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ABSTRACT 

 

This study presents the results of investigations to determine accurate position 
coordinates using the Global Positioning System in the absolute (point) positioning mode.  
The most common method to obtain accurate positions with GPS is to apply double-
differencing procedures whereby GPS satellite signals are differenced at a station and 
these differences are again differenced with analogous differences at other stations.  The 
differencing between satellites eliminates the receiver clock errors, while the between-
station differences eliminate the satellite clock errors (as well as other errors, such as orbit 
error).  However, only coordinate differences can be determined in this way and the 
accuracy depends on the baseline length between cooperating stations.  The strategy with 
accurate point positioning is to estimate GPS satellite clock errors independently, thus 
obviating the between-station differencing.  The clock error estimates are then used in an 
application of a single-difference (between-satellite) positioning algorithm at any site to 
determine the coordinates without reference to any other site.  Using IGS (International 
GPS Service) orbits and station coordinates, the GPS clock errors were estimated at 30-
second intervals and these estimates were compared to values determined by JPL 
(Zumberge et al., 1998).  The agreement was at the level of about 0.1 nsec (3 cm).   
 
The absolute positioning technique was tested in an application of a single-differenced 
(between-satellite) positioning algorithm in static and kinematic modes.  For the static 
case, an IGS station was selected and the coordinates were estimated. The estimated 
absolute position coordinates and the published values had a mean difference of up to 18 
cm with standard deviation less than 2 cm.  For the kinematic case, data (every second) 
obtained from a GPS buoy were tested and the result from the absolute positioning was 
compared to a DGPS solution.  The mean difference between the two algorithms is less 
than 40 cm and the standard deviation is less than 23 cm.  It was proved that a higher rate 
(less than 30 sec.) of satellite clock determination and a good tropospheric delay model 
are required to do absolute kinematic positioning to better than 10 cm accuracy.   
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1 Introduction 
 

The Navigation Satellite Timing and Ranging Global Positioning System 
(NAVSTAR GPS) has been developed and is being operated to support accurate position, 
velocity, and time by the Department of Defense (DoD).  It is a global, all-weather, and 
space-based 24-hour operational navigation system (Wooden, 1985).   

The 18 GPS satellites were anticipated to be placed in an orbital configuration to 
optimize a spatial and temporal global coverage between 1986 and 1990 (Jorgensen, 
1984).  The plan called for placing three satellites (120° apart) in each of six evenly 
spaced orbital planes.  These orbits are nearly circular, inclined at 55°, and had 12-hour 
sidereal periods (Remondi, 1985).  Presently, the constellation consists of 24 operational 
satellites (at 20,200 km altitude) deployed in six evenly spaced planes (A to F) with 55° 
inclination and four satellites per orbital plane.  In addition, four active spare satellites for 
replenishment are operational (Graviss, 1992).   
 Each GPS satellite transmits its position and other navigational information via 
the L-band radio signals, L1 (1575.43 mHz) and L2 (1227.60 mHz).  The L-band carrier 
signal is modulated with data carrying information such as the satellite status, the satellite 
clock error and the ephemeris (Hofmann-Wellenhof et al., 1997).  The L1 carrier signal is 
modulated with a precision code (P-code), known as the precise positioning service (PPS) 
code, and a coarse acquisition code (C/A-code), known as the standard positioning 
service (SPS) code.  On the other hand, the L2 carrier signal is modulated with only the 
PPS code (Remondi, 1985).  

The PPS and SPS code has a chipping rate of 10.23 mHz and 1.023 mHz, 
respectively, and with respective repeat periods of 37 weeks and 1 millisecond (Spilker, 
1978).  The C/A-code for SPS has a wavelength of 300 meters, while the P-code for PPS 
has 30 meter wavelength.  The noise level for the P-code is less than 0.3 meters and less 
than 3 meters for the C/A-code.   

There are two intentional degradations which contribute to the GPS positioning 
inaccuracy.  The first one is called Anti-Spoofing (AS).  AS allows GPS to conceal the 
precision code and to issue an encrypted code, which prevents non-authorized users from 
using the full capability of the PPS.  AS is performed by the modulo-2 addition of the 
precision code and an encryption W-code (Leick, 1995).  The resulting Y-code is the 
signal transmitted and modulated on the L1 and L2 carriers.   

The other method used to degrade the GPS positioning accuracy is the Selective 
Availability (SA).  SA intentionally corrupts the navigation information by dithering the 
fundamental frequency of the satellite clock (δ-process) and by manipulating the 
ephemeris data (ε-process).  The accuracy is decreased to 100 meters for a horizontal 
position and 140 meters for a vertical position.  The accuracy of satellite clock error is 
decreased to a level of 340 ns within 95% probability level (Parkinson et al., 1996).   
 Using the broadcast orbits and clocks which are already affected by SA, Heroux 
and Kouba (1995) tested single point positioning with one receiver and obtained expected 
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poor results.  During the 25 minute time segment, the RMS of the variations with respect 
to the averaged latitude, longitude and height were 22, 15 and 65 meters.   
 
 

 
 
 

Figure 1.1: Static positioning variation due to SA; horizontal (top) & vertical (bottom) 
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Figure 1.1 shows an example of the absolute positioning solved every 30 seconds 
during approximately 3 hours using the broadcast navigation message with both C/A- and 
P2-code.  The positioning is affected mainly by SA, which causes the position to vary 
systematically with respect to time.  The standard deviation of the horizontal and vertical 
positioning is about 70 meters and 90 meters.   
 The δ�process in SA has the same impact on the code and the phase since the 
fundamental frequency is dithered.  According to Parkinson et al. (1996), the clock 
accuracy with and without Selective Availability is 40 ns (12 m) and 340 ns (100 m), 
respectively.  The positioning accuracy, therefore, can be improved nine times if the 
satellite clock error is known.   

Figure 1.2 indicates the satellite (PRN1) clock error estimates at 12/5/1998 
(Chapter 3).  The clock was affected by the Selective Availability, specifically the δ-
process.  The precise satellite clock error estimates in the figure include not only the drift, 
but also the high fluctuation which degrades the broadcast clock information up to 60 m.  
The value of the estimated satellite clock error at the 16th epoch in Figure 1.2 is seen to be 
66.65 microseconds, while the navigation message clock information gives 66.45 
microseconds.  The difference between them causes around 60 m range error.   

 
 
 

 
 
 
 
 
 
1 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.2: The precisely estimated satellite clock error (one epoch for 30 sec) 

 
 

As seen above, one of the important unknowns in GPS positioning is the satellite 
clock error, which is defined as the variation of the nominal time (the reading of the 

0 10 20 30 40 50 60
66.25

66.3

66.35

66.4

66.45

66.5

66.55

66.6

66.65

66.7

Number of epochs

S
at
el
lit
e 
cl
oc
k 
er
ro
r 
(m
ic
ro
 s
ec
on
d
)

Precise satellite clock error estimation
Clock drift from navigation message     



 4

satellite clock) with respect to GPS time.  GPS time is defined by the cesium clocks of the 
control segment station and agreed with UTC in January 1980 (Torge, 1991).  Part of the 
satellite clock error is due to random errors in the clocks and partly it is an intentional 
dithering (SA), that degrades the signal accuracy up to 100 meters.  Geodesists have 
circumvented this error by using differential techniques whereby the signals from 
satellites at two stations are differenced (Section 2.2.3), thus eliminating the common 
satellite and receiver clock errors (defined as difference between the receiver clock 
reading and GPS time).  In addition, GPS orbit errors also tend to cancel in the case of 
receiver single-difference and double-difference (about 10 cm error for baseline length of 
100 km; Leick, 1995).  However, the relative positioning of one station with respect to 
the other has its limitations and the accuracy depends strongly on the baseline length 
between stations (10 km for decimeter accuracy, Hofmann-Wellenhof et al., 1997).   

The primary reason to limit the baseline length is to reduce the differential effect 
of the atmospheric refraction, i.e., the ionospheric and tropospheric delays of the signal.  
One of the critical aspects in GPS positioning is the accurate modeling of the tropospheric 
effect at the two stations, where errors in the model do not cancel if the stations are far 
apart (several hundreds km).  In order to reduce the differential ionospheric effect over a 
long baseline, Goad and Yang (1997) calculated the autocorrelation function for the 
double-differenced ionospheric delay.  They then estimated the static position of one 
station epoch-by-epoch as if it were kinematic with the baseline length of about 179 km.  
Their results showed a few cm precision at each coordinate.   

Instead of double-differencing between two receivers, precise absolute positioning 
with only one receiver can be achieved in either the static or the dynamic mode, if the 
satellite clock errors and the orbits are determined with sufficient accuracy.  This has 
tremendous importance in many applications in geodesy and other disciplines that require 
accurate positioning in remote areas.  The quality of the orbits and clock errors calculated 
from the navigation message, however, are not accurate enough for accurate absolute 
positioning because of the impact of SA.  Therefore, it is necessary to estimate precise 
GPS orbits and clock errors in order to conduct accurate absolute positioning.   
 Nowadays, the International GPS Service (IGS) provides GPS satellite orbits and 
clock error estimates at 900-second intervals with about 5 and 10 cm accuracy, 
respectively and they are available after two weeks (IGS, 1999).  However, it should be 
noted that orbital state vectors and clock errors at a much higher rate (up to 1 Hz) are 
required in some applications requiring accurate positioning of moving-base platforms 
such as aerial photogrammetry, sea-level monitoring using ocean buoys, airborne vector 
gravimetry, and other remote sensing systems.   
 GPS ephemerides at higher rates, such as 30 sec (0.033 Hz), equal to the 
observational data rate of the current IGS stations, can be obtained by an interpolation of 
the 900-sec ephemerides within centimeter level accuracy (Remondi, 1989, 1991).  
However, the interpolation is not feasible to obtain the satellite clock errors because the 
SA effects on the clock errors have significant variations as seen in Figure 1.2.  In this 
study, a new method is introduced (for application to post-processing and interpolated 
orbits) to estimate the satellite clock error every 30 sec using the observations from the 
globally distributed IGS control stations (IGS, 1999).   
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Once the satellite clock error is determined, precise absolute positioning can be 
performed by using these estimates.  The absolute positioning technique has no limitation 
in baseline length caused by the first degree ionospheric effect because the algorithm uses 
the ion-free phase combination (Section 3.2 in Chapter 3).  However, higher-order 
ionospheric effects and un-modeled tropospheric effects still remain.  In absolute 
positioning, GPS clock errors are estimated from globally distributed IGS stations around 
the surveying area, and then the positions with the estimated GPS clock errors are 
estimated epoch-by-epoch.  This procedure will be developed in Chapter 3.   

Similar research in absolute positioning has already been performed.  Mur (1995) 
separated the clock error into a clock bias for the first epoch and a clock drift, and 
estimated them by using pseudo-range and phase observables, respectively.  In order to 
check the quality of the clock error estimates, he performed pseudorange point 
positioning of selected IGS stations with these estimates every 30 seconds.  The typical 
horizontal RMS difference with the known coordinates was on the order of 0.6 m and the 
vertical RMS difference with the known coordinates on the order of 1.2 m.  Some biases 
(around 1 m) in each coordinate were found as well.   
 Lachapelle et al. (1996) performed aircraft absolute point positioning using GPS 
post-mission orbits and satellite clock error estimates, and compared the absolute 
positioning results with DGPS solutions.  The overall analysis showed that the post-
mission absolute point positioning of the aircraft is possible within 1-2 meters RMS 
accuracy in latitude and longitude, and 3 meters RMS accuracy in height with single 
frequency GPS observables.   
 Zumberge et al. (1998) estimated the satellite clock error every 30 seconds with 
sub-decimeter accuracy, which is a factor of 100 to 1000 times better than the clock error 
estimates in the broadcast navigation message.  Kinematic positioning of moving 
receivers with a 30-second data rate was achieved with a precision of approximately 7 cm 
3D-RMS.  However, the position errors at every 5 seconds were degraded to about 30 cm 
in the vertical coordinates.   

This research focuses on the satellite clock error estimation and the subsequent 
use of these estimates to develop kinematic and static absolute GPS positioning 
algorithms.  An independent, end-to-end algorithm is developed and results from its 
implementation are compared to clock estimates published by JPL.  Static and kinematic 
GPS data at both 30 sec and 1 sec sampling rate from actual surveys are processed and 
compared with the known values and corresponding DGPS solutions.   
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2  Global Positioning System :  overview and data modeling 
 

2.1 GPS Observation Equations 
 
GPS provides range and carrier phase measurements between the satellite and the 
receiver.  However, these measurements are corrupted by errors caused by the atmosphere 
and the two non-synchronized clocks of the satellite and the receiver.  Unlike electronic 
distance measurement (EDM) device, the signal transmitter and the receiver are different.  
GPS satellites transmit the signal and a receiver collects the signal.  Therefore, the GPS 
signal can be distorted easily by both receiver and satellite clock errors.  One calls this 
distorted range "pseudorange", which includes other systematic errors also.  The 
pseudorange measurement is derived by the signal travel time between the satellite and 
the receiver and the carrier phase measurement is calculated by the phase difference 
between the incoming signal from the satellite and the signal generated by the receiver 
oscillator.   

Ignoring other range errors, but not the satellite and receiver clock errors, the 
equations describing the pseudorange and the carrier phase follows (Hofmann-Wellenhof 
et al., 1997):   
 

S
R

S
R

SS
RR

S
R cGPStGPStcP δρδδ ∆+=+−+= )])(())([( ,                                        (2.1) 

  
where 

S
RP  is the pseudorange measurement between the satellite, S and the receiver, R.   

c is the speed of the light in vacuum.   
RR GPSt δ+)(  is the receiver clock reading at the signal reception moment.   
SS GPSt δ+)(  is the satellite clock reading at the signal transmission moment. 

)(GPStR  is the GPS time at the signal reception moment. 
)(GPSt S  is the GPS time at the signal transmission moment. 

Rδ  is the deviation of the receiver clock reading from the GPS time and it is 
defined as the GPS receiver clock error.   

Sδ  is the deviation of the satellite clock reading from the GPS time and it is 
defined as the GPS satellite clock error.   

S
Rρ  is the true range between the satellite and the receiver and can be accurately 

approximated by ( ))()( GPStGPStc S
R −  because the GPS time is based on an 

accurate atomic time scale.   
 S

Rc δ∆  is the range error caused by two clock errors.   
 
For the carrier phase observation, one imports a beat phase, which is defined by the 
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difference between the satellite-generated phase and the receiver-generated phase.   
 

SS f
c

fftt δρτϕ −−=− )(  ;  satellite-generated phase at signal transmission time 

RR fftt δϕ −=)(   ;  receiver-generated phase at signal reception time 
 
where 

f is the frequency of the L1 or L2 carrier phase.   
τ is the signal travel time between the satellite and the receiver, which is equal to 

the true range divided by the speed of light, 
c
ρ .   

 t is the GPS time at the signal reception moment.   
 
Therefore, the beat phase is given by 
 

S
RR

SS
R f

c
fttt δρϕτϕϕ ∆−−=−−= )()()(                                                                     (2.2) 

 
where S

Rδ∆  includes only the difference term between the two clock errors, assuming no 
other range errors or phase biases.  If one assumes the satellite is tracked from t0 to t, the 
beat phase can be represented as, 
 

S
R

t

t
S
R

S
R Nt +∆=

0
)( ϕϕ                                                                                                   (2.3) 

 

where 
t

t
S
R 0

ϕ∆  is the value that the receiver measures at every epoch t, and S
RN  is an 

initial integer number, which is not known directly from the receiver data.  Also this 
integer value remains constant if tracking is maintained without loss of lock.  Now, let 

t

t
S
R

S
R 0

ϕϕ ∆−= , then the final form of carrier phase equation is 

 
S
R

S
R

S
R

S
R Nc +∆+= δ

λ
ρ

λ
ϕ 1                                                                                           (2.4) 

 
where λ is the wavelength of the GPS carrier phase.   

The phase can be measured to better than 0.01 cycles (Hofmann-Wellenhof, 
1997).  Two different frequencies are used in positioning to eliminate the ionospheric 
effect (section 2.3).  The L1 carrier frequency is 1575.42 MHz corresponding to a 
wavelength of about 19.0 cm.  The frequency and wavelength of the carrier L2 are 
1227.60 MHz and 24.4 cm respectively.  The characteristic of positioning with this 
relatively high frequency or short wavelength carrier is high resolution; however, there is 
the problem of solving an additional unknown, the ambiguity.   



 8

2.2 Mathematical Models for Positioning 
 
2.2.1 Single Point Positioning 
 
In the process known as single point positioning one determines the observer�s position 
by using undifferenced GPS measurements.  Suppose GPS pseudorange measurements 

j
iP  are corrupted only by two clock errors.  Then the unknowns are the three coordinates 

of the receiver, i, and the receiver clock error.  The satellite coordinates and the satellite 
clock error are assumed to be obtained from the navigation message or an other source:   
 

εδδ +−+−+−+−= )()())(())(())(( 222 tctcZtZYtYXtXP i
j

i
j

i
j

i
jj

i                   (2.5) 
 
where the satellite and receiver are represented by j and i, respectively.  The satellite 
clock error δj(t) is known and the Earth-centered and Earth-fixed (ECEF) coordinates 
Xj,Yj,Zj of the satellite can be calculated from given ephemeris data.  Therefore, there are 
4 unknowns at one epoch; the three ECEF coordinates of the receiver and one receiver 
clock error.  If the observation is repeated nt times and nj satellites are viewed, then there 
are njnt observables and 3+nt unknowns in the static case (fixed receiver coordinates: 
Xi,Yi,Zi).  An overdetermined system of equations is obtained if njnt ≥ 3+nt.  If the 
receiver is moving, which is the kinematic case, then there are 3nt + nt unknowns and one 
must have njnt ≥ 3nt + nt = 4nt.  For the kinematic case, at least 4 satellites must be 
observed all the time simultaneously.  
 
2.2.2 Relative Positioning  
 
With relative positioning one determines the baseline vector between the known base 
station and the unknown site.  Strictly speaking, one calculates the vector increments 
because an approximate position is used to linearize the problem.  The effect of relative 
positioning is to eliminate the receiver-dependant or the satellite-dependent errors.  The 
satellite-dependent clock error can be cancelled by the simultaneous observation of the 
same satellite by two receivers (receiver single-difference).  Also, the receiver-dependent 
clock errors can be cancelled by differencing the single-difference observations of two 
satellites (double-difference) or just differencing one-way observation of two satellites at 
one receiver.  The satellite- and receiver-dependent but time-independent integer 
ambiguities can be cancelled by differencing successive-epoch phase data if the satellite 
is tracked for that time (triple-difference) (Hofmann-Wellenhof et al., 1997).  
 
Single between-receiver difference (from (2.4)):   

SAB
j
AB

j
AB

j
AB tfNtt εδρ

λ
ϕ +−+= )()(1)(                                                                      (2.6) 

=> the satellite clock bias has been cancelled 
)()()( ttt j

B
j
A

j
AB ϕϕϕ −=  
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)()()( ttt j
B

j
A

j
AB ρρρ −=  

222 ))(())(())(( A
j

A
j

A
j ZtZYtYXtX −−+−−+−−= τττ  

222 ))(())(())(( B
j

B
j

B
j ZtZYtYXtX −−+−−+−−− τττ  
j

B
j
A

j
AB NNN −=  

)()()( ttt BAAB δδδ −=  

Sε  is the noise of the single-differenced observation 
t   is the GPS time 
τ  is the signal transmission time 

 
Double-difference: 

D
jk
AB

jk
AB

jk
AB Ntt ερ

λ
ϕ ++= )(1)(                                                                                     (2.7) 

=> the satellite and the receiver clock bias have been cancelled 
)()()( ttt k

AB
j
AB

jk
AB ϕϕϕ −=  

)()()( ttt k
AB

j
AB

jk
AB ρρρ −=  

k
AB

j
AB

jk
AB NNN −=  

Dε  is the noise of the double-differenced observation 
 
Triple-difference: 

T
jk
AB

jk
AB tt ερ

λ
ϕ += )(1)( 1212                                                                                          (2.8) 

=> the satellite, the receiver clock bias and the ambiguity have been cancelled 
)()()( 2112 ttt jk

AB
jk
AB

jk
AB ϕϕϕ −=  

)()()( 2112 ttt jk
AB

jk
AB

jk
AB ρρρ −=  

Tε  is the noise of the triple-differenced observation 
 
Note that the noises of the single-, double-, and triple-differenced observations such as 

TDS εεε ,,  are amplified according to the covariance propagation or the error propagation 
law.  For example, εε 2=S , εε 2=D , and εε 22=T  where ε  is the noise of the 
undifferenced phase observation.  When one solves for the coordinates in the above 
models, (2.6), (2.7) and (2.8), the distance between the satellite and the receiver should be 
expanded up to the first order Taylor series and one must consider the correlation among 
corresponding differenced observations.   

It is an assumption that the error of the phase measurement has a probability 

distribution with zero expectation and variance, 
2S

Rσ .  The superscript S and subscript R 
indicate the satellite S and the receiver R, respectively.  If two receivers A and B collect 
the phase observations from the ith, jth, and kth satellites during two epochs, t1 and t2, then 
the observation vector (12×1) of phases and the covariance matrix (12×12) for the phases 
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follow:    
 

[ )()()()()()( 111111 tttttt k
B

j
B

i
B

k
A

j
A

i
A ϕϕϕϕϕϕϕ =  

       ]Tk
B

j
B

i
B

k
A

j
A

i
A tttttt )()()()()()( 222222 ϕϕϕϕϕϕ  

 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�
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2

2

2

2

000

000
00

000

000

)cov(

k
B

j
B

j
A

i
A

σ

σ

σ

σ

ϕ

�

�

���

�

�

                                                                      (2.9) 

 
The measured phase )(tS

Rϕ  is linearly independent or uncorrelated with other 
measurements from a different satellite, receiver or epoch.  Therefore the off-diagonal 
terms in the covariance matrix are zero and the diagonal terms have different values 
depending on the satellite and the receiver.   

The single-differenced observation vector Sϕ  is constructed by applying the 
differential matrix SD on the undifferenced phase observation vector.   
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If all variances are assumed to have the same value 2σ , then the covariance matrix of the 
undifferenced observation vector is just an identity matrix multiplied by 2σ .  Now the 
covariance matrix of the single-differenced observation can be calculated by error 
propagation:   
 

6
22 2)cov( ISDSD T

S σσϕ =⋅=                                                                                 (2.11) 
 
where I6 indicates an identity matrix of dimension 6✕ 6.  The covariance matrix is a 
diagonal matrix, which means that the single-differenced observables are still 
uncorrelated.  The variance of the observables is increased by factor of two.   

For the double-differenced observation, a correlation exists between the 
differenced observables.  If one assumes DD represents the matrix to produce double-
differenced observables Dϕ , then the observation vector and the covariance matrix are as 
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follows.   
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Because of non-zero off-diagonal terms in the covariance matrix, when one solves this 
double-difference model, one must consider a weight matrix, which is the scaled inverse 
of the covariance matrix.   

In the case of the triple-difference, the differential matrix TD and the covariance 
matrix can be found as follows in a similar way.   
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)cov( 22 σσϕ T
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Like the double-difference, the triple-difference is correlated between differenced 
observables.   
 
2.2.3 Dilution of Precision (DOP) 
 
The geometry of the tracked GPS satellites is an important factor to get good positioning 
results and it can be indicated with the dilution of precision (DOP) factor (Hofmann-
Wellenhof et al., 1997).  The variances of the estimated positions are determined by the 
variances of the range observation and the DOPs, which are some combinations of the 
diagonal elements of the covariance matrix.  Now, the Gauss-Markov linear model for 
observables in terms of the position coordinates and the best estimates are, 
 

eAy += ξ    ,   ( )Ie ⋅2,0~ σ                                                                                      (2.16) 

yAAA TT 1)(� −=ξ                                                                                                       (2.17) 
 
where y is the observation vector, A is the design matrix and ξ is the vector of unknown 
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position parameters.  The model could be either the absolute or relative positioning 
model; however, the covariance matrix of double and triple differencing positioning can 
be no longer the identity matrix.  The covariance matrix of the unknown parameters is 
derived as follows. 
 

12121 )()()()�cov( −−− =⋅⋅= AAAAAIAAA TTTT σσξ                                                  (2.18) 
 
If the order of the elements of the unknown parameter vector is the east, the north, and the 
vertical coordinate in a local coordinate system and the clock error, then the above 
covariance matrix is 
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Q 22)�cov( σσξ      (2.19) 

 
Where Q is a cofactor matrix and qee, qnn, quu, and qtt are cofactors corresponding to four 
unknown parameters.  This is a symmetric matrix and the following DOPs are defined by 
these diagonal elements. 
 

2222
ttuunnee qqqqGDOP +++=  ; Geometrical DOP 

222
uunnee qqqPDOP ++=   ; Positioning DOP 

22
nnee qqHDOP +=    ; Horizontal DOP 

2
uuqVDOP =     ; Vertical DOP 
2
ttqTDOP =     ; Time DOP                                            (2.20) 

 
The DOPs multiplied by the standard deviation σ  of the observables give the standard 
deviation of the unknown parameter estimates.  DOPs affect the accuracy of the 
positioning or navigation solution and change with respect to the satellite motion.  The 
larger the volume defined by the geometric extent of the satellites and the receivers, the 
better the precision of the solution and the better-conditioned the normal matrix ATPA of 
the linear model.  For example, three equally distributed satellites near the horizon and 
one satellite at the zenith make the best geometry.  Even though the lower satellite 
elevation angles tend to have the greater range errors due to the longer path that the signal 
travels through the atmosphere, usually the geometry has a larger effect on accuracy than 
range errors (Parkinson et al. 1996).  In practice, a PDOP of 1.72 and a GDOP of 1.83 are 
very good and the worldwide mean for PDOP is 2.5.  In conclusion, the DOP factor is a 
quantitative measurement of this time-variant and satellite-dependent geometry, which is 
used to select the best set of satellites among many observed satellites. 
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2.3 GPS Ranging Errors caused by Atmosphere 
 
The electromagnetic signals interact with the charged particles and neutral atoms or 
molecules in the atmosphere, so the speed and direction of the signal are changed.  This 
phenomenon is called refraction due to the atmosphere (Kleusberg et al., 1996).   

In a dispersive medium such as the ionosphere, the refractive index of radio waves 
is a function of frequency.  Also, the modulation of the signal, the P- or C/A-code, has a 
different refractive index from that of the carrier phase.  Two refractive indices for the 
modulation and carrier phase are as follows:   
 

g

e
g v

c
f
N

n =+= 21 α    ,   
ϕ

ϕ α
v
c

f
N

n e =−= 21                                                              (2.21) 

 
where, ng and nϕ are refractive indices for the modulation and the phase, respectively.  f is 
the frequency of the signal, Ne is the electron density, c is the speed of the light in 
vacuum, α is a positive constant and vg and vϕ are the velocities for the modulation and 
the phase, respectively.  Because the refractive index for the modulation is larger than that 
of the phase, the modulation velocity is smaller than the phase velocity.  GPS code 
pseudorange observation is affected by the modulation refractive index and the carrier 
phase observation is affected by the phase refractive index.  As a consequence, the carrier 
phase measurement is measured too short (phase advance) and the code pseudorange is 
measured too long (code delay) (Young et al., 1985).  The amounts of ionospheric 
advance and delay are the same in the two cases.  Typical range error is about 10 m, but 
depends on the elevation.  Because of the frequency dependency, these advances or delays 
can be eliminated (to first order) by observing pseudorange and phase at two frequencies.   
 The troposphere is a neutral atmosphere, which means this is a non-dispersive 
medium for radio waves such as the GPS signals.  Therefore, propagation is independent 
of the frequency.  In the troposphere, temperature, pressure and humidity affect the radio 
wave.  The dual frequencies for eliminating the effect of the ionosphere can not be used 
similarly to eliminate the tropospheric effect.  This effect gives the same delays for both 
code and carrier pseudorange.  The error range is about 2.0~2.5 m in the zenith direction 
and increases mostly with the cosecant of the elevation, yielding about a 20~28 m delay at 
a 5°elevation (Leick, 1995).  Generally, this delay term is divided into dry and wet 
components and then modeled.  About 90% of the tropospheric refraction arises from the 
dry component and about 10% from the wet component (Janes et al., 1989).  Even though 
the dry component is well modeled by knowing in situ atmospheric measurements, the 
wet component is much more difficult to model because of the strong variations of the 
water vapor with respect to time and space (Hofmann-Wellenhof et al., 1997).   
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3  Algorithm derivation and data processing 
 
3.1 The Observation Equations 
 
The observation equations of the four GPS measurement types are given as follows (Goad 
and Yang, 1995): 
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Here, the subscript r indicates the index for the receiver and the superscript k for the 
satellite.  c is the speed of light in vacuum; 1f  and 2f  are the L1 and L2 carrier 
frequencies; 1λ  and 2λ  are the L1 and L2 carrier wavelengths;  )(1, tk

rΦ , )(2, tk
rΦ , )(1, tP k

r , 
and )(2, tPk

r  are the phase range and pseudorange measurements from the satellite k and at 
the receiver r;  )(tk

rρ  is the geometric distance between the satellite�s antenna at the 
signal transmission time and the receiver�s antenna at the signal reception time;  )(tT k

r  is 
the tropospheric delay; 2

21/)( or
k
r ftI  is the frequency-dependent ionospheric refraction, 

which causes an advance in phases and a delay in pseudoranges (Section 2.3 in Chapter 
2).  k

rN 1,  and k
rN 2,  are the ambiguities, which are integers for all tracked satellites when 

the receiver is turned on and they are constant as long as no loss of the signal lock occurs.  
The one-way phase observables additionally contain a fixed nonzero initial fractional 
phase term )]()([ 00 tt k

r ϕϕλ −  that is part of the receiver- and satellite-generated phase 
signals.  The remaining terms )(1, tbk

r , )(2, tbk
r , and )(3, tbk

r  are the relative interchannel 
biases between )(1, tk

rΦ and )(2, tk
rΦ , )(1, tPk

r , and )(2, tPk
r , respectively.  They result from the 

fact that the L1 and L2 signals travel through different hardware paths inside the receiver 
as well as the satellite transmitter (Coco, 1991).  Therefore, the interchannel biases are 
dependent on both the satellite and the receiver.   

While the level of the phase observation noise, ε, is about a millimeter, that of the 
P and C/A code noises, e, are much larger depending on the type of the receiver.  
Generally, P-code noise is about 30 centimeters, and C/A code noise can be a meter or 
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more.  From the above four measurement equations, some combinations are possible for 
eliminating the nuisance parameters such as the ionospheric refraction, the receiver clock 
errors, and the ambiguities.   
 
3.2 Ion-free, Wide-lane Combination 
 
As mentioned above, the ionospheric effect depends on the frequency of the signal.  Thus, 
by using the dual frequency signals, it is possible to eliminate the first order ionospheric 
effect by a combination of phase or code measurements.  Because the maximum 
contributions of the 2nd and 3rd order terms of this effect are about 3 cm and less than 1 
cm, respectively (Seeber, 1993), eliminating the first order effect might be enough for 
most applications.  The so-called ion-free, wide-lane signal (86 cm wavelength) can be 
obtained by first multiplying equations (3.1) and (3.2) or (3.3) and (3.4) by the 
combination coefficients { } 95.2)(/ 21

2
1 ≈⋅+ cfff  and { } 79.1)(/ 21

2
2 ≈⋅+ cfff , and then 

taking the differences between the L1 and L2 measurements.  The wide-lane signal is the 
signal having a longer wavelength than that of the original L1 or L2 signal and can be 
obtained by differencing L1 and L2 phase measurements.  The wide-lane combination is 
known to be less sensitive to the noises because of its longer wavelength (Hofmann-
Wellenhof et al.,1997).  We have for the carrier phase:   
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and for the pseudo-range phase:   
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Note that )(* tk

rρ includes the geometric range )(tk
rρ  and tropospheric delay )(tT k

r .  k
rN * is 

no longer an integer and consists of the integer ambiguity k
rN  and the fractional phase 

offset )]()([ 00 tt k
r ϕϕλ − .  The interchannel bias is scaled by the combination coefficients 

and the magnitude of the noise is decreased by a factor 0.7.  The reason for the reduced 
noise is that two combination coefficients applied to the two phase measurements L1 and 
L2 are less than one.  The factor 0.7 comes from ( ) ( )2212

2
211 ffffff +++ .   
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3.3 The Time Differenced Measurements 
 
Assuming the measurements have no cycle slips, the ambiguity will remain constant and 
this can be eliminated when two independent measurements of the same carrier are 
differenced with respect to time.  Similarly, the interchannel bias term could be 
eliminated by differencing with respect to time if we assume it to be constant.  Let�s 
consider that phase and code measurements are obtained for two consecutive epochs (ti 
and tj) without cycle slip.   
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where, 
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Here, the difference between the two consecutive satellite interchannel biases is assumed 
to show zero mean ( 0~)()( ,, == ji

k
codeji

k
phase tbtb ).  It is a reasonable assumption for its 

behavior is known to be quite stable from one day to the next (personal communication, 
Joachim Feltens, European Space Operation Center, ESOC, 1999).  Therefore, the above 
two equations (3.7) and (3.8) are represented by the following.   
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In the equations (3.9) and (3.10), the time-differenced interchannel bias terms are no 
longer dependant on the satellites because of the above assumption on the difference 
between the two consecutive satellite interchannel biases.   
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3.4 The Satellite Differenced Measurements 
 
For one receiver tracking two satellites (kth and lth) simultaneously, satellite single 
differenced measurements are obtained.  This single differencing eliminates the receiver 
dependent effects such as the receiver clock error )(tdtr , the interchannel biases of the 
receiver )(tbr , and the non-zero initial phase offset of the receiver )( 0trϕ  which was 
already eliminated in time-differencing.  By taking difference of time-differenced ion-free 
wide lane combinations between kth and lth satellite, the equations (3.11) and (3.12) are 
obtained.  
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According to the error propagation, the standard deviations of the above measurement 
noises (ε and e) are amplified by a factor of 2 with respect to those of the original ion-
free, wide-lane measurement noises because the measurements are differenced twice, in 
time and between satellites.   

Now, two nuisance parameters, namely the receiver clock error and the ambiguity, 
no longer exist in the above equation.  From IGS globally distributed stations coordinates, 

)( ,
*

ji
k

r tρ  can be calculated and the measurement )( ,, ji
k

freeionr t−ϕ  is obtained by observing 
GPS satellites at these stations.  Thus, the only unknown parameter is the single-
differenced GPS clock error.  Rearranging the equation (3.11) in terms of the unknown 
quantity )( , ji

k tdt , equation (3.13) is obtained.   
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Only the phase measurements are used for estimating the satellite clock error because 
they show a relatively small magnitude of noise (a few millimeters), while code 
measurements have a few decimeters level of noise. 
 
3.5 The Satellite Clock Error and Absolute Positioning 
 
The time- and satellite-differenced, ion-free, phase combination produces the relative 
variations of the single differenced satellite clock error with respect to the initial epoch.  
Suppose that the phase measurements are obtained at an IGS fiducial station for n epochs.  
For epoch t1 and t2, the time-differenced clock error, )( 1,2

, tdt lk , is estimated from the 
equation (3.13).  Then the clock error for the next epoch t2, )( 2

, tdt lk  can be expressed in 
terms of the initial clock error )( 1

, tdt lk  as follows:   
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For epoch t2 and t3,   
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In general, for nth epoch, 
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Therefore, if the satellite clock error at an initial or an arbitrary epoch is available, the 
satellite clock errors of all epochs are calculated according to the equation (3.16).  
However, there is no need to know the initial satellite clock error for absolute positioning, 
because the initial clock error can be absorbed into the ambiguity term in the absolute 
positioning procedure.   

Assume that the relative satellite clock error is estimated and phase measurements 
are obtained at the unknown sites, whose coordinates are to be determined.  After taking 
the ion-free, wide-lane combination and calculating single differences between satellites, 
the measurements are described as follows: 
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By putting the estimated satellite clock errors )(,

i
lk tdt  into the equation (3.17), we find: 
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Now, one can define the new phase ambiguity, lk

wN ,*~ , which includes the ambiguity, 
lk

wN ,* , the satellite interchannel bias (assumed constant), and the initial satellite clock 
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error.     
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By using this time independent variable (assuming no cycle slip and constant interchannel 
bias), the equation (3.18) is represented as follows. 
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In the above equation (from now on the above equation set is called the fundamental 
equation set), the unknowns are newly defined ambiguity term lk

wN ,*~  and the position 
coordinates of the moving receiver xr(t), yr(t), and zr(t), as contained in the range, )(, tlk

rρ .  
With the measurement )(,

, tlk
freeionr −ϕ , estimated clock error )( 1,

,
−ii

lk tdt  and modeled 
tropospheric effect )(, tT lk

r , these unknowns can be determined.   
 Theoretically speaking, the positions and ambiguities can be solved 
simultaneously.  The condition number of the design matrix, however, is very large so the 
inversion and solution are not reliable.  Therefore, for a strong solution the float 
ambiguity, lk

wN ,*~  should be determined before solving for the absolute positions.  The 
following section explains how the ambiguities are determined as the first step.   
 
3.6 The Float Ambiguity Search (FAS) 
 
This method is based on finding the best initial position which gives the minimum 
variations of all satellite pairs� ambiguities lk

wN ,*~ .  If the initial position is known, all 
kinematic positions can be determined as long as no cycle slip occurs, because the known 
initial position has the same information about the ambiguities.  However, the accurate 
initial position is assumed unknown, although an approximate initial position can be 
obtained by differential pseudorange measurements.  With this approximation, the search 
space that includes the true initial position is constructed.  The quality of the 
approximation determines the number of the grid points, the size of the search space for 
the candidates of the initial position and also the calculation time.  Let us go back to the 
fundamental equations (3.20):   
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where )(),(),( 111 tztytx c

i
c
i

c
i  are the coordinates of a specific one that has been selected 

among the initial position candidates.  With this candidate, the next epoch�s position is 
determined by differencing the two phase observations as follows.   
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where *ϕ  includes ϕ  and T.  If more than four satellites are tracking simultaneously, the 
above equation is solved for the position coordinates at epoch t2.  Similarly, the position 
candidates at all epochs can be calculated as follows.   
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With the kinematic positions determined in this way, the ambiguities of all satellite pairs 
are calculated every epoch independently.   
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If all systematic and random errors are disregarded and the initial position candidate is 
close to the true initial position, then the above ambiguities should be approximately 
identical.  Therefore, the best initial position can be determined as the one that gives the 
minimum variations of the all ambiguities.  Several methods such as Mader (1992) exist 
to find the initial position that satisfies the above minimum condition.  In the following 
paragraph, a new method, adapted from the ambiguity function method by Remondi 
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(1984,1990a) and Mader (1990), is introduced.   
First, the float ambiguities are identified as angles of complex numbers of unit 

magnitude that are constructed as vectors in the complex plane.  That is, they are 
multiplied by iπ2  and made the argument of the exponential.  The factor π2 (rad/cyc) is a 
selectable constant and specifically ensures that those ambiguity vectors, which vary 
within one cycle of the wide-lane signal ( cm86≤ ), are represented in the same complex 
plane.  Ambiguity vectors which vary over many cycles can overlap and may be 
interpreted as the same vectors, even though they are different and locate in the different 
planes.  In order to avoid this problem, the factor is modifiable for the case of poor initial 
approximations.  For example, a factor, 2/2π  ensures that the ambiguity vectors, which 
vary within two cycles of the wide-lane signal ( cm862×≤ ), are represented in the same 
complex plane.  Then from the equation (3.24),   
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In the complex plane, the above exponential is represented as a unit vector and the 
number of vectors is identical to the number of epochs n, if just one satellite pair is 
considered.  The magnitude of the sum of all vectors should be n, if no error and no noise 
exist and the initial position candidate is the true position.  In real situation, however, the 
magnitude is less than n, because of the receiver random noise error in the phase 
observations, the systematic and random errors in satellite clock error estimates, the 
systematic error due to the un-modeled part of the tropospheric delay and the orbit error, 
even if the initial position candidate is the true position.  Disregarding these random and 
systematic errors, consider the variation of ambiguities caused by a different initial 
position alone.   

Figure 3.1 shows an example for the float ambiguity search algorithm.  In this 
case, the number of epochs is three and the number of satellite pairs is one, so there are 
three ambiguity vectors in the complex plane,  Figures 3.1(a) and 3.1(c).  The initial 
position in (c) is closer to the true initial position than that in (a).  Therefore, the three 
vectors in the case (c) are closer to each other than those in the case (a).  Figure 3.1(b) 
and 3.1(d) shows the summation of the three ambiguity vectors.  As expected, the 
magnitude of the vector sum in (d), 2.93 inches, is larger than that in (c), 2.70 inches.  
They indicate the stability of ambiguities at every epoch and the accuracy of the initial 
position.  Finally, the position giving the maximum magnitude of the vector sum is 
determined as the best initial position.   
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Figure 3.1: An example of the ambiguity vectors in the complex plane. 
 
 
 Figure 3.2 shows ambiguity variations of five satellite pairs calculated by using 
four different initial positions with real data; (a), (b), (c), and (d).  The best initial position 
is determined after the following steps.  First, the ambiguity vectors for all epochs and 
each satellite pair are summed.  Second, the magnitudes of these five vectors sums are 
combined into one value.  This is done for each initial position.  Third, the best initial 
position is determined as the trial position that gives the maximum value.  In Figure 3.2, 
case (d) represents the best initial position.  The initial positions in case (a), (b) and (c) 
are 173 cm, 87 cm and 17 cm apart from the best position, respectively.  Finally, the five 
ambiguities for the five satellite pairs are determined by averaging the ambiguities at all 
epochs for the best initial position.   
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Figure 3.2: Real data example of the ambiguity vectors in the complex plane. 
 
 

The advantage of this method is that the processing is fast and sequential.  In 
order to calculate variations for a certain time series, one should know the mean value of 
the data and the data themselves.  This means that data must be read twice.  The first 
reading is for calculating the mean value and the second reading is for calculating their 
variations with respect to the mean, unless the data are stored in memory.  Using the 
above method, however, the minimum variation is found after reading the data only once.   
 
3.6.1 The Coarse-to-Fine Approach for Searching for the Best Initial Position 
 
The critical problem of most searching algorithms is the tremendous number of possible 
solutions and the long processing time.  For example, if there is a mmm 101010 ××  cube 
with a one centimeter grid, then 93 101001 ≈  candidates should be tested to find the best 
initial position.  To test all possible initial positions ( 910  candidates) is computationally 
impractical and even impossible.  In the coarse-to-fine approach newly developed in this 
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research, however, all possible candidates do not need to be checked and the 
overwhelming computational burden is reduced dramatically.   

In order to find the most plausible solution using the coarse-to-fine approach, a 
search space, having the shape of a cube, is divided into a coarse grid such as one meter.  
Then the first sub-cell, which shows the maximum value of the sum of all ambiguity 
vectors, is selected from the search space.  From the first sub-cell, the second sub-cell is 
chosen from among cells in a finer grid according to the condition of the maximum 
ambiguity vector sum.  As a result, the size of the sub-cell (cube) is decreased and the 
grid interval becomes finer.  This process is repeated until the grid interval becomes less 
than one centimeter.  This approach decreases the computational burden dramatically.   

For example, if the coarse starting grid interval is one meter in a mmm 101010 ××  
cube, 1331113 =  points are tested and the point showing the maximum sum of ambiguity 
vectors is selected.  Then, the first sub-cell, having the selected point at the center of the 
cell, is constructed with the size mmm 222 ×× .  Now, the first sub-cell is divided with a 
20 cm interval to have the same number of test points as before, 1331.  The point with the 
maximum sum of ambiguity vectors is selected among 1331 candidates and the second 
sub-cell is constructed as a cube with the size cmcmcm 404040 ××  around the selected 
point.  The next grid interval is chosen as 4cm to keep the number of the test points 
constant, 1331.  After repeating the process, the third sub-cell is chosen with a 

cmcmcm 888 ××  cube.  Finally, the grid interval becomes 0.8cm and the size of the fifth 
sub-cell becomes cmcmcm 6.16.16.1 ×× .  In the fifth sub-cell, the best initial position is 
found.  In this methodology, only )13315(6655 ×  points are checked to find out the best 
solution and the computational burden is reduced from 109 to 103.   
 
3.7 Least-Squares Adjustment of Parameters 
 
3.7.1 Standard Adjustment 
 
With the satellite clock error estimates and the fixed ambiguities, the fundamental 
equations (3.20) form a non-linear system with respect to the parameters, that is, the three 
kinematic coordinates.  For an arbitrary epoch n and two tracked satellites, the following 
equation is obtained:   
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If one rewrites the last term on the right-hand side explicitly with respect to the 
parameters, the above equations are described as follows: 
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where, (x (tn), y(tn), z(tn)) is the position of the receiver at the epoch, tn, and (xk(tn), yk(tn), 
zk(tn)) and (xl(tn), yl(tn), zl(tn)) are the positions for the kth and lth satellites at the epoch, tn-
τk and tn-τl, respectively.  And, τ is the signal transmission time from the satellite to the 
receiver and it can be calculated by using the pseudorange observation approximately.   

The above equation (3.27) is a non-linear equation with respect to the parameters, 
x(tn), y(tn), and z(tn).  However, a Taylor series expansion truncated after the second order 
term makes the above non-linear system linear;   
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Applying this to the equation (3.27), the following equation is obtained. 
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(3.29) 
 
where the dependence on the epoch is omitted to simplify the representation. 

The geometrical interpretations of the coefficients are the directional cosine 
differences with respect to x, y, and z between the lth and the kth satellite.  Therefore, the 
following equation can be represented.   
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where, the directional cosines are defined by the following. 
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Now, assume that six satellites are tracked.  If the satellites are represented as 1, 2, 3, 4, 
and 5 for five different satellites and �ref� for the reference satellite, which is determined 
as the satellite showing the maximum elevation, the next equations follow:   
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In matrix form: 
 

xAll ∆⋅+≈ 0   or  xAl ∆⋅≈∆                                                                                    (3.33) 
 
where, vector l, l0, ∆l, and ∆x and matrix A are defined as follows; 
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The solution for the equation (3.33) can be obtained by the condition of the minimum 
sum of squares of the residuals, ν: 
 

xAvl ∆⋅=+∆   with  .min=vPvT                                                                             (3.35) 
 
where, P represents the weight matrix of the model (3.33).   

The derivative of the above minimum condition with respect to the parameter 
vector induces the following normal equation:   
 

lPAxPAA TT ∆⋅=∆⋅                                                                                                  (3.36) 
 
The least square solution and its covariance, therefore, are given as follows:   
 
     ( ) lPAPAAx TT ∆⋅=∆ −1�   with  ( ) ( ) 2

0
1� σ⋅=∆ −
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where the covariance matrix of the observation is given as ( ) QPl ⋅=⋅= −

�
2
0

12
0 σσ .   

 
3.7.2 Sequential Adjustment 
 
The Kalman filter provides a recursive solution of the linear discrete data filtering 
problem (Brown and Hwang, 1997) and it can be applied to update the parameters 
sequentially.  In this sub-section, the static case Kalman gain matrix is derived and it is 
explained how to update the old estimates by the new observation.   
 Assume 0�x  is the vector of old estimates, ( ) �� =

00�x is its covariance matrix, 1l  

is the observation vector, ( ) �� =
1

1 l
l is its covariance matrix, and 1�x  is the vector of new 

estimates.  Now, the task to be performed is to use the new observations for improving 
the old estimates.  Let�s consider the old estimates as the pseudo-observations and state 
the following equations:   
 

11,0� xIvx x ⋅=+  � the pseudo-observation equation                                       (3.38) 

111,1 xAvl l ⋅=+  � the observation equation                                                    (3.39) 
 
If the above two equations are combined into one equation, 
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1xAvl ⋅=+                                                                                                                (3.40) 
 
where,   
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The least squares solution of the equation (3.40) is given as the following:   
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where, the weight matrix or the inverse of the covariance matrix is a block diagonal 
matrix because the old estimates are uncorrelated with the observation.   
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By putting the equation (3.42) into the equation (3.41), the following equation is derived:   
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From the Sherman-Morrison-Woodbury-Schur formula (see Appendix), the equation 
(3.43) is represented as follows: 
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Simplifying the equation (3.44), the old estimates and the updates can be divided 
explicitly.   
 

)�(�� 011101 xAlKxx ⋅−+=                                                                                             (3.45) 
 
where, the Kalman gain matrix is defined as follows: 
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The equation (3.45) explains that the new estimates are obtained by adding the old 
estimates and the updates multiplied by the Kalman gain matrix.   
 In general, for the (k-1)th estimates and kth observation, the Kalman gain matrix, 
the new estimates, and its covariance matrix are given as following:   
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This sequential adjustment algorithm is applied to update the GPS satellite clock error 
estimates.  Actually, the GPS satellite clock error is estimated from some IGS stations, so 
the same satellite pair�s clock error can be estimated from different stations.  These 
redundant estimates are used to update the old estimates with the same weight 
sequentially.  Because the estimates are assumed to have the same weight, the sequential 
adjustment provides the sequential average of the redundant GPS clock error estimates 
from different stations.  In this case, the design matrix is a vector sum and the number of 
elements of the design matrix is the same as the number of estimates.  The covariance 
matrix is the identity matrix multiplied by the square of the standard deviation of the 
clock error estimate, because the estimates are assumed to be independent.   
 If the estimates are updated one by one, the design matrix is just the scalar number 
one and the following equations are derived:   
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where, 1� −kx  is the GPS clock error estimate calculated by using k estimates, kx  is the 
(k+1)th estimate, and Σk is the variance of the estimate, kx� .  Therefore, the final equation 
gives us the sequential average value every time. 
 
3.8 Data Processing Procedure 
 
3.8.1 GPS Satellite Clock Estimation 
 
The overall procedure of satellite clock estimation is depicted in Figure 3.3.  The first 
step in this algorithm is to calculate the correction derived from a periodic relativistic 
effect (see Appendix) using the eccentricity, the semi-major axis, and the eccentric 
anomaly of the GPS satellite orbits, which are updated in the navigation message every 2 
hours.   

Next, the position of the GPS satellite at the signal emission time is calculated by 
using the IGS precise orbit and pseudorange observation; and then, the time-differencing 
of some IGS station observations is performed, where the coordinates of the stations are 
known.  The results of this process, { } ( ){ } )(1)()( ,,21,, jiphaserji

k
jir tbfftdttdt −+−  (Eq. 
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3.9), are the time-differenced GPS satellite clock errors including the receiver clock error 
and receiver dependent interchannel bias which are not eliminated in this step. 

For the GPS satellite position calculation, the orbit�s smooth behavior makes  
interpolation possible within a certain accuracy.  According to the studies by Remondi 
(1989,1991), a 9th-order polynomial interpolator is sufficient for an accuracy of about 10 
cm and with a 17th-order interpolator he demonstrated that millimeter-level accuracy can 
be achieved based on a 40-minute epoch interval.  For the tropospheric delay, the 
modified Hopfield model (Goad and Goodman, 1974) is used.   

Finally, after the time- and satellite-differencing, the receiver clock error is 
eliminated by differencing between satellites.  The result of this processing is the time- 
and satellite-differenced GPS satellite clock error.  Redundant values (the same 
differences of satellite clock errors) can be obtained from other stations and the estimate 
is obtained by sequentially averaging with equal weights.  This assumes that the GPS 
satellite clock errors estimated using different stations are independent; however, they are 
not completely uncorrelated since there are slight differences in transmission time for the 
signal received by stations at the same time.  That is, a station on the equator and a station 
on the pole will receive the GPS signal simultaneously although it was transmitted at 
slightly different emission times (about 0.02 seconds of difference).  It is assumed that the 
satellite clocks do not significantly vary within this short time period.   
 
3.8.2 Absolute GPS Positioning 
 
Figure 3.4 shows the procedure for estimating the 1 second kinematic GPS positions.  All 
procedures except the float ambiguity search (FAS) step are straightforward and take 
relatively short processing time.  The processing time of FAS depends on the quality of 
the initial approximate position, i.e., the size of the search space and the grid.  The 
following shows the fundamental equations for position estimation, (3.20):   
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As mentioned above, the problem is to calculate the position of the moving receiver xr(t), 
yr(t), and zr(t) in )(, tlk

rρ  by using the GPS satellite cock error estimates and the fixed float 
ambiguity.  
 Now, some abbreviations in Figure 3.4 are explained.  "1s IFP", which means one 
second Ion-Free Phase, is made by combining )(,

, n
lk

freeionr t−ϕ  and ( ) )(/ ,
21 n

lk
r tTcff ⋅−−  

every second.  )(,
, n

lk
freeioni t−ϕ  is the ionosphere-free combination of one second GPS 
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observations.  )(,
n

lk
r tT  is the tropospheric delay term and is modeled with an approximate 

position.  The ion-free phase generator combines these and makes the �IFP� file.  "1s 

SDCLK", �
=

−

n

j
jj

lk tdt
2

1,
, )( , which means the Satellite Differenced CLocK error (SDCLK), 

is the interpolated value from 30-second SDCLK which is the result of the processing in 
the previous Section 3.8.1.  A third-degree Lagrange interpolator was used for the 
interpolation.  Next, �1s SDCLK� and �1s IFP� are combined to make "1s OBS".  This is 
the quantity on the left-hand side of the above set of fundamental equations (3.20).  
Finally, AKGPP (Absolute kinematic GPS precision positioning module) solves the 
fundamental equations every second by using 1s OBS, one second orbits and the 
ambiguities provided by FAS.   
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Figure 3.3: Relative Single-differenced Satellite Clock Error Estimation  
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Figure 3.4: Absolute Kinematic GPS Precision Positioning 
 



 34

 

 

4 Results and analysis 
 

4.1 Satellite Clock Error Estimates Every 30 Second 
 
 

 
 

Figure 4.1: IGS stations used for clock error estimation 
 
 
Figure 4.1 shows the distribution of five IGS stations used to estimate the GPS satellite 
clock errors, as well as the IGS station �USNA� whose (static) coordinates are to be 
determined using the absolute positioning algorithm.  Naturally, for this test, the 
coordinates of USNA are assumed known and are used to quantify the errors of 
estimation.  Table 4.1 shows the distance from the five IGS stations to station USNA.   

 
From To Length (km) 
NLIB USNA 1214 
ALGO USNA 785 
NRC1 USNA 722 
WES2 USNA 582 
BRMU USNA 1291 

 
Table 4.1: Baseline Length 
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In order to generate an orbital ephemeris for each GPS satellite with 30 sec resolution, a 
9-th order Lagrange interpolator is applied to the corresponding IGS precise 900-second 
orbit.   
 

 
 

Figure 4.2: Differences between the interpolated IGS orbit and the JPL 30-sec orbit 
for PRN7 
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Figure 4.2 represents the difference between the interpolated X, Y, and Z coordinates of 
the GPS satellite (PRN07) and the JPL 30-second precise orbits (JPL, 1999).  Each 
interpolated coordinate varies from the JPL coordinates with the standard deviation less 
than 3 cm.  The mean differences are on the order of 1 cm or less.  From the given 
standard deviations, we find the standard deviation of range difference to be 3.89 cm, 
which directly affects the satellite clock error estimation, as seen in (3.13).   
 Figure 4.3 shows the periodic general relativity effect (see Appendix) with respect 
to time.  Using data from the navigation message provided at 2-hour intervals, 30-second 
values are calculated by the Lagrange 9th-order interpolator.  In case of the PRN4 & 
PRN7 satellites, the effect increases up to 10 m, while for PRN1 & PRN29 the effect is 
much smaller, up to 1.5 m.  In both cases, this effect is relatively large and the phase or 
pseudorange measurements should be corrected accurately for precise positioning and 
clock estimation.   
 

 
 

Figure 4.3: Periodic general relativity effect on satellite-differenced range; 
       PRN4 & PRN7 (top), PRN1 & PRN29 (bottom) 

 
 
Figure 4.4 shows the time- and satellite-differenced GPS clock error estimates, 

dtk,l( 1, −iit ), for the PRN4 & PRN7 satellites, and their differences with respect to the 
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corresponding estimates from JPL.  Analogous results are shown in Figure 4.5 for 
satellites PRN1 & PRN29.  To estimate these clock error differences, observations from 
five IGS stations are processed independently according to Equation (3.13); and these 
redundant estimates are then averaged with equal weights sequentially.  Figures 4.4 and 
4.5 (top portions) indicate that the satellite clock error varies up to ±30 meters at the 30-
second resolution, most likely due to Selective Availability (SA).  The standard 
deviations of the estimates with respect to the JPL estimates are less than 1 cm, with 
mean differences of about 0.1 cm.   
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Figure 4.4: Time- and satellite-differenced GPS clock errors (top) and their differences 
         with JPL estimates (bottom) for PRN4 & PRN7 
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Figure 4.5: Time- and satellite-differenced GPS clock errors (top) and their differences 
          with JPL estimates (bottom) for PRN1 & PRN29 
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The satellite-differenced GPS clock error estimates, dtk,l(ti), and their differences with 
corresponding JPL esitmates are shown in Figure 4.6 for PRN4 & PRN7 and in Figure 
4.7 for PRN1 & PRN29.  The estimates are calculated by summing the time-differenced 
estimates according to Equation (3.16) where the initial clock error estimate is obtained 
from IGS.  Again, these results are averages of five independent determinations using five 
IGS stations.  One can see the linear trends in the estimates as well as high frequency 
fluctuations for both pairs of satellites.  These linear trends could also be well determined 
using the navigation message�s clock error information as shown by the straight lines in 
these plots.  The fluctuations in the error, however, cannot de corrected using the 
navigation message; and the magnitude of the fluctuations is about 200 nanoseconds (60 
m).  Therefore, one can not avoid an error of ±60 m when performing a clock correction 
using just the navigation message.   
 The differences between the clock error estimates in Figure 4.6 and 4.7 and JPL�s 
estimates have standard deviations less than 4 cm, but still contain an offset and other 
significant systematic components, as shown in the corresponding bottom portions of 
these figures.  JPL's analysis from the global GPS network, called the �Flinn solution� 
results in satellite position coordinates, clock errors, the receiver coordinates, the receiver 
clock errors, zenith tropospheric delay and phase biases every 5 minutes.  Then all other 
parameters except the satellite clock errors are interpolated from 5 minutes to 30 second.  
JPL estimates the satellite clock error every 30 seconds using these interpolated 
parameters (Jefferson et al., 1996).  Their estimates are available via Internet (JPL, 1999).   

Some differences in the methods employed by JPL and this research to process the 
data may explain offsets and systematic variations.   
1) Different orbits � Orbits affect the range determination directly, resulting in a 

difference in the clock error estimation.   
2) Modeled tropospheric delay � In our method, the tropospheric delay is not estimated 

but is modeled, while JPL simultaneously estimates the zenith tropospheric delays 
with the clock error.   

3) Higher order ionospheric effect � the ion-free phase combination used here eliminates 
only the first-order ionospheric effect, so the higher-order ion effects remain in the 
error.   
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Figure 4.6: Computed satellite-differenced GPS clock errors with linear trend from 
navigation message (top) and their differences with JPL estimates (bottom) for PRN4 & 
PRN7 
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Figure 4.7: Computed satellite-differenced GPS clock errors with linear trend from 
navigation message (top) and their differences with JPL estimates (bottom) for PRN1 & 
PRN29 
 
 



 43

4.2 Absolute Static Positioning Every 30 Second  
 
Using the GPS clock errors thus estimated (using known IGS stations and IGS orbits), 
precise absolute positioning is possible according to the fundamental Equations (3.20) 
derived in Chapter 3.  One of the IGS stations is selected to check the algorithm in the 
case of a static receiver.  The station USNA is located at various distances (from 600 km 
to 1300 km) from the five IGS stations used to estimate the GPS clock errors (see Figure 
4.1 and Table 4.1).  Its coordinates are known (ITRF96) and the clock error estimates 
determined from the other stations are used to estimate the absolute position of this 
station.  This was done in a two-step process, whereby the float ambiguities, lk

wN ,*~ , were 
first determined using the float ambiguity search algorithm of Section 3.6.  With these 
fixed, the absolute positions for all epochs were estimated on the basis of the fundamental 
Equations (3.20).   
 Figure 4.8 shows the differences between the known (Cartesian) coordinates and 
the estimated coordinates of the station USNA.  The standard deviations are less than 2 
cm for a span of 40 minutes of data; for longer periods the standard deviations would 
increase as more systematic effects enter (as also shown in the lower parts of Figures 4.6 
and 4.7).  In addition, there are relatively large mean differences up to 18 cm.  These may 
be the result of imperfect ambiguity resolution due to the un-modeled tropospheric delays 
not already accounted for in the fundamental equations.  Absolute positioning requires a 
good tropospheric delay model.  

Using the known coordinates of the station, the ambiguities could be determined 
directly and much more accurately.  In this case, the mean differences of the absolute 
position errors ranged from 3.4 cm to 6.3 cm and the standard deviations ranged from 1.9 
cm to 3.9 cm.  The larger standard deviations compared to the previous case are caused 
by mis-modeled tropospheric delay and other systematic errors in clock error estimates, 
which are not part of the computed ambiguity.  Figure 4.9 shows the static position errors 
after solving the ambiguities by using the known coordinates at the initial epoch.  It 
indicates that how well the satellite clock errors were estimated for three hours.  With the 
estimates, the static coordinates vary within 4 cm.   
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Figure 4.8: Differences between estimated coordinates of USNA and  
         its known coordinates: x(top), y(middle), z(bottom) 
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Figure 4.9: Differences between estimated coordinates of USNA and its known 
   coordinates: fixed ambiguity using known coordinates 

 
 
4.3 Absolute Kinematic Positioning Every 1 Second 
 
4.3.1 GPS Buoy Tests 
 
For the kinematic application, the data from a GPS buoy survey on Lake Michigan (Shum 
et al., 1999) were processed and compared to the result of the differential GPS (DGPS) 
solution.  Figure 4.10 shows the location of a base station, which is one GPS fiducial site 
(7031D, NOAA benchmark) chosen for the TOPEX/POSEIDON satellite altimeter 
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overpass in Lake Michigan, and three IGS stations (NLIB, ALGO, GODE).  The GPS 
buoy was deployed about 350 meters away from the base station and the baseline lengths 
to NLIB, ALGO, and GODE are 450 km, 740 km, and 890 km, respectively.  The data 
were collected every second at both base station and buoy.   

The kinematic DGPS buoy positions were estimated every second by using KARS 
(Kinematic and Rapid Static Positioning Program) software developed by G. Mader at 
National Geodetic Survey (NGS) using double-differenced dual-frequency carrier phase 
data.  The positions estimated by KARS were compared with the positions estimated by 
the absolute positioning algorithm developed for this research.   
 

 
 

Figure 4.10: Kinematic GPS buoy test area 
 
 
4.3.2 Interpolation Effect 
 
The satellite clock errors were estimated using the measurements from the 3 IGS stations 
at every 30 seconds and 1-second clock errors were calculated using a third-degree 
Lagrange interpolator.  After estimating the ambiguities, the buoy�s position coordinates 
were estimated.  The only difference in data processing with the static case is the fact that 
an interpolation was applied to obtain 1-second clock error estimates.  This interpolation 
generates about 8.5 cm RMS interpolation error for the estimates of the satellite clock 
error originally estimated at 30-second resolution (Zumberge et al., 1998).   

Observations collected at 1-second intervals from the receiver established on the 
NOAA benchmark were used to estimate the satellite-differenced clock error, also at 1-
second intervals.  Figure 4.11 shows the consistency of these estimates by plotting the 
differences (crosses) between every 30-th 1-second estimate and the 30-second IGS-based 
clock error estimates.  Also shown (solid line) are the differences between the NOAA 
benchmark clock error estimates and the interpolated values from the IGS 30-second 
series at 1-second intervals.   
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The 30-second GPS clock error estimates from the remote IGS stations are well 
matched to those from the NOAA station with 1.1 cm standard deviation.  The 1-second 
interpolation errors, however, show short-term fluctuations of relatively large magnitude.  
The maximum interpolation errors occur in the middle of the 30-second spacing and the 
standard deviation is about 8.4 cm.  This short-term variation is due to SA, specifically 
the δ-process (dithering the fundamental frequency of the satellite clock).  Therefore, one 
cannot avoid 8-9 cm (s.d.) range error for every satellite or satellite pair when the GPS 
clock error is interpolated to 1-second resolution from 30-second estimates.   
 

 
 

Figure 4.11: GPS clock error interpolation effect (1sec) 
 
 

The difference between the interpolated clock error and the 1-second estimated 
clock error has a specific characteristic, which can be analyzed in the frequency domain 
by using the fast Fourier transformation (FFT).  Figure 4.12 shows the frequencies and 
the corresponding relative amplitudes of the waves consisting of the difference between  
the interpolated value and the estimated one.  Except the pair PRN4/PRN7, all pairs were 
used to estimate the kinematic positions.  The differences for PRN4/PRN7 pair were 
obtained for different epochs.  For every satellite pair, common waves having specific 
frequencies (0.010, 0.017, and 0.023) can be identified.  As mentioned above, these 
waves mostly came from the δ-process.  The interpolator can not provide the 



 48

corresponding waves, that is, the interpolated clock error does not have the corresponding 
variations having certain frequencies such as 0.010, 0.017, and 0.023 cycles/sec.  The 
kinematic positions, furthermore, obtained by using the interpolated clock error will have 
these additional waves or variations (0.010, 0.017, and 0.023 cycles/sec) due to the 
interpolation.  
 

 
 

Figure 4.12: Difference between interpolated clock error and estimated one 
        viewed in the frequency domain 
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4.3.3 One Second Kinematic and Static Positions 
 
The GPS buoy surveying area, in Lake Michigan is located at 42° latitude and -86° 
longitude.  The height estimates, therefore, is much correlated with the Y and Z 
coordinate estimates.  This implies that the estimates of the Y and Z coordinate estimates 
are less precise than those of the X coordinates, because the geometry constructed by the 
satellites and the receiver makes the height estimates worse than the horizontal 
coordinates estimates.  At that time, six satellites above 20° elevation were tracked and 
the respective elevations of the satellites were about 34°, 35°, 27°, 60°, 50°, and 65°.  The 
PDOP (Positioning Dilution Of Precision) was about 3.12, HDOP (Horizontal DOP) was 
around 1.28, and VDOP (Vertical DOP) was around 2.85.   

Figure 4.13 shows a comparison of the kinematic positions estimated by two 
different methods.  The dash lines represent the DGPS positions calculated by the KARS.  
The solid lines represent the positions calculated by the absolute positioning algorithm 
with 1-second interpolated satellite clock errors from 30-second estimates.  One can see 
that the general trends are well matched; the differences in each coordinate include biases 
and high frequency fluctuations.  The biases in the X, Y, and Z differences are 20 cm, 39 
cm, and 25 cm, and the standard deviations are 7 cm, 23 cm, and 15 cm, respectively.  
The major error source of the high frequency fluctuation is the interpolation of the clock 
error to 1-second resolution, as explained above.  This conclusion is consistent with static 
positioning analyses done for the NOAA station (Figure 4.14).  Differences between the 
known coordinates of the base station 7031D and absolute-positioned coordinates using 
30-second clock error estimates have standard deviations of (0.5 cm, 2.0 cm, 2.0 cm), 
while corresponding standard deviations with 1-second interpolated clock error estimates 
are significantly larger: (5 cm, 21 cm, 15 cm; see Figure 4.14).   

As mentioned above in Section 4.3.2, the kinematic positions estimated by using 
the interpolated clock error show variations having some specific frequencies (0.010, 
0.017, and 0.023 cycles/sec).  Figure 4.15 shows the amplitudes at all frequencies of the 
kinematic coordinate solutions.  The left three figures represent the case for the absolute 
positioning solutions and the right three figures for the DGPS solutions.  There is no 
significant difference in the waves of the X coordinate, while there are two additional 
variations in the Y and Z coordinates within the 0.01 to 0.03 cy/s range.  The first 
dominant one is around 0.017 cy/s, or about 60 s period.  The second one is around 0.023 
cy/s, or about 40 s period.  Evidently, they are due to the interpolation procedure.  It is 
notable that some high frequency fluctuations in the estimated absolute position can be 
decreased after reducing the amplitude of the corresponding waves in the frequency 
domain (band-stop filtering).  At this moment, however, it should be assumed that the 
GPS buoy movements do not have motions related to the corresponding periods (60s and 
40s).   

Figure 4.16 shows the smoothed positions after applying the band-stop filter and 
reducing the amplitude of the waves came from the interpolation.  The ranges of the 
frequencies of which amplitudes were reduced are from 0.015 to 0.019 and from 0.021 to 
0.025 cy/s.  The standard deviations of each coordinate were improved after filtering 
(7cm, 16cm, and 11cm).   
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There are two applicable explanations for the biases in each coordinate.  The first 
one is the tropospheric delay term.  It is known that the absolute positioning requires a 
good tropospheric delay model.  The un-modeled part of the troposphere could yield a 
similar amount of bias on the kinematic buoy as on the static base station, while it is 
nicely cancelled out in the case of the short-baseline DGPS.  Therefore, the tendency of 
biases between the kinematic buoy and the static base station is similar as seen in Table 
4.2 which shows the magnitude of biases in each coordinate.  The un-modeled 
troposphere can produce these similar biases on both receivers.   
 

 Kinematic buoy Static base station 
dX 20 cm 31 cm 
dY -39 cm -38 cm 
dZ 25 cm 20 cm 

 
Table 4.2: Biases in position estimation 

 
 
The second possible reason for the bias is the solid Earth tide effect.  The nominal 
coordinates for the base station are the values excluding the tidal effect.  In fact, the base 
station position varies with respect to time because of the periodic solid Earth 
deformation.  The radial component (tidal uplift) of the base station displacement reaches 
30 to 40 cm and has to be modeled in the parameter estimation process.  The effect is 
similar for the adjacent stations.  For larger station separations, the differential effect has 
to be considered (Seeber, 1993).   

Actually, DGPS doesn�t provide the unknown position vector but the baseline 
vector.  In order to get the position vector of the rover, the base station position vector 
should be known and corrected in terms of tidal site displacement at the corresponding 
time.  The incorrect base station position affects the unknown rover position directly and 
this effect could appear as biases in the position estimation depending on the period of 
observation.   

It is valuable to compare the baseline vectors solved by both absolute positioning 
and DGPS because the above two possible causes that induce a bias can be eliminated.  In 
order to calculate the baseline vector in the absolute positioning, the coordinates of the 
base station should be determined and subtracted from the absolute position vector of the 
buoy, while DGPS provides the baseline vector directly.  Figure 4.17 shows the kinematic 
buoy position solved by the absolute technique and by DGPS.  Biases are reduced to 
11cm, 6cm, and 1cm in X, Y, and Z.   



 51

 
 

Figure 4.13: Kinematic position comparison 
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Figure 4.14: Absolute GPS static positioning every 30 second (triangle) 
and 1 second (line) 
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Figure 4.15: Absolute positioning (left) and DGPS results (right) seen  
in the frequency domain 
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Figure 4.16: GPS buoy kinematic position comparison after applying band-stop filter 
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Figure 4.17: GPS buoy kinematic position comparison after applying band-stop filter 
and using re-estimated base coordinates 
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5 Conclusion 
 

This study has shown the feasibility to estimate the unknown position with a 
decimeter level accuracy in an absolute sense (single receiver point positioning).  
Conventionally, absolute positioning is limited in accuracy due to the satellite clock error 
associated with selective availability (SA).  The accuracy of absolute positioning is 
several tens of meters without precise satellite clock error estimates.  Therefore, the 
satellite clock error should be estimated precisely before absolute positioning is 
performed.   
 The satellite clock error was estimated at a relatively high sampling rate (30 sec) 
using International GPS Service (IGS) original measurements.  Time- and satellite-
differenced ion-free, wide-lane phase observables were used for the clock error 
estimation.  Then the initial clock error, inter-channel biases, and the ambiguity were 
combined into one float ambiguity unknown, which was solved using a newly developed 
float ambiguity search (FAS) algorithm.  The satellite clock error obtained with the above 
method had standard deviations less than 4 cm in comparison with Jet Propulsion 
Laboratory (JPL) estimates.   

Absolute positioning was performed in the static and kinematic mode with the 
precisely estimated satellite clock errors.  For the static case, it was conducted by 
estimating one of the IGS fiducial sites where the coordinates were well determined in the 
international terrestrial reference frame (ITRF).  The absolutely estimated position was 
compared with the known values every 30sec.  The position was determined with a 
precision of 1 cm to 2 cm (continually up to 40 minutes) in all three coordinates.  Biases 
on the order of 18 cm were also detected.   
 For the applications such as GPS buoy sea level monitoring and aerial 
photogrammetry, it could be required to estimate the unknown position at a higher rate 
such as 1 sec.  For this purpose, the satellite clock error estimated every 30 sec could be 
interpolated into the corresponding rate.  The interpolation error caused by SA occurs at 
each satellite and its magnitude is less than 10 cm.  In this research, kinematic buoy 
positions were estimated every 1 sec with the interpolated clock error.  The estimated 1 
sec kinematic positions showed 7~23 cm precision and 20~40 cm biases in each 
coordinate.  The reason for the worse precision in the 1 sec kinematic positioning than 30 
sec positioning is due to the clock interpolation error.   

The interpolation could not provide variations at specific frequencies, which came 
from the δ�process in the selective availability.  Therefore, this made the estimated 
positions fluctuate with the corresponding frequencies.  The satellite clock error 
interpolation effect on the position was reduced after applying a band-stop filter in the 
frequency domain in an ad hoc empirical strategy to remove the main fluctuations in the 
δ-process.  The band-stop filter increased the precision of the estimates to 7~16 cm.   
 Biases in both static and kinematic cases could result from the un-modeled part of 
the tropospheric delay and the solid Earth tide.  If so, their effects should be similar at 
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adjacent sites.  In order to prove this supposition, the baseline vectors determined by both 
absolute positioning and DGPS methods were compared.  With this approach, biases 
were reduced to 1~11 cm.   
 This research showed that absolute position can be obtained within 10 cm 
accuracy if the solid Earth tidal correction, a better tropospheric delay model, and the 
band-stop filter are applied.  This accurate absolute positioning can be a powerful 
technique if the baseline length is too long, if there is no base station near the surveying 
area, or if the fixed base station�s coordinates are not good.  Further research is indicated 
to extend this technique with improved methods to obtain and correct the bias 
components due to the un-modeled part of tropospheric delay and the solid Earth tidal 
effect.   
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APPENDIX 
 
1. Periodic General Relativistic Effect Correction 
 
The general relativistic effect, which is caused by 1) the difference between the 
gravitational field at the satellite and at the observing site, and 2) the motion of the 
satellite, is not considered because this effect was corrected in the factory before GPS 
satellite launch.  Another effect arises due to the assumption of a circular orbit.  The 
correction to the range measurement is given by Gibson (1983). 
 

EeaGM
c Erel sin2 ⋅⋅=δ                                                                                                (A.1) 

 
where c is the speed of the light in vacuum, e is the eccentricity of the orbital plane, a is 
the orbital semi major axis, E is the eccentric anomaly of the satellite, and GME is the 
gravitational constant of the Earth. 
 
2. Sherman-Morrison-Woodbury-Schur Formula Derivation 
 
Consider a non-singular matrix M consisting of four block matrices, A, B, C, and D.  The 
diagonal matrices A and D are assumed to be non-singular.   
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The inverse matrix of M is derived well in Koch (1997).   
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By multiplying M by a certain matrix, the following matrix becomes a lower-triangular 
matrix which is easily invertible.   
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Now the inverse matrix of L is found as follows.   
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The solutions for the above equations are: 
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Using L-1 matrix, the inverse matrix of A is found as follows. 
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Comparing a (1,1) block matrix in M-1 matrix, the Sherman-Morrison-Woodbury-Schur 
formula follows.   
 
( ) ( ) 1111111 −−−−−−− −+=− CABCADBAACBDA                                                               (A.9) 

 
Deriving the Kalman gain matrix in Section 3.7.2, one sets some variables as follows.   
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