (b) Edgemapat s =1.0 (b) Edgemapat S = 2.5
Fig. 11. Color edge detector in mobile mapping images.

522 Mean shift clustering algorithm

Clustering algorithms have been explored by researchers for decades and are applied to both low-
level image processing like image segmentation and high-level image processing like object
recognition. Among hundreds of existing clustering agorithms, kmeans clustering is a very
famous one and widely used. In Cheng (1995) the author analyzed a more generalized a gorithm,
mean shift, in which k-means agorithm is a special case. Due to the overal performance, both
convergence property and computational issue, we try this algorithm in color image segmentation
and use this one in vanishing points detection and analysis of generalized Hough transformation.

Suppose we have afinite set Sin the n-dimensional Euclidean space X inwhich S isnormalized
as é p(X) =1 where p(X) isthe vaue of each site X. For the sake of convenient, we treat X
xS
as random field defined on S. Let B, be a | - balin Xcentered & X as
B, :{y|||y- (A } Given asite xand its corresponding | - ball B, we could compute the
sample mean as
Q YP(y)dy

=E B |=¢ B)dy=—— . 23
m(x) = E[y| B,] = ¢yp(y|B,)dy &) )

We could approximate p(y) using taylor expansion as p(y) = p(x)+(y- x)" Np(x) so that
the shift between m(x) and X is
Q (y- 0p(y)dy  QI(y-X)p)+(y- (Y- x)"Np(x)]dy

- X == 24
me) - x p(B,) p(B,) @

where (‘9 (y- x)dy =0 . The mean shift findly is
Q (Y- x)(y- x)"dy

m(x)- x =— 5(B.) Np(x) (25)
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which is propoportational to gradient Np(x) . We stop at alocal maximal where m(x) - x=0.

This proves that this mean-shift algorithm is guaranteed to converge at the loca maximal value.
Detailed anaysis could be found in Cheng (1995).

523 Color image segmentation

Many researchers have studied color image segmentation methods for many years. It is well
known that the perfect segmentation of image, either in wlor or in gray vaue, could not be
achieved without the full interoperation of scene. In other words, pure low-level image processing
won't give us perfect results without the involvement of high-level image processing.

Huang et a. (1992) segmented color image by combining scale space filter and Markov random
field together. Liu and Yang proposed a multiresolution color image segmentation method which
actualy is treated as a MAP problem to segments. Comaniciu and Meer (1997) used mean-shift
algorithm as clustering method in classifying histogram. We test Comaniciu and Meer ‘s method
on our color images and have theresults asin Fig. 12.

(a) Segmentation results of real image (b) Zoomed traffic light cut from ().
Fig. 12. Color image segmentation using mean-shift algorithm. The advantage of this algorithm is
that it runs very fast. The disadvantage is that the results are not very good although we see well
extracted regions when simple color images are tested. In (b) there are more than 10 regions existing
even for asingle traffic light which makes later recognition very difficult.

McCane (1996) proposed an adaptive segmentation method that combines and splits regions at
different scales in gray image. We extend this method to different channels, R, G B so that
regions at different scales and layers compete each other. The strategy isillustrated in Fig. 13.

region splitting
and merging

segmented
regions

regions 3

Edge map3

Fig. 13. Adaptive color image segmentation strategy.
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(a) Segmentation results of left image with different (b) Segmentation results of right image with

scales, S =1.0,s =20 ands =3.0. different scales, S =1.0,s =2.0 ands =3.0.
Fig. 14. Segmentation results by adaptive algorithm. This method gives more reasonabl e regions than those
given by mean-shift algorithm while spending much more time. However, the results, as we can see from
(a) and (b), arenot stable.

From above experiments we find that dthough the existing algorithms work fine in smulated
scene and simple images, they dl fail in rea image sequences. In the next section we will propose
a new method that runs faster than traditional segmentation method while giving much better
results.

53 Integrating Top-down and Bottom-up processes by Markov Chain Monte Carlo for
Object Recognition

In this section, we propose a complete new method that integrates Top-down and Bottom-up to
recognize 3D objects, more specificaly, traffic lights.

531 Interpretation of scene

Computer vision tries to understand 2D images, which are back-projections of 3D scenes.
Recognition of 3D objects appearing in 2D image requires proper models to represent 2D images
leading to proper models to represent 3D scene. Miller et a. (1995) and Miller et al. (1997) gave
a basic random model to represent 3D scene in the recognition of objects by jump-diffusion.

Suppose we have detailed 3D models {O,,i =1L n} that describe every possible existing objects
in 3D scene and each of these models is paramized by 3D coordinates, pose and other parameters.
Any possible scene X can be denoted as xT ¢ 1 E", E¥_ O" where m is the occurance

number of every object and n is the overall number of objects that may appear in the scenes. The
imagery data could be denoted as yI U where U is the observation space. We then have the

likelihood function L(-|-):Y" X® A. The likelihood of y given observed scene X,

L(y|X), is the conditional probability. We can further define EOP (Exterior Orientation
Parameter) and IOP (Interior Orientation Parameter) which are always given by GPS and INS as
el E.

In Bayesian inference problems, posterior probability density is awlays wanted to estimate X
giveny. The posterior density is
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1
Z(y,e)

p(x]y.€) = P()L(y|x€) (26)

where Z(y,€) is probability of yande. Poor (1994) discussed the basic signal estimation
problems, which are discussed a little bit below. Suppose we have a function C:L~ L ® A
such that C[a,q] isthe cost of estimating atruevalueof q as a, for aand q in L . Given such
afunction C we can then associate with an estimator qA aconditional risk or cost averaged over
Y foreach q1 L ; eg., we have R, Q) = E, {C[d(Y),qJ}. If we now adopt the interpretation
that the actual parameter value q is the redlization of a random variable q, we can define an
average or Bayesrisk as r ((i) D E{Rq (d )} and the appropriate design goal isto find an estimator

minimizing r(cf). Different choices of risk function yield different Bayes estimators. The
function  C[a,q]=(a- q)® vyieds the Minimum-Mean-Square-Error  estimator
dMMSE = E{q Y = y}; The function C[a,q] =|a- q | yields the Minimum-M ean-Absolute-
i0ifla-qED

Error et Juwee =Medianof p(q |Y = y); The function Cla,gq]=i ..
rror estimaor Qs p@ | y) e function Cla,q] %1|f|a-q|>D

yields the Maximal-A-Posterior estimator d MAP = arg{max pQlY = y)}.
q

To recoginze 3D object in 2D images, we always choose the MAP estimator which finds the X
that makes p (X | y, €) to be the largest value. Since each observed image is just the 2D projection

of we can have the expressonas U =c¢” A~ A2 +N where A} isthe 3D transformation in

which e, is EOP, where Ai isthe 2D transformation in which €,is1OP and N isimposed noise.
Many existing bottom-up methods try to find X, either implicitly or explicitly, with given data
y . Among them indexing of 3D invariants is a straightforwd way to do. Generalized Hough
transformation is another smart way that tries to find the most significant evidance by voting to
Cc gpace. Direct indexing is straightword, easy to compute and runs fast but 3D invariants may
not always, in most cases, exist. The Hough transformation sapce which is actaully a probability
distribution, is a rough approximation of p (x| y,e€) and it works only in well defined situation.
That's why line detection using Hough transformation is widely used where objects—Ilines are
very simple and their background is clean. The method we are proposing tries to absorb the
advantages of indexing and hough transformation, fast approach, and estimates X more
accurately in Markov Chain Monte Carlo random process.

53.2 Description of models—traffic lights

If we focus on our task, recognition of traffic lights in outdoor images, the detailed description of
parameters becomes important because we don’'t know otherwise what are the parameters to
estimate.

(1) type t
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(@) Typel (b)Type2 (c)Type3 (d)Type4
Fig. 15. Different types of traffic lights

Fig. 15 shows 4 different types of traffic lights that appear the most time. Generally speaking,
different types of objects should have different parameter space to describe. In the case of traffic
lightsit just happens to be same number and items of parameters for each type.

(3) illuminanc of shell, red light, yellow light and green light which are c(R,G,B),
¢, (RG,B), c,(R,G,B) and c,(R,G, B) respectively.

(4) size of the primitive (w, h)
For each model, we have the assumption that each type of traffic light is made by severa
primitives that have identical shape and size.

(5) spatid position (X,Y,2)

(6) rotation angles (n,k,j ) dong X, Y and Z respectively

*j

\/

X
Fig. 16. Absolute ground coordinatessystem (X,Y,Z), local coordinates (X (,Y(, Z() and
occruances of traffic lights.

Fig. 16 shows the basic coordinates systems in which 3D objects live where (X,Y, Z) isthe
absolute ground coordinates system and (X (Y( Z( is the loca coordinates system. The
reason why we define this local coordinates is because the occurance of trafic lights shows
nice propertis that meet our aspect framework in Fig.1. Let (n (k (;j () be the rotation angles
of traffic light in terms of loca coordinates system (X(Y(Z(). We may have the
assumptions that N(=0 and k(=0 because traffic lights are aways hung to be
perpendicular to ground. Rotation anglej ¢ is close to one of four major aspects,
0°,90°,180° and 270°. We thus have the prior probability of j ¢ as

fG 9

p(j 9= Z where

1 1 . 2 1 1 2
fGg 9= expf - ¢ 0 expf - ¢ 90
9 200 232(J )} + s pf 252(1' )} +
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1 1 . 1 1 . 1 1 .
-— (i ¢- 2 - ¢- 2 _ ¢- 2
205 expf ( 180) }+«/53 exp{ 5 270)°} + 1/53 expf = 270)°}
(27

3060
and Z=38 f( 9.
j &0

Fig. 17 showsthe prior pdf of j .

Fig. 17 Prior probability of | (.

Let (n,,k;,j ;) be the rotation angles of loca coordinates system interms of global
coordinates system, we can compute (n,k ,j ) asfollows,

n=n, +ng,

k =k, +k¢,

and ] =], +] Cwhere n(, and k ¢ could be approximated as 0. (n,,k,,j ,), however,
could be solved by vanishing points detection which we will discuss larter.

5.3.3 Vanishing points detection

As we state above, it's important to known (n,,k,,j ;) to compute (n,k,j ). It iswell known
that a set of parale linesin 3D scene generates a set of linesin 2D image that converge to asingle
point which is called vanishing point. Although it is true that there are infinite numbers of paralle

line sets existing in real scene, the most dominate directions are dong (n,,k,,j ;) in mobile
mapping imageries. Due to this fact we may get (n,,K,,j ;) by detecting vanishing pointsin a
single image.

Brillault-O’Mahony (1991) proposed a new method to detect vanishing points in a new
accumulator space other than Gaussian sphere. Lutton et al. (1994) tried to detect (n,k,,j ;)in
Gaussian Sphere. Shufelt (1996) used vanishing point in the detection of buildings in aerid
images. Coughlan and Y uille (1999) tried to use gradient of edge points instead of direction of
extracted straight lines to determine (n,,k,,j ;) in Bayesian Inference where n, andk, are
actualy approximated with 0.



vanishing

a point 2

vanishing
point 3

Gaussian
sphere

from Shufelt (1996).

Asstated in Lutton et a. (1994), let U (q,,,f ) be the direction of a vanishing point direction in
Gaussian sphereand N, (q;,f ;) be the norm of a surface that passes the origin of the Gaussian

sphere and two extremes of straight line segments. We have the basic knowledge N, - U =0

from which we have the equation as cos(q; - q,)Snf,snf , +cosf , cosf , = 0.

The method to detecting vanishing points we are using is.

(1) Get edge maps using color edge detection agorithm or Canny in gray value image at large
scales .

(2) Apply edge thining and following methods to get line segments.

(3) Use Lowe edge split method to split line segments into straight line segments.

(4) For each extracted straight line segment, Ni @;,f,) iscomputed and thus every lIJ @,.f.)
that meets the above equation isvoted into (q,f ) space where g is not equally spaced

because same piece on different place of the Gaussian sphere cover different area. The

BIS) 1
interval of q isselected as k) =—x .
a Pa ) Df cos(k- 1) - cos(k)

(5 Mean-snfit clustering agorithm is applied to find vanishing points.




(b) Voting space of (q,f ) generated from
extracted straight linesin (a)

(c) A gray image with the size of 520X400. (d) Voting space of (q,f ) generated from
extracted straight linesin ()
Fig. 19. Vanishing points detection agorithm applied in both color image and gray image.

This algorithm tests many images in either color or gray value and we found it’s robust under
different circumstances. The directionsof (n,,k,,] ;) thus can be easily computed in asignle
image.

534 Top-down and Bottom-up method

If we go back to Fig. 1, which shows the basic framework of a 3D object recognition system, we
could find that our conditions here nicely fit this framework. Each traffic light is made of several
primitives and each of them has four aspects, which can be approached by vanishing points
detection method.

As we state before, color image segmentation methods are time-consuming and the results are not
promising. To make our algorithm practical, we develop a new method that integrates bottom-up
and top-down methods to recognize traffic lights fast and correctly. The basic bottom-up and top-
down strategy is stated below.

Bottom-up approach
1. Edges are detected from color image.

2. (n,,k,,] ;) arecomputed using vanishing points detection agorithm.

3. Different aspect images of primitives are used as template in histogram filtering to compute
hot spot map at different scale.
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4. Minimd risk signal detection method is used to get hot spot map as atypica signa detection
problem and one image is used as training set.
5. Image pieces that contain hot spots are extracted.

Top-down approach
1. Markov Chain Monte Carlo is used to recognize traffic lights thus to get the best estimations
of parameters that describe each traffic light.

Top-down A

different L] ] M
types a W

primitives

Bottom-up

Fig. 20. Realization of Fig. 1 as bottomup and top-down method in traffic light recognition.

535 Histogram filtering

Many researchers have been trying to recognize objects in color images using color invariants and
geometric invariants. Swain and Ballard (1991) initiated a new method called “color indexing”,
which actually compare histograms of given image with object stored in database in black-white,
red-green and blue-yellow spaces. To capture more invariant information, Funt and Finlayson
(1995) used Laplacian and four directiona first derivatives to convolve with color image and
compute the histogram again. Slater and Healey (1996) used bbcal color pixel distributions
instead of whole image to recognize objects. Nagao and Grimson (1997) combined photometric
invariants and geometric invariants together to recognize 3D object under different views.

Color values of each pixel in an image could be denoted as avector r = (r ,,r,,L r )" where
I,k =1K m represents scalar response of the kth sensor channel. r, can be denoted as

r (0= ¢SOCEXR(1 ) (29)

where S(x,1 )is the spectral reflectance funtion of the object surface at x and E(X,| )is the

spectal power distribution of the ambient light and R, (I )is the spectral sensitivity of the kth
Sensor.

As proved in Nagao and Grimson (1997), final invariants could be awarded with
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The loca color invariants are important to us because we only want to extract the hot spots that
are most likely to be traffic lights insead of the whole image. Using this notion we make three
aspects of the primitives of traffic lights as 2D templates, which are specifed in Fig. 20. In the
advoidence of segmentation, we develop a new agorithm that captures both photometric and
geometric invariants to get hot spot maps using histogram filtering. The algorithm is as follows:

(1) Original color imagein (R, G, B) spaceisconvertedto L ,u’,v’ space (Wyszecki and stiles
,1982).

(2) Several 2D image templates, |,,i =1L n, are generated as 2D projections of traffic light
primitives at major views.
(3) Color template images |,,i =1L n are transformed from (R, G, B) to L',u",V spaceand

histograms are computed as

. 1 P . . . * .
H-(j)== é 1 where j is each bin vaue in the domain of L where Zis the
sl 1;,L(s)=]
normalization factor so that é HiE () =1,
j
. 1 .. . . . * .
H' () == é_l where j is each bin vaue in the domain of u where Zis the
910 (9=]
normalization factor so that é Hi“* (=1,

J

P | .
and H (j)== é 1 wherej is each bin vaue in the domain of v where Zisthe
g1V (9=]

normalization factor so that é Hiv* (j)=1.

J
Asfor geometric invariants, edge map is obtained using color edge detection method we state
beforeat s =1.0. A large s vaueis not satisfied because aspect image is small. The set of
edge pixels are denoted as 1 © ={s|sl | and sisedge pixl€} . Histogram of gradients of
edge point is computed as

L1
HE()) == é 1 wherej is each bin value in the domain of discrised gradients vaues where
41F

= Qo
=

Z isanormalization factor sothat @ HF (j) =1. Also, we get edge pixel p" =
j

’QJO
H

d

off

p| :1- pion'

=
(a) Template image at aspect 1 of primitive which isfacing to us
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(b) Histogram of template (a) in L (c) Histogram of template (a) in u’

100 90 8 70 6 5 40

(d) Histogram of template () in v (e) Histogram of template (a) in edge gradients

Fig. 21. One aspect template and its corresponding histogramsin L', u", v and edge
gradients.

(4) Three square windows that have different sizes, in other words, under different scales, are

©)

moved around the image. Let W, (s), W, (S) and W, (s) be three windows centered at pixel
€. The histograms of each window centered at every pixel is computed as

) . 1 y _ 1 ; . 1
Hiw(D=5 &1 . Hig()=5 &1 ad Hiux(h=2 a1

W (s9,L (s)=] W (s9,u’(s)=] 4 W (SO (5)=]
a1
E i 1 o on d I\Ei(s)
Hie()== alad p™ =—2 arecomputed as (3).
Z st IVE“S) a 1
d Wi(s)

The histograms are actually probability distribution functions that describe the distributions
of L',u",v" and edge gradients. The overall measurements of the similarity between H‘

and H; &, thesimilarity betweenHY and H ., , and the the similarity betweenH” and

HVV\;(S@ tell us how likely the template |, appears at S¢ with size of W,. Let the overall

photometric similarity be h(i,t) = /D" (i,t)? + D (i,t)2 + D" (i,t)> where the distance
of two pdf functions, D(i,t), could be computed as

DGi,t)=1-|p | p]=1- é. min( p; (1), p. () - (30)

The geometric similarity D(i,t) = D" (i,t) is computed where distance of two pdf functions
are obtained the same way as that stated in above.
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(a) Histogram similarity map in photometric (b) Histogram similarity map in geometric
invariants. invariants.
Fig. 22. Aspect template of Fig. 21 applied one image at window size 20x20.

(6) Given the above similarity map we still don’t know what’ s the possible hot spots. The general
approach is to set up a thresholding method. Every vaue that is larger than a fixed threshold
would be set as 1 and every one that is smaller than it would be set as 0. How to set a proper
threshold is difficult. Here we treat this kind of problem as a typical signa detection problem in
which noise or signa is determined in terms of some crieterias using their probability distribution
other than just thresholding. With this mehtod, the system could be trained with training data.

Severd traffic lights that appear in one image known to have the same aspect as Fig. 21 are
choosen as training samples. Same histogram similarity maps are obtained with same method
applied. We pick up those pixels that appear in samples as object signal and all others are just
noises so that we can have their pdf functions as shown in Fig. 23.

sssssss ignal object signal

Al s s s
0 05 1 15 2 25 3

(a) pdf function of noise (b) pdf function of object signal
Fig. 23. Pdf function of signal and noise.

Let p,be the prior probahility of occurances of noise and p,be the prior probability of

occurances of object signd. Given a histogram map and the pdf function of noise and the pdf
function of object signal, we are going to tell which pixels in the map are the noises and which

arethe signals. Let C,betherisk for each pixel that being the signal while assigned as noise; Let
Cyobe the risk for each pixel that being noise while assigned as noise; Let C,, be the risk for

each pixel that being the noise while assigned as signal; Let C,, be the risk for each pixel that
being the signal while assigned as signd;
The overall risk we have is thus

r{d) =Ry(d) +R(d)
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where Rj (d)= Clj F’J (G) +COj PJ. (Q).

Tominizetherisk R(d) we have

rd)=pP,Rd)+P;Rd)=P, (\ﬁoo Po(y)dy+P (‘?10 Po(y)dy+P (‘ﬁmpl(Y) dy+P, (\pllpl()’)dy
G G €} G

= dP 0Coo Po(Y) +P,Cy, p,(Y))dy +(\P 1CioPo(V)dy +P (Cyp () (3D
G G
Apparently, we get the critrien as

G ={yT Gl p.(y)® tp,(V)} (32)

- pl(C01 - Cn)

With this method, it’'s straightforward to have the object signal map where the dark pixels mean
object signal and bright pixels means noise. By cominbing these maps at different window sizes
and different aspects together, we could have the final hot spot map.

This hot spot detection agorithm is robust at occlusion and illuminate. For a color image with
720X400 it just spends 2 minutes in a pentium 111 500 PC machine which is much faster than
segmentation methods while giving better results.

Fig. 24. Hot spot map

5.3.6 Trafficlight recognition by MCMC in Top-down approach

Given the hot spot map as shown in Fig. 24, we may extract regions out of it. We have the
assumption that occlusion won't happen then severa rectangle pieces of image each of which
encloses a connected hot spot region could be extracted. The size of every piece of image may be
larger than its enclosed region because at this point we don't know what’s the exactly position
and size the traffic light would be.

The remaining thing we should do is just to work on every piece of image trying to recognize
traffic lights, may or may not appear, and their corresponding parameters.

Given every piece of image Yy and EOP and IOP parameters €, we want to find the Xthat
maximize the posterior probability



1
Z(y.e)
As our description in 53.1, we have yT U=c” A] " A2 +N where A andA? are 3D
transformation and 2D transformation respectively, ¢ isthe 3D scene in which only one traffic
light is enclosedand N is superimposed noises.

p(x|y.e) = POIL(Y]x.€).

Fig. 25 shows pdf of background color image in L ',u’,v" with imposed Gaussian function
approximation. We can see the nice fit of them which means background could be treated as
Gaussian distributed noise. In more general cases Zhu and Mumford (1997) proposed a more
genera tatistical description of background. We may use the same method to get the model by
training through many image samples. In this case, traffic lights are generally hung against the
sky and we just suppose a simple Gaussian distribution of background.

o
40 50 ) 70 £ %0 100 60 50 40 @ 20 10 o 10 20 100 80 60 “40 20

(a) pdf of background in L’ (b) pf of background in () pdf of backgroundin V" with
with imposed Gaussian U with imposed Gaussian imposed Gaussian distribution at
distributionat S =4.1. distributionat S =4.2. S =58.

Fig. 25 pdf of background image

Suppose the parameter X is decomposed to
[t.c.(RG,B).c,(RG,B),c,(RG,B),c;(RG,B) (XY, 2).(Wh),(k,j)]

In Ullman and Basri (1991), the authors proved that the perspective projection of a 3D object,
when viewed from some distance could be approximated with orthogona projection. We also

have the assumptions that N =0 and k =0 which are true in read scene. These requirements
could be met in our cases reasonably and the parameters are smplified as

[t,c,(RG,B).c, (RG,B),c,(RG,B), c,(RG,B),(X,Y).(wh),] ]

where (X,,Y,) are the 2D corrdinates of the center of traffic light in image piece. Let F(x,€)
be the orthogonal projection of atraffic light paramterized by X. Let FSL* (x,e), FS”* (x,€e) and
F.” (x,6) be the L',u’,v"value a each pixd site sin F(x).Let nt, nt' and m’ be the

averagevaluein L',u”, v of background.

The likelihood is
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The log likelihood becomes

o o] 1 c c 2 o o 1 c c 2
log(L(y[x.€)= a a -5 az(s-F&xe)y+ a a - 7(s-FK(xe)+g
d F(x,e)c=L",u" and V' 2(S )2 dF(x,e)c=L"u"and V' 2(5 )2
. . 0 1 _
where gisaconganct vaue whichequalsto m g log( ) where mis the number
=L ,u" andv’ \/2pS ¢

of pixdsin vy.

The digtribution that is propotationl posterior probability, p (x|y,€), we are caring about
becomes

p(x) = P (9+log(L(yixe)/B (34)

where B is the temperature. The introduction of B won't change the X” that maxims the posterior
probability because expotional function is montonl. We could see here that p(X) is exactly the
Gibbs distribution as in section 4. We may rewrite the above equation as

p(x) =€ """ (35)
where

H(X) = - (p(x) +log(L(y | X €))) (36)
is the energy function.

Gilks et a. (1996), Winkler (1995) and Li (1996) discussed MCMC in image andyss.
Apparently, it's impossible to search every value of X, which isin a huge space making search
agorithm run forever. There are three ways of sampling Xto find the solution to this MAP:

(1) Gibbs sampler, whose detailed description can be found in chaper 5, Winkler (1995)

(2) Steepest descent approach

(3) Metropolis sampler which can be seen in Gilks et al. (1996) and Winkler (1995).

Gibbs sampling algorithm runs too sow and is not efficient. Because different aspects of traffic
light will give complete 2D images steepest descent algorithm doesn’t have a nice surface whose
second derivative, Hessian matrix, has al negative eigen values.

Metropolis sampler, specifically Metropolis-Hasting, is used here to find the solution to the MAP.
The basic metropolis sampling method is in the following as Winkler (1995):
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(1) A new configuration X, is proposed by sampling from a probability distribution G(x;,% on
X where G(x,,¥ is called proposal matrix

(2) Theenergy at X, iscomputed and is compared with X;
(@ If H(x,) £ H(x)then X, is accepted as the new setp
(b) If H(x,) >H(x,) then X, isaccepted with the probability exp((H(x)- H(X,))/B)
(c) If X, isnot accepted then X; will be kept

The transformation matrix p (X, X, ) becomes

) = IG(X1 x)exp(- (H(x,) - H(x)"/B) if x,* x,

) where

P (X1, X,

10 H(x,)- H(x)3 0
(HO)- H(%) =

2T A T E (M%) - HG) H(x) - Hx) <O°
It could easily be proven that p(X,)p (X, X,) = P(X,)p (X,, % ), which meets the requirement of
the convergence of Markov Chain.

A more efficient method in Metropolis agorithm is Metropolis-Hastings algorithm whose
Markov transformation matrix can be denoted as

T G(Xl X )A(Xl'xz) if Xt X,

PO =l g P02 if X =x, e
where
Ao = min 11, PO2)G06 ) -

i p(xl)G<x1,x2)f§
It is trival to prove the convergence of Markov random  process,

PP (%15 X;) = P(X,)P (X5, %)

The important thing remaining is how to generate proposa matrix G(X,,X,). As we stated
before, traditional method like Generalized Hough Transformation votes for a solution X, may or
may not be the solution to MAP, given image Yy . To combine the advantage of Generalized
Hough Transformation, the speed, and the advantage of MCMC, perfect result, we choose the
result of Generalized Hough Transformation as proposal matrix G(X,,X,) . The voting space of
Generalized Hought Transformation actually gives a distribution of every possible parameters.

(a) image piece (b) imposed recognized (d) |mage plece (e) |mposed recognlzed
model model
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(c) Energy curve along MCMC of (a) and (b) (f) Energy curve along MCMC of (d) and (e)

(g) image piece (h) imposed recognized ()] imagje”pilece (k) imposed féclognized

model model
(i ) Energy curve along MCMC of (g) and (h) (1) Energy curve along MCMC of (j) and (k)

Fig. 26. Original image pieces with the recognized traffic and the energy curve along MCMC simulations.
We can see the nice matching between original image and imposed 3D object. In(c) it takes around 2
minutes to reach the final status. In (f) it takesone and a half minutes. It just takes less than one minute for
(i) and (1) to reach the final steps.

6 Conclusions

In this article, the framework of a 3D object recognition is discussed. A new multilayer Hopfield
Neura Network followed by a more genera method Gibbs relaxation labeling in 3D invariants
matching is proposed. Capturing the main heart of this framework, a novel method that integrates
bottom-up and top-down is introduced. As to thisidea, areal system that recognizes traffic lights
in real image sequences is proposed. It takes fifteen minutes for the system to recognizes a color
image with 720X 400 starting from the low-level processing. The results we get are promising and
show the great potential of using Markov Chain Monte Carlo method in recognizing 3D object in
estimation problems. In this bottom-up and top-down by MCMC, we combine traditional method
like indexing and Generalized Hough Transformation and show that they could be nicey
integrated in random processes.
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