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Foreword

Most of the research efforts in photogrammetry are now directed toward digital photogram-
metry. The arrival of digital photogrammetric workstations is a clear demonstration of the
considerable success that has been achieved in this rapidly developing subfield of photogram-
metry.

At The Ohio State University we embarked on research in digital photogrammetry six years
ago. From a rather small group with no special equipment we have grown: two faculty, sev-
eral postdoctoral résearchers and fifteen PhD students are now actively involved in digital
photogrammetry research projects. Our laboratories are equipped with a high-performance
softcopy workstation (Intergraph ImageStation), several UNIX workstations, image process-
ing systems, digital cameras and scanners—all networked together.

It is with great pleasure that I serve as editor of this report. I have gently persuaded the
majority of my advisees to submit a paper to the ISPRS Congress 1992. This report is a col-
lection of those contributions. The research in my group is primarily focused on automating
photogrammetric processes. Specifically, we are working on surface reconstruction, feature
eztraction and recognition, and on automated aerotriangulation.

By surface reconstruction I refer not only to automatic DEM collection but include segment-
ing processes with the goal of grouping the surface into breaklines and smooth patches to
support the subsequent processes of object recognition. Several papers contribute toward
that goal.

The first two contributions are my invited papers for the ISPRS Congress 1992. They
may serve as a framework within which all the other contributions fit. The first paper
summarizes the most important concepts and issues of computer vision and relates them to
digital photogrammetry. The second paper builds on this overview and focuses on conceptual
and algorithmic aspects. There is some repetition because the presentations will not address
the same audience.

Zong’s paper is concerned with matching edges—in our case zero-crossings. She contin-
ued work originally initiated by Jin-Chen Li. The idea is to find corresponding edges by
positioning the templet on an edge in one image and by finding the corresponding edge
by cross-correlation. The matching results are checked for continuity as it is unlikely that
discontinuities occur along edges.

Matched edges are irregularly distributed in object space. Thus, the problem of interpolating
the surface arises. Al-Tahir investigates surface fitting methods. The thin plate method
with weak continuity constraints is of particular interest because it allows detecting break-
lines. They are compared with the position of edges which are also potential breaklines. It
now becomes possible to verify the hypothesis about breaklines and to use this information
on the next level of matching.

Wang analyzes the interpolated surface for objects of a certain vertical dimension, called
humps. The surface is segmented into regions of similar elevations followed by comparing the
shapes of their boundaries. The boundaries are grouped and classified into near horizontal
and vertical edges. Hump detection is important for reconstructing surfaces in large-scale
urban areas.

One of the reasons for the astounding capability of the human visual system to reconstruct
surfaces is to integrate several depth cues, e.g., apparent size, perspective, motion and tex-
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ture. Lee’s paper is concerned with segmenting the image by analyzing texture. Surface
orientation and texture are very closely related.

Most surface reconstruction methods adopt a hierarchical approach, for example by con-
structing image pyramids. Stefanidis examines the hierarchical approach with regard to
the scale space theory. He explores the relationship between images and surfaces since both
can be represented in scale space.

The goal of our OSU surface reconstruction system is to segment the surface into smooth
patches and breaklines and to represent them by a symbolic description. This step is im-
portant for the subsequent task of object recognition. Krupnik groups matched edges in
the object space into straight lines and regular curves. He compares different methods that
allow 3-D segmentation.

A fundamental task that occurs at all levels of the computer vision paradigm is compar-
ing shapes. Fourier descriptors have long been used for that purpose. However, there is
no real quantitative criterion for measuring the similarity of two objects. Tseng employs
an innovative approach by embedding shape invariants in a least-squares adjustment proce-
dure that provides not only a superior measure for the goodness of the match but also the
transformation parameters between the two shapes.

Late vision processes, such as object recognition and image understanding, are application
dependent (or goal-driven, if you prefer) and must incorporate domain-specific knowledge.
Al-Garni’s work of interpreting landforms with the help of a knowledge-based system is an
important contribution to our research since we will have the surface reconstruction system
under the control of a knowledge-based system.

This report contains two contributions in the area of automated aerotriangulation, a sub-
ject of considerable research interest. Agouris’ paper addresses the problem of matching
multiple image patches simultaneously. This important step corresponds to the classical
procedure of transferring and measuring points. Considering the notorious problem with
point transferring one can expect a significant increase in reliability from multiple image
matching. My paper describes general mathematical models which are suitable for matching
multiple image patches.

The remaining two papers from Toth deal with analytical plotters and their digital coun-
terparts — softcopy workstations. Both workstation types play an important role in our
research. So does Charles Toth who developed software systems for analytical plotters that
are invaluable not only for research but student laboratories as well. His second paper de-
scribes our research efforts on the softcopy workstation to keep the measuring mark (cursor)
automatically on the ground. Thus, the operator is relieved from setting the cursor precisely
on the ground.

Finally, I want to thank the authors for their contributions. However, this report would not
have been possible without the help of Peggy Agouris who spent many night shifts to put
everything together. I wish to thank Irene Tesfai who diligently read all the papers. Her
comments are appreciated by every writer—none with English as mother tongue. Funding
for most of the research reported here was provided in part by the NASA Center for the
Commercial Development of Space Component of the Center for Mapping at The Ohio State
University.

Toni Schenk
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MACHINE VISION AND CLOSE-RANGE
PHOTOGRAMMETRY

Toni Schenk

Department of Geodetic Science and Surveying
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ABSTRACT

This paper provides an overview of concepts and methods of machine vision as it may
pertain to close-range photogrammetry. The ultimate goal of a machine vision system is
to recognize objects from one or several 2-D images. This cannot be achieved in one giant
step. Intermediate processes and representations are necessary. Usually, the first goal is
to reconstruct the 3-D surface of the object space, with emphasis placed on a symbolic
description in which surface properties are made explicit. The surface information aids the
subsequent object recognition task. The paper concludes with suggestions on how some of
the concepts developed in machine vision can (and should!) be employed in digital close-
range applications.
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1 INTRODUCTION

Since time immemorial, mankind has been
fascinated by the idea to create a machine
that would somehow exhibit mental capabili-
ties. The robot is a typical example of such
dreams. With the attempt of endowing com-
puters with information processing capabilities
similar to those of humans, researchers in ar-
tificial intelligence pursue this dream in mod-
ern times. Ever since computers became avail-
able, researchers tried to mimic the mental fac-
ulty of seeing. The endeavour machine vision
seemed to achieve quick success. Expectations
were pushed far beyond what could be deliv-
ered and disillusion followed. The problem has
been tremendously underestimated—like many
other problems tackled by artificial intelligence.
We see and interpret scenes without conscious
effort, however, this does not mean that the
task is easy.

Clearly, the lack of a detailed understanding
of vision is the reason why it is so difficult to
make computers understand and analyze im-
ages. It seems only natural that someone who
attempts to solve a vision task should have a
good understanding of the human visual sys-
tem. Admittedly, this view is not shared by
every vision researcher.

As the name suggests, digital photogrammetry
deals with digital imagery. Great strides have
been made during the last ten years due to the
availability of new hardware and software, such
as image processing workstations, parallel pro-
cessing, and increased storage capacity. This
in turn spurred much interest in research and
development. The arrival of digital photogram-
metric workstations is a clear demonstration of
the progress achieved.

The goal of digital photogrammetry is to cap-
ture images and to store, manipulate and pro-
cess them automatically. In that regard, dig-
ital photogrammetry and machine vision have
the same goals. The purpose of this paper is
to present the major concepts, methods, solu-
tions and issues of machine vision. This may
be a risky enterprise, considering the glut of
publications in that field, and the high proba-
bility that the machine vision research commu-
nity would not unanimously agree on what the
concepts and issues are.

We begin with a summary of human vision for
it is a measure beyond all bounds. Most of the
material presented is based on recent research
results. We conclude the section about human
vision with Marr’s theory about vision because
it is the most advanced approach to date. It has
been widely accepted by visual psychologists
and the machine vision research community.

The exposition of machine vision begins with
the paradigm, followed by the most important
concepts, methods, and critical issues. This
paves the way for comparing digital close-range
photogrammetry and machine vision. We elab-
orate on a few but very important aspects
which the two disciplines share and point out
where they differ. It is hoped the concluding
remarks stimulate discussions on how digital
photogrammetry and machine vision can ben-
efit from each other — more than they do now.

2 HUMAN VISION

For an animal or person to respond properly to
a changing environment it must detect objects,
events and structures. This ability, called per-
ception, requires that a living organism must
be sensitive to different stimuli which carry
important information about the environment.
Most animals have some visual perception abil-
ities. For people, vision is the most important
sense. By the same token, it is by far the most
impressive and complicated sense.

We see and analyze our environment contin-
uously, nearly in real-time. That we do this
without conscious effort does not imply that we
know how we analyze and understand scenes,
however. In fact, the lack of a detailed under-
standing of vision is the reason why it is so
difficult to program a computer to analyze and
understand images. It seems only natural then
that someone who attempts to solve part of this
task should have a basic understanding of hu-
man vision. Consider the following summary
as an exciting journey through the fascinating
world of vision. Most of the material presented
in the next subsection is from Hubel (1988).

2.1 Neurophysiology of Human Vision

Neurophysiology is concerned with the pro-
cesses that are performed by specialized tis-



sues and cells of the nervous system (Uttal,
1975). Visual information is processed in vari-
ous stages at centers of specialized nerve cells,
from the retina to the primary visual cortex.
The processing centers are connected by the
visual pathway which can be thought of as a
serial link (see Fig. 1).

retina

lateral
geniculate body

striate cortex

o

l l higher
cortical areas

corpus callosum

Fig. 1: Visual pathway; each structure con-
sists of millions of cells. Information is sent to
one or several higher order structures. (Figure
adapted from Hubel, 1988).

Light is focused on the retina to form an im-
age. Approximately 125 million light sensi-
tive photoreceptors (rods and cones) are un-
evenly distributed over the entire posterior por-
tion of the eyeball. The retina consists of
three layers: photoreceptors, middle layer, and
ganglion cells whose dendrites are bundled to-
gether to form the optic nerve. Oddly, light
passes through two layers before it reaches the
photoreceptors, except for the site of acute vi-
sion, the fovea, a region smaller than a millime-
ter in diameter.

It is tempting to compare the eye with a cam-
era. The analogy must be met with caution,
however. First, the quality of the retinal image
is far inferior to that of any cheap Instamatic
camera. Aberrations of lens and cornea are
responsible for considerable distortions. The
curvature of the retina causes straight lines
in object space to appear curved, disturbing
the metrical relationship between image and

object space. Moreover, the constant move-
ments of the eye results in a blurred image.
While the purpose of the camera is to render
a static snapshot of the world, the eye’s and
brain’s purpose is to extract useful information
to guide a person’s response to an ever chang-
ing environment.

How do the ganglion cells respond to incident
light and what is reported back to the next
processing centers? First, we note that there
are far fewer ganglion cells than photoreceptors
(the ratio is approximately 1 : 125). This is a
first indication that the retinal image is pro-
cessed by the cells of the middle layer and the
ganglion cells. It also implies that one ganglion
cell receives impulses from several photorecep-
tors.

The receptive field of a ganglion cell refers to
those receptors which are “connected” to it.
The circular center of a receptive field is sur-
rounded by a ring-shaped region. An on-center
ganglion cell reacts most (increases its firing
rate) if the center of its receptive field is stimu-
lated, for example by shining a spot of light
on the receptors that form the center. The
ganglion cell stops firing if the center-surround
region of its receptive field is stimulated, but
reacts with a burst of impulses when the stim-
ulus is turned off. Off-center cells exhibit the
opposite behavior. For example, if their cen-
ters are stimulated, firing is suppressed. Both,
on- and off-center cells do not respond if their
entire receptive field is evenly illuminated.

We conclude that ganglion cells respond to
brightness differences within their receptive
fields, that is, to local intensity differences. Re-
ceptive fields differ in size. As one would ex-
pect, the size is smallest in the fovea and pro-
gressively increases further out in the visual
field. The light intensity changes, transmitted
by the optical nerve, are detected by biologi-
cal filters of the retina. Campbell and Robson
(1968) showed that cells are sensitive to dif-
ferent spatial frequencies—a strong indication
that the visual input is processed in multiple
independent channels.

In the interest of brevity, we skip the next pro-
cessing stage, the lateral geniculate body, and
shift our attention to the primary visual (stri-
ate) cortex, a complex substructure of the cere-
bral cortex. The visual cortex is topograph-



ically organized: an area of about two mil-
limeter square has all the functionality. These
areas—self-contained modules of the striate
cortex—map out a portion of the visual field.
Consequently, if one such area is damaged, the
corresponding part of the retinal image is not
processed further and the result is local blind-
ness. Neighboring modules do not compensate
for the loss. However, the perceptual process
“fill in” completes the missing information by
interpolating it from the surrounding area.

The specialization of cells in the cortex in-
creases. So does the complexity of their recep-
tive fields. Unlike cells of earlier levels, corti-
cal cells have no circular symmetrical receptive
fields, and they respond quite differently too. A
simple cell, for example, responds best if a slit
of light crosses its receptive field at a specific
angle. Changing the orientation and position
only slightly evokes no response. Other simple
cells respond more strongly if one half of the
receptive field is stimulated.

The most commonly found cells in the stri-
ate cortex are the complex cells. Like simple
cells they respond to properly oriented stimuli.
However, the cell’s firing rate fades out rather
quickly unless the stimulus is moved. So, com-
plex cells are movement sensitive; they respond
with a barrage of impulses if a properly ori-
ented slit is swept across their receptive fields.
Some complex cells are also direction sensitive.
That is, it matters in which direction the slit
is moved. That a large population of cells is
highly sensitive to movements makes a lot of
sense, at least from an evolutionary point of
view. After all, to react properly and timely
to the environment, moving objects should be
discovered promptly.

End-stopped cells are further specialized in
that they are sensitive to the length of the stim-
ulus. They respond much more strongly if the
slit of light ends or changes direction within
their receptive field. Thus, they respond best
to corners and curvature.

So far information from the two eyes was
treated separately, even though one corti-
cal hemisphere receives information from both
eyes. As photogrammetrist we are profession-
ally interested in stereopsis. The corpus callo-
sum is the site of stereovision. Here, binocular
cells are found that respond to depth. Some of

these cells only fire if the stimulus is roughly
as far away as the distance on which the two
eyes are focused (zero parallax). Other cells
evoke a brisk barrage of impulses if the stimu-
lus is nearer or farther away from the fixation
point. Another characteristic feature of these
disparity-tuned cells is that they are also orien-
tation and movement sensitive. As one would
expect, they do not respond at all if only one
eye is stimulated. Though disparity-tuned cells
undoubtedly contribute to stereovision they are
just a partial explanation of how we perceive
depth. One should bear in mind that stereop-
sis is only one of several depth cues.

Let us interrupt our journey through the visual
system for a moment and recapitulate. What
reaches the brain is not an image, but informa-
tion about changes in the scene, e.g., light in-
tensity differences, their orientation, and move-
ment. The specialization of cells and the com-
plexity of their receptive fields increase. How
far will this specialization go? After cells were
discovered in the visual area of a monkey that
responded to the shape of paws, the notion of
a grandmother cell arose. Is there a cell that
would respond to grandmother’s face?

2.2 Visual Perception

Visual perception is the ability of humans to
organize and interpret visual sensory informa-
tion. The psychology of human visual percep-
tion was dominated in the late 19th century by
associationism. It was thought that perception
could be explained by associating simple sensa-
tions. This was precisely what the Gestalt psy-
chologists attacked most, for their basic tenet
was that “the whole is more than the sum of its
parts”. They argued that the form and struc-
ture of sensations and their interrelationships
should be taken into account. The Gestaltists
thought that this synergism is accomplished by
magnetic force fields between brain events. The
Gestalt psychology has fallen into disrepute,
mainly because no evidence was found for the
force-fields in the brain.

Cognitive psychology adopts a more infor-
mation theoretical approach where computer
models of perceptual processes are legitimate
goals for establishing psychological theories.
This, together with a more quantitative ap-



proach in research, paves the way for “compu-
tational perception”, results that can be con-
verted to algorithms.

Perceptual organization

The neurophysiological approach to vision left
us with the image decomposed into simple local
features, such as edges, corners and some depth
information. Such low-level descriptions must
be organized into larger perceptual structures.
Perceptual organization is the first process of
perception (Rock, 1975). It detects groupings
and structures in images which in turn are be-
lieved to be the input for object recognition
and image understanding.

The following are examples of a set of crite-
ria for grouping the image and finding asso-
ciations. Most of these principles have been
advocated by the Gestalt psychologists and
are known as the Gestalt laws of organization.
Prozimity groups local features together which
are close together. Depth is a very strong for
proximity. Things with similar disparity val-
ues are grouped together and perceived as be-
longing to the same surface. Similarity groups
similar features together. Similarity can over-
ride proximity. Common fate groups things to-
gether which appear to move together. It can
be demonstrated by generating randomly dis-
tributed dots and superimposing a copy with a
slight shift or rotation. The shift or rotation is
clearly perceived. Another Gestalt law is good
continuation which emphasizes smooth conti-
nuity over abrupt changes. Closure emphasizes
a preference for closed figures and symmetry
groups symmetrical features together. Figure
ground separation is quite a strong perceptual
organization process.

In reality, grouping processes work concur-
rently on the same image. Two (or more) pro-
cesses yielding the same interpretation results
in a more salient perception. McCafferty and
Fryer (1987) showed that a very strong and
stable perception results from combining stereo
with figure-ground separation.

Other perceptual processes

Here, we mention some other powerful percep-
tual processes which could be used in compu-
tational vision.

Filling in or completion is responsible for us to
not perceive the world as a patchwork of edges
and blobs (as might be concluded from the
neurophysiological discussion about vision). A
very illustrative example is the blind spot.
Close one eye and fix a point with the open
eye. Move a pencil with one hand so that it
crosses the visual field. When the pencil is im-
aged at the blind spot, it disappears, as ex-
pected. However, you are not left with a black
spot; rather the hole in the retinal image is cov-
ered (filled in) by the surrounding background.
Filling in appears to belong to a more general
perceptual process called surface interpolation
(Ramachandran, 1992).

Fig. 2(a): Example for virtual lines. Fig. 2(b)
demonstrates the phenomenon of illusionary
contours. The figure is perceived as a square
and not as four partial circles.

Virtual lines are imaginary lines, linking
nearby tokens. Fig. 2(a) is an example. A
similar phenomenon are illusionary contours,
investigated by Kanizsa (1979). In Fig. 2(b)
we perceive the structure of a square. The four
corners are lying on circles. Another (unlikely)
interpretation of this figure is four partial cir-
cles.

Texture is a very important but not well under-
stood perceptual process. Texture is strongly
related to surfaces. Slowly changing texture
patterns give a strong perception for surface
normals. Julesz studied texture segmentation
intensively. He concludes that textured regions
cannot be segregated if their first and second
order statistics are identical. In Julesz and
Bergen (1983) the notion of textons is intro-
duced. The authors claim that they play a



complementary role in human texture segrega-
tion.

2.3 Marr’s Theory about Vision

The physiological approach to vision answered
the question: what happens where? How some-
thing happens cannot be fully explained unless
the cell’s behavior can be described by a com-
plete wiring diagram. For answering the ques-
tion why single cells respond they way they do,
a broader view must be adopted. As Marr put
it

trying to understand percep-
tion by studying only neurons is
like trying to understand bird flight
by studying only feathers: It just
cannot be done. In order to un-
derstand bird flight, we have to un-
derstand aerodynamics; only then
do the structure of feathers and
the different shapes of bird’s wings
make sense. (Marr, 1982, p. 27).

Marr’s theory about vision has a strong infor-
mation processing underpinning. He argues for
understanding an information process — vision
— at three different levels.

computational theory specifies what the vi-
sual system must do. It answers the ques-
tion about the purpose of the computa-
tion and the strategy for solutions.

representation and algorithm
investigates the representation of input
and output and the algorithm that trans-
form one into the other.

hardware implementation answers the
question how the representation and the
algorithm can be physically implemented
by neurons.

The tenet of Marr’s theory is that the shapes
and positions of things can be made ex-
plicit from images without knowing what these
things are and what role they play. However,
this cannot be accomplished in one step, rather
in a sequence of representations designed to fa-
cilitate the subsequent construction of physical
properties of objects. The three main steps are
briefly discussed.

Primal sketch

The purpose of the primal sketch is to make
intensity changes in the image explicit. Inten-
sity changes, or edges for short, are an impor-
tant physical property of objects. In the real
world edges occur over a wide range of spatial
extents. A sharp edge, for example, is mani-
fest within a small area, comprising a few pix-
els only. On the other hand, a fuzzy edge can
only be detected by looking at a much larger
area. Marr and Hildreth (1980) propose a se-
quence of LoG operators to detect edges at
various scales. The LoG operator (Laplacian
of a Gaussian) is obtained by taking the sec-
ond derivative of a Gaussian filter. The Lapla-
cian (V?) is particularly suited because it is
direction independent. By varying the stan-
dard deviation o of the Gaussian, the desired
sequence, also called multi channel implemen-
tation, is obtained. Obviously, the parameter
o determines the spatial extent within which
an edge is detected. Edges are identical with
the zero-crossing contours that result from in-
tersecting the convolution surface with a plane,
whose convolution value is zero. Thus, a sharp
edge is obtained by convolving the image with
a small o (fine channel), and fuzzy edges result
from coarser channels.

There is much evidence that the human visual
system performs the same operations. Cells
exist in the cortex that respond to differ-
ent spatial frequencies. Spatial information is
processed in each part of the visual field by
five independent channels (Wilson and Bergen,
1978). Actually, the LoG operator is approx-
imated by the difference of two Gaussians of
slightly different . The two coarser channels
have transient properties, responding to fluctu-
ating patterns, while the finer channels respond
to stationary objects. The finest channel is re-
lated to acute vision.

The primal sketch is more than just an agglom-
eration of zero-crossings. Perceptual processes
operate on the image as well as on the edges,
resulting in a curvilinear organization, virtual
lines and groupings. Zero-crossings from dif-
ferent channels are combined, governed by the
rule that edges in different channels are local-
ized in space.



2.5-D sketch

Its purpose is to make explicit the orientation
and depth of visible surfaces as well as discon-
tinuities. The name of this sketch derives from
the assumption that it captures a great deal
about the relative depths and surface orien-
tations, and local changes and discontinuities,
but some aspects are more accurately repre-
sented than others.

Very locally we can easily say from
motion or stereopsis information
whether one point is in front of an-
other. But if we try to compare
the distances to two surfaces that
lie in different parts of the visual
field, we do very poorly and can do
this much less accurately than we
can compare their surface orienta-
tions. (Marr, 1982, p. 282)

The 2.5-D sketch is built up from the pri-
mal sketch, augmented with information from
stereopsis, texture, analysis of motion, and
shading. The surface orientation is much more
accurate than depth. Only local changes in
depth have a comparable accuracy. Disconti-
nuities in depth may arise from stereopsis and
occlusion. Occlusion may be specified by the
presence of occluded edges in the primal sketch,
or by analyzing motion patterns.

The 2.5-D sketch is represented as a set of prim-
itives, depicted as “needles”. The length of
each needle describes the degree of tilt of that
part of the surface, while the orientation of a
needle reflects the direction of slant. The dis-
tance from the viewer is represented by a scalar
quantity.

Interpolation procedures are invoked in areas
of insufficient information. In areas of low con-
trast, no edges are present and therefore no
depth information. The missing depth infor-
mation is interpolated from surrounding areas
where contrast is present. Another example for
an interpolation process are illusory contours
(see Fig. 2b).

The 2.5-D sketch is the end product of early
vision processes, solely derived from images,
without support from late vision or knowledge
of the scene. The early vision processes are

modular, they work parallel and independent
from one another. The segmentation problem
is implicitly solved by making explicit the dis-
continuities between different surfaces.

3-D Model representation

The purpose of this last step is to describe
shapes and their spatial organization in object
centered coordinate system. Marr and Nishi-
hara (1978) suggest a modular organization of
shape descriptions in a coordinate frame which
is determined by the shape itself (canonical co-
ordinate frame). The modular organization al-
lows a description that is independent on the
degree of details an object is described.

The theory is restricted to a set of generalized
cones. A generalized cone is obtained by mov-
ing a cross section of constant shape but vari-
able size along an axis. A vase is a good ex-
ample of a generalized cone. An object may
consist of several generalized cones, each with
its own axis. All axes of one object form the
component axes of that object.

A library of 3-D model descriptions at different
levels of specificity is generated for objects that
may possibly appear in a scene. The same 3-
D model description must be derived from the
image. Object recognition then entails to com-
pare these descriptions with the library.

Occluding contours of an image provide strong
clues for finding the axes of generalized cones.
Occluding contours are the silhouettes of ob-
jects. Even though most silhouettes are am-
biguous, humans interpret them in a particular
way. Marr hypothesizes that additional infor-
mation is used to constrain the perception of 3-
D shapes to silhouettes as we see them. These
constraints are general and do not require a
priori knowledge of the scene.

3 MACHINE VISION

3.1 Introduction

From time immemorial people dreamed of cre-
ating machines that would exhibit mental abil-
ities. With the invention of computers, re-
searchers in the field of artificial intelligence



(AI) pursue this dream to endow computers
with information processing capabilities simi-
lar to those of humans. Richie (1985) defines
Al as “ the study of how to make computers
do things at which, at the moment, people are
better”. Vision is not only our most impres-
sive sense but also the most intensively studied
sense in AT.

By and large, machine vision pursues the same
goal as human vision: generate descriptions
about the scene from images. The descriptions
must be explicit and meaningful so as to allow
other system components to carry out a task.
In that aspect, machine vision is part of an
entire system that interacts with the environ-
ment, say a robot. Consequently, tasks such as
decision making, planning, executing decisions,
are not part of machine vision. By the way, the
terms computer vision and machine vision are
used interchangeably.

Machine vision is a relatively new and rapidly
changing field. Many of the essential concepts
have only evolved during the last ten years.
The purpose of this chapter is to elucidate the
most important concepts and to elaborate on
the major issues. Even though machine vi-
sion is now a field in its own right it is related
to other areas, such as psychology, computer
graphics, pattern recognition and image pro-
cessing. In fact, significant progress has been
made, and will be made, when an interdisci-
plinary approach is adopted. Take Marr’s the-
ory of vision as an example. It is actually the
combination of research results in neurophysi-
ology, psychophysics, perception, computer sci-
ence and signal processing.

Even though our knowledge of the human vi-
sual system is only fragmentary, we know that
it is very complex. Machine vision, therefore,
is a non trivial task. Not surprisingly then, no
general purpose vision system exists today and
will not exist in the foreseeable future. The
lack of rapid success, as enthusiastically pre-
dicted thirty years ago, led some Al researchers
to a rather pessimistic assessment. In their
view, machine vision is so ill-defined and un-
derconstrained that no general solution exists.
As Barrow put it:

Despite considerable progress in
recent years, our understanding
of the principles underlying visual

perception remains primitive. At-
tempts to construct computer mod-
els for the interpretation of arbi-
trary scenes have resulted in such
poor performance, limited range
of abilities, and inflexibility that,
were it not for the human existence
proof, we might have been tempted
long ago to conclude that high-
performance, general-purpose vi-
sion is impossible. (Barrow, 1978).

Nevertheless, progress has been made, mainly
in industrial applications, where the environ-
ment, such as lighting conditions, can be better
controlled.

3.2 Machine Vision Paradigm

Marr’s theory of vision gave rise to the most
advanced and widely accepted paradigm of ma-
chine vision. Fig. 3 depicts the building blocks.

Usually, at the outset is a raw image. We also
include image formation, a point forcefully ad-
vocated by Horn (see Horn, 1986) and now ac-
cepted by many vision researchers. After all,
machine vision may be viewed as the inverse
process of image formation. Thus it makes only
sense to obtain a thorough understanding of
image formation.

The primal sketch is the result of edge detec-
tion. Edges are likely to have been caused
by structures in the scene, such as object
boundaries, markings and surface discontinu-
ities. The unorganized edge fragments, bars
and blobs are grouped into higher-level tokens,
which are now processed by the independent
modules stereopsis, shading, motion, texture to
yield the 2.5-D sketch.

The 2.5-D sketch contains fewer data than the
raw image, but more important, it is more ex-
plicit. An edge could be an object boundary
or a shadow; a single pixel can be everything.
Depth and 3-D shape information is particu-
larly important. Shape and depth information
is obtained independently from stereo, shad-
ing, motion and texture processes, also called
shape-from-X processes. Note that the 2.5-D
sketch is purely obtained from the raw images.
It is the result of bottom-up processes, also re-
ferred to as early vision.



The 2.5-D sketch is the transition from image
space to object space. Subsequent processes,
termed late vision, are scene oriented rather
than image oriented. Extracted features are
grouped together, segmented and eventually
parameterized. If the application of the vision
system is object recognition then a data base
with models of objects is generated. The pa-
rameterized features are now matched with the
object library.
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Fig. 3: Overview of machine vision paradigm.

3.3 Key concepts, key issues
In this section we summarize the most impor-
tant concepts of machine vision that have been

proven particularly useful.

Hierarchical approach

The main goal of machine vision is to derive
meaningful descriptions of objects from images.
Useful information that may lead to scene de-
scriptions is not explicitly available in raw im-
ages, however. Physical phenomena, such as
discontinuities of surfaces, depth, reflectance
and illumination, are confound in the inten-
sity values of the pixels by the imaging process.
The raw image cannot be used directly to in-
terpret the image function. The problem is to
find intermediate descriptions. Local extrema
and its derivatives are appropriate primitives
because they are quite often related to object
space events. For example, an edge may corre-
spond to an object boundary.

Physical phenomena vastly differ in size and
scale. Therefore, scale is one of the problems of
obtaining discontinuities in gray levels of an im-
age. For one, it may not be desirable to find all
discontinuities. Noise and unnecessary details
should be suppressed. This can be achieved
by smoothing the raw image, for example by
convolving it with a Gaussian filter. The size
o of the Gaussian filter determines the scale
in which the intensity discontinuities are rep-
resented. We obtain an infinite number of rep-
resentations if o is varied continuously. This
representation is known as scale space image, a
term introduced by Witkin (1982). An attrac-
tive property of the Gaussian over other con-
volution kernels is that no new object space
events occur when ¢ is increased. Descriptions
found at a coarse scale also appear on finer
scales, though not exactly at the same location.

The concept of representing the descriptive
primitives in a continuum of scale levels is ap-
pealing because it circumvents the problem of
specifying at what scale a particular object
space event occurs. However, most practical
implementations are discrete. That is, the scale
space is discretized. The result of smoothing a
raw image with a finite set of smoothing op-
erators, e.g. Gaussian with discrete o values,
is called image pyramid. Every level of the
pyramid corresponds to a different resolution
of the raw image, hence the term multi reso-
lution. A fundamental problem of the discrete
scale space is tracking the descriptive primi-
tives from one level to the next. The smooth-
ing operation displaces the primitives. Track-

ing features through the discrete scale space is
difficult.
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The hierarchical approach, also termed coarse-
to-fine approach, is a result of Marr’s theory
about vision. This concept is now also em-
ployed in digital photogrammetry (see, e.g. Li,
1989).

Vision is an ill-posed problem

As is evident from the paradigm, early vision
processes are aimed toward reconstructing the
scene from images. It is the inverse problem
of optics. Like many inverse problems, early
vision is ill-posed. Take edge detection, for
example. It requires numerical differentiation
and that is clearly ill-posed. Hadamard de-
fined a mathematical problem to be well-posed
when its solution exists, is unique, and is ro-
bust against noise.

Regularization theories have been proposed to
solve ill-posed problems (e.g. Tichonov and Ar-
senin, 1977). Poggio et al. (1985) and Ter-
zopoulos (1986) employ regularization to vi-
sion problems. The basic notion is to restrict
the space of acceptable solutions by choosing
a function that minimizes an appropriate func-
tional. One method for finding z from y = Az
is to minimize ||Az —y||> + A||Pz||* where Pz is
a stabilizing functional and A is the regulariza-
tion parameter. In essence, an ill-posed vision
process is regularized by imposing physically
plausible constraints, for example, smoothness.

Despite the mathematical elegance of regular-
ization theory, it remains a partial solution
only. There are problems of applying the the-
ory if the quantity to be computed is a dis-
continuous function. The world we want to
reconstruct from images is full of discontinu-
ities. Another problem is the degree of smooth-
ness for the unknown function to be recovered,
for example, when interpolating surfaces. This
and other problems must be solved before regu-
larization theory can serve as a general method
for solving ill-posed vision processes.

Of course, vision processes have been solved be-
fore the framework of regularization theory be-
came available. This was accomplished by in-
troducing assumptions and constraints, some-
times in a rather ad hoc fashion. The secret
is to strike a fine balance between constraining
the problem just enough to obtain a solution
and at the same time remain as general as pos-
sible. Quite frequently, assumptions are too

restrictive and algorithms fail when applied to
slightly different scenes.

Integrating different visual processes

The motivation for combining different visual
processes is to convert early vision to a well-
posed problem. In that regard it is an alterna-
tive approach to regularization.

The individual shape-from-X  processes
are computationally underconstrained and in
themselves not robust. By combining differ-
ent processes the parameters will be more con-
strained and the solution becomes more robust
and unique. It is important to realize that it is
the mere combination of processes which makes
the solution more stable and not the introduc-
tion of additional constraints imposed on indi-
vidual processes.

The combination (or integration) can be real-
ized on two levels. The results of individual
shape-from-X processes may be considered as
contributions (clues) toward the 3-D shape de-
scription of surfaces. The integration can be
performed within the framework of testing hy-
pothesis.

Another approach is to integrate information
from different cues in one process. Grimson
(1984) proposes to combine stereo and shading;
Brooks and Horn (1985) put forward a theory
to solve the shape from shading problem by si-
multaneously computing the illuminant direc-
tion. The concept of adding the radiometric
model to the geometric model in least-squares
matching, suggested by Helava (1988), Wrobel
(1987), and Ebner and Heipke (1988) falls into
the category of combining stereo with shading.

Transition from early vision to late
vision

The 2.5-D sketch in the machine vision
paradigm (see Fig. 3) is the interface between
early and late vision. Early vision processes,
such as edge detection, grouping edge seg-
ments, stereopsis, texture, motion and color,
are data-driven processes with the goal to de-
rive physical properties of the object space
(scene) from implicit information in the im-
ages. The most important information in the



2.5-D sketch is shape, depth and boundaries
of surfaces, where boundaries are manifest in
discontinuities of depth or surface normals.

The tenet of Marr’s theory about vision is that
this information can be captured from images
only, without a priori knowledge about ob-
jects in the scene. Surface reconstruction is
the result of early vision. Random dot stere-
ograms prove that the human visual system re-
constructs surfaces from parallax information
only. If Fig. 4 is viewed under a stereoscope,
the center is clearly perceived as a surface float-
ing above the surrounding background.

Fig. 4: Random dot stereogram. When viewed
stereoscopically the center square is floating
above the background.

While early vision is associated with recon-
structing visible surfaces, late vision is primar-
ily concerned with interpreting this informa-
tion by way of symbol processing. The no-
tion is to segment (group) the 2.5-D sketch
into higher-level tokens and associate a mean-
ing to it. The vague term “meaning” is cho-
sen purposely for it strongly indicates that late
vision is application dependent. The further
we move from the 2.5-D sketch the more ap-
plication dependent late vision becomes. An
example may demonstrate the case. Suppose
you are seeing a tiger ready to jump in your
direction. The 2.5-D sketch, containing depth,
shape and textural information, will be inter-
preted in a way that depends on your situation.
If you are in a secured position and interested
in studying wildlife, the interpretation will be
radically different from the case where you are
not protected and perhaps caught by surprise
with the tiger’s appearance. Thus, late vision
is goal-driven.

Late vision processes depend on knowledge
about the scene (domain knowledge) and gen-
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eral knowledge (world knowledge). An exam-
ple for general, high-level knowledge is the fact
that a shadow cast on a smooth surface does
not cause people to perceive two different sur-
faces, despite the fact that the shadow is a very
strong edge. Knowledge of this kind is read-
ily accessible to people and part of the reason
why human vision is so flexible and capable to
deal with a whole variety of different scenes.
Machine vision systems on the other hand lack
this flexibility and versatility.

A crucial issue in any vision system is the
proper interaction between early and late vi-
sion. Where exactly should data-driven pro-
cesses end and goal-driven modules begin?
How far should scene independency be pre-
served? How can knowledge be brought in
without limiting the scope of applications?

Representations and data structures

A typical input to a machine vision system are
images; a typical output is a symbolic descrip-
tion of the scene. There is a tremendous differ-
ence in the way the input and output are rep-
resented. It is not conceivable to bridge this
wide gap in one step. Thus, machine vision is
confronted with the design of suitable interme-
diate representations and algorithms that al-
low to derive one representation from another.
Fig. 5 illustrates some of these intermediate
representations. The figure is from Ballard and
Brown (1982). The authors give an excellent

exposition of representations, data structures
and algorithms.

The raw image, the primal sketch and 2.5-
D sketch are all iconic (image-like) represen-
tations. Image processing is characterized by
taking an image as input and produce another
image as output. Many early vision processes
are basic image processing operations. For ex-
ample, edge detection works on the raw image
and produces an edge image which may be rep-
resented as a binary image.

An important characteristic of the human vi-
sual system is its remarkable ability to orga-
nize the image into meaningful regions to facil-
itate subsequent steps of image understanding.
This ability is called perceptual organization.
Its counterpart in the machine vision paradigm
are the grouping processes (or segmentation).
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Grouping occurs at all stages. Edge fragments
in the primal sketch are grouped to edge seg-
ments in the 2.5-D sketch. Grouping processes
that operate on the 2.5-D sketch are likely to be
guided by general and domain knowledge. It is
helpful to know if there are man-made objects
in a scene which may give rise to straight lines,
curves and rectangular polygons. Contrast this
with an X-ray image of a chest, where segmen-
tation follows other principles.

(b}
m

oof side1 side

Fig. 5: Examples of different representations
used in computer vision. (a) Iconic; (b) Seg-
mented; (c) Geometric; (d) Relational. The
figure is from Ballard and Brown (1982).

Another important facility of the human visual
system is shape recognition. We observed what
crucial role shape information plays in Marr’s
theory about vision. But how do we represent
shape? How is it that with a few strokes of the
pen we recognize a person’s face? Shape recog-
nition and representation in machine vision is
still in its infancy. Algorithms and data struc-
tures are often derived in an ad hoc fashion.
Not surprisingly, the scope of their applications
is severely limited. One way to approach the
problem is to describe shape as 2-D and 3-D
geometrical structures. This is quite successful
when dealing with scenes consisting of objects
with regular shapes.

The success of late vision greatly depends on

how well general and domain knowledge is rep-
resented. As mentioned earlier, general knowl-
edge serves the purpose of reducing the so-
lution space to a few (ideally one) solution
that conforms with how we perceive the world.
Most machine vision systems deal with general
knowledge in form of constraints. Our expecta-
tion that surfaces appear smooth almost every-
where is accounted for by various smoothness
constraints.

Ideally, domain knowledge is brought in only in
late vision. From the rapidly developing field
of knowledge engineering, methods can be em-
ployed to capture (encapsulate), represent and
manipulate knowledge. There are many ways
to represent knowledge, for example semantic
nets, frames, schemas, predicate calculus, neu-
ral nets etc. Probably the most popular rep-
resentation is the rule-based method. Here,
knowledge is expressed in the “if-then” format.

4 MACHINE VISION AND
CLOSE-RANGE
PHOTOGRAMMETRY

In this section we briefly sketch what machine
vision and close-range photogrammetry have in
common and what separates them. Sugges-
tions are made on how both disciplines could
benefit from each other.

Close-range photogrammetry evolved as a spe-
cial subfield of photogrammetry over the last
thirty years. Its main application areas are
architecture, industry and medicine. Only
a few practicing photogrammetrists employ
close-range photogrammetry. This is a clear
indication that the market is rather small and
that special know-how and equipment is re-
quired.

The increasing availability of digital cameras
and digital image processing systems brings a
radical change. This is particularly true for
applications where the elapsed time from mea-
surements to results is critical. Such is the
case in many industrial applications. Here,
we would ideally want to process the mea-
surements in real-time. Much progress has
been made in digital close-range photogram-
metry. Systems are no longer only in use in
research laboratories but also in production en-



vironment (see, e.g. Beyer, 1992; Haggrén and
Pekkinen, 1992).

Despite of the lack of a general vision theory,
tremendous progress has been made in machine
vision. Though no general-purpose vision sys-
tem is available (and will most likely not be-
come available in the foreseeable future), sys-
tems which successfully deal with special ap-
plications have been reported. For example, a
successful application is a vision system that
feeds a robot with essential information so it
can pick up a part out of a bin or from a con-
veyor belt.

4.1 Common Characteristics
Image formation

For both disciplines, a thorough understand-
ing of image formation is essential. The auto-
matic measurement, interpretation and analy-
sis of images is greatly facilitated by the knowl-
edge on how the images are formed.

Traditionally, photogrammetrists are particu-
larly concerned with the geometric relationship
between image and object space. The camera
geometry is understood and deviations from
the perspective projection are well handled, be
it in form of calibration procedures or by ex-
tending the mathematical model to include ad-
ditional parameters.

Since in conventional photogrammetry human
operators interpret the image, not much effort
has been spent to understand the radiometric

aspect of image formation. This subject has -

been intensively investigated by Horn (see e.g.
Horn, 1978; Horn, 1986). Of course, remote
sensing can greatly contribute to a better un-
derstanding of image formation in aerial appli-
cations.

Early vision

Many early vision processes are identical in
both disciplines. Examples include basic image
processing tasks, such as image enhancement,
image storage, image compression, etc. A fun-
damental problem in both disciplines is finding
conjugate points in stereo images (correspon-
dence problem). Related to the correspondence
problem is the determination of surfaces.
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4.2 Differences

Among the many differences which separate
the two fields of close-range photogrammetry
and machine vision, we elaborate only on the
differences in applications and background.

Applications

The main areas of close-range photogrammetry
applications are architecture, biostereometrics,
and industrial engineering. Industrial applica-
tions are mainly in metrology. Digital close-
range photogrammetry systems are most suc-
cessful when measuring well targeted points in
a controlled environment. Emphasis is placed
on accuracy and reliability; the points are typ-
ically determined to sub-pixel accuracy.

Most applications require results in a 3-D
object coordinate system. The predominant
method for obtaining 3-D information is stere-
opsis. Depending on the application, the points
in object space are now analyzed and geomet-
rical properties, such as distances, diameters,
slopes, surfaces, are derived. The determina-
tion of 3-D points (matching) is often combined
with the computation of geometrical proper-
ties. Yet another step may include the compar-
ison between measured quantities and design
data (e.g. from a CAD system). An example
are deformation analysis.

Most machine vision applications require var-
ious degrees of recognition and interpretation
capabilities. Such is the case in process con-
trol, parts identification, robot gunidance, plan-
ning, navigation, and obstacle avoidance for
autonomous vehicles. Here, the emphasis is
not on utmost accuracy but on extracting and
grouping features, on image segmentation, on
associating meaning to groups of symbols, on
geometric modeling, matching and hypothesis
verification. In contrast to close-range pho-
togrammetry systems, machine vision systems
deal with late vision problems.

Background

Close-range photogrammetry is a rather small
community of specialists from photogramme-
try, geodesy, and surveying. As pointed out
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earlier, machine vision is a subfield of artificial
intelligence with strong ties to computer sci-
ence, electrical engineering, and cognitive sci-
ence. The differences in background, experi-
ences and preferences are quite obvious when
it comes to model a vision process, to decide
which tools should be used to implement the
model, or what quality control criteria should
be applied.

Not only is the background of scientists in
close-range photogrammetry and machine vi-
sion quite different, but also the terminology.
Due to the rapid development, both fields are
far from having a unified, accepted terminol-
ogy. Even worse, often times a complete differ-
ent expression is used for the same thing, lead-
ing not only to amusement but to considerable
confusion.

5 CONCLUDING REMARKS

In this paper I have described the goal, the
basic concepts and issues of machine vision.
A strong point was made that someone who
is confronted to program a vision task should
have a good understanding of the human visual
system for it is a measure beyond all bounds.

I have then compared machine vision with dig-
ital close-range photogrammetry and indicated
what both fields share and where they are dif-
ferent. In conclusion, we realize that both fields
are confronted with the same massive prob-
lems. Despite many claims that pushed ex-
pectations high, few systems are successful and
only in narrow applications. Much more re-
search is needed to broaden the applications
and to increase the robustness of vision sys-
tems.

In order to concentrate efforts and resources, it
seems only natural that well proven methods
and solutions should be shared. A prerequi-
site for reaching this desirable goal is a better
understanding of each others problems, termi-
nology, methodology and tool set. A way to fa-
cilitate this is by joint conferences, workshops
and joint projects.

6 REFERENCES

Ballard, D.H., and C.M. Brown, 1982. Com-
puter vision. Prentice-Hall, Englewood Cliffs,
New Jersey.

Barrow, H., and J.M. Tenenbaum, 1978. Re-
covering intrinsic scene characteristics from im-

ages. In Computer vision systems. Academic
Press, New York.

Beyer, H., 1992. Digital close-range pho-
togrammetry in industrial measurement. Int.
Archives of Photogrammetry and Remote Sens-
ing, Congress Washington D.C.

Brooks, M.J., and B.K.P. Horn, 1985. Shape
and source from shading. Proc. Intern. Joint
Conf. on Artificial Intelligence, Los Angeles,
pp. 932-936.

Campbell, F.W., and J.G. Robson, 1968. Ap-
plication of Fourier analysis to the visibility of
gratings. Journal of Physiology, 197, pp. 551-
566.

Ebner, H., and Ch. Heipke, 1988. Integration
of digital image matching and object surface
reconstruction. Int. Archives of Photogram-
metry and Remote Sensing, Congress Kyoto,
Comm. III, Vol. 27, part B-11, pp. 534-545.

Grimson, W.E.L., 1984. Binocular shading and
visual surface reconstruction. CVGIP, pp. 18-
44.

Haggrén, H., and P. Pekkinen. Stability
control of photogrammetric stations. Int.
Archives of Photogrammelry and Remote Sens-
ing, Congress Washington, D.C.

Helava, U.V., 1988. Object-space least-squares
correlation. Photogrammetric Engineering &
Remote Sensing, Vol.54, no. 6, pp. 711-7T14.

Horn, B.K.P., 1986. Robot vision. The MIT
Press, Cambridge, Massachusetts.

Horn, B.K.P., 1977. Understanding image in-
tensities. Artificial Intelligence, 8, pp. 201-
231.

Hubel, D.H., 1988. Eye, brain, and vision. Sci-
entific American Library, New York.

Julesz, B., and J.R. Bergen, 1983. Tezions:
the fundamental elements in preatientive vision
and perception of texture. The Bell System
Technical Journal, vol. 62, no. 6, pp. 1619-



1645.

Kanizsa, G., 1979. Organization in vision:
Essays on Gestalt Psychology. Praeger, New
York.

Li, M., 1989. Detection and location of break-
lines and discontinuities in stereo image match-
ing. Phot. Reports No. 54, Royal Institute of
Technology, Stockholm.

McCafferty, J.D., and R.J. Fryer, 1987. Per-
ceptual organization and low level vision. Uni-
versity of Strathclyde, Department of Com-
puter Science, Technical Report.

Marr, D., 1982. Vision. W.H. Freeman and
Company, New York.

Marr, D., and E. Hildreth, 1980. Theory of
edge detection. Proc. of the Royal Society of
London. Series B, 207, pp. 187-217.

Marr, D., and H.K. Nishihara, 1978. Repre-
sentation and recognition of the spatial organ-
isation of three-dimensional shapes. Proc. of
the Royal Society of London. Series B, 207, pp.
269-294.

Poggio, T., V. Torre and C. Koch, 1985. Com-
putational vision and regularization theory.
Nature, 317, pp. 214-319.

Ramachandran, V.S., 1992. Blind Spots. Sci-
entific American, May 1992, pp. 86-91.

Rich, E., 1983. Artificial Intelligence.
McGraw-Hill, New York.

Rock, 1., 1975. An introduction to perception.
Macmillan Publishing Company, New York.

Rosenholm, D., 1987. Multi-point matching
using the least-squares technique for evalua-
tion of three-dimensional models. Interna-
tional Archives for Photogrammetry and Re-
mote Sensing, Vol. 26, Comm. III, Rovaniemi,
pp. 573-587.

Terzopoulos, D., 1986. Regularization of
inverse problems involving discontinuities.
IEEE, Trans. PAMI, 8, pp. 413-425.

Tikhonov, A.N., and V.Y. Arsenin, 1977. So-
lution of ill-posed problems. Winston.

Uttal, W.R.., 1973. The psychobiology of sen-
sory coding. Harper & Row, New York.

Wilson, H.R., and J.R. Bergen, 1979. A four
mechanism model for threshold spatial vision.

15

Vision Research, 19, pp. 19-32.

Witkin, A.P., 1982. Scale-space filtering. Proc.
7th Intern. Joint Conference on Artificial In-
telligence, Karlsruhe, pp. 1019-1022.

Wrobel, B., 1987. Facets stereo vision (FAST
VISION) - A new approach to computer stereo
vision and to digital photogrammetry. Proc.
Fast Processing of Photogrammetric Dala, In-
terlaken, pp. 231-258.



16



ALGORITHMS AND SOFTWARE CONCEPTS FOR
DIGITAL PHOTOGRAMMETRIC WORKSTATIONS
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ABSTRACT

Despite all the progress in digital photogrammetry, there is still a considerable lack of un-
derstanding of theories and methods which would allow a substantial increase of automation
of softcopy workstations. This paper does not provide such a theory. Its purpose is to
raise awareness that the automation problem is one that cannot be solved in a bottom-up
fashion by a trial and error approach. We argue that more researchers should investigate
the nature of the problem and what has been done in other fields to tackle it. We present
a short overview of computer vision followed by a discussion of the surface reconstruction
problem and how it is solved in photogrammetry and computer vision. We then touch on
the important subjects of perceptual organization and object recognition.
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1 INTRODUCTION

Considerable progress has been made in digi-
tal photogrammetry during the intercongress
period. Several products are operational
and available to photogrammetrists: softcopy
workstations, programs to produce digital or-
thophotos and DEMs, systems to precisely de-
termine points in industrial applications, just
to mention a few. By operational we mean
that the products do not work only in labo-
ratory environments under tight supervision of
the research staff.

That digital photogrammetry products become
available to users is remarkable in several re-
spects. For one it provides a loop between
research, development (production) and users
which will result in valuable feedback to re-
search. Another important aspect to consider
is that of responsibility. Users expect, quite
rightfully, that the products deliver what has
been promised so that their investments will
eventually pay off. Most, if not all, com-
mercially available systems are first-generation
products and thus incomplete and perhaps not
yet robust. Apart from the obligation to rem-
edy deficiencies, there will also be a demand
for more functionality and a higher degree of
automation.

As far as automating photogrammetric pro-
cesses is concerned we cannot paint an equally
rosy picture for only little progress has been
made. With automation we mean that the
computer performs tasks usually assigned to
operators, such as orientation or map com-
pilation. With automation we do not mean
that the computer has to perform tasks au-
tonomously, that is, without human interven-
tion. Automatic processes such as feature ex-
traction execute in an interactive environment
like softcopy workstations.

What humans solve without conscious ef-
fort poses almost unsurmountable problems to
computers. What has been solved so far are
the easier problems, what remains, in terms of
automation, are the hard problems. It is not
just a matter of assigning a large enough group
of programmers to a project—the crux is that
the problem is not sufficiently understood. It
is quite a paradoxical situation indeed: on the
one hand we have successfully produced maps
for decades, but we do not seem to understand

how; otherwise it would be possible to instruct
a machine to it. In short, we lack a detailed
theory about making maps (see also Forstner,
1990).

This paper does not provide such a theory nor
does it make any attempt to fill gaps. Its pur-
pose is to raise awareness that the automa-
tion problem is one that cannot be solved in
a bottom-up fashion by a trial and error ap-
proach. We argue that more researchers should
investigate the nature of the problem and what
has been done in other fields to tackle it. Com-
puter vision is confronted with similar prob-
lems and it seems reasonable to analyze its
concepts, methods and algorithms. That is by
no means to say we should blindly copy what-
ever has been done in computer vision. But
to judge what concepts may apply for solving
photogrammetric problems we must develop a
reasonable understanding of what problems are
solved in computer vision, what approaches
have proven successful and on what theoreti-
cal underpinnings solutions are explored.

A short overview of computer vision, its
paradigm, basic concepts and major issues is
provided in the next section. In fact, it is a very
concise summary of another paper (Schenk,
1992) which serves as an introduction to the
present paper. Rather than touching loosely
on all sorts of aspects we have opted to focus
on three subjects. Surface reconstruction is an
interesting topic because it is successfully ap-
proached in computer vision and photogram-
metry, though by different methods and with
quite different motivations. We contrast the
approaches and provide some explanations why
they are different.

Perceptual organization is an important but ne-
glected subject. It refers to the ability of hu-
mans and animals to detect relevant groupings
and structures in images which are the input
for object recognition and image understand-
ing. Section 4 explains the basic notion and
provides examples of computational modules.
The third subject in section 5 is object recogni-
tion, presently a hot topic in computer vision.
Model-based object recognition may not seem
tremendously important for our applications,
except for certain close-range problems. How-
ever, a deeper understanding of how to over-
come the combinatorial explosion and how to



form and verify hypotheses is useful.
2 COMPUTER VISION PARADIGM

In this section we provide a concise summary of
the computer vision paradigm. More detailed
explanations including an exposure to the hu-
man visual system is provided in (Schenk,
1992).

The most advanced and widely accepted
paradigm of computer vision is based on Marr’s
theory about vision (Marr, 1982). His theory
has a strong information processing underpin-
ning. He argues for understanding an informa-
tion process—vision—at three different levels.

computational theory specifies what the vi-
sual system must do. It answers the ques-
tion about the purpose of the computa-
tion and the strategy for solutions.

representation and algorithm
investigates the representation of input
and output and the algorithm that trans-
form one into the other.

hardware implementation
answers the question of how the repre-
sentation and the algorithm can be phys-
ically implemented by neurons.

The tenet of Marr’s theory is that the shapes
and positions of things can be made ex-
plicit from images without knowing what these
things are and what role they play. However,
this cannot be accomplished in one step, rather
in a sequence of representations designed to fa-
cilitate the subsequent construction of physical
properties of objects. The three main steps are
generating the primal sketch, the 2.5-D sketch
and representing 3-D models.

By and large, computer vision pursues the
same goal as human vision: generate descrip-
tions about the scene from images. The de-
scriptions must be explicit and meaningful so
as to allow other system components to carry
out a task. In that aspect, computer vision is
part of an entire system that interacts with the
environment, say a robot. Consequently, tasks
such as decision making, planning, executing
decisions, are not part of computer vision.
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Usually, the paradigm (see Fig. 1) begins with
a raw image. We also include image formation,
a point forcefully advocated by Horn (1986)
and now accepted by many vision researchers.
After all, machine vision may be viewed as the
inverse process of image formation. Thus it
only makes sense to obtain a thorough under-
standing of image formation.
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Fig. 1: Paradigm overview of computer vision.

The primal sketch is the result of edge detec-
tion. Edges are likely to have been caused
by structures in the scene, such as object
boundaries, markings and surface discontinu-
ities. The unorganized edge fragments, bars
and blobs are grouped into higher-level tokens,
which are now processed by the independent

modules stereopsis, shading, motion, tezture to
yield the 2.5-D sketch.
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The 2.5-D sketch contains less data than the
raw image, but more important, it is more ex-
plicit. An edge could be an object boundary
or a shadow; a single pixel can be everything.
Depth and 3-D shape information is particu-
larly important. Shape and depth information
is obtained independently from stereo, shad-
ing, motion and texture processes, also called
shape-from-X processes. Note that the 2.5-D
sketch is obtained purely from the raw images.
It is the result of bottom-up processes, also re-
ferred to as early vision.

The 2.5-D sketch is the transition from image
space to object space. Subsequent processes,
termed late vision, are scene oriented rather
than image oriented. Extracted features are
grouped together, segmented and eventually
parameterized. If the application of the vision
system is object recognition then a data base
with models of objects is generated. The pa-
rameterized features are now matched with the
object library.

3 SURFACE RECONSTRUCTION

Surface reconstruction is an interesting exam-
ple to point out how differently photogramme-
try and computer vision have approached the
problem. The subject has been intensively re-
searched in both fields, ever since computers
became available. There is a fundamental dif-
ference in the purpose of reconstructing sur-
faces which may, at least partially, explain the
different approaches.

In photogrammetry surface reconstruction is
equated with the problem of generating DEMs
automatically. Here, the goal is to compute as
many conjugate points as accurately as possi-
ble. Usually, the DEM, or the surface for that
purpose, is a product in its own right. In com-
puter vision, however, surfaces are primarily
reconstructed for the purpose of guiding subse-
quent vision processes, such as object recogni-
tion. The goal is not to represent the surface as
accurately and densely as possible, but as ex-
plicitly as possible. Rather than dealing with
a cloud of unrelated 3-D points, it is preferred
to segment the surface into piecewise contin-
uous patches, which are related to surfaces of
objects.

The surface reconstruction problem comprises
the following four tasks.

1. Select a point in one of the two images of
a stereopair.

2. Find the conjugate point in the other im-
age.

3. Compute the 3-D position of the conju-
gate points.

4. Interpolate (densify) the surface.

The second and fourth tasks are hard problems.
Task 1 may appear trivial at first glance. How-
ever, should any arbitrary pixel be selected,
perhaps all of them, or are certain locations
more interesting than others? The answer de-
pends largely on the application (purpose) of
surface reconstruction. Task 3 is trivial and
not discussed any further.

3.1 Finding conjugate points

A few remarks about terminology seem appro-
priate here. Since correlation was the method
of choice for more than twenty years, the term
correlation was synonymous with finding con-
jugate points. More recently the term image
matching has come to stay in photogramme-
try but in computer vision the same process is
sometimes called the correspondence problem.

Strategic considerations

In this paper we use “strategy” for the general
approach to solve a problem while “method”
refers more specifically to an algorithm. The
maltching strategy of a surface reconstruction
system explains for example how the ill-posed
character is dealt with, how the combinato-
rial explosion is kept under control, what qual-
ity control measures are taken, etc. Two dif-
ferent matching methods are available. Area-
based matching is the preferred method in pho-
togrammetry, feature-based matching in com-
puter vision. It is worth pointing out that
the success of a surface reconstruction system
depends on more than the matching method.
Other strategic considerations are equally im-
portant.



A crucial question is how the ill-posed nature
of the surface reconstruction problem is ad-
dressed. The approaches range from utter igno-
rance to sophisticated regularization theoretic
approaches. Whichever approach is chosen, the
problem remains unsolved: no universal sys-
tem exists that reconstructs surfaces under all
kinds of different conditions (e.g., surface prop-
erties, lighting conditions, camera positions).
Of course our applications in photogrammetry
inherently limit the range of conditions with
which we have to deal. Take aerial applica-
tions, for example, where digital imagery is ob-
tained by scanning aerial photographs. These
are of high quality and within a small pose
range.

Various assumptions, restrictions and con-
straints are traditional methods to make sur-
face reconstruction well-posed. This works well
but the dilemma is to find just the right bal-
ance between a general solution and a very re-
stricted one. The formulation of the matching
process as a least-squares problem offers an el-
egant possibility to include various constraints
and treat them simultaneously with the match-
ing. The computer vision paradigm strongly
suggests deriving surfaces from different depth
cues by integrating different shapes from X-
processes. How to combine the different depth
cues is largely an unsolved problem.

The hierarchical approach most systems now
adopt can also be seen as a measure to make
surface reconstruction a well-posed problem.
Its chief advantage is to reduce the search
space, however. Consider pixel 7,5 with in-
tensity value g(7,j) in one image. There are
many pixels with the same intensity in the
other image. Two ways exist to solve this
problem unambiguously. One is to take an
area with unique properties of pixels which is
equally unique in the other image. The other
way is to restrict the search area. This is ac-
complished by exploiting the epipolar geometry
of stereopairs and by the hierarchical approach
which renders approximations for the surface
and thus restricts the search space.

Area-based matching

In area-based matching the unique properties
of pixels used to compare two image patches are
the gray levels. The size of the image patches
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depends on their image functions: they must be
sufficiently unique so as to allow discrimination
with neighboring patches. The more unique
the gray level distribution the more reliable is
the match. The upper bound depends on the
topography of the associated surface patch, at
least in systems where the surface is approx-
imated by a plane. Computational complex-
ity is another factor that influences the patch
size. Unfortunately, the “optimal” patch size
is a heuristic parameter.

Let n X n be the size of the templet and m x n
the size of the search window. The templet
is centered on pixel i},j; as defined in task
1. The search window in the other image is
centered on location i},j; with if = i} and
jilt = j{—pz where pz is the average x-parallax.
The size of the search window is m X n pixels,
m —n = 2pz”, with pz"” the expected elevation
difference. The templet is moved within the
search window and for every position a similar-
ity measure is computed. The position which
yields the maximum similarity is considered the
conjugate point.

Several methods exist to measure the similar-
ity. Probably the most popular method is cor-
relation. Here, the similarity between the gray
level distribution in the templet and the cor-
relation window is conveniently expressed by
the correlation factor p. The correlation win-
dow is moved pixel by pixel within the search
window, and for every position the correlation
factor p is computed. The position that yields
the maximum correlation factor is chosen as
the conjugate point. Obviously, this method
depends on the assumption that there will be
a uniquely defined maximum in the correlation
function.

A variety of operational systems are based on
this approach or on modified versions. The
chief advantage of this method is the rather
simple implementation. Among the disadvan-
tages must be listed the arbitrary definition
of the window sizes, the correlation function
which may not render a unique maximum,
and other problems associated with area-based

matching.

In least-squares matching, the gray levels of the
templet and the correlation window are consid-
ered as observed. Consequently, the following
generic observation equation can be formed
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r=g(z,y:) — TF [g (T8 (2c,9:))] (1)

with r the residual vector, dimension n2, and
g(z¢,ye) the image function of the templet.
The gray levels g(z., y.) of the correlation win-
dow are modified by a radiometric transforma-
tion TT and a geometric transformation T8.
The geometric transformation accounts for re-
lief distortions which cause conjugate image
patches to appear differently in shape. Usually,
an affine transformation is chosen. The radio-
metric transformation adjusts for differences in
the gray levels between the two images.

The popularity of this method stems from
the application of well-known principles (least-
squares), from the straightforward implemen-
tation, and from the potential for high accu-
racy. On the negative side we note the require-
ment for good approximations (two pixels), and
the neglect of the correlation between observa-
tions (gray levels) which results in too favorable
error estimations.

A note on terminology. Task 1 of the surface
reconstruction problem is concerned with se-
lecting the location of the templet. The prob-
lems with choosing any arbitrary position have
been recognized. Some systems select inter-
est points as more suitable locations. How-
ever, area-based matching is still used. In my
opinion it is misleading to call these approaches
feature-based as they do not capture the notion
of feature-based matching.

Feature-based matching

In signal processing, the raw signals are hardly
ever used for interpretation because meaning-
ful events are not directly available. Such is
the case with images. The image formation
process confounds much useful information into
the gray levels of the pixels. An intermediate,
more stable description must be found which
makes object space events more explicit and
thus more robust. Local extrema and their
derivatives are appropriate descriptive features
because they are often directly related to ob-
ject space events. For example, an edge in the
image may correspond to an object boundary.

Two different types of features are considered
useful for the surface reconstruction problem:
points and edges.

For satisfying the uniqueness requirement of
task 2, points with distinct properties have
been proposed (interest points). For exam-
ple, the Forstner interest operator detects
points, corners and centers of circular features
(Forstner, 1986). FEach pixel within a win-
dow of, say, 5 X b pixels is regarded as an
edge element with an orientation derived from
the gradient of the gray levels VZg(z,y) =
[92(z,¥),9y(=,y)]. For example, a corner can
be detected at location zp,ys by intersecting
all edge elements. Likewise, the center of a
circular feature is obtained by intersecting the
normals of the edge elements.

Edges are the predominant features used in
feature-based matching. Edges in the image re-
fer to discontinuities in the gray levels. Numer-
ous edge operators have been proposed. They
may be classified into two types: first derivative
and second derivative operators. First deriva-
tive operators detect edges as the local maxima
of the first derivative, which is approximated
by the gradient of the gray values. Second
derivative operators detect edges as the zero-
crossings of the second derivative which is most
commonly approximated by the Laplacian of
the gray levels.

Because edge operators enhance noise, it is im-
portant to smooth the images prior to edge de-
tection. The Laplacian of the Gaussian (LoG)
operator combines smoothing (with a Gaus-
sian) with the second derivative. The definition
is given in equation (2):
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The size w of the LoG operator refers to width
of the central lobe and is related to the param-
eter o of the Gaussian by w = 2v/20. The
smoothing operation has a negative effect in
that edges are dislocalized. In general, edge
matching does not render the same high accu-
racy as area-based methods.

The advantage of using edges (zero-crossings) is
increased reliability and less stringent approxi-
mations. Above all, edges are much more likely
to correspond to physical properties of surfaces
of objects. We remember the goal of computer
vision is to make information explicit. Matched



edges have a much higher level of explicitness
compared to arbitrary chosen points. If you
are not yet convinced compare Fig. 2. Here
the same images have been matched with both
matching methods. The figure shows the dis-
tribution of matched points.
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Fig. 2: Distribution of matched points selected
with interest operator (top) and matched edges
(bottom).

3.2 Surface fitting

The points obtained by task 3 are not evenly
distributed and do not completely represent
the surface. Even if all pixels were selected in
task 1 there would be holes because matching
is not always successful. Thus, the 3-D points
must be interpolated. We use the term surface
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fitting as it refers to interpolation as well as to
approximation methods.

Lancaster and Salkauskas (1986) define surface
fitting as finding a function that agrees with
the data points to some extent and behaves
reasonably between data points. Surface fit-
ting methods can be classified according to cri-
teria such as goodness of fit, extent of support
(local versus global methods) or type of mathe-
matical model (weighted average, polynomials,
splines). For a more detailed account we refer
the reader to Al-Tahir and Schenk (1992).

In the weighted average method the eleva-
tion at a random position is obtained as the
weighted average of all data points with the
weight inversely proportional to the distance.
To reduce the computational complexity lo-
cal average methods do not consider all data
points.

Polynomials have long been used for interpo-
lating surfaces. Their notorious oscillation ten-
dency is overcome by spline functions. A spline
is a piecewise polynomial function defined on
continuous segments. By imposing the exis-
tence of derivatives spline functions become
continuous and smooth between segments. A
nice property is the predictability of their loca-
tion: splines lie within the convex hull of data
points.

An interesting class of splines are the thin
plate splines, derived from nodal basis func-
tions. They are obtained by minimizing the
total curvature of a cubic spline. The relation-
ship with thin plates stems from the fact that
minimizing the curvature is equal to determin-
ing the deflection of a plate due to an external
force. This forms the basis for casting the sur-
face fitting problem as an energy minimization
problem.

The energy function E to be minimized is con-
structed from two functionals. The first func-
tional measures the smoothness of the solution
S. D is the second functional and it relates to
the closeness of the solution. The energy func-
tion is the combination, or E = S + D. This
concept is taken a step further by including dis-
continuities.

If the surface is broken along discontinuities
then a lower state of energy is reached. In the
extreme case of breaking up the surface into
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small pieces around every data point, the low-
est energy state is reached. This would cer-
tainly not correspond to visible surfaces in ev-
eryday scenes where we observe a great de-
gree of continuity and smoothness. Therefore,
breaking the surface into patches must be pe-
nalized. Formally, a third term P is introduced
and we obtain E = § + D + P where P is a
cost function.

The energy function F is nonconvex and min-
imization is nontrivial. Blake and Zissermann
(1987) suggest merging the interpolation func-
tion S with the line process P. This solution al-
lows occasional discontinuities in an otherwise
continuous environment.

We use this approach in the OSU surface recon-
struction system (see Schenk and Toth, 1991)
to test hypotheses about breaklines. Breaklines
are related to discontinuities in the image func-
tion. Since gray level changes are caused by
changes in illumination, edges and breaklines
are related. By and large breaklines show up
as edges. Thus matched edges are hypotheti-
cal breaklines. This hypothesis is confirmed or
rejected by comparing the breaklines that are
detected during the surface fitting process.

4 PERCEPTUAL ORGANIZATION
4.1 Background

Perceptual organization is the ability to derive
relevant groupings and structures from an im-
age without prior knowledge of its content. The
human visual system is remarkably adept at de-
tecting many different patterns and significant
groupings of elements in an otherwise random
set of elements. Such grouping processes in-
clude clustering, detecting single and parallel
lines and curves, and segmenting the image into
regions which share similar image characteris-
tics.

Perceptual organization is a prerequisite for ob-
ject recognition. It must be largely indepen-
dent of lighting conditions, viewer point and
scale. Thus a perceived grouping is an intrin-
sic property of the image. It must be derived
by examining regions since a single gray level
of an individual pixel contains almost no per-
ceptual information.

Perceptual organization is not only a late vi-
sion or cognitive process. Preattentive vision
experiments (response of human visual system
to stimuli without focus of attention) indicate
that perceptual organization occurs very early
on in the visual pathway. Quite often, grouping
processes are recursive. The output of one pro-
cess becomes input to another grouping pro-
cess, perhaps together with other image infor-
mation. An example is edge fragments which
are clustered to edge elements which in turn
are grouped to lines.

Gestalt laws of organization

The school of Gestalt psychology emerged in
the 1920s. It emphasized form and structure
and their interrelationships. The Gestalt psy-
chologists formulated a number of principles of
perceptual organization known as the Gestalt
laws of organization. They introduced the no-
tion of “the whole is bigger than the sum of its
parts.” For example, two dots exhibit a sense
of orientation which is not present in a single
dot. The Gestalt laws of organization are listed
below.

proximity groups local features together
which are close together. In Fig. 3a
we perceive columns because the vertical
spacing of dots is smaller. Depth is a very
strong factor for proximity. Things with
similar disparity values are grouped to-
gether and perceived as belonging to the
same surface.

similarity groups similar features together.
In Fig. 3b the horizontal spacing of the
dots is smaller than the vertical spacing,
yet we perceive columns. This is an ex-
ample where similarity overrides proxim-
ity. Fig. 3c is perceived as two separate
regions because the orientation of local
features is distinctly different in both re-
gions.

common fate groups things together which
appear to move together. Fig. 3d demon-
strates the case. A copy of randomly gen-
erated dots is superimposed on the origi-
nal, but only after rotating it. We clearly
perceive the rotation because points of
similar motions are grouped together.



Fig. 3a: Proximity

s ae .
. oo e e

O e

. . .. . ‘.

‘. o e® . . . . .

PR . . .

* ", *

et e et 2% e e,

. . . .
‘e . .
W ® 0 s e ea et 70

Tt e N

. . . .

L e DR

. o« s . . .
. we's . .
et et e ot
v o * e % . 2. .
« s e, e %o e e e o
.

R L S

« e e . .t . e .

. .. . '... . o .

. .
ey v, W e e e
. . . . . . . o‘.
o e e
. . 4. o ' e L
.. . . . .
. . .. LA} . .
LR S . . DI
. .
et Leete e e T
. e .. ¢
.o .
. . o, oo
R SR

Fig. 3d: Common fate

Fig. 3g: Symmetry

Fig. 3b: Similarity

Fig. 3e: Good continuation

Fig. 3h: Figure/Ground separation
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Fig. 3f: Closure
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good continuation
is demonstrated in Fig. 3e. We perceive
two smooth lines which cross rather than
two V-shaped forms. Smooth continuity
is preferred over abrupt changes.

closure emphasizes a preference for closed fig-
ures. Fig. 3f is seen as a square and not
as a Ccross.

symmetry groups features together that are
similar. In Fig. 3g curves 1 and 2 are
grouped together because of symmetry.
However, the perception of curves 4 and
5 is stronger because of reflection around
the vertical axis. Clearly, curve 3 is not
grouped with any other curve.

figure ground separation . The smaller of
two areas is seen as figure against back-
ground. In Fig. 3h a black propeller is
seen against a white background.

Gestalt psychology came into disrepute mainly
because it failed to explain how the grouping
processes work. No evidence was found for
their theory about brain field waves. However,
there is no doubt that the Gestalt laws work.

As pointed out earlier, vision as a reconstruc-
tion process is ill-posed. One image may have
many different interpretations. In order to re-
duce the solution space, assumptions about the
world we see have to be made. Perceptual or-
ganization and in particular the Gestalt prin-
ciples of organization provide the human vi-
sual system with sensible assumptions about
physical and biological objects. Generally, the
shapes of natural objects vary smoothly and
quite often they are symmetrical. Matter is co-
hesive so adjacent regions are likely to belong
to the same structure.

4.2 Perceptual organization in computer
vision

In computer vision perceptual organization is
known as grouping, or more generally, as seg-
mentation.

Analysis of blockworld scenes
More than twenty years ago many Al re-

searchers tried to solve the segmentation prob-
lem by dividing a visual scene into a number

of distinct objects. The complexity of natural
images was avoided and the experiments were
restricted to what is known as “blockworld” in
AT white, prismatic solids which are evenly il-
luminated.

The best known program is probably from
Waltz (1975). He set out to recognize objects
from a collection of lines. A crucial element in
the analysis are junctions (where two or more
lines meet). There is a direct relationship be-
tween the junction type and the possible ar-
rangement of surfaces. Another important re-
lationship is how the different types of edges
(convex, concave, occluding) are combined.

Despite the success of some of the scene analy-
sis programs their practical importance is lim-
ited. The principles embodied in the segmen-

tation of blockworld scenes fail to reveal signif-
icant structures in natural images.

Curvilinear segmentation

Boundaries of objects are one of the most im-
portant structures derived from images. Nat-
urally, many computer vision programs group
edge elements into boundaries. They usually
begin with linking edge points (edge following,
edge linking) followed by approximating the
contour by straight lines and curves. A number
of methods have been proposed for accomplish-
ing this task, e.g., Ballard and Brown (1982),
Pavlidis (1982), Duda and Hart (1973). Tech-
niques for solving the edge following problem
include graph search and dynamic program-
ming.

Hough transform

One of the most popular methods for line
and curve detection is the Hough transform,
initially proposed by Hough (1962) and later
modified by several authors, e.g., Duda and
Hart (1972), Kimme et al. (1975) and Ballard
(1981). The method is an interesting example
of seeking a representation which is much bet-
ter suited for solving the segmentation prob-
lem. This representation is called parameter
space. Hough used the slope-intercept equation
y = mz + q for creating the parameter space
m, q. That is, a line in the z,y coordinate sys-
tem is represented as a point in the m, g space.



Likewise, all possible lines through a point in
z,y are represented in the parameter space by
a straight line. The strategy is now to com-
pute for every edge element the corresponding
line in the m, g space. Straight lines in z,y are
found at intersecting positions in m, q.

A better parameterization of the line is the po-
lar equation zcos¢ + ysin¢ = r, because m
may be infinite in the slope-intercept represen-
tation. With the polar form the parameter
space is 7,¢. This form is suitable for other
curves and the Hough method can be general-
ized. For example, (z—a)2+(y—b)? = r? would
allow finding circles in the three-dimensional
parameter space a,b, 7.

As elegant and straightforward as the Hough
transform is, it has a number of disadvantages.
Apart from the requirement for huge accumu-
lator array sizes (for n-parameter curves each
quantized to m levels, m™ accumulator cells
are required), the distance between points is
not considered. It will group points from far
regions if they happen to be on a straight line
but will fail at the same time to consider points
in close proximity if they are only slightly off
the line. This is in strong contrast to the way
humans perform collinearity grouping.

Virtual lines

Fig. 4 shows a random-dot flow pattern, cre-
ated by superimposing on a pattern of random
dots an identical pattern which was rotated
slightly. The human visual system groups the
dots such that a rotational flow is perceived.
A similar effect is obtained when the copy is
expanded. The grouping process results in a
radial flow pattern.

The virtual line algorithm links points based
on proximity and orientation. Take a point
and determine for all points closer than d,i,
the orientation. Repeat this procedure for ev-
ery point and determine the distribution of all
orientation. In a typical flow pattern certain
directions are dominant. The preferred direc-
tions are emerging from the orientation distri-
bution as peaks. A simple thresholding opera-
tion determines what orientations are allowed.
Now the procedure is repeated by assigning a
virtual line to the closest point which satisfies
the orientation criterion. A modification of this
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general schema is necessary if all directions are
equally likely. Such is the case in the rotational
flow pattern of Fig. 4. However, preferred di-
rections are clearly obtained on a local basis,
for example, in one quadrant.

Region segmentation

Region segmentation divides the image into
units that are homogeneous with respect to
one or more characteristics. From a perceptual
point of view those regions should be meaning-
ful as far the interpretation is concerned. Thus,
region segmentation is to a certain degree ap-
plication dependent and an issue is how to in-
fluence the process by a priori knowledge about
the scene.

One approach to region segmentation is region
growing. Properties of local groups of pixels
are aggregated. In the simplest case, pixels
are grouped to regions based on their prop-
erties and neighborhood. Global techniques
consider the properties of a much larger pop-
ulation of pixels, for example, by threshold-
ing the histogram. This amounts to a fore-
ground/background separation (see, e.g., Han-
son and Riseman, 1978).

Another approach is split and merge (see
Horowitz and Pavlidis, 1974). Brice and Fen-
nema (1970) and Feldman and Yakimovsky
(1974) applied the state-space approach of Al
to region growing. Here, the image is regarded
as a discrete state and every pixel is initially
a region. The state changes when a boundary
between regions is removed (merging) or intro-
duced (splitting).

No doubt, texture plays an important role in
perceptual organization. Texture segregation
divides an image into regions of similar texture
primitives, sometimes referred to as texels. A
texel has certain invariant properties which oc-
cur repeatedly in different positions and ori-
entations. Julesz performed extensive stud-
ies of human texture perception (see Julesz,
1965, 1975; Julesz and Bergen, 1983). He
claimed that two regions cannot be discrim-
inated if their first- and second-order statis-
tics are identical. First-order statistics refer
to overall brightness while second-order statis-
tics express differences in granularity (spatial
distribution of texels) and slope (orientation).
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While Julesz tried to arrive at a universal
mathematical formula to explain the percep-
tion of texture boundaries, Marr developed an
information processing theory which explained
how a set of descriptive principles can be used
to recover texture (Marr, 1976). We recall
that the primitives in the primal sketch com-
prise edges, bars and blobs with associated ori-
entations, contrast, dimensions and positions.
Structures are recovered by clustering place to-
kens into small structures which in turn are
grouped to larger units on the basis of prox-
imity and changes in spatial density, a process
Marr called theta aggregation.

For a more detailed summary and experiments
with aerial scenes the reader is referred to Lee
and Schenk (1992).

4.2 More general approaches

Although many computer vision programs have
incorporated some aspects of perceptual orga-
nization the approaches remain rather rudi-
mentary. Most methods are ad hoc and treat
grouping aspects in isolation. Obviously, per-
ceptual organization as an information process-
ing system is not understood on the theoretical
level (referring to Marr’s approach of under-
standing visual processes on the three levels
of theory, algorithms, implementation). An-
other likely reason for the lack of an integrated
approach is the fact that the output of some
perceptual processes do not immediately lend
themselves to a physical interpretation of the
scene.

McCafferty (1990) describes a computational
approach to structuring and grouping. He sets
out to formulate a mathematical model for in-
cluding the Gestalt laws of perceptual organi-
zation in a vision system. In his work grouping
is posed as an energy minimization problem.

As described earlier the solution space of the ill-
posed visual reconstruction problem is reduced
by introducing stabilizing functionals (regulaz-
ization theory). Since the Gestalt laws of or-
ganization constrain the human visual system
to physically plausible solutions, they provide
the basis for the stabilizing functionals. To
enforce the grouping due to proximity, simi-
larity, closure, continuation, symmetry, figure-

ground separation and common-fate, the fol-
lowing minimization problem is formulated.

E(g) = XMllE(9)l + A2l E2(g)I* + - --
|| Ex(g)|I? (3)

where Aq,..., A7 are regularization parameters;
where E;(g),...,E+(g) are stabilizing func-
tions, and where E(g) is the total energy to
be minimized.

The grouping problem, cast as an energy min-
imization problem, involves finding the global
minimum energy state. The energy distribu-
tion across the state space is multimodal, thus
the global minimum cannot be found by a sim-
ple threshold. It is difficult if not impossible to
know if the lowest energy state found is in fact
identical with the global minimum.

For computing the energy of a grouping ways
must be found to compute the individual en-
ergy terms. For example, proximity is a mea-
sure of the spatial separation between place to-
kens. It can be computed as:

L LD AN (9
=1 "% g=1

where 7 is the number of tokens; n; is the num-
ber of neighbors of tokens; and where dp, is
the distance between token p and g. That is,
proximity is calculated as the average distance
between each token and its neighbor.

Finally, proper values for the regularization
factors A must be found. They essentially de-
termine the weight of an individual grouping
in the combination of the Gestalt laws of orga-
nization. The weighting factors are either con-
stants in which case the relative importance of
groupings never changes. They could also be
functions of some other information, such as
raw image data, or a priori knowledge.



5 OBJECT RECOGNITION

For a person to respond properly to the en-
vironment he must analyze, interpret and un-
derstand visual stimuli. Ideally, the same feat
must be accomplished by a robot or an au-
tonomous vehicle. To pick a part from a bin
or to navigate through a cluttered environ-
ment the robot must understand its environ-
ment from sensor data and stored knowledge.
The net result of image understanding is a fully
interpreted scene. Image understanding or im-
age interpretation is application dependent.

Object recognition is an important subtopic
of image understanding. While image under-
standing is essential for many machine vision
applications its role in digital photogramme-
try is less important. Here, the emphasis is on
recognizing and locating objects. Subsequent
tasks, such as analyzing objects and their inter-
relationships, are typically performed by GIS.

Object recognition is a broad and very active
research area. Many different methods and as-
pects have been reported. It is of course im-
possible to describe in one section the different
approaches or to make proper reference to the
huge body of literature. The purpose here is
to provide an overview and to touch on some
of the most critical issues, such as reducing the
search space, modelling the objects and match-
ing data features with object models.

5.1 Global model-based recognition

The traditional approach to object recognition
is to search for a correspondence (match) be-
tween object models and sensory data (e.g., im-
age). Matching establishes an interpretation of
image data consistent with objects and phe-
nomena of the world. The single most critical
factor in this endeavor is to find suitable repre-
sentations, both for the objects and input data.
Most recognition systems describe objects and
data as geometric or relational structures.

Matching geometric structures

A common solution is to parameterize object
models and data. Matching then is to find
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the best fit between two parameter represen-
tations. The fit is measured with a merit func-
tion M(p,q) where p is the parameter vector
describing the object, and where q is the pa-
rameter vector derived from the data. There
are several techniques available to optimize the
parameters including direct analytical solution
and hill-climbing (gradient) techniques.

The parameters may refer to shape such as
curvilinear boundary description, or to other
global properties of the object, such as area,
elongateness, Euler number, etc. Useful prop-
erties are those that remain invariant under
transformation or projection.

Matching 3 — s curves

The 9 — s curve represents a line as a function
of 4(s) where s is the parameter of the tangent
1. Fig. 5a shows a line in the z,y domain and
Fig. 5b depicts the same line in the parame-
ter space s,%. Horizontal straight lines trans-
form to horizontal straight lines on the s - axis
(¥ = 0) and straight lines with a slope a are
represented as horizontal lines, 9 = a. Thus,
vertices cause discontinuities in the 9 — s do-
main and the amount of the discontinuity is
proportional to the angle of the vertex. Since
the tangent of a circle is a constant, a circle
will be represented by a straight line with the
slope proportional to the radius.

Fig. 5: A line consisting of straight line seg-
ments and a partial circle are represented in

the original z,y space and in the parameter
space 1, s.

The ¢ — s representation for describing the
shape of object models and data models is ad-
vantageous because it is rotation and transla-
tion independent. We use this representation
successfully for matching edges in stereopairs
(see e.g., Schenk et al., 1991, Lee and Schenk,
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1989).
Matching Fourier descriptors

Fourier descriptors have long been used for the
representation of boundaries. The boundary of
a region is considered a periodic function, and
it can be expanded in a Fourier series. The low-
order terms describe the general shape. The
more coefficients are added the better the ap-
proximation of the original curve. In order
to utilize Fourier descriptors in a matching
scheme, Granlund (1972) and Lin and Hwang
(1987) propose using invariants. However, two
problems are observed. For one the success of a
match is difficult to measure (merit function is
ambiguous). Another disadvantage is that the
matching procedure does not provide clues for
the transformation between object model and
data.

We remedied these disadvantages by putting
Fourier descriptors into a least-squares match-
ing scheme (see Tseng and Schenk, 1992).
Here, the transformation parameters (similar-
ity or affine transformation) are included in the
matching process and are therefore explicitly
determined. The standard deviation provides
a quantitative measure for the goodness of the
match.

Nh

Fig. 6: Example of matching an object model
(curve B) with the data (curve A). The match-
ing procedure renders the transformation pa-
rameters as well as a quantitative measure for
the goodness of the fit.

The reader is referred to Tseng and Schenk
(1992) for a detailed description.

Matching moment invariants

Smith and Wright (1971) report about recog-
nizing ships with moment invariants. The au-
thors used up to fifth order moments. An image
is represented by the spatial moments of its in-
tensity function. The ij** generalized moment
is

m= [ fl(,)dsdy  (5)

where I(z,y) is the image intensity function.
The function f;;(z,y) may represent the den-
sity in which case m;; corresponds to the stan-
dard definition of moments; or it may involve
sine and cosine functions where m;; would rep-
resent the coefficients of a Fourier series expan-
sion of I(z,y).

Linear, quadratic and cubic polynomials of the
moments are used as ship descriptors. Linear
regression is used to distinguish these nonlin-
ear functions by treating the powers of the mo-
ments as new linear variables.

A simple pattern recognition model with two
moment invariants was chosen by Dudani
(1979) to recognize aircrafts. For each aircraft
the two moment invariants

X = pao+ poz
Y = \/(#20 — poz2)? + 4ph (6)

are computed. The pattern is represented as a
point in the X,Y parameter space. The sys-
tem outperformed human observers in a test of
identifying airplanes in a library of 132 differ-
ent types.

5.2 Feature matching with geometric
constraints

In contrast to global matching methods,
feature-based matching approaches the object
recognition problem in several steps. The ba-
sic idea is to extract local data features which
are matched with spatially localized object fea-
tures. Such features include distinct points,
edges, curves and surface patches. The follow-
ing tasks must be solved:



1. Build a library of objects (model base).
The geometric description of every ob-
ject depicts shape characteristics in a lo-
cal object coordinate system.

2. Extract features from the images. Group
and segment them such that data fea-
tures correspond to one object (segmen-
tation problem).

3. From the model base select those objects
which are likely to correspond to a set of
given data features (indezing problem).

4. Find instances of objects in the data
by establishing a correspondence between
data features and object features (corre-
spondence problem).

5. Find instances of objects in the data by
transforming the object to the image for
checking global consistency (hypothesize-
and-test problem).

Extracting features, organize and represent
them in a suitable form is a typical perceptual
organization problem. In the most simple form,
it would involve edge detection, edge formation
and edge segmentation. There is a plethora of
edge detecting operators available. Edge form-
ing depends on the edge detector used. Curvi-
linear edge segmentation results in straight line
segments and curved parts of an edge. Yet an-
other processing stage may analyze consecutive
straight line segments for rectangular polygons.

A straightforward but naive solution to the in-
dexing problem is simply to take every object
from the model base and perform steps 3 and 4.
A more intelligent approach would be to con-
sider additional attributes such as color. Also
the number of data features may be used to se-
lect only those objects that have more features,
assuming that the data features are only a sub-
set of all features describing an object. Finally,
domain-specific knowledge may be used. For
example, it may well be that certain objects
do not occur in certain parts of the image or in
the neighborhood of other objects.

Correspondence problem

We follow Grimson (1990) to explain the corre-
spondence problem and the significance of ge-
ometric constraints by way of a simple 2-D ex-
ample. Suppose the feature extraction process
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(e.g. edge detection, grouping and segment-
ing) generated the three data features fy, fs, f3
(see Fig. 7Ta) which we assume correspond to
the boundaries of an object. Also shown in
Fig. Tb is an object selected from the object
library. The problem is to establish a corre-
spondence between data features and object
features without performing the costly trans-
formation object to image.

A
f4 F -

Fig. T7: Data features extracted from image
(left) and object selected from the object li-
brary (right).

In a brute force approach we could pair each
data feature with all object features and check
all possible combinations for consistency. This
would amount to an exhaustive search of
the correspondence space (see Fig. 9). The
n—dimensional correspondence space (n =
number of data features) is tesselated by the
number of object features. Referring to our ex-
ample we obtain 5% = 125 assignments most of
which do not make any sense. Thus, the goal
is to determine only likely pairings.

Table 1: Angles in grads between features of
object shown in Fig. 7.

| Fo| F3| Fy| Fs
Fy 0 [ 150 | 250 | 150 | 250
Fy | 250 0 { 100 0} 100
F3 | 150 | 300 0| 300 0
Fy | 250 0] 100 0] 100
Fs | 150 | 300 0 [ 300 0

Instead of exploring all pairings, geometrical
constraints are used to eliminate those which
make no sense. However, the method should
require much less computing time than the rig-
orous solution of transforming the object to the
image and checking if it matches. In our exam-
ple angles are used as geometrical constraints.
In Table 1 all angles between object features
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are listed. Table 2 contains the same for the
data features.

Table 2: Angles in grads between data features
shown in Fig. 7.

Ll fo| fa
fi 0} 300 | 150
f2 | 300 0| 250
fa | 250 | 150 0

As indicated in Fig. 8 data feature f; is as-
signed to every object feature F;. Next, data
feature f, is assigned to those object features
which satisfy the angle constraint. From Ta-
ble 2 we take the angle between f; and fo
(3009) and check in the appropriate rows of
Table 1 for the same angle. For the as-
signment f; to F3 two pairings satisfy the
constraint. The same holds for f; to Fj.
Now, only these pairings need be pursued fur-
ther. Again, the assignment for f3 is per-
formed by considering the angular constraint
L(f2,f3) = 2509. We end up with the four
sets of possible pairings for fi, fa, f3, namely,

(F3, F2,F]_),(F3, F4,F1), (Fs, Fz,Fl)’ (FS, F4, F]_)-

With additional constraints, for example, dis-
tances, the potential pairings could be further
pruned.

root

fq F3 Fs

fo F2

f3

Fig. 8: Correspondence problem cast as a tree
search problem.

We note that the four solutions found are not
globally consistent. The geometric constraints

only assure local consistency. The angle con-
straint is a binary constraint. If enforced two
consecutive nodes in the tree are consistent. A
unary constraint would ensure a single node
to be consistent. With unary and binary con-
straints the consistency between three or more
nodes is not guaranteed. Therefore, the trans-
formation of the object to image is necessary.

f4

Fig. 9: Correspondence space. Solid dots indi-
cate possible correspondences found by apply-
ing geometric constraints.

Every point in the discrete correspondence
space constitutes a hypothesis for an assign-
ment of data features to object features. Ob-
viously, most assignments can be ruled out im-
mediately. For example, two distinctly differ-
ent data features cannot be assigned to one
and the same object feature (assuming rigid
objects). Unary and binary constraints further
reduce the assignments to a feasible set.

As indicated in Fig. 8 the search for feasible
assignments is cast as a tree search problem.
On the first level of the tree, data feature f;
is paired with all object features F;,i =1,...n,
but only if unary constraints are satisfied. An
example of a unary constraint is the length.
The same procedure is repeated on the next
levels of the tree. Only those nodes are further
expanded which satisfy the constraints. Every

~ valid leaf node defines a path in the tree indi-

cating feature assignments which must now be
examined for global consistency.



Verifying hypotheses

Every leaf of the tree is a hypothesis about
the correspondence of data features to object
features. These hypotheses must be tested by
transforming the object into the image. Global
consistency is reached if all data features match
the corresponding object features. Usually,
there are more object features than data fea-
tures. That is, there are some unpaired object
features. They are now used to examine the
gray levels for any evidence of data features
which remained undetected in the feature ex-
traction process.

In the general case of a 3-D transformation
seven parameters must be determined. This
transformation should be formulated in a gen-
eral fashion; for example, it should not be re-
stricted to points only, rather it should allow
including straight line segments, curves or sur-
face patches.

A hypothesis can be tested before the leaf of
a tree is reached. In fact, as soon as enough
data features are assigned to perform a 3-D
transformation, it may well be advisable to
verify the hypothesis immediately. If success-
ful, the search in the correspondence space can
be terminated. This variation of the general
approach may be justified if the tree is very
deep (e.g., many object features) or if a partic-
ularly salient matching is found. This method,
termed local feature focus, was proposed by
Bolles and Horaud (1986).

5.3 Nonmodel-based object recognition

The approaches to object recognition described
so far are based on the assumption that objects
can be described geometrically, for example, by
defining their boundaries or surfaces. This may
be impossible, however, if it comes to recog-
nizing objects with complex shapes. Such is
the case with aerial scenes. Even rather sim-
ple structures, such as buildings, come in such
a variety of different sizes and shapes that it
is a fruitless attempt to precisely describe and
store all of them in a model library. For out-
door scenes other solutions must be found.

Context-based object recognition
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Strat and Fischler (1991) describe a system,
called Condor (context-driven object recogni-
tion), that deviates radically from the model-
based paradigm. The authors argue that of-
tentimes objects of outdoor scenes can only
be identified by taking their surroundings into
account, because relationships among objects
provide important clues. The notion of Con-
dor is to embed objects in contexts rather than
treating them as independent entities.

Condor is in an experimental stage. The goal
is to recognize objects in natural scenes. The
knowledge base is tailored for solving this task
in a two-square mile area near the Stanford
University campus with ground level images.
As the authors put it, the recognition capa-
bility of Condor should equal that of a rabbit
inhabiting the same environment.

At the heart of Condor is an object-oriented
knowledge base, called core knowledge struc-
ture, that contains knowledge about the visual
world. Spatial knowledge is represented as a
multiresolution octree that allows recognizing
objects at various scales. A semantic network
is used for representing semantic knowledge at
various levels of resolution.

Condor works like a production system. The
main process types generate candidates, com-
pare candidates, form and select cliques. The
processes act as daemons and invoke them-
selves depending on the contextual environ-
ment. The output of the system is a labeled
3-D model of the scene where a label is an ob-
ject class. Examples are sky, foliage, raised ob-
ject and ground.

Each class has an associated set of simple
recognition procedures designed to work in spe-
cific contexts. An example is recognizing fo-
liage which is very difficult considering the dif-
ferent situations and conditions. Thus, this
general recognition task is divided into rather
specialized subtasks like finding the silhouette
of foliage against the sky, or finding foliage of
one type of tree.

A context set is basically a rule. If the con-
text is satisfied (e.g., sky is clear, camera is
horizontal, color is available) an operator is
invoked (e.g., segment blue regions) and the
result forms a candidate hypothesis. Candi-
dates are checked for global consistency in a
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process called clique formation. A clique is a
set of mutually consistent candidate hypothe-
ses. Inconsistencies of hypotheses are detected
by context-specific procedures, again expressed
as context sets. If the system labeled a region
“ground”, then it must satisfy the rule that it
cannot extend above the skyline.

Function-based object recognition

Winston et al. (1984) point out that there
are many different physical descriptions for ob-
jects, say, a cup. However, a single functional
description can be used to represent all possi-
ble cups. Many man-made objects serve a spe-
cific purpose, and it may be possible to describe
that purpose in a concise manner as functional
descriptions which can be used together with
other knowledge to recognize objects.

Stark and Bowyer (1991) describe a system to
recognize chairs. The system takes 3-D poly-
hedral objects and recognizes whether the ob-
ject belongs to category chair and, if yes, into
which subcategory it falls. A first decision is
made based on the size of the object.

First, all functional elements of an object are
analyzed. Functional elements consists of (i)
single surfaces, for example the seat of a chair,
(ii) groups of surfaces serving one function, (iii)
3-D module of the structure. A function label
(name of the functional property, e.g., sittable
surface) is assigned to the functional elements.

Function labels are defined by procedural
knowledge primitives.  Stark and Bowyer
use relative orientation, dimensions, stability,
proximity and clearance as primitives. The di-
mension checks the size of surfaces if they are
within reasonable sizes. The stability primitive
checks for stable support by examining the con-
tact points of the object with the ground plane.

A hierarchical tree represents the function-
based descriptions. Associated to the nodes of
the graph are frames with information about
the name, type and functional plan. All func-
tion labels have specified constraint values.

6 CONCLUDING REMARKS

Digital photogrammetry is the most intensively
researched area of photogrammetry. Research

efforts are beginning to bear fruit; systems
and software products are becoming opera-
tional, most notably digital photogrammetric
workstations—the pendant of the analytical
plotter.

Despite the progress achieved, we should not
forget that most if not all research effort has
been directed toward solving the easier prob-
lems. In order to respond to the increased de-
mand for more automation we need to address
the harder problems on a much broader base.
First, the photogrammetric research commu-
nity needs to realize the full scope of the prob-
lem. Automating photogrammetric tasks re-
quires a shift from our traditional thinking of
determining points as accurately as possible to-
wards a more global view of information pro-
cessing.

Even though we have successfully produced
maps for decades, we do not seem to pre-
cisely understand how we accomplish it. The
crux of the automation problem is that we
only have a very sketchy theory of how pho-
togrammetric products are generated. Take
recognizing and measuring buildings for exam-
ple. No one knows how human operators iden-
tify buildings, what knowledge they bring to
bear and what experience is necessary. We re-
alize that before an object can be measured
it must be recognized. Recognizing objects
involves image interpretation—a subject pho-
togrammetrists hardly consider a photogram-
metric problem (Helava, 1988).

Digital photogrammetry ultimately encom-
passes all levels of the computer vision
paradigm. The main quest is to make informa-
tion explicit, that is, from gray levels we must
derive a geometric and semantic representation
of the scene. So far, photogrammetrists have
successfully tackled some of the early vision
problems, mostly concentrating on geometric
aspects, neglecting semantic information pro-
cessing.

Digital photogrammetry poses not only a new
challenge to researchers but also to educators.
In order for users to more effectively use digi-
tal photogrammetric products and to articulate
more precisely their requirements they must
have an adequate background. Likewise, fu-
ture researchers are expected to be sufficiently
familiar with cognitive science, visual percep-



tion, computer vision, knowledge engineering,
digital signal processing, just to mention a
few related fields, to further advance digital
photogrammetry. How many photogrammetry
curricula have been revised to include subjects
from artificial intelligence, computer vision, vi-
sual perception and knowledge engineering?
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ABSTRACT

Most algorithms in computer vision and digital photogrammetry assume that digital stereo
pairs are registered in epipolar geometry (normalized images) in order to confine the search
of conjugate features along the same scan lines. In this paper we describe the procedure of
computing normalized images of aerial photographs with respect to the object space. Based
on the exterior orientation of the stereo pair the rotation matrix for the normalized images
is computed. The focal length of the new images may be determined according to different
criteria. We show the case of minimizing the decrease in resolution. During the same process
systematic errors of the scanning device can be considered. Several examples demonstrate
the feasibility of our approach.
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1. INTRODUCTION

Most algorithms in computer vision and digital
photogrammetry are based on the assumption
that digital stereo pair is registered in epipo-
lar geometry. That is, the scan lines of stereo
pairs are epipolar lines. This condition is sat-
isfied when the two camera axes of a stereo vi-
sion system are parallel to each other and per-
pendicular to the camera base. In conventional
aerial photogrammetry, imagery is obtained di-
rectly by scanners, such as Landsat or SPOT,
or indirectly by digitizing aerial photographs.
Thus an aerial stereo pair is not likely to be
in epipolar geometry since the attitude of the
camera at the instant of exposure is different
at every exposure station.

[Kreiling 1976] described a method for recover-
ing the epipolar geometry from the parameters
of an independent relative orientation. The
epipolar geometry is only recovered with re-
spect to the model space. In many instances
it is desirable to establish epipolar geometry
with respect to object space. The procedure
to obtain resampled epipolar images with exte-
rior orientation elements after absolute orien-
tation was developed by [Schenk 90]. In this
paper we call the resampled epipolar image re-
constructed with respect to object space the
normalized image. The original photograph ob-
tained at the instant of exposure is referred to
as the real image. The image which is parallel
to the XY-plane of the object space system is
called the true vertical image.

In this paper we describe the procedure to com-
pute normalized images of aerial images with
respect to the object space and the method to
minimize the decrease in resolution. By con-
sidering systematic errors of the scanning de-
vice, we show that the normalized image is free
of geometric distortion of the scanning device.
The next section provides some background in-
formation followed by a detailed description of
how to determine normalized images.

2. EPIPOLAR GEOMETRY

Fig. 1 shows a stereo pair in epipolar geom-
etry with C’,C" the projection centers. The
epipolar plane is defined by the two projection
centers and object point P. The epipolar lines

e’,e" are the intersection of the epipolar plane
with the image planes. The epipoles are the
centers of bundles of epipolar lines which re-
sult from intersecting the photographs with all
possible epipcznlar planes.

. -

P
Figure 1: Epipolar geometry

The conjugate epipolar lines in Fig. 1 are par-
allel and identical to scan lines. The epipoles
are in infinity because of vertical photographs.
However, in most cases, two camera axes are
neither parallel nor perpendicular to the air
base (C'C"). We transform images into a po-
sition that conjugate epipolar lines are paral-
lel to the z-axis of the image coordinate sys-
tem such that they have the same y-coordinate.
The transformed images satisfying the epipolar
condition are called normalized images in this
paper. The normalized images must be parallel
to the air base and must have the same focal
length. Having chosen a focal length, there is
still an infinite number of possible normal im-
age positions (by rotating around the air base).

3. COMPUTATION OF
NORMALIZED IMAGE

3.1 Camera Calibration

Digital imagery can be obtained either directly
by using digital cameras, or indirectly by scan-
ning existing aerial photographs. In both cases,
the digitizing devices (digital camera or scan-
ner) must be calibrated to assure correct ge-
ometry. For our applications we use the rig-
orous calibration method suggested by [Chen
and Schenk 92]. The method is a sequential



adjustment procedure to circumvent the high
correlation between DLT parameters and cam-
era distortion parameters. The distortion con-
sists of two parts: lens distortion and digital
camera error. Lens distortion is composed by
radial and tangential distortion. Digital cam-
era error is scan line movement distortion since
EIKONIX camera used in our applications is a
linear array camera. For more details about
digital camera calibration, refer to [Chen and
Schenk 92]. With the camera calibration, we
can obtain a digital image free of systematic
distortion. The image is called pizel image in
this paper.

3.2 Transforming pixel irmage to normal-
ized image

The normalized image is a pixel image in epipo-
lar geometry with reference to the object space.
Thus, exterior orientation elements after abso-
lute orientation are to be used for transforming
the pixel image to a normalized image. The
exterior orientation elements consist of three
rotation angles and the location of perspective
center in the object space system. The rela-
tionship between pixel image and object space
is expressed by the collinearity equation

r11(X — Xe) +m2(Y — Ye) +113(Z — Zc)
Prai(X — Xc) +ra2(Y — Ye) + 133(Z — Zc)

zp = —

r21(X — X¢) + r22(Y — Ye) +723(Z — Zc)
m31(X — Xc) +r22(Y — Yo) + 733(Z — Zc)

Yp=—fp

where 2p,,y, are image coordinates and
r11 - -+ r33 are elements of an orthogonal rota-
tion matrix R that rotates the object space
to the image coordinate system. X¢,Ye,Z¢
are the coordinates of the projection center;
X,Y, Z, the coordinates of object points.

There are two steps involved in the transforma-
tion of the pixel images (P’, P") to normalized
images(N', N"). First, pixel images are trans-
formed to true vertical images and from there
to normalized images. Fig. 2 shows the rela-
tionship between pixel images and normalized
images.

The first transformation from pixel image to
true vertical position simply involves a rotation
with RT, where R is an orthogonal rotation
matrix from the object space to image space.
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Cc (X", Y, 2%

Figure 2: Relationship between pixel image
and normalized image

Next, a transformation from true vertical to
the normalized position is applied. The first
angle of the rotation matrix Rp transforming
from true vertical to the normalized position
is K about the Z-axis, then & about the Y-
axis, ) about the X-axis. The rotation angles
K,® can be computed from the base elements
BX,BY,BZ, and Q from the exterior orienta-
tion angles:

K = tan_l% (1)
BZ
$ = —tan™! (2)
(BX? 4+ BY?)!/?
» ! n
Q=21 (3)

2
where BX = X" - X',BY =YY" -Y’, and
BZ =2"-2'
The base rotation matrix Rg will be the fol-
lowing.
Rp = RqRs Rk, (4)
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where
cosK sinK 0
Rg = | —sinK cosK 0
0 0 1
cos® 0 —sind
Rg = 0 1 0
sin® 0 cos®
1 0 0
Rag=| 0 cosQ? sinQ |.
0 —sinQ)l cosf)

The base rotation matrix Rpg is a combined ma-
trix in which the primary rotation axis is about
the Z-axis, followed by a rotation about the Y-
axis and X-axis. Depending on the Q (X-axis
rotation), there are many different normalized
images. The rotation 2 about the X-axis influ-
ences the nonquadratic shape when computing
the normalized images.

The normalized rotation matrix Ry is a multi-
plication of two rotation matrices: the rotation
from pixel image to true vertical position and
the rotation from true vertical to normalized
position.

Ry = RpRT (5)

The Ry is an orthogonal rotation matrix which
transforms the pixel image to the normalized
image. Since in Eq.(5) RT s the transposed ro-
tation matrix of exterior orientation elements,
the Ry matrix must be computed for both im-
ages in stereo. We may use one of two transfor-
mations from pixel image to normalized image:
transformation using collinearity condition or
projective transformation.

3.2.1 Transformation using collinear-
ity  The collinearity condition equations can
be used for the transformation of the pixel im-
age to normalized image. The transformation
is represented in the following equation and is
illustrated in Fig. 3.

oy = — fry TP + r12yp — T13fP (6)
r312p + r32yp — r33fp
_ T21Zp + T22YP — T23 fP
YN = —

b
r31Zp + Ta2yp — Tazfp

where 711 - - - 33 are the elements of the Ry ro-
tation matrix.

3.2.2 Projective transformation  The
projective transformation can be applied since

Zy

Figure 3: Transformation pixel image to nor-
malized image

both pixel image and normalized image are pla-
nar.

_cuzp + c12yp + €13
" cemzp+cayp +1
__ca1Zp + C22Yp + Co3
" cmzp +cayp + 1

(7)

By comparing the coefficients in the projective
transformation with those in the collinearity
equations, we find the following identities:

fnria Nt
Cn= Cay = (8)
fpras fpras
fN7‘12 fN7'22
Ci2 = Coy = ——
fpras fpras
fN7'13 fnT23
Ciz=—-——— Coz = —
733 733
T31 T32
Ca = - Csp = ———
fP7‘33 fP’f'33

When performing the transformation pixel im-
age to normalized image, the quadratic tessela-
tion of the pixel image results in nonquadratic
tesselation of the normalized image. In order to



avoid interpolation into quadratic tesselation,
it is recommended to project the tesselation of
the normalized image back to the pixel image
(see also Fig. 3). The coeflicients for backward
projection are obtained in the same fashion by
RY if the focal lengths of the pixel and normal-
ized image are the same (fp = fn).

Cil =Cn 051 = Ci2 (9)
Cl2=Cn C3=Cxn
Cis=Cafpfn  Ci3=Ca2fpfn
1 1
Cl, = Ci3——— Ci,=C
4 Yo in 32 2fofn

For the more general case of different focal
lengths (fp # fn), the backward projection is
obtained by inverting Ry because R;,l # R%.

3.2.3 Resampling After applying a
geometric transformation from the normalized
image to pixel image, the problem now is to de-
termine the gray value of the new pixel location
in the normalized image, because the projected
position in the pixel image is not identical to
the center of the pixel. Therefore, gray values
must be interpolated. This procedure is usually
referred to as resampling. Several interpolation
methods may be used.

e zero-order interpolation: the gray value
of the nearest neighbor is chosen. This is
identical to rounding the projected po-
sition to the integer, corresponding to
the tesselation of the pixel image system.
This simplest process may lead to unac-
ceptable blurring effects.

¢ bilinear interpolation: the gray values of
the four surrounding pixels contribute to
the gray value of the projected point de-
pending on the distance between the pro-
jected and four neighboring pixels.

3.3 Normalized image

The procedure discussed in the previous section
establishes the transformation between pixel
image and normalized image. The distortion
parameters are determined during camera cal-
ibration. When resampling the gray values for
the normalized image, we also apply the correc-
tion. Thus, the computation of the normalized
image proceeds in four steps (see Fig. 4).

Ty: Transformation between pixel image and
original photograph (diapositive). The trans-
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Figure 4: Relationship between photograph
and pixel image, both in real and epipolar po-
sition

formation parameters are determined during
camera calibration. Common references for
these transformation parameters are fiducial
marks, reseau points, and distinct ground fea-
tures.

Ts: Projective transformation between original
photograph and normalized photograph. The
detailed procedure is described in Section 3.2.

Ts: Definition of coordinate system for the
pixel image in epipolar geometry (normalized
image). In order to minimize the decrease in
resolution (or to optimize the size), first the
four corners of the pixel image((0,0), (0,N),
(N,0), (N,N)) are transformed to real pho-
tographs and then to normalized photo coor-
dinates through T;,7,. The following proce-
dure defines the normalized image coordinate
system.

1. Determine maximum y coordinate of four
corner points in both images. This de-
fines row 0 in both normalized images.

2. Determine z and y differences of corner
points in both photos and compute the
maximum distance d,,; in either z or
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Figure 6: Stereo normalized images of Munich model (resolution: 512 x 512)



y direction (both photos). This deter-
mines the size of the epipolar pixel image
in photo coordinates.

3. Change from photo coordinates to pixel
coordinates by using the relationship
dmaz = resolution pixel image.

T4: Transformation from normalized image to
pixel image in order to perform resampling.
This is accomplished by using T3, T, and T;.

4. EXPERIMENTAL RESULTS

The procedure discussed in section 3 to com-
pute normalized images, has been implemented
and tested with several pairs of aerial images.
Some of our images are digitized by the Photo-
Scan scanner from Zeiss/Intergraph Corp. and
some others by the EIKONIX camera (EC850).
Here, we present the “Munich” model, scanned
with the EIKONIX camera (see Fig. 5).

The real images have a resolution of 4096 by
4096, corresponding to ~ 60um and 256 gray
values. As explained in detail in [Chen and
Schenk 92], the EIKONIX camera introduces
distortion to the scanned image. We remove
this distortion during the procedure of com-
puting normalized images. Fig. 6 shows the
images normalized with respect to the object
space. Note the curved margins of the normal-
ized images. This is the effect of the camera
distortion (now removed!). The transforma-
tion (7)) discussed in section 3.3 must be well
known in order to assure the correct geometry
in normalized images. In our example, its ac-
curacy is less than a half pixel in 4K resolution.

The normalized image coordinate system is
established by transforming the four corner
points of the pixel image so that the loss of in-
formation of the pixel image is minimized. By
applying the rotation of the base by common
omega () about the X-axis, we optimize the
nonquadratic shape of normalized images. For
resampling, the bilinear interpolation method
is employed, which may introduce blurring ef-
fects into the normalized images.

5. CONCLUSIONS
We describe the procedure for obtaining the

normalized images from exterior orientation af-
ter absolute orientation. We also present a
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direct solution to compute the coefficients of
the projective transformation, and show a way
to compute the inverse transformation param-
eters directly, without repeating the transfor-
mation backward.

The procedure of computing normalized im-
ages is successful and operational. The normal-
ized images, with removed distortion caused by
the scanning device, are in epipolar geometry
with respect to the object space. Since scan
lines are epipolar lines in normalized images,
the automatic matching procedure for conju-
gate points will be performed on the same scan
lines. The 3-D surface in object space can be
reconstructed directly by using matched conju-
gate points.
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ABSTRACT

One of the basic tasks in digital photogrammetry is to find conjugate points in a stereo pair
and to reconstruct the 3-D object space (DEM). Edges play an important role in that they
may indicate breaklines in the surface. We use the LoG operator to extract edges (zero-
crossings). In this paper the problem of matching zero-crossings is addressed. Zero-crossings
computed from one image are matched with area-based method. A hierarchical matching
approach is adopted by the use of both, interpolated disparity maps at each level of the
image pyramid, and knowledge from image analysis at very high level of image pyramid.
The method is particularly suited for matching aerial images for the purpose of restructing
surfaces of urban areas.
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1. INTRODUCTION

One of the major research areas in digital
photogrammetry is image matching for recon-
structing the three-dimensional surface of the
object space. This process involves a funda-
mental problem of stereo vision: to find corre-
sponding points in an stereo-pair. Once cor-
respoinding points are determined their three-
dimensional positions can be easily computed,
and the surface is obtained from matched
points by interpolation.

Two methods are commonly used in image
matching: area-based image matching and
feature-based image matching. Aera-based
matching is predominantly used for the object
space (DEM). Here, the corresponding points
are found by comparing the gray levels of cor-
reponding areas (image patches) in a image
stereo-pair. This approach is favored in pho-
togrammetry because of its high accuracy po-
tential. However, there are several critical fac-
tors that need special consideration in area-
based matching. For example,

¢ good approximations for the correspond-
ing image patches are required

e matching in flat area or of sharp relief
changes is extremely hard and it pro-
duces bad results. Both cases usually oc-
cur in urban aerial images

e recovering the surface, especially in ur-
ban areas, from randomly distributed
matched points is difficult

o the reliablity control of the matching is
low

e computations are intensive

Some of these problems are avoided in feature-
based matching. Here, properties (features) de-
rived from the gray levels are matched, rather
than gray levels themselves. This method usu-
ally proceeds in two steps, the first being a local
similarity matching such as comparing the pa-
rameters of detected features, and the second
being a global matching such as checking con-
tinuity constraints. Features detected monocu-
larly may differ and may include spurious data

due to differences in reflectance which are not
caused by the surface shape. This problem is
quite acute in large-scale aerial images of ur-
ban areas. Another point to bear in mind is
that matched features (e.g. edges) do not nec-
essarily consist of conjugate points. In general,
feature-based matching is more robust and less
computationally intensive. But most impor-
tant, matched features are more meaningful
than randomly matched points if it comes to
automatically analyzing image.

The motivation for this research is to com-
bine the merits of both area-based and feature-
based matching methods. First, edges or zero-
crossings (ZC) are detected as features. The
edges are more likely to represent prominent
features of the surface, such as breaklines. In-
stead of matching edges as entities as described
in [Schenk et. al. 1991)], here we match ev-
ery point of an edge by correlation. A match
is accepted if it satisfies epipolar geometry
and figural continuity constraints. This strat-
egy proved to be quite successful [Li et. al.
1990]. In order to cope with urban areas where
correlation must be applied with caution, we
have modified the strategy by including a sur-
face analysis step in the hierarchical matching
scheme. At each level of the image pyramid an
interpolated disparity constraint map is gener-
ated which provides the necessary approxima-
tions for the next level of matching. Knowledge
gained from previous levels is used to guide
matching in the subsquent level of image pyra-
mid. With this new strategy the success rate
of matching aerial images of complex urban
scenes is greatly improved.

2. FEATURE EXTRACTION

Detecting zero-crossings as features for match-
ing was first proposed by Marr and Poggio
[Marr and Poggio, 1979] on the basis of a com-
putational theory on the human stereo vision.
Mathematically, zero-crossings are obtained by
applying the convolution operator VG over
the image f(z,y) as
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G(z,y) = )
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2mo? 2ro?
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f'(z,y) = V2G(=z,y) * f(z,¥)

where G(z,y) is a Gaussian filter, V2G is the
Laplacian of a Gaussian (called LoG), and
f(z,y) is the image gray level function. Con-
volution us denoted by *, and r = (z? + y*)!/?
implies that the operator is rotationally sym-
metric. The advantage of the LoG operator
is that it combines smoothing and differenti-
ating into one operator. Moreover, it is lo-
calized in space and frequency domains. The
filtered image f'(z,y) is divided into positive
and negative regions with average frequency of
v2/o. The boundaries of these regions are the
zero-crossings. Zero-crossings occur wherever
the gray levels change sharply. The degree of
change can be described by the first-derivative
of the gray level function, or the gradient of the
gray levels. Zero-crossings are separated by an
average distance which is equal to the window
size of LoG operator, the diameter of positive
central region of LoG curve w = 2v/2¢. The
larger the window size, the larger the dislocal-
ization of detected zero-crossings from the real
boundaries.

Edges in aerial images represent object bound-
aries or markings (e.g. shadows). Many ob-
ject boundaries correspond to surface break-
lines. The LoG operator is applied to both left
and right image to obtain the zero-crossings.
Several parameters are chosen to control fea-
ture detection. The window size w of LoG op-
erator is selected according to the quality and
the scale of the images to ensure surface fea-
ture detection. In order to supress noise or less
important features, a threshold value ¢ is cho-
sen according to the distinctness of the zero-
crossing. The result of applying LoG operator
are two binary images. Zero-crossings as fea-
ture entities are obtained in the left images as
following:
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e The location of zero-crossings is obtained
by an edge following algorithm. The con-
nected zero-crossing points form the zero-
crossing curve as feature entity.

e Then each zero-crosssing curve is seg-
mented using local curvature maxima as
end points of each segment.

As a result, edges are detected as individual
zero-crossing curves connected by several pos-
sible segments.

3. CORRELATION MATCHING

The flow chart of the matching scheme is shown
in Fig. 1. Like most area-based matching algo-
rithms, epipolar geometry is employed to con-
strain the searching to one dimension [Cho et.
al. 1992). At each level of the image pyramid,
the image patches are first enhanced since area-
based matching methods require good image
quality. Next, zero-crossings are determined
in both images. For each zero-crossing point
in the left image the corresponding point on
the right image is found along the epipolar
(scan) line by area correlation. right image
zero-crossings only help to define the search-
ing window for the correlation matching. The
matching is performed in two steps: initial
point to point correlation, and figural continu-
ity checking acceptance criterion. During the
initial matching, points with maximum corre-
lation values larger than the preset threshold
value are selected as matched points. The key
point here is to find a good approximation of
the search window in the right image. This is
accomplished by using the disparity constraint
map at each level of the image pyramid. Once
matching is completed, an interpolated dispar-
ity image is generated, providing the approxi-
mations needed for the next level matching . In
the highest level of the image pyramid, knowl-
edge gained from surface analysis is also fed
back to the matching process through the use
of the disparity map. After the initial match-
ing, all matched points must satisfy the figu-
ral continuity constraint for final acceptance as
conjugate points.
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Fig. 1. Flowchart of matching scheme
3.1. Hierarchical Disparity Constraint

The search window in correlation matching is
defined by two parameters: location and size.
Obviously, the window size depends on the
goodness of the approximations. We deter-
mine the window size (search range) dynami-
cally based on the disparity map. If the search
window is close to a zero-crossing contour de-
tected in the right image, it is adjusted accord-
ingly, because this zero-crossing is likely to be
the conjugate point.

A crucial step in any matching system is the
approximation of the matching location (cen-
ter of search window). At the top of the im-
age pyramid we have two options. One is us-
ing an average disparity value for all matching
positions. This average approximation is com-
puted from the matched points generated dur-
ing automatic orientation [Schenk et al. 1992,
and Zong et al. 1991]. The second option is
to convert the matched points from the auto-

matic orientation to disparity values. These
disparity values are then interpolated to gener-
ate a disparity map to determine the location of
the search window. After the matching process
is completed in one level of the image pyra-
mid, the disparity map is updated to ensure
that better approximations in the next level are
available. This is quite important, particularly
in urban areas where the disparity values may
abruptly change. It should be noted that the
disparity map always corresponds to the res-
olution of current level in the image pyramid.

3.2. Surface Analysis in High Level
Matching

The use of the disparity map provides not only
good approximations for correlation matching
but also a closer surface approximation after
each level of matching. In higher levels of the
image pyramid such a surface can even provide
a lot of three-dimensional object information.
This information can then be used for real ob-
ject surface analysis, as discussed in [Wang et.
al. 1992]. On the other hand, the information
gained from the 3-dimensional analysis can be
fed back to guide the matching.

One of the most difficult matching cases are
urban aerial images in which there exist man-
made features with extreme height, such as tall
buildings or chimneys. The deformations and
disparities of such features in stereo images can
be very large causing the matching to be ei-
ther incomplete or unsuccessful. The solution
here is to analyze the disparity map. As one
application of 3D feature analysis discussed in
[Wng et. al. 1992], a contour map can be gen-
erated after segmenting a disparity map. The
following rules are implemented to superimpose
knowledge to the existing disparity map and
used to guide the program to find potential
high features.

o A cluster of close-centered contours indi-
cates a potential hump

e If the inner disparity values are much
larger than the outer ones, a potential
high hump is indicated



¢ For a potential high hump, information
is fed back to guide a future matching

¢ The boundary of a potential high hump
is the second closed outer contour since
the first one may indicate boundary of
the environment

e The potential disparity values inside the
selected boundary are the average dispar-
ity values of the matched points inside
the boundary

o The obtained disparity values of the
potential hump are appended to the
matched data and a new disparity map
is interpolated

3.3. Figural Continuity Constraint

The figural continuity criterion implies that
the disparity values along zero-crossings must
be continuous. We implemented the figural
continuity constraint by performing a Hough
transformation of all the matched points be-
longing to one segment of a zero-crossing con-
tour. Continuous disparity values show up as
clusters in the Hough space. If fewer than
15 points fall into the cluster a flag is set to
indicate that there is no corresponding zero-
crossing segment. Finally, the location of the
corresponding segment in the right image is de-
termined by the Hough transformation and the
correlation threshold.

4. EXPERIMENTS

The matching algorithm was tested with sev-
eral pairs of aerial photographs. In this paper,
we present the results from stereo-images (193,
195) taken over the campus of the Ohio State
University. This model represents a very typi-
cal urban area of all the different models tested,
it was the most difficult one. The photo scale
here is approximately 1 : 4000. The diaposi-
tives were scanned to a resolution of 30y pixel
size by Intergraph Corporation using the Pho-
toScan. However, we only used a resolution
of 60 which yielded a 4096 x 4096 pixel im-
age. The ground coverage of a pixel is approx-
imately 25 X 25cm.
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Fig. 2 and 3 show the original aerial images
at the coarsest resolution of 512 x 512. Zero-
crossings were first detected with the LoG op-
erator (w = 5), and then matched with a single
average disparity approximation. The range of
the search window was set to 10 pixels in order
to avoid wrong matching. The matched zero-
crossings are shown in Fig. 4 and 5. A disparity
map was interpolated by using Modular func-
tion on Intergraph workstation. The result is
shown in Fig. 14. which outlines the surface of
the whole overlapping area of the model. Some
humps are clearly visible.

The interpolated disparity map was then con-
verted into an image of 512 x 512 resolution and
the disparity values were treated as graylevels.
Fig. 6 and 7 show matched zero-crossings of
a 512 x 512 image patch selected from stereo
images of 1K X 1K resolution. Fig. 15 shows
the interpolated 3D disparity map. The humps
are now more prominent. Fig. 8 and 9 depict
matched zero-crossings of a 512 X 512 image
patch from 2K x 2K resolution images. The
interpolated disparity values are shown in Fig.

16. The surface is fairly well approximated at
this level.

The procedure is repeated at the finest resolu-
tion, again with an image patch size of 512x512
pixels. In this example the disparity values
range from 0 to 118. The segmented dispar-
ity image resulting from matching is shown in
Fig. 12 where the hump is clearly indicated.
Fig. 10 and 11 show the matching results su-
perimposed to the resampled images, while Fig.
17 and 13 show the interpolation of the final
matching results in the disparity map and the
three-dimensional object space, respectively.

5. CONCLUSION

The presented matching scheme combines the
merits of both area-based and feature-based
matching methods and proved succussful in the
aerial image matching. The use of a hierarchi-
cal approach and surface approximation makes
this approach particularly suited for urban area
image matching. It is found that the precise
detection of prominent features is helpful for
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recovering the object surface. The reliability
of the correlation matching is improved by the
employing the figural continuity constraint. Fi-
nally, this matching scheme shows a great po-
tential for object surface analysis and recon-
struction.
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Fig.2. Original left epipolar image (512 x 512) Fig.3. Original right epipolar image (512x512)
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matching (4K)
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ON THE INTERPOLATION PROBLEM OF AUTOMATED
SURFACE RECONSTRUCTION

Raid Al-Tahir
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Commission III
ABSTRACT

Automatic surface reconstruction entails two major problems: Determining conjugate points
or features (matching) and densifying the matched points in object space (interpolation).
The two tasks are usually performed sequentially in a hierarchical approach, without inter-
acting with one another. In order to improve the success rate and the reliability of automated
surface reconstruction, particularly in large-scale urban areas, the matching on subsequent
levels must take into account the results from densifying and analyzing the surface. In this
paper we focus on a surface interpolator that produces as realistic surface representation as
possible. The interpolation and surface analysis may give clues about surface discontinuities
and occlusions — a vital feedback for the matching process on the next level in the hierarchical
approach.
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1. INTRODUCTION

The main objective of digital photogrammetry
is to collect enough information to model the
portion of the real world that has been pho-
tographed. Two kinds of information are of
major interest to accomplish that goal; sur-
face topography, represented by Digital Eleva-
tion Model (DEM), and objects on the surface
(natural or man-made) which are characterized
as discontinuities in the surface. Besides be-
ing an essential intermediate step for object
recognition, reconstruction of a portion of the
earth’s surface is the end product for digital
photogrammetry.

Automatic surface reconstruction entails two
major problems: determining conjugate points
or features in the images (matching), and den-
sifying the matched points in object space (in-
terpolation). The two tasks are usually per-
formed sequentially in a hierarchical approach,
without interacting with one another. In order
to improve the success rate and the reliability
of automated surface reconstruction, particu-
larly in large-scale urban areas, the matching
on subsequent levels must take into account the
results from densifying and analyzing the sur-
face.

This paper is a part of ongoing research focus-
ing on the process of surface interpolation and
analysis. The purpose of this paper is to de-
fine the tasks for such a process. The paper
reviews previous works that have been done in
the related fields. The emphasis is on the ap-
plicability of suitable for an automated surface
interpolation.

2. OSU SURFACE
RECONSTRUCTION SYSTEM

Due to the large amount and variety of infor-
mation in the aerial images, the success of any
image processing operation cannot be guaran-
teed. This is especially the case of large-scale
urban scenes because occlusion is more fre-
quent, and the visible surface is less smooth.
The only alternative to constrain the processes
is to adopt a scale-space approach that pro-
ceeds hierarchically from the lowest resolution
for a stereo pair to the finest. OSU surface re-
construction (Schenk & Toth, 1992) is such hi-
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Figure 1: Qutline of OSU surface reconstruc-
tion system.

erarchical approach. It consists of several mod-
ules that are executed in an iterative fashion
(Figure 1). Each level of the process aims at
refining the geometry of the images and im-
proving the surface representation.

In the OSU surface reconstruction system, the
process starts by having two conjugate images
sampled at the lowest level of resclution. The
orientation of these images is obtained through
edge detection and matching. The results of
this step are the orientation parameters, as well
as a set of highly reliable matched points. The
raw surface is then constructed by computing
the 3-D object space coordinate for the set of
points. These points are sparsely and irregu-
larly distributed. Thus, a dense surface repre-
sentation (DEM) must be interpolated for. A
DEM, tesselated at the next higher level of res-
olution, is essential for surface analysis, and for
the subsequent cycles. The final step is surface
analysis for hypothesis generation and verifica-
tion concerning potential break lines and sur-
face segmentation.

A new cycle starts with sampling the original
stereo pair at the subsequent level of resolu-
tion, and warping the left and right images
with respect to the interpolated surface. The
whole process is repeated until the final refined
surface is reached. At each level, images are
rectified, the matching accuracy and reliabil-
ity are improved, and a better surface repre-
sentation is obtained. At the last level, the
matching vectors vanish, the warped images
become orthophotos, and the true surface is re-



constructed.

From this overview, it is clear that one of the
objectives of surface interpolation is to con-
struct as a realistic surface representation as
possible. This task is crucial for the success of
matching on subsequent levels. The search for
a match is performed by centering a correlation
window over a point of a zero-crossing contour
in one image. On the other image, the search
window is placed and shaped according to the
expected depth range in that area (Schenk &
Toth, 1991).

The other goal of the surface interpolation is
to provide information for the surface analy-
sis. It is important that the interpolator does
not introduce new characteristics to the sur-
face other than what is derived from the obser-
vations. Creating new maxima or minima in
the surface is an example for undesired side ef-
fects of interpolation. Additionally, the surface
interpolator should not smear essential surface
shape characteristics. Such a situation may oc-
cur when a smooth surface is interpolated over
observations on break lines.

3. SURFACE INTERPOLATION

The problem of surface fitting consists of tak-
ing a region containing a list of function val-
ues, and finding a function on this region that
agrees with the data to some extent and be-
haves reasonably between data points (Lan-
caster & Salkauskas, 1986). The accuracy that
can be obtained from a fitting process depends
on the density and the distribution of the refer-
ence points, and the method. Data points are
arranged in various distribution patterns and
densities. Accordingly, surface fitting methods
designed for one case differ from those designed
for dealing with other distribution patterns.

There are several criteria for classifying surface
fitting methods. The first criterion is the close-
ness of fit of the resulting representation to the
original data. Thereby, a fitting method can
be either an interpolation or an approximation.
Interpolation methods fit a surface that passes
through all data points. Approximation meth-
ods construct a surface that passes near data
points and minimizes, at the same time, the
difference between the observed and the inter-
polated values.

57

Another criterion is the extent of support of
the surface fitting method; a method is classi-
fied as a global or a local one. In the global
approach, the resulting surface representation
incorporates all data points to derive the un-
known coefficients of the function. By doing
so, some of the local details submerge in the
overall surface, and editing one point affects all
distinct points. With local methods, the value
of the constructed surface at a point considers
only data at relatively nearby points. Thus,
the resulting surface emphasizes the small-scale
trends in the data (Watson, 1992). Many
global schemes can be made local by partition-
ing the original domain into subdomains.

Yet another criterion for classifying interpo-
lation methods is their mathematical models.
Surface interpolation methods are divided into
three main classes; weighted average methods,
interpolation by polynomials, and interpola-
tion by splines.

3.1 Weighted average methods

These methods use a direct summation of the
data at each interpolation point. The value
of the surface at a non-data point is obtained
as a weighted average of all data points. The
weight is inversely proportional to the distance
7;. Shepard’s method may serve as an example.
Here, the value of a point is evaluated as

N ot
Zzi_l:v%, when r; # 0,
§=1 T (1)

F; when r; = 0.

f(z,y) =

Weighted average methods are suitable for
interpolating a surface from arbitrarily dis-
tributed data. However, one drawback is the
large amount of calculations, especially for
many data points. To overcome this problem,
the method is modified into a local version. A
smaller subset of data is selected for each non-
data point based on a fixed number of points,
or a fixed area. The problem now is to define
proper parameters (e.g. the variable g in equa-

tion (1)).
3.2 Interpolation by polynomials

A polynomial p is a function defined in one di-
mension for all real numbers z by

p(z) = ao+arz+-- +ay_1z¥  aye?, (2)
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where N is a non-negative integer and
ag,...,ay are fixed real numbers. Generally,
fitting a surface by polynomials proceeds in two
steps. The first one is the determination of the
coefficients of the polynomial based on the set
of data points and the criteria controlling the
fit of the polynomial function. Then, using the
computed parameters, the second phase eval-
uates the polynomial to obtain values of the
fitted surface at given locations.

Piecewise polynomials are the local version for
surface fitting with polynomials. This ap-
proach works well with irregularly spaced data.
The general procedure for surface fitting with
piecewise polynomials consists of the following
operations:

1. partitioning the surface into patches of
triangular or rectangular shape, the ver-
tices of which are the reference points.

2. fitting locally a leveled, tilted, or second-
degree plane at each patch, using one or
more terms of the polynomial.

3. solving the unknown parameters of the
polynomial. To enforce continuity (and
smoothness) along the joining sides of
neighboring patches, partial derivatives
must have been estimated at each refer-
ence point.

Least squares fitting by polynomials performs
well if many points are available and the surface
has fairly simple form (Hayes, 1987). On the
other hand, interpolation by polynomials with
scattered data causes serious difficulties, one
of which is a singular system of equations due
to data distribution (e.g. data lie on a line).
Another problem is an ill-conditioned normal
equation system as is the case of consecutive
intervals that contain no data. Yet another
problem in using polynomials is their tendency
to oscillate, resulting in a considerably undu-
lating surface.

3.3 Interpolation by spline functions

A spline is a piecewise polynomial function de-
fined on contiguous segments. In defining a
spline function, the continuity and smoothness
between two segments are constrained at the
interior knots by demanding the existence of
certain derivatives. For example, a spline of

degree n has n-1 derivatives at the knots, de-
noted by C™1.

Bicubic splines, which have continuous second
derivatives (i.e. C?), are commonly used for
surface fitting. The solution is obtained by a
least-squares approach or the tensor product of
orthogonal functions. With increasing number
of data points, problems with computing effi-
ciency and accuracy may occur. B-splines are
also frequently used for surface fitting. They
are characterized by their finite support, which
is the interval over which the function is non-
zero. Limiting the support of a spline changes
the normal equation into a band form. There-
after, the amount of computations is reduced
by a factor of (number of knots/4)? (Hayes,
1987).

Bicubic splines and B-splines work best in the
case of gridded or uniformly-distributed dense
data (Hayes, 1987). However, rank-deficiency
in the system of equations becomes a serious
problem when applying these approaches to
scattered data. Because of data distribution,
data points may not lie in the support region of
splines. Another situation rises when the data
are clustered in one region creating a set of lin-
ear equations of marginal differences, thereby
producing near singularity.

Nodal basis-functions are another sub-group of
methods for surface fitting with splines. The
general procedure in this approach consists of
defining a set of basis functions and the corre-
sponding data points. FEach basis function is
centered over a data point (node). The inter-
polation spline function then is a linear com-
bination of the basis functions. The advan-
tage in using such an approach is that knowl-
edge about spline locations (knots) is not re-
quired. Another advantage is that values at
the nodes of a regular grid are found directly in-
stead of the two step approach mentioned ear-
lier (Briggs, 1974).

Thin plate splines are derived from the nodal
basis-functions. These splines are also called
“minimum curvature splines” since they are ob-

tained by minimizing the total curvature of cu-
bic spline s



The same form can be obtained by solving the
small deflection equation of an infinite plate
that deforms by bending it only. The dis-
placement u due to a force f; acting at N
points is represented by the differential equa-
tion (Briggs, 1974)

64u+2 0*u +@ - 7
Oz O0z20y? Oyt ~ °

at observations,
0 otherwise. (4)

Adopting the physical analogy, depth data is
represented by a set of vertical pins scattered
within the region; the height of an individual
pin is related to the elevation of the point. Fit-
ting a surface is then analogous to constraining
a thin (elastic) plate to pass over the tips of the
pins (Figure 2).

Figure 2: Fitting thin plate over pins.

One method for solving the differential equa-
tion is by finite differences or finite elements.
Following this approach, the discrete interpo-
lation becomes a repeated passage of a set of
simple masks, such as the following mask for
elements within a grid:

1
2 -8 2
1 -8 20 -8 1 (5)
2 -8 2
1

3.4 Surface interpolation by regulariza-
tion.

A problem is well-posed if a solution exists, is
unique, and depends continuously on the ini-
tial data. It must also be well conditioned
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to ensure numerical stability (robust against
noise) (Poggio et al., 1985). Shorter than these
conditions, the problem is considered ill-posed.
Reconstruction of the visible three-dimensional
surfaces from two-dimensional images is an ill-
posed problem because some information is
lost during the imaging process (projecting 3-D
into 2-D) (Poggio et al., 1985). Other reasons
are the noise and erroneous, inconsistent, and
sparse measurements (Terzopoulos, 1985).

Regularization is the frame within which an ill-
posed problem is changed into a well-posed one
(Poggio et al., 1985). The class of possible so-
lutions is restricted by introducing suitable a
priori knowledge, which in the case of surface
interpolation is the continuity of the surface.
The problem is then reformulated, based on
the variational principle, so as to minimize an
energy function F constructed from two func-
tionals. The first one measures the smooth-
ness of the solution S, while the second one,
D, provides a measure of the closeness of the
solution to the observations. The two mea-
sures are combined to form the energy func-
tion £ = § 4+ D. Applied to the surface recon-
struction problem, the energy function can be
written as

[ [5G dedy+x Xis (e, ) -, (6)

In practice, the function in the integration is
either a thin-plate spline (f2, + 272, + f2,),
a membrane (f2, + 3y), or a combination of
both. The variable A is the regularization pa-
rameter which controls the influence of the two
functionals. If A is very large, the first term in
the integral heavily affects the solution, turn-
ing it into interpolation (close to data). On the
other hand, if A is small, the solution empha-
sizes the smoothness of the surface.

4. DISCONTINUITY DETECTION

There are only a few methods which try to
detect discontinuities in the surface. Grimson
and Pavlidis propose detecting discontinuities
before interpolating the surface to overcome
the problem of oscillations in the fitted surface
(Grimson & Pavlidis, 1985). The main idea for
this approach is to fit locally a simple surface
(plane) to the data and examine the distribu-
tion of the residual error. If it appears to be
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“random”, then the hypothesis of no disconti-
nuity is accepted. If there is a systematic trend,
then a discontinuity of a certain type is hypoth-
esized. Discontinuities are subdivided into var-
ious types, each of which is characterized by
a certain combination of change in magnitude
and sign of the residual. Once a discontinu-
ity is detected, the surface is broken down into
smaller regions, and the surface reconstructor
is passed over each of them.

The second approach, proposed by Terzopou-
los (Terzopoulos, 1985), is related to the energy
function of a thin plate. The thin plate sur-
face over-shoots constraints near the disconti-
nuity causing a sign change of the bending mo-
ments at surface inflections. Depth discontinu-
ities are detected and localized by examining
the bending moments in the interpolated sur-
face. Changing control parameters within the
energy function allows the surface to crease and
fracture at the detected discontinuities and re-
duce the total energy.

Another approach we investigated for detect-
ing discontinuities is based on the concept of
a “line process” introduced in (Geman & Ge-
man, 1984. A line process is a set of variables
located at the lines which connect the original
lattice (pixels or grid cells) (Figure 3). The
purpose of a line process is to decouple adja-
cent pixels and reduce the total energy if the
values of these pixels are different. In such a
case, the variable of the line process associated
with these pixels is set to one, otherwise it is
set to zero.

e O 8o O o
(o < <
e O o O o
L] (o] L]
e O o O o

Figure 3: Dual lattice of depth () and line (o)
elements.

Eventually, breaking the surface into small
pieces around each data point will result in the
lowest energy state. To avoid this, a penalty
a should be paid (in terms of energy) when a

break line is introduced. Thus, a break line will
only be introduced when paying the penalty is

less expensive than not having the break line
at all. The penalty function takes the form
P = al;, where [; is the line process. This
function is added to the original energy func-
tion, changing the problem into minimizing

E=S+D+P. (7

The result is a combination of a continuous
function for the surface and a discrete one for
the lines. This combination allows surface re-
construction and discontinuity detection at the
same time. However, F is a non-convex func-
tion that has many local minima.

One proposal to solve the non-convex func-
tion is to adopt a deterministic approach. The
line process P is merged with the interpolation
function S (Blake & Zisserman, 1987). The
modified function is expressed in one dimen-
sion as

glu;—ui—q1) = Az(’u.; - u;_l)z(l L)+ al;. (8)

The resulting function controls the interaction
between neighboring grid cells. Such a function
prefers continuity in the surface, but allows oc-
casional discontinuities if that makes for a sim-
pler overall description — a theme called “weak
continuity constraints”.

The modified configuration is then solved by
the graduated non-convexity algorithm. The
non-convex function E is gradually approxi-
mated by a convex one through a family of p
intermediate functions. The parameter p rep-
resents a sequence of numbers ranging from one
to zero. The function E() is a crude approx-
imation to the non-convex function. However,
as p goes to zero, E(®) becomes closer to the
original non-convex one. The neighbour inter-
action function is also modified into a function
of A\, a, and p.

5. EXPERIMENTS AND
CONCLUSION

For experimental purposes, we designed syn-
thetic data representing a set of irregular blocks
in a small region. Depth information is ar-
ranged in a fashion that mimics the pattern of
the results of the matching process in the sur-
face reconstruction system. Thus, depth values
were provided for some points on, and near by,
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Figure 5: 3-D representation of synthetic data
points.

the edges of the blocks and the edge of the re-
gion as shown in figure 4. Figure 5 is a 3-D
representation of these points. The location
and value of a data point is represented by a
peak, while no data points are set to zero.

We evaluated the interpolation methods ac-
cording to the following criteria:

1. Interpolated surface must be plausible
compared to the visible surface in the real
world.

2. The interpolation method must not jeop-
ardize clues for surface analysis.

3. The method should be able to utilize a
priori information on break lines.

4. The method must be suitable for automa-
tion. No human interaction should be
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necessary to correct parameters.

5. Reasonable demand on computer re-
sources, i.e. time, memory, and storage.

Matching aerial images typically renders a
large number of data points, especially at the
finer resolutions. Therefore, we have excluded
all methods of least square fitting by polyno-
mials or splines because of computational con-
siderations. These methods would lead to a
huge system of equations (in the worst case
is one equation per point). In addition, hav-
ing sparse data increases the risk of deficiency
in the normal equation. Fitting a surface by
piecewise polynomials, furnished with proper
triangulation algorithm, stands a better chance
for more efficient and realistic surface interpo-
lation. However, the user must identify the set
of break lines prior to the interpolation. Oth-
erwise, a peculiar surface representation would
be obtained.

The methods of weighted average are better
suited for handling sparse data. Besides, they
do not introduce new global extrema in the sur-
face. On the other hand, there is no established
automatic strategy for defining the data subset
for a point. Another concern is the fact that

Figure 6: Surface interpolation by weighted av-
erage method.

no a priori information about break lines can
be included. Therefore, the value of a point is
computed based on data across break lines, cre-
ating undesired artifacts. Figure 6 shows the
result of applying the weighted average method
on the test data. The interpolated surface can-
not be considered realistic.
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None of these methods provides explicit infor-
mation for surface analysis. This quite different
for fitting a surface by a thin plate (or mem-
brane). Adopting the analogy of a physical
model allows exploring the mechanics of such
model. Mechanical concepts, such as stress and
bending moments of a plate provide the means
for detecting break lines. Both models of thin
plate and membrane are capable of achieving
surface interpolation and break lines detection.
Judging from figures 7 and 8, the membrane
produces a more realistic surface that the thin
plate model.
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Figure 7: Surface interpolation by thin plate
splines.

Figure 8: Surface interpolation by a membrane.

Figure T represents the interpolated test data
by a thin plate. The problem of over-shooting

between data points is clearly noticeable. Fig-
ure 8 shows the interpolation by a membrane.
Here, the problem is interpolating between
high frequency features. This is avoided by us-
ing the weak continuity constraints. Interpola-
tion by a weak membrane is shown in figure 9.

The discontinuities are now detected during

Figure 9: Surface interpolation by a weak

membrane.

Figure 10: Detected break lines in the surface.

the surface interpolation. Figure 10 shows the
detected break lines superimposed on the sur-
face.

Ongoing research is addressing the following is-
sues:
o Increasing the degree of automation of

surface interpolation.

e Subpixel accuracy in the determination
of a break line.



Defining the means to convey disconti-
nuity information to other modules and
levels.

Integration of other cues for discontinu-
ity, such as the residuals between succes-
sive levels of surface representation.
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ABSTRACT

Surface reconstruction is a very important step towards the automation of mapping process.
Surface analysis is a key part of the OSU surface reconstruction system. In this paper we
introduce a surface analysis approach for the surface reconstruction of urban area. The
approach consists of hump detection, grouping of 3D edges, and classification of 3D edges.
The outputs of the surface analysis include locations and boundaries of humps, properties
of 3D edges(e.g. horizontal or vertical, and on the topographic surface or above it ), and
occlusion prediction. Experimental results demonstrate this surface analysis approach can
substantially improve the 2D edge matching and interpolation of surface.
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1. INTRODUCTION

Surfaces, their properties and characteristics
are probably the most important intermediate
representation for extracting useful 3D infor-
mation from images. As pointed out in Schenk
et al., 1991, surface analysis is a key step to-
wards reconstructing the topographic surface
of urban area. The goal of 3D urban area sur-
face analysis is to extract primitives with early
vision processes(e.g. boundaries and depths),
as well as symbolic primitives(e.g. properties of
edges, such as breaklines and ridges, and occlu-
sions) for the purpose of surface reconstruction
and object recognition.

In digital photogrammetry, many successful
examples of topographic surface reconstruc-
tion have been published, but mostly for small
scales. Large-scale urban area are posing major
problems, regardless of the matching method
employed. Area based matching methods suf-
fer from foreshortening problem which is very
much a factor in urban areas. Feature based
matching methods, on the other hand, are af-
fected by dislocalization when using edge oper-
ators of large spatial extent.

In the OSU surface reconstruction system(see
Schenk et al. 1991), we use a feature based
matching approach(see Zong, 1992). The main
goal is to reconstruct the surface by its break-
lines. Breaklines are likely to correspond with
edges in the image. Figure 1 depicts an 3D ur-
ban area surface analysis module which plays
an important role in the OSU surface recon-
struction system. The surface analysis serves
two purposes: guiding the matching process
and surface interpolation.

As can be seen in Figure 1, surface analysis
consists of three parts: hump detection, group-
ing of 3D edges, and classification of 3D edges.
In the following sections, we will explain the
algorithms made for the three parts, report
about experimental results, and conclude with
suggestions for future research. The 2D edge
matching and the interpolation are treated in
the papers of Zong, 1992 and Al-Tahir, 1992,

respectively.

Y
__.pl 2D Edge Matching ]

Surface Interpolation [ gﬁf}’;ﬁg

Surface | Analysis

I Hump  Detection I

v

Grouping of 3D Edges

Classification of 3D Edges

Symbolic
Primitives

Figure 1: 3D urban area surface analysis mod-

ule

2. BACKGROUND

A great deal of research in digital photogram-
metry is devoted towards the automation of
photogrammetric processes. It is a very dif-
ficult problem, far from being solved. The goal
is to produce map as automatically as possi-
ble. Obviously, automation includes recogniz-
ing objects which then have to be digitized.
Questions like how many objects there are and
where they are in a given scene must be an-
swered. To answer these questions, a recon-
structed topographic surface is needed.



To reconstruct a topographic surface and rec-
ognize objects on the surface, edges are the
main input. Physical boundaries of objects
play a very important role in the human vi-
sual and recognition systems. Some psycholog-
ical studies about the human visual and recog-
nition process indicate that physical bound-
aries are the fundamental feature to graphically
represent or describe objects[Attneave, 1954].
In Marr’s paradigm for a machine vision sys-
tem, which is the most advanced approach to
date, edges (intensity changes) form the primal
sketch[Marr, 1982]. Of course, surface recon-
struction is a very complicated process, and to
get a complete surface solely from edges is obvi-
ously not enough. To create a robust approach,
we need to incorporate other information, such
as texture and shape.

The edges detected in 2D images are inten-
sity changes. They are caused by physical
boundaries, but also by other phenomena like
depth discontinuities between surfaces, shadow
boundaries, changes in reflectivity, orientation,
and texture of a surface. As known, the hu-
man visual system has an astounding percep-
tual classification and grouping ability to par-
tition an image and to find associations among
the various parts of the image. Grouping and
classification make some property explicit in
the whole process of object recognition, image
understanding and image interpretation [Mc-
Cafferty, 1990]. For surface reconstruction,
we conclude that to find explicit properties of
surface, grouping and classification must per-
formed.

3. ALGORITHMS

3.1 Overview

For the surface reconstruction process, surface
analysis should have the capacity of group-
ing 3D edges into humps or topographic sur-
face, and further classifying them into horizon-
tal and vertical edges. Horizontal edges are
either on topographic surface or above it. Also
surface analysis should be able to provide in-
formation about the boundaries and elevations
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of humps. The results of grouping and classifi-
cation are used to complete the surface recon-
struction process and later to aid object recog-
nition, particularly the recognition of build-
ings.

Hump detection is the first step of the surface
analysis. By a hump we mean something that
clearly stands out from the topographic sur-
face. Hump detection is important for several
reasons:

¢ Humps may be the reasons for occlusion.
Their detection can be used to determine
occlusions in the image.

e Humps may cause problems for surface
interpolation. Their known location can
positively influence the surface interpola-
tion.

¢ Hump detection is a requisite for the
grouping and classification of 3D edge.

¢ Finally, humps may aid object recogni-
tion,particularly recognition of buildings.

Once humps are detected, their boundaries are
known. Based on the hump information, all
3D edges are divided into groups, and then all
the edges in each group are classified. In the
process of classification, all edges are classified
into horizontal and vertical edges. Further all
horizontal edges are classified as edges on the
topographic surface or above it.

After the classification, the results are used in
the matching part and interpolation part. The
information fed back to the two parts includes
locations, boundaries, and elevations of humps
and predicted occlusions. Additionally, infor-
mation about the properties of 3D edges(e.g.
horizontal, vertical, and on the topographic
surface or not) is available for the interpolation

3.2 Hump detection

3.2.1 Generating DEM from matched 2D
edges

The position of matched edges in object space
is computed with exterior orientation parame-
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ters. A DEM surface is generated by interpo-
lating the 3D edges.

3.2.2 Transforming DEM surface to gray-
value image

To detect humps, the DEM surface is trans-
formed to a gray-value image. This gives us
all the advantages of 2D image processing tech-
niques. The formula used to transform a digital
elevation value to a gray value is as follows:

Z - Zmin
= ) —

g 255 Zmaz ~ Zmin (1)
where g is the transformed gray value, Z, .4z
and Z,,;n are maximum and minimum eleva-
tion values of DEM surface respectively, and
Z is elevation value to be transformed. After
the transformation, humps show up as bright
clusters on the gray-value image.

3.2.3 Image segmentation and boundary
formation

In Figure 3a we notice some bright clusters
correspond to the humps of the DEM surface
shown in Figure 2c. In order to find all the
humps, we segment gray-value image to form
contour lines. In this step, the interval be-
tween adjacent contours is a key parameter. In
order to detect all humps, the interval should
always be smaller than the lowest height of the
humps in a given scene. In the contour image,
humps are characterized by closed boundaries.
See Figure 3b.

3.2.4 Eliminating non-hump boundaries
and redundant hump boundaries

In Figure 3b some non-hump boundaries as
well as redundant boundaries can be seen. To
eliminate all non-hump boundaries, two generic
properties are used. Closure property: a
boundary for a hump is always closed. Length
property: a hump boundary should not be too
short or too long. By choosing the most out-
side boundary, redundant boundaries are elim-
inated.

3.2.5 Eliminating blunders

After all bright clusters in a gray-value DEM
image are determined, they must be examined
for blunders, such as some high peaks caused by
wrong matching and bunkers. Shape operators
may be useful to detect some blunders. An ex-
ample for a simple shape operator is the ratio of
length and width of a hump. For a complicated
one, central moments may be used[Bian, 1988].
For instance, the second and third order central
moments will tell the shape of an object and
its symmetry. For bunkers, an elevation oper-
ator may be implemented to check all detected
humps. If the gray value(elevation) inside a
hump is lower than its surroundings, then it is
not a hump, but a bunker. After all blunders
have been eliminated(Figure 3c), the remaining
humps are stored, together with shape informa-
tion, such as average height, length, width, and
volume.

3.3 Grouping of 3D edges

All 3D edges are now grouped into humps
based on their locations under the condition
that all edges in one group should belong to
one hump. The number of groups is identical
to the number of humps. Edges which do not
belong to any hump are grouped into an extra
class: topographic surface edge.

3.4 Segmentation and Classification of
3D edges

In this step hump edges are segmented into hor-
izontal and vertical edges, and further horizon-
tal edges are classified into edges on the topo-
graphic surface or above it.

3.4.1 Classifying 3D edges into horizontal
and vertical edges

In the 3D space, an edge can be a 3D curve.
For such an edge, some segment(s) of it may
be horizontal and other segment(s) are verti-
cal. Horizontal edges are composed of horizon-



tal edge segments, and vertical edges are from
vertical edge segments. To get the segments,
every point of a 3D edge is classified as hori-
zontal point or vertical point based on an angle
defined by the following formula:

angle = arctan(zi(_i—zi'_l-) (2)
zy

where z; and z;_; are two elevation values of
the two adjacent points, p; and p;_;, and dgy
is the distance between the two points on hor-
izontal plane. If the angle is greater than a
threshold, the point pi is classified as vertical.
After all points of an edges have been classi-
fied, by simply connecting the adjacent points
of the same class, horizontal and vertical edges
are generated.

3.4.2 Classifying horizontal edges belong-
ing to the topographic surface

To classify horizontal edges in a hump as edges
on the topographic surface or above the sur-
face, first it is necessary to find the minimum
elevation of the edge points of a hump. Once
the minimum elevation is found, according to
the average elevation of a horizontal edge, the
edge is classified as edge on the topographic
surface or above it.

4. EXPERIMENTAL RESULTS

We tested our approach on several stereo pairs
of urban area image patches.

4.1 Source Data

The image patches used in the experi-
ments were selected from aerial images(model
193/195) of The Ohio State University campus,
a good example of a typical urban scene. The
scale of the photographs, from which the digi-
tal images were digitized, is about 1:4000. The
experiment was performed on the images with
a 2k x 2k resolution. Each pixel in the images

69

represents a square 44cm x 44cm. For the ex-
periment two image patches were selected with
a size of 512 x 512.

Figure 2a shows the two image patches used
in the experiment. The matched edges are
shown in Figure 2b, and a DEM surface gener-
ated from the matched edges is shown in Figure
2¢c. The two figures in Figure 2c are two dif-
ferent view angles for same one DEM surface.
The DEM surface was generated by using Inter-
graph’s modeler software. We recognize from
Figure 2c that the buildings are distorted by
the interpolation process.

4.2 Experimental results

Figure 3a is the gray-value DEM image for the
DEM in Figure 2c. In this image some bright
clusters are recognizable, which indicate poten-
tial humps. Comparing this figure with Figure
2a, we see that areas with buildings are obvi-
ously brighter than their surroundings. Figure
3b shows a contour image of Figure 3b. The
contour interval used was 4 meters. Figure 3c
depicts all detected humps. At this stage the
number of humps, the locations and boundaries
of the humps become known. Additionally, the
elevations and shapes of the humps are deter-
mined as well.

After the hump detection, all edges are associ-
ated to humps or topographic surface based on
their geometrical locations. To test the results
of this grouping process, a DEM was generated
for every hump using only the edges belong
to the hump. Figure 3d and 3e are two sam-
ples of them. One of the two humps is OSU
library, and the other one is University Hall.
The two humps have the same shape as they
are in the DEM surface in Figure 2¢, which
indicates the result of grouping is correct. Fi-
nally the Figure 3f shows the DEM of the topo-
graphic surface after all the humps have been
removed, with the exception of two incomplete

humps(the contours of these two humps are not
closed).

Figure 4 shows the results of classification.
Based on the derived information of edge prop-
erties, we generated the top of OSU library in
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Figure 4a by using all horizontal edges which
are above the topographic surface in the hump
“library”. Figure 4b is a combination of verti-
cal edges and horizontal edges which are above
the topographic surface.

The derived hump information and edge prop-
erties are made available to the matching
and interpolation processes. With this in-
formation, the matching improved consider-
ably{Zong, 1992]. The improvement of the in-
terpolation part is shown in Figure 5. Here we
show the DEM after a new interpolation took
place with hump information. The result in
Figure 5 demonstrates that the building walls
in Figure 5 are more vertical than those in Fig-
ure 2c.

5. CONCLUSION

Surface reconstruction of urban areas is a
very important step towards the automation of
mapping processes. A complete surface is es-
sential in order to recognize man-made objects
and interpret images. Surface analysis is a key
part of the OSU surface reconstruction system.

The experimental results demonstrate that the
surface analysis can substantially improve the
matching and interpolation of the surface of ur-
ban area. Additionally, the results of the hump
detection can be used to recognize buildings.
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Figure 3: Detected humps and grouping examples. (a) Gray-value DEM image for the DEM surface
in Figure 2(c). (b) Elevation contours for (a), the contour interval is 4 meters. (c) Detected humps
for the scene in Figure 2(a). Each hump corresponds to one building in the scene. (d) and (e) Two
hump DEM surfaces generated after grouping. The two humps are University Hall and library in
0SU campus respectively. (f) The topographic surface after all humps were removed.
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Figure 4: Classification examples. (a) Top of the library in Figure 3(e) generated by only the

horizontal edges which are above the topographic surface. (b) An incomplete library generated by
vertical edges and horizontal edges which are above the topographic surface.
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Figure 5: The re-interpolated DEM surface. (a) and (b) Two view angles of the re -interpolated
DEM surface. The building walls in this figure are more vertical than those in Figure 2(c).
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ABSTRACT

It is known that the human visual system, unsurpassed in its ability to reconstruct sur-
faces, employs different cues to solve this difficult task. The prevailing method in digital
photogrammetry is stereopsis. However, texture may provide valuable information about
the shape of surfaces. In this paper we employ Laws’ method of texture energy transforms
to extract texture information from digital aerial imagery. The images are convolved with
micro-texture filters to obtain local texture properties. Each micro-texture feature plane is
transformed into an texture energy image by moving-window to render macro-texture fea-
tures. Finally, the macro-texture feature planes are combined and then clustered into regions
of similar texture pattern. The method is implemented in a scale-space approach, and the
boundaries obtained from texture are compared with physical boundaries of the image.
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1 INTRODUCTION

The goal of digital photogrammetry is to re-
construct surfaces automatically. Surface re-
construction from raw imagery is known as an
ill-posed problem. To solve this difficult task,
different cues which contribute to object recog-
nition and scene interpretation are employed.
One of the important cues is texture. Texture
may provide information to estimate shape,
surface orientation, depth changes, material of
objects. Texture information aids image anal-
ysis and interpretation.

Many texture analysis methods have been de-
veloped during the last two decades. Among
the great variety of available methods, Laws’
approach of texture energy measures appears
to be a suitable method (Ballard and Brown,
1982; Gool et al., 1985; Gong and Huang,
1988; Unser and Eden, 1990). Furthermore,
this method resembles human visual process-
ing of texture according to Laws’ dissertation.
One of the advantages of this method is to
provide several texture feature planes from an
original image. This is a great benefit espe-
cially if only monochrome imagery is available
because to extract useful texture information
from raw monochrome images is a difficult task
even for the human vision system. More useful
information and segmentation results could be
obtained by integrating the additional texture
feature planes.

2 CHARACTERISTICS OF
TEXTURE

Texture is qualitatively described by its coarse-
ness under the same viewing condition, and re-
lated to the repetition of the local spatial pat-
terns. In addition to coarseness, other textural
dimensions or parameters are commonly pro-
posed, namely, contrast, density, roughness, di-
rectionality, frequency, regularity, uniformity,
orientation, and so on (Tamura et al., 1978).

Texture is a sophisticate visual primitive since
texture element (texel) is determined by con-
textual process and a different level of hier-
archy. Texture primitives consists of micro-
texture and macro-texture. Micro-texture is
the smallest primitive while macro- texture is
referred to larger primitive, i.e., macro-texture

is homogeneous aggregation of micro-texture.
These two primitives cannot be confused with
fine texture and coarse texture. The coarse-
ness of texture is related to the spatial repeti-
tion period of the local structure. Therefore,
micro-texture and macro-texture are not re-
lated the coarseness. However, in fact there are
not clear criteria to differentiate micro-texture
from macro-texture primitives, rather it is re-
lated to somewhat psychological effect as well
as image scale and resolution. Since texture is
hierarchical, texture within texture primitives
themselves is visible (Gool et al., 1985). It is
important to understand how the human vi-
sual system works for texture discrimination
and grouping. To develop a computational tex-
ture analysis system is not an easy task due to
the great complicatedness of properties of tex-
ture.

Texture has following characteristics;

e Texture is shift, orientation, moment,
contrast, and ilumination invariant.

e Human texture perception tends to be
sensitive first-and second- order statis-
tics, and does not respond to higher than
second-order. Discriminable textures can
be generated having a common mean,
variance, and auto-correlation function.
Thus, second-order moments are suffi-
cient measures of texture.

e Texture is hierarchical, i.e., it corre-
sponds to different resolutions and then
global unitary impression is offered to
the observer. Global features character-
ize the whole texture rather than texels.

The above characteristics are helpful guidelines
in designing texture analysis system. The other
important characteristic is that texture is both
stochastic and deterministic, therefore, texture
analysis methods are categorized by two ma-
jor approaches; statistical and structural ap-
proaches.

3 TEXTURE MEASUREMENT

Texture energy transform developed by Laws
is a class of spatial- statistical approach. The
characteristic of this method is more matched
to intuition about texture features, i.e., sim-
ilar to human visual processing (Laws, 1980;



Ballard and Brown, 1982). This method was
developed after he investigated and evaluated
several existing methods including statistical,
structural, co-occurrence, spatial frequency,
and auto-correlation approaches.

3.1 Texture Energy

The original image or a patch of the original
image (f) is convolved with micro-texture fil-
ters (hi) to create micro-texture features (fj);

fii,5) = £(6,5) * hue (1)

where the micro-texture filters can be formed
from following four one-dimensional vector
masks;

5 = (1 4 6 4 1)
Es = (-1 -2 0 2 1)
S5 = (-1 0 2 0 -1)
RS = ( 1 -4 6 —4 1)

A total of sixteen two-dimensional micro-
texture filters can be created. These are L5L5,
L5E5, L5S5, L5R5, E5LS, ..., R5R5. However,
L5L5 is not used because the sum of the filter
elements is not zero.

In order to obtain macro-texture features (f),
each of the micro- texture images (f}) is trans-
formed into an texture energy image by moving
macro-texture window;

wig

o

i) == 3

w2

|[fi(r,m)|  (2)

n==% m==¢

where w is size of a macro-window. The micro-
texture feature values are replaced by average
of absolute values in a macro- windows. The
size of the optimal macro-window depends on
texture coarseness or regularity, as well as the
quality of the available micro-features.

Micro-texture filters are designed to measure
local texture properties, while the macro-
texture features measure properties of the tex-
ture field as a whole. The problem is there is
no guarantee that any particular resolution or
window size will be optimal for a given analysis
(Laws, 1980).
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3.2 Texture Classification

Texture segmentation can be performed by
classification. Most of the classification al-
gorithms are suitable for multispectral im-
agery. Since several different micro-texture fil-
ters provide many corresponding texture fea-
ture plates, to use a multispectral classification
algorithm is a quite reasonable approach. Clas-
sification of imagery is one of the main tasks
in remote sensing. However, the pure texture-
based classification method does not seem to
be successfully developed yet. The purpose of
image segmentation, based on texture informa-
tion, is to obtain useful surface information.

Unsupervised classification is more attractive
than supervised classification methods, be-
cause sometimes a prior: knowledge about the
area of interest is not available. Furthermore,
human operators’ intervention will not be al-
lowed in fully automatic mapping and surface
reconstruction systems.

4 EXPERIMENTAL RESULTS

4.1 Selection of Imagery

Left image (photo scale: 1/3,800) of "Munich”
model (Figure 1), which was digitized with an
EIKONIX camera to a resolution of 4096 by
4096 pixels, was used to implement our task.
The "Munich” image contains residential areas,
major high-ways, small roads, different kinds of
vegetation, and a water area (small pond). For
the scale space approach, 512 by 512, 1024 by
1024, and 4096 by 4096 images were used.

4.2 Texture Energy Features

Al fifteen micro-texture images were created in
coarse level. Then, each image was evaluated
to select suitable filters. In fact, computational
methods were not involved to select filters.
Based on visual evaluation of the micro- and
macro-texture features, E5E5, E555, S5HES,
and S555 filters were chosen. Any micro-filters
which did not provide clear texture patterns
were not used in further levels. Selected filters
were used through the next two levels. Macro-
texture features were obtained with different
macro-window sizes for each level. Macro-filter
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sizes selected for each level were 5, 15, and 31
for 512 by 512, 1024 by 1024, and 4096 by 4096
images, respectively.

The micro-filters selected in this study pro-
vided a similar pattern of texture energy fea-
tures. The filters seems to detect horizontal,
vertical and diagonal patterns of texture. It is
obvious that micro-texture patterns will disap-
pear by use of larger macro-window size. How-
ever, more homogeneous macro-textures will
appear. Grouping of the micro-textures pro-
vided macro-texture.

4.3 Integration of Texture Feature
Plates and Classification

Each texture feature plate is regarded as a
spectral band to apply multispectral analysis.
The texture feature plates are combined to one
image file with BIL (band interleaved by line)
format. Iterative self-organizing data analysis
technique (ISODATA) in ERDAS was used for
classification. The advantage of ISODATA is
that the algorithm represents a fairly compre-
hensive set of additional heuristic procedures
which have been incorporated into an interac-
tive scheme (Tou and Gonzalez, 1974). Classi-
fication was performed through all three reso-
lution levels. Figures 3, 4, and 5 are the results
of classification for each level. The boundaries
of both original and classified texture images
were detected by using a Sobel edge operator
(Figure 2 and 6).

The classification results were improved from
coarse level to fine level. Classification result of
fine level renders original image. However, the
feature boundaries were not preserved due to
the relatively large macro-window size. More
boundaries were obtained from texture clas-
sification by comparing to the boundaries of
the original image, especially in residential and
vegetation areas. This result is possible, be-
cause in those areas different texture patterns
are mixed. The result still shows lots of micro-
textures which are reasonable to be grouped
into a homogeneous area.

Optimal size of macro-window depends on
scale, resolution, and objects in the image. To
find optimal size of the window size is not easy.
In addition, other very crucial factor for texture
analysis is the classification method.

Figure 1: Original image of Munich model

Figure 2: Boundaries of original image
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Figure 3: Texture classification of 512x512 im- Figure 5: Texture classification of 4096x4096
age (macro-window size:5) image (macro-window size:31)

Figure 4: Texture classification of 1024x1024 Figure 6: Boundaries of classified image
image (macro-window size:15) (4096x4096)
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5 CONCLUSIONS

Laws’ texture energy transform provides infor-
mation about texture patterns of the surface.
His approach to detect micro-texture and then
group into a macro-texture feature is very re-
alistic and a proper approach. However, to de-
termine the fixed macro-window size for entire
image is a difficult task. It is not easy to de-
velop the dynamic size of the window, i.e., the
window size varies depending on the objects in
the image.

So far, many of the texture analysis methods do
not succeed for natural scene imagery. Most of
authors have used synthetic image or geomet-
rical composite (or mosaic) of natural texture
image patches to develop and evaluate texture
operators. However, these kinds of imagery do
not provide enough texture properties of natu-
ral scene.

Since color imagery contains more information
than a monochrome one, to use color image is
one way to improve the texture analysis sys-
tem.

Finally, the 3D object space approach of tex-
ture analysis is probably a more interesting and
more powerful solution.
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ABSTRACT

Scale space techniques are widely used in digital photogrammetry. Typical implementations
use the scale space as a discrete representation, thus inherently assuming that all features
represented in images of similar resolutions belong to the same scale space level. However,
this approach ignores differential scale variations that exist between conjugate features in
multiple images, or even between different features in a single image. The subject of this
paper is an investigation into theoretical and practical aspects associated with the use of
scale space techniques in both the image and object space domains. The interrelationship
between the scale space representations of these two domains and the effects of differen-
tial scale variations in digital photogrammetric operations, such as matching, object space
reconstruction, and orthophoto production are also addressed.
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1. INTRODUCTION

Physical phenomena in object space occur over
a wide variety of spatial extents. Macro-
variations of a surface express its major trend,
while micro-variations correspond to trends of
smaller extent. The concept of macro- and
micro-variations is relative and depends on the
specific application. What is considered a
macro-variation in one application might very
well be viewed as a micro-variation in another.
In digital images, changes in gray values cor-
respond to object space phenomena, which can
also be perceived within areas of different sizes,
ranging from few pixels to large regions. How-
ever, even region-wise changes occur over an
extensive array of region sizes, ranging from
as little as a few pixels to as much as a large
part of the image. The identification of these
changes is essential in decoding the information
which inherently exists in an image.

The scale space representation of signals in gen-
eral, or digital images in particular, is widely
used to successfully produce several versions
of the same image in which the information
content is changing in a systematic and, there-
fore, easy to exploit fashion [Lindeberg, 1990],
[Yuille & Poggio, 1983]. Physical phenomena of
various extents can be easily identified through
the behavior of their images in different levels
of scale space [Lu & Jain, 1989], [Witkin, 1983].

In our paper, we present the basic axioms of
scale space, and we analyze the correspond-
ing mathematical aspects, together with the
proper selection of scale-generating functions.
The effect of differential scale variations on
photogrammetric procedures is discussed, and
we report how a continuous scale space can be
used to bypass the shortcomings of this effect.
Finally, the scale space representation of object
space and its potential use in photogrammetry
are explored.

2. SCALE SPACE

The scale space representation of a signal
f(z,y) is a set of signals {f*(z,y;n)}, repre-
senting the original one in various scale levels
as function of a scale parameter n. The set
of signals {fI*(z,y;n)} is called the scale space
family of f(z,y).

The objective of the scale space representation
of any signal is to create a scale space family in
a way that information conveyed by this signal
will become more explicit. In order for this goal
to be met, the generation of scale space family
has to follow some basic guidelines [Lindeberg,
1990]:

o The scale space family has to be gener-
ated by the convolution of the original
signal with a single scale-generating func-
tion s(z,y;n)

(e, y;n) = s(z,y;n) * f(=z,9) (1)

e The scale-generating function should be
selected in a proper manner, such that
larger values of n would create coarser
versions of the original signal through
elimination of the finer details which cor-
respond to higher frequency phenomena.
We want to be able to identify large
trends in lower resolutions and include
spatially limited details in finer levels.
For n = 0, at the finest resolution of scale
space, we have the original signal itself

f2(2,9;0) = f(=,y) (2)

which is obviously the upper limit as far
as fine resolution is concerned.

A Gaussian filter is mathematically expressed
as a function

2 2

_z24y?
9(z,y) = ke™ 247 (3)

where o is the associated standard deviation.
In applications, the multiplicative factor k£ may
receive various values, creating a large array
of Gaussian filters which are essentially scaled
variations of the core function, e.g.,
1 =3+ed
G(zg,Ygi0) = 5—e€ 27 (4)
attempts to preserve the output within a pre-
specified range [Agouris et al., 1989]. The use
of a Gaussian filter, with standard deviation o
as the associated scale parameter, as a scale-
generating function satisfies the above set cri-
teria [Babaud et al., 1986]. Therefore, the scale
space family of a signal f(z,y) can be created
as

(2, y;0) = G(zg,9g;0) * f(z,9)  (5)



A digital image is a two-dimensional discrete
signal I(z,y). Its convolution with the Gaus-
sian kernel

oo oo 1 z2 442
RBzyio) = 3 3 5o 7
I(z — 24,y — yg) (6)

can be used to construct its scale space family.
Members of the scale space family may have
the same dimensions as the original image, or,
more commonly, their dimensions may decline
in coarser resolutions. Assuming the original
image I(z,y) to have dimensions 4096 x 4096
pixels, we can form its scale space family by
creating m versions of the image (all of dimen-
sions 4096 x 4096 pixels), each one by convolv-
ing I(z,y) with a Gaussian kernel of different
scale parameter o.

Figure 1: An image pyramid as a representa-
tion of discrete scale space

However, in most applications coarser levels of
scale space are represented by images of smaller
dimensions. By convolving the image with a
Gaussian kernel and resampling every n* pixel
we can create a lower resolution copy of size
4096 /nx 4096/n. A scale space family in which
lower resolution members are represented by
smaller size images is called an image pyramid
[Fig. 1]. Various members of the image pyra-
mid can be perceived as images of the same ob-
ject scene in various geometric scales. For prac-
tical reasons the dimensions of the members
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of the scale space family are integer powers of
two. Typically, the image pyramid of an orig-
inal image of 4096 x 4096 pixels includes ver-
sions of the image in dimensions of 2048 x 2048,
1024 x 1024 and 512 x 512 pixels. Fig. 2 shows
two windows of equal dimensions, one from the
512 x 512 pixel member of an image pyramid
and the other from the 2048 x 2048 pixel ver-
sion to demonstrate the associated differences
in resolution. Both images were obtained by
the convolution of the original 4096 x 4096 im-
age with a Gaussian kernel, and by proper re-
sampling.

Figure 2: Two windows of equal size in pixels,
one in 512 x 512 resolution (left) and the other
in 2048 x 2048 resolution (right).

The use of a Gaussian kernel as a scale-
generating function offers certain advan-
tages, most notably exploited when combin-
ing smoothing with edge detection. Edges are
identified as discontinuities in the image func-
tion, and therefore correspond to zero-crossings
of the twice-differentiated image. The ori-
entation independent second derivative of a
two-dimensional function is obtained through
a Laplacian operator

The associative property of convolution allows
the combination of scale space generation with
a Gaussian function G(z4,y,) and differentia-
tion with a Laplacian operator, thus substitut-
ing two convolutions by a single one

V2[G(2g, g5 0) * I(z,y)] = [V?G(zg,9;;0)]
* I(z,y) (8)
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Instead of scaling the image with G(zg4,yg)
and then looking for edges in the smoothed
image, we simultaneously smooth the image
and extract its orientation-independent second
derivative in a single convolution by the Lapla-
cian of Gaussian (LoG) function

g +yg?, —zaity’®
V2G(zg,15:0) = [2- 2L Y~ (g)
The size of the LoG operator is determined by
the value of ¢ or altenatively, by the diameter

w of its positive central region, which is related
to o through the equation

w = 2v/20 (10)

Figure 3: The original image

Scale space family generation and edge detec-
tion can thus be succesfully combined. By us-
ing the Gaussian kernel for scaling we ensure
that in any scale level fewer edges occur than
in finer resolutions and more than in coarser
ones, thus performing proper scale space gen-
eration. This property has a qualitative aspect
in addition to its obvious quantitative mean-
ing. Edges detected in coarser levels using large
o (or w) values will also appear in finer lev-
els, The same edge can be traced through var-
ious resolutions, since its images display a cer-
tain degree of geometric similarity, with the de-
gree of localization (closeness to the true edge)
increasing with resolution [Lu & Jain, 1989],
[Witkin, 1983]. This is demonstrated in Fig.
4 and Fig. 5 which show edges of the origi-
nal image (shown in Fig. 3) produced by its

convolution with a fine (w = 10) and a coarse
(w = 30) LoG operator respectively. In addi-
tion, the traces of edges in various resolutions
offer a complete representation of the original
signal, thus allowing its reconstruction [Yuille
& Poggio, 1983].

Figure 4: Edges detected with a fine Log oper-
ator (w=10)

3. DIFFERENTIAL SCALE
VARIATIONS

When representing the scale space family of a
digital image as a pyramid, we create a number
of discrete representations of the original image
with each representation corresponding to a
specific scale level. However, unless the image-
generating projection is parallel, the exposure
vertical and the object surface planar, features
within the same image pyramid level will not
have the same geometric scale, expressed as

A!

A
5 A

(11)
with A’ the image of a feature A of the object
space. For the projective transformation gov-
erning the image formation process, the scale
factor S* at a point (z*,y*) of the image, corre-
sponding to a point (X*,Y?, Z*) in the object
space will be given through the formula

z! (X=X
¢ |=S'R| ¥i-¥, (12)
~¢ B 7,




Figure 5: Edges detected with a coarse Log
operator (w=30)

where R is the rotation matrix and (X,,Y,, Z,)
the exposure station coordinates of the photo.
It is apparent that different features in the
same image will have different scale factors.
In addition, the images of the same object
space feature in two or more different images
will have different scales, particularly when the
exposure conditions (rotations, exposure sta-
tions) differ significantly (e.g., converging pho-
tography) or the object space surface displays
high variations. In the extreme case, the scale
becomes 0 and occlusions occur.

Assuming each image pyramid level ¢ to corre-
spond to an average scale S;, features within
this image will thus appear in scales S; + dS;,
where

0Z 0z

dsi = f(nyaZaw)qS)n)a_‘X')W)

(13)
which in general will not coincide with any of
the discrete scales represented by the image
pyramid. Image pyramids though are discrete
representations of the scale space which itself is
continuous. While the discrete representation
is obtained using only a number of values of the
scale parameter ¢ of the Gaussian kernel used
to convolve the image, a continuous represen-
tation is the outcome of the same convolution
allowing o to receive any allowable real value.

Scale variations between members of stere-
opairs become apparent in digital photogram-
metric operations, with matching serving as
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a good example. In least squares matching,
we attempt to match windows of pixels by
minimizing their radiometric differences. This
is achieved by forming one observation equa-
tion for every pair of conjugate pixels within
a pair of approximately conjugate image win-
dows gr(zr,yr) and gr(zg,yr) in the left and
right image respectively

9r(zr,yr) — gr(zr,yR) = e(z,y)  (14)

The solution is obtained by allowing one of
the two windows to be geometrically reshaped
according to an affine transformation and by
resampling gray values for this newly defined
window. Differences in scale are accommo-
dated by the two scale factors assumed in the
six-parameter affine transformation

TR = a1 + azzL + azyr (15)

and
yr = b1 + bazr, + bayr (16)

Updating the above affine transformation pa-
rameters by the solution of the linearized ob-
servation equations

gr(zr,yr) —e(z,y) = ga(zh ¥&)+ gr.day
+ gr.zrda; + gr,yrdas
+ gRydb]_ + gRy:l:Ldbz
+ 9gr.yrdbs (17)

we define a new window in the right image
within which we resample the gray values.

Scale variations will affect this procedure in
various stages. When two image patches are
represented in two different scale levels in a
stereopair, their scale difference will be both
geometric and radiometric. When resampling
the gray values gr(zgr,yr) we use the origi-
nal image, spreading or shrinking its gray val-
ues over a new area, according to the updated
affine transformation parameters. As a result
we produce a new window in the right image
which might belong to the same geometric level
of scale space as its conjugate left image tem-
plate gr(zr,yr) but will still differ from it in
the radiometric scale space. This will have
obvious effects on the observation equations,
since we use gray level differences as observa-
tions. The same problem occurs during digital
image warping or rectification for orthophoto
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production [Doorn, 1991},(Novak, 1992]. Con-
jugate patches in two overlapping orthophotos
are brought to the same scale level geometri-
cally, using as a reference a digital elevation
model of the object space. Radiometrically
though, these patches remain unequal to the
same degree that the corresponding windows
in the original stereopair were unequal. This
causes conjugate patches in overlapping or-
thophotos to differ radiometrically, even when
their gray level histograms are adjusted for av-
erage and standard deviation differences.

To accommodate for the problem of different
scales, the scale concept has to be introduced
into the matching process itself. This will be
conceptually performed by the alteration of
the observation equations to accommodate for
scale as

gr(zr,yr;sc) — gr(zr, yr; sr) = e(z,y) (18)

which would correspond to a matching process
adapting itself into various scales. The above
equation may be linearized with respect to z, ¥
and s, essentially adding to the previously men-
tioned (eq. 17) linearized observation equa-
tions one term

gr(zr,yr,s0) —e(z,y) = gar(=zR,v%, %)
+ 9gr.dzr + gr,dyr
+ grsdsg (19)

The added term ggg expresses how gray levels
change at a point whenever the scale level of
the window within which this point is located
changes within the continuous scale space. The
term s has conceptual meaning and may be
substituted by the o of the Gaussian filter or
any other quantity sufficiently describing scale.

The introduction of a scale parameter in least
squares matching may introduce linear depen-
dency. The terms gg, and gg, also express gray
level gradients, but are different than the term
gRs in that they are highly localized and obvi-
ously orientation dependent. Even in the case
that high dependency exists, matching may be
implemented in two distinct sets, properly con-
straining some of the parameters to realistic
estimated values. To assure succesful imple-
mentation, matching has to be performed in
the highest possible common resolution of the
two conjugate patches. That will obviously be

the resolution of the coarser patch, and there-
fore the finer patch has to be transferred into
another scale level using a Gaussian filter.

4. SCALE SPACE
REPRESENTATION OF OBJECT
SPACE

Object space can be described by the combi-
nation of two two-dimensional continuous sig-
nals, one (Z(X,Y)) expressing its geometric
and another (R(X,Y)) expressing its radiomet-
ric properties. Discretized, these signals are
represented by a Digital Elevation Model and
a Digital Radiometry Model which can be to-
gether referred to as DERM.

Each of the signals can be individually ex-
pressed in a scale space representation us-
ing the Gaussian kernel, thus preserving the
scale space family properties that we presented
in section 2. The scale space family of the
DEM will consist of DEM of lower resolutions,
with each lower resolution level representing a
smoothed version of the original signal. Taking
advantage of the self-reciprocity of the Gaus-
sian function which states that the Fourier
transform of a Gausian is another Gaussian

Fl1G(z)] = G(w) (20)

we see that convolution with a Gaussian func-
tion in the space domain is equivalent to a fil-
tering with a filter of the same shape in the
frequency domain [Weaver, 1983]. Therefore,
Gaussian convolution can be perceived as fil-
tering with a low-pass filter, the cut-off fre-
quency of which is determined by the scale
parameter o. Coarse scale representations of
the DEM preserve the major geometric trends
of the surface, corresponding to the lower fre-
quencies of its frequency domain equivalent. In
finer resolutions, frequencies of higher order are
introduced. Edge detection, with the applica-
tion of an LoG function to the DEM signal,
will locate breaklines [Chakreyavanich, 1991].
Breakline detection can be applied hierarchi-
cally, similarly to edge detection in images. In
coarse levels of scale space (large w parameter)
we detect major breaklines in the topographic
surface, while moving to finer resolutions we
not only improve the spatial accuracy of these
breaklines, but we also identify breaklines of
smaller spatial extent.



In a similar fashion, the Digital Radiometry
Model (DRM) of the surface can be processed
with a Gaussian filter for the generation of its
scale space family. Edges in the DRM will
correspond to positions where the radiomet-
ric properties of the surface present disconti-
nuities.

The recorded image gray values represent the
DRM as altered due to the geometric proper-
ties of the object space. In the scale space fam-
ily of DRM there will exist a member which
most closely corresponds to the image depict-
ing this DRM. For a DERM with no geomet-
ric variations, the edges detected in the image
function would correspond to discontinuities in
DRM. In realistic situations though, DEM is
not flat and the image edges reflect the com-
bined effect of geometric and radiometric dis-
continuities. Taking advantage of this we can
distinguish edges created by geometric and ra-
diometric discontinuities in the object space,
by comparing the scale space of the image to
the scale spaces of the object space.

5. COMMENTS

Scale space can be used to represent two di-
mensional signals in various resolutions. This
representation can thus be used for images as
well as for radiometric and/or geometric de-
scriptions of the object space. It is structured
and explorable and it can offer valuable assis-
tance in various photogrammetric processes.

The concept of scale space provides the theoret-
ical foundation for hierarchical implementation
of digital photogrammetric tasks, allowing oth-
erwise cumbersome and time consuming mod-
ules to be performed quickly and effectively.
For instance, automatic stereopair orientation
can be performed using digital image pyramids
to effectively lead the results to continuously
improving accuracies [Schenk et al., 1991).

However, besides implementing some modules
in a hierarchical fashion, scale space theory
can also be used to refine the performance of
well-established processes, such as least squares
matching and orthophoto production. By
investigating the differential scale variations
which exist between conjugate features in dif-
ferent images, we can deduce a scale-adapting
matching process aiming at the optimization
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of least squares matching. In orthophoto pro-
duction, we can bring features to the same ra-
diometric and geometric level of scale space,
thus eliminating discrepancies and improving
its overall performance.

In general, the advantage of using scale space
theory to represent the object space is twofold.
Signals describing the object space can be
stored in a compact yet efficient way by record-
ing their discontinuities through scale space
and in addition, image and object space can
be directly compared and semantic information
can be extracted from this comparison.
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ABSTRACT

In our feature-based matching approach, zero-crossings are matched and represented in 3-D
object space by a sequence of densely spaced points. These spatial curves form the basis for
reconstructing the surface. Since edges are likely to correspond to object boundaries, the
3-D curves also serve as an important input for object recognition. In this paper we address
the problem of segmenting the contours in straight lines and regular curves. We compare
different methods, such as split-and-merge and a 3-D version of the 9 — S method.
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1 INTRODUCTION

One of the goals of digital photogrammetry is
to automatically recognize and extract man-
made objects from aerial images. An essen-
tial step toward this goal is to extract features
and to match them. We have adopted this ap-
proach and described it in several papers, e.g.,
[14,15,20]. A similar approach is also accepted
by the computer vision community, e.g., [5].

The features detected in the images are discon-
tinuities of gray values, or edges. In our current
implementation, the images are convolved with
the Laplacian of a Gaussian (LoG) operator
[10]. The resulting zero-crossings are the edges.
In the automatic orientation module, which is
the first stage of our system, the zero-crossings
are matched for determining conjugate points
[15,18,20]. Once the orientation parameters are
established, the images are resampled to epipo-
lar geometry [2]. Now we begin to reconstruct
surfaces where many edges are matched [21],
resulting lists of densely spaced points in ob-
ject space (3-D edges).

The feature-based matching approach offers
two major advantages:

e Surface discontinuities are most likely to
show up as edges in the image. By detect-
ing these edges, breaklines can be found
and the surface reconstruction process
[16,17] becomes more robust.

o In many of the cases, edges correspond to
object boundaries. Therefore, once the
location of edges is known, they serve as
building blocks for a symbolic description
of the object space. Such descriptions
can be matched with symbolic represen-
tations of “world” objects, stored in a li-
brary.

In order to use the edges for the symbolic de-
scription of the object space, we must segment
and group them. In this paper, we focus on
the segmentation aspect. The goal is to de-
compose the 3-D curves into primitives which
are more explicit than a list of densely spaced
points. Specifically, we want to segment the
3-D curves into straight lines, regular curves
(circular arcs in our current implementation)
and natural lines.

The curve segmentation problem has been ad-
dressed extensively in computer vision litera-
ture. A popular segmentation method is the
Hough transform, proposed in [1]. This method
tries to find straight lines from a sparse set of
points. In our application points are already
organized along edges; Thus, the Hough trans-
form would unnecessarily increase the compu-
tational complexity. Ramer [13] presents a sim-
ple algorithm to approximate planar curves by
polygons. He based his approximation on a
maximum offset criterion. We have adopted
this criterion in our approach. Pavlidis and
Horowitz [11] use a least-squares algorithm to
fit straight lines to portions of the curve, and
then iterate a split-merge procedure to refine
the initial segmentation. Grimson and Pavlidis
(8] find the breakpoints of a curve by compar-
ing the original and a smoothed version of the
curve. Discontinuities are then easily detected,
and regular curve fitting is performed only be-
tween discontinuities. Fischler and Bolles [3]
describe two methods, one of them passes a
“stick” of a certain width and length over the
curve, and the other looks at the curve from dif-
ferent “views” followed by a selection of break-
points according to the maximum votes ob-
tained from these views. Both methods are
based on segmenting the curve over different
scales, and on perceptual organization. Grim-
son [7] suggests an approach which is a combi-
nation of split-and-merge and 1 — s algorithms.
Wuescher and Boyer [19] describe an algorithm
based on a constant curvature criterion.

Except for the Hough transform, all the pro-
posed methods consider a plane curve as the
input for the process. Grimson [6] mentioned
that the segmentation can also be performed
in 3-D, but did not elaborate it any further.
While curve segmentation in 2-D may be suffi-
cient for many applications, it has some disad-
vantages:

o Features which appear in one image only
are also segmented, although they do not
lend themselves to edges in the object
space.

o The segmentation of edges performed
individually in both images, does not
necessarily produce corresponding break-
points. Therefore, the identification of
the same feature in both images becomes



a nontrivial task.

e Although straight lines in the object
space are also straight lines in all projec-
tions, the converse does not hold. Circu-
lar arcs appear as elliptic arcs, which are
more difficult to detect.

To avoid these disadvantages we propose to
segment the 3-D curves in the object space. In
the next section we present two methods for
segmenting a 3-D curve into its basic primi-
tives.

2 METHODS

Here we describe two methods suitable for seg-
menting 3-D curves. These methods are not
necessarily the best curve segmentation meth-
ods known, rather they demonstrate the con-
cept of segmentation in 3-D space. The first
method is a 3-D version of a split-and-merge
concept, based on the offset from a straight
line. In this method, the curve is segmented
into straight lines only. The second method is
an extension of the 9 — s concept (see [9] for
2-D description) into 3-D. With this method,
straight lines and circular arcs are detected.

The input for both methods are lists of densely
spaced points of 3-D edges. It should be noted
that the points are not evenly spaced. They are
represented by real 3-D coordinates. We are
presently investigating another representation,
where the edge points are resampled into a 3-D
discrete space (voxels).

2.1 Split-and-merge method

As the name indicates, the split-and-merge
method consists of the two phases split and
merge. In the split phase, the input data is
segmented to assure that each segment fulfills
a certain condition. In our case, the condition
is that all the points contained in a segment
are likely to correspond to a straight line. In
the merge phase, redundant breakpoints that
have been produced during the split phase are
eliminated.

The criterion for deciding whether a group of
small line fragments can be represented as a
longer straight line is the maximum offset. We
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have chosen the maximum offset and not a
least-squares criterion as suggested in [11]. The
reason is that the computational cost for apply-
ing the least-squares criterion is much higher
than the one for the maximum offset, espe-
cially in the 3-D case. In addition, we only
perform one split and one merge phase because
the initial segmentation criterion is strong. A
refinement of the breakpoints and a fitting of a
straight line to alist of points can be performed
once the segmentation has been achieved. In
general, the offset criterion is superior to other
criteria, since it is not very noise sensitive.
Other criteria, such as the orientation of a line,
are quite sensitive to noise, as we will see in the
next section.

Let us now define the maximum offset crite-
rion. Consider a string of n small line frag-
ments I;...l, which are formed by a corre-
sponding set of densely spaced points pg .. .pn.
This string of fragments can be considered as
one longer straight line if the distance from
each point p; ...pn—1 to the straight line con-
necting po and p,, does not exceed a predefined
threshold value.

The following pseudo code describes the split
phase of the split-and-merge method. It pro-
cesses an edge E = {p1...pn} or a part of it.
The input to the function in the first call is the
indices 1 and n of the first and last points of
the edge. The function works recursively, and
in general its input is the indices of the first
and last points of a sub-edge. The set s (which
is a global parameter) is initialized to contain
the numbers 1 and n.

Split(£,1)
1. m:=-1
2.Vi, f<i<l
(a) o := the offset of point p; from the
line pzp;
(b) if o > m then m :=0; t := 1

3. if m > MAXOFFSET
then s := s U {t}; Split(f,t); Split(z,!)

Once the above algorithm terminates, s con-
tains an unsorted list of indices of the potential
breakpoints. The merge algorithm, as speci-
fied in the following pseudo code, attempts to
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Figure 1: Splitting a curve according to the
maximum offset criterion

rrierge two neighboring segments, according to
the same maximum offset criterion described
earlier.

Merge()
1. Sort the s list by ascending order
2. k:= the number of breakpoints in s
3. Vi, 2<i<k-1

(a) o:= the offset of point p,[; from the
line Psfi—-1)P4[i+1)

(b) if 0 > MAXOFFSET
then s:=s— {s[i]}; k:=k -1

Figure 1 demonstrates a 2-D curve splitting,.
The 3-D case is similar, except for the calcu-
lation of the offsets. These are calculated in a
3-D coordinate system.

Another aspect is the analysis of the segmented
line. Although the split-and-merge method
aims at segmenting straight lines, some lines
cannot be classified, be it because of noise,
short segments or simply because no straight
line segments are present.
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Figure 2: Low-pass filter for the ¢ — s curve:
impulse response and magnitude of the fre-
quency response

2.2 Segmentation in 3 — s domain

In order to easily detect circular arcs in addi-
tion to straight lines, the 1 — s domain can be
used. In this domain, straight lines appear as
horizontal lines, and circular arcs as arbitrary
straight lines. Since both straight lines and cir-
cular arcs appear in the 1/—s domain as straight
lines, we can use the split-and-merge algorithm
described in section 2.1 to segment the 1 — s
curve and get as a result both the straight lines
and the circular arcs.

As described earlier, the input is a list of points
in a 3-D continuous coordinate system. Since
this input is derived from a discrete 2-D rep-
resentation, noise effects that were produced
during the scanning of the original aerial pho-
tographs cannot be avoided. The 9 — s method
is very sensitive to noise. A point in the spatial
domain that is displaced by approximately the
distance between two neighboring points will
cause ~ 45% “offset” in the 9 — s curve. There-
fore, the original data should be filtered by a
low-pass filter. Since the breakpoints we try to
detect are also high frequency phenomena, they
will be affected too. In order to compromise
between noise removal and information preser-
vation, a filter with few coefficients should be
used. We used the Parks-McClellan equirip-
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Figure 3: An example of filtering a 1-D se-
quence by the equiripple low-pass filter

ple algorithm [12] to design such a filter. The
equiripple method minimizes the maximum er-
ror between an ideal (infinite length) low pass
filter and a filter with a truncated number of
coefficients. By this, an optimal filter can be
achieved for a given set of specifications. This
set includes the cutoff frequency, the transition
band, a weighting function for the errors in the
pass and the stop bands, and the number of
coefficients. Recursive or nonlinear filters [19]
are alternate solutions to the filtering problem.
The impulse and frequency responses of the fil-
ter are shown in figure 2. Figure 3 shows a
noisy 1-D sequence before and after filtering.
In the case of 3-D edges, all three coordinates
are convolved separately with this filter.

The % — s domain in 2-D space consists ba-
sically of a plot of the orientation (3) ver-
sus length (s) of the original spatial curve.
In this representation, the slope of the line
corresponds to the curvature of the original
curve. Therefore, it can be easily shown that a
straight line in the spatial domain appears as
a horizontal line (parallel to the s axis) in the
% — s domain, and a circular arc (which has
a constant curvature) appears as an arbitrary
straight line. The 9 — s curve for a nonanalyt-
ical spatial curve is constructed by computing
the directions between points. In order to over-
come some residual noise effects, we calculate
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the direction at a certain point not between the
point and its neighbor, but between its prede-
cessor and successor. In cases of more extreme
noise residuals, a larger interval can be used for
calculations.

In order to segment the ¢ — s curve, disconti-
nuities should appear only at breakpoints. An
artificial discontinuity is present when the orig-
inal curve orientation goes from 360° to 0° or
vice versa. Hence, after representing the curve
in the % — s domain, this artificial discontinu-
ity is eliminated. The procedure is described by
the following pseudo code, where ¢ is a param-
eter which compensates for the discontinuity:

Discontinuity_elimination1()

1. let p;...p, be the list of points of the
¥ — s curve

2. ¢:=00
3.Vi, 2<i<n
(a) i =di+c

(b) if |¢; — thi—1| > 180° then
o if 9; > 1);_1 then

;1= 1; — 360°
c:=c— 360°
else

;== 1h; 4+ 360°
c:=c+ 360°

With this procedure no changes in orientation
of more than 180° will occur.

We have extended the 1) — s approach to 3-D.
A horizontal angle a and a vertical angle ¢ are
used to express the spatial direction. Again, a
straight line in the spatial domain appears as a
line which is parallel to the distance axis of the
1 — s domain. A circular arc, contained in an
arbitrary plane in the 3-D space, appears as an
arbitrary straight line in the 3-D % — s space.

Special attention must be paid when the tan-
gent of a circular arc at a certain point becomes
vertical. This situation is described by the fol-
lowing;:

|a,- - a;_ll 7 1800

|i| = |¢hi—1] ~ 90°
i = Pi—1
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Careful examination reveals the gradient of ¢
changes its sign leading to a discontinuity of the
vertical angle. In order to eliminate this dis-
continuity problem, the following procedure is
added to the transformation of a spatial curve
into the ¥ — s domain:

Discontinuity_elimination2()

1. let p;...p, be the points of the ¢ — s
curve, ¢ be a compensation factor for the
horizontal angle, z be a zero elevation
base for the vertical angle, and s a sign
factor

2. ¢:=0%2=0%s=1

3. Vi, 2<i<n
(a) ay:=ajtec; i =¢i+zxs
(b) if (| — ci—1| ~ 180%) &

(s — 2| = |@ic1 — 2| = 90°) &
(¢i ~ ¢,’_1) then

i. if @; > a;_1 then

c:=c—180°
a; = a; — 180°
else
¢ :=c+ 180°
a; = a; + 180°
i, if ((p— 2=~ 90°) & (s =1)) or
(- 2 ~ ~90%) & (s = 1))
then
z:= z+180°
¢ := ¢; + 180°
else
z = z— 180°
¢: = ¢; — 180°

Figure 4 shows a case where the compensation
is necessary. o’ and ¢' are corrected angles.

The disadvantage of this approach is that the
restoration of the original spatial curve from
the 9 — s curve is no longer possible. However,
the conversion into the ¢¥— s domain is done for
approximating the location of the breakpoints
on the curve. We can certainly store the indices
of the found breakpoints, go back to the orig-
inal spatial domain, and segment the original
curve according to these breakpoints.

Once we have a 1 — s curve which does not con-
tain representation related discontinuities, the
simplest way to segment it into straight lines

a=45° a'=225°
¢=90°-A¢ $'=80°+A¢d

a=225°
$=90°-A¢

Figure 4: Compensation for an artificial dis-
continuity

is by the split-and-merge algorithm described
in section 2.1. The result of this operation is a
list of straight lines in the ¥ — s domain. Each
of these straight lines is examined and classi-
fied into one of three spatial domain categories,
namely, straight line, circular arc or “other,”
i.e., natural lines or noise effects, according to
the following order of criteria:

o If the line is shorter than a predefined
threshold value, it is classified as “other.”

e If the slope of the line is less than a pre-
defined threshold value, it is classified as
straight line.

e The radius, arrow and angle of a circu-
lar arc are estimated from the slope and
first and last points of a ¥ — s segment.
If these parameters are within a prede-
fined interval, the segment is classified as
a circular arc.

e In other cases, the segment is classified
as “other.”



(a)

(b)

Figure 5: Synthetic data: (2) clean; (b) noisy

3 EXPERIMENTAL RESULTS

Both the split-and-merge and the 1— s methods
were implemented and tested with synthetic
and real data. Not all the experiments have
been completed yet, leading to more results
with real data.

The synthetic data were produced by combin-
ing a set of straight lines and circular arcs in
3-D space, which were then corrupted by noise
that was produced by a pseudo-random num-
ber generator. The magnitude of the noise was
chosen in a way that mimics the behavior of
real data. Figure 5 shows the clean and noisy
synthetic data as 3-D curves. The real data
were taken from the results of the matching
process, consisting of lists of 3-D points. Fig-
ure 6a shows the left image of the stereo pair
which was used for the production of these
edges. The 3-D edges are shown in figure 6b
in an orthogonal projection.
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Figure 6: Real data: (a) left stereomate; (b)
3-D edges in orthogonal projection
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Figure 7: Results of applying the split-and-
merge method to the synthetic data

3.1 Split-and-merge results

The split-and-merge algorithm was imple-
mented according to the description in sec-
tion 2.1. In general, the offset threshold can
be derived directly from the scale and the
scanning resolution of the aerial images, and
it should be larger than the size of a pixel
in object space. The aerial photographs we
used have a scale of approximately 1/4000,
and the scanning pixel size is approximately
60 pm. Therefore, a pixel size in object space is
~ 0.25 m. We selected a value which is slightly
higher, taking into account also other noise ef-
fects. The threshold was the same for both the
split and the merge phases of the algorithm.

Synthetic data: Testing the split-and-merge
procedure on the synthetic data did not present
any troubles in the segmentation, just as we
anticipated. The straight lines were extracted
completely, and the circular arcs were seg-
mented into small straight lines. The results
are shown in figure 7.

Real data: The results of the split-and-merge
segmentation for the real data are shown in fig-
ure 8 as an orthogonal projection of the 3-D
segments received. These results are very en-
couraging. Many straight segments were de-
tected. The noisy parts of the curves, which
are interpreted as such also by a human ob-
server, remained unchanged. A comparison
between the results and the image shows cor-
respondence between straight lines and man-
made features.

Figure 8: Results of applying the split-and-
merge method to the real data (orthogonal pro-
jection)

3.2 9 — s results

The 1) — s segmentation algorithm was imple-
mented according to the description in sec-
tion 2.2. The selection of threshold values is
more crucial than it is for the split-and-merge
case. The main reason for this problem is
the fact that we deal with angular parameters,
while the real physical perturbations are linear.
Therefore, the threshold value for a certain line
length will not necessarily be suitable for other
lengths. Despite this, we used values which are
acceptable for the synthetic data, as described
below. The offset threshold for the 1 — s curve
was set to 10. We also limited the accepted
circular arcs radii to the interval 2 — 200 m.
We have not limited the arc angle and arrow
at this stage.

Synthetic data: The results of executing the
1 — s algorithm with the synthetic data are
presented in a 3-D view in figure 9. The results
need some explanations.

1. Longer segments (either straight lines or
circular arcs) were segmented into shorter
ones. However, it can be seen that most



Figure 9: Results of applying the 1 — s method
to the synthetic data: straight segments are
represented by dashed lines, circular arcs by
solid lines, and noise effects are not presented.
The breakpoints are represented by squares.

of the segments were classified correctly.

2. Small segments, which were character-
ized as noise effects were created near the
discontinuity points.

The phenomenon of breaking an expected seg-
ment into a small number of shorter segments
can be resolved in the spatial domain. For ex-
ample, the second arc in the synthetic example
was detected as two smaller arcs and a noise
segment. In the spatial domain, these shorter
arcs can be combined into a larger arc by ap-
plying a least-squares adjustment, and elimi-
nating possible blunders. The noise effects near
the breakpoints can be resolved as well. If we
eliminate any “short” phenomena, we can in-
tersect neighboring longer phenomena, and by
that close the gaps produced by the elimination
of the short segments.

Real data: Experiments with the 9 — s
method were also performed with real data.
We found that the limitations of the ¢ — s
method, in terms of predefined thresholds, are
quite critical. The selection of the threshold
values is application dependent, i.e., the ap-
proximate size of features should be known.

4 SUMMARY AND CONCLUSIONS

The paper describes curve segmentation in 3-D
object space. Although the two methods de-
scribed for that purpose are not necessarily the
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best available segmentation methods, the re-
sults are encouraging and show that 3-D seg-
mentation is possible.

The split-and-merge method segments the data
into straight lines only. Circular arcs are seg-
mented into a list of short straight line seg-
ments. The offset criterion used reduces the
sensitivity to noise. In other words, the split-
and-merge method is quite robust and detects
line segments even if they are very noisy.

The 9 — 8 method offers the advantage of rep-
resenting circular arcs as straight lines. This
property allows detection of circular arcs by
using the split-and-merge approach. However,
determining threshold values becomes a crucial
issue. Due to noise effects, it is dependent on
the lengths of lines to be classified. The noise
is reduced significantly by a proper filtering of
the original data. However, filtering also blurs
the breakpoints. Current research focuses on
a 3-D Freeman code [4] representation. That
is, the object space is discretized, thus reduc-
ing some of the noise caused by the scanning
process.

The experience gained leads to the following
conclusions:

1. Since the % — s method allows easy de-
tection of circular arcs, it can be used for
a rough segmentation of the 3-D curve
into straight lines and circular arcs. Once
such approximations exist, other meth-
ods can be used to refine the segmenta-
tion.

2. Other segmentation methods should be
investigated and eventually extended to
3-D.

The segmentation of the 3-D curves is an im-
portant clue for man-made features, which are
usually composed of 3-D straight lines and
other regular curves that provide information
which is much more explicit than the origi-
nal densely spaced points resulting from stereo
matching.
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ABSTRACT

A common problem in computer vision, digital photogrammetry and cartography is to find
the best match between a given line and a set of candidate lines, based on characteristics
of shape. Fourier descriptors have been used successfully to match lines. In this paper
we show how the best geometric fit of two matched lines is determined. The translation,
scaling and rotation parameters are found by matching the Fourier descriptors with a least-
squares adjustment. A mean-square error can be calculated after matching. This offers the
advantage of a quantitative measure of goodness of fit. Experimental results using synthetic
data demonstrate the feasibility of the proposed algorithm.
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1. INTRODUCTION

To classify a set of patterns or to match two sets
of features are common problems in computer
vision, digital photogrammetry and cartogra-
phy. These tasks are broadly known as pat-
tern recognition. The fundamental approach
to these problems is to find the best match in
shape between a given feature and a set of can-
didate features. Each candidate feature should
be fitted against the given feature one by one,
based on their characteristics of shape. This
matching process is often conducted to come
out with some quantities of intrinsic measure
for checking the degree of similarity. The best
match is then determined according to the in-
trinsic measure.

An ambiguity may emerge on the determina-
tion of the best match, if there are more than
one candidate features having a similar shape
to that of the given feature. Because features
may be distorted in practice, it is not surpris-
ing that the best match in shape is not guar-
anteed to be a correct match. Under the cir-
cumstance, additional information is needed to
make a better decision. An extrinsic measure,
such as a measure of the relative location, ori-
entation and dilation between features, is con-
sidered to be key information to resolve this
ambiguity. We therefore suggest that a match-
ing process should generate both of intrinsic
and extrinsic measures.

Geometric information of features is often de-
scribed by lines of the vector form. Image
features, such as object boundaries, skeletons,
edges or textures can be represented by lines.
Although other geometric information such as
area, perimeter, number of holes and moments
is believed to be useful, the information con-
tent of lines is thought to be the most compact,
accurate and useful. This paper, therefore, fo-
cuses on the matching of lines.

In the last two decades, many techniques, such
as polygonal approximation [Pavlidis and Alj,
1975; Greenfeld and Schenk, 1989], 1) — s curves
[Ballard and Brown, 1982; Schenk, Li and
Toth, 1991], and invariants of Fourier descrip-
tors [Granlund, 1972; Lin and Hwang, 1987],
have been proposed to tackle the problem of
matching linear features. These techniques em-
phasize the use of shape invariants, a kind of in-
trinsic measure, to discriminate linear features.

Although these techniques were reported effi-
cient in some cases, two disadvantages were rec-
ognized. First, measuring similarity by com-
paring the shape invariants between features
does not provide a clear statistical sense. Sec-
ond, they cannot provide any extrinsic mea-
sure.

In this paper, a new matching process is pro-
posed. It is designed to generate both of intrin-
sic and extrinsic measures. Qur strategy is to
transform each candidate line to be optimally
matched, in the condition of the least-squares
fit, with the given line. The transformation pa-
rameters are solved by means of least-squares
adjustment. A statistical quantity, the mean-
square error, can be calculated after the ad-
justment. This quantity presents an ideal in-
trinsic measure. And the estimated transfor-
mation parameters offer an extrinsic measure.

A conventional transformation is usually per-
formed about the origin of the coordinate sys-
tem. The spatial relationships between the
original and the transformed features cannot
be explicitly described by using the parameters
of a conventional transformation. We, there-
fore, developed a centroid-based transformation
which transforms a feature about its centroid -
the mean position.

The quantities of intrinsic and extrinsic mea-
sures are needed to be referred to a spatial co-
ordinate system. It seems necessary to per-
form the matching process in the spatial do-
main. However, it is required to pre-define cor-
responding points between the lines. Difficul-
ties in finding the corresponding points are ex-
pected because of the differences of sampling
density, scale and starting point. In order to
remedy this problem, an algorithm to perform
the matching process in the frequency domain
is developed, where the Fourier descriptors of
lines are matched. The results of matching in
the frequency domain are also interpreted with
respect to the quantities desired in the spatial
domain.

This paper is composed of 6 sections includ-
ing introduction and conclusion. Section 2 out-
lines the Fourier descriptors of closed and open
lines. Section 3 describes the centroid-based
transformation in the spatial and frequency do-
mains. An algorithm of least-squares matching
in frequency domain and interpretation of the



results from the matching algorithm are illus-
trated in section 4. Section 5 presents some
experimental results using synthetic data.

2. FOURIER DESCRIPTORS

2.1 Closed lines

A two-dimensional closed line can be described
by two periodic functions z(t) and y(t) (Fig. 1).
The parameter ¢ is defined as 2w!/L, where L
is the perimeter of the closed line and ! denotes
the arc length along the line from the starting
point s to p.

y

2(t) y(t)
0 27 t 27 t
Fig. 1. A 2-D closed line and its periodic
functions.

According to the theory of elliptic Fourier de-
scriptors [Kuhl and Giardian, 1982; Lin and
Hwang, 1987], these two periodic functions can
be expressed by Fourier expansions in matrix
form as

81 (2181 3)lk)
(1)

where
=2Lf z(t) dt;
co = 5 Jo " y(t) dt
k—lfo z(t) cos kt dt;
=1 27 z(t) sin kt dt;
= 71rf2 y(t) cos kt dt;
=lf y(t) sin kt dt.
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In Eq.(1), ao and ¢o are the mean values of
z(t) and y(t) respectively, which indicate the
geometric center of the closed line, or so called
the centroid.

2.2 Open lines

An open line is traced once and then retraced
backward so that a closed boundary is obtained
(Fig. 2). The Fourier descriptors can then be
applied. Let L denote the arc length of an
open line and the parameter ¢ is defined as
wl/L. The functions of z(¢) and y(t) can be
expressed as periodic functions. A close ex-
amination of the periodic functions (Fig. 2)
yields two important characteristics. First,
they are even functions because z(—t) = z(t)
and y(—t) = y(t). This implies that the co-
efficients of b, and d; are all zeros. Second,

the integration fttl’ z(t) cos kt dt is equal to that
of f;: tt‘ z(t) cos kt dt, and it is appropriate to
y(t) also. Therefore, an open line can be de-

scribed with the Fourier expansions as

[8]=[2]+ T2k, @

k=1
where
- ;, fg e(t)at
7 Jo. (t)dt
fo z(t) cos kt dt;
= 2 [ y(t) cos kt dt.
y L
- s
T
z(t)

o

0 g T TE 2T Dy

Fig. 2. A 2-D open line and periodic function
of z(t).
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3. CENTROID-BASED
TRANSFORMATION AND PHASE
SHIFT

3.1 Transformation in Spatial Domain

If a linear feature consists of a list of (z,y)
coordinate pairs of nodes, a transformation in
spatial domain is implemented by transforming
all coordinate pairs in the list. Conventionally,
such transformation is operated about the ori-
gin of the coordinate system. For instance, let
the list of (z’,3') be the coordinate pairs af-
ter transformation. A similarity transforma-
tion about the origin is expressed as

z' cosf —sinf z Az
[y'}:'s[sinﬁ cosﬁ][y]+[Ay]’

where
S Scale factor;
0 Rotation angle;
Az Ay Translation.

With this transformation, one can easily dis-
cover that the positional change of the trans-
formed feature does not correspond with the
translation parameters Az and Ay, because
the centroid of the feature is changed by scaling
and rotation. It is, therefore, appreciated that
the parameters of this transformation do not
explicitly represent the geometric relationships
between the original and transformed features.
In order to obtain an explicit form of transfor-
mation parameters, the change of the centroid
should be isolated from scaling and rotation.
This can be accomplished by means of trans-
forming a feature about the centroid, which is
called centroid-based transformation. For ex-
ample, a centroid-based similarity transforma-
tion is expressed as

z! cosf —sinf T — T,
[y’} =S[sin9 cosﬁ][y—yc]+
T Az
el a ] @

where

z. and y. are the coordinates of the centroid.

3.2 Transformation in Frequency Domain

In frequency domain, instead of transforming
coordinate pairs, a transformation can directly
operate on the Fourier coefficients. This can
be seen mathematically, if the coordinate pairs
(z,y) and (z',3') in Eq. (4) are substituted by
Eq. (1). A notable fact is that it is natural
to perform a centroid-based transformation in
frequency domain, because coordinates of the
centroid are represented by the coefficients of
zero harmonic, ap and cp, and the other coeffi-
cients of higher harmonics are independent of
the centroid translation. Therefore, a centroid-
based transformation in frequency domain can
be divided into two parts. The first part is
a translation involving just ap and cg. The
second part which deals with a transformation
that does not affect the position of the centroid,
such as scaling, rotation and shearing, involves
the other coefficients. These two parts can be
done separately.

For the first part and given that the coefficients
ap and cog are coordinates of the centroid, a
translation can be directly added to the coef-
ficients of the zero harmonic. Let ay and cj
represent the transformed coefficients, then a
translation in frequency domain will be

al ag Az

gl-lel &) o
For the second part, the Fourier coefficients
of non-zero harmonics are pre-multiplied by a
transformation matrix, which can be a matrix
of similarity or affine transformation. The co-
efficients of each harmonic can be operated sep-
arately, because they are orthogonal. For a
similarity transformation, the transformation
matrix will be a combination of scale factor
and rotation matrices. Let the coefficients with
a prime be the transformed coefficients, then
the transformation in frequency domain is ex-
pressed as

a, b, ] _ g [ cos 6 —sinf ar by
¢ dp | T sinf cosf c, dp |
(6)

where



k=1~ o0o.

3.3 Phase Shift

If a linear feature is recorded by using a sequen-
tial list of (z,y) coordinate pairs along the fea-
ture, the first point to be recorded is defined
as the starting point. A change of the start-
ing point does not alter the geometric property
of the feature. However, it does change the
Fourier descriptors except for the coefficients of
the zero harmonic. For a closed line, the start-
ing point can be anywhere along the curve. If
a change of the starting point is interpreted as
a change of the phase t and denoted as a phase
shift At, then At can be an arbitrary value be-
tween 0 and 27. For an open line, the starting
point is either one of the two end points. Its
phase shift is therefore 0 or «.

According to the theory of Fourier series, a
phase shift is accomplished by post-multiplying
the coefficients of each harmonic by a phase
shifting matrix, which is similar to a rotation
matrix. Mathematically, it can be expressed as

—sinkAt
cos kAt

(7)

ap by ] _[ar bk cos kAt
¢, d | T | ek dy sin kAt

3.4 Combined Effect of Transformation
and Phase Shift

The effects of a transformation and a phase
shift can be combined in frequency domain.
From Egs. (6) and (7), a combined effect of
a similarity transformation and a phase shift
will be

[a/;c b;f] _ S[cpse
¢, dg sin 6

cos kAt
sin kAt

—sind ag bk
cos @ ¢, dg
—sin kAt

cos kAt

Other transformations can be derived in the
same fashion as the similarity transformation.
Eq. (5) can be used for all kinds of transforma-
tion. All what needs to be changed for another
type of transformation is the transformation

(8)
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matrix in Eq. (8). For example, an affine trans-
formation in frequency domain with a phase
shift can be formulated as

Gl =]l &
¢, 4 g h cr  dp
cos kAt —sin kAt 9
sin kAt cos kAt {9)
where

[ ; ifz, ] is an affine transformation matrix.

4. LEAST-SQUARES MATCHING

4.1 Matching in the Spatial Domain

The matching process for two given lines has
been defined in the first section. Let a list of
(z,y) coordinate pairs represent a candidate
line, which is to be transformed in order to
match a given line pattern composed of a list
of (¢/,y') coordinates. In the spatial domain, if
corresponding points between the two lines can
be defined, each pair of corresponding points
can form two observation equations, which can
be derived from Eq. (4) as

z’ Vgt . cosd
MR B I e

T — . z.
[y_yc}-i_[yf:]-i_

5w

—siné ]

cosf

where
vy and vy are residuals.

Having the observation equations, a least-
squares adjustment can be conducted to solve
the unknowns of S, §, Az and Ay, by minimiz-
ing the summation of v%, and v;,.

In practice, however, corresponding points be-
tween two lines are difficult to define, due to the
differences of sampling density, scale and start-
ing point. A possible solution is to model the
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lines with some mathematical functions and re-
sample the lines at equally spaced points. For
instance, one could take the Fourier descrip-
tors to model each line and resample the lines
at every 2« /n interval, in which n is the num-
ber of points to be resampled for each line.
Total number of 2n observation equations can
be formed accordingly. Although this method
is feasible, it seems not rigorous and efficient.
First, the resampling space is difficult to de-
termine. A complicated line requires a small
sampling space, but a smaller sampling space
increases computation time. Second, the com-
putation is not straightforward. The lines are
transformed into the frequency domain when
modeling, and are transformed back to the spa-
tial domain when resampling. Therefore, an
idea of matching lines in frequency domain,
matching Fourier descriptors, emerges to rem-
edy these problems [Zhan and Roskies, 1972).

4.2 Matching in the Frequency Domain

Instead of matching spatial coordinates,
Fourier descriptors of each harmonic are
matched in the frequency domain. The prob-
lem of finding corresponding points no longer
exists. The transformation parameters can
be directly solved in the frequency domain
and they naturally correspond to the idea of
the centroid-based transformation, so that the
computation becomes efficient and useful.

Since the Fourier descriptors of a closed line
and an open line have different properties, the
algorithms of closed-line matching and open-
line matching are different. In general, open-
line matching is a simplified case of the closed-
line matching. Because a phase shift does not
change the centroid, the translation parameters
can be directly calculated for the both cases
by using the following formula derived from

Eq. (5):
[ l-1a]-12]

For the case of matching closed lines, each har-
monic (except the zero one) has 4 coefficients,
so that 4 observation equations can be con-
structed for each harmonic. Let ag, bx, ¢ and

(11)

d;, be the Fourier coefficients of a candidate
line, and the coefficients with a prime represent
the given line. If a similarity transformation is
applied, then the observation equations can be
derived from Eq. (9) as follows:

a;c Va), aj b, —ci
k + Ub,, = S b —ar —di
c;c ’Uci Cl dk ar
A Vgt dp —cr by

cos f cos kAt

cos 8 sin kAt

sin 8 cos kAL

sin @ sin kAt

In Eq. (12), the parameters, S, § and At, are
unknowns, and the equations are nonlinear.
Combining the equations of all the harmonics
from 1 to a maximum harmonic m, we obtain
an redundant system of nonlinear equations.
Least-squares adjustment can be used to solve
the unknowns by minimizing the summation
of squared residuals. An iterative approach
of least-squares adjustment can be applied to
solve such nonlinear equations with the given
approximations of the unknowns.

For open-line matching, Eq. (12) can be sim-

plified as
a, | _ g | cos 6
¢ | sin cosf ¢k cos kAt
(13)

In order to linearize the equations, we let e =
Scosf and f = Ssinf. In addition, the start-
ing point is assumed to be at either end of the
open line, so that At = 0 or 7. When At =0,
the observation equations will be

(4] [u] = (2 2 )[5) 00

When At = 7, they become

EaE b R

—sinf ] [ ay cos kAt }



The observation equations become linear in
this case, so that unknowns can be solved
without iteration. However, in order to know
whether Egs. (14) or (15) should be used, the
parameter At should be determined in ad-
vance. The method to approach this will be
described in section 4.4. The parameters S and
# can be derived from the solution of e and f
by using

S = \/ez+f2,
6 = arctan(f/e). (16)

4.3 Weight Matrix and Mean-Square Er-
ror

Using least-squares adjustment, the mean
value of the coordinate differences between two
matched lines should be 0, and a mean square
error can be calculated from the differences. If
we treat the coordinates z’ and y' as observa-
tions with a variance o2, the mean-square error
of the match is the best estimate of 2. It is
obvious that those properties of least-squares
adjustment are defined in the spatial domain.
Because the matching is performed in the fre-
quency domain, two questions arise. First,
what should the weight matrix for the obser-
vations aj, b}, ¢}, and dj, be? Second, how is
the mean square error from the residuals Vgl 5
Uyl Vel and Var calculated?

In order to answer the first question, vari-
ances and covariances between the Fourier coef-
ficients should be analyzed. Let the covariance
matrix of the z and y coordinates be an identity
matrix multiplied by a unit weight variance o2.
From Eq. (1) we have the relationship between

the coordinates and the coefficients as follows:

ak f z(t) cos kt dt
b | _ f :c(t) sin kt dt
k| % Ty(t)cosktdt |’ (17)
d - f02" y(t) sin kt dt

One notable fact is that the off diagonal terms
of the covariance matrix of the Fourier coeffi-
cients should all be zeros, because the functions
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used to calculate the coefficients are orthogo-
nal. Also according to the error propagation
law and Eq. (17), the diagonal terms (variances
of the coefficients) can be calculated as follows

2
2 _ 2 _ o 2w 02 — 2
Car = 05 = 7 Jo cos?ktdt = o},
2 — 2 _— ZQ_ 2 _ 2
o, = 03 = = fo sin®ktdt = of.

It can, therefore, be concluded that the weight
matrix is an identity matrix multiplied by o2.
This conclusion is also appropriate to the case
of open-line matching.

The answer to the second question is that the
mean-square error (MSE) is equal to the sum-
mation of the squared residuals in the fre-
quency domain divided by 2. If the maximum
harmonic is m, it can be expressed as

MSEZ%Z('U/ +’Ub/ +’Ul +'Udl). (19)

Proof. The mean-square error is defined in the
spatial domain as

MSE = % (/0 m(t)dt—i—/ t)dt)

By substituting Eq. (1) into above equation,
the MSE can be expressed in the frequency
domain as

1 2x ™
MSE = — /
2 0

k=1

2w ™
/ Z (ve, cos kt + vg, sin kt)? dt | .
k=1

Because of the orthogonal property, the for-
mula becomes

vzk cos? ktdt+

1 m 2
MSE = ﬂg(/

27
/ 'vb sin ktdt+/ 'v ., COS 2 ktdt +
0

27
/ '”3,= sin? ktdt) .
0

> (vay, cos kt + v, sin kt)? dt+
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Because
27 2%
/ cos? ktdt = / sin® ktdt = 7,
0 0

we obtain

1S~ 2 2 2 2
MSE = 5;(%; + vy + v -I—vd;).

The theory and proof are also appropriate to
the case of open-line matching, except there are
no vy and vg: terms.

4.4 First Approximations

The first approximations may be crucial for
solving a set of nonlinear equations. With
poor approximations, the computation may
converge to a wrong solution or even be di-
vergent. It is, therefore, important to provide
good approximations for the adjustment com-
putations.

In Eq. (12), let k£ = 1, then it seems possible to
solve the approximations, So, 89 and Atg, from
the four equations. Unfortunately, the parame-
ters @ and At are dependent in each harmonic,
so that @y and Aty solved from the first har-
monic may be correct or incorrect with a dif-
ference of 7. In order to assure the approxima-
tions are correct, the equations of the first two
harmonics should be used.

We firstly linearize Eq. (12) by letting

cel = Scosfcos At; ce2 = Scos 0 cos2At;
¢sl = Scosfsin At; ¢s2 = Scosfsin2At;
scl = Ssinfcos At; sc2 = Ssinfcos 2At;
ss1 = Ssin@sin At; ss2 = § sin 8 sin 2At.
(20)

Then they can be solved by using the following
formulas:

ccl i a bl —-C3 —-d1 17T G.Il T
csl _ b1 —ay —d1 (5] bll
scl | T | o d a b1 y

| ssl | | & - by —a; | | d} |

[ cc2 ] [ az b2 —-C2 —d2 17T G.Iz ]
cs2 _ bz —a2 —d2 Co blz
se2 | T | e dy  ay by Cy

| 852 | | dy —c by —ay | | 4y |

According to Eq. (21), we define

Cl = ccl—ssl = Sgcos(fo+ Atp);
S1 = csl4+scl = Sosin(fo + Ato);
C2 = cc2—ss2 = Spcos(fp + 2Atg);
S2 = ¢s2+s5¢2 = Spsin(fp + 2Atg).

(22)

Then the approximations can be calculated as

So = +/C12 + 512,

6o = 2arctan(S1/C1) — arctan(S52/C2),

Aty = arctan(S52/C2) — arctan(S51/C1).
(23)

In fact, there are other combinations of
Eg. (20) to solve the approximations. However,
in practice, it is not necessary to elaborate the
computation of the approximations.

For open-line matching, although the system is
linear, the parameter At should be determined
in advance. The observation equations of the
first two harmonics are also required to solve
the problem. According to Eq. (14), there are
2 unknowns and 2 equations, so that one can
solve 2 approximate rotation angles from the
equations of each harmonic. Let #; and 8, de-
note the rotation angles solved when £ = 1 and
k = 2 respectively, then At can be determined
by using the following algorithm: .

if |83 — 4| close to 0,
if |6, — ;| close to ,

At:O;
At =,



5. EXPERIMENTS

5.1 Matching Closed Lines

Fig. 3 shows a digitized, closed line (A). The
line B is a candidate to match line A. The
starting points are indicated by solid circles.
In order to check the computed transformation
parameters we copied line A to line B by the
following transformation:

translation Az = 150

Ay =100
scale S =0.6
rotation 6§ = 45°

After the transformation, we shifted the start-
ing point to the 10th node and added Gaussian
noise (¢ = 0,0 = 3).

N

Fig. 3. Example of matching closed lines.

According to the matching process described
in section 4, line B is transformed to fit line
A. Through the matching process, the mean-
square error (intrinsic measure) as well as the
transformation parameters and phase shift (ex-
trinsic measure) are calculated. The mean-
square error is expected to be about 3, and the
calculated transformation parameters should
be the inverse-transformation parameters used
to copy line B.

The following results are obtained:

Intrinsic measure -mean-square error == 3.44
Eztrinsic measure-translation Az = —149.3
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Ay = -99.9
scale S = 1.65
rotation 0 = —44.9°
phase shift At = -86.4°

The intrinsic measure is close to the number we
expected. Line B’ in Fig. 3 is the transformed
line B using the estimated transformation pa-
rameters. Note that the area between line A
and B’ is minimized by the proposed matching
process.

5.2 Matching Open Lines

Here, we repeat the procedure for open lines.
Line D in Fig. 4 is a copy of line C, obtained
with the following transformation:

translation Az = —150

Ay = -100
scale S =105
rotation 4 = 180°

Before the transformation we added Gaussian
noise (g = 0,0 = 3) to C.

S8

Fig. 4. Example of matching open lines.

We performed two experiments. First, the
starting points of line C and D are at the same
end. Second, we changed the starting point
of line D to the other end. In both cases we
obtained the same results. Line D’ shown in
Fig. 4 is the transformed version of line D.
The matching results are listed as follows
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Intrinsic measure - mean-square error = 2.6

FEzitrinsic measure- translation Az = 150.5
Ay =99.8
scale S = 1.976
rotation 0 =-179.4°

They correspondent with the transformation
applied to generate line D.

CONCLUSION

The mean-square error obtained in our match-
ing approach is an ideal intrinsic measure to
the goodness of the match. This quantity
is obviously more transparent than the use
of a table of deviation on shape invariants
[Granlund,1972; Lin and Hwang, 1989].

The quantities of extrinsic measure may be use-
ful in some aspects. For example, in the case
of recognizing hand-writing of digital numbers,
the digits of “2” and “5” as well as “6” and
“9” are similar in shape but different in ori-
entation. With intrinsic measure alone, they
can hardly be distinguished [Pavlidis, 1980].
Checking the rotation parameter of the extrin-
sic measure will be helpful in this case. Match-
ing edges of a pair of stereo images [Schenk, Li
and Toth, 1991], is another example. One of
the edges in the left image may be similar in
shape to more than one edge in the right image.
In this case, the extrinsic measure provides a
global criterion.

In this study we match lines globally, that is, as
whole entities. Consequently, lines which only
match in parts cannot be dealt with. Since in
many applications lines only match in parts, we
are presently extending our approach to cope
with this situation.
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ABSTRACT

One of the problems of interpreting landforms by an expert system is the definition of an
initial space state by reducing the infinite number of landform types to plausible candidates.
In this paper we focus on the initial space states. In particular, we investigate the set size
of plausible candidates, and the associated control strategy and search techniques. The
comparison of different strategies and techniques in view of landform identification and
terrain analysis lends itself into recommended specifications of an expert system with which
the problem should be solved.
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1 BACKGROUND

Expert systems and their roles in image inter-
pretation receive great interest nowadays (Ar-
gialas, D., 1988; Mintezer, O., 1989; Bolstad,
P. et al,, 1991). Artificial Intelligence (AI) is
defined as “the study of how to make comput-
ers do things, which at the moment, people do
better” (Rich, E., et al., 1991). The problem
of image interpretation is in quite compliance
with this definition; and therefore, image inter-
pretation is recognized as an AT problem.

Expert systems are considered as “vigorous
part of the burgeoning field of artificial intelli-
gence” (Edmunds, R., 1988). Many definitions
of expert system exist today. Bowerman, R.., et
al., 1988 define it as follows: “An ezpert system
is a system of software or combined software
and hardware capable of competently ezecuting
a specific task usually performed by a human
ezpert.” One of the most important aspects of
an Al system is the search strategy (Patten,
J.,1991; Rich, E., et. al., 1991; Barr, A, et
al., 1982). After the knowledge acquisition is
completed, a suitable search method must be
selected.

Today, two main types of limitations can be
observed in the AI field. These limitations are
technical limitations, such as storage problems
and theoretical limitations, such as the gen-
eral lack of understanding that characterizes
the field of Al, vis-a-vis the way human minds
process knowledge.

With the rapid advancement in the hardware
technology, the technical limitations become
less significant. The theoretical problem is im-
proving slowly, and acceptable approximations
to human reasoning are available. Scientific ex-
periments are essential to provide suitable the-
oretical bases about how human minds process
large knowledge bases in a matter of microsec-
onds.

In the next section we analyze the problem of
interpreting landforms based on terrain analy-
sis. Then we investigate different search strate-
gies followed by developing a control strat-
egy that takes into account the technical and
theoretical limitations of AI. Finally, we de-
scribe a rule-based program that combines
the establish-and-refine and ordered state space
search strategies.

2 STATE SPACE SEARCH AND
CONTROL STRATEGIES FOR ITA

To provide an acceptable state-space search
and control strategy for Image Interpretation
Using Terrain Analysis (ITA), a conceptual
view of the problem should be investigated.
There are three general factors based on which
a control strategy can be qualified for an ITA
problem. The first factor is the nature of the
problem, which can be revealed based on a
careful task analysis. The second factor is the
experts’ methods of attacking the problem in
the real world. The final factor is the intended
capacity of the system (scalability).

2.1 A Real World Human Model for ITA

Before any strategy can be devised for an ex-
pert system, a proper task analysis must be
performed (Chandrasekaran, B.,1992 and Pat-
ten, J., 1991). The following paragraphs dis-
cuss ITA for the purpose of identifying land-
forms and deducing their parent materials and
characteristics for site analysis and evaluation.

First, the ITA task is properly accomplished
by experts in the field but not by computers at
the moment. Therefore, landform identifica-
tion for site evaluation purposes is commonly
acknowledged to be an AI problem. The other
aspect of the problem is that while many facts
are well documented in different sources, such
as books, reports, and maps, the most impor-
tant knowledge for ITA is written nowhere but
in the minds of the experts. This knowledge
contains the strategy of approaching the prob-
lem at different circumstances.

To the question “How did you do it?” an ex-
pert may reply “It is easy! Well....I know it,
but I do not know how I know it”. It is this
part of the problem that points out the missing
links in the chain of the theoretical aspects of
AT (Patten, J., 1991). Also, this part of the
puzzle calls for more research and exploration
to uncover the high level of intelligence required
for introducing Al systems into image interpre-
tations in general.

ITA possesses two important AI properties.
First, the problem consists of many concepts
that can be decomposed, within a general do-
main, into many subconcepts according to cer-
tain criteria (Hoffman, R., 1989a; Mintzer, O.,
et al., 1984; Mintzer, O., 1988; Strahler,N.,



1981; Way, D., 1973; Zuidam, R., 1985). The
other property of the problem is the way the so-
lution is obtained by a human expert. At the
beginning the solution is very general; then it
is refined until specific conclusions are reached
(Way, D., 1992). This property, called coarse-
to-fine property, is more obvious in relatively
hard and very hard (complex terrain) environ-
ments. The coarse-to-fine property is known
in Al fields as hierarchy classification property.
These two properties of the problem are indica-
tive and to a large extent determinative of what
control strategies should be devised in AT sys-
tems that are to be developed for the ITA prob-
lem.

Analysis of processing more than forty mod-
els in the field, processed by a recognized ex-
pert, indicated that a human expert analyzes
the ITA problem in a consecutive logical way.
Figure 1 shows a human analysis model for
the problem. The model consists of five ma-
jor phases or modules:

1. Adjustment module

2. Initial settings module

3. Transition phase module

4. Hypotheses module and

5. Verification module.

Many experts do not realize that they reason in
this sequence . For instance, experts note the
fourth and fifth phases but, often, not the first
and third phases. This chain of logical analysis
is very important to be realized by the Knowl-
edge Engineer (KE) due to its essentiality in
qualifying certain state-space search strategies
over others for the ITA problem.

In the real world, an expert is sitting in his of-
fice and ready to provide interpretations and
consultations for his customers. This is what
an expert expects. However, he cannot predict
what a customer’s image will contain. That is,
the expert might work on tens of stereo pairs,
each containing different features, terrain, and
characteristics. Analogously, an AT system for
the ITA task should be ready for any type of
tasks for ITA, but within the prespecified lim-
its of the system. For instance, if the system
was developed to identify thirty landforms on
earth, it should be able to define any of these
landforms at any time without an a priori ex-
pectation of which landform it will face with
the next customer. This ability calls for an en-
gineer to develop a systematic or methodologi-
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cal way of ITA that is general enough to cover
the whole spectrum of the task.

This paper assumes a large system with defi-
nite number of goals. Figure 2 illustrates the
properties of the task of ITA. The general con-
figuration of the triangle indicates the coarse-
to-fine property of the problem while the small
squares inside the triangle portray the decom-
posability of the problem to smaller individ-
ual concepts. Depending on the granularity or
resolution intended by the system, the reached
and verified concept could be a single or several
concepts. In fact, the ITA problem is method-
ological in nature (Avery, T. and G. Berlin,
1985) and modular in concept. The modularity
of the problem is explained next as a set and
subset concept.

2.2 ITA Decomposability Property

Using set theory, let the general concept of the
above task be denoted by Cy, and let the first
level of the decomposable concepts be a set L,
where

L) = C11,C12,...C1n
such that:

Cg D C11,Ci2,....,C1n
Then, it is necessary and sufficient for the ITA
problem to be decomposable if it has:
1. C, # 0.
2. Cg D C11,C12....,C1n
3. C;;NCy = {0}, where j £ k
Now, let Cq1, C12, ...C1n which are denoted pre-
viously by L,, presents the coarsest level of the
concept Cy, then

LyeCy

By the same analogy, L, may be further de-
composed. Let
Ly = {C21,Csa, ..., Car}
be the second level of the concept that is fil-
tered from the first level. In a similar fashion:
Cy D C2,Caa, ..., Cay
Then the set relations
Lye Iy
and
021 N sz... n C2k = {0}, where Lg 75 (D
are held.

The same decomposition continues for the con-
cept until L, is reached, where L, denotes the
resolution level which contains the goal node:

L3 = {C51,C3,...,C3i}
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Figure 1: ITA modularity as processed by human experts in the real world

Lr = {CTI)C1‘2) ceey Crm}

Ly ={C51,Cq2,...,Cqs}

where ¢ > » > ... > 1. Then
Lg S Lg_1 € ...€ Ly.

Denote the level qualification factors that an
expert uses to move from one level to the other
by @Q1,Q2,...,Qg . These qualification factors
are the criteria based on which subconcepts are
derived until the solution is reached. Figure 3
illustrates the filtration concept and the notion
of sets and subsets of the ITA problem. (The
reader is referred to Childress, R., 1974; Ka-
plansky, 1., 1972; Eisenberg, M., 1971; Reed,
G., 1977 for more information about set the-
ory.)
The explained sets and subsets portray the so-
lution path and should not be confused with
the general problem configuration, which may
appear quite opposite in a diagram. To il-
lustrate the difference, Figure 4 combines the
whole concept. More intention should be paid
to the setting of the large triangle as opposed to
the settings of the interior, smaller, triangles.
Conceptually, these two triangles are similar in
that both have coarser knowledge up and finer
knowledge down. The difference, however, is
in the final outcome of each. The larger trian-
gle presents the whole spectrum of the prob-
lem. That is, all landforms existing on earth
that the system may identify are listed at the
bottom of the large triangle. In contrast, the
smaller triangle presents only those landforms
that are of interest and appear on a particu-
lar image. Therefore, smaller triangles repre-
sent a solution while the larger one represents
the whole problem (domain). The individual
events represented by the small triangles are
eventually summed up to constitute the whole
population.

2.3 Search Flow of The Human Model

Based on the previously mentioned properties
and theories of the nature of ITA problem, it is
fair to say that in the real world the absolute
initial states of the problem are unknown at the
first few moments. This general statement im-
mediately implies unknown goals at the initial
state space. For instance, an analyst is told to
define all existing landforms in a stereoscopic
pair of images. Before looking at the pair, the
analyst has no way of knowing where to start
and what to expect. This momentary vague-
ness is soon adjusted according to the adjust-
ment module based on certain criteria in the
very few starting steps of the interpretation
processes.

This part of the problem (an unknown hy-
potheses) calls for an immediate forward track-
ing of the solution by the expert system (initial
setting module). Likewise, the human expert
is unconsciously conducting a forward search
or tracking at his initial settings and scanning
of the problem. As soon as the human expert
handles the images, looks at them, and reads
them, he narrows the problem and defines his
starting points or what is called initial state-
space. As mentioned previously, control strat-
egy should be in a close compliance with human
search strategies. Accordingly, at this level of
discussion, the first conclusion is that the initial
search control strategy should be developed to
work in a forward-tracking (knowledge-driven)
manner.

The next step of search control strategy con-
ducted by human experts is to do further care-
ful analysis based on well established criteria
to prune all irrelevant concepts from the whole
space, sticking only the candidate concepts.
This middle level of the search can be either
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Large Triangle Portrays The Coarse-to-Fine Concept

Small Squares Indicate Individual Concepts

Figure 2: ITAI with coarse-to-fine concept and decomposition property

forward- or backward-tracking. The tracking
method depends on how the expert attacks the
problem to decompose it into subconcepts. If
he has already developed a certain broad hy-
pothesis about several subconcepts, then he is
doing a temporary backward tracking of this
hypothesis in his mind. But if the problem is
still too vague, a forward tracking may continue
because the expert has not yet developed any
goal to verify (transition phase module).

The third and last step achieved by the expert
is to rank the possible and most promising con-
cepts (landforms) in the image and to start to
verify them one (or several) at a time (hypothe-
ses module). This implies that, at this level
of image interpretation process, a very deter-
mined hypothesis (goal or concept) is clearly
defined in the expert’s mind. Until the goal is
verified or disapproved, the whole process is a

goal-oriented (or a goal-driven) process. The
AT system must follow the human way of at-
tacking the problem and act accordingly. From
here on, the rest of the process of the control
strategy should use backward tracking for the
knowledge search since some goals are devel-
oped (verification module). Since there is no
absolute forward tracking in AI, it is impor-
tant to realize that there is a dummy or transi-
tional parameter so that the data-driven search
can progress (Chandrasekaran, B., 1992).

2.4 Qualifications and Implementations
of Strategies

Like any other AI problem-solving system, the
ITA expert system consists of three main com-
ponents: a database, a set of operators, and
a control strategy. Current research is care-
fully investigating all three components from
the viewpoint of image interpretation using ter-
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Figure 3: The concept of sets and subsets of the ITAI problem
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Figure 4: Problem domain setting vs. solution path settings

rain analysis. This paper concerns the third
component.

The basic characteristics that any good con-
trol strategy should possess are the ability to
maintain a dynamic character (motion) of the
state-space and the ability to provide a system-
atic behavior to the whole space (Rich, E. and
K. Knight, 1991; Chandrasekaran, B., 1990).
The mobility property of any strategy provides
the avenues to eventually reach the solutions to
the problem under consideration. On the other
hand, the systematic property of any strategy
prevents the undesirable repeated exploration
of useless state-space several times before the
solution is reached (Patten, J., 1991).

The content and the organization of the sys-
tem’s knowledge base are influenced by the se-
lected control strategy. The control strategy of

a system becomes very obvious in tasks that
use operators to modify the problem concepts
in a multiple task-domain situation. The ITA
problem needs several operator sequences at
every level so that the next move is conducted
intelligently. This property of the probem ex-
poses two different types of search theories.

The first theory is called blind search theory or
control strategy (e.g., breadth-first and depth-
first search)(Barr, A., et al. 1982; Rich, E.
and K. Knight, 1991). The second theory is
called heuristic search theory or strategy (e.g.
ordered state-space or best-first search) . These
theories are illustrated by presenting three ex-
amples so that proper conclusions about the
suitability of these theories to the ITA prob-
lem are reached.

2.5 Blind State-Space Search Strategies
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2.5.1 Breadth-First
Search Strategies

and Depth-First

Breadth-first search strategy expands the con-
cepts (nodes) according to their proximity to
the starting node or concept. Arcs can be
used as a measure for node proximity. Accord-
ingly, all possible operator sequence of length
n is considered before any sequence of length
(n +1). In the ITA problem this strategy de-
clines in value as the system’s scalability in-
creases. If careful planning is not practiced be-
fore developing the expert system, this problem
is dangerous for it may not be very obvious at
the initial stages of developing the system.

As it should be understood, expert systems are
developed incrementally (Jackson, P., 1986).
That is, system development passes through
three phases. The first phase is the prototype
development of the system. Most often this
phase can use the breadth-first search strategy,
which can be of great advantage. The next
phase is a transition phase. In this phase, the
attributes, parameters, and number of land-
forms to be treated increase. At this phase the
system’s slowness becomes evident. The third
phase of the development is the hybrid system
phase. In this phase the problem spectrum is
almost completely covered by the system.

Since the number of landforms on earth and
their parameters and attributes are so large, a
very big knowledge base can be foreseen. This
fact makes the breadth-first search strategy un-
acceptable since its blind behavior causes time
and space limitations. The limitations can be
visualized by looking at the exponentially ex-
panding nodes in Figure 4. In breadth-first
search, if node 23 is an assumed hypothesis
in the tree, then this hypothesis cannot be
reached until the system searches the whole
tree, starting at node 1 on level A through
the last hypothesis just before hypothesis 23
on level E (For basic algorithms for this strat-
egy the reader is referred to the references at
the end of this paper).

The depth-first search strategy operates as an-
other blind state-space strategy. This search
strategy gives the starting node 0 depth, and
from there all other nodes are numbered so that
the depth of any node is 1 more than the depth
of its predecessor. Depth-first strategy expands
the most recently generated node by following

a single path through the state space downward
from the starting node until a goal is reached
or a dead end is found. Figure 4 illustrates
how depth-first search works. Notice here that
the nodes 1, 2, 5, 9, and 14 are treated in the
first processed single path, but in the next al-
ternate path operations start at node 9. The
process continues until hypothesis at node 23
(an assumed goal) is reached. Thus, after the
initial settings of node 2 and its branches are
explored, the search starts back at node 3 and
explores initial settings of its branches.

Conceptually, these methods of state-space
search are incompatible with human expert
methods conducted for an ITA task in the real
world. It should be realized, however, that
this conclusion is based on pure blind search
methods in which no criteria are developed
to qualify the promising nodes to be explored
amongst the list in every level in the state-
space problem. When a set of qualifying crite-
ria is developed for these methods, a new and
more sophisticated state-space search and con-
trol strategies are obtained, which are closer to
the human way of reasoning about the

2.5.2 Heuristic State-Space Search for
ITA

Heuristic control strategy assesses various op-
erator sequences and signalizes or instanti-
ates the most promising sequence (Barr, A.
and E. Feigenbaum, 1982). In fact, heuristic
search strategies use certain criteria to direct
the search in the state-space of the problem.
Based on these criteria and based on the na-
ture of the ITA problem, heuristic state-space
search and a combination of forward and back-
ward chain reasoning constitute a set of control
strategies that meet the conceptual aspects of
the ITA problem; and, therefore, this set is im-
plemented by this study for this problem. This
type of search is justified by many facts, some
of which were described previously and some of
which are discussed next.

Representing the knowledge in the expert sys-
tem according to the logic of the human ex-
pert is a prerequisite in developing control and
search strategies for the system. This prereq-
uisite stems from two essential factors. First,
the expert has to understand the KE’s real at-
tempts to model the expert’s own expertise
and, as a result, the expert gains the confi-
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dence to test and evaluate the system’s success
based on his knowledge and familiarity with
the main workings of the system. In relation
to this issue, the end user’s acceptance of and
confidence in the system are more likely to be
attained if the knowledge representation and
control strategy schemes approximate the ex-
pert’s knowledge.

Select the Suitable Yopo-Forms That Describe the Arca In The Image:-
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SHARP-RIDGED-HILLS

Second, the expert’s strategy of representing
and controlling the knowledge is a whole pack-
age of expertise that any AI system should |

maintain. In a heuristic search the ingredients

of the ITA problem are the initial state, the op- ’
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lished. The rest of the control strategy is, then, (SET-VALUE 7EST 33.9)
to develop heuristic information about the ITA (VALUE-OF TEST) TALLY 100)
problem and to implement a search method CCTVALUE-OF TEST) TALLY 100))
which uses this information to effectively search (SREANE FRANE DRAZMAGE- IWTERNAL))
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gorithm that well fit the ITA problem. This P oLus
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ing about what type of heuristic information
can be used in searching the space of the ITA
problem. This information includes heuristic
strategy constraints and can be categorized ac-
cording to its function into two different cate-
gories. The first category is a set of information
that qualifies the most promising node to be ex- Figure 5: An expert system contains the
panded and which evaluates node successors to OERSA

generate the best node amongst them. This
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type of information is used by the heuristic
search strategies to eliminate the blind expan-
sions that characterize breadth-first and depth-
first strategies. The second category is a set
of information that eliminates irrelevant nodes
from the whole space.

The implemented algorithm represents the gen-
eral idea of the heuristic search methods as
compared to the blind search methods. The
general concept of the OERSA is that it works
globally on the total set of nodes that are not
yet expanded, and it evaluates them to expand
the most promising successors or nodes only.
The evaluation function @ is a problem depen-
dent. In the ITA problem, the qualification
function ¢} should be the similarity measure be-
tween the current space state node and the goal
node instead of the distance or difficulty qual-
ification measure that is used by some other
problems. In some instances the @ function in
the ITA problem is developed based on elimi-
nation criteria, where refinement is conducted
for the established nodes. Figure 5 represents
small portion of the rules and screens of the
expert system which contains OERSA.

The OERSA, implemented by this study, is as
follows:

e Start the adjustment module by applying
global qualification function @ to the ITA
space in order to establish the initial state
node S.

e Prepare a list in the initial state node §
and evaluate the individual elements in
the list according to the @ function (an
evaluation function).

o If the node S is empty, then report a fail-
ure as an indication that no solution ex-
ists.

e If S is not empty, then according to the
@ function establish the most promising
concept (concept 7) in the node.

e Call a recognition agent and test concept
i, if the concept is a goal node, then re-
port the proper conclusions and exit with
success.

e If concept  is not a goal node, then es-
tablish successors of concept ¢ and refine
each successor node, say concept k, using
the @ function:

1. If concept k is new, then list it
among the other unexpended con-
cepts and give it a pointer to its par-
ent node to trace its path toward the
goal concept if found later.

2. If concept k is not new, then call
the probability function, compare
k’s current value with the previously
calculated one, and make proper
substitutions. Refinement based on
certainty factors are in effect at this
stage of the inference process.

e Return to step number 2 and continue.
4 DISCUSSION

The human strategy for interpreting landforms
is systematic and of clear conceptual blocks.
That is, the process is coarse-to-fine, in general,
and is knowledge-driven until the initial space
states are set; then the rest of the process is a
goal-driven verification of the hypothesis. An
Al system for the same purpose must closely
follow the same general guide lines. It is not
impossible, however, to follow other strategies
that could solve the problem but will be char-
acterized by two properties:

e The AT system will not act according to
the human methods. This will lead to
two conceptual consequences:

1. The problem may be regarded as
not an Al problem, which contra-
dicts the reality of the ITA problem;

2. The system will lack the property
adhering in the word “EXPERT”;
or

e The efficiency of the system, both time-
wise and storage-wise, may be question-
able, especially for large tasks.

It has been explained how each type of con-
trol strategy behaves as viewed from an image-
interpretation perspective. In reality, both
breadth-first and depth-first search methods
are characterized by the mobility property that
a good strategy maintains. The drawbacks of
both, however, are listed here from an Al view-
point and from the ITA viewpoint as well:



1. Incompatible with the human logic of
solving the ITA problem.

2. Depth-first method may be trapped in
the state-space and goes through an end-
less loop.

3. The breadth-first search is characterized
by time and space inefficiencies.

4. In both methods, the obtained solutions
may be not the optimal solution.

These drawbacks are not necessarily disadvan-
tages for some other types of Al problems. For
instance, in some other situations the following
are advantages of these methods:

1. Depth-first search is fast.

2. Breadth-first search guarantees a solu-
tion if one exists.

3. Breadth-first search finds the shortest
path to a solution.

On the other hand, for our particular AI prob-
lem , the heuristic search is preferable, for this
type of control strategy is applicable to the ITA
problem. This is quite true since the number
of concepts (concepts of landform identification
and evaluation) to be treated is very large and
since methods for pruning irrelevant nodes are
essential for avoiding the probable “combina-
torial explosion” property (exponentially grow-
ing nodes). The least important advantage of
this search method is the ability to combine
the advantages of depth-first search (exploring
a minimum number of branches) and the ad-
vantages of breadth-first search (avoiding being
trapped by a dead end). Most important are
the compliance of the heuristic search methods
with human reasoning and the intelligence that
these methods can provide if proper knowledge
about the problem domain is acquired.

5 CONCLUSIONS

Any control strategy must maintain the motion
and systematic property for the state-space
strategy. For the ITA problem a hybrid control
strategy that fits the conceptual aspects of the
problem and maintains the Al aspects is recom-
mended and implemented by this study. The
proposed control strategy consists of a heuristic
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state-space search strategy along with a com-
bination of forward and backward chaining.

A close look at the brute-force state-space
search strategies (called blind strategies in AI),
heuristic state-space search strategies, and the-
ories of chaining can provide great clues to the
success of expert systems in the ITA problem.
Since this paper concentrates on the conceptual
aspects of the problem, there was no attempt
to provide recommendations for particular al-
gorithms. However, on the conceptual level we
recommend heuristic state-space strategies for
the ITA problem. For search algorithms, there
are many different ways of selecting from a va-
riety of algorithms for a heuristic state-space
search. Popular algorithms, such as generate-
and-test, hill climbing, best-first search, prob-
lem reduction, and means-ends analysis, can be
investigated for the ITA tasks.
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ABSTRACT

Digital photogrammetry is concerned with the development of algorithms to automate pho-
togrammetric tasks. The majority of efforts though are focused on single stereopairs. This
paper addresses the task of simultaneously matching conjugate windows from multiple over-
lapping images. After establishing a theoretical understanding of the problem, we introduce
several approaches and present the associated mathematical principles. We report on the
advantages and disadvantages of each one, discuss various implementation issues and in
conclusion, we examine potential applications in photogrammetric procedure.
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1. INTRODUCTION

Digital photogrammetry has recently emerged
as one of the most promising and multi-faceted
photogrammetric subfields. A solid body of re-
search work and a wide array of topics have
laid the foundation for the evolution of the pho-
togrammetric procedure. Among the research
topics, automatic matching is one of the most
challenging.

Digital image matching attempts to identify
sets of conjugate entities from two or more
overlapping images. From the diverse set of
matching techniques [Lemmens, 1988], least
squares matching is a popular choice [Acker-
man, 1984]. Even though there already exists
substantial work on this subject, most efforts
have been focused on the stereomatching case,
which involves a single pair of images. This
paper deals with simultaneously matching win-
dows from multiple overlapping images using
least squares techniques. The significance of
this issue lies in the impracticality of handling
single models at the time when processing large
blocks is common practice in the photogram-
metric industry. Successful and efficient com-
pletion of multiple image matching is expected
to contribute significantly in the transition of
digital photogrammetry from an experimental
to a production-oriented status.

Significant research in the area of multiple
image matching can be found in [Grin &
Baltsavias, 1988],[Heipke, 1992] and [Helava,
1988]. In this paper, we present alternative
approaches to the subject by introducing ge-
ometric constraints and performing matching
in the object space. The general least squares
matching procedure is discussed in detail and is
subsequently expanded to accommodate multi-
ple image windows. We explore the theoretical
issues of the proposed approaches and estab-
lish the corresponding mathematical principles.
Then, we report on their advantages and disad-
vantages from a photogrammetric point of view
and address several implementation issues.

2. LEAST SQUARES MATCHING

Least squares matching techniques attempt to
match windows of pixels by establishing a cor-
respondence between them which minimizes

the differences of their gray values. Assum-
ing gr(zL,yL) to be a window of n; X ny pixels
in the left image, and g%(z%,y%) an equal size
approximation to its conjugate position in the
right image, the objective is to estimate a new
location of the right image window gr(zg, yr)
such that the gray value differences

9r(zr,vr) — gr(zr,yR) = e(z,y) (1)

are minimized. The estimation is performed by
the transformation of the coordinates (z%,¥y%)
and resampling of the corresponding gray val-
ues. The coordinates of the two windows are
related through a perspective transformation
to a common surface patch in the object space.
Taking into account the very small size of the
windows to be matched, their coordinates are
assumed to be related to each other by a 6-
parameter affine transformation

Tgp = a1 + a:2L + asyr (2)

and
yr = b1 + bazr + bayr (3)

With linearization, the equations

gL(zL:yL) - e(z)y) = g;t(zghy%) (4)

become

gr(er,yr) — e(z,y) = gr(zR,¥%)+ gr.dzR
+ 9r,dyr (5)

with the terms gg_ and gg, expressing the local
gradient of the right image function in the z
and y direction respectively as

_ 99h(2%,yR)

_ 99h(=5,v5%)
3zR - (6)

Rz
I Oyr

By differentiating and substituting the affine
transformation parameters, the observation
equations become

gr(zr,yr) —e(z,y) = ga(cr ¥&)+ gr.do
+ gr.zrda; + gR.yrdas
+ gr,db1 + gr,zrdb;
+ gr,yrdba (7)
One observation equation is formed for every

pair of pixels from the left and right image tem-
plates, resulting in a total of n; - ny equations



for templates of size my X ny. Using matrix
notation we have

—e= Az —1 (8)
where the vector of unknowns z is
eT = [da;,day,das, dby,dby,dbs]  (9)

and each element of the vector of observations
[ is of the form

I=gr(zr,y) — 9(z%,92)  (10)
while each line of the design matrix A is

A=[gR. 9R.TL\GR YL IRy, 9R, L, GR,YL]  (11)

The least squares solution is
e = (ATPA) 14T PI (12)

with P the associated, typically diagonal,
weight matrix. By using the transformation
parameters obtained through the least squares
solution to update the coordinates and resam-
ple gray values at integer grid coordinates, a
new right image window gk(z}%,y%) centered
at

th = (af + da1) + (a3 + daz)zL
+ (a3 + daa)yr (13)

and

yr = (b9 + dby)+ (b3 + dba)zy
+ (b3 + dba)yr (14)

is selected as conjugate of the stationary left
image template gr(zr,yr). A new set of obser-
vation equations is formed and solved. In this
manner, the true conjugate window gr(zRr,¥R)
is identified as the window g%(z%,yg) at which
the least squares iterated solution is converg-
ing. It is common practice to use least squares
matching as a means for identifying conjugate
points rather than windows. Thus, we corre-
spond the point (z%,y%), center of the right
image window, to the point (zr,yr) of the left
image. The maximum allowable pixel coordi-
nate difference between the initial approxima-
tion and the final solution for which the tech-
nique can still converge is termed pull-in range.
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The great advantage of least squares match-
ing is its flexibility and the fact that it is a
well-known and documented technique. The
basic model which has been described here can
easily be expanded to accommodate more than
two images or to include various additional con-
straints. Radiometric parameters can also be
included in an effort to compensate for differ-
ences in brightness and contrast between the
two images, and are particularly helpful when
using digitized images of analog diapositives
[Pertl, 1985]. However, a radiometric adjust-
ment is typically performed prior to the least
squares solution, equalizing the average and
the standard deviation of gray values of the
two conjugate windows, thus accommodating
for uneven radiometric properties of the two
images.

3. MULTIPLE IMAGE LEAST
SQUARES MATCHING

3.1 Mathematical Formulation for Mul-
tiple Images

Multiple image matching can be performed by
simultaneously minimizing the gray value dif-
ferences between all the possible pairs of con-
jugate image windows. One image window has
to be kept constant and serves as the matching
template. For every pair of conjugate image
windows (w;,w;), depicting the same object-
space area in the overlapping photos 7 and j,
we form the observation equations

9i(2i,9i) — 95(24,9;5) = eij(z,y) (15)

For windows of n; X n, pixels appearing in
n overlapping photographs we have a total of
m-1)+mn—-2)+..+2+1 = o)
pairs of conjugate image windows and therefore
1("2;1)“1.,12 observation equations. According
to the general least squares matching approach,
each pair of conjugate windows is geometrically
related through a six-parameter affine transfor-
mation

z; = af + aj'zi + oy (16)
Y; = bij + bizj:l:,' + b;jyi (17)
or, conceptually

(24,95) = £ (i, 1) (18)
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However, we cannot introduce a set of affine
transformation parameters for every pair of im-
age windows since that leads to dependency be-
tween transformation parameters. Instead, we
can use the set of transformation parameters
relating each window w; to the template win-
dow un

(zi,9:) = f(z1,91) for i =2,3...n  (19)

which uniquely and sufficiently describes the
geometric relationships between all possible
conjugate window pairs [Tsingas, 1991}. In-
deed, the transformation between a window
w; in photo j and its conjugate window w; in
photo ¢ is uniquely described through the pa-
rameters relating each window to the template
window w, as

= Py

(25,95) Yz, i) (20)

with the inverse affine transformation fil =
(£1*)7! defined as

b%la%l _ b%la:];.l _blz
Ty = —7 7 - {
1ip1e 1ip1: 1ip1: 11 11 Zi
az*by' — aytby az*by* — aj*by
1z
as
+ (21)
12317 11. 1 2
az'by’ — ay'by
alib}* — bltalt bl
B = Agnqupni Ll LipnLLi
az'by* — 13'b3*  a3z'by’ — a3*bs
11
—a
2
11711 11. 129t
az'by' — a3'b;

Substituting in equations
z; = a}j +a¥z, + aéjyl (23)

y; = b 4+ by ey + byiyy (24)

z, and y; from equations 21 and 22 we can
rewrite the affine transformation relating win-
dows w; and w; (equations 16 and 17) as a
function of the two sets of parameters which
relate each window to the template.

Proceeding further according to conventional
least squares approach, we have a total of
6(n — 1) statistically independent transforma-
tion parameters, relating each image window
w; (1 = 2,3,...n) to the reference template.

Therefore the dimensions of the associated vec-
tor of unknowns

= [da?,dal?, ... dbl", dblY]  (25)

will be 6(n — 1) x 1. Each set of observation
equations (equation 15) must be linearized as
following

Oz
gi(zi,u:) —e(z,y) = g3(25,93) + 9je daiJ

day’
ay.’] dbl_‘]

+ -.-+g_‘].yab1]

Oz
+ 9ie gt Jd1‘+...

a
+ "'+g-7ya;lljzdbh (26)

Each pair of pixels from every pair of windows
produces one observation equation. Among
the !1("2_—11 distinct pairs of conjugate windows,
there exist (n — 1) pairs relating each window
w; (1 = 2,3,...n) to the reference template
wi. Observation equations formed by these
pairs will only produce six nonzero elements
for each line of the coefficient matrix A, at
the columns which correspond to the param-
eters of the f1* affine transformation. Obser-
vation equations relating two windows w; and
w; (i # j # 1) will produce twelve nonzero
elements per line, at the columns correspond-
ing to the parameters of both the f* and f7
affine transformations. The sparsity pattern of
the design matrix A for the case of five conju-
gate windows is shown in Fig. 1. The dimen-
sions of each block of nonzero elements (gray
square) are (n1 - n2) X 6, while the parameters
are ordered as f!2,. f15 and the observations

as 1—-2,1-3,. 1—5,2—3,...,4—5. The
least squares solution is again
z = (ATPA) AT PI (27)

and the final solution is obtained after itera-
tions. The normal matrix (AT PA) is full but
the exploitation of the sparsity patterns of ma-
trix A can facilitate computations and storage
requirements.

3.2 Introduction of Geometric Con-
straints

The previously described technique attempts
to match multiple images using solely the



Figure 1: Sparsity pattern of the design ma-
trix for multiple image least squares matching
without additional constraints

recorded gray values, without imposing any ge-
ometric constraints on the relative position of
overlapping images in the object space. By
simply using the affine transformation as the
geometric relationship between two or more
conjugate windows, their geometric interde-
pendence, as expressed by the satisfaction of
the collinearity condition equations, is not
taken into consideration. Therefore, this ap-
proach just minimizes gray value differences
without enforcing a geometrically coherent so-
lution. Windows displaying sufficient radio-
metric similarity can be matched even though
their parallax values may be unacceptable.
This problem can be overcome either by check-
ing the resulting parallax values or, in a more
robust fashion, by introducing geometric con-
straints within the solution process itself.

Geometric constraints can be introduced either
as additional equations [Griin & Baltsavias,
1988], or by properly modifying the expres-
sion which relates the coordinate systems of
conjugate windows. The image coordinates
(zp,yp) (reduced to principal point) of a point
P(Xp,Yp,Zp) of the object space in photo j
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satisfy the collinearity condition

) 1 [ Xp— X3
v, | =R | Y»p-YJ (28)
Ze Ap Zp — 23

or, in matrix notation

RI(Xp — X3) (29)

where R; the rotation matrix of image j, X3i
the ground coordinates of the exposure center

of photo j and Ag, the associated scale factor.
Backsolving the collinearity condition for the

image of the same point P in photo 7 we obtain

Xp = NpRT 2} + Xi (30)
and substituting this expression of Xp into
equation (29) gives

¥ S )‘——R J(Xi—-X3)  (31)
P P

in which we have two expressions (one for z and
and one for y) relating the (z3 P y},) image co-
ordinates of point P in photo j to the (zP,yP)
image coordinates of the same point in photo <,
as a function of the exterior orientation param-
eters of both photos. Conceptually, in accor-
dance to equation 18, by expanding the equa-
tion over pairs of window coordinates (w;,w;)
and dropping the index P we have

¢ (i, :) (32)

with ¢ being the above described function.
This function should be considered the object
space equivalent of equation 20 rather than
equation 18 since the relationship between a
pair of windows is described through their re-
lationship to a reference window, which in this
case is the object space patch.

(z5,95) =

By using all potential unique permutations of
photo pairs as observation equations, and using
one window as the radiometric reference tem-

plate, as previously described in section 3.1,

we can form up to ﬁ("——ll distinct pairs of con-

1
jugate windows, or ﬂ"z—znlnz corresponding
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observation equations. Each observation equa-
tion (equation 15) can be linearized with re-
spect to any preselected set of m orientation
parameters per photo (o‘i,...,o .,o’,;l)
as

1
m 01

Oz; . .
93(22,93) + 95,55 doy

gi(zi,v:) — e(z,y)

0o}
Bu: .
+ ... +g5 i{.’do;n
8z
dol

Ou: .
+ ...—l—gjya—jj]—dofn (33)

The reference template (in photo 1) has to be
kept stable, therefore the exterior orientation
parameters of photo 1 will be kept constant
during the matching process. Thus, the solu-
tion can be considered the digital equivalent of
dependent analog orientation. Since the origi-
nal model is non-linear, the final solution is ob-
tained through iterations. The design matrix
for this case will have similar sparsity pattern
to the one shown in Fig. 1, but the dimen-
sions of each block of nonzero elements will be
(n1 - ng) x m. After each iteration, the image
coordinates of point P in photo j are updated
due to changes in orientation parameters

, Oz Oz; | s
z; =z + a_o%dOi + ...+ aoiidoZn (34)

0y; , 5 8y; , .
;=92 + —2do] +...+ —Ldol, 35
vi yJ 60'; ! 3037; ( )

By solving the above system we inherently en-
sure that conjugate image rays intersect at a
point in the object space. While plain least
squares matching is solely a radiometric ad-
justment, the use of object space constraints
to express the relationship of two or more con-
jugate windows allows the combination of the
radiometric and geometric solutions in a sin-
gle adjustment procedure. The model can be
expanded to include the object space coordi-
nates of point P which can be introduced into
the adjustment by properly expressing the scale
factors as functions of them. In addition, the
technique can be expanded to simultaneously

adjust observations of more than one point in
the object space. The images of all points in
each photo will be related through a common
set of exterior orientation parameters and the
adjustment can thus proceed in a global man-
ner.

3.3 Matching in the Object Space

By examining the image formation process we
can extract some rules which can later be used
in the matching process not only as constraints
but also to expand the problem into the radio-
metric and/or geometric reconstruction of the
object space itself.

Figure 2: Overlapping image windows in the
object space

Fig. 2 shows four image windows w, ... wy4 dis-
playing approximately the same surface patch
S in four overlapping images. The surface is
described by two continuous functions, one ge-
ometric Z(X,Y) (elevations) and another ra-
diometric G(X,Y) (gray values). Assuming a
local tesselation, whereby the surface patch S
is represented as a Digital Elevation and Ra-
diometry Model (DERM, a term analogous to
DE M) with a resolution of n; X np grid points,
the patch is defined by n, - ny elevations and
by an equal number of gray values. The recon-
struction of the patch would therefore involve
the determination of these 2-n; -ny parameters.
These parameters can be determined by defin-



ing the geometric and radiometric transforma-
tions which relate S to its images wy,...ws.
Each image window w; corresponds to a gray
value function g;(z;,¥:), related to S through a
geometric transformation

(zi,3:) = To(X,Y, 2) (36)
and a radiometric one

gi(zi,v:) = TH{G(X,Y)] (37)

Assuming the object space patch § to be a
Lambertian surface, the recorded image irra-
diance g(z,y) (image gray values) is directly
related to the surface radiance G(X,Y’) (sur-
face patch gray levels). Furthermore, taking
into account the relatively small size of the sur-
face patch, the rather complex radiometric re-
lationship between image and object space can
be effectively approximated by a linear trans-
formation

gi(z,y) = 6 + riG(X,Y) (38)

Assuming a Lambertian light source, the val-
ues of the radiometric shift (r}) and scale (rf)
parameters are unique for each image and they
are functions of the surface albedo as well as of
the angles formed between the image window
w; and the normal to the surface [Horn, 1986].

The radiometric adjustment is typically per-
formed prior to the matching process, by forc-
ing each window w; to have the same average
and standard deviation of gray values as the
reference template wy. Thus, we actually force
=1l =g and =rl=r (39)
Subsequently, the gray values g;(z1,¥%1) of wy
are assigned to the surface patch S. The as-
signment can be performed either directly:

G(X,Y) = g1(z1,1) (40)

or through an inverse linear transformation

G(X,Y) = g(—“”z)—_”’ (41)

In order for an inverse linear transformation to
be used, the parameters rq and r; have to be
determined using a priori knowledge on the sur-
face radiance, while for the correct assignment
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of gray values we must have some approxima-
tions of image orientation.

Assuming a smooth surface and no extreme
variations in exposure geometry, we can ac-
cept an one-to-one correspondence between the
object space tesselation and the image win-
dows. Therefore, the observation equations
which were developed in the previous sections
can now be formed using the object space as
the reference template

G(X,Y) — gi(zi,u:) = e(z,y)  (42)

thus transferring the matching procedure to
the object space. The geometric relationship
between the image coordinates (z;,y;) of a
point in photo 7 and its object space coor-
dinates (X,Y,Z) will be in general a seven-
parameter transformation

(mi’yi) = £i(X:Ya Z) (43)

This transformation need not be the collinear-
ity condition, as long as the seven parameters
which describe the three translations, three ro-
tations and one scale factor are linearly inde-
pendent. Some of the transformation parame-
ters may also be kept constant during the ad-
justment, if a priori information allows us to
consider them known.

In order for the elevation values to be com-
puted through the adjustment, they have to
be introduced as adjustable quantities. This
can be performed by proper selection of the
other six transformation parameters (p, ... pk)
to avoid dependencies which would lead to ill-
conditioned systems. The linearized observa-
tion equations for this case are

G(X,Y) —e(z,y)

o7 0 _o0 . dz;
gi (zl’yi)+(g'a ap;
OYi\ , i

i, ——)d
+ g, 3?1) P +
8z; 8y;

ia T i =+ )dps

+ (g”ap;+g"ap;)p°
dz; 8y;

+ (gi, 37 + giy aZ)dZ (44)

Taking into account that different pixels in the
image window w; correspond to different el-
ements of the ground tesselation (groundels,
[Helava, 1988]), we see that the dZ element of
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the above equation is actually a vector of ny-n2
elements. Thus, the design matrix A of the ad-
justment solution will have the sparsity pattern
shown in Fig. 3. In this figure, the large gray
blocks have dimensions (n; - n3) x 6, while the
small black blocks indicate single entries. This
pattern corresponds to the four overlapping im-
ages of Fig. 2, without using observations in
between windows. Window w; has been pro-
jected to the object space during the radiomet-
ric adjustment and the observations relate the
surface patch S to the windows ws, w3 and wy.
A more detailed description and in-depth anal-
ysis of this technique can be found in [Schenk
& Toth, 1992].

Figure 3: Sparsity pattern of the design matrix
for object space matching

Conceptually, object space matching resembles
matching with geometric constraints. Taking
into account the fact that all images are cre-
ated from the same object space patch, least
squares matching is enforced to produce a ge-
ometrically acceptable solution. Simultane-
ously, we are able to reconstruct the object
space DERM. Considering that one photo is
used to create the object space patch, it is clear
that this technique is equivalent to dependent
orientation.

4. IMPLEMENTATION ISSUES

In the previous sections we presented and an-
alyzed the formulation of least squares match-
ing using multiple images. By introducing geo-
metric constraints and performing matching in

the object space, consistent matching results
can be ensured and surface patches can be re-
constructed geometrically as well as radiomet-
rically.

Approximations are obviously necessary and
they can be in the form of conjugate point im-
age coordinates, orientation parameters and/or
the object space surface, as expressed by, e.g.,
an initial DEM approximation. These approx-
imations can be easily obtained through an au-
tomatic stereopair orientation module [Schenk
et al., 1991]. Experiments have shown that ac-
curacies of the order of -11—0 to = of a pixel (or
4 — 6pm in photo coordinates) are to be ex-
pected when the technique is applied as a com-
bination of feature-based hierarchical matching
and correlation methods with continuous up-
dating of the results through scale space [Ste-
fanidis et al., 1991].

Automatic stereopair orientation and least
squares multiphoto matching can be ideally
combined in automatic aerotriangulation of
large blocks of images, the former providing
valid initial approximations and the latter, be-
ing the core module of the procedure, perform-
ing precise point determination. This fusion
of more than one module should be expected,
since initial approximations are required in
aerotriangulation. Stereopair orientation es-
sentially performs automatically the task of se-
lecting conjugate image windows located in the
areas where conjugate points are desired, the
equivalent of the preparation phase in the con-
ventional aerotriangulation procedure. Using
these initial matching approximations, the im-
ages are approximately brought in their correct
relative positions in space. This can be visu-
ally materialized for operator inspection, if de-
sired, through the generation and continuous
updating of a photomosaic. Fig. 3 depicts a
photomosaic of three images, an early product
of the automatic aerotriangulation procedure.
The simultaneous multiphoto matching tech-
nique can also be conceptually viewed as the
digital equivalent of an n-stage comparator, al-
lowing for the measurement of conjugate points
in more than two images at a time. Several
gross errors, associated with erroneous conju-
gate point identification, which limit the accu-
racy of conventional analytical aerotriangula-
tion can thus be avoided, optimizing the po-
tential accuracies of the technique.



Figure 4: A photomosaic of three photos

By using a feature-driven stereomatching
method to obtain the initial approximations
for multiphoto matching, we ensure the selec-
tion of areas of sufficient radiometric variation
which inherently lead to better matching accu-
racy. In addition, these areas will most likely
correspond to features of interest in the object
space, since gray level variations are caused by
markings on the ground, and changes in radi-
ance and/or surface orientation. The use of
least squares techniques for matching provides
the additional advantage of producing results
with objectively estimable accuracy, allowing
for the proper assignment of weights. Obser-
vations in windows of low entropy, which are
typically susceptible to erroneous matches can
be assigned smaller weights, thus minimizing
their effect in a global solution.

In conclusion, it is obvious that multiple image
matching is an essential tool in digital pho-
togrammetry. The introduction of geometric
constraints and its performance in the object
space can contribute to making it more rigor-
ous in theory and consequently practically im-
proved. Combined as discussed with already
developed modules, such as stereomatching, it
can fully automate the aerotriangulation proce-
dure, and significantly assist in upgrading the
mapping process.
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ABSTRACT

In this paper we formulate suitable mathematical models for rigorously solving the multiple
image matching problem. We describe a general solution by introducing a geometric and
radiometric relation between a surface patch and the corresponding image patches. We
then investigate several geometric transformation models between object and image space,
including linearized observation equations. We conclude with describing two approaches of
using multiple image matching in aerotriangulation. The first approach is the most general
one where the exterior orientation, the surface patches with elevations (DEM) and gray levels
are all determined simultaneously. In the second approach conjugate points are determined
independently from one another and without the exterior orientation parameters. This
solution corresponds to the traditional method where all points are individually measured
and then entered into a block adjustment.
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1 INTRODUCTION

Determining conjugate points is a fundamental
task that occurs in almost any photogrammet-
ric application. In digital photogrammetry it
has become customary to call this process im-
age matching. It is fascinating to observe the
development of image matching during the last
decade. Much progress has been made since
Ackermann (1984) and Forstner (1984) pre-
sented the first rigorous mathematical models
for the image matching process. Apart from ex-
tending the basic mathematical model by intro-
ducing geometrical constraints (see, e.g., Griin
& Baltsavias, 1988), a decisive step was to com-
bine matching with reconstructing the surface
(see e.g. Wrobel, 1987; Helava, 1987; Ebner et
al., 1987).

Ebner and Heipke (1988) propose a new ap-
proach where matching several images and sur-
face reconstruction is treated as a simultaneous
adjustment problem. Matching multiple image
patches is of great practical importance, most
notably in aerotriangulation where as many as
nine photographs may partially overlap. Iden-
tifying and measuring tie points, particularly
between strips, is a notorious problem, since
only two photographs can be viewed stereo-
scopically at the same time. The reliability
and accuracy of tie points is expected to signif-
icantly increase when multiple image matching
methods are employed.

The purpose of this paper is to formulate suit-
able mathematical models for rigorously solv-
ing the multiple image matching problem. We
describe a general solution by introducing a
geometric and radiometric relation between a
surface patch and the corresponding image
patches. We then investigate several geomet-
ric transformation models between object and
image space, including linearized observation
equations. We conclude with describing two
approaches of using multiple image matching
in aerotriangulation. The first approach is
the most general one where the exterior ori-
entation, the surface patches with elevations
(DEM) and gray levels are all determined si-
multaneously. In the second approach conju-
gate points are determined independently from
one another and without the exterior orienta-
tion parameters. This solution corresponds to
the traditional method where all points are in-

dividually measured and then entered into a
block adjustment.

2 GENERAL APPROACH

Fig. 1 depicts four images [4,...,J; with image
patches p;,...,ps covering the surface patch
S. To generalize let p be the number of im-
age patches, size n X n pixels. Associated with
every image patch p; is a gray level function
gi(z,y).We may consider the gray levels as ob-
served.

02

Fig. 1: Multiple image patches covering the
same surface patch S.

The surface patch S is represented as a DEM
with a resolution of m X m grid points, m <« n.
The task is now to reconstruct the surface
patch S from the observed gray levels of the
image patches. This involves both, geometric
and radiometric reconstruction. Let Z(X,Y)
be the geometric function and G(X,Y) the ra-
diometric function for representing the surface
patch S. Capital letters are used to better dif-
ferentiate object space functions and variables
from their counterparts in image space. Obvi-
ously, the image functions g;(z,y) correspond
to G(X,Y), the gray level distribution of the
surface patch S. The discrete representation
of Z(X,Y) can be considered the DEM of S.
The reconstruction of S involves 2m? parame-
ters (m? elevations, m? gray levels).



Since S is small we may approximate it by a
Lambertian surface. The gray levels of the im-
age patches are then directly related to the gray
levels of the surface patch. Suppose the surface
is flat and parallel to all image patches. In this
(unrealistic) case, the gray levels of S would
simply be the mean of the gray levels of all im-
age patches.

Next, we need to define the geometrical rela-
tionship between the image patches and the
surface patch. This is accomplished by a ge-
ometrical transformation T8. Combining the
geometric and radiometric relationship leads to
the following non linear observation equations:

r = G(X,Y)-Tf [gi (Tig (w,y))] (1)

with r;, 2 = 1,2,...,p the residual vectors, di-
mension m?, and G(X,Y) the gray level func-
tion of the surface patch §. Each image patch
contributes m? equations leading to a total
of pm? observation equations. The parame-
ters to be determined include the gray levels
G(X,Y) and the elevations Z(X,Y) of the sur-
face patch, as well as the transformation pa-
rameters T{ and Tig for every image patch.

With equation 1 the task of reconstructing
S from multiple image patches is formulated
as a least squares problem where the gray
level differences between the image patches and
the surface are minimized by varying the sur-
face shape Z(X,Y), the surface gray levels
G(X,Y) and the exterior orientation of the im-
age patches. This takes the concept of match-
ing in object space a step further to include
the determination of the gray levels of the sur-
face. Since the image patches p; have to be
resampled with the geometric transformation
T8 (which in turn is a function of the un-
known exterior orientation parameters!) the
image patches must be larger (n X n) than the
surface patch (m x m), hence m < n.

2.1 Geometric Transformation 77

There are several possibilities to model the
geometric transformation between the image
patches p; and the surface Z(X,Y).
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1. The collinearity equations are the most
general transformation between surface
and images. The transformation param-
eters comprise the exterior orientation el-
ements of the images I;.

2. Since the image patches are rather small
the central projection may be approx-
imated by a parallel projection. In
that case the transformation parameters
would include the spatial direction of the
projection (3 angles), a translation of the
image patch and a scale factor.

3. It is also conceivable to approximate the
surface by an analytical function and de-
termine its parameters.

4. As a further simplification of model 3 we
approximate the surface § by a plane.
The relationship between an image patch
and S can now be expressed by a pro-
jective transformation which in turn may
be approximated by an affine transforma-
tion. This would correspond to the clas-
sical case of least squares matching with
shape parameters.

2.2 Radiometric Transformation 77

Based on the assumption that S is a Lamber-
tian surface a linear radiometric relationship of
the form

T = ro +r1(g:(2,9)) (2)

exists between the image patches. It may even
be adviseable to perform the radiometric ad-
justment prior to the matching. Therefore, we
exclude the radiometric transformation from
the following considerations.

3 GEOMETRIC TRANSFORMATION
MODELS

3.1 Central Projection

We linearize the observation equation 1 under
the assumption that T8 is a central projec-
tion. Disregarding the radiometric transforma-
tion and dropping the indices 7 for denoting it"
image patch equation 1 reads
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P=GX,Y) - 9(TTy)  (3)
where g(T;,Ty) needs to be linearized with re-

spect to the exterior orientation parameters
and Z.

r = G(X,Y)-g%T2,T?) -
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where g.,g, are the gradients in z— and y—
directions, a; the partial derivatives of the
collinearity equations. The initial gray levels
gO(Tg,Tg) of the image patch are determined
by transforming the initial elevations Z°(X,Y)
to the image with the initial collinearity equa-
tions T, TS. The parameters Aa; include the 6
exterior orientation elements and AZ, the un-
known elevations of the surface patch. Finally,
G(X,Y) are the unknown gray levels of the sur-
face.

3.2 Parallel Projection

If the exterior orientation in the collinearity
model is determined from one image patch
only the normal equation system will be ill-
conditioned. The perspective center is only
weakly determined by the small image patch

since the intersecting bundle rays form very
acute angles. Of course, if the same image
is involved in several well distributed surface
patches, the situation improves, but only if a
simultaneous adjustment is performed.

Fig. 2: Direction of parallel projection defined
by bundle ray through center of surface patch
S.

If the surface patches are determined individ-
ually then a parallel projection should be used
instead of the central projection. The direction
of the projection is defined by the bundle ray
through the center of the surface patch (see Fig.
2). This direction can easily be determined in
image space. Let [z,,¥,,—c|T be the center of
the image patch in the traditional photocoordi-
nate system (origin at perspective center). The
bundle ray through the center of the patch is



then defined by the following equations:

z = nz y=mz (M
¢ Ye

n —= — = —
Tc Zc

The angles a, 3,y determine the spatial direc-
tion of the bundle ray that represents the image
patch.

1
cos(a) = \/H—TW
cos(f) = S (8)
T Vitmiim
cos(y) = =

irmiim

With these three independent angles about the
axis of the photo coordinate system the rota-
tion matrix R is formed in the usual fashion.
The corresponding rotation matrix Ry in the
object space coordinate system is obtained by
multiplying R with the rotation matrix from
the exterior orientation Re

Rs = ReR (9)

If we rotate the surface patch S by Rg then the
projection becomes parallel to z in the photo
coordinate system. Since we deal with a paral-
lel projection the object/image space relation-
ship is trivial, that is, z = X',y = Y’ where
z,y are the photo coordinates and X',Y’ the
rotated surface coordinates.

Now we complete the geometric transformation
by adding a translation vector [z¢,7:]T and a
scale factor s. This compensates for not in-
cluding the perspective center in the transfor-
mation. Finally, the following transformation
equations describe the parallel projection

= (1'11X + 7'12Y + 7‘13Z) s+ z; (10)
= (raX +7122Y +723Z)s + y

Linearizing the general observation equations 3
with respect to the geometric transformation of
equation 10 we obtain equation 11 which cor-
responds to equation 6
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where 7;; are the elements of the rotation ma-
trix Rg in equation 9.

4 APPLICATIONS

There are several practical applications for
multiple image matching. We focus on aero-
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triangulation and describe briefly the simul-
taneous adjustment of surface patches within
a block. Aerotriangulation consists of sev-
eral tasks, for example point preparation, point
transfer, measuring, adjustment, and analysis.
Oviously, multiple ifnage matching is related to
transferring and measuring points. However,
we may combine the matching process for in-
dividual points with the blockadjustment. For
the following discussion we assume that good
approximations for all tie points are available.
How to determine good approximations auto-
matically is a problem in its own right and is
not treated here.

4.1 Automatic Aerotriangulation

The model derived in 3.1. is suitable for an au-
tomatic aerotriangulation. The parameters in
the observation equations (6) comprise the ex-
terior orientation elements of the images whose
patches are involved in the reconstruction of
the surface patch S, and the elevations and
gray levels of S. Assuming a surface patch size
of m x m grid cells that corresponds approxi-
mately to the pixel size of the images we obtain
a total pm? observation equations for p image
patches. Suppose we now move to the next
surface patch and repeat the same procedure.
Some of the images involved in the previous
patch participate also in the new patch. We
note that the images involved in both patches
relate the new set of observation equations with
the previous one. Obviously, adding more and
more surface patches which partially share the
same images is analogous to measuring points
on photographs forming a block.

Suppose we have a block of three strips with
four photographs per strip and regularly dis-
tributed surface patches such that on every im-
age at least nine surface patches are visible.
This would lead to approximately 40 surface
patches. We further assume that the size of
every surface patch is 13 X 13. The number of
unknowns to be determined is 12 X 6 exterior
orientation elements plus 40 x 13x 13 elevations
and 40 x 13 x 13 gray values for the 40 surface
patches. Thus, the total number of unknowns
is 13592 and the number of observation equa-
tions is 4 X 40 X 13 X 13 = 27040, assuming that
a surface patch shows on four photographs.

As shown in Agouris and Schenk (1992) the
structure of the normal equation matrix is such
that the unknown gray values can easily be
eliminated. Thus, the size of the reduced nor-
mal equations would be 6832 in our example.
This is still a large system considering the small
block. A reasonable alternative then is to de-
termine the surface patches independently and
to introduce them later in the aerotriangula-
tion. In this case, the model described in 3.2.
should be used.
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ABSTRACT

Image matching plays an important role in digital photogrammetry. Finding conjugate
points occurs in different photogrammetric tasks. Image matching is usually performed in
two steps: determining approximations and computing precise conjugate locations. In this
paper we are concerned with the second aspect, that is, the image patches are already close to
their final position. An image patch analyzer determines which matching primitives should
be used first. Based on the results other primitives can be activated. The process terminates
if a predefined level of confidence is reached or if no further improvements are to be expected.
The matching process can be geometrically constrained, for example, along vertical lines,
epipolar lines or by fixing one image patch in its location.
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1 INTRODUCTION

Image matching - finding conjugate points —
plays an important role in digital photogram-
metry. It is an essential operation of many
basic photogrammetric procedures, like auto-
matic orientation or DEM generation (Schenk
et al., 1990). Much research in digital pho-
togrammetry has been devoted to matching,
including theoretical as well as implementation
issues. The results are reported in numerous
publications and technical papers.

One of the first products of digital photogram-
metry are digital photogrammetric worksta-
tions (or softcopy stations). They will have
a great impact on how daily photogrammet-
ric tasks are handled (Kaiser, 1991). For one,
they provide the operator with all functional-
ity of the analytical plotters. The major dif-
ference between softcopy stations and analyti-
cal plotters is the fact that the operator views
the 3-D stereo model directly on the display
screen. More important, softcopy stations offer
an unprecedented opportunity for automation.
This is the first time that digital photogram-
metric methods are implemented a in real pro-
duction environment. This is as encouraging
as it is challenging for the research community
to transfer and commercialize research results.
The process of automating routine tasks has
just started. Since it is a very complex prob-
lem, results will probably not meet the high
expectations for quite some time (Schenk and

Toth, 1992).

In this paper we report about the preliminary
phase of a project with the objective to au-
tomatically keep the floating mark of a soft-
copy station on the ground (or dot on the
ground, for short, DOG). The idea is that
after a stereo model is oriented the opera-
tor is not forced to set the measuring mark
(3-D cursor) precisely on the ground. If the
function is evoked the system will do it au-
tomatically. To automatically place the float-
ing mark on the surface is a problem of find-
ing conjugate points in both image patches. In
other words, when an operator slightly moves
the floating mark in the XY plane, then the
proposed algorithm should automatically find
the corresponding Z coordinate and move the
measuring mark accordingly (adjust Z). Con-
sequently, these application-specific conditions

immediately define the scope of the matching
techniques feasible to solve the correspondence
problem. We investigated the concurrent ap-
plication of different matching methods with
good localization results. In the following, con-
ceptual issues and some major subtasks are dis-
cussed.

2 OVERVIEW OF THE PROPOSED
ALGORITHM

2.1 Application Specific Conditions

A variety of different matching methods are
now available, each with its specific advantages
and disadvantages. In order to narrow down
the set of possible techniques suitable for our
project, the application characteristics must be
considered:

e digital stereo model is oriented

e good approximations for conjugate points
are given

e optional epipolar image geometry
o parameter adaptability

o relatively small size of the image patches

The exterior orientation is necessary to move
between image and object space. It is used to
constrain the movement of the floating mark.
Also, it allows for employing object space
matching methods (Helava, 1988).

Since the operator will keep the measuring
mark fairly close to the ground, good approx-
imations for the conjugate points can be as-
sumed. Thus, image patches always sufficiently
overlap.

As shown in (Kaiser, 1991) epipolar geome-
try can be easily achieved on softcopy stations,
thus it is worth taking advantage of that spe-
cial geometrical condition. Sometimes the im-
ages are not resampled but converted on the
fly during display operation or data processing.
Usually, the operator moves the floating mark
quite slowly. Therefore, the image patches of
a current matching operation may have very
similar image characteristics like neighboring
patches. This means that certain parameters
of the previous (neighboring) matching opera-
tion can immediately be used for the processing



strategy of the current patches. For example,
surface direction can be approximated at one
side of the patch, or texture based segment
data and basic statistics can reveal occlusion
situations.

The patch size in our application is more an
implementational than algorithmic issue. How-
ever, it is still important since most matching
methods are very timeconsuming and our ap-
plication needs a quasi real-time response (the
processing time should not take longer than
what an operator would need).

2.2 Structure of the Algorithm

Based on conditions imposed by our applica-
tion the default matching method is cross cor-
relation (Ackermann, 1984). If the current
patch has enough texture information, the fore-
shortening is negligible and there is no occlu-
sion or other artifact, then correlation performs
well. Since these conditions are not always met,
other methods must be used. A first key issue
is to find and parametrize the image charac-
teristics (called actual features in this paper)
of the patches. This problem itself is as com-
plex as the matching, because ideally it would
address many high-level paradigms of scene
analysis and image interpretation. Because of
the lack of a robust, scene independent match-
ing scheme, an iterative hierarchical strategy is
proposed. Figure 1 shows the flowchart of the
proposed DOG method. The suggested system
has five processing levels:

e Patch preprocessing

s Feature extraction - image patch analysis

Matching procedure

Matching strategy

Evaluation - result analysis

The patches may be subject to some image en-
hancement. Scaling the pixel intensities or his-
togram equalization can compensate for bad
contrast. Spatial filtering, like median or Gauss
operators can remove noise or unneccessary de-
tails which may be important for scale-space
algorithms.

Feature extraction provides clues about the
patch and may guide the selection of the most
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appropriate matching method. The basic sta-
tistical properties, like mean, median, mini-
mum and maximum intensities, standard devi-
ation, auto-correlation, etc. provide additional
patch information.

Local features are grouped into three classes:

o Interest points can produce target match-
ing locations (Zong et al., 1991).

o Edges can be matched (Schenk et al.,
1991). Although their localization is
weak, the matched edges are relatively re-
liable. Therefore they may render good
approximations for other methods with
precise localization properties.

o Texture values and texture based seg-
mentation are useful for detecting shad-
ows, water bodies, and the like. Matched
segments provide good global matching
constraints.

In the context of our DOG project, matching
procedure refers to the matching method in
general. We use four methods:

e Cross correlation

e Least squares matching

e ¥ — § feature based matching
e Symbolic matching

Cross correlation and least squares matching
methods are discussed in the next sections.
The ¥ — S feature-based matching is a very
reliable technique to obtain numerous match-
ing points with fair localization accuracy. In
our implementation a scalable LoG operator
generates the edges. The edges are sorted and
transformed into the ¥ — § domain where a
global matching takes place. Symbolic match-
ing is very useful for global matching (Zilber-
stein, 1991). Due to implementation issues its
use in our project is limited to the 1-D case.
We presently use it in profile matching.

Matching strategy refers to constraints how the
extremes are sought. Based on the original
DOG objective — automatically adjust Z (find
conjugate points, compute Z coordinate and
drive the floating mark) - the conjugate loca-
tion is confined to the vertical line which trans-
lates into two lines in the image planes. Since
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Figure 1: Flowchart of the DOG system

occlusions may block out certain segments of
the constraint line, global methods are supe-
rior to cope with this case. Although the ter-
rain is modelled in least squares matching by
the shape parameters, a significantly better ap-
proach is to use a priori surface approximations
(Schenk et al., 1990). Based on the surface
data the patches are warped and in this format,
basically free from terrain relief distortion, nor-
mal cross correlation is used. Since the surface
data are quite sparse it is very critical how the
surface interpolation algorithm performs.

The most crucial component of our DOG
project is the evaluation and performance anal-
ysis of the results. The evaluation module
serves as a system controller to implement a
data driven algorithm. Typical operation tasks

are:

1. The two patches directly go to the

statistical module (the preprocessing is
skipped unless specified by the user).

. The results of the image patch analy-

sis are compared to data obtained from
the neighboring patches; if significant dif-
ferences are found then the other three
feature extraction modules are activated,
otherwise the same sequence of module
processing is executed used for the neigh-
boring patches (it may also include other
feature extractions) .

. After executing a matching function (a

defined sequence of module operations)



the matching results are compared to the
results of the neighboring patches and to
predefined global parameter values. If ev-
erything is all right the new Z value is
computed and the process terminates.

4. If in (3) the results are not satisfactory
then based on built in rules the matching
sequence — in whole or part — is modi-
fied and a new computation starts; this
is repeated until a satisfactory solution is
found; if all strategies are exhausted, the
process terminates with a message that
matching is impossible.

5. If in (2) the comparison fails, the system
controller assigns the initial matching
strategy according to the results of the
three feature extraction modules, then
point (4) is executed.

6. Upon termination, the parameter set and
the last processing sequence are saved for
the next application of the DOG func-
tion.

In summary, the system controller can be con-
sidered as a data driven, self-organizing, adap-
tive system which finds the optimal match-
ing strategy to any data input from a list of
prestored computation sequences. The perfor-
mance of module computations is measured in
the usual parameters, like the absolute and rel-
ative value of the correlation coefficient in cross
correlation, or residuals and variances in least
squares matching, or the relative number of
matched edges in ¥— § feature based matching,
etc. The system controller can be viewed as
two tables, one containing matching sequences
and the other consisting of rules on how to
evaluate the results. Tables are extended to
include experimental results, thus the system
can learn. Under normal conditions the neigh-
boring image patches are similar enough and
the search process for optimal strategy is called
only where there are significant scene changes
in the images.

2.3 Cross Correlation

Cross correlation matching can be used in all
three geometrical constraint strategies. Less
important details, such as window size, which
may be determined from statistical properties,
are omitted, and the typical epipolar condition
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(correlation window becomes a line) is assumed
in the following description.

Line Constrained Search

The search line can be easily determined from
the XY coordinates of the floating mark, and
from the assumption that the current Z value
is quite close to the real surface value. Thus
the Z coordinate of the possible P surface point
should be in the range:

Z¥ = Z.+dZ
zZ8 = Z.-dz

where Z. is the current elevation of the float-
ing mark and dZ is the search range defined
by global constraints. The two extreme points,
Z¥ and Zg are projected to both left and right
photo planes by collinearity equations and then
transformed into image coordinates, yielding
the two search lines. As a next step, the cor-
relation windows are moved along the search
lines and the coefficients are computed. Un-
der ideal conditions there is only one pair of
conjugate points pointing to the desired sur-
face location, and for this point the correlation
coefficient is likely to have a maximum value.
The analysis of the correlation curve around
the maximum gives some indication about the
reliability of the maximum. Using a band of
parallel search lines can further improve the re-
liability of the results. In this case a correlation
ridge is obtained, and its analysis can lead to
more reliable results. In general, independent
global matching should be applied to increase
the confidence level of the matching results.

Global Search

In this case the correlation window is moved
within the entire patch area, and a 2-D cor-
relation function is computed. The shape of
the correlation function may help to confirm or
drop our hypothesis about a location, although
it is not necessarily feasible to determine di-
rectly the desired location.

Surface Warping

If true surface data are available, then the dis-
tortion of the image patches caused by terrain
relief can be totally removed. In this case,
cross correlation is concerned only with tex-
ture information, and reliable results are ob-
tained. Surface data may be known for the
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previous patches, but in general the true sur-
face is never available, and therefore it must
be approximated. Based on our experience
(Schenk et al., 1990), with ¥ — S feature based
matching, enough reliable surface points are
obtained. Nevertheless, the surface data are
still quite sparse and a surface interpolation al-
gorithm must be used. Through hierarchical it-
erations the surface approximation usually im-
proves. It is appreciated that in this process
the interpolation algorithm itself plays an im-
portant role (Al-Tahir, 1992). A bad approxi-
mation strategy can slow down the convergence
or even make the surface diverge.

2.4 Least Squares Matching

In general, least squares matching can be simi-
larly constrained as cross correlation. The gen-
eral approach is:

92(z,y) = h0+h1'gl(ao+a1m+a2y,bo+b1y+b(2z))

1
Eq. 1. can be simplified if epipolar geometry
exits:

g2(z) = ho + hy - g1(ao + a12) (2)

The surface data can be used to set better ini-
tial values for the adjustment procedure.

3 EXPERIMENTS, RESULTS

A prototype version of the proposed solution
in the DOG project has been implemented on
Intergraph workstations. Most of the modules
are operational. As of writing this paper exten-
sive tests have been performed, and the system
controller tables have been built.

The first observations are:

e the major modules perform as expected

e the basic cross correlation matching
works well for reasonable test data (for
example, with fixed X and Y incre-
ments it automatically collects DEM grid
points)

o the automatic parameter tuning is diffi-
cult and needs good initial values

e the deterministic approach of the system
controller is not optimal

e it i5 quite complex to define the rules

In summary, the preliminary test results
are encouraging. Theoretical investigations
are needed to analyze the results and to
parametrization the confidence level. On the
implementation side, the growing number of
rules and module sequences justifies the use
of an off-the-shelf expert system (Schenk and
Toth, 1991). The accuracy tests will include
large numbers of varying image data, and more
independent operators are needed to provide
the ground truth for performance evaluation.

4 REFERENCES

Ackermann, F., 1984. “Digital Image Corre-
lation: Performance and Potential Application
in Photogrammetry,” Photogrammetric Record,
Vol. 11, No. 64, pp. 429-439.

Al-Tahir, R., 1992. “On the Interpolation
Problem of Automated Surface Reconstruc-
tion,” International Archives of Photogramme-
try and Remote Sensing, Vol. XXIX.

Helava, U.V., 1988. “Object-Space Least-
Squares Correlation,” Photogrammetric Engi-
neering and Remote Sensing, Vol. 54, No. 6,
pp. 711-714.

Kaiser, R., 1991. “ImageStation: Intergraph’s
Digital Photogrammetric Workstation,” Digi-
tal Photogrammetric Systems, Wichmann, pp.
188-197.

Schenk, T., Li, J-C., and Toth, Ch., 1990. “Hi-
erarchical Approach to Reconstruct Surfaces
by Using Iteratively Rectified Images,” Proc.
Int. Soc. of Photogr. and Remote Sensing IS-
PRS, Symp. Comm. V, vol. 28, part 5/1, pp.
464-470.

Schenk, T., Li, J.C., and Toth, Ch., 1991.
“Towards an Autonomous System for Orient-
ing Digital Stereopairs,” Photogrammetric En-
gineering and Remote Sensing, vol. 57, no. 8,
pp.1057-1064.

Schenk, T., and Toth, Ch., 1991. “Knowledge-
Based Systems for Digital Photogrammetric
Workstations,” Digital Photogrammetric Sys-
tems, Wichmann, pp. 123-134.

Schenk, T., and Toth, Ch., 1992. “Conceptual
Issues of Softcopy Photogrammetric Worksta-
tions,” Photogrammetric FEngineering and Re-
mote Sensing, Vol. 58, No. 1, pp. 101-110.



Zong, J., Schenk, T., and Li, J-C., 1991. “Ap-
plication of Férstner Interest Operator in Au-
tomatic Orientation System,” Proc. ASPRS-
ACSM Annual Convention, Vol.5, pp. 440-
448.

Zilberstein, O., 1991. “Solving the Corre-
spondence Problem in Aerial Imagery Using
Relational Matching,” Phd dissertation, Dept.
of Geodetic Science and Surveying, The Ohio
State University, Columbus, OH.

143



144



A GIS WORKSTATION-BASED ANALYTICAL PLOTTER

Charles Toth
Toni Schenk

Department of Geodetic Science and Surveying
The Ohio State University, Columbus, Ohio 43210-1247
USA

Commission II
ABSTRACT

Today’s high performance analytical plotters are typical stand-alone, single-user systems.
Though they serve as intelligent 3-D data acquisition stations to geographical information
systems, the link between them is usually limited to data transfer. Because their hardware
and software platforms are different, no sophisiticated interactions with GIS workstations on
the system level take place. In the future we expect a much closer integration of analytical
plotters into GIS systems. This entails sharing similar design concepts, data structures,
user interfaces, etc. The integration is greatly facilitated by the separation of the real-
time loop processes from application software as well as by the rapidly decreasing cost of
high-performance UNIX workstations. In this paper we describe the design concepts and
the development of basic analytical plotter software, such as orientation, closely integrated
on Intergraph’s GIS workstations. A generic interface supports different analytical plotters
without the need for hardware or software modifications.
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1 INTRODUCTION

The introduction of the plate processor was a
major milestone in the continuous development
of the analytical plotters. Dedicating a spe-
cial processor to instrument specific tasks sig-
nificantly improves plotter operation and dra-
matically decreases the involvement of the host
computer, thus freeing up computer power for
the applications. Prior to this development the
host computers had to run the mapping ap-
plication software and at the same time main-
tain the plotter operation real-time loop. This
inefficient structure required special interfaces
and was demanding on the host (e.g., complex
software). Separating the real-time loop from
the application program brought new flexibil-
ity and opportunity to the design. Most im-
portant, the mutual dependency of the plotter
hardware and the host computer disappeared.
In the past the host computer was an integral
part of the analytical plotter and so was the
proprietary application software. Customers
had little choice in using third party mapping
programs. With the new design, the situation
started to change. First, alternative hosts and
an increased software selection were offered.
Finally, analytical plotters became peripheral
devices. Modern plotters can easily connect to
any computer platform.

The never stopping, continuously advancing
computer technology is the main driving force
for development in many, quite different, ap-
plication areas. It was the case with the plate
processor of the analytical plotters. Currently,
GIS technology is getting a big boost. On a
theoretical level, the GIS is a database with
spatial context. The compact definition can be
detailed if technical aspects of the implementa-
tion are considered. The hardware components
are off-the-shelf products: high capacity cen-
tral mass storage with servers, fast local and
wide-area networking and powerful user work-
stations. The software picture is more com-
plex, including standard packages like network-
ing, database management, 2- or 3-D graphic
packages, etc. What makes a real GIS different
from a big database system is the customiza-
tion. The layered database is organized on the
spatial — geographical — relation providing ap-
plication optimal data access. A key issueis the
user interface and data exchange, mainly im-

porting data into the GIS. We believe that on
the data input side analytical plotters should
be considered as a main source among others.
In this context, the analytical plotter is used as
an intelligent front-end data acquisition system
connected to an information processing system.
It is important to note that plotters not only
send but also receive data. The core informa-
tion system can host not only GIS but other
applications like CAD engineering. We think
the key point of the above-outlined develop-
ment path is the common user interface. The
software engineering is undoubtedly the focus
of this decade. Many signs of major standard-
ization have already appeared, like windows
systems with the same look and feel, network-
ing protocols, etc. This standardization should
reach the applications. The user working in a
GIS should be able to use an analytical plotter
with minimum extra effort. This can be eas-
ily achieved by using the same computer hard-
ware platform — workstation — and providing an
identical user interface for the plotter program.
This way the need for learning the specifics of
the analytical plotter is minimized.

The turning point in the evolution of analyti-
cal plotters was in 1987, when Carl Zeiss, Inc.
introduced the P-Series Planicomp analytical
plotters (Hobbie, 1987). All three members
of the P-Series family had built-in plate pro-
cessors with additional coprocessors to sup-
port real-time computations. The first sys-
tems comprised an HP 1000 workstation and
the PHOCTUS application software. These pio-
neering instruments had an IEEE-488 (HP-IB)
interface for host communication which later
very dramatically influenced the future of the
instrument. Back then workstation and PC
prices differed a lot. It was clear from the be-
ginning that a low cost PC-based configuration
should be developed. In 1987, Carl Zeiss Inc.
donated a full fledged P1 instrument to the De-
partment of Geodetic Science and Surveying
at The Ohio State University. As a result of
the good cooperation, a PC-based stereo ori-
entation program, called PCAP was developed
by the authors. The program was based on,
at that time yet completely unknown, user in-
terface, Microsoft Windows (Zilberstein et al.,
1989). Later DEM (Toth and Schenk, 1990,
1992) and aerotriangulation (Toth and Schenk,
1991) data acquisition application programs



were added. The wide selection of the map-
ping products offered by many vendors also
contributed to the opening of a new market
niche for the PC-based P3 analytical plotters.

2 FUTURE OUTLOOK

The introduction provided a short analysis
about trends in the development of the ana-
lytical plotters. In this section some current
development issues are addressed.

Hardware Changes

Probably the most important interface stan-
dardization of analytical plotters is the general
acceptance of the serial line as a link to the
host computer. For example, Zeiss P-Series in-
struments offer an alternative serial interface.
The Leica SD 2000 plotter interface is exclu-
sively based on the serial line. The SD 2000
real-time processor, unlike the Zeiss plate pro-
cessor, is accessible by the user. Most of the
planned upgrades for older analytical plotters
will also use the serial line as the communica-
tion interface. The motivation for the serial
line interface is simply because it is the only
interface which is available on almost any com-
puter platform. While a PC can easily be in-
terfaced to IEEE-488 or other standards, this
is not true for UNIX workstations (thereafter
called workstation), where the serial line is ba-
sically the only economical option.

The internal operation of the analytical plot-
ters is based on model and photo coordinate
systems. Currently most of the driver pro-
grams, which connect the plotter to the appli-
cation programs, have to transform the input
data from model to ground coordinates on the
host. With the increased processing capabili-
ties of plate processors, this computation can
take place on the plotter. On newer systems it
is very likely that the absolute orientation can
be downloaded to the plate processor.

The recently introduced softcopy workstations
(Kaiser, 1991) create a very good alternative
to the analytical plotters. We think the new
systems will not compete directly with ana-
lytical plotters but instead expand the market
(Schenk and Toth, 1992b).

Software Issues

Prices for workstations have dropped consider-
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ably. Entry level workstations and fully loaded
PCs are now in the same price range. Many ap-
plications justify the use of the more powerful
workstation for performance reasons. Work-
stations are expected to increase their market
share, but PCs will dominate for quite some
time.

Much less but more expensive application soft-
ware is available on workstations, compared
to PCs, because the market is smaller and
the hardware is quite different. This is the
main reason why system developers try to work
with platform independent software environ-
ment. Concerning the key component of the
application programs — the graphical user in-
terface — the above-mentioned demand led to
the wide acceptance of the X Window Sys-
tem. This standardization is very likely in the
mapping applications. A good illustration of
this process is that the Intergraph Corpora-
tion, which is a one person workstation hard-
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ware manufacturer and software vendor and
has its own windowing system, has started to
offer its products on the X11 platform. Con-
cerning the applications, the X11 protocol is
very generic and therefore toolkits have been
developed and used to make program develop-
ment easier and faster. Using the same toolkit
for different applications results in a similar feel
and look which is very good for the user. Based
on recent surveys, the OSF /Motif environment
is likely to dominate.

The standardization of the analytical plotter
hardware interface is not likely to be followed
by a similar move in the interface software pro-
tocol because such a standardization is proba-
bly not in the interest of plotter manufactur-
ers. Luckily, this does not preclude the use of
the same orientation or mapping application
program on different analytical plotters. This
trend offers the user increased flexibility.

3 INTERPRO ANALYTICAL
STEREOPLOTTER INTERFACE
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Project Neme

Creation Dete
Ned Jan 0 14:08:12 1902 1

Last Modification
led Fob  § 13:60:23 1092 |
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Figure 2: Project Definition Form

Several reasons led to the development of an In-
terpro workstation based orientation program:

e QOur analytical and digital photogramme-
try laboratories have gone through major
changes during the last few years. Cur-
rently, we have more workstations than
PCs. All the major workstation brands
are represented, although almost half of
them are from Intergraph Corporation.

e We do most of our research on Inter-
graph workstations and have acqiured
the knowledge to develop application pro-
grams.

e For various reasons we needed to in-
tegrate our Zeiss P1 analytical plotter
into the Intergraph MicroStation envi-
ronment.

e We have had good experiences with the
PC-based PCAP program.
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Figure 3: System Control Definition

A major design objective was to use the In-
tergraph I-form-based windows system to pro-
vide the user with the well-known look and feel
of other Intergraph mapping applications. An-
other objective was to avoid unnecessary hard-
ware dependency on the analytical plotter in-
terface because we plan to connect our work-
stations to other analytical plotters. In the fol-
lowing, the major building blocks of the pro-
gram are described. For more details, inter-
ested the reader is referred to (Stereoplotter
Interface/Analytical (SPI/A), 1992).

Stereoplotter Interface/Analytical
(SPI/A) Overview



The

SPI/A software provides the user with the

capability to measure points and to perform
the interior, relative and absolute orientation
of a stereopair on the Zeiss Planicomp P-Series
analytical plotters. In addition, SPI/A pro-
vides forms for data entry and editing. The
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Figure 4: Model definition form

major functions include:

Input and edit system configuration,
project, model, camera, control point,
and analytical plotter control data
through forms.

Perform interior, relative, and absolute
orientation.

Generate ASCII protocol files of project,
model, camera, control point, and ana-
lytical plotter data.

Generate detailed orientation reports.

Generate ASCII files of measured points
in various formats for later use in other
applications.
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Dynamically display carrier,
model, or ground coordinates.

photo,

Drive to points in the model.

Create a standard orientation data in-
terchange file to accept orientation re-
sults generated on systems other than
SPI/A, or to pass SPI/A orientation data
to other systems.

Driver to connect the analytical plotter
to the MicroStation.

SPI/A Workflow
Activating SPI/A, a control bar is displayed.

The
flect

button functions of the vertical bar re-
the typical workflow in a top-down fash-

ion. The control bar shown in Fig. 1. has four
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Figure 5: Camera Definition Form

groups:

System, project, and model data man-
agement functions.

Camera, control point, and plotter defi-
nition functions.

Interior, relative, and absolute orienta-
tion functions.

Other utility functions.

SPI/A Data Management

SPI/A has its own data management system.
The orientation data is organized into projects.
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Figure 6: Import function

A project usually contains the stereo model of
a flight mission. The project definition form
(Fig. 2.) contains only very generic parame-
ters. The most important part of the project
definition is the so-called system control def-
inition (Fig. 3.). It sets parameters for ad-
justment procedures and defines the measuring
style. Finally, specific information of a stereo
model is entered in the model definition file.
The form (Fig. 4.) has a generic definition field
to define the control point file and other ver-
bal information, two identical fields for the two
photographs, and two fields for the orientation
and adjustment status.

SPI/A Definition Files

Definition files are organized independently
from the projects since they are most likely
used in other projects. The camera form
(Fig. 5.) is used to enter data from the camera
protocol. Different subforms are used for fidu-
cial coordinate or distance entries and for cam-
era distortion data. The ground control form
is used to edit control point information. An
import function lets the user transfer control
data from ASCII files (Fig. 6.). Plotter defini-
tion files are used to customize the analytical
plotter. The operator can freely configure the

input devices and set automatic recording pa-
rameters.

SPI/A Orientations

The operation of the three orientations is based
on the well-accepted concept introduced in the
Zeiss P-Series PC orientation program (Schenk
and Toth, 1989). The adjustment computa-
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Figure 7: Interior orientation

tions automatically take place whenever there
is any change in the measurement data. As a
result, the operator’s task is reduced to mea-
suring the points and to analyzing the results.
On the forms, the residuals and other trans-
formation parameters always reflect the most
recent adjustment results.

A very useful feature of the system is the “drive
to” support. That is, the system drives auto-
matically to points to be measured. For ex-
ample, in the interior orientation the system
drives to all fiducial marks. With every mea-
surement the predicted positions become more
accurate. Another example is the relative ori-
entation, where the system drives to the von
Gruber locations. In order to let the abso-
lute orientation drive automatically to control
points at least two XY control points must be
measured (either in the relative or in the abso-
lute orientation).

The functionality of the orientations can be
seen in the forms shown in Fig. 7-8. When-
ever the instrument is in point recording sta-
tus, a small form is displayed which shows



the actual P-Cursor button assignment and the
stereo model coordinates.
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Figure 8: Absolute orientation

MicroStation Driver (SPI/D)

The SPI/D program can be loaded as an appli-
cation when the MicroStation is invoked. Dur-
ing initialization, the program automatically
downloads the current orientation into the ana-
lytical plotter and configures the input devices
for MicroStation operation. In the preferred
data acquisition mode — tracking mode — the
position of the measuring mark drives the Mi-
croStation mouse, and three of the P-Cursor
buttons are programmed to the correspond-
ing workstation mouse functions. Some small
forms inform the user about the current oper-
ating mode, floating mark location, etc. Fig. 9.
shows a map of The Ohio State University cam-
pus digitized by the Feature Collection module
of the MicroStation.

4 DISCUSSION

The SPI/A and SPI/D programs have been
tested in our laboratory. Our operators who
are very experienced in using the PC-based
orientation program found no reasonable dif-
ference in the user interface although the win-
dows systems are quite different. Compared to
PCAP, anoticeable performance difference was
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Figure 9: The Ohio State University campus

found mostly as a result of faster workstation
operation. We also greatly benefit in our re-
search (Schenk and Toth, 1992a). For example,
the output data of the automatic surface re-
construction projects can be directly matched
to the ground truth by driving the measuring
mark to the locations and visually checking
whether the point is on the surface or some-
where else.

We strongly believe that the development of
the SPI/A program is an important step in
the evolution toward the fully integrated ge-
ographical information systems. In the future
we plan to port it to the X Window System
and OSF /Motif environment.
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