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ABSTRACT

Sea surface dynamic topography (SSDT) has been determined from the separation of the
Topex sea surface height and the geoid undulations implied by the JGM-2/OSU91A merged
potential coefficient model. The SSDT was initially analyzed to determine annual and semi-
annual variations in the ocean surface, corrections to the My, Sz, Ky, O3 constituents of the
Cartwright/Ray tide model, and bias and bias rate terms. All correction terms were represented
by spherical series to degree 8 (for most testing purposes) and to degree 15 for final runs. The
most complete analysis was done with Topex cycles 4 to 58. From this solution we found that
the root mean square annual signal was 4.5 cm in the Northern Hemisphere and +£3.5 cm in the
Southern Hemisphere with an overall amplitude of +4.0 cm. Large annual signals were
associated with features such as the Kurishio Current (10 cm), Gulf Stream (+7 cm) and the
Falkland Current (6 cm). The tide correction terms were 2.9 cm (My), £1.5 cm (Sz), £0.8 cm
(O1), 1.4 cm (K;1). The improvement in the tide model was proven through comparisons at the
104/95 tide gauge data set provided by C. Le Provost.

The bias rate value was determined at each normal point and then averaged to determine
a mean rate of 4.8 mm/yr.- After removing an altimeter drift rate of 2.0 mm/yr the net rate is 2.8
mm/yr. This rate could be a combination of sea level change and effects associated with the
various correction terms applied to the data.

The second main theme of the report relates to the representation of SSDT in spherical
harmonics (SH) and orthonormal (ON) functions. Procedures were implemented to estimate
either SH or ON coefficients. It was found that the estimation of SH coefficients was more
stable than the ON estimation. For those applications on which spectral information of SSDT is
needed a SH model can be transformed into an ON model. It was found that the lower degree
SH coefficients are quite sensitive to the bias correction applied to the sea surface height data.
This sensitivity does not occur in ON coefficient estimation. For the analysis with data from
cycles 4 to 58 a bias term of 55 cm was applied to the data. This value leads to a zero value for
the degree zero term in the ON expansion. An SH expansion to degree 24 was computed using a
priori degree variance computed from 10 selected cycles of Topex data. The SH expansion was

transformed to ari ON expansion and both coefficient sets are given in the report. The degree 2,0

coefficient in the SH representation was -37.8 cm quite comparable with other altimeter based
solutions. ‘

The analysis of the ON coefficient indicated an rms value of SSDT equal to 61 cm. The
ON- power spectrum, in conjunction with the geoid undulation accuracy of the JGM-2 model in
the ocean areas, indicated the two values are approximately equal near degree 13. This suggests
that-SSDT estimates above degree 13 may be unreliable. This statement was consistent with the
inconsistency of geostrophic flow patterns implied by the SSDT expansions at the higher
degrees. Even at the lower (e.g. 13) degree the flow patterns showed only moderate agreement
with known circulation patterns. : :
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i. INTRODUCTION

A fundamental goal of the research with Topex altimeter data has been the determination of
the separation between the ocean surface and the geoid. Several studies at Ohio State, funded
through the Topex/JPL project, have been carried out prior to this analysis of the Topex data. The
first type of analysis was carried out by Denker and Rapp (1990) who used one year of Geosat
data to estimate improved (radial direction only) Geosat orbits; potential coefficient parameters and
parameters for the spherical harmonic representation, to degree 10, of sea surface dynamic
topography. (We recognize that this latter term has numerous designations. In our studies we
have used, interchangeably, sea surface topography and dynamic topography.) Maul (1988)
suggests "sea surface height anomaly" and Nerem et al. (1994a) use "ocean dynamic topography".
A recent paper by Ichikawa and Imawaki (1994) use the terms "sea surface dynamic topography"
whose symbol equivalent is SSDT which avoids the conflict when SST is used for sea surface
temperature. It is primarily for this reason we have chosen to adopt the term sea surface dynamic
topography for this report.) The Denker/Rapp paper showed how altimeter data, even in the
presence of substantial orbit error, could be used for the simultaneous study of gravitational field
modeling and oceanographic signals. Rapp, Wang and Pavlis (1991) extended the previous study
introducing surface gravity data into the solution and carrying out simultaneous and non-
simultaneous solutions for the SSDT using spherical harmonic expansions. In both studies, no
improvement was sought in the tide information that was put on the altimeter data records. Both
studies did point out the problems in the representation of SSDT using spherical harmonic
expansions emphasizing that the spectra computed from such expansions could be distorted
because SSDT is not defined in land areas although the spherical harmonic expansion represents
information on an entire sphere, not just the ocean. :

Hwang (1991) carried out a study to evaluate alternate representations of SSDT that would
not have the disadvantage of the spherical harmonic representation. Hwang found such a
representation through orthonormal functions (ON) and corresponding ON coefficients. These
functions were defined for the region in which the data were given, or actually for any region the
user chose to work with. This ON expansion process had the potential of removing the problems
associated with SH expansions. The solutions of Hwang were directed towards gravitational field
improvement, SSDT representation, radial orbit error reduction, etc. No tide modeling
improvement was considered.

With the availability of the Topex altimeter data, it was clear that the procedures developed
at OSU in the past should be tested. However, it was also realized that it was no longer acceptable
to assume the tide model used on the Topex data record was sufficiently accurate for data analysis
considering the high accuracy of the radial position. In addition, there are variations (annual and
semi-annual) of the ocean surface that were important to take into account. Finally, we wanted to
examine the conjecture that the sea surface elevation was changing with time, or that the altimeter
measurement was time dependent. The purpose of this report is to analyze the ocean surface using
Topex altimeter data with the fundamental goal of determining sea surface dynamic topography,
recognizing that other quantities such as tides, seasonal effects, and perhaps, secular effects need
to be modeled. Our plan is to build on our past experiences, recognizing the challenge brought on
by the very accurate Topex sea surface height measurements, to learn more about the behavior of
the ocean surface and corresponding implications for ocean circulation.

2. THEORY: MATHEMATICAL MODEL DEVELOPMENT

2.1 Modeling the Sea Surfacé Dynamic Topography

The sea surface dynamic topography (SSDT) ¢ at time t is defined as difference between

the sea surface height (SSH) and the geoid undulation N:




g(t’¢’2’)=SSH(ZL’¢’/1')_N(¢’2~) (2-1)

where SSH is computed from the TOPEX altimeter data. N can be computed from a potential

coefficient model or from such a model and surface gravity data (Rapp and Wang (1994); Rapp
and Smith (1994)).
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The sea surface height is based on the position of the altimeter satellite in space and the altimeter
measurement which must be corrected for environmental and geophysical factors. In addition, the
- geoid undulation is subject to errors related to our lack of precise knowledge of the Earth's
gravitational potential. Consequently, the sea surface dynamic topography represented by eq. (2-
1) is contaminated by a number of error sources. In addition, we will postulaie that the sea surface
may be changing in time in'a linear fashion at a specific geographic location. This linear change
can not be separated from linear time effects for other correction terms so one will introduce a term
b calling it the effective sea level secular change rate. Ore might also consider such a term as a

bias rate which implies that there may be a systematic change in the altimeter measurement but in
this case, » would be independent of position. "~ ‘
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Considering the above, we choose fo model the following quantities:

¢o(d,A) sea surface dynamic topography at time ty (SSDT);
CAC(t0,M) the time varying parts of (SSDT)excluding annual and semi-annual
variations; .
c(t,0,A) tidal corrections to the adopted reference tide model, and annual and
) semi-annual sea surface height variations;
b(bh,A) effective sea level change rate, or bias rate;
n(t,9,A) a noise term representing unmodeled errors in the environmental and

geophysical corrections, geoid undulation error, radial orbit error, etc.

One can now write eq. (2-1) in the following form:

c(7,0,1) = go(¢,1)+Aé(t, ¢, A)+c(t, 9,4) + b(¢,A)(t— t, ) + n(t, 9, 1) (2-2)

In this expression, tg isy the epoch time chosen for the analysis which is 170 of 1992. In this
analysis, the tidal corrections will be to four constituents (M3, Sp, K1, 07) of the Cartwright/ Ray

ocean tide model, values of which are given for each altimeter observation on the Topex GDR
(Callahan, 1993). ‘

Averaging (2-2) over a certain time period, e.g., the time of M repeat cycles of TOPEX
data, we obtain:

M
S0 =Y c(5,0,4) = (9. 1)~ b($,A) @)

i=]1

where b is the average of the tide correction, time variations of the sea surface height and error of
the altimeter data over M cycles of TOPEX data:

M

b(¢, ) =———1\122[c(ti,¢,/1)+ b(9, A)(t; = to) + Ag(t;, #,4) +n(t;, 6, 1) (2-4)

i=1

where the minus sign is for convention. If the average is over one year ( about 37 TOPEX cycles),
the annual and semi-annual variations average out. The average of the tides over one year should




v also be close to zero. However, the average of b L - to) is not zero so that we can not assume
b(d, M) is zero. We define the residual SSDT as follows:

r(1,0,4) = 5,00 =5, 1) - 2-5)
By using equatioﬁs (2-2) and (2-3), equation (2-5) becomes:

r(t,0,0) = c(t, 0, A) + B(§, M)t — 1o )+ B(P, A) + £, §, ) (2-6)
with .

e(,0,0)=Act, 0. A) +nt ) @-7)

where € is considered an unknown error.

If m observations are given, equation (2-6) represents m observation equations. The
parameters of tides ¢ , bias term b and bias rate b can be determined by using least squares
adjustment in the sense that &> is minimized, provided that the number of the parameters is smaller
than m.

The SSDT at a specific location, and at time tg, can be calculated as

&0 (9.2 =5(AA)+b(9,2) 2-8)

where the symbol "A" denotes the estimated quantities. Equation (2-8) enables us to interpret the
~ b(¢,\) value as the difference between the dynamic topography at time to and the mean sea surface
dynamic topography over the time period of m cycles as shown in eq. (2-3).

2.2 Spherical Harmonic Expansion of Tides and Sea Level Variations
A component of the four major tides and the annual, semi-annual time variations of the sea

surface height, at time t, can be written as (Cartwright and Ray,1990; Knudsen, 1994; Le Provost
et al., 1994):

Z,(t,0,1) =U (¢, 1) cos(@, 1+ 1, )+ V,, (9, A)sin( @yt + 1, ) | (2-9)

where k designates a tide constituent, 0k is the frequency of the tide constituent, y, is the :
astronomic argument, U, and V, are two surfaces defined, in our case, by a spherical harmonic
series. Note that equation (2-9) is also valid for the annual and semi-annual time variations with
the frequencies of 1 cycle/year and 2 cycles/year, ¥, = 0 for the annual and semi-annual terms.

Expand U, and V, into spherical harmonic series: i

N n .
U(9,A)= 2 Z(anm cosmA +b,, sinml) P, (sin ¢) (2-10A) g
n=1 m=0 . . ‘
|
N n
V(¢,2)=> (c,.cosmh +d,,sinmd)P,,(sin9) ' (2-10B)
n=1 n=0 ‘




where a,, , b,,, C,, and d, . are fully normalized coefficients, ‘an'is the fully normalized

Legendre function, and N is the maximum degree of the expansion. In the same way we can
expand the bias term and the bias rate into a spherical harmonic series. Equation (2-6) can be

written as:

r(t,¢,4) = i i i(aﬁm cosmA + bl sinmA)P,_(sind)g, (t)+ & (2-11)

k=1 n=0 m=0

where K is the number of sets of coefficients or number of the surfaces, g, is the cosine, sine
functions in equation (2-9) for tide terms and g, equals (t-t) for bias rate and 1 for bias.

For m observations, (2—115 can be written in matrix form:
I=AX+e L (2-12)
with
I r(t,9,4) 1 [ E;)-(q}I’AI) & () —R—I-:)-(¢1 4)8,(t) —I

[= , A= v by
L(r,,,,m,z,n)J L‘e‘o';'wm,&,)gl(tm) R (8,24, 8:(2,) J
[a}, ] [ e(r,,0,,4) |

X =[ J, e=[ J (2-13)
bl{i e(tm’q)m’;lin)

where Roo, R10 are the fully normalized spherical harmonics. The solution of (2-13) is:

X = (ATPAYATPI | @14)
where P is the weight ﬁatrix. If a priori information is used, the solution is then:

X =(A"PA+D™) ' ATPI=N"U | (2-15)

where N = A" PA+D™ (the normal matrix) and U = A”Pl. The D matrix contains a priori
information on the parameters X. Since these X values are, in this case, spherical harmonic
coefficients, the D values can be based on degree variance estimates.

2.3 Optimal Weighting for Altimeter Data Analysis

The spatial distribution of the satellite altimeter data is uneven over the ocean. The data
density (number of points per square unit) at the higher latitude is greater than it is in the equatorial
areas. In the least squares adjustment a weighting scheme has to be used to downweight the dense
data at the higher latitudes. Knudesn (1994) empirically used a cos2¢ weighting in his analysis.
However, we will show that alternatives to cos2¢ weighting may be more appropriate.

In the following we will try to find a new optimal Weightiﬁg procedure. As the first step,
we will find the average density of the altimeter data in a latitude band. We divide the Earth's




surface into k latitude bands with band width A¢. For simplicity, we assume the A¢ is not greater
than a few degrees. We also assume the center of the band at the equator has latitude zero.

The satellite altimeter ground tracks pass each latitude band 2Np times in which there are
Np ascending and Np descending tracks, where Np is the number of revolutions. For Topex the
number of revolutions per cycle is 127. The number of points in the latitude band along each track

is Ng. This situation is shown in Figure 2.1

O
Y / ) ¢=¢0+A¢
§ RAG
o=0
4 7 — / 0

Figure 2.1 Ascending Altimeter Ground Tracks Passing Through the Latitude Band
The value of Ny is given by:

N, = (S/)K | (2-16)
where S is the length of an ascending or descending track between latitude ¢ and ¢ + Ad, v is the
ground track velocity of the satellite which is assumed constant and ¥ is the altimeter measurement
rate. From Figure 2.1 we have:

S = RA¢/sinf ‘ . - (2-17)

where P is the angle between the ground track and the parallel line. The number of points in each
latitude band is then: '

2N kRAP

N(¢)=2N N, = 2-
(¢) PNo =" B (2-18)
The average point density in. the latitude band is defined as:
N - N KN
p(9)= ) N— )R- 2 19
areaof latitudeband 27mcosgpRA¢  7mcospusinf
In a unit area at the equbator the number of the altimeter data points is:
—F (2-20)
musinf(p=0)

n,=p(p=0)-1=




and at the latitude ¢ the number of data points in a unit area is:

KN, . , )
n=P(¢)'1=m | (2-21)

The ratio of the number of points in the areas at the equator and latitude ¢ is then:

_n__sinf(@) | .
= snB=0)""? 222)

Now we derive the formula for sinf. Because A¢ is assumed to be small, the planar
approximation is appropriate. We let: '

o -, ,
ﬁ———z- 14 (2-23)

where Yis an angle defined in Parke et al. (1987) and giveh by (ibid., p. 11,696):

,e ani|VssingFVycosgl 229
Vecosa l '
with,
sin o = |22 (2-25)
cos ¢

where we take the minus sign in (2-24) for inclinations less than 90°. Vg is the along track velocity
of the satellite, Vg is the velocity of the Earth's rotation at the equator, and i (in eq. (2-25)) is the
satellite inclination. We then have from eq. (2-24) and (2-25):

(2-26)

= =con | LSV cond|

We next consider the impact of the point density variations on weighting in a least squares
adjustment. The n data points contribute to the normal matrix in the following general way:

I, =[paa]= ) P,...(assumea = 1)
i=]

=np...(assumeP, =P, =...P)

(2-27)

where 1 is the diagonal element of the normal equations. The standard case is that there are ng
points in the unit area at latitude ¢. The contribution of these ng points to the normal matrix is:




I, = ['ﬁaé] =YP,  (assumea=1)
=]

(2-28)
=n,P (assumeP, =P, =...P)
We chose P in such a way that I = Ip. By usingeq. (2-27) and (2-28) we have:
p=lop_ _SNBW@) P (2-29)
n ‘smr,B(q) =0) '

As a numerical check of eq. (2-22) an area of 36 x 104 km? centered at longitude 220° was
¢hosen for analysis (Smith, 1994, private communication). The length of the area in latitude is 6°
while the length in longitude changes for different latitudes based on the cos¢ variation. The
number of the altimeter data on the Topex reference track (Rapp and Yi, 1994) that fell into the
equal areas were counted and compared with the number of points in the area at the equator. Let N
be the values in the equal area cell and RATIO the ratio of the number in the cell centered at the
equator to the number in the cell centered at a specified latitude. The value of RATIO would be an
~ approximation to a weight designed to reduce the impact of greater data density as latitude increases

in absolute value. Values of N and RATIO are given in Table 2.1. The value of r computed from
eq. (2-22) is given with the percentage difference (D3) between RATIO and r. One sees that the
maximum difference is about 7% and there is no systematic difference which indicates eq. (2-22) is
a good approximation.

This discussion has developed analytic expressions that represent the latitude dependent
data density variations along the altimeter ground track. In addition, we point out the need to
consider this variation in the formation of the normal equations from the altimeter observations.
This requirement is needed so that the denser altimeter values at higher latitudes do not dominate
the solution. Consequently, for most (but not all) our analysis, we adopt the following weight for
an observation at latitude ¢ having a standard deviation m: T

1 sinf(¢) ‘
Pl=————-——cC0s 2-
= snBo=0)"""" 230

Some authors have used a cos¢ or a cos2¢ weighting to compensate for the increase data
density. These values are shown in Table 2.1 with percentage differences with respect to RATIO.
Note that both cos¢ and cos?¢ approximate RATIO (and r) well up to approximately 30° after
which the % error generally increases with cos¢ giving very poor results at the higher latitude. A
plot of 1, cosd, and cos?¢ is shown in Figure 2.2 where it becomes clear cos¢ allows too much
weight with respect to r, and cos2¢ gives too little weight (to ¢ = 64°) with respect to r.




Table 2.1
Data Density Ratios Computed Using coso, coszcb and Eq. (2-22) for r with Comparison to "RAT,[O" Computed
Using Data Points on the Reference Track

o N RATIO T D3(%) cosd D1(%) cos2 D2(%)
0. 417 1.00 1.00 0.00 1.00 0.00 1.00 0.00
2. 448 0.93 1.00 735 1.00 737  1.00 - 7.30
4 418 1.00 1.00 -0.07  1.00 - 0.00 100 -0.25
6 400 1.04 0.99 -4.74  0.99 -4.60  0.99 -5.12
8. 424 0.98 0.99 043 099 0.69 098 -0.29
10. 449 0.93 0.98 561 098 6.04 0.97 4.43
12, 422 0.99 0.97 -1.59 098 -1.01  0.96 -3.18
14, 421 0.99 0.96 -2.83 097 204 094 -4.95
‘ ‘ 16. 450 0.93 0.95 263 096 3.73 092 -0.29
g 18. 458 0.91 0.94 3.04 095 446 090 -0.66
20. 447 093 . 092 098 094 0.73  0.88 -5.35
22, - 455 0.92 0.91 -0.94 093 1.17 0.86 6.20
24, 469 0.89 0.89 0.16 091 275 083 -6.14
26. 479 0.87 0.87 0.15 090 324 081 -7.21
28. 490 0.85 - 0.85 0.07 0.88 375 0.78 -8.39
30. 501 0.83 0.83 -0.28  0.87 4.05 0.75 -9.89
32. 515 0.81 0.81 -0.33  0.85 473 072 -11.18
34, 536 0.78 0.78 0.59 083 6.56  0.69 -11.66
il 36. 546 0.76 0.76 091 0.81 593  0.65 -14.30
38. 570 0.73 0.73 -0.28  0.79 7.71  0.62 -15.12
40, 595 0.70 0.70 0.00 077 930 0.59 -16.27
42, 621 0.67 0.67 -0.12  0.74 10.67  0.55 - -17.76
44, 645 0.65 0.64 -1.15 0.72 11.26  0.52 -19.96
46. 683 0.61 0.61 -0.75  0.69 13.78 048 -20.96
48. 726 0.57 0.57 -0.56  0.67 1650 045 -22.05
50. 791 0.53 0.53 141 0.64 2193 041 -21.63
52.. 839 0.50 0.50 -0.18  0.62 23.87 0.38 -23.74
54, 908 0.46 0.46 -0.84  0.59 2799 035 -24.77
56. 1007 0.41 041 -0.51  0.56 35.04 031 -24.49
58. 1152 0.36 0.37 0.88  0.53 4640 0.28 -22.42
60. 1344 0.31 0.31 1.08  0.50 61.15 025 - -19.42
62. 1739 0.24 0.25 6.23 047 95.78 0.22 -8.09
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Figure 2.2 Plot Showing Altimeter Data Weighting Factors of cos¢, cos20, and r. Given by Eq.2-22




3. TIDE, ANNUAL, SEMI-ANNUAL VARIATIONS, BIAS AND BIAS RATE
- ESTIMATES

3.1 Data Editing and Normal Point Computation

This analysis is based on the Topex altimeter geophysical data records distributed by the Jet
Propulsion Laboratory. The data was edited by the OSU editing procedure described by Rapp, Yi,
and Wang (1994) with the additional condition that only OSU edited data with a valid Cartwright/
Ray valid tide was used. In order to eliminate inaccurate points not yet deleted, data with absolute
values of sea surface dynamic topography, SSDT, (see below) greater than 3m were deleted. The
OSU editing generally allows 10% more data for analysis than the somewhat more conservative
editing (JPL) suggested by Callahan (1993). The main difference is that data in shallow water is
retained by the OSU editing procedure. The edited data is reduced to a reference Topex ground
track using the procedures described in Rapp and Yi (1994) to take into account the geoid gradient
problem. All standard environmental and geophysical corrections described in the GDR Users
Handbook (Callahan, 1993) were applied with one exception. In this case, the inverted barometer
correction was applied using a reference pressure corresponding to the mean pressure on the cycle
instead of a constant (1013.3 mb) pressure. The rational for this procedure is described in Rapp,
Yi, and Wang (1994). ' :

For each cycle the SSDT was computed by using eq. (2-1):
¢, =h—N | (3-1)

where 7#; is the sea surface height at the point i calculated from TOPEX altimeter measurements. N
is the geoid undulation in the mean tide system computed by: '

N=N,+P, (3-2)

where Nz is the "zero tide" geoid undulation computed from the augmented JGM2/91A
coefficients model (JGM2 (Nerem et al., 1994b), to degree 70; OSU91A, degree 71 to 360) by
subtracting 9.3324 x107° /ﬁ from coefficient Cyg . P¢ is the permanent tide correction given by
(Rapp et al., 1991):

P, =-0.198(1.5sin> ¢ — 0.5)m ' (3-3)

The undulation from JGM2/91A, in the mean tide system, was gridded into a global
0.25°x0.25° grid, and then interpolated to the point i using a cubic-spline interpolation procedure
using a 5 X 5 point interpolation window. The gridded undulation file is called
$TS0548.UNDUZERO.JGM2.0SU91A.TO360.QUARTER. Despite the implications in the
naming of this file, the values are given in the tide free system.

The altimeter data on the reference track is given at one second time interval. This data is
denser than needed in the least squares adjustment for this report. Some procedures have to be
taken to smooth and thin the data. In consideration of the change of SSDT over several hundred
kilometers the SSDT is calculated at every 20th second (~130 km) by using a straight line fitting
procedure. The points at which the sea surface dynamic topography are computed are called
normal points. ’ -

After the data editing a normal point was computed in following way:
a. Select all points in the time interval of 20 seconds. If the number of the data points was less

than 16 (80%), no normal point was computed.

10




b. Fita straight line to the selected data by a least squares fitting process. Compute the misfit for
every point. If the misfit was greater than 3 times the RMS value of the misfit, the point was
eliminated.

c. Fit a straight line to the remaining data points. The SSDT was computed at the time center of
the line. The RMS value of the misfit was recalculated.

The program to calculate the normal points is $TS0548 LIB.HWANGH#SSTNP20. The

. location of the normal points from cycle 17 is shown in Figure 3.1. A typical cycle will contain

25,000 normal points. For example, cycle 17 has 27,651 points with the standard deviation of
SSDT equal to 82 cm. This value is affected by errors in tides, geoid undulations, etc.

3.2 Tests and Preliminary Results

In initial test computations the two components of the annual , semi-annual and four
residual tides (M2, S2, 01, and K1) are represented by two spherical harmonic series from degree
1 to 8. There are 80 coefficients for each series. The bias and bias rate terms are also expanded
into spherical harmonic series from degree O to 8. There are 81 coefficients for bias or bias rate.
Together we have 14 sets of coefficients (or 14 surfaces) to estimate. The total number of
coefficients is 1122. Because the degree of the spherical harmonic expansion is low, no a priori
information was needed in these test solutions. For these and other solutions, the mean SSDT,
defined by eq. (2-3) was computed by averaging over Topex cycles 17 to 53 which covers
approximately one year. Future solutions can average over larger time periods but this should be
in multiples of a year to average out the annual and semi-annual effects.

Various corrections have been applied to the altimeter measurements. More detailed
descriptions about the corrections can be found in Rapp, Yi, and Wang (1994) in the section "Data
Correction". Callahan (1993, p. 310) pointed out that the Topex attitude pointing was a problem
with cycles 1 to 8. Based on tests not described here it was felt that only the sea surface heights
from cycles 1 to 3 were questionable. Therefore, solutions described in this paper use data starting
from cycle 4. For the test solutions of this section, data from Topex cycles 4 to 54 were used so
that at each point on the reference track there is a maximum of 48 observations of sea surface
dynamic topography. :

Due to changes in data coverage in a cycle, the number of observations at a normal point
could vary from 1 to the maximum of 48. To avoid non-representative normal points, a minimum
number of observations at the normal point on the reference track is required. In order to see the
impact of the minimum number on the solutions we set the minimum number at 5 and at 28. In
addition, we wanted to see how the editing criteria effected the solution. The OSU and JPL edit
were also used. Every 4th normal point was used in the solution to save computation time. Many
different solutions were run as the tests progressed. In Table 3.1, statistical information is given
for some test solutions of interest where the values are based on the evaluation of the specific
quantity, or correction term, at each normal point observation. The final term in the table is based
on the sum of the md1v1dua1 corrections at a specific observation normal point.
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Table 3.1
Magnitudes of Parameters from Normal Point Evaluations for Four Degree 8 Solutions Based on Cycles 4 to 54
ki)

— N15 N14 N16 N13
EDIT PROC. 0:10) OosuU JPL JPL
Min. No. 5 28 5 28
No. of Obser. 252770 240391 249455 236476

AnnualVariation (Units are cm) .
Mean 0.07 0.03 0.05 0.02
RMS 2.69 2.74 2.66 2.72
Min. -10.28 -10.67 -9.99 -12.34
Max. 10.31 10.77 10.19 12.33
Semi-annual Variation (Units are cm)
Mean 0.01 0.01 0.01 0.00
RMS 0.99 0.95 0.96 1.00
Min. -6.17 -6.02 -6.10 -6.90
Max. 6.14 6.01 6.16 6.89
M2 Tide Correction (Units are cm)
Mean 0.00 0.00 0.00 0.00
‘RMS 2.75 2.79 2.76 2.81
Min. -9.23 -9.63 -8.52 -9.54
Max. 9.19 9.61 8.55 9.58
82 Tide Correction (Units are cm)
Mean -0.01 -0.01 -0.01 -0.01
RMS 1.36 1.36 1.36 1.35
Min. -6.26 -6.56 -5.59 -7.33
Max. 6.26 6.62 5.62 7.36
01 Tide Correction (Units are cm)
Mean 0.00 0.00 0.00 0.00
RMS 0.74 0.78 0.75 0.76
Min. -2.48 -2.46 -3.02 -2.49
Max. 2.48 2.45 3.03 249
K1 Tide Correction (Units are cm)
Mean 0.00 0.01 0.00 0.01
RMS 1.55 1.49 1.53 1.49
Min. -6.76 -5.76 -5.33 -6.46
Max. 6.78 5.79 532 6.45
Bias (Units are cm)
Mean -0.39 -0.19 -0.35 -0.20
RMS 1.36 1.32 1.33 1.28
Min. -3.87 -4.50 -5.26 -4.42
Max. 3.25 412 331 331
Bias Rate (Units are cm/year)
Mean 0.24 0.07 0.22 0.11
RMS 1.85 1.87 1.86 1.81 °
Min. -6.60 -6.27 -8.08 -7.34
Max. 5.99 5.78 7.17 548
Sum of corrections (Units are cm) .
Mean -0.09 -0.11 -0.09 -0.10
RMS 455 4.61 4.54 4.59
Min. -23.46 -25.33 -25.47 -25.86 f
Max. 27.06 28.25 28.45 27.37 ' i

Table 3.1 shows that the impact of the edit criteria and minimum point numbers to the
solutions is small. The RMS values change at the mm level if different edit and minimum number
criteria are used. Even the changes of the extreme values (maximum and minimum values) are less
than 2 cm. A relatively large change in the mean value of bias rate can be seen by comparing R
solution N15 with N14. However, this change is small (in mm/yr level) in an absolute sense. The i
corrections are small, but they can not be ignored. The maximum total correction can reach 28 cm.
The RMS value of the total correction is about +4.6 cm which is not small in comparison with sea
surface height variability which is 10 ~ 13 cm (Wang and Rapp, 1993).

13
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In order to validate our solutions we compare our éstimated tides with the tide constituents
on 104 tide gauge stations developed by LeProvost (April 1994, private communication). Because
“our residual tides are with respect to the Cartwright/Ray model we needed the Cartwright/Ray tide
values at the 104 tide gauge stations in order to make comparisons. Eanes (April, 1994) made
available, via ftp, his tide model and the comparison at the 104 tide gauge stations. The tide
difference file named "104gage.diff2" was obtained and-used for our comparisons. In Eanes'
comparisons, the altimeter tides and the Cartwright/Ray model were multiplied by 1.060 and 1.047
for diurnal and semi-diurnal constituents, respectively, to eliminate the ocean tide loading effect.
In the file "104gage_diff2" the tide differences between the Cartwright/Ray model and ground truth
were listed for each station. That is:

' di=(C/R); - (GT) (3-4)

where the sﬁbscript i denotes one of the tide constituents, C/R is the Cartwright/Ray model and GT
is the ground truth. In our calculations we have:

i, =(C/R),+ Z,—(GT), = d,+Z, - (3-5)

where Z; is the residual tide defined by (2-9). Note that the Ug and Vi are called in-phase and
quadrature component of tides (Cartwright and Ray, 1990, p. 3076). The tide difference in-phase
and quadrature component of d; were computed and the RMS value of the tide differences was
computed by:

M

RMS(d) = \/Z[(dhl ) +(dh,)?] (3-6)

i=1

where (dh1); and (dhp); are the in-phase and quadrature component of a‘. and M is the number of
stations used in the comparison. The results of these comparisons are shown for several tide
models in Table 3.2. '

_Table 3.2
RMS Values of the Differences Between Tide Test Models and Ground Truth at 104 Tide Gauge
Stations. Units are in cm

Model CR UT N15 N14 N16 N13
My 3.61 2.47 2.71 2.71 271 2.73
So 2.39 1.66 1.66 1.67 1.67 1.68
01 1.27 1.19 1.15 1.13 1.14 1.13
1§} 1.98 1.77 1.47 1.50 1.46 1.50

C/R, in the table, is the difference between Cartwright/Ray tide model and ground truth. C/R
values were taken from Eanes file 104gage._test2. UT is the difference between the University of
Texas' model and ground truth. Note that in the comparisons for solutions N13 to N16 no loading
factors (1.06 or 1.047) were applied to the tide correction values. This incorrect procedure effects
the results given in Table 3.2 on the order of £0.02 cm.

We first see that in all cases, the new models give better agreement than found with the
original Cartwright/Ray model. This improvement is most significant for the My and Sp
constituents and least significant for the 01 component. The differences between the four OSU
solutions are minor. The UT solution shows better agreement for the My component and poorer
agreement for the K1 component. These solutions réemain preliminary since the expansion degree
is only 8§ and only data through Topex cycle 54 has been used. Based on the test solutions we
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decided to use the OSU edit with a minimum number of 5 observations at a normal point on the
reference track.

It is also useful to look at the degree variances of the solutions. This will provide a priori
information to be used in later solutions. In Table 3.3, we give the square root of the degree
variances of solution N15 for the annual (A), semi-annual (SA), tidal, and bias related terms.
These degree variances are computed as the sum of the squares of the spherical harmonic
coefficients for each quantity represented. These degree variances can be misleading, especially at
higher degrees, because the number represents variations not only over the ocean, but also over the
land where no data has been used. In such areas, the spherical harmonic models generally imply
large values of the quantities, especially in the case when no a priori information was used in the
estimation of the coefficients. :

Table 3.3
Square Root of Degree Variances of Solution N15. Units are in cm™
Degree 1 2 3 4 5 6 7 ] Cumulative
A 3.2 1.9 2.4 1.8 2.3 25 23 1.4 6.5
SA 0.6 1.2 1.6 1.5 1.5 1.2 1.0 0.8 3.4
My 2.7 1.7 2.9 1.8 2.1 1.7 1.4 0.9 5.7
S2 0.8 0.9 1.5 1.0 14 1.0 1.0 0.8 3.0
0p 05 0.3 0.7 0.5 0.3 0.4 0.3 03 - 1.3
K1 1.0 1.3 1.4 0.8 1.2 0.9 0.7 0.6 2.9
b 2.1 2.2 2.1 1.9 1.6 1.3 1.1 0.7 4.9
b 2.5 2.7 3.0 27 24 2.1 1.7 1.3 6.7

*The unit of b is cm/year.
3.3 Solution N34 with Data from Cycles 4 to 38

The least squares adjustment solutions are very time consuming. A solution up to spherical
harmonic degree 24 could take approximately 20 hours of CPU time on the CRAY Y-MP3 at The
Ohio State University. To reduce computer costs, but also go to a higher degree than 8 to obtain
higher frequency tide information, we chose the next solution to be to degree and order 15. The
number of coefficients to estimate is 3572. The solution, to degree 15, now including data from
cycles 56, 57, and 58 takes approximately 5.5 hours of CRAY time. The incremental time by
adding a cycle is small (100 secs) as all normal equation information is saved. 98% of CPU time
in the solution is used to form the normal matrix. Therefore, it will be beneficial, if the normal
- matrix can be formed in a faster way, such as the method Hwang (1993a) used.

In order to stabilize the solution at the higher degree of this next solution, a priori degree
variances are needed. The D matrix in eq. (2-15) is set diagonal and its elements are given by:

A
2£+1

[D]= , £=12,..15 | )
with

(3-8)
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Eqg. (3-8) has been used by Knudsen (1994) as a priori information in his solution. Based on the
degree variances of the test solution (Table 3.3), we chose c=4 cm in our analysis. In the case of
b, c was taken as 4 cm/yr.

The P matrix in eq. (2-15) is also set to be diagonal and its elements are given by eq. (2-30). (The
test solutions described earlier used a cos2 weighting as the more rigorous equation had not been
derived at the time the test solutions were carried out.) The standard deviation of the observation is
computed by:

m? = R +0.1%(m?) (39

where R; is the RMS value of the misfit of the normal points. The value of R; is dround 2-5 cm.
The constant 10 cm is added to R; to bring up the mj to a realistic level taking into account

unmodeled error sources.

Together there were 321302 normal points from cycles 4 to 58 used to estimate 3572
harmonic coefficients to yield the solution designated N34. In the following sections we will
discuss the solution, designated N34, in detail.

3.3.1 Annual and Semi-annual Variations of the Sea Surface Dynamic
Topography

Annual and semi-annual variations of the SSDT or equivalently, in this case, the sea
surface height have been studied by using GEOSAT and TOPEX altimeter data (Koblinsky et al.,
1992; Jacobs et al., 1992; Nerem et al., 1994a) These variations are described in terms of an
amplitude and phase. To calculate such terms we write eg. (2-9) in the following form:

Z,(t,0,A)=U,(¢,4)cosw, (t —1,) +V,(¢,A)sinw, (t - 1,) | (3-10)
where to has been chosen as the beginning of 1992. Eq. (3-8) can also be written as:
Z,(,0.2) = A (9,4 )cos| ,(t - 1,) =¥, ] (3-11)

with

. Ak(¢:/1) = ‘\/UZ"*'V/?

‘ vV
Y (p,A)=tan! —&
(92) = 12
where Ag and W are the amplitude and phase of the k component. Annual variations correspond
to an wx = 1 cycle/year and the semi-annual variation corresponds to @k = 2 cycles/year. There is a
direct link between the phase and the time. For the annual variation, one cycle (360°) is completed
once a year. Therefore, a phase of 180° corresponds to a time of a half year. Similarly, 90° in
phase corresponds to 3 months time. Because the time origin is at the start of the year, the phase
can also be measured from here so that, for example, a phase of 90° corresponds to April 1.
Figures 3.2 and 3.3 show the amplitude and phase of the annual variation based on Topex cycles 4
to 58. Figure 3.2 shows large amplitudes of the annual variation associated with the major current
systems. Some of the largest amplitudes are: +10 cm (Kurishio ‘Current); +7 cm (Guif Stream);
and 6 cm (Falkland Current). The patterns in Figure 3.2 are similar to these found by Nerem et
al. (1994a) but with less detail since the Nerem solution uses discrete 1°x1° grids using a 3°
averaging radius. Higher variations, in our results, north of Australia, in the South China Sea,

(3-12)
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etc., are probably unreal and can be associated with unmodeled (or high frequency) residual tide
errors and other time dependent quantities. One can also see the areas of the ocean which have
small (<2 cm) annual signal. The root mean square amplitude of the annual signal based on the
degree 15 expression is, +4.54 cm in the Northern Hemisphere; +3.54 cm in Southern
Hemisphere; and +3.97 cm for all oceans. The values have been computed deleting amplitudes in
shallow (d<1000m) water areas to avoid contamination from other error sources. From these
values, one sees that the magnitude of the annual signal is almost 22% smaller in the Southern
Hemisphere than the Northern Hemisphere.

We note that the phase shown in Figure 3.3 represents the time (in degrees from the start of
the year) of maximum annual amplitude. In the mid-latitudes in the Pacific Ocean, the phase is
300° (¢=30°, A=170°) indicating the maximum annual amplitude is reached 0.8 years (10 months
(October)) from the start of January. In the north Atlantic Ocean the phase in the vicinity (¢p=43°,
A=290°) of the Gulf Stream is 270° corresponding to the end of September. The general pattern is
reversed in the Southern Hemisphere where at ¢ = -30°, A = 170°, the phase is 80° indicating the
maximum amplitude is reached 0.2 years (2.7 months (March)) from the start of the year. The
phase difference between the corresponding point in the Northern Hemisphere is 220° or 7.3
months. Comparisons at other points show no precise 6 month (180°) difference in the time of
maximum amplitude between the Northern and Southern Hemispheres.

An independent check of an annual amplitude is found in Perigaud and Delecluse (1992)
who describe such variations in the Southern Tropical Indian Oceans (STIO). Based on Geosat
data and simulations involving observed winds, they found that the maximum annual amplitude is
on the order of 12 cm located near 12°S and 90°E. At this location, their analysis indicates the
maximum sea level rise is in November. Considering Figures 3.2 and 3.3 (and more detailed plots
not given here) the amplitude and phase at this location, from our analysis of the Topex data, are 5
cm and 340°. This amplitude is somewhat more than half that found by Perigaud-and Delecluse
(ibid.) while the phase angle implies the maximum occurs 11.3 months (November) from the start
of the year, agreeing with the Periguad and Delecluse estimate. The amplitude disagreement may
relate to the use of the lower degree expansion in the representation of the annual amplitude.

Estimates of annual and semi annual amplitudes and phases has been described by Tsimplis
and Woodworth ( 1994) using tide gauge data. These results are marginally comparable to the
altimeter results since the tide gauge data are generally representative of shallow or coastal waters.
Despite this reservation there are reasonable similarities between the different estimates of the
annual signal. For example large amplitudes in the Gulf of Carpentaria are seen in both the
altimeter(14cm) ant the tide gauge solution. Along the east coast of the United States the altimeter
amplitudes are on the order of 6 cm which is similar to that found from the tide gauge analysis.

One also sees several areas of the ocean where there are rapid phase changes in a region.
The clear example is the Indian Ocean where high phase gradients are seen. The value of the
annual amplitude also shows complex changes in this area. Which is consistent with the results of
Tsimplis and Woodworth.

The amplitude and phase of the semi-annual variation is shown in Figures 3.4 and 3.5,
respectively. The root mean square amplitude of the semi-annual signal is +1.36 cm in the
Southern Hemisphere and £1.42 cm for the whole ocean. The semi-annual amplitude is again
smaller in the Southern Hemisphere but not by as large amount as found in the annual signal. The
semi-annual amplitude does reach 4 to 5 cm in a few locations (e.g. Kurishio Current and the Gulf
Stream). As would be expected of this higher frequency phenomenon, the phase map-in Figure
3.5 is more complex than the phase map of the annual variations (Figure 3.3). :
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3.3.2 Estimated Residual Tides of the N34 Sclution

The residual tides for the My, Sj, 04, and K; constituents were estimated with respect to
the Cartwright/Ray model given on the Topex GDRs. The constituents were represented by a
degree 15 spherical harmonic expansion as discussed in Section 2.2. The amplitude and phase of
these corrections can be computed using eq. (3-12). As an example, the amplitude of the My, So,
K; and 0 tide correction is given in Figures 3.6, 3.7, 3.8, and 3.9, respectively. Statistical
information on the value of the tide correction, over all normal points, of the solution are given in

Table 3.4.

‘ Table 3.4
Statistics of Residual Tides Based on the Degree 15 Solution N34 Using Topex Data From Cycles
4 to 58. Units are in cm.

‘ M S2 01 Ky
No. of ' 321302 321302 321302 321302
Samples
Mean 0.00 -0.01 0.00 0.01
Std. 2.93 1.51 0.78 1.41
RMS 2.93 1.51 0.78 1.41
Min. -12.06 -9.57 -2.59 -4.77 .
Max. 11.84 9.64 2.58 479

The statistical information given in Table 3.4 has been computed using the weighting procedure
described in Section 2.3. This assures the statistics are not skewed towards the latitudes having
the greater data density. If x; is the residual and wj is the weight (r in eq. (2-22)) the mean and
standard deviation are defined by the following:

S xm,

¥ =4 (3-13)
Std = (3-14)
where w; = sin §, Cos .. : (3-15)

. 1

From Table 3.4 one can see that the residual tides vary (in RMS value) from 0.8 to 2.9 cm The
mae;ximum residual tide is Mp with an RMS value of 2.9 cm. The residual My tide has an extreme
value of 12 cm.

We next use these tide corrections to carry out the comparisons between predicted and
ground truth at the Le Provost station set. The initial comparisons were carried out using the 104
station set and the same procedures followed in the construction of Table 3.2. In this case, the
RMS differences are: 2.64 cm (M3); 1.56 cm (S2); 1.10 cm (01); and 1.36 cm (K7). The results
are slightly (5%) better than the N15 solution given in Table 3.2 and primarily reflects the influence
‘of the higher degree (15) representation of the tides.
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Another comparison was made with the 95 station subset used by Andersen, Woodworth,
and Flather (1994). For these comparisons, the ocean tide grids obtained from R. Ray (April
1994) were used for the base representation of the Cartwright/Ray model. The correction values
were scaled using the same values used by Earnes' (1.047 for My and Sp; 1.06 for K; and 0y).
These values are based on Table 1 of the Ray and Sanchez (1989). The RMS differences for the
C/R model and the N34 model are given in Table 3.5 as computed by Y. Yi (1994, private
. communication).
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Table 3.5

RMS Values of Four Tide Constant Differences Based on the C/R Oéea.n Tide Model and the N34
Ocean Tide Model at 95 Tide Gauge Stations

‘Tide CR N34
My £326cm #2.19cm
S2 2.29 1.38

01 1.28 1.10

K1 1.99 1.35

It is clear that a significant improvement of the C/R model has taken place in this analysis. The
application of the loading factors to the tide correction terms makes no significant impact on the
values given for the N34 solution.

Andersen et al (1994) summed the rms differences over the Mp, S, K1 and O
components to determine a total tide gauge error measure. This value for several models is as
follows: Cartright/Ray (8.8 cm); N34 of this paper (6.0 cm); Knudsen (via Andersen, 6.6 cm);
Schrama and Ray (via Andersen, 5.3 cm). These comparisons indicate the tide model estimated
here is measurably better that the original C/R model, somewhat better that the Knudsen model,
and somewhat poorer than the Schrama/Ray model, as judged by the 95 station gauge comparison.

The development of an improved tidal model was not an original goal of our research. Our
original emphasis was on the development of sea surface dynamic topography models. However,
it was clear that the development of such models could not rely on the tide models provided on the
Topex GDR. This led to our tide improvement activities. The model we have done has not been
undertaken with the idea of producing the best tidal model with improvements to all tidal
constituents. Instead, we selected the four constituents which were reasonable to improve and
such improvement has been achieved as evidenced by the reduction in altimeter residuals and the
tide gauge comparisons. In addition, this study solved for these model parameters taking into
account a possible drift in the altimeter or sea level rise which can introduce some (but small) error
in the tidal analysis. Other studies can clearly develop better tide models than given in this paper.
However, the model we have adopted should be sufficient for most sea surface dynamic
topography studies. An important exception will be geographic regions where high frequency tidal
variations can not be modeled by a degree 15 spherical harmonic representation.

3.3.3 Bias and Bias Rate Estimates from Solution N34

The solution carried out for this study estimates a bias (b) and bias rate (b) model in terms
of a spherical harmonic representation. The values of b and (b) can be computed at each normal
point (a total of 7082) on the reference track and statistical information determined. Such
information is given in Table 3.6 where two solutions of different data spans have been carried
out. (Solution N33 uses data from cycles 4 to 54.)

Recall from the previous discussion that b is the difference between the mean dynamic
topography at time tg, and the mean dynamic topography based on the Topex data on cycles 17 to
53. The (b) value infers a secular rate of many possible things including sea level change, altimeter
bias change, secular changes in correction terms, etc. Although this method represents variations
over the entire ocean, the most meaningful results are probably the ocean wide averages.
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‘f Table 3.6

Statistics of Bias and Bias Rate Estimates

i

Solution N33 N34

Parameter blm)  §(emiyr) P p (cmpyr)

l ' No. of 7082 - 7082 7085 7085
samples :

: Mean -0.26 0.24 -0.34 0.48 v

Std. 1.59 1.70 1.68 1.85

RMS 1.61 1.72 1.71 1.91

Min. » -5.95 -3.96 -6.13 -3.88 _;5

Max. 4.15 6.55 5.07 7.11 E

Cycles Used 4 to 54 410 58 ‘j}

. The mean b value for solution N33 is -2.6 mm and -3.4 mm for N34. These small values

4 reflect the consistency of the two sets of sea surface dynamic topography. One also sees that the b

values can reach 6.0 cm in some regions. The (b) value is 2.4 mm/yr for solution N33 i 1ncreasmg
to 4.8 mm/yr when just three cycles of data were added. The sensitivity of b to data time span
was also noted by Rapp, Wang, and Yi (1994). Note that the b for solution N33 is the same as
that of solution N15 (to degree 8) shown in Table 3.1. This indicates the insensitivity of (b) to the
maximum degree of the harmonic expansion (8 or 15). This implies that (b) values can be studied
through degree 8 expansions which are much less expensive, in terms of computer resources, to
carry out.

Hayne (private communication, 25 Oct. 1994) has provided information that suggests the
altimeter measurement has a small drift. Based on the data for cycles 4 to 58 the drift is estimated
to be 0.20 cm/yr. The net change in the sea surface (and/or other quantities of interest) is (4.8-2.0)
= 2.8 mm/yr. This value appears high with respect to expected values of sea level rise. Longer
time series are needed to monitor this slope.

Figures 3.10 and 3.11 show the bias and bias rate values over the ocean. Both figures
reflect the extreme values shown in Table 3.5. Substantial variations of b and (b) are seen over the
ocean. The (b) values vary from -4 cm/yr to 7 cm/yr which seems unrealistic although the average
value of 0.48 cm/yr is reasonable, considering the altimeter drift noted in the previous paragraph.
In comparing Figures 3.10 and 3.11 one can see a very strong common contour pattern. The
magnitude of the contours are opposite in sign so that one can conclude that the global estimates of
b and (b) have a high negative correlation. This suggests that b and (b) may not be well (if at all) i
separable with only 54 cycles (540 days) of data. Additional studies are needed to examine this '
clear correlation of the bias and bias rate estimates.
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3.3.4 The Degree Variances of Primary Solution N34

In Section 3.2, we exdmined the degree variances of the harmonic representations of the
tide constituent correction terms, annual and semi-annual terms, and the bias and bias rate
quantities. At this stage, only test solutions to degree 8 were available. In this section, we report
the degree variances of the final solution of this report which was carried to degree 15. In the case
of the residual tidal parameters and the annual/semi-annual variations, there are two components
defined by the Uy and Vi series (eq. (2-10)). We then have for the n degree component of the k
term: : :

n

(8.); = 2@ +82)+ (2 +a2)] (3-16)

m=0 k

The bias and bias rate are represented by a single set of spherical harmonic coefficients,
respectively. Their degree variances were computed simply by:

(6. = 3[(as. )+ (65 @-17)

m=0

where af and b%_ are the coefficients of the spherical harmonics for bias or bias rate. Table 3.7
gives the square root of the degree variances computed from our final solution.

Table 3.7
Square Root of Degree Variances of the Spherical Harmonic Solution N34

(All units are cm except for b which is cm/yr.).

Quantity

deg A SA M, P K, 0; b b
0 : 0.33 0.13
1 2.46 0.49 2.49 0.65 0.89 0.49 0.86 0.65
2 1.67 0.91 1.44 0.81 1.10 0.23 1.07 0.87
3 1.77 0.51 2.25 1.14 1.24  0.84 0.82 0.52
4 1.09 0.50 0.89 0.74 0.71 0.26 0.56 0.65
5 1.35 0.38 1.28 0.88 0.56 0.35 - 0.50 0.55
6  1.05 0.49 0.71 0.41 0.35 0.23 0.55 0.47
7 . 114 0.41 0.81 0.54 0.39 0.23  .0.29 0.33
8 0.79 0.41 0.54 0.53 027 0.22 0.38 0.37
9 0.75 0.43 0.65 0.44 0.26 0.18° 0.35 0.33
10 0.65 0.34 0.47 0.39 0.30 0.15 0.24  0.29
11 0.64 0.33 0.49 0.34 024 0.13 0.27 0.27 -
12 0.62 0.27 0.38 0.34 0.24 0.15 0.32 0.25
13 0.52 0.20 0.34 0.30 0.23 0.15 0.21 0.22
14 0.49 0.26 0.34 0.30 0.19 0.13 0.20 0.19
15 0.47 0.24 034 0.28 0.18 0.13 0.17 0.13

acum. 4.53 1.72 4.31 2.30 2.26 1.22 2.05 1.75

From Table 3.7 one can see that the power (square root of the degree variance) of the
corrections (annual, semi-annual, residual tides, bias and bias dot) typically decrease as the degree
increases. Note the values in Table 3.7 were computed from the coefficients of the spherical
harmonics which can be misleading as this power also represents the magnitude of the function in

land areas for which no data was used in the solution.
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We transformed the coefficients of the corrections into orthonormal functions (see
discussion in Section 4) and recalculated the degree variances of the corrections in orthonormal
coefficients using eqs. (3-16) and (3-17). Table 3.8 gives the square root of the degree vanances
of the corrections in the orthonormal furiction representation.

Table 3.8
Square Root of Degree Variances of Solution N34 in Orthonormal Function

(A1l units are cm except for b which is cm/yr.)

Quantity

deg A SA My RY) Kj 01 b b
0 0.72 0.05 0.64 0.26 0.67 0.29 0.34 0.47
1 2.42 0.50 2.30 0.84 0.70 0.46 0.56 0.72
2 1.21 0.56 1.24 0.53 0.85 0.22 0.78 0.90
3 1.22 0.39 2.29 1.13 1.20 0.77 . 0.51 0.62
4 0.85 0.38 0.95 0.54 0.62 028 0.52 0.58.
5 1.38 0.40 095 0.78 0.42 0.31 0.59 0.58
6 1.17 0.55 0.64 0.45 0.37 0.20 0.50 0.51
7 1.01 0.38 0.75 0.39 0.39 0.24 0.40 0.40
8 0.75 0.40 0.57 0.51 0.26 0.22 0.35 0.38
9 0.76 0.38 0.55 0.41 0.31 0.17 0.41 0.43
10 0.69 0.35 0.50 0.42 0.29 0.17 0.25 0.27
11 0.60 0.28 0.37 0.31 0.22 0.12 0.24 0.25
12 0.60 0.23 0.34  0.31 0.25 0.16 0.32 0.29
13 0.53 0.21 0.31 0.27 0.22 0.14 0.20  0.18
14 . 0.39 0.21 0.27 0.21 0.17 0.12 0.13 0.13
15 0.28 0.17 0.23 0.18 0.12°  0.09 0.08 0.07

acum. 4.15 1.47 4.07 2.13 2.10 1.18 1.70 1.91

' Note the square root of the degree variances of degree O is the absolute value of the mean values of
the corrections. They are generally small (less than 1 cm). But they still seem to violate the water
conservation law which requires the mean values of the corrections to be zero. However, this is
not considered as critical because we even do not know what is the mean value of the tide
- constituents which might not be centered (Cartwright et al., 1991). Here we see the advantage of
using the orthonormal function in analyzing the altimeter data. By using the orthonormal function,
we can force the mean to be zero by forcing the coefficient of zero degree to be zero. Note this is
not true for the spherical harmonics. Even if we force the coefficient of the zero degree spherical
harmonics to zero, the average value of the expanded quantity in spherical harmonic will not be
zZero.

The values in Table 3.8 diminish faster than the values based on spherical harmonic
expansion. The square root of the accumulative degree variances are smaller than the values of the
spherical harmonics with the exception of the bias rate. Note that the mean value of the bias rate is
0.47 cm/yr. from Table 3.8 in good agreement with 0.48 cm/yr given in Table 3.5. The 0.13
cm/yr, given from the spherical harmonic expansion in Table 3.7, is clearly contaminated by the
land representatlon of the function.
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4. SEA SURFACE DYNAMIC TOPOGRAPHY EXPANSIONS USING
ORTHONORMAL FUNCTIONS AND SPHERICAL HARMONICS

In geodesy and oceanography some quantities, such as sea surface dynamic topography,
the sea surface height and the ocean tides etc., are only defined over the ocean. The usual way to
represent these quantities is through a spherical harmonic series. However, the spherical
harmonic functions are defined globally. If we expand the dynamic topography, for example, into
spherical harmonics, we have the problem to interpret the coefficients because there is no direct
relationship between the "true" power spectrum and the coefficients of the spherical harmonic
expansion. An alternative way is to find a set of functions which are orthonormal over the ocean.
They are called orthonormal functions and can be used to expand quantities defined only in ocean
areas. Because the functions are orthonormal over the ocean, it is easy to interpret the coefficients.
In the following we will estimate orthonormal function coefficients and make comparisons between
the orthonormal and spherical harmonic expansion of the SSDT. The basic theoretical
development followed here is from Hwang (1991, 1993b).

4.1. Definition of Ocean and Generation of the Orthonormal Functions

Before the orthonormal function is formed, the ocean has to be defined. For different
purposes the ocean has been defined differently (Sanchez and Morrow, 1993, p. 38; Hwang,
1991, p. 88). By using the 1°x1° mean elevation file (Kim and Rapp, 1990) we define the ocean as
an area between latitude £70° and the depth of the ocean is greater than zero meters. This definition
is consistent with the availability of Topex/Poseidon data between +66° latitude. This area is
denoted as domain 1 and plotted in Figure 4.1. Note that isolated islands, such as Bermuda and
Kerguelen, were excluded. The Caspian Sea and the Black Sea were also excluded from the
definition of the ocean. Even after these simplifications the ocean boundaries are still very
complicated. ' '

The orthonormal function over the ocean can be computed in two ways. One way is to
solve a differential equation with given boundary values (Sanchez and Morrow, 1993). Another
way is to use the Gram-Schmidt orthonormalizing process to form the orthonormal functions from
the spherical harmonic functions (Hwang, 1991,1993). The difference between the orthonormal
functions from the two approachs is that the orthonormal function of the first approach satisfies the
boundary conditions and the orthonormal function from the second approach is free from any
boundary condition. In other words, the orthonormal function from the second approach is not
restricted to any boundary value.

It is worthwhile to point out that the orthonormal functions might have unfavorable
numerical properties as the degree of expansion increases goes higher. This is possibly caused by
the complexity of the boundary of the domain. Rigorously speaking, it is not clear if there is a
solution for the differential equation, such as the eq. (1) in Sanchez and Morrow (1993) with a
very complicated boundary.

In the following we will describe briefly the procedure used to form the orthonormal
function by using the well-known Gram-Schmidt process. More detailed discussion can be found
in Hwang(1991).

Given a set of linearly independent base functions X7 = (x ,»X5,...) Over the ocean, where
the superscript T denotes the transpose, the orthonormal function Y* =(y,,y,,...) can be computed
by (Hwang 1991, p. 11):

h=x, y=h/|h|
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h=%—)%  v=h/|h, o (4-1)

n—l

ha=%,= 3 X Ya=h,/

k=1

h

nil?

where || || is the norm of the function, and the inner product of two base functions is defined as:

(fufo =[] f.f.d0 4-2)

where do is an element of the unit sphere ¢ and d, is the part of the unit sphere where ocean is
defined. Obviously, if d, is the unit sphere, the inner product of (4-2) becomes 0 as k£ # n and 1

as k= n, and the orthonormal functions become spherical harmonic functions. In general the
orthonormal function yy can be written as:

n
Y, = ZC,U.xj; n=12,..
j=t.

The orthonormal function is a linear combination of the base functions (spherical harmonic
functions). In matrix notation the above equation can be written as (Hwang, 1991, p. 12):

Y =CX 4-3) .

where C is the combination matrix and defined in (ibid., eq. (3.6)). Since C-1 exists, eq. (4-3) can
also be used to calculate X given Y (Hwang, 1993, eq. (44)).

4.2. Estimation of the Coefficients of the Spherical Harmonic and Orthonormal
Expansions of the Sea Surface Dynamic Topography

The sea surface dynamic topography (SSDT), ¢, can be expanded into spherical harmonics
and orthonormal functions as follows:

k n
6= D (ConRom+ 5, nm) (4-4)
n=0 m=0
k n »
g = Z ( anmonm + bannm) (4°5)
n=0 =0

where Rum, S »m are the fully normalized spherical harmonics and cpm, spm are the SH coefficients;
in the same way O, and Q,, are the orthonormal functions and apym and by are the ON
coefficients. In numerical computations it is convenient to order the orthonormal functions (as well
- as spherical harmonic functions) and the corresponding coefficients in a one dimensional vector by
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degree. Equation (4-4) may be written as:
N

c=Y Bix,=BX (4-6)

=l

where X' = (Eoo,-Emﬁz 1 S11, ..) is the vector of the spherical harmonics, and
B =(Cy0rC10>C11551 15+ ) = (Bo>Bs---By) is the coefficient vector of the spherical harmonics. N is the

number of the coefficients (N =625 for m, n up to degree 24). In the same way, eq. (4-5) may be
written as:

¢= Z oy = ‘ (4-7)

=

where Y7 =(0,4,0,0,0,,,0; »» --) is the vector of orthonormal functions , = (¢, ;... 0ty ) is the
coefficient vector. :

For discrete observations éQuations (4-6) and (4-7) may be written as the following
observation equation: ‘

I=Ad" +¢ (4-8)

1=Asf" +eg (4-9)
where
(Y1(¢1’2'1) Y2(¢’1”11') .. ) ‘(gl\’ (81\
Y1(¢2’/’Lz) YZ(¢2’/12) -3 &,
A= ,1=| . lande=
J </ \*/
(4-10)
and
(xl(ﬁbu/ll) x2(¢1’2‘1) C) (&)
x(02.4,) %x,(0,,4,) . . . g,
Ag= . ' . . . .hLande=| . 4-11)
.) & .

where € and &, are the misfits or residuals of the orthonormal and spherical harmonic expansions.

The least squares solutions of equations (4-8) and (4~9) are:
a” =—(ATPA)ATPI=—N"A"PI (4-12)

and
BT =—(Af PA) " AsPl=—-Ng AgPl. ‘ (4-13)




where P is the weight matrix and N = A” PA and N, = Al PA; . Using equation (4-3) and the
definition of matrices A and Ag we have:

=[¥(6,,2,) (82,2, )...| =[CX(,,2,) CX (9,4, )...] = C[X (1,24, ) X(8,, 4, )...]
AT =CA; | (4-14)
The relationship between the normal equatioﬁ matrices N and Nj is then: \
N= CA?PASCT‘= CN,C* (4-15)
By using with (4-15) with (4-12) and (4-11) we have:
T=(C"Y'NAIPL=(C")' BT | S - (4-16)

Note that 87 is the estimated spherical harmonic coefficients by using the least squares adjustment.
Equation (4-16) gives the relationship between the estimated orthonormal coefficients (o) and the
spherical harmonic coefficients. If there is no a priori information used, there is no difference
between the estimation of the orthonormal coefficients using equation (4-12), and estimated
spherical harmonic coefficients which are transformed into coefflclents of the orthonormal
funetions through (equation (4-16)).

If a priori information such as the degree variances of the (for example) Levitus' SSDT is
used, the solution of (4-8) is then:

T =—(CN;,C" + D) CAI PI, (4-17)

where D is a d1agona1 matrix with elements of the degree variances of the Levitus' sea surface
dynamic topography in the orthonormal function.

Noting that
(CN,C"+D™M'C= (NSCTl-kC"D‘1 ) =(CH)[Ng +(CTDCY T, (4-18)
equation (4-17) may be written as
T==(CT)?[Ng +(CTDC)' " AT PL = (CT) BT (4-19)
where
BS - ~Ng+(CTDC) T A{ P | (4-20)

The matrix (C*DC)™ is a symmetric positive definite matrix.
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4.3. Boundary Constraints

Sea surface dynamic topography can be used to infer geostrophic flow vectors (both
magnitude and direction). Near a shore line, special consideration may be needed because sea
surface dynamic topography is not defined on land but remains defined to the land/water interface.
Without these considerations, one can have the unrealistic case of water flowing into land. Two
special conditions were considered for testing when sea surface dynamic topography is estimated
from satellite altimetry and geoid undulations.

For the first case consider the velocity of the geostrophic flow v calculated from the sea surface
dynamic topography by (Hwang, 1991, p. 126):

__ 8 95 . 421
2= S Rwsing 99 T aa W “4-21)

where éy and €, are unit vectors in the north and east directions, respectively; ® is the angular
velocity of the Earth's rotation; R is the mean radius of the earth. On the shore there should be no
currents flowing into land so that the SSDT must satisfy the following condition:

=0 | | (4-22)

where n is the normal to the shore line. Assuming the angle between the tangent of the shore line
and the parallel of latitude is o, the normal to the shore line can be written as: :

1= Ccos o€y — sin 0t ' (4-23)

By using (4-21) and (4-23) the condition (4-22) becomes:

Js . 1 dg 3 '
2% sino f-é-a-grp—al coso =0 (4-24)

Preliminary numerical tests of the above constraint concept was carried out using Topex
data from cycle 17 with JPL editing. Every normal point was used. In this analysis, orthonormal
normal coefficients to degree 24 were estimated. An a priori degrée variance model was used. In
the test involving eq. (4-24) the land ocean boundary was defined by a 1°x1° mean elevation file.
Equation (4-24) was used to form a set of pseudo-observation equations which were evaluated
along the coast line from Alaska to southern Chile on a 1°x1° grid. Plots were made of the SSDT
and the corresponding geostrophic flow vectors (see Section 5.5) to degrees 10, 13, 15, and 24.
No significant improvements were seen in the SSDT plots or the flow vector plots in comparison
to corresponding solutions in which the constraint was not applied. Consequently, no further
testing of this type of constraint was carried out. .

The second type of condition was tested by using pseudo-observations of SSDT equal to
- zero in "land" areas near the land/ocean interface. This type of condition is the same as the
boundary condition used by Sanchez and Morrow (1993, eq. (11)) for creating normal modes of
the global ocean. In the test solutions, the SSDT values, on a 1°x1° grid, were set to zero in cells
where 0 <h < 100m. This simple boundary condition is efficient to force no currents on shore.
But it causes high gradients of dynamic topography along the shore. However, this problem can
be solved by introducing different constants along the shore in different areas, but the question
remains w{l’lat should be the right values which do not effect the sea surface dynamic topography
near shore? ' -
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4.4. Test Expansions of SSDT

In order to make comparisons between the spherical harmonic and orthonormal expansion
of the sea surface dynamic topography, a number of test expansions have been made to degree 24,
seven of which are described in Table 4.1. Solution A, for example, is an orthonormal expansion
with the OSU edit procedure. All solutions described here used Topex cycle 17 data. '

Table 4.1
Definition of the Test Expansions Using Topex Cycle 17 Data

Solution A B C D E F G

OSU Edit X X
JPL Edit X X X X X
ON X X X X

SH X X X

The counterpart of solution A, in the spherical harmonic estimation is solution C. For both
solutions a priori degree variances were used. For solution A, the Levitus' degree variances from
orthonormal harmonics as given by Hwang (1991, Table 6.4) were used to stabilize the solation.
For solution C (SH), the degree variances of a spherical harmonic expansion of a global sea
surface dynamic topography file, with zero values on land (Hwang, 1991, private communication)
were used to stabilize the spherical harmonic expansion. The coefficients of solution A were next
transformed to SH coefficients and the values of SSDT implied by these coefficients computed are
shown in Figure 4.2. The SSDT values computed by the directly estimated SH coefficients are
shown in Figure 4.3. 'In comparing these 2 figures, one sees no visual differences in the open
ocean areas. However, solution A (Figure 4.2) shows high gradients along some coastal areas
which are not seen in solution C. : ‘ '
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The coefficients of solution A (ON) and solution B (SH) are given in Table 4.2 to degree 3.
Also given are the equivalent coefficients in the alternative representation. For example, under
solution A a column SH gives the spherical harmonic coefficients transformed from the ON
coefficients.

Table 4.2
Coefficients of Sea Surface Dynamie Height to Degree 3 of Test Solutions A and C.
Units are in meters. ‘

Solution .
A C A-C
__ON SHT ON* SH ON SH
. Coo 0.127 7.276 0.131 0.001 -0.004 7.275
€10 0.193 10.234 0.196 0.070 -0.003 10.164
c11 -0.190 2.758 -0.189 -0.168 -0.001 2.926
S11 0.063 21.548 0.063 0.027 0.000 21.521
€20 -0.461 6.855 -0.459 -0.543 -0.002 7.398
c21 -0.025 4.847 -0.025 -0.036 0.000 4.883
$21 0.031 37.325 0.031 0.003 0.000 37.322
¢ -0.013  -12.969 -0.014 0.006 0.001 -12.975
$99 0.035 3.997 0.035 0.015 0.000 3.982
c30 0.151 1.619 0.154 0.173 -0.002 1.446
c31 -0.027 4912 -0.028 -0.010 0.001 4,921
$31 -0.059 40.946 -0.056 -0.087 -0.003 41.033
- €32 0.029 -26.701 0.027 0.048 0.002 -26.749 .
$32 -0.050 7.676 -0.050 -0.009 0.000 7.685
€33 -0.051 -3.322 -0.052 -0.026 0.001 -3.296
$33 0.001 -7.130 0.001 -0.004 0.000 -7.126
Ttransformed from ON
*transformed from SH

From Table 4.2, one can see that the uniform magnitude of the orthonormal coefficients of solution
A indicates the solution is stable. However, if the orthonormal coefficients are transformed into
spherical harmonic coefficients, the coefficients become abnormally large with respect to the
magnitude of SSDT. The spherical harmonic coefficient s31 even reaches 41 meters. The
combination of the spherical harmonic coefficients gives correct SSDT over the ocean areas as can
be seen from Figure 4.2. The directly estimated spherical harmonic coefficients and the
orthonormal coefficients transformed from spherical harmonic coefficients are similar in
magnitude. A very surprising fact is that the coefficients of both solutions are almost identical in
orthonormal functions but totally different in spherical harmonics. This can be explained as the
spherical harmonic functions represent a global function while the orthonormal function represent a
function value in the oceans only. In spherical harmonic expansions through least squares
adjustment, the solution is stabilized by a priori information which somewhat reduces large
magnitudes of sea surface dynamic topography values, in land areas, computed from the estimated
coefficients. In contrast, the orthonormal function represents a function over ocean only (or the
domain in which the orthonormal functions are defined). Recall that the spherical harmonic
coefficients are computed from the orthonormal coefficients by (cf. eq. (4-19)):

Bl =C"o” ‘ (4-25)
By inspecting Table 4-2, one can see that the differences between the orthonormal coefficients of

Solutions A and C are very small. If these small differences between the orthonormal coefficients
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are transformed into the coefficients of the spherical harmonics, the differences between the
spherical harmonic coefficients become very large. Equation (4-25) means then that a small change
in the orthonormal coefficients ol (in mm level), there is a large change in the spherical harmonic
coefficients BL. Therefore, the combination matrix CT is ill-conditioning. Note that the ill-
conditioned does not mean that the orthonormal coefficients can not be transformed into the
spherical harmonic coefficients by using the combination matrix. As long as the combination
matrix is not singular, the orthonormal coefficient can be transformed into spherical harmonic
coefficients and vice versa since the transformation is unique.

The following tables gives the square root of the degree variances of the solution A and C:

Table 4.3
Square Root of Degree Variances for SSDT of Solutions A and C
(Units are in meters)

Solution <
A C ' A-C
Deg. ON SHT ON#* SH ON SH
0 0.127 7.276  0.131 0.001 0.004 7.275
1 0.278 24,014 0.280 0.184 0.003 23.980
2 0.464 40.593 0.462 0.544 0.002 40.690
3 0.182 50.369 0.183 0.202 0.005 50.460
4 0.179 52.394 0.178 0.111 0.005 52.373
5 0.088 50.268 0.086 0.067 0.006 50.283
6 0.084 49,832 0.083 0.128 - 0.007 49.819
7 0.006 50.268 0.064 0.123 0.007 50.605
8 0.081 48.712  0.083 0.095 0.007 48.679
9 0.043 43,199  0.040 0.082 0.007 43.202

10 0.033 36.302  0.035 0.028 0.009 36.309
11 0.041 30.726  0.043 0.045 0.007 30.730
12 0.045 26.513 0.044 0.063 0.007 26.502
13 0.035 22.077 0.033 0.059 0.007 22.092

14 0.047 17.162 0.045 0.058 0.008 17.160
15 0.047 12.448  (0.041 0.051 0.009 12.441
16 0.034 8.653 0.028 0.041 0.011 8.647
17 0.029 5.859  0.027 0.042 0.009 5.850
18 0.028 3.817 0.024 0.031 0.010 . 3.817
19 0.031 2.282  0.024 0.032 . 0.012 2.294
20 0.025 1.259  0.022 0.033 0.013 1.261
21 0.029 0.641 0.022 0.029 0.019 0.639
22 0.027 0.305 0.020 0.032 0.017 0.296
23 0.021 0.125 0.019 0.028 0.013 0.124
24 0.011 0.042 0.013 0.027 0.013 0.048
Accum | 0.647 152.985 0.645 0.679 - 0.048 153.014
Ttransformed from ON
*transformed from SH
As we can see, both solutions are very close in the orthonormal system, or over the oceans.

The square root of the accumulative degree variances of solutions A and C are 64.7 and 64.5 cm,
respectively. Their accumulative difference is about +4.8 cm. In the spherical harmonic system,
the square root of degree variances of the differences is +153m. This large difference must come
from the differences on land, because the differences of solution A and C, or the orthonormal
system, is only +4.8 cm.
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Comparison of Fig. 4.2 and 4.3 indicates good agreement between the two representations
of the dynamic topography in open ocean areas. In a few shoreline regions (north end of the
Arabian Sea, off the Indochina peninsula in the South China Sea, off the northwest coast of
Australia, etc.) the dynamic topography gradients for the orthonormal expansion are larger than in
the spherical harmonic representation. This undesirable feature may relate to the domain definition
and the altimeter data available in a specific region. We conclude that the spherical harmonic
solution gives a more reasonable representation of dynamic topography than the orthonormal
normal function. :

The next test is the use of the edit criteria. The JPL edit was used for solutions B (ON) and
D (SH). The sea surface dynamic topography computed from both solutions are plotted in Figures
4.4 and 4.5. By comparing Figures 4.2 and 4.4, one finds that the gradients of dynamic
topography in north Australia and in the South China Sea area are reduced. This indicates that the
OSU edit might accept some data with large SSDT variations in the areas. Because the OSU edit
takes more data than the JPL edit does, we decided to use the OSU edit with some modifications.
Detailed information on the modified OSU edit will be given in Section 5. The modified edit was
only used for solutions to be described in later sections. Tables 4.4 and 4.5 give the coefficients,
to degree 3,.and the degree variance comparisons between solutions B and D. We have the same
conclusions as the comparisons between solutions A and C discussed above. The ON expansion
when transformed to a SH expansion yields coefficients and degree variances that are unreasonable
in magnitude. The direct SH expansion and its transformation to the ON expansion gives
coefficients of reasonable magnitude. In fact, the difference between the directly estimated ON
coefficients and the ON coefficients from the SH expansion is less than 1 mm up to degree
showing the excellent consistency in the procedure. :

Table 4.4 - '
Coefficients of Sea Surface Dynamic Height to Degree 3 of Test Solutions B and D with Topex
Cycle 17 Data and JPL Edit. Units are in meters.

Solution
B D B-D
ON SHT ON* SH ON SH
c00 0.117 - 10.510 0.125 -0.002 -0.008 10.512
cl0 0.183 15.113 0.189 0.065 0.006 15.048

cll -0.192 6.222 -0.191 -0.154 -0.001 6.376
s11 0.062  28.143 0.064 0.039 -0.002  28.104
c20 -0.474 11.711 -0.471 -0.551 -0.003 12.262
c21 -0.024 11.395 -0.023 -0.039 -0.001 11.434
s21 0.023 50.006 0.023 0.025 0.000  49.981
c22 -0.010  -15.225 -0.013 -0.005 0.003  -15.220

§22 0.038 7.907 0.036 0.029 0.002 7.878
c30 0.139 4.935 0.143 0.149 -0.004 4.786
c31 -0.026 12.973 -0.026 -0.009 0.000 12.982
s31 -0.056  57.769 -0.057 -0.046 0.001 57.815
c32 0.034 -31.515  0.029 0.022 0.005 -31.537
s32 - -0.055 15.995 -0.054 -0.033 -0.001 16.028
¢33 -0.051 -6.545 -0.049 -0.037 -0.002 -6.508
33 0.002 -7.107 0.003  -0.008 -0.001 -7.099

Ttransformed from ON expansion
*transformed from SH expansion
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Table 4.5
Square Root of Degree Variances of Solution' B and D.
Units are in meters.

Solution
B ' D B-D
Deg. ON SHT ON* ~ SH ON SH
0 0.117 10.510  0.125 0.002 0.008 10.512
1 0272 . 32.544 0.276 0.172 0.006 32.511
2 0.477 55.335 0.473 0.554 0.005 55.433
3 0.173 69.802 0.175 0.166 0.007 69.844
4 0.188 72.992  0.182 0.106 0.009 72.954
5 0.083 68.509 0.080 0.063 0.008 68.503
6 0.080 63.645 0.078 0.137 0.010 63.609
7 0.072 60.783  0.069 0.100 . 0.007 60.768
8 0.075 56.851  0.079 0.091 0.011 56.828
9 0.041 49.455- 0.038 0.050 0.011 49.463

10 0.032 40.205 0.033 0.028 0.011 40.207
11 0.038 31.714  0.038 0.025 0.011 31.716
12 0.042 25.250  0.040 0.039 0.008 25.243
13 0.027 20.000 0.028 0.044 0.009 20.019
14 0.037 14970  0.039 0.040 0.009 14.965
15 0.028 10.521  0.026 0.035 0.008 10.512

16 0.021 7.135 0.019 0.019 0.008 7.136
17 0.021 4.781 0.021 0.026 0.007 4.788
18 0.017 3.150 0.013 0.016 0.009 3.147
19 0.022 1.910 0.019 0.014 0.008 1.909
20 0.016 1.051 0.015 0.020 0.008 1.051
21 0.016 0.511  0.014 0.017 0.011 0.512
22 . 0.015 -0.233 - 0.014 0.018 0.010 0.235
23 0.012 0.090 0.012 0.017 0.009 0.090
24 0.008 0.035 0.008 0.017 0.007 - 0.034

Accum  0.645 191.394  0.643 0.655 .0.044 191.395

Ttransformed from ON expansion
*transformed from SH expansion

In an attempt to have more meaningful SH coefficients derived from the ON coefficients it
was decided to add additional "data" to the ON estimation procedure. This "data" consisted of sea
surface dynamic topography values, in near shore land areas, computed from the spherical
harmonic coefficients of solution D. The values were estimated on a 1°x1° grid and used in areas
where the elevation is greater than zero but less than 100m. This "data", as well as Topex data
from cycle 17, were used to determine another ON expansion (Solution E) and a SH expansion
(Solution F).

The SSDT from the two solutions are plotted in Figure 4.6 and 4.7. In comparing the two
maps, one can see that two solutions are visually almost identical, except in the Mediterranean Sea
and the Black Sea where solution E (ON) has larger gradients than solution F (SH). The
comparison of the coefficients and degree variances are given in Tables 4.6 and 4.7.
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Table 4.6
Coefficients of Sea Surface Dynamic Height to Degree 3 of Test Solutions E and F.
Units are in meters.

Solution
E - F E-F
ON SHT ON* SH ON SH
c00 0.119 0.155 0.125 -0.002 -0.006 0.157
€10 0.185 0.553 0.189 0.065 0.004 0.488
c11 -0.192 -0.266 -0.191 -0.154 -0.001 -0.112
s11 0.064 0.142 0.064 0.039 0.000 0.103
c20 -0.474 0.168 -0.471 -0.550 -0.003 0.718
c21 -0.024 -0.200 -0.023 -0.039 -0.001 -0.161
$21 0.024 0.244 ~  0.023 0.025 0.001 0.219
c22 -0.011 -0.044 -0.013 -0.005 0.002 -0.039

$22 0.036 -0.002 0.036 0.029 0.000 -0.031
c30 0.140 0.807 0.143 0.149 -0.003 0.658
c31 -0.026 -0.234 -0.026 -0.009 0.000 -0.225
s31 -0.055 0.266 -0.057 -0.046 0.002 0.312
€32 0.032 -0.027 0.029 0.022 0.003 -0.049
$32 -0.054 -0.059 -0.054 -0.033 -0.000 -0.026
c33 . -0.049 -0.070 -0.049 -0.037 0.000 -0.033
$33 0.001 - -0.063 0.003 -0.008 -0.002 -0.055

Ttransformed from ON expansion
*transformed from SH expansion
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Table 4.7
Square Root of Degree Variances for SSDT of Solution E and F.
Units are in meters.

‘ Solution
E F E-F-

Deg. ON SHT ON* . SH ON SH
0 0.119 0.155 0.125 0.002 0.006 0.157
1 0.274 0.630 0.276 0.172 0.004 0.511
2 0.477 - 0.360 0.473 0.553 0.004 0.770
3 0.172 0.889 0.175  0.165 0.005 0.767
4 0.186 0.605 0.182 0.106 0.007 0.647
5 0.080 0.962 0.080 0.063 0.007 0.925
6 0.078 0.791 ~0.079 0.137 0.008 0.692
7 0.069 0.979 0.069 0.100 0.006 1.058
8 0.077 0.848 0.079 0.091 0.007 0.803
9 0.039 0.930 0.038 0.050 0.006 0.946

10 0.031 0.726 0.033 0.028 0.008 0.727
11 0.039 0.823  0.038 0.025 0.007 0.823
12 0.044 0.653 0.040 0.039 0.007 0.660
13 0.027 0.659 0.028 0.044 0.007 0.640
14 0.038 0.479 0.039 0.040 0.008 0.483
15 0.029 0.452 -0.025 0.035 0.008 0.451
16 0.021 0.365 0.019 0.019 0.007 0.364
17 0.022 0.310 0.021 0.026 0.006 0.314
18 0.015 0.244 0.013 0.016 0.006 0.238
19 0.019 0.188 0.019 0.014 0.005 0.188
20, 0.015 0.160 0.015 0.020 0.006 0.154
21 0.013 0.109 0.014 0.017 0.007 0.109
22 0.014 0.079 0.014 0.018 0.006 0.077
23 0.011 0.044 0.012 0.017 0.007 0.039
24 0.007 0.023 0.008 0.017 0.006 0.020
Accum 0.644 2.944 0.643 0.655 0.033 2.955

Ttransformed from ON expansion -
*transformed from SH expansion

The transformed ON to SH coefficients of Solution E have a more reasonable magnitude
than found earlier (Table 4.4) with Solution B. For Solution B the largest SH coefficient (to
degree 3) was 57m while the largest SH (from ON) coefficient for Solution E is 0.8m. In
addition, the root mean square (rms) difference of +4.4 cm (Table 4.5) between the ON (direct)
and ON (from SH) is reduced to 3.3 cm (Table 4.7) in the E/F solutions. In comparing the
transformed SH (from ON) to SH (direct) the rms difference was £191m (Table 4.5) with
solutions B/D and £2.9m (Table 4.7) with solutions E/F. These results indicate the improvement
in the estimate of the SH coefficients from the ON coefficients when "data" is added in low
elevation land areas. One should also note that the addition of this data has minor impact on the
direct (or indirect) ON expansion. For example, the cumulative power for solution B (ON) is 64.5
cm? while it is 64.4 cm? for solution E (ON). Similar comparisons are seen for the direct SH
expansions (D vs F). ‘

Although the addition of the special data has helped the ON to SH transformation no
improvement is seen (or needed) when the SH to ON transformation is made. Consequently this
type of solution, where artificial data is added to the solution, is not thought to be reasonable,
especially considering the additional computation effort needed. These results do imply that it is
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better to estimate the SH coefficients to represent the sea surface dynamic topography and then
convert the SH coefficients to ON coefficients where spectral studies are of interest.

4.5 Expansion Conclusions

Based on the various expansions described in Section 4.4, the following conclusions can
be made: y

1. The RMS difference between a direct ON expansion and a SH to ON expansion, to degree 24,
is slightly less than +5 cm (Table 4.3 and 4.5). Larger differences can occur in the shoreline
regions with the ON representation having some anomalous gradients in a few near shoreline
regions.

2. The direct spherical harmonic expansion' appears consistent between different solution when a
priori degree variances are used. The direct ON expansion yields transformed SH expansion
that are very sensitive to the data sets used.

3. It is only meaningful to compare and analyze the orthonormal coefficients. Two totally
different sets of spherical harmonic coefficients may give very close values over the oceans.
But the differences between individual coefficients can be 40 or 50 meters.

Based on the results of these tests, we recommend that the sea surface dynamic topography
be represented by a direct estimation of spherical harmonic coefficients, and that for the spectral
analysis of SSDT, the orthonormal expansion (either direct or transformed SH expansion) be used.

5. SEA SURFACE DYNAMIC TOPOGRAPHY DETERMINATION AND
SPECTRAL ANALYSIS FROM MULTIPLE TOPEX CYCLES .

The annual, semi-annual sea surface height variations, four tide constituents, bias and bias
rate were solved in a simultaneous solution as discussed previously in Section 3.3. The sea
surface dynamic topography computed by using eq. (2-1) was corrected for the residual tides and
expanded into a spherical harmonic expansion from degree zero to 24. In this section, we will
describe the final analysis procedures for SSDT estimation based on the experiences and test
solutlons described in the previous sections.

5.1 Data Editing and Spherical Harmonic Expansion

After the residual tide corrections, the SSDT in some geographic areas may be
contaminated by geoid undulation error and residual, high frequency tide error. Additional editing
is needed to eliminate data thay may have such errors. Several tests were carried out that led to the
deletion of SSDT values exceeding 1m, in absolute value, in two geographic regions: a) 0° <¢ <
15°,90° <A <127°% and b) -30° < < 0° 105° £ A < 155°. This edit criterion is called a modified
OSU edit. In comparison with the JPL edit, this procedure accepts somewhat more data points.

Another consideration in the spherical harmonic expansion of the SSDT is the use of a
priori information. Two different degree variance sets were used for the test solutions. One set is
the Levitus degree variances computed from coefficients of spherical harmonic expansion of
Levitus dynamic topography (set 3, Engelis, 1987). Another set was based on a set of harmonic
coefficients formed by averaging ten sets of harmonic coefficients found for Topex cycles 9, 12,
15,...36. Test solutions for SSDT, to spherical harmonic degree 24, were made using the tide
corrected normal points for Topex cycle 17. The degree variances of the two solutions (one with
%elvnus degree variances and the other with mean coefficient degree vanances) are given in Table
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Table 5.1
Square Root of A Priori and Solution Degree Variances of Dynamic Topography Based on Topex
Cycle 17 Using a Spherical Harmonic Expansion to Degree 24. Units are in cm.

A Priori Values Test Solution
Degree Levitus Average  Levitus (ap) Average (ap)

0 0.00 0.19 0.40 0.03
1 18.19 23.65 19.74 20.74
2 22.20 44.29 51.74 52.86
3 9.45 18.87 22.82 24.26
4 7.15 14.55 9.38 11.16
5 7.18 8.10 8.47 9.77
6 13.75 10.18 14.66 13.56
7 10.92 11.29 12.89 11.91
8 7.64 9.67 12.57 13.39
9 6.09 5.59 9.37 9.06
10 3.04 2.82 4.38 391
11 ~ 3.59 3.02 5.34 4.58
12 5.13 4.37 6.26 6.10
13 4.29 4.42 6.71 6.90
14 4.44 3.74 7.25 6.93
15 2.97 3.19 6.29 6.38
16 2.93 1.85 5.23 3.93
17 : 2.93 2.98 5.92 5.74
18 2.18 2.06 4.20 4.01
19 2.07 2.00 4.31 4.16
20 2.55 2.00 4.41 3.81
21 2.37 2.00 3.48 3.09
22 2.48 2.00 4.17 3.63
23 2.20 2.00 3.67 3.33
24 2.09 2.00 3.16 3.07
Cumulative 70.50 69.06

From this table one first notes the fairly good agreement between the Levitus degree
variances and the average degree variance above degree 4. At and below degree 4, the square root
of the degree variances for the Levitus data are substantially smaller than the average set. For
degrees 2, 3, and 4, the Levitus values are half the average based values. Also note that the degree
variances for the average set were set to be (2.0 cm)2 from degree 18 to 24 so one can see that the
solution is not sensitive to a priori information. For example, at degree 2, the square root of
degree variances of two solutions using different a priori degree variances (22.20 cm vs 44.29 cm)
are almost the same (51.74 and 52.86 cm). The same phenomenon happened for degree 3 and 4.
In our later analysis we will use the degree variances computed from the average solution as a
priori information since they should be representative of the current properties of sea
surfacedynamic topography. -

After the calculations for Table 5.1 were completed it was found that a small error had been -
made in referencing the dynamic topography to the correct tide system. To correct this error, a
correction of 5.9 (1.5 sin?¢-0.5) cm should have been added to the initial value of {. The
dominant effect of this error would be to increase the cpg spherical harmonic coefficient by
approximately 2 cm with much smaller changes for the other coefficients. There would also be an
impact on the values given in Table 5.1 under column average. The primary effect would be in the
degree 2 term where the corrected value would be approximately 42 cm. Since these values were -
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used only for apriori weighting it was decided not to redo the tests as the final results were fairly
insensitive to the apriori values.

5.2 Correlation Between Bias in SSDT and Low Degree Coefficients On
Cycle 17 -

Because of the bias of the altimeter (Christensen et al., 1994) and the uncertainty of the
equatorial radius of the best reference ellipsoid adopted for the Topex project, there is a bias in the
estimated sea surface dynamic topography estimates. As we will see in the following, this bias is
strongly correlated with the coefficients of the low degree spherical harmonic coefficients of
SSDT. As a test, we used the altimeter data of cycle 17. Two constants, 44 cm and 60.1 cm,
were removed from the sea surface dynamic topography at the normal points. Table 5.2 lists the
low degree (n < 2) coefficients of the spherical harmonic expansions. As a comparison, we also
list the low degree (n < 2) coefficients from several different solutions previously published. The
OSU solutions are based on a spherical harmonic expansion to degree 24 with the improved
weighting procedure described in Section 2.2. The a priori degree variances were based on the 10
cycle average given in Table 5.1. For solution OSU1, OSU3, and OSU4, the a priori degree
variance at degree zero was set to (0.001m)2. For solution OSU2, the a priori values was (0.3m)?2
which allowed the zero degree term more flexibility to change. The modified OSU editing if
(|¢] > 1 m, in specified areas, data deleted) was used for OSU1, 2, 3 while the JPL edit was used
for OSUA4.

, Table 5.2
Effect of Mean Removal on Low Degree Coefficients of Spherical Harmonic Expansions of Sea
Surface Dynamic Topography Based on Cycle 17 Data and Comparison with Previous Estimates.

“{*‘va

% Units are cm.
ig% Sol. R MeaHEd €00 C10 c11 S11 C20 c21 821 22 S22
F" Cmov
N OSU91 (10)7 13.0 -15.5 98 -49.3 -6.3 3.7 1.1 32
% 0SU91 (15)t 13.0 -154 -91 -51.7 -59 2.1 16 3.0
é ~ Levitus* 41 13.0 -17.7 36 -280 -45 10 26 09
‘a Nerem et al. 145 -18.7 3.3 -41.6 -7.7 47 0.1 2.9
(1994a)
f OSU1 44 00 125 -174 39 -53.8 -51 18 -0.6 07
* 0su2 44 -6.5 4.6 -183 1.1 -61.7 -57 -28 09 -02
OSU3 60.1+  0.0. 319 -154 109 -34.1 -35 133 -45 28
| OSU4 44 00 13.0 -16.1 6.1 -543 -41 53 -1.4 22

*from Engelis, 1987, ocean solution to degree 10 (Tat;le D
ffrom Rapp, Wang and Pavlis (1991)
+based on weighting using eq. (2-22)

Table 5.2 reveals the following information:

1. The solutions OSU1 and OSU3 are the same, in terms of data used, except that different biases
(44 cm and 60.1 cm) were removed from the data. This 16 cm bias difference caused cjg to
change from 12. 5 cm to 31.9 cm. However cog remains the same. Since forcing the degree
zero term to zero may be inappropriate when high correlations exist between the estimated
coefficients, we relaxed the 0.001 meter a priori value to 0.3 meter for solution OSU2. The
major changes again happened in the coefficients c1g and cpg while cgg changed from 0.0 cm to
-6.5 cm. But the question remains as to the meaning of the cqq term.

55




2. Comparing OSU4 (JPL edit) with OSU1 (OSU edit) there is no significant difference between
the coefficients. The coefficients of low degree are insensitive to the editing criteria.

3. In comparing the coefficients from different models, we see the coefficients change
significantly from model to model. Because the degree O coefficient is strongly correlated with
other low degree coefficients, the estimate of such coefficients is significantly impacted by the
bias removed from the data.

It is interesting to transform the spherical harmonic coefficients into orthonormal functions
and then compare them. Table 5.3 gives the coefficients of the orthonormal expansion.

Table 5.3
Effect of Mean Removal on Low Degree Coefficients of Orthonormal Expansion, Transformed
from the Spherical Harmonic Coefficients, of Sea Surface Dynamic Topography Based on Cycle
17 Data, and Comparison with Previous Estimates. Units are in cm.

Sol. Mean o0 €10 €11 S11 €0 €21 S21 €22 822
Removed

‘Levitus™®* 1.0 183 -179 49 -30.3 -1.6 2.8 -0.2 2.7
OSU91 (10) 1277 245 -17.8 -8.1 -445 -3.7 3.4 -03 3.8
OSU91 (15) 13.3 245 -174 -72 -445 -34 2.8 -1.7 4.1
Diff. -0.6 00 -04 -09 00 -03 0.6 1.4 -0.3
OSU1 44 - 11.3 203 -19.0 59 . -463 -25 2.6 -14 3.6
OoSu3 60.1+ -43 210 -189 59 -453 -24 25 -16 3.6
Diff. (OSU1 15.6 -0.7 -0.1 00 -1.0 -0.1 0.1 0.2 0.0
- OSU3 :

OoSu4 44 11.1 19.7 -19.2 6.0 -47.3 -2.3 1.9 -1.2 3.5

**computed using data set: $ts5788.sst.harmin.to24.nobeta
(global solution, program used is $ts0548.lib.hwang1#f419sst.)

Table 5.2 shows that the on coefficients of lower degree are significantly decorrelated from
the bias terms. The cgp of the orthonormal function expansion can be well determined. This is
very important for the estimation of the equatorial radius of the reference ellipsoid. The difference
between the biases removed in solutions OSU1 and OSU3 is 16.1 cm, and this difference is almost
the difference between cqg of two solutions in orthonormal function systems. Even so we see up
to 20 cm differences between the spherical harmonic coefficients of solution OSU1 and OSU3
although the differences are now below 1 cm level in orthonormal functions (excluding cgg term).
Therefore, the coefficients of the sea surface dynamic topography expansion should be compared
in the orthonormal function system, instead of through the spherical harmonic coefficients which
may not have a unique meaning for individual coefficients. However, as we showed earlier, the
spherical harmonic expansion can represent the SSDT as well as the orthonormal function, but if
we do the spectral analysis the orthonormal function has to be used.

5.3 The Equatorial Radius and the Zero Degree Term of Sea Surféce Dynvamic
Topography

In this section we will discuss the relationship between the cog (orthonormal) or global
mean sea surface dynamic topography and the equatorial radius of the best fitting ellipsoid. The
orthonormal functions are orthonormal over the ocean. The cqp equals the average value of the sea
surface dynamic topography over the ocean. It is plausible to define the "ideal" ellipsoid so that the
average value of SSDT is zero (Engelis (1985)). In the altimeter analysis the SSDT is computed
by: ‘

C=SSH( ¢, M) -N(o,1)

»
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The oceanwide average of ( is then

C=SSH-N (5-1)
with
1

SSH = ——
A

f [[$SH(z,9,2)dido
1 0 oy (5-2)
N= la—lﬂ N(¢,A)do

‘where O in the ocean and tlcrol is the area of the ocean, T is an appropriate averaging time. If the
‘equatorial radius of the reference ellipsoid increases A meter, the SSH(t, ¢, A) decreases A meter
nder the spherical approximation. The change of the geoid undulation computed from the
otential coefficient model, due to the change of the equatorial radius of the reference ellipsoid, is
nder mm level and can be ignored. Therefore, the SSDT also decreases A meter. By changing
he equatorial radius of the reference ellipsoid the average value of SSDT can be forced to zero. In
ther words, by analyzing the SSDT computed from the altimeter data, we can find a equatorial
adius of the ellipsoid which makes the average value of the SSDT zero. This equatorial radius
/ill be considered as the "ideal” equatorial radius of the reference ellipsoid for this discussion.

Based on previous analysis, we know there is a bias in the sea surface dynamic topography
stimated with the Topex altimeter data and the parameters of the Topex reference ellipsoid. This
ias can be uniquely determined by using the orthonormal function expansion. In order to estimate
e bias, we analyzed one year of TOPEX altimeter data (cycle 17 to 53). The SSDT was averaged .
-the normal points and then expanded into spherical harmonics from degree zero to 24. The sinf3
ighting (eq. (2-30)) was used with constant 10 cm for m;. As a test, we also removed two
ferent biases from the dynamic topography before the spherical harmonic expansions and the
utions were designated by A and B. Table 5.4 gives the coefficients of the solutions in
erical harmonics and orthonormal functions.

Table 5.4
Low Degree Spherical Harmonic and Orthonormal Coefficients of One Year Mean Dynamic
' Topography Based on Topex Cycles 17 to 53. Units are in cm.

Spherical Harmonic Coefficients

Sol. Mean €00 Ci0 €11 S11 €20 €21 S21 €2 s$)2
removed . _

44 0.0 174 -18.8 5.1 -484 -7.3 49 -0.6 0.1

55 -0.1 299 -17.3 10.5 -369 -59 135 -40 2.1

Orthonormal Coefficients Transformed from Spherical Harmonics
Mean €00 €10 €11 S11 €20 €21 S21 €22 822

removed
44 104 22.1 -194 5.6 -43.0 -2.7 3.1 -1.1 3.3
55 -0.1 224 -195 58 -427 -26 32 -13 3.1

Table 5.4 implies that the zero degree term of the orthonormal expansion, is effectively zero
n the 55 cm bias value is removed from the Topex data. This value is based on the analysis of
ear (cycle 17 to 53) of Topex data. Christensen et al. (1994) have reported a Topex altimeter
of -14.5 cm so that the ideal equatorial radius, for this type of study, would be 6378136.30m
Topex ellipsoid "a") + 0.55m - 0.14m which equals 6378136.71m. This radius is 11 cm

than implied by other analysis described in Rapp, Yi, and Wang (1994). The difference may
lated to the different definitions used in defining the equatorial radius. For solutions to be
ibed in the next section, the 55 cm bias has been removed. -
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5.4 MEAN SEA SURFACE DYNAMIC TOPOGRAPHY AND ITS SPECTRAL
ANALYSIS
Based on the experiences described in the previous sections it was decided to estimate sea
surface dynamic topography (SSDT) for each Topex cycle from 4 to 58. The normal points were
corrected for the residual tide corrections based on the N34 solution described in Section 3.3. In
addition, the 55 cm mean bias described in the previous section was subtracted from the SSDT
value. Values were deleted if the magnitude exceeded 1m in the selected geographic regions noted
earlier. This data was then used to estimate the-spherical harmonic coefficients from degree 0 to 24
using the a priori degree variances based on 10 cycles of Topex data as described in Section 5.1
and Table 5.1. A total of 51 harmonic coefficient sets were determined. These sets represent a
time series of variations in the ocean surface. A mean set of SH coefficients were determined by
averaging the individual sets. These coefficients are given in Table 5.5. The c3 g value is now
-37.8 cm in contrast to -36.9 cm given in Table 5.4 using data from cycles 17 to 53, a one year
(approximately) time period. For referencing purposes the data set containing the one year
dynamic topography coefficients is TS0548.SST.COEF.AVER.FCYC17.T053.B55. This set
was created through the use of program TS0548.LIB.SSTEXPAN(SSTADJ). The data set with
the average of 51 solutions is TS0548.SST.COEF.AVER FCYC4.T058.SHONSTD.

Each SH solution was transformed into a ON solution. These 51 solutions were then
averaged to determine a mean ON coefficient set for SSDT. These ON coefficients are also listed
in Table 5.5. Equivalent values could have been obtained by transforming the mean SH
coefficients. The standard deviation of each ON coefficient, about the mean value, was computed
and is given in Table 5.5. The cqg coefficient, in the ON system, is 0.2 mm indicating a mean of
55.02 cm should have been removed from the data instead of 55.00 cm. However, this value is
likely to change as additional cycles are studied. The cq coefficient of the ON expansion is -42.52
cm, quite close to the value given in Table 5.4.

We next compare the low degree coefficients from several solutions of this paper, and
elsewhere, in both the SH and ON representation. The presentation is in Table 5.6 for the SH
coefficients and in Table 5.7 for the ON coefficients.

Table 5.6
Low Degree Spherical Harmonic Coefficients of Mean Sea Surface Dynamic Topography. Units
are cm.
Solution
Coefficient Onef Year Topex® 4-58 Levitusit Neremetal. Visseretal

10 29.9 27.5 13.0 14.5 0.2
c11 -17.3 -16.1 -17.7 -18.7 -8.1
S11 10.5 10.3 3.6 3.3 -0.9
€20 -36.9 -37.8 -28.0 -41.6 -45.4
€21 -5.9 5.0 -4.5 -1.7 -2.9
$21 13.5 13.7 1.0 4.7 8.7
c -4.0 -4.0 2.6 0.1 1.3
$22 2.1 2.0 0.9 2.9 2.0

TTable 5.4; *Table 5.5; TiTable 5.2

The SH coefficients from the one year data solution and the averaging of the 51 SH coefficient sets
give very similar results. When these are compared to the values implied by the Levitus data,
computed by Engelis, significant differences are noted for the c1g and cpq coefficients. The values
of Nerem et al. (1994) are reasonably close to the solutions of this paper except for the c10
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coefficient where the Nerem value agrees with the Levitus implied value. Note the good
consistency of the c; coefficient between the Nerem estimate and that of this paper. The Visser et
al. (1993) estimates shows a similarity to the other solutions except for the ci¢ term which is -
considerably smaller than the other estimates. As noted by Denker and Rapp (1990), the c1g
coefficient is difficult to determine if the altimeter orbits are not precisely known.
I
Table 5.7
Low Degree Orthonormal Coefficients of Mean Sea Surface Dynamic Topography. Units are cm.

Ty
SREZERA

St

b Solution

Qﬁ Coefficient  Onef Year  Topex® 4-58  LevitustT  Visseretal.

i €10 22.4 22.1 18.3 4.1

0 c11 -19.5 - .-19.1 -17.9 -10.3

. S11° 5.8 5.6 4.9 -1.4

il €20 - <427 -42.5 -30.3 -44.9

g c21 26 26 16 2.9

@j $21 3.2 3.0 2.8 5.6

. €22 --1.3 -1.6 -0.2 3.0

LV $22 3.1 2.9 2.7 2.8

. TTable 5.4; *Table 5.5; TTable 5.2

g;‘ As with the SH coefficients, the coefficients of the one year SSDT and the average from
Z% cycles 4'to 58 agree quite well. We now see, however, a much better agreement between the c10
i term of Levitus and.of the solution generated here. In the ON representation, the difference for

ey

c10 is approximately 4 cm while the difference is about 15 cm when the SH coefficients are
compared. The only coefficient for which improved comparisons with Levitus are not obtained is
the c20 term. Since we have shown the SH solution (at the lower degrees) is sensitive to the mean
removed, it again becomes clear that coefficient comparisons could be better done in ON
coefficients. '

e
ETRAE

T

The magnitude of SSDT was calculated from the ON coefficients to various degrees of the
expansion with results given in Table 5.8.

Table 5.8 ' :
Magnitude of Sea Surface Topography From ON Coefficients to Degree N.
1 : Units are in cm.

N Value
10 60.39
13 60.70
15 60.88
20 61.03
24 61.09

The values clearly show the dominant power is at the longer wavelengths.

The spectral characteristics of the coefficient variations was calculated by averaging, over
all cycles used, the coefficient standard deviations. Specifically, the degree variance of the
temporal variation of SSDT was computed from:

AG? = i—i i[(ac;m)z +(85%,.)' | ' | 53)

i=] m=0
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where m is the number (51) of cycles averaged and Jc,,, and 6s,,, are the residual ON coefficients
(i.e. the difference between the coefficients of Topex cycle i and the mean ON coefficient set).
Values of Aoy, are plotted in Figure 5.1 The value decreases slowly from +1.6 cm at degree 1 to
+0.4 cm at degree 24. The cumulative variability (i.e. summed from degree 0 to 24) is £5.2 cm.
This value is smaller than other estimates. of ocean variability (e.g. £13 cm, Wang and Rapp
(1992)), probably due to the low degree of the series representation used here.

The square root of the degree variances of the mean SSDT (from the ON representation)
and its variability are given in Table 5.9 and plotted in Figure 5.1 We feel that this spectrum is
more representative of the real spectrum of SSDT than would be found using a regular spherical
harmonic expansion with corresponding degree variances. We note that the variability magnitudes
are an increasing percentage of the magnitude of the total topography.

Table 5.5
Spherical Harmonic (SH) and Orthonormal (ON) Coefficients of Mean Sea Surface Dynamic
Topography and Coefficient Variations. Values are Based on Averaging 51 Sets of SH
Coefficients from Topex Cycles 4 to 58. Units are in cm

SH ON ON

C S C S DC DS
-0.05 0.00 0.48 0.00 0.51 0.00
27.50 0.00 22.06 0.00 1.29 0.00
-16.11 10.28 -19.08 5.63 0.66 0.64
-37.75 0.00 -42.52 0.00 1.06 0.00
-4.99 13.70 -2.59 2.95 0.40 0.43
-4.02 1.97 -1.55 2.94 0.55 0.54
26.38 0.00 15.67 0.00 1.17 0.00
-2.80 . 7.34 -2.85 -4.25 0.43 0.52
-3.67 -2.05 232 . -555 0.30 0.28
-3.35 -2.07 -5.38 0.17 0.25 0.45
-6.63 0.00 -16.10 0.00 0.65 0.00
0.26 9.33 5.68 1.99 0.52 0.59
-9.45 -0.09- -2.96 0.40 0.36 0.45
3.48 -6.10 1.49 -2.48 0.24 0.26

-0.96 -0.61 -1.81 -2.24 0.32 0.33
6.44 0.00 3.94 0.00 0.88 0.00
-141 3.24 -2.34 -1.61 0.66 0.57
-5.65 3.96 2.69 5.05 0.37 0.39
2.26 -5.90 0.83 1.40 0.27 0.32
2.70 1.40 -0.36 0.12 0.21 0.29

-1.31 2.26 -0.42 0.22 0.31 0.29

9.20 0.00 4.84 0.00 0.45 0.00
-4.06 1.19 -3.56 2.26 0.59 0.45
-543 542 -0.05 - 3.51 0.40 035

0.21 -8.85 0.42 -2.43 0.39 0.43
1.00 -0.20 -1.88 0.60 .0.25 0.32
0.19 3.37 1.51 -0.16 0.23 0.23
-1.57 -0.06 -1.02 -0.73 0.29 0.25
-6.52 0.00 -0.68 0.00 0.48 0.00
2.00 -0.36 4.04 3.51 0.48 0.57 -
-0.01 1.97 1.25 0.21 0.29 0.35
-0.29 -2.16 0.13 0.01 0.25 0.62
1.91 -1.65 0.44 0.00 0.39 0.25
0.78 2.19 0.58 0.01 0.17 0.21
0.37 0.61 1.66 1.14 0.16 0.12
0.21 -1.72 041 -0.91 0.16 0.22

XAV VNNNNINOAORARA AN U NN D B DD D UL WWN N R - -
o\zoxm.:smxo»-aooxunhwwuomawmwoaumucmmwouucﬂoog

1.56 0.00 1.29 0.00 0.39 0.00 -
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- Table 5.9
Square Root of Degree Variances of Mean Sea Surface Dynamic Topography and Its Variability,
by Degree and Cumulatively, from TOPEX Cycles 4 to 58, Using Orthonormal Coefficients.
Units are in cm.

By Degree Cumulatively
Degree SSDT  —VAR PART SSDT VAR PART
0 0.02 0.51 0.02 0.51
1 29.70 1.58 29.71 1.66
2 42.83 1.44 52.12 2.20
3 18.35 1.50 - 55.26 2.66
4 17.92 1.31 58.09 2.97
5 7.70 1.52 58.60 3.33
6 8.21 1.34 59.17 3.59
7 6.03 1.36 59.48 3.84
8 8.87 1.23 60.14 4.03
9 3.58 1.20 60.24 4.21
10 4.25 1.01 - 60.39 4.33
11 4.12 1.03 60.53 4.45
12 3.68 - 1.04 60.64 4.57
13 2.66 0.94 60.70 4.67
14 3.67 0.90 60.81 4.75
15 2.84 0.81 60.88 4.82
16 2.19 0.84 60.92 4.89
17 2.13 0.82 60.96 4.96
18 1.79 0.80 60.98 5.02
19 1.87 0.76 61.01 5.08
20 - 157 0.70 61.03 5.13
21 1.95 0.69 61.06 5.18
22 1.31 0.64 61.08 5.21
23 1.14 0.56 61.09 5.24
24 0.83 0.42 61.09 . 5.26

Also plotted in Figure 5.1 are the square root of the geoid undulation error (Nerem et al., 1994b)
implied by the JGM-2 potential coefficient model used in our determination of SSDT. These errors
were computed to reflect the uncertainty in the ocean areas. The figure shows that the magnitude
of geoid undulation error approaches the magnitude of the SSDT signal between degree 13 to 15.
‘This is a suggestion that SSDT estimates may not be reliable beyond these degrees. This issue will
be addressed again in the next section.

: Figure 5.2 shows the square root of the cumulative degree variances of the mean SSDT,
the variability components, and the JGM-2 geoid undulation error. We note again (see Table 5.6)
‘that most of the mean SSDT signal is contained in the lower degrees of the ON expansion.

Finally, we note (Table 5.5) the small (+5.1 mm) variation of the degree zero term of the
‘ON expansion. This variation is associated with mean sea level variations, annual and semi-annual
ariations, drift of the altimeter bias, and variations that can be associated with environmental and
eophysical corrections. To study this further, the degree zero term of the ON expansion is plotted

Figure 5.3 from Topex cycle 4 to 58. A straight liné was fitted to these values (from cycles 4 to
8) and the slope found was 4.2 (+1.6) mm/yr which is in close agreement with the value of 4.8
mm/yr given in Table 3.1. The difference may relate to the influence of the annual and semi-annual
%ms that have not been included in the analysis that led to the zero degree terms plotted in Figure
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‘Using the altimeter drift estimate of 2.0 mm/yr noted in Section 3.3.3, the net change is 2.2
(% 1.6) mm/yr which is quite comparable to the 2.8 mm/yr found by a very different procedure.
Although the two values are quite close, the two procedures used are not independent verification
of the change, since the same data set and correction terms are used.

Considering Figure 5.3, one sees that the bias rate would be dependent on the time (or
cycle) span used. Since no annual or semi-annual corrections were applied to the sea surface
topography analysis in this section, it could be dangerous to calculate a bias rate from a time span
shorter than a year. Continued monitoring of this cgp term, as well as continued analysis directly
solving for the bias rate as described in Section 3.3.3, is needed.

5.5 Construction of Geostrophic Currents Maps from Orthonormal and Spherical
Harmonic Coefficients ' '

The geostrophic velocity can be calculated from the sea surface dynamic topography by
(Engelis, 1985; Apel, 1990, p. 292): . :

.z, d

1R 99 | 54
__ 8 9

1 JRcos¢ A

where g is gravity, f is the Coriolis force coefficient, u and v are the components of the geostrophic
velocity in the meridian (north-south) and parallel (east-west) direction. The value of f is 2msing
where o is the rotation rate of the Earth. In a spherical approximation g (gravity) and R (Earth
radius) are constant. In the calculations carried out for this report using program
TS0548.LIB HWANG#OCCUR, g and R varied based on an ellipsoid model for the Earth.
Denote the components of the slope of the SSDT: |

b0t

§ RIg s
o -

Ez 1

% Rcos¢ oA

: -

%55 so that equation (5-1) can be written as:

i =9

| =

. (5-6)
% v===

| ra

The components & and 1 can be computed easily from given spherical harmonic coefficients
(Rapp, 1982) at a given location since ¢ and 1 are similar to deflections of the vertical. If the sea
surface dynamic topography is represented by a set of orthonormal coefficients, u and v are
computed by first transforming the orthonormal coefficients into spherical harmonic coefficients by
using eq. (4-16), then & and 1 are computed from the transformed spherical harmonic coefficients.
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Finally (5-6) is used to calculate u and v at the given location. The geostrophic velocity can also be
represented by its magnitude and direction (Engelis, 1985):

(5-7)

where A is the magnitude and z is the azimuth of the geostrophic velocity. In this study, we are
more interested in the ocean circulation pattern rather than the strength (magnitude) of the
geostrophic velocity. Therefore, the azimuth z is calculated on a 5°x5° grid globally, and then
plotted over the oceans. Note the unit length of the geostrophic velocity is used for all geostrophic
velocity maps shown in this report. .

, First we consider the representation of the mean SSDT based on the SH coefficients given
in Table 5.5. Three plots have been prepared showing the results for a maximum degree of 24
(Figure 5.4); 13 (Figure 5.5); and 10 (Figure 5.6). The general patterns between the plots remain
the same as expected because the dominant signal is at the lower degrees. However, there are a
few regions in which unrealistic high frequency gradients are present in the degree 24 solution.
One specific location is the Gulf of Carpentaria, just north of Australia. Although special data
editing was applied here, the mean SSDT value appears to be contaminated by errors that are likely
due to unmodeled high frequency tide errors and/or geoid undulation error. Other areas showing
larger than expected gradients in the degree 24 solution, are in the Mediterranean Sea; northern part
of the Arabian Sea and the Sea of Okhotsk (¢ = 55°, A = 148°).

As the lower degree expansions are considered some of the gradients in the regions noted
previously are significantly reduced. Based on the spectrum signal/noise ratio discussed in Section
5.4, we feel that the most accurate representation of the mean SSDT is the one to degree 13 (Figure
5.5). But this would not preclude good information in expansions to higher degree. However,
one must be careful in such expansions to recognize that the values can be easily contaminated by
geoid undulation errors, with the contamination increasing as the degree of expansion increases.

We next calculated the flow vector directions based on the SH expansion to degree 24

(Figure 5.7); to degree 13 (Figure 5.8); and to degree 10 (Figure 5.9). The values were computed
on a 5°x5° grid using the program referenced at the start of Section 5.5.
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The flow patterns shown in the three figures represents a mean pattern since the SSDT has
been based on Topex cycles 4 to 58. Consequently the standard comparisons with the major
current pattern is appropriate. To do this we start from a general circulation map such as Fig. 14.1 .
in Neumann and Pierson (1966). Although this figure is for the current situation for Northern
Hemisphere winter, we will interpret the flows for an average, non-seasonal case. (As more
Topex data is analyzed seasonal current patterns can easily be studied.) In Table 5.10 we list 16
major currents and indicate the degree in which the current can be seen in the circulation figures
constructed from the Topex data. Although listed in the table, some of the currents may (or could)
be too narrow to be represented by the low degree harmonic expansion of the report. They are
retained here for continuity with higher degree expansions that may be done later. The codes have
been designed purely on the basis o\f visual comparison with Figure 14.1 in Neumann and Pierson.

. Table 5.10
Appearance of Major Circulation Patterns in Flow Maps
Computed From Topex Altimeter Data

Degree of Solution

Current 24 13 10
North Equatorial C. 0 0 0
South Equatorial C. 0 00 0
Gulf Stream X X X
North Atlantic C. X X X
Guiana C. X 00 X
Brazil C. 00 00 00
Falkland C. X X X
Antarctic Circumpolar C. XX XX XX
Kuroshio C. X X 0
North Pacific C. XX XX XX
California C. X 0 0
Peru C. 0 00 , 00
East Australian C. 00 00 00
West Australian C. 00 00 00
Mozambique C. 00 0 0
Agulhas C. : 0 : 0 , 0
Notation: 00 conflicting results

0 no evidence

X some structure apparent

XX  clear structure

Some of the major current patterns are seen in each figure. These include the North
Atlantic and North Pacific C., the Falkland C. and the Antarctic Circumpolar C. The Gulf Stream
-and the Kuroshio C., both western boundary currents can be vaguely recognized in the plots.
Some currents (e.g. Agulhas) are not seen at all while some currents (e.g Brazil, East and West
Australian C.) have directions opposite to that generally expected.
" The flow vectors from the degree 24 solution are more "inconsistent" than from the lower
degree solutions. This inconsistency can be seen from nearby flow vectors that have widely
different (or even opposite) directions. This is most probably caused by the errors in the potential
coefficient model used to define the geoid undulation used in this calculation. The flow vector
from the degree 13 and degree 10 solutions are more consistent (as would be expected) than the
degree 24 solution. A goal of this type of analysis is to achieve the highest resolution consistent
with the accuracy of the data. As discussed in Section 5.4, the highest degree, that currently
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appears reasonable, for which the expansions shjould be taken is degree 13. This appears to be
partially borne out by the flow pattern seen with the degree 24 solution.

The results presented in this section are only partially encouraging. More direct correlation
with existing circulation knowledge is desirable. Additional study is needed on seasonal variations
in the flow pattern. And clearly improvement is needed in the geoid undulation accuracy for the
methods to show improved accuracy. ‘
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6. SUMMARY AND CONCLUSIONS

- The analysis described in this report uses Topex satellite altimeter data to estimate improved
tide models, dynamic sea surface topography and ocean circulation patterns. Data for several time
spans were used to develop the procedures for the calculation of the final models using data from
cycles 4 to 58. The following sections very briefly review the methods and main conclusions of
the main research sections of this report.

6.1. Mathematical Model Development

The basic modeling procedures were developed in this section. The fundamental
observation to study was the sea surface dynamic topography and its time variations with respect to
a mean sea surface height along the Topex track. The time variations of the residual sea surface
topography were due to tide errors in the Cartright/Ray model; annual and semi-annual effects; and
bias and bias rate terms. Each of the quantities was represented by a spherical harmonic
expansion. The tide constituents represented were My, Sy, Oy, and K;. A new data weighting
algorithm was implemented to reduce the impact of the higher data density at high latitudes. This
algorithm will be used in most of the computations (both adjustment and residual computations)
carried out for this report.

6.2. Parameter Estimates

This section first developed the procedures for normal point computations and data editing.
Initial tests were made to degree 8 using data from Topex cycles 4 to 54. The first tests examined
the impact of an OSU or JPL edit, and the minimum number of cycles at a point on the reference
track. We found that a solution using the OSU edit with a minimum number of 5 cycles per
reference track point was reasonable. .

The most comprehensive solution for this report was a solution to degree 15 using Topex
data from cycles 4 to 58. The solution used 321,302 normal points to estimate 3572 harmonic
coefficients. The coefficients were used to construct maps of the amplitude and phase of the
annual and semi-annual terms. The largest amplitude (10 cm) of the annual variation was
associated with the usual western boundary currents (e.g. Gulf Stream, Falkland Current, Kurshio
Current). The root mean square magnitudes of the ocean annual regional was 4.0 cm. The
amplitude (£4.5 cm) in the Northern Hemisphere was slightly larger (£3.5 cm) than in the
Southern Hemisphere. A study of the phase plots showed the maximum amplitudes occuring with
the heating and cooling cycle.

The tide model corrections were calculated at each of the normal points. The largest values
were associated with the My components where the largest correction was -12 cm with a RMS
correction of £2.9 cm. The new tide model (N34) was verified at the 104 tide gauge set provided
by C. G. Provost and the 95 station subset used by other investigators of tide model evaluations.
For the My component, the RMS tide gauge amplitude difference for the M, component was +3.3
cm for the Cartright/Ray model and 2.2 cm for the new model of this paper.

A final result relates to the bias rate which was found to average, over all normal points,
4.8 mm/yr. Considering recent estimates of altimeter drift of 2.0 mm/yr (cycles 4 to 58) the net
slope is 2.8 mm/yr. More data is needed to examine the stability of the slope.
6.3. Sea Surface Dynamic Topography Analysis

The representation of the SSDT in terms of a spherical harmonic expansion and an

orthromal expansion was studied. The estimation of both types of coefficients was discussed as
well as the transformation between the coefficient sets. For numerical tests the ocean was defined
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as the region between latitude £70° with a depth greater than zero meters. Selected regions (e.g.
Caspian Sea and Black Sea) were excluded from the general region. Seven test expansions were
made of SSDT using Topex cycle 17 data. The various tests involved data editing was well as the
use.of a priori SSDT information in near shore land areas.

The SSDT expansions were generally made to degree 24. We found that spherical
harmonic coefficients (SH) transformed from orthonormal coefficients (ON) could be quite large
with symptoms of instability caused by lack of SSDT data (and definition) in land areas. Although
the SSDT representation, in the ocean areas, is quite comparable (5 cm) the SH coefficients,
computed from the ON coefficients, were unrealistic. However the use of ON coefficients for
spectral analysis purposes seemed quite reasonable and is to be recommended. The final
recommendation from the test solutions was to estimate the spherical harmonic representation of
SSDT and transform this representation to the ON representation when such representation is
needed for spectral analysis studies.

6.4. SSDT Representations from Multiple Topex Cycles

The estimation of the SH coefficients of SSDT was next carried out for multiple Topex
cycles. This was done after a modified OSU edit criteria was adopted where normal points were
deleted if the magnitude of SSDT exceeded 1 m in two defined geographic regions. The regions
are such that tide and geoid evaluation error could be significant. Preliminary analysis was made
with 10 cycles of Topex data to determine improved a priori degree variance information.

Several tests were carried out to understand the impact of the bias term applied to the
original SSDT. The bias exists because of an inaccurate equational radius to which the Topex data
was referred and a bias in the altimeter data itself. We found that the low degree SH coefficients
were quite dependent on the bias term applied to the data and the a priori weight that could be
applied to the degree 0 term. When however, a SH expansion was transformed to the ON
expansion the low degree ON coefficients were quite stable except for the degree zero term which
was directly dependent on the bias term used.

Tests were carried out with one year of Topex data (cycles 17 to 53) to determine the bias
that would make the degree zero term of the ON expansion effectively zero. This bias of 55 cm,
was then used in all additional analyses. This bias value was also used to infer a new equational
radius of 6378136.71 m based on an altimeter bias of -14 cm. This new radius is 11 cm larger
than the new radius estimated, in a much different way, by Rapp, Yi, and Wang (1994).

The production calculations first determined the SH coefficients to degree 24 for Topex
cycles 4 to 58. The data used in these computations was corrected for the tides implied by the N34
model and a bias of 55 cm. These computations were used to determine 51 SH coefficient sets
which were averaged to form a representative mean SSDT SH expansion. The degree 2,0 term,
-37.8 cm, is similar to that found by other investigators. The mean SH representation was
correlated to the equivalent ON expansion. Based on these coefficients the rms magnitude of
SSDT was found to be £61 cm. The ON coefficients were used to calculate the degree variances
of SSDT and plotted with the ocean geoid undulation error reported by Nerem et al. (1994). This
error equaled the SSDT signal near degree 13 indicating that the SSDT determinations may not be
reliable above this degree. :

The degree zero terms of the 51 ON expansions (transformed from the SH expansions)
were examined to find a small change with the coefficient increasing in time. The slope of the line
fitting the degree zero terms was 4.2 mm/yr, similar to the 4.8 mm/yr found in the simultaneous
solutions with tides, and annual semi-annual times. Considering an altimeter drift estimate of 2.0
mm/yr the net bias rate is 2.2 (+1.6) mm/yr.




Plots were made of the SSDT and the direction of the geostraphic flow vectors implied by
the mean coefficient representation to degrees 24, 13, and 10. The flow vectors from each plot
were compared to generally accepted average circulation patterns. The agreement could best be
characterized as fair. The degree 24 solutions showed the most problems as flow vectors lacked
coherent behavior in some regions. This behavior is consistent with the previous result that SSDT
above degree 13 could be unreliable. The flow vectors from the lower degree solutions showed
more consistency but less detail as is expected. The general flow patterns implied by the lower
degree expansions did resemble the generally expected pattern but significant conflicts remained.
Such conflicts could simply relate to the resolution of the SSDT representation.

6.5. Future Work

This report has extended numerous prior studies to the analysis of Topex data from cycles
4 to 58. The analysis with new Topex data can continue to improve the current results. Clearly the
continued monitoring of the bias rate question is important. Processing of two years of data will
enable a more reliable mean SSDT determination. We will thus be able to check the consistency of
the annual and semi-annual variations in the ocean surface. The cycle to cycle variations in SSDT
can be studied through the SH expansions through the construction of a time interpolation process.

Much remains to be learned about the ocean surface and its variations from the analyses of
the Topex data. :
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