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Absimact

The goal of this study is to look for a set of orthogonal functions over the oceans
and then to apply the functions to the expansions of oceanic signals. Ultimately these
functions are incorporated in the parameter estimation problem using a model that
simultaneously reduces satellite radial orbit errors, improves the geoid and estimates the sea
surface topography.

To construct a possible set of orthogonal functions {over the oceans), three methods
have been studied. In one method, an atiempt was made to solve the spherical Helmholtz
gquation over the oeeans with either the Dirichlet boundary conditon or the Newmann
Boundary condition or the mixed boundary condition. This method leads to successful
developments of the spherical cap harmonics and generalized Fourier-Bessel seres for
some regularized oceanic domains, The other study employs the Shwarz-Christotfel
conformal mapping, as well as an suxiliary mapping, to transform the uregular domain (the
oceans) onto the interior of a unit disk where a set of orthogonal functions are easy te find.
The set of orthogonal functions over the oceans are then found through the relationship
batween the two dormains implied by the mappings. The third method involves the Gram-
Schmidt process for which a new technique for computing the integrals of the products of
two associated Legendre functions is developed and a FFT method is used to compute the
inner products of spherical harmonics over the oceans, Also, for the entire unit spheare, the
generalized 2-D Fourier series and the generalized Fourier-Tschebycheff series are
proposed as alternatives for the spherical harmonics.

The expansions of the Levitus $ST into the orthonormal functions constructed by
the Gram-Schmidt process show that 98.5% of the energy of that signal is contained within
degree 10 of the orthonormal functions. Such expansions also render regular spectral
hehavior of oceanic signal as compared to that from spherical harmonic expansions. A
method of detecting band limited oceanic signal is also developed using these orthonormal
functions. The applications of these functions to the simultaneous model yield lower
correlations between expansion coefficients and show that the cut-off frequency (the
highest degree determinable) of the SST from the Geosat data is in the viciniry of degree 15
of the functions. Some other improved simultaneous models have also been tested in an
attempt 10 beter separate the geoid and the 85T signal. This study concludes that the
arthonormal functions are suitable for representing oceanic signal wirth excellent speciral
behavior and can be applied to future alimetric mission such as TOPEX/POSEIDON.
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L Inooduction

A satellite borne altimmeter has the capability 10 measure the range berween the center
af the mass of the sateilite and the instantaneous sea surface. Two tmportant signals tbat
the geodesists and oceanographers desire (o extract from the range wnformation are the
groid and the sea surface wpography (SST). However, in order w obtain meaningtul
signals, numerous corrections (o the observations must be applited. The standard
corrections. provided with the altimeter data, are the ionospheric and wopospheric
refraction corrections, ocean tde and solid des corrections, insmument and dming bias
corrections, and sea state bias corrections. The addinonal and necessary corrections for the
precise geoid and the 85T determinadon are the reductions of satellite radial orbit errors,

One of the promising techniques 1o recover the geoid and the 3T is within 2 mods:
that simulianeously determines orbital comrechon paramerers, the geoid and the 58T, In
such a model, the 55T is usually represented by the surface spherical harmomncs

Nl n
l'.’,{ﬂ, l} = z z [Emcusm}. + Emsinml)f’ﬁ'(cosﬂ}
n=l mad f1.1)

and the geoid unduladons posesses a similar form:

Ny i
Nir. 8, &)= UM > [51‘_1}" > [Concosma + SpmsinmA Pl cos8)
) tmyeel} (1.2

[n these equations, the SST and the geoid have been expanded up to maximum
degrees Ny and N3, respectively. Thers are several problems wiath the spherical harmonic
representadon of the 85T in (1.1). Engelis and Knudsen (1989) found in their Seasar
work that high correlations exist between degree | terms of the 85T coefficients and the
parameters of orbital corrections of 1 cycfrev terms, despite some conditioning of
parameters applied in the adjustment process. In addition, Engelis (1987a), Wagner
{1986). Wagner (1989) and others also presented the similar results on the high correlation
prghlcm in the joint geoid-53T solution using the spherical harmonic representation
scheme.

Denker and Rapp (1990) addressed the problem of using spherical harmonics even
more comprehensively, First of all, they pointed out thar the spherical harmonic
TEepresentanon is not appropriate for data defined only over the pceans. Since they are not
orthogonal with respect 1o a scalar product defined as integral over the oceans, specmal
analyses of oceanic signals using such a representaton may lead to musleading resulis and
implicatigns. Also, using such a global representation of N and [ will create difficulty in
intarprenng the degree variances since the accuracy distribution is exwemely non-uniform
over the earth. The spherical harmonic representaton also creates problems in represencing
the current flow near the continental boundaries since the cyrrent vectors with this
representation will not be paraliel o the contingntal boundaries.

As a further example, we show a probiem found in Engelis' (1987b) work.
Analyzing the Levirus 85T (Levitus, 1982) using sphenical harmoaic expansions, Engelis
(ibid.) has to sacrifice the approximartion accuracy and resmcied his expansions 10 only
degree 10 due o the high correlations between the S5T harmon:ic coefficients and the

1



excessively large magnitudes of the coefficients. In view of such a dilemma between the
requirement of approximation accuracy and explainable spectral contents of oceanic signals.
the non-orthogonal basis functions over the oceans such as the spherical harmonic
funcrons indeed have serious defects.

With these problems as background, a different set of basis functions other than the
spherical harmonics is thought to be necessary for representing oceanic signals such as the
SST and the oceanic geoid. The ideal basis functions will be a set of onhegonal functions
over the oceans with which spectral analyses such as decomposition of signals, energy
distribution of oceanic signals, signal-to-noise ratio studies can be conducted over the
oceans and produce comect conclusions and implicattons. Thus in the present study effort
will he made to consiuct a possible set of orhogonal funcrions to fulfil such a need.

The outline of this report is as follows. Chapter 2 provides some definitions and
properties of approximation theory related to expansions of a funciion in orthogonal
functions. [t also serves as an introductory chapter that will describe the advantage of
using orthogonal functions and will provide some nacessary literaturs abour some existing
orthogonal funcuons for some specific domains. Chapter 3 is a relanvely long chapter
which is devored to three methods of construcnng orthogonal funceons. All the necessary
equations and software for the proposed orthegonal functions wall be given in that chapier.
in Chapter 4, the orthogonal functions over the entire unit sphere are invesrigated and
subsequently rwo sets of orthogonal funcdons as altermadves for the sphencal harmonics
are presented.

Lipon choosing the Gram-Schmidt process as the method for further detailed study
of the construction of the orthonormal funcdons over the oceans, all necessary echniques
and software for that method are exploited in Chapter 5. Especially the new technigues of
integrating products of two associated Legendre functions and computing the inner
products of spherical harmonics over the oceans will be stressed. Finally some properties
of the orthonormzl functons constructed by the Gram-Schmidt process will be given in thar
chapter.

Chapter 6 is then devoted to the expansions of the Levitus SST and the oceanic
geoid inw the onhonormal functons constructed in Chapter 5. Analyses on the spectral
behavior and the fit to the ¢xpanded data in such expansions will be made. [n this chapter
some highly improved methods which deal with the "old" problems will be also found.

In Chapter 7, some improved models {for the simnltaneous estimation of satellie
radial orbit errors, the geoid and the S8T are developed. The orthoneormal funcrions will
then be incorporated into these models as the basis functions for the 38T for the purpose of
parameter esumaton. A method is developed to assess the accuracy of the geoid from the
simultanecus soludons using the orthonommal functions. Finally in Chapter 8 conclusions
and summary will be made and future studies will be proposed.

> Expansions in Series of O | Funes

In this chapter, several definitons of operadons and quantities will be provided.
These definitions will help the understanding of the imporant issues in the chapters that
follow. The discossion is primanily reiated to the general properties of approximation,
sspecially those using orthogonal series.



2.1 The Weiersimass Approximanon Theorem and Uniformn Approximanon

We begin our discussion with a well-known approximation theorem introduced by
Weierstrass., The Weierstrass approximation theorem states that (Davis, 1975, p. 107)

If f{x) is continuous on the interval [a, b) and e > O is arbrrary, we can find a
polynormial Pa(x) (of sufficiendy high degree) for which

Hix)-Pnix) £g,a£x%b {2.1)

The implication of Weierstrass theorem is that any continuous function {for the
moment, it 15 also one-dimensional) can be approximared by a polynomial as close as
possible. This theorem can be proved in many ways, among them the use of Bemnsiewn's
polynomials {Rivlin, 1981, p. 12} is the most elegant.

Extension of the Weierstrass approximation theorem to 2 higher dimension case is
given by Davis (ibid., p. 122). For this smdy, our concern about approximation is mainly
for a two-dimensional case {¢.g., on the surface of a unit sphere}; the extension thus
ensures the successful construction of polynomials in two variabies with which the
quantities of interest can be approximated to the degree specified.

The Weierstrass approximation theorem in fact describes a uniform approximarion.
Since, upon choosing an € > 0 value, the deviaton of Pa(x) in (2.1} from f(x) will be less
than £ for any x within [a, b]. Another type of approximation, the lsast-squares
approximation, is more coramonly used and will be addressed in the following secton.

2.2 T t

Least-squares approximation, in a general sense, is a way of approximating
functions by minimizing some scalar product. The concept of scalar product will be
discussed in connecdon with the wnner product.

An inner product space is a lingar space equipped with a scalar product (x, y), x and
y being its two members, which possesses the following properties (Davis, 1975 and
Dettran, [988):

(1} Symumnetry:

(X, y) =y x)* (2.2)
fi1) Linearity:

(X, ¥y +2Z)={x,y) +{x,2) {2.3)
(iii) Homogeneity:

(x, oy} = a*{x, v} {2.4)

{iv) Posove-definiteness:
(x,x120,(x,x)=0ifonlyifx=0 (2.5)

where * is the conjugate operator.



For this study, we give the following two definitions of scalar products which will
be used in later developments:

v Definiion 1:
f, g are two square-integrable functions defined on a domain D, or f, g & L[D] and
w 1§ a nonnegadve weight funcdon defined on D, then

= | w
{f. 2} D) f fg*wdiD) ‘
o (2.6}

where dim(D) is the weighted dimension of domatn D. being length for A one-dimensional

case and area for a two-dimensional case. In (2.6), f, g are two complex functions. For
real functions £, g, we have

(F, gy = —— f fgwd(D)
D

dim(D} 27
In the classical definition of inner preducts, dim(D) is normally omitted, i.e.
{f.g)= I fgwd(D)
o (2.8)

However, to be consistent with the definidon of the fully normalized (surface} spherical
harmonics for which the area of the unit sphere, 4r, i5 used, the dafinjoon in {2.7) will be
adopied as the standard definition of inner product unless otherwise specified

« Definition 2:
Let fi, g; be functions £, g evaluated at point i, wj be the weight function w
evaluated at point i, 1 =1, ... n, then

(f.g) =2 figlw
jm] (29}

defines a discrete version of the inner product according to (2.8).

In many occasions, observadons are available only at some randem points of D: the
operations (such as approximations, specmal analysis) are thus very difficult to be carried
cut over the entire domain D. A compromuse i5 to do the operations only at the points
where observations exist. By doing this onc essentally regards a function as & vector of
finite elements. In secoon 3.3.4, the comparison between an orthogonal senes of functions
and a series obtained by the QR factorization (Stewart, 1973} will be based on this idea.

To make this report self-contained, we also introduce the following definiton of
inner product related to the Lebesque integral:

« Definition 3:



Let f, g be rwo square integrable {in the Lehesque sense) functions with no mers
than countably many disanct values on respective domains, namely

¥10 Y2 oo o ¥no - fOU £
and
L1, zzs . zn, fl::l‘ g

then the inner product in the sense of (2.8) is

{f, g =J f{x)g(x)dy = Z ¥nZnH{An)
A n (2.0

where
Ap =[x x€A, f(x) = yn, g(X) = Zq}

I is the measure on sét A. This definition has been based on Taylor (1965) and
Koimogorov and Fomin (1970). An infinite set is cailed countable if its clements can be
nut in one-to-one correspondence with the elements of a set containing all posuve integers
(Kolmogorov and Fomin, 1970, p. 10}

Having defined the inner products, we may now define a norm as
% I1=(x, x)1/2 (2.11}
Thus if x is an error function obtained by differencing the approximated funcdon and the

approximating functon, then a least-squares approximation can be achieved by munimizing
the error norm | x 1. This is the least-squares (of emmor) principle.

2.3 Onthogona! Functions

A complete normed inner-product space is called a Hilbert space. Ii turns out that
the set of al} square integrable functions in domain D constiute a Hilbert space, LY(D)
(Sansone, 1959). Let the infinite set of functions in L&D be f;, i = 1, ... ==, then {'s are

mutually orthogonal if
!ﬂnnsmnt , 1=

0. i=] . (2.12)

fi s are mumally orthonormal if

(fir fj} =

[1.i=]

(f;, f;) = o
10, i#] : (2.13)



A set of functions {fj} fulfilling condition (2.12) or {2.13) is called an arthogonal
set (or system) or an orthonormal set (or system) respectively. In terms of specral
analysis, [fi) can be used for generalized Fourier senes expansions.

For a domain of regular geometry (such as a real line, a square, a unit circle, the
surface of a sphere), numerous orthogonal functions can be found in the literature.
Exampies are the sine-cosine funcuaons for {0, 2x); the Fourier-Besse! functions for a unn
circle; the surface spherical harmonics for the surface of a unit sphere. In the current
study, the primary domain (D) of concern is the oceans which appear to be quite irregular.
For such a domain, an orthogonal systemn cannot be readily found, thus a study is needed
to construct a possible one.

The above discussions automatically include the reat orthogonal functiens and the
complex orthogonal funcuons. Table 2.1 sumnarizes the orthogonal functions, domains
and types (real or complex) that frequently appear in literature. Standard treatment of
orthogonal funcaoons may be found in Davis (1975, chapters 5-7) and Sanone (1959), The
physical appiications of orthogonal funcrions, especially those arising from gigenvalue-
eigenfunction problems (to be discused in secdon 3.4}, may be found in Courant and
Hilbert {1953, chapters 5-7) and Morse and Feshbach (1953, chapter 6). A good
discussion on complex orthogonal functions can be found in Gaier (1987).

Table 2.1 Orthogenal Functions in One-Dimensions and Two-Dimensions

Name Notanon Domaln [ 1vpe* Reference
Fourier Cosnx, sinnx DExs2n R Tolstov, 1976, chapter |
Ass. Legendre PR{x) -lexs1 R Hobson, 1965, p. 9i
Tschebysheff, 15t Trix) -lsx<€l R Davis, 1975, p. 365
Jacobi PL{F)ix) -l1sxs1 R Davis, 1975, p. 166
Generalized Laguerre La{e¥x} DEx S R Sansone, 1959, p. 295
Hermire Hp(x) - £ % & oo Sansone, 1958 p. 303
Bessel, int. order J.,{xnmg} 0<x<a | R | Lebedev, 1572.p. 128
Mathjeu function | SemJem, demlom ellipse R | Morse ctal. [553, p. 562
Fourer-Besselt | Jn{xpmtiteins circle R Kaplan, 1981, p. 449
Fourier-Bessel? [In(Knmri+¢Nm { circle nng R |Sommerteld, 1949, p. 167
{Knmf}]'ﬂﬂnl
Fourier-Besself Li(Kymisinud Icircular sector] R | Sommerfeld, 1949, p. 168
Polynomsal in z zh circle C Davis, 1575, p. 240
Tschebyscheffd Talz) ellipse C Davis, 1975, p. 240
Spherical harmonics | Rnm(8, &), | unitsphere | R H/M, 1967, p. 29
Snm{ai l)

*R: real, (. complex,
1 The use of e9%* i5 just for convenient notation, the functions are real in nature.
A Now Tschebyscheff polynomials have a complex variable.
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For a convenient discussion of the properties of orthogonal function expansions,

we restrict the case to real functions and a set of grthonormal functions, ¢, 02, ... Py (M
may be infinite). An arbimrary function f € LZ(D) can be expanded into ¢; as follows:
oM
£= cid;
=1 {2.14)

where f is the approximgtion of f and M is the truncation degree. The minimyum propeny
states that the error, || f - £ 112, measured in a norm according to (2.7), is minimum if ¢;'s are
obtained by

¢ = (f, ¢i) (2.13)

This is easily seen as follows. The error ¢ is:

M 2
p=If-12=1f- Y cipi? = L. (f- py ciq)-,) d(D)

dim(D) i=1
o (2.16)
In order 1o have a minimum g, we take
ap _ .
a?i-l} , i=12,-—-,M (2.17)
Thus we have
M
(f— > cjaj)mid{[)) =0
j=1
D (2.18)

Using the orthogonality relationship (§i, ¢;) = 8;j, we finally arrive at (2.15).

Since @=1If- fi2> (, we tave, according to (2.186),

M 2 M
(f- z ¢i¢i) &D) =I f2d(D) Z C?I ¢i2d{D}} ¢
D D

i=1 i=1

Since (¢, ¢;) = 1, we have



=

2=y ¢
i=1 (2.19}
This is the Bessel ingguality. When M approaches «=, we have
B/Pmml‘ 1¢’iﬂ =0
,-1 (2.20)

The set {di} satisfying (2.20) for any f defined and square-integrable on D is gomplete in
LZ(D). When (2.20) is ue, we get

AR =Y
i=1

wiich s Parseval's theorem.

{2.21}

The final discussion will concern the statistical properties of orthogonal function
expansions. We assumne that we expand function f into ¢; asg in (2.14) and obtain the
covariance matrix for ¢j from some parameter estimation process. We will be able to get an
error estimate of funcoon f at point s using the error propagation

M M

G:il'pzi_{s]"' 22 ;;0d s Jbi(s) {2.22)
i=1 j=1
1]

oy

In
—

where o is the (error) variance of f at point s, df is the variance of ¢ and Gj; is the

covariance between ¢ and ¢j. The average cumulative error variance of f, o7, is

of=—1_1 old
F dﬁﬂﬂ)}Lﬁ 1))

M
dm:l{D}(= o j 91d(D) + 22 cs,Jijde})

i=1 i=1 j=1
I:th

-3

=1 : (2.23)

Eq. (2.23) shows that the covariance ¢j; does not play a tole in calculating 6¢2. Such a
property will provide a good estimate UfJ geoid error over the oceans and 58T error in the
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process of simultaneous estimation using orthonormal functions that will be described in
Chapter 7.

Defining the it signal component as fj = cif, we can measure the correlation
between components 1 and j using the average product (Heiskanen and Moritz, 1967, p.
256)

M(fif) = mj CiCididy (D)
D

= 18y (2.24)

where M is the averaging operator. Note that (2.24) requires the underlying process to be
ergodic. Eq. (2.24) reveals the fact that two distinct signal components can possibly be

considered stagspcally independent in orthogonal function expansions.
3.0 Methods of C ing Ol | Functi : :

Three methods for constructing orthonormal functions {or, in general, orthogonal
functions) over a specified domain, especially over the oceans, will be investigated here.
One final choice will be made for the numerical experiments of the simultaneous geoid-§ST
estitnation in altimetry.

3 | The Definition of the

Why do we need to define the oceans? In the geodetic literature, the term "the
domain of the oceans” is often mentioned, but not clearly defined. We illustrate two kinds
of geodetic problems that invelve the domain of the oceans:

— The altimetry-gravimewry problem (Sansd and Stock, 1983). The task is to solve for
the distarbing potential T given data on land and on the oceans.

— The overdetermined boundary value problem {Sacerdote and Sanst, 1985). Here T is
solved given the redundant boundary values on land and on the oceans.

In the first problem, a single type of data is given at a portion of the boundary while
another type of data is given on the rest of the boundary. In the second problem, a poriion
of the boundary could have two or more kinds of data; thus redundancy is created. In these
two problems, it is likely that "the oceans” is defined as the domain where geoid
undulations {or gravity disturbances) are given, since the problems can still be attacked
without knowing whether the domain is really “ocean” or not (in the oceanographic sense).
For one thing: we can conduct gravimetry on the oceans and can obtain geoid undulations
by differencing precise ellipsoidal height {from, e.g., GPS} and orthometric height (from
levelling plus gravimetry) on land. Thus the clear demarcaration between land and the
oceans is not very much required.

1t is not so in the simultaneous geoid-SST estimation in aldmeny (see Chapter 7 for
the definition). SST is defined only over the area where oceanic waters exist (we exclude
the in-land seas such as the Caspian Sea from our discussion). However, our world is

9



surrounded by complexities and details, therefore we have to "generalize" the phenomena
or quantities to the extent that research of a global scale can be carmed out. But the
generalization will never intend to mix the true oceans with land.

In summary, the following options are proposed for defining a domain of the
oceans suitable for constructing a set of orthornermal functions {(over the oceans) and for
the analysis of the resuits from the simuitaneous geoid-S5T estimation in alimetry;

Option 1: Define the boundary of the oceans using a set of polygons of shoreline data, A
point interior to the polygons is regarded as land, otherwise it is ocean.
Additonal editings can be made to remove the undesired "oceans”, e.g., the
Caspian Sea.

Option 2: Define the oceans as the domain consisting of a finite set of equiangular blocks
{in latitude and longtude}. Given a global (complete) IDTM data, such as the
1° x 1° mean elevanons from TUGE? (Wieser, 1987), a block is oceanif H < 0
otherwise it is land. H is the mean elevation. Again, editing can be made to
remove the in-land seas, basins, etc. which obviously do not belong to the
oceans.

Option 3; Define the oceans as the domain where observations exist For example, set 3 of
the 58T data analyzed by Engelis (1987b) implics a domain constituting a set of
1% x 17 blocks where H « -2500 m (except at the Mediterranean Sea and the Black
Sea, where H » -2500 m).

Nene of the options could provide a "true” boundary of the oceans, due to the
factors such as shoreline resolution, the accuracy and resolution of the DTM, ete. In the
numerical experiments conducted in Chapters 6 and 7, the definitions of the oceans
according to Option 2 or Option 3 will be adopted. However, the analytical derivation of
orthonormal functions for some special cases will imply the use of Option 1.

In contrast to the orthonormal functdons such as the fully normalized spherical
harmonics over the unit sphere, the resulting orthonormal functions accerding to any of the
above mentioned options will be "data-dependent”. Here the “data” means the (smoothed)
stroreline or the IXTM used in defining the domain. In short, the resulting orthonormat
functons are not universal to all the users.

39 The Gram-Schuidt Ort lizing P
3.2 1 The Principl

We now introduce a purely "mechanical” approach of constructing orthornomal
functions, the Gram-Schmidt orthonormalizing process (Davis, 19735, p. 165), Assuming
that we are given a finite or countably infinite set of linearly independent funcdons, £y, £,

.., and f; e L2(D), as shown in Appendix A, the set of Functions f; obtained by the
following process are mutuaily orthonormal:

10



hy=f; . f1=hjdhil

hy =f2- (. T)f1 . T2 =hafihdll
. -l

fin = fa = D, (e Tlfke B = hyfling ! 3.1
k=1
etc.

In general, we can write {3.1) as

i
ot Limle-
j=1 (3.2)

where cj; are the combination coefficients in the orthonormalizing process.

Tl
The functons fj are independent if Z aif; = 0 1mplies that a; =0, fori= 1, -, n;
if at least one a; could be chosen nnn-ze,mlj hmn f; are not linearly independent or some of
thern are dependent. To check the mutual dependence among the set of functions fjin D,
one can also use the Gram matrix G, defined as

ify, £1}{f1, £2) - (fq, £}
a= G(f], fz, -, fn_} = {fL fl}(fz,, fz} —ua I:flu f]}

(fn, £1) ~=-mmmm (£ £ (3.3)
It can be shown that the determinant of G, G, fulfills the conditor {Davis, 1975, p. 178)
3 <I\GI < I IRNEAI2 — 1Ifpl12 (3.4)

The necessary and sufficient condition for f; to be linearly dependent is that {Sansone,
1959)

IGl=0 (3.5

Eq. (3.3}, together with (3.5), will provide an important tool for checking the dependence
of surface spherical harmonics over some domains in later developments (n in {3.3) must
be finite in such a checking).

Davis (1975, p. 168) has shown that some classical orthogonal polynomials, such
as Py(x), Tp(x) in Table 1.1 can be derived through this process. However, if nin (3.1} is
very large or the evaluation of the inner product of two functions, (fj, £;), is complicated,
an efficient computational algorithm should be developed to find the combination
coefficients cij. Two algorithms will be described in the following section.

It should be noted that the orthonormalizing process according to (3.2) is the
qiangular scheme, singe
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fi ] [ en 116 ]
fs T2 Cx2 0 fa
jﬂ J Lo -o- enn | ifn {3.64)

Written in a matrix form, (3.6) is equivaleni to
y=0x (3N

where y = (f], -, To)T, x = (f1, -, fy}T. The combination matrix C is a lower
triangular matmx. Another combination scheme, ¢alled the general scheme, has a full
combination matrix. That is, instead of adding the functions f; up to i in (3.2), an
orthonormal function f; is obtained by adding all fj's as follows:

i=1 (3.8)

As pointed out by Davis (ibid.), given a certain order of the functions fj, the
combination coefficients are uniquely determined in the tiangular scheme, but not in the
general scheme. For this study, the wiangular scheme is preferrad. One rzason is related to
the decay of the power of the signal analyzed in this study: Let fj be the power series in t,
ie. 1, 11,12, -, 0. The resulting orthonormal functions f; will be a set of polynomials
Pi{t), i = 1, -, n if the manguiar scheme is used. However, (2.8} will vield a set of
polynomials of the same degree, i.e., Pa(t). In most of the signals encountered in
geophysics, the amplitude of the signal component will decay as the frequency increases.
An appropriate frequency decomposition can be achieved from the use of polynomials of
variable degree, such as Pi(x}, i = 1, --- , n, but not a set of polynomials of the same

degree.

3.2.2 The Combination Cocfiicients in the Ort lizine §

To find the combination coefficients ¢ij in (3.2), the first step is to evaluate the inner
preducts of the given functions, fj. Given n functions, a total of n{n + 1)/2 inner products
need to be evaluated. These functionals correspond to the elements in the lower tiangular
part of the Gram matrix in (3.3). Since (fj, f;) = (f}, f)*, the upper wiangular part of G can
also be formed by these inner products, IfJ fi's are real, it can be shown that G is a real,
symmetric positive definite mawix assuming all fy's are independent. Once the inner
products are formed, rwo algorithms can be employed to fing the coefficients cj. This is
shown in the following discussion.

The first algorithm is based on Mainville (1987, Chapter V). For a convenient

discussion, we assume fj's are real. _We observe from (3.7) that functions fj can also be
expressed as a linear combination of fj, since

12



or

puss (3.10

Thus

. [Gi . foralljwithjzi
(F, )= .

1[} ., forall jwithj<i (3.11)

In {3.93, C-1 exists since all ¢jis are positive (so the determinant of C is not zero!}.
Using the property of a wiangular mamix, one gets

1

ciy = = (3.12)

Based on (3.10), we can write {3.2) as

i-1
fi= C[{z b';jfj + fi)
j=1

(313
For p <1, one has
— i.l —_— -
(f;. fP] == z biﬁj! fp} +{fi, fp}
i=1
Thus
_ i-1
by =~ {6, B =- 2, cjglfis )
ol (3.14)
Since (f;, f;} = 1, using (3.13) and (3.14) one gets
1 ¢z 2
4 =] bjjfj + £l
¢§ it
i-1
=Ug2 - Y b,
=1 (3.15}

!
Subsztituting fj = Z ¢ipfp it1to (3.13), after some index manipulation, we have
p=1
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1 1

i1 i
fi = (Cii bip’cpj) fj + ciifi
J=] =1

p=j (3.16
Comparing (3.16) with (3.2), we find
i-1
Cij = Ciiz b[pCm‘ , J<i
p=i (3.17)

Summarizing the above development, the compwiational formulae (fori > 2) are

i
by = - 2 Ciplfl, Fphj= 1o, i1
r=1

RN T4
Ci = (”fi”z - E hlzj)
i=1 (3.18)
i-1
Cjj = L‘iiz bigep; » i1=1,..,1-1
P=]
The only required starting value is cj; = 1/lf)ll. This is a recursive algorithm. A

similar recursive formula is given by Gaier (1987, p. 8). Gaier shows that f; can be
derived from

(f1, £) ... {f1, fi1) f
hk =de

..................

(fk, £1) . {fx, fi1) fic

(3.19)
and
fi = hicAlnyl {3.20)
Rearranging {3.19), we get
fr oo et fi
£1, £1) o [F, B fy, £
b = -1 det {fi, fy (f1s fea}  {f1, )
(Feors £1) oo {ficts Bic 1) (fiet, fie)
ko k-1 .
=Y 1M = ) (CURERMUE + Agaf
i=1 i=1 (3.21)
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where M; is the minor at row 1 and column i. In (3.21), the minor at row 1 and column k,
i.e., M. has been denoted as Ak which is precisely the Gram determinant IGI for the first
k-1 functions. Now, the nom of hg can be expressed as (Gaier, 1987)

(fr. f1) oy, fqd (£ hy)
I{hk, hk}l S e s

{fis £} oo i T} 1, Dye) (3.22)

From (3.11%, we see that all the the entmies in the last column of (3.22) will vanish except
(fy, hx). By the definition of Ax.; mentioned above and by {3.19), it is not diufficult to see
that Ay = (fi, hi). Therefore, from (3.22) we have

(hy, he) = AgAx-y (3.23}

Using (3.21) and (3.24), we tinally ammive &
i-1
t__'. = Cijfj + ‘!rﬁk_p"ﬂk fi
i=1 {3.24)

which shows that cjj = YAy 1/, . The rest of ¢jj can be found using (3.19), (3.20) and
(3.2%,

The above development has been based on Gaier (1987). Mainville's algorithm and
Gaier's algorithm are all based on recursive formulae. However, usually the computation
of determinants (such as minors) is rather expensive, thus Mainville's algonithm should be
chosen over Gaijer's if one is to use a recursive algonthm.

A more efficient algorithm for computing c¢jj 18 the Cholesky decomposition of
matrix Gify, .... fy) or the Gram matrix.

Since y = Cx, the relationship between the Gram matrices of y and x is (Davis,
1975, p. 177

Gify, ..., fa} = CGHfL, oy F)CT (3.23)

Now G{f, ..., f.) is an identity matrix of order n due to the orthonormality of f;. Denoting
B =Gify, ... fn), we wrnite (3.25) as

B=ClChT (3.26)

which shows that B is a product of a lower triangular matrix and its ranspose whose
diagonal elements are all pesitive. Since B is a positive definite matrix and its Cholesky
decomposition is unique, we conclude that

C1=RT or C=(R-1)T (3.27)

where R7T is the lower tiangular matrix from the Cholesky decomposition of G{fy, ..., fp).
Eq. (3.27) states that, 1o find the combination coefficients ¢jj, alt we need to do is o
decompose Gify, ..., fy) (in the Cholesky sense) and find the inverse of the lower
triangular matrix, RT.
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in the numerical experiments described in Chapter 6, both the recursive algorithm
and the Cholesky decomposition will be nsed to compute ¢;j. The comparisons on the
cornputatonal efficiency and accuracy will be made in that particular chaprer.

23 jonship with QR Factorization

The aim of the development in Sections 3.2.1 and 3.2.2 is 1o derive a set of
orthonormal functions over a continucus domain D in a Hilbert Space. It tumms out that ,
for practical application, the domain D itself does not need to be contnuously connected,
instead it can contain only a finite number of points. Or, in the Lebesque integral, the
concept of domain has been totally replaced by the concept of ser

Assume now the domain D consists of a finite number of points and the functions
fi's are defined only at those partcular points. Denoting the number of points as m, we see
that under this condition a function now can equivalently be represented as a vector of
length mand we can write  f;& R™, i=1, ..., n. {Again, for the moment, we deal with
real funcuons only). A well-known marix operation is the so-called QR factorization
(Stewart, 1973 in which a matrix is factorized into a product of two matncies as follows:

A=OR (3.28)

where A e R™0 Qe RMN R e RMM and m 2 n. Matrix A has n linearly independent
columns, () has n orthonormal ¢columns and R is an upper triangular matrix whose diagonal
elements are all positive. Let j's (now vectors) be the column vectors of A and the inner
products take the definiton according to (2.9), we have

Q= AR or QT = (R-1)TAT (3.29)

It is sasy to see that (3.29} is a discrete version of (3.7) {the reader should note the
difference in notatons and bear in mind that every clement in vectors x and y is a function),
Explicitly, we have

Fﬂ cn fFH
B N
fnl Leat--- Can | LED (3.30)

Therefore, the orthonormalized (column) vectors are £;'s and the elements in (R-17T are the
combination coefficients. MNothing we have said in Sections 3.2.1 and 3.2.2 needs to be
changed except the definitions of domain and inner product. However, the
orthonormalizing process according to the QR factorization {or, the discrete version) will
not be used here since

+ [ts impossible to derive a set of analytically defined orthonormal functions such as the
Legendre polynomials Ppit) and the Tschebyscheff polynomial, Tr(t) in {-1, I] using such
a discrete scheme.

+ The demain is defined by a set of observation points and varies from case to case;
therefore the resulting Functions are not unique and lack physical meaning . In fact, the
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concept of "points” is not necessarily required in geodetic observanons so the interpretanon
becotnes even more difficult.

Although the discrete orthormalizing process (i.e., QR factorization) is not to be
used in this study, some of the concepts involved in the process can be very useful. For
example, Goad and Mueller (1988) have employed the Gram determinant of the
observation vectors to efficiently remove the correlaton between GPS observables.

3.3 Meth toenvalue - Eipenfunction

331 The H couation and I 1

In Section 3.3, 2 method of obtaining orthogonal functions, subject 1o a specified
boundary condition, will be discussed. First of all, we introduce the well-known
Helmholiz equation (Page, 1955, p. 0%

Au+ku=1 (3.3

where A is the Laplace operator in El,E2orFd, and kisa positive number {we restrict our
study to a real u and a real k} associated with the "frequency” of the solution function w.
The solutions of the Helmhoeltz equations for various domains and various boundary
conditions is an important topic in physics, especially in the area of wave propagation,
Standard treatment of this equation can be found in Morse and Feshbach (1933}, Courant
and Hilbert {1953}, etc. The book by Miller (1977) even devoted two chapters to the
solutions of this equation by the use of Lie algebra.

A value ki, in (3.31) is called an eigenvalue associated with a solution u; which is
designated an eigenfunction. A solution of the Helmholtz equation, uj, together with k;,
normally satisfies a boundary condition. Let ¢ be the domain where (3.31) holds, B the
boundary of &, and n the outer normal of B, normally three types of boundary condition
({B.C.) are possible:

{1) u=0onB. The Dinchlet B.C.
(2] g% =0 on B. The Neumann B.C.

3y u=c ?ﬁ on B. The mixed B.C., ¢ depends on the position on B only.

The relationship between &, B and n is shown in Figure 3.1 (a 2-D planar case}.
b

J'\

== X

Figure 3.1 The Domain, Boundary and Quter Nommal for a 2-D Helmbholiz Equanon
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To illustrate the orthogonality of the eigenfunctions found from the solution of the
Helmholiz equation, we consider a two-dimensional Laplacian (A} in a X-Y rectangutar
coordinate system:

Au; + kjui =0 (3.32)
Au;j + kju; = 0 (3.33)

Where A = 02/8X% + 32/0Y2, u; and uj are two solutions (eigenfunctions) associated with
two eigenvalues, k; and k;. Multiplying (3.32) by uj and {3.33) by uj, then subtracting one
trom the other, we get

(ki - kjujuj = wiAvj - ujduy {3.34)

Taking the integrals on both sides of (3.34) and applying Green's second identity (see
Appendix B) on a plane, we obtain

{k; - kj]JJ ujude =Ij (uiﬁuj - uj:iui):lﬂ
a Ly

uia—]'rlluzE S
‘on ‘on

B (3.33)

where ds is the differential arc length along B. Substituting any of the three B.C. into eq.
(3.35), it is easy to see that

ik - kj][[ ujn;da =0
(3.36)

If kj # kj, then the integral part must vanish in order to make {3.36) true. Thus we show
that two distinct eigenfunctions are mutually orthogonal. The eigenvalue-eigenfunction
becomes degenerate if one eigenvalue corresponds 1 several eigenfunctions (Sommerfield,
1949}, 1n such a degenerate case, any linear combination of these eigenfunctions is still a
solution of the Helmholtz equation. Using the Gram-Schmidt process, we then can
orthogonalize these eigenfunctions (of the same eigenvalue) and still maintain the
orthogonality for all the eigenfunctions.

When kj approaches k; in (3.35), we can obtain the nommalizing factor
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j[ u?do using L'Hopital's rule as follows:

3
2 fim .
j] uido kj—ok; jJ ujudo
5] a
im _1 duj  du;
ki—vk; ki - kjﬁ(“’_an Non [

Cfrapy e T,
ri-uI'E-ﬂC aﬂ =k a.nak[u k=k; s

|

Il

R (3.37)

In (3.37), we have considered u and du/en as functions of the eigenvalue k. This is an
important technique for deriving the normalizing factors of the generalized Fourier-Bessel
functions and the spherical cap harmonics that will be descnibed shortly,

It is worth mentoning that the 2-D Helmholiz equaton which we have just
discussed is a special case of the 2-D Sturm-Liouville problem (Courant and Hilbert,
1953):

_df dul df du _
U{u}+ku—a{pa—x)+a{p5]-qu+ku-ﬂ . px,y}20 (3.38)

where L is an operator whose definition is ¢lear in the above equation. The operater L in
(3.38) is a self-adjoint operator which satisfies (L{u}, v} = (u, L{v)), where u and v are two
functions fulfilling any B.C. and are the solutions of {3.38). The orthegonality of the
eigenfunctions is easier to derive by the properties of a self-adjoint operator, since

{L{u), uj} = (o, Lwg)) <=
{-kju, 03) = (uj, -kju;) <=
(ki - ki) (uj, ujy =0 {3.39)

Clearly {3.39) is equivalent to (3.36). Putting p=1, q = 0in (3.37), one immediately gets
(3.32) or (3.33)

The set of eigenfunctions from the solution of the Helmheltz equation (or in
gencral, the eigenvalue-eigenfunction problem) are complete in the sense of (2.20)
{Courant and Hilbert, 1953), Thus any square integrable functions over ¢ may be
expanded into eigenfunctions. The proof of the completeness of the gigenfunctions and the
derivations of expansion theorem can be found in Couvrat and Hilbert (1933, pp. 424-427}
or Toslov (1976, pp. 255-258).

So far we have only discussed the properties of eigenfunctions, We shall now
proceed to solve for the Helmholiz equation and derive the analytic forms of the

19



eigenfuncuons, The selution of {3.32) depends on the shape of the domain and the type of
B.C. Upon knowing the shape and the B.C,, normally the technique of separation of
variables is employed to solve the partial differendal equation. The soletion u is factorized
into a product of functions according to the chosen vanables. When a successful
separation of vaniables is achieved, the Helimholtz equation is then split into a set of second
order ordinary differential equations which are then selved individually. To give an
example, we consider the 3-I) Helmholtz equation in sphencal coordinates (r, &, ). For
the boundary condition, we require that the solution u should vanish ai the boundary, i.e.,
on the surface of the unit sphere r = 1 {so now the boundary B is defined by r = 1). Ttis
well-known that (see also Appendix B) the Laplacian A in an curvilinear coordinate system

iz
A= ?_L 0 {fE g”i)
& oxl (3.40)

where the definitions of g, gl can be found in Appendix B. xi are the curvilinear
coordinates which alse include the ordinary rectangular coordinates. The contravariant
tensor gil is the inverse of the covariant tenser gij. In the Euclidean Space, gjj is obtained
from

[g5;] = TTJ (3.41)

where I is Jacobian from the curvilinear coordinate system, xi 1o the rectangular coordinate
system, X*. Specifically,

[ax]
Jix3=
dx) {3.42)

The reader may find (3.40), (3.41) and (3.42) in an ordinary textbook of tensor calculus
fe.g., Kay, 1988; Synge and Schild, 1978). If the system x! is ﬁnhﬂgunal then both [guj
and [gli} become diagonal matrices. For an orthogenal system xJ, the arc length element is

usually denoted as
{ds)? = hi(dx!)? + hi(dx2)? + hf(dx3)2 (3.43)

In such a systemn, the following relatonships hold:

gj=gi=0, i=j (3.44)
El.1=—h = h}
g22= 7 =} (3.45)
533=;T3 = b3

Now (x!, x2, x3} = (r, 8, 1) and X! = rsinBcosd, X° = rsinBsink, X? = rcos, thus it is
easy to see that (using (3.41) and {3.42))
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i 0 0 1
[gl=l0 2 o |
0 0 risin’GJ (3.46)
Substituting the results from (3.44), (3.45) and (3.46) into (3.40), we get the Helmholtz
equation in spherical coordinates

g2y 2du 1 g%  coldu 1 g% 3
st i T 07 + 2 9 + o6 ont +ku=90 (3.47)

If k¥ =0, (3.47) reduces to Laplace's equation in spherical coordinates (Heiskanen and
Moritz, 1967, p. 19), Substituting o = Rir} T(B) S(A} into (3.47), after some algebra we
get

é (t2R” + 2rR) + kr? = - % (cotdT + T ) -

S~ 3.48
Ssind ( )

In {3.48), the expression on the left side depends only on r and the expression on the right-

hand side on B and A, thus we can separate (3.48) in the same way as we do for Laplace's
equation (ibid., p. 20). Let the separaton constant be n(n + 1), so that we have

PR+ 2R + (kg - nin + NR =0

{(3.49)
sinf | - . . o 5"
T {(sinBT  + cosBT ) + n{n + 1)sin<6 = 5 (3.50
The solutions for {3.5()) are the nsual Laplace surface spherical harmonics {ibid, p. 21} if n
is an integer. For the soluton Rir), we substitute
Z
R =
1
A/
R=—-—— 3.51
N G20
A A B 4
RV =52 .= 2=
N1t 4T
into {3.493, then we get
r

18]
Z”+%Z'+[k-lntT2]2JZ=ﬂ

{3.52)
Eq. {3.52) is equivalent to (C.2) in Appendix C (note: in (C.2) k2 is used instead of k, but

this is not impertant). All pessible solutions for (3.52) can be found in (Morse and
21



Feshbach, 1953, p. 14653). One sclution of (3.52) is the Bessel function of the first kind
Jn.;.[,.fz(‘ﬁ,r), k= 0. With this particular sclution, the solution for R then becomes

R(r) = T 10N kr) (3.53)
Jr

As shown in Appendix C, if\"fi .1=1, .., are the zeroes of Iny (1), then In+m(mr}
form an orthogonal series. Let Y{8, A) be the Laplace surface spherical harmonics, 1.e. the
solution for (3.50), we can show that (see also Appendix C)

[ Jﬂ Jn+1.-"2{1'rk_if} -Tn-r!n['lrk_jl'] Yidrdo

ﬂ" i
e ‘1 (3.54)

]
=J Jn+1xz(ﬂ<_irlln-.~1f2{’l"ﬁl'}l'dl"j Y’do
0

g
= cé’-ij \ C a constant

Thus the selution u; for (3.47) (index 1 indicates the saquence of the ergenvalus kin (3471
are orthogenal over the domain (now the interier of the unit sphere}. Note that in (3.54), &
is the surface of the unit sphere and réda is the surface element of the sphere.

It is also clear that the solution

uidr, 0, 3) = ’:'—’ilfié;‘il‘-'—‘l Y9, &) (3.55)

satisfies the B.C,, since
ui(l, 8, &) = Jne 120Vki)Y (B, M) =0 (3.56)

by the definition of Vk; {the zeros of Jhe1 2000

Although we have shown the technique of separadon of variables for the Helmholiz
equation in the above development, the example is probably oo simpie to bring out the
difficulty that we will face in constructing the orthonormal functions over the oceans. The
difficuity is of course the separation of variables itself, Morse and Feshbach (ibid.)
tabulated 11 separable coordinates in E3 for the Helmholtz equation. Page (1953, Chapter
V1) also has a similar table, But none of the tables mnmediately gives the desired separation
of variables for the extremely irregular oceanic domain. What we can do for this sdy is
take the ideas of the solutions for the Helmheltz equation to develop a set of crthonormal
functons over a “regularized" domain on the surface of the earth, such as a spherical cap or
a region bounded by two parallels and rwo meridians. This wili be demonsirated shortly.
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If the domains of interest lie on a plane, the solutions of the Helmholtz equation for
a rectangle, circle or ellipse are readily shown in Courant and Hilbert (1953), Morse and
Feshbach (1953, Kaplan (1981}, etc. These solutiens thus provide the set of orthonormal
functions for the corresponding domains, For the solution of the Helmholtz equation in a
relatively "irreguiar' domain, we consider the following example. Suppose now the
domain is the isosceles shown in Figure 3.2. Using a rectangular coordinate system,
{3.31) becomes

— 4+ — +ku=0

as2 oyl (3.57)
The boundary condition is

u=1{ , onthe boundary of the ispsceles (3.58)

The dilemma in this case is that a separation of variables for such a domain is not
possible, so a solution of the form u(x,y) = f(x)h{y) satisfying the B.C. cannot be
obtained. To overcome this difficulty, we may linearly combine the solutions for the
square (0 £ x £a, 0 £y £ a), te., si ‘-'~“ﬂli'5-x}sirt[m y], to get & desired solution, Morse
and Feshbach (ibid., p. 756) show empirically that the function

duzn = sit{ - (m + ] sin{ % my] - (-1 sin 2 (o0 + nly] s (3.59)

satisfies (3.57) and {3.58).

a 2 ¥,

Figure 3.2 An Isosceles for the Helmholtz Equation
Asg one can verify, the functions umy are indeed orthogonal (with respect o the area

integrai} in the isosceles. Since upm are the solutiens, we can find the eigenvalue ky, in
(3.57} from the relationship

azumn + alumﬂ

ax?  dy?
Ko = - — . Y :(Iaiﬁ{m+n}2+n2] (3.60)
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3.3.2 Eivenfuncrions Orthogonal Portion of the Unit Sgt
3 . Buncti .
In crder to be prepared for the development of the spherical cap harmonics, we

devote this section to the relationship between the hypergeometric functions and Legendre's
functions.

The hypergeometric function is the solution of the second order differential equation
(Lebedev, 1972, p. 162):

Zl-Zyu " +[c-fa+b+ DzJu"-abu=10 (3.613

where a, b, and ¢ are parameters which can take any real or complex values, The
independent variable z can alse be real or complex. To obtain 2 solution for (3.61), we
assume the sclution u can be expressed in a Gaussian series representation:

u= ZEZ f:nI.“
n=0 (362}

where the constant s and the coefficients e, are o be determined. Substituting (3.62) into
(3.61), two possible solutions can be obtained (Lebedev, 1972, p. 162; Sommerfeld,
1949, p. 152

amp Dllch (3.63)

o la-c+ Lgb-c+ 1),
uy = zh¢ Z0
E_é nl(2 - ch (3.64)

where (a)y, is the "shifted factorial" defined as

(a)o =1

(A =afa+1)..(a+n-1)n=12, .. {3.65)
Solutiens uy and ug are usualiy denoted as

ui = F(a, b; ¢; 2) (3.66)

u=z%Fa-c+1,b-c+1; 2-¢ 2 (3.67)
Comparing (3.66) and (3.63), one immediately finds the property

Fia, b; ¢c; z) = F(b, a; ¢; z) {3.68)
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Although two solutions for the hypergeomettic equation are available, we shall just discuss
the first one, 1.2, u;. Since

e = {?1)1?5—2" (3.69)

ane gets the recursive relatdonship for the coefficients as follows

_ fa 4 nib +n)

In addition to the hypergeometric functions arising from the solutions for (3.61),
one can also define the generalized hypergeometric function as (Miller, p. 271, 1977}

F F1%) [P ap ;Zl= z {al}n pae {ﬂp}n Zh
bq n=[}

P bl'l LERE {bl}n akr {bqlﬂ E (3.?1}
By such a definition, it is clear that
a, b
u1=zF4 c ;4 3.72)

It is not our intention here 1o pursue the subject of the hypergecmetric function,
rather we would like to use the existing form of the hypergecmetric functicn to cbtain a
general representation of the Legendre function of any "degree”. To this end, we make the
substitubions

-t
=77
a=-¢
b=£F+1
{3.73)
c=1
=ul-t
Iﬂﬂ-q 2)
in {3.61). Thus we find
(1-12)P7 - 2Pj + 2 + )Py =0 (3.74}

which is Legendre's equation (Hobson, 1965, p. 10). Note that £ does not need to be a
nonnegative integer in (3.74). Since Legendre's equation is obtained by a simple change of
varigble in the differential equation associated with the hypergeometric functon, its solution
must assume the same form of the hvpergeometric function. Using (3.66) and (3.73), we
can express Legendre's function as
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PAy=H-t, £+ 1 1; JTL] (3.75)

When £ 15 an integer, one can easily verify that (using (3.65)) the coefficients e in (3.63)
are zero if n > £. In this case, Pg(t) becomes a polynomial of degree ¢£.

For the related representation of the associated Legendre function, we differentiate
(3.74) m times with respect to t and apply the tule {an application of Leibniz's rule)

ﬂ('P,:J = t'dE'l“{Pf:' + méit,ﬂn{Pz}

grm dtm+1
(3.76)
_dn_'t_ 207} o 2 m+2 m=+1 ) 4m
o (v Pz] t dd_tm+2 {Pe}+ thd—d———tml (P¢) + m{m I}E{Pﬂ
Thus we get
(1-2) 42 2m+ e + [+ 1) - mgm + DI A (P10
02 L2 e e a2+ 1) - e+ )} 85 (P -

Now the differential equation correspending to the associated Legendre function is
(Hebson, 1965, p. 89)

{{1 )@ d g4y 02 Py =g
dr? 1-t

dt (3.78)
If we make the substion
PP(o =(1 - 2w (3.79)
in {3.78), then we have
={1 ) e L L[+ 1 -mim+ 1] v =0
de? dt (3.80)

Clearly (3.80) is equivalent tudgi??'), Thus we can say that v satisfies the differential
equation of PE"‘], where Pf!'“} = === (Py). In other words, v is equal to Pgm’ up to a constant
factor. Thus we may define the associated Legendre function as

—{1. 2fed™
pry =(1 t)’"’dfn{Pz} (3.81)

The definition of PJ according to (3.81) is consistent with Heiskanen and Moritz (1967, p.
23}, except that Py’ in (3.81) could have a non-integer "degree” £ due to the use of the
hypergeometric functon.

Recalling the property of the hypergeometric function (Lebedev, 1972, p. 241)
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%F(a, b: ¢ z}=%F(a+ I,b+1: ¢c+1: 2 (3.82)

we finally get the desired form of P§:

Py =11 - t?]“’fz N s
~[i~{1 ©2) Jrz{“?}‘"[“"Jrl]"‘l:{m Lm+é+1; mel; 120
2 (3.83)

where the definition of (- £3;, €tc. can be found in (3.65). Furthermore, Lebedev (1972,
p. 197) shows that

r(z+ 1)
'(f-m+ 1)

(-B)m = (-1)™ (3.84)

[é+m+ 1)
£+ 1) = 3.55
(£+ 1l T+ 1) ( )

where ['(z) is the garmma function (1972, p. 1) defined by

Iz) =j euzidt, z>0
a (3.86)

Therefore, the associated Legendre function can be expressed as

= 1 I_f-f+m+1] 2y . y- 11_'L
Pt 2 l'ff—rn+1]{l t}m‘F[m tm+d+5 m+1; 2)

m=0,1,2,..,= ; & arhitrary (387
Now we shall discuss two cases:

f1) When £ is a non-negative integer. In such a case (£ +m + 1) = (£ + m)!,
[it-m+ 1y=(£-m)!, and (3.87) reduces to

{+m) {
PPy =1 {— 2CHm -t me s+ m1: bt
77 2mmy (g - ) i } (3.88)

In (3.88), if m > £, then according 0 3B PR =0. f £>m Fm - m+{+ 1, m
+1; (1-1)/2}is a polynomial of degree (£ - m). The second statement can be verified by
using (2.63) and (3.69). Therefore, formula (3.88) is alsc valid for Legendre's function of
the first kind in Heiskanen and Moritz {1967, p. 22) and holds for the closed interval
-1, Il
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(2) When £ is not aninteger. In such a case we may express PP(1) as an infinite series in t
using (3.87) and (3.63), namely

v gt
P70 éak[ 5 )

{3.89)
where coefficients ag can be found by (3.?ﬂ}:
; (m-f+k- I]{rn+£+k]a
k= kKm + k) kel

To numerically evaluate (3.89), we may define a smail positive number €, according to the
desired accuracy, and set the guncated sum Sy for a fixed £ and a fixed m as

= 3, Lzt

(3.91)
If 15541 - Sil ££, then the summation is terminated at N,

In case of non-integer 4, an impertant issue conceming the convergence of the
series in (3.89} at the owo end points t = *1 must be discussed. At t = 1, the series in
(3.89) apparently converges and especially Py(1) = 1. However, at 1= -1, the series in
(3.89) diverges. Therefore the associated Legendre function of non-integer degres cannot
be regular throughout the closed interval [-1, 1], In potental theory, nomally we require
that the solution for Laplace’s equation be regular throughout the spacified domain, thus the
associated Legendre funcdon of non-integer degree cannot satisfy the need for the entire
sphere. This is an important point readily made in Couorant and Hilbert (1953) and
Sommerfeld {1949, p. 1535). Nevertheless, for the spherical cap harmonic discussed in the
next section, the domain is enly extended from t = 1 1o a point before t = -1, thus our study
on that particular function will nct be affected by the singularity att = -1.

iIn connection with the discussion in the next section, we calculate two groups of
P using (3.89) and (3.90) and plot the functions in Figure 3.3. In this figure, s St £ 1,
and ty = cos{50°). The first group, i.e., the one corresponding to Figure 3.3(a), contains
the Py’ which vanish at 1o, L.e., Py {tg) =0. The second group, i.e., onhe corresponding
to Figure 3.3(b)}, contains the P§ whose derivatives vanish at t, i.e., dr T{tg) =0. The ¢
values in Figure 3.3 have been chosen from Haines (1983a, Table 1). I\‘fithin each group,
the functions PY' are orthogonal in [ty, 1). The orthogonality property will be addressed in

the next section.
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In these calculations, we have set € = 10714, The N value in (3.91) varies from 1 w0
50. Typically, 0.0005 CPU second is needed to evaluate one single P{(t) for such an &
value on the 18M 3081 machine. The gamma function is calculated by the IMSL routine
GAMMA in a double precision mode.

To conclude this section, we remark that the substitution in (3.73) is not the unique
one for the ransformation between the hypergeometric equation and Legendre's equation.
As shown in Lebedev (1972, p. 164}, we will obtain Legendre’s function of the second
kindifwesetz=12,a=f£2+1,b=42+1/2,c =4+ 32 QA0 =¥ la(r?y in (3.61).
However, to get a convergent series representation for Legendre's function of the second
kind, we need to have the condition Itl > 1, thus such a function is not suitable for the
studies pursued here,

2.2 herical H ri
In this section, we discuss two orthogonal systerns over 4 spherical cap. The
formulae developed in the previous section will be used here. These sets are solutions of
Laplace's equaton for the spherical cap.

Laplace's equation Au = [ in spherical coordinates is {Hobson, 1965, p. 9}

LdjadR), 1 _d Singdl]+_J_£ES. =0
R dr Tsin6 d8 '  d8! sin288 g2 (3.92)

where, as usual, u = R{r)T{(8)S{A) and r, B, A are the spherical coordinates. If only a
separation of r is attempted, i.e., u = R{r)Y(0, A), we have another form of Laplace's
equation (Heiskanen and Moritz, 1967, p. 20):

Rl(rzR” +2R)=—1 {B‘ (sinHaY] +—1 oY

Ysin@ B_EI sin28 g’

(3.93)

The only chance tor (3.93) to be true is that both sides of (3.93) are equal to a constant.
We denote the constant as k and get

fR” + 2R’ - kR = 0 (3.94)
2
2 [ne2 ) L ¥ |y o
sinf| 49 28] sin@ gj, (3.95)

The separation constant k 1s arbitrary. One choice is k = £(¢ + 1) where £ can be any real
number. In fact, if the solution for {3.94) has the form

R = Arel 4 pro2 (3.96)
then oy and o2 are the roots of the quadratic equatien (Courant and Hilbert, 1953, p. 316)

afo+ 1) =k (3.97)
30



What we are really interested in is the sclution of (3.95), which, according to
Appendix B, can be expressed as

A*Y + kY =0 (3.98)

The notation A* is introduced by Courant and Hilbert (1953, p. 317). We shall call A* the
"Laplace surface operator” in accordance with Appendix B. Due to its similarity with
{3.31), (3.98) may be regarded as the spherical "Helmholtz™ equation on the surface of the
unit sphere with k being the eigenvalue.

Assume now Y is a function of 0, A, defined in a region (or domain) & on the unit
sphere. The relationship between ¢ and its boundary B and outer normal n is given in
Figure 3.4. Note that the outer normal n, as shown in Figure B.1 (Appendix B), lies on
the tangential plane passing a point located on the unit sphere. Furthermore, we assume
that ¥ satisfies (3.98) and any of the B.C. descnbed in Sectdon 3.3.1. According o the
proof in Appendix B, if Y; and Y, together with their eigenvalues k; and k;j, are two such
funcuons, we have

(k; - kj}ff Yi¥do = jj (Yifl*Yj - Yjﬁ*YihG

_ aY; aY;
-j( l"'f“lan - Yﬁ)"s

B ' (3.99)
= ()

Thus

IJ YiYdao = 0, if K=k
a (3.100)

Eq. (3.100) states that, as long as a sequence of Y; and k; which sanisfy (3.58) and the
B.C. in a specified domain & can be found, then we automatically find a set of orthogonal
functions in the domain 4.

Now we consider a special case in which & 15 a spherical cap, as shown in Figure
3.5. For such a domain we may separate Y in a usnal manner, i.e, Y = f{B)h(A). From
{3.95) we obtain

o~

$i00 d {ring) + ksin2d = -
f de h (3.101)
Let m? = -h*"/h, t = cos@, k = £{£ + 1), and v = v{t) = (&), then

(1- 2" - 2ty + m+1)-—fﬂ%v=n

1-1t

(3.102)
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Figure 3.4 A Domain ¢ and its Boundary B and Outer Normai 1 on the Surface of the Unit
Sphere.

h'*+m?h=0 {3.103)
Eg. (3.102) is equivalent to (3.78). Now our 1task is to find v{t) and h{}) such that the

product, i.e., Y will be orthogonal in the spherical cap. In finding such functions, one
should always bear in mind what the B.C. is. If we write (3.102) as

dffy oy m? )
41l tf}v]+[m+n mtz]v—ﬂ

1 - (3.104)

then (3.104) has the form of a one-dimensional Sturm-Liouville problem

L) +kpy=(p¥'} -qv+kpv =0 (3.105)

{Clearly for (3.104), we have
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p=1-12 , k=#£+1)

me
CI{E}=]_[2 , p=1

However, when 8 =0°, i.e., 1t = |, then p{t) = 0in (3.106), so (3.104) 18 a singular
Sturm-Licuville problem. For some singular Sturm-Liouville problerns certain solutions
still exist. One obvious example is the Legendre polynomial Py(t) (Heiskanen and Moritz,
1967, p. 22) which satisfies (3.104) with m = 0 and p(1} = 0 on both sides of the
boundary.

Assumne that v and vj, together with ¢ and ¢}, are two functions satisfying (3.104).
Upon muldplying one such equation by the other funciion, we get a pair of equations

¥ é:l—t[{l - tz}vi'] + VIfi{fi + 1}— 1'1’1_22| =0

__ 1 -1 (3.107)
cd [y o2 {2 B+ Ol VO,
v it [{1 1 }VJ ] + v{fj{fj + 1} 1- lz]".: 0 (3.108)

Figure 3.5 A Spherical Cap of Radius 8, with a Boundary Curve B
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Subtracting {3.108) from (3.107) and integrating the resulting equation en both sides, we
get

{fj - f;If; + &+ I}J | vividt =fu [VJEI [{l tz:lv ] [{1 - tz}v ]}d

1o b

=-{1- [1}[ v, vvJ]:

(3.109)
In (3.109), integration by parts is used. Now, for a spherical cap,
1y = cosg®
=1 (3.110)
If we change the notations o Pz = v;, and Py, = v; we can write (3.109) as
]
mpmg,
{fj - 4 I‘Ei + fj + IJJ. P-E'..P.\‘.'}dt =
te (3.111}
cLP}"{tu} dP7{
(- alppg E2 g 2P0
It is understood that, in (3,111},
dPF{t,} _ dP7t)
dt de |y, (3.112)

Assuming that £ and &; are two distinct positive values, there are two cases in which the
right side of (3.111) wifl vanish:

Case 1 : Pyto) =0 and Pg{te} =D (3.113)
. 4Pl o dPRlto)
Case 2 : —¢ -ﬂandT—D (3.114)

If £ and ¢; happen to be a pair of £ from (3.113) or (3.114) we get

1
(6 - 616+ 4+ 1][ PE(OPZdt =0
o f3.115)
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Thus P7} and P}! are orthogonal if ¢ = £;. Therefore, we have two groups of orthogonal
funcuon::. in [l.,:,,J 1], arising from the chmce of £ in case 1 and case 2. In other words, if we
consider PJ'(t,) and its derivative as two functions of £, then by solving seperately the
equations

PH{ts) = 0} {(3.116)
dPPte) _
dt (3.117)

we get two groups of orthogonal functions (the functions are orthogonal only within one
group and with respect to the spherical cap integral). For this purpose, the representation
of PY' according to (3.87) or (3.89) is needed. Although analytical solutions for £ in
(3.116) and (3.117) can be found in Hobson (1965, p. 40%) and Pal (1920, p. 88 and p.
94), Haines (1983a) suggested a numerical method for finding the roots, namely, a root
finding Toutine will be good enough to find the £ values. Haines (ibid., Table 1} also
tabulated the first few £ values form =0, ..., 8, when 1, = cos50°. He also recommended
a way of indexing the functions P} arising from the solutions (3.116) and (3.117). As
stated before, the functions plotted in Figure 3.3 are based on the ¢ values in Haines' table,
thus PJY1) vanish at to in Figure 3.3(a) and dP7(1p)/dt vanish at tg in Figure 3.3(b).

To find the normalizing factor for PY, we again apply L'Hospital's rule. By
treating £ as a variable approaching £;, we have

Case | : £ such thatP7{ty) =0, m fixed

I = I{P"‘{t}}zdt- fim ! -%{Pﬂhldﬂgh}-ﬁﬁh}%
& " % T [fj - fi}{fi e+ 1}
_E-1) 3 rpmy, o SPEIL)
25+ 1 ¢ [ Htﬂ}] at -
d
Case2 @ €such ﬂ"at_lzﬂ:@=ﬂ, m fixed
1
:J. & -{ 12"} PRt < [dpff{tu)j
t“ (3.119)

dP1s)

Toget  dt . we can apply the recursive formulae for P7'. These formulae are

basically derived from the differendal equation for P}, i.e., (3.78), thus they are applicable
to any king of £ values. For example, we can use (Lebedev, 1972, p. 195):
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(2 -1) 2L gy - {2 + mPTA()

(3.120

Thus by this formula we need to evaluate PT" and PF| to get a derivative. To do this, the
troncanon series of (3.91) can still be applied.

o g
It is relatvely involved to get the 3,(P3it)) and ﬁ{dpﬁt%l) values which are
needed for the normalizing factors. If we take the partial derivative with respect to £ on
both sides of (3.87) and (3.120), after considerable algebra we get

|
9 p Iz]r% 1-1
3¢ P20 - zmmrr(z m +1]{m - &) i=0 "{ ) k

(3.120)

@) 2T oy v 62 (Y- (¢4 m) 2, (P
!

where

o JTm-¢+klm+£+1+K) [m+2+t+k)-yfm-2£+K)-

ki{fm + Ik
ILF{-E-II]+1}+\|.»{TI]-E]] (3.122)
and the y-function is {Lebedev, 1972)
Wz)= —— *f+ Z -
Hz} o l“” e (3.123)

where ¥y = 0.5772156 is Euler's constant. If the argument of the gamma function or the y-
function is negative, we should use the extended definitions:

fzxn) a+ln=1,2,..
Iz) il n<z<-n+l,n=1,2,. (3.124)

n-1
\p{z}:‘qf{z+n]-2v—‘hi ,-n<z<-n+1,n=1,2, ..
fmo TT (3.125)

where (z)n can be found in (3.65). Eq. (3.124) is due to Widder (1989); (3.125) is due 10
the fact that Wiz + 1) = 1/z + y{z) and
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n-1
{z}n] = {z

The IMSL routines GAMMA and PST may be used to evaluate the gamma function and the
y-function, respecdvely.

If the related subroutines are hard to find, we may use numerical differentiations to
get the desired derivatives. In Table 3.1, we compare the 3/3 APT{t,}) values at 4 pairs of
£, m using the analytical formulae in (3.121) and the numerical differentiation by the IMSL
routine DERIV. The number of terms needed to achieve an accuracy of 10-14 is also listed
in Table 3.1. These pairs of £, m are taken from Haines {ibid.).

Tabte 3.1 9/34PT) From Analytic Formula and Numerical Differentiation at 1o = cos30°

{ m analytical numerical cpult cpul N¥
2.24 () | -0.480796 -0.480796 00095 | 0.0048 1
5.82 0 0.316496 0.316496 0.0095 { 0.0089 19
3.92 1 | -1.659279 -1.659279 0.0092 | 0.0100 19
7.56 L 2.253507 2.253507 0.0093 | 0.0057 19

t ¢pul : analytical, cpu2 : numerical, unit in CPU seconds (IBM 3081)
* N ; number of terms in (3.121) for an accuracy of 10-14

From Table 3.1, we can see that the results are exactly the same up to the sixth
decimal place. If we decrease the error tolerance in the nomerical differentiaton to 10-14,
one can expect the sarme results up to the 14th decimal place.

As far as the soludon for {3.103) is concerned, we have the ¢lassical Fourier
functons

h{A) = sinmA, or h(A) = cosma, (3.127)

With h{A) in (3.127) and the associated Legendre functions of non-integer degree in the
above development, we define two sets of narmalized spherical cap harmonics as follows:

Set 1 : PPy =

{ %;{‘{2, ::}) \= ,\/ (2- 8[1'151]{1:1'l - cosB,} PT{cost) COSmMA l

sinmA ‘

{3.128)

Set 2 : AP (to}dt = 0
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ﬁ'}"{ﬁ, 1.) ];,\/12 - S[m}ll - cosB,) PP(cosh) COSIA. \

o £
(e, ) Ky sinm. | (3.129)

where &(mn) is the Dirac delta functon defined as

S = 1, m=1{

0, m#0 (3.120)

The normalizing factors [T and K7 can be found in (3.118) angd (3.119). Within each set,
the functons are orthonormal with respect to the integral over the domain B <9 <0, <A
%< 2%, The area of this domain is 2n{l - cosBg).

3.2 encraliz:

In a spherical coordinate system, r, 8, A, the surface of a sphere becomes "flat”
when 9 is relatively small. In such a "flat” area of a2 sphere, or, in the "polar” region, the
Legendre functions behave like functions on a plane, such as the Bessel functions. To see
this, we list Mehler's formula (Hobson, 1965, p. 317 and Miller, 1977

o Pn(cos%] - 1/8)

{3.130)
Another example is Macdonald's formuia (Hobson, 19635, p. 406):
P;{'{cnsﬁ} = d Tlx} - sindgJ m+1{x} - sin2lg LJ.TH X)-
(ncosLoT" | 2 29[
2
éx.lmﬂj:x}] - sin%ﬂ[%.lmﬂ{x} - %Jmﬂ[x} + -é-x!m.,_‘g{}(}]
alpl 1.2 _17 11 .
+ 5in EG[TEK FneelX) mx1m+5{x}+ 2 T +alx)
4. B}
3x1‘“*3["]} - | (3.131)
wiere
P(cos) = P+ 1) oo cay
Mn+m+1) (3.132)

and m is a postive integer, n is an arbitrary real number, and x = 2nsin 6/2,

Motivated by these two examples, we shall disenss an orthonormal system for a
spherical cap, as shown in Figure 3.5 and another system for a domain bounded by two
parallels and two meridians on a sphere, Again, we start with the Helmholiz equation. The
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suitable coordinates for the Helmholtz equation in & umit circle are the polar coordiantes T,
A, as shown in Figure 3.6. By separation of variables in r, & and by u = f{r)h({r) in
{3.31), we get two equations in analogy to (3.102} and (3.103) (Kaplan, 1981, p. 448):

o+ Ly [k-m—2 -0
: ,.zlf (3.133)

h + m?h =0 (3.134)

where k is the eigenvalue as in (3.31) and m is an arbirrary number. For the entire circle,
we may require the periodicity in A, i.e., h{x + 2m) = h(A), thus m must be an integer, The
solutions for (3.134) then become the classical Fourier basis functions cosma and sinmh.
The soludons for (3.133) are the Bessel functions shown in Appendix C.

Gl

Figure 3.6 Poilar Coordinate for a Unit Circle

Now, for the moment, we wiil treat (3.133) as an ordinary diffzrential equation,
regardless of whatever the definition of tis. In this manner, we could define a funcioon of
t = cosB which, after properly changing the vanables, satisfies (3.133) and a necessary
B.C.. Variable & is the colatitude shown in Figure 3.4.

§t is known from Appendix C that the set of funchons
In(EmpD, p= 1, 2, oo, oo ; m fixed (3.135)

are orthogonal in [0, 1]. The rmp values are the zeros of I {r). If the eigenvalue k in
(3.133) is chosen to be

k =t (3.136)

then Jm(rmpr) saiisfies (3.133) and the eigenvalues are simply the squares of the zeros.
Given such an existing orthogonal system, we may canstuct an orthogonal system in the
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-t

in (3.135). Thus we have, according o
1 - cosB,

domain [tg, 1] by the substinution r =

Appendix C,

1
j r-[m(fmpr”m'[ Cen qr}df

f _l-cosb ]J,,\( ]xmﬂd(-}

1 - cost }l - cosh 1- cn::-sE'
1-t -t

- [t e

_ J[}, p#g
12 =
]2 Tanltmp) P=gq (3.137)
Eq. (3.137) shows thar the functions

mjmp(r""’ll::o] p=0,1,- ., o0

(3.138)

are orthogonal with respect to integration over ip £t £ 1. Now we can define the
normalized Bessel functicn in0 <9 £9; as

Trp(t) = Jnplcos) =

Y22 - Smx1 1) | e

¥ [ - la |Jm+l{rmPI {3139‘}

and the solutons for h{i}, i.e., cosmA and sinmd,, form the orthonormal Fourier-Bessel
functons defined as

{ Bup(@, 1)

_ }= Tmp{cnsﬁ)[ cosmi }
Crnp(B: ?"}

l sinm}, (3.1400)
where 3 £8 28, 0 <A < 2n, For a proof of the completeness and the convergence {in
the mean) of the Fourier-Bessel series, Tolstov (1976, Chapter 8) can be consulted, A
square integrable funiction £(8, &) in [0 £ 0 <84, 0 <A < 2r) may be expanded into the
Fourier-Bessel series as follows:



1{3, l] = i i {Empﬁmp + Empcmp}

o (3.141)

Note that the first positive root of Jy,(r) cortesponds to p = 0. The coefficients 3y, by
are found by

J 1 B in E
meol .kJ. J. G 1}{ o }sinﬁdﬁdl
a

l mp ! A= mp

where A = 2n(1 - cosBy) is the area of the spherical cap. For a numerical evaluanion of
Im(ry, the IMSL routine BSINS may be used. Figure 3.7 shows the normalized Bessel
functions ((3.139)) form =0 and p =0, 1, 2, 3. The roots, i.e, Imp in Figure 3.7, are
taken from Bever (1987, p. 352) and their values are plotted next to the curves.

1 Bl

-a

=0

{3.142)

It is clear that, if a system {fj(x)] is orthogonal w.r.t integration over interval a € x
< b and the other system {gj(y)) is orthogonal w.r.t integration over the interval c £y 4,
then the preducts &;j(x, y) = fi(x)fj(y) are orthogonal w.r.t integration over the domain a <
x £ band ¢ £y < d.” Using such a concept, we now shall propose an orthogonal series for
a region bounded by two parallels and two meridians, as shown in Figure 3.8, To this
end, we make the following substtution in the Bessel function {see (3.135)) for the
ladtude (or colattude) dependent part:

ty -t cosfy - cos@

= _ (3.143)
-2 ¢os38) - coshs
Then the normalized Bessel Function in 8 €8 € 97 can be defined as
PP V202 - 8(mpit; - 1 f-1
K. (1) = K. p{cos) = J.,.(r )
™ P Vi1 - t2 Hos(Top] Py -1 (3.144)

For the longitude dependent part, we may take cnsmz—;l, sinmﬁl, with AA = A, - Ay
Thus the following system is orthonormal in {§; €8 <& and Ay SA £ A2}

‘E‘n l msmzi—l
TP LR (c0s9) A
l Frp [ ’ \ 51
AN (3.145)

It should be noted that the functions Emp(msﬂ} and cﬂsm(znfr&lh, sinnf{z“!rﬂ. l}l are not
the solutions for the Helmholiz equation as given by the equivalent system (3,133} and
(3.134). To obrain solutons for such a domain, it would require the use of the Bessel
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functions of non-integer order. For a selution of the Helmholtz equation in such a dornain,
Sommerfeld {1949, p. 167-168) may be consulted. Our main geal here is just to find an
orthonormal set in such a particular domain and the set in (3.145) has fulfilled the need.

For a sguare integrable functicn in such a domain, the expansion formulae similar
to (3.141) and (3.142) can be used. Since Bessel function is a "straight” function, it is
expected that the separadon between the two meridians in Figure 3.7 is not too large.

By far we have presented various sets of eigenfunctions for various domains of
concern. Each set of functions form a function space with countably infinite number of
dimensions. Each of these spaces fulfills all the requirements for a Hilbert space and, as a
matter of fact, it 15 a Hilbert space. For an extensive discussion on the function space
spanned by the eigenfunctions, see Page (1955, Chapter 3).

133 Frequency Classification of Eisenfunct

Une important issue in developing the orthogonal functions for this study is the
frequency classification, since eventually we will be dealing with discrete data for which a
sampling theorem concerning the data interval needs to be applied. The frequency of an
eigenfunction is vsually measured by the density of node. A node is a collection of points
where the corresponding eigenfunction vanishes. Thus, in a one-dimensiconal case a node
is one single peint; in a two-dimensional case a node is a curve, or more specifically, a
zero-contoyr; in a three-dimensional case a node is a surface. Unlike the nodes of & sine or
cosine functdon which is also an eigenfunction for some particular problem, the nodes of an
eigenfunction we have discussed in this chapuer are usually not evenly distributed on the
interval whene the function is defined. For example, for function sinx at 0 < x < 2x, the
separation between two nodes is precisely x. This is not the case for functions PJ (1} and
Jm{tmpr) that we have studied. See also Figures 3.3 and 3.7.

According to the definition of node, one nade comesponds to a change of sign of an
eigenfunction. Thus the denser the distmibution of nodes is, the faster the eigenfunction
osctllates, or the higher the frequency is. It is also clear that a node is a zero of a function.
For a self-adjoint Snurm-Licuville problem, if we amrange the eigenvalues in
the order of increasing magnitude, i.e.,

ki <ky<... {3.146)

Figure 3.8 A Region Bounded by Two Parallels and Two Meridians
with the corresponding eigenfunctions

VI, V2, o .. (3.147)

we shall show that if ko > kj, then the number of zeros of v2 is greater than that of vy, or
the frequency of vz is higher than that of vy. For simplicity we discuss a one-dimensional
case. With proper changes of notation and use of an arbimrary t as the upper limit for the
integration in {3.1%9}, we have (note: this hoids for any kind of Sturm-Liouville problem,
not only for PY)
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1
{k; - kﬂJ. vivadt = 'P(t}{“']‘f"‘z - V;“Z}it + P(t}("’l\'@ - VEVZHFLG
To

=-pltvivy-vival . p()>0 (3.148)

where tp S 1 £y, tp and 1) being two boundary points, see also Figure 3.9, Assuming that
( 18 the first zero of vy, then (3. 148) becomes (since vi{th = 0);

L
{ka - kl}j vivadt = p(:}v’l(t)vz(t}
" (3.149)
If vi > U in (1g, t), then v () must be negative (since at t, v{ changes from a positive
number to a negative number). Since kp > ky,,v2 must change sign in (15, t) to make

(3.149}) rue; if v < (}, v2 must also change sign for the same reason. Thus a zero is
encountered by va in (ty, t) (note: an open interval, not a closed interval),

(IRTG)

¥

¥
\ t /E/ b-‘-‘t
\\.______...--:;'L-_.ﬂ

Figure 3.9 Zeros of Two Eigenfunctions, kz > kg

Assuming that  is the next zero of v, we now take integration from t to £ in (3,109) 1o
get (since vi{t) =vi{E) =)

g
(ka2 - ki) J vvodt = p(t)(v’l(ﬁ}vz(i) - v (Ova(t)
! (3.150
Using exactly the same argument, we can show that v2 must change sign in (t, &) to make
(3.150} rue, thus a zere is encountered by va in (1, §). In this way, we thus prove that the

number of zeros of v; is greater than that of v| if kz > ky. Further, a theorem by Courant
and Hilben (1953, p. 454} states that:

The n-th eigenfuncron for a Smm-Liouville problem divides the fundamental
domain into precisely n parts by means of its nodes,
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In the above theorem, the eigenvalues must be in the order shown in (3.146). One could
inspect Figores 3.3 and 3.7 to verify this theorem. (Note: if we write the Bessel equahon
as (rlm)” - m2l g/t + kvl = 0, then clearly it is a Sturm-Licuville form).

Courant and Hilbert's theorem {1953) can be applied to the Legendre polynomials
since we have already shown that the Legendre equation can be written in a Sturm-Liouville
form. Specifically, the eigenvalues of Legendre polynomial are k = n{n + 1), with n being
degree. Explicitly, k are

0,2,6,12,... {3150
Thus PBg(ty (the firsi mgenfunctmn} has the same sign over [-1, 1], Pi{t} {the second
eigenfunction) chang&s sign once over [-1, 1], - - . One could venf}' this statement by
looking at Figure 1-8 in Heiskanen and Moritz (196’! p- 24).

We shall interpret the eigenvalue in a different way. We start the discussion with
the two-dimensional Helmholtz equation on a piane over a domain . It can be shown that

the solutions of the Helmholiz equation may be generated through a variational problem
with a constraint {Dettman, 1988) as follows:

iu) =_”u{% . Tuldxdy = J%}z (2:) }m:ly 2 Tindmunm

subject to

JI uZdxdy = 1
o (3.153)

To see this, we employ the calculus of vanation and set

[V
Lix, ¥ W g uy) = (—) +(g) - ku?(x, y)

{3.152)

ax

(3.154)

where k 15 the Lagrange multiplier, and uy = a“/ gx, Uy = a'u/ gy. Then Euler's equation for
this case is (Gelfand and Fomin, 1962):

ﬂ¢¢&+&+ku:ﬂ

oL ) H
Eix ou.) ay duy Ix? oyl (3.155)

qu

Clearly (3.155) states that the eigenvalue k is the Lagrange multiplier. The consiraint
(3.153) implies a normalized eigenfunction. This short account has shown how the
variaticnal problem can be transformed into the Helmheliz equaton. This result can he
immediately extended to a sphere where a coordinate free expression for ¥Vu - Vu needs to
be used and Euler's equation still maintains the same form. It is remarkable that the
gigenvalue k is exactly the required minimum value in (3,152} (see also Morse and
Feshbach, 1933, for a one-dimensional case). This can be shown using integration by
parts in two-dimensions. We have
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I(u}—f a” o2 }dmy
x
2 v
%ua—un Idb+%u@ﬂ‘jd5~ a—u+a—u}jxdy
B B oY . ox?  ody?
% il +—]] -nds - JJ w- kuldxdy
L=

=<¥ ua—uds +kjj u2dxdy = k
B dn o (3.156}

where we have assumed u = {) or du/en = 0 on the boundary B, i and j being unit vectors
along x and y directions, respectvely, and n the outer normal, The relatdonship in {3.155)
is also used in deriving {3.156).

What this vaniational principle t2lis ug is that a solution v is a function which makes
the "sum" of squares of the magnitude of gradient minimum, or v is the "smoothest” one
among all the possible functions. The eigenvalue k is just the sum. For the nex:
eigenfunction, as its eigenvalue increases, the sun I{u) then increases, hence this particular
gigenfuncdon becomes "rougher”. Such an argument can be cammied over to the third
eigenfunction with a larger (than second one) eigenvalue. In this way, we thus show that,
a sequence of eigenfunctions has increasing frequency in the order of increasing
eigenvalue. The interpreiation of frequency in this way is particularly useful for a set of
erthogonal functaens constucted over 2 domain whose boundary cannet be described by 2
simple geometry, since the above result is valid for any kind of continucus boundary.

A Method of Confi Mapping fi n in lex nal Funed
4.1 Transformation B n Tw in Finding th O al Function

In this section, we will try the third method of ¢onstructing orthogonal functions,
The algebra of complex variables will be used here. The notaticn i is reserved for the

imaginary number -1 . Let us start with Riemann's mapping theorem (Dettman, 1965, p.
256%:

Lzt R be a simply connected domain cn the z-plane with at least rwo boundary
points. Then there exists a simple funcdon w = f{z) which maps R ontwo the unic
disk R, Iwl < 1. If we specify that a point 7, in R is mapped into the origin Qin R’
and a given direction at 2, is mapped into a given direction at O, then the mapping
is one-to-one and unique. See also Figure 3.10.

The proof of this theorem can be found in Detman (1965). A simply connected
domain R i3 a domain such that every simple closed curve (such a curve does not intersect
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itself) within it encloses on points of R (Churchill and Brown, 1984). In other words, if C
is a curve in R, then it can be shrunk to a peint in R, ¢f. Figure 3.11. Riemann's mapping
theorem was presented in Riemann's famous dissertation "Foundations for a general theory
of funcuons of a single complex variable" and was proved only for a simply connected
domain. However, 1t 1$ possible to extend this theorem to a case where a domain is
bounded by two closed curves, one ingide the other (Spiegel, 1964}, While Riemann’s
mapping theorem guarantees the existence of such a mapping, it does not provide a
concrete way of constructing a specific mapping,

With Riemann's mapping theorem as backbene, we now present a theorem related
te the construction of complex erthogonal funcdons. Let

w = f{z) = ulx, y) +ivix, y) (3.157)

be an analytic function mapping a domain Bz on the z-plane onto a domain By, on the w-
plane, as shown in Figure 3.12. The Jacobian of the wansformation between B, and By, 15

du du

o laay | o

“T9vaev | oxdy dyox
dx oy

_dudu  dudu _(a_ﬂ

Toxadx  dvay lox

au . du 2
= |f
A‘{ ! (2 )l {3.158)

If I, # 0 for all the points in By, then the inverse funton of £

’2+ a_u)‘l

z = -1{w) = g(w) (3.159)

exists and the mapping w = f(z) is one-to-one (see Churchill and Brown, 1984, pp. 220-
223).

¥
+ ¥

y w = f(z)

ﬁ —_—r—

R 2, R’ 1,9
k %

Figure 3.10 Riemann’s Mapping Theorem
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Figure 3.12 Transformation Between Domains By and By,
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in (3.158) we have used the Cauchy-Riemann equations for the analytical function f(z)
(Churchill and Brown, p. 40):

Ju odv du v
gy gu_ o (3.160)

and it is understood that, since f(z) is analytic {or holomorphic), we can approach z from
any directions on the z-plane when evaluating the derivatve of {, nametly

troy - lim (@480 -1@) _AyDp fz+ 82) - )
420 Az Ay =0 AX

, (3.161)
_ o fz+an)-fm) _du, v _du ou
T Ak =0 lﬂ.}" _Bx ax -ax By

Thus by (3.161} the last identity in {3.158) helds. It can be shown that the inverse
Tacobian Jz is 1{Iy, or (Spiegel, 1964)

ax ax
— ou dv _ 1 _%ﬂ'_ 4 2
1= a_yay "1, kw "’lg{wi
du v {3.162)
Using the Jacobian, the relationship between a smrface element dg; and a surface
clement doy, is
do, = g (wikdc.w (3.163)

With the above development, we now show that (cf. Smimov and Lebedev, 1964, p. 225):

It {¢j(z}) is a complex orthonormal systems in domain By, then the functions

WiW) =4/ 3 9i2)g (w}='\/% Pila(w))g (W) (3.164)

form an orthonormal system it By,

Az and Ay, are the areas of Bz and By, respectively, defined as

AH d” axdy
B. B (3.165)
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As = J.J. det,, = J‘J‘ dudw
Bu Bu {3.160)

The theorem in {3.164) can be proved as follows: Since (; are orthonormal, we have

f

5'|'n'n =L (PH[ZKD:-JZHUz
JB:

r e

= || odetwhoriatwd] gt don

4 R
L Lr /B el [ B it )] ao
Be : :

.
= EL‘I ‘Fn{w)w;l{w}dﬁw
wr)

Buw (3.167)
where
I, n=m
5‘m'n={
0, n#m (3.168)

There are two important related thearems:

= If the system {j(z)} is complete in By, then the system {wj(w)} iz comnplete in
By. The relation of completeness ¢an be found in Section 2.4,
+ For every simply connected domain, there is a complete orthonermal system.

For the proof of the first theorem, see Smirnov and Lebedev (1968, p. 226). The second
theorem is true if we can find a complete onthonormal system in the unit disk. Since, by
Riemann’s mapping theorem, we are able to find a2 mapping function between a simply
connected domain and the unit disk, the orthonormal system in the simply connected
domain is then constructed by means of (3.164). In Table 1.1, we have pointed out that
the polynomials z", n = 1, 2, ..., are orthogonal with respect to the area integral over the
unit _gisk. To see this, we use the polar coordinate r, A (see Figure 3.6) and let z = x + iy
= re!”, then

1 2t
{Zﬂ? Zm} =J f 'Ei'un'm}['errdIdl
0 Ja=0

I=
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’—E—— , n:ml
n+1

o nem |

(3.169)
Therefore, the seres (since the area of the unit disk is T
I'I'1+1 Zn+1 * nzﬂ! ]\"' (3.1?[}]

forms an orthonormal systern in the unit disk |z £ 1.

To consmuct a complex orthenormal system over the oceans, the only thing we
have not done in this approach is the finding of the transformation funcdon between the
oceans and the unit disk, namely the funcdon giw) in {3.164). As stated in Riemann's
mapping theorem, a domain must be simply connected in order to have a transformation
between itself and the unit disk. The extension of Riemann's theorem also has a strict
limitation. Since the real oceans are by ne mieans a simply conmected domain or a domain
bounded by two closed curves, it will be impossible to find a ransformation between the
real oceans and the unit disk. So again we have to idealize the oceans. Bur this time we
have more freedom of “designing” the oceans, at least the oceans need not be resricted to a
sﬁherilcal cap or a region bounded by two parallels and two meridians, We will discuss this |
shortly.

Having found a complete and countable orthonormal system {yj(w)}} in domain
By, we can expand an arbitrary function { € L2{By) into yi(w), as in the case of real
orthenormal function expansion. For the practical case in this study, & will be a real-valued
function {{u, v), which can still be expanded into a complex orthonormal series. The
expansion has the form

o

Yfu, vi= 2 cyiw)
i=1 (3.171)

and the coefficients ¢j are found by

¢y = i; Ij Eu, vWI(w}dUw
- (3.172)

342 Schwarz-Chrstoffe! Transformatien Between the Oceans and the Unit Disk

We now tum to the realization of the mapping between the oceans and the unit disk.
For this purpose, we first introduce the Schwarz-Chnistoffel mansformation which maps
the interior of a polygon onto the half plane Im{z} = 8, where Im(z} indicates the imaginary
part of z. Then, by finding another ransformation which maps the half plane Im{z) 2 0
onto the unit disk, we will complete our task. The S-C transformation is defined by (see
Churchill and Brown, 1984, Dettman, 1965):
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w=Ffiz)= Af {5- x1Y%(s - %% . (s - x ) %=ds + B
o {(3.173)

where

1 . L. .
kj : ~{®- Gyl O is the interior angle at vertex Wi {given)
It

Xj : point j on the x-axis, corresponding to the image of w; of the polygon
funknown)

» A rotation and scale factor of the pelygon {unknown)

: Translation factor {unknown)

m

Note that the given polygon is on the w-plane and its image is on the z-plane. Writien

down in the form (3.173), the $-C transformadon is from the real axis (z-plane) to the

polygon {w-plane}, not in a direct form we desire (from the polygon to the real axis).

However, if we can find the inverse of the S-C transformation (the existence will be shown

La[;:r}, our goal can still be achieved. The validity of 8-C transformation can be shown
elow.

Differentiating (3.173) with respect to z, we have

f(z) = %E; = Az - x5z - o (2 xpfe (3.174)

Thus

arglf'(2)) = arg(A) - Xparg(z - x1) - - - - kndrg(z - x0) (3.175)

where arg(zy) 15 the angle berween the x-axis and the vector from the erigin to a point z,,
being positive if counter clockwise, From (3.174) to {3.175) we have used the basic
properties of complex functions which can be easily found in a textbook of complex
variable. From (3.175) and Figure 3.13, we can see the following results if z is on the real
axis:

(1) z < x; = arglf(2)) = arg(A) - {ky + k- + kan \

(2) x; {z-::x;::arg{f"{z}]zargm}—{kg+--- + ko1t
i ’ {(3.170)

(N) Xp.| €Z< Xy = arg{f"{z}]z arg(A) - kont

Thus, when a point z moves from the interval {xj.1, xj) to the next interval (xj, xj31), the
argument of £'(z) changes by an angle of kjr, which is the exterior angle of the pﬂiygﬂn at
vertex wj (see Figure 3.13). While z remains on any of the intervals (X Xjs1), arglf(2)) is
some constant. If a point w on the boundary of the polygon ravels in the counterclock wise
direction, the interior of the polygon is on the left hand side of the boundary.
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Eq. {3.175) and {3.176) describe how the angle of a point on a curve on the z-plang
will be changed on the w-plane by the conformal mapping w = f(2) (see aiso Churchill and
Brown, 1984, p. 217).  The way the angles change as described i {3.176) can
only be possible for a line on the z-plane and a polygon on the w-plane. Since we
request thatthe line be on the x-aas, the mansformation in (3.173) holds. There
are many 1ssues to be clarified. We will address them when we discuss the next

IHappEng.

v Y . d
+ [ 1 -
- 5-C SR S 1
F_ — P ep— § o+ 1
Wl ﬂ'l— e zu il ———
T ——/ s.
e
== [ i
o= o —
.y N e . s >
I X1 X2 Xn-l Xp %g

w-plane z-plane

Figure 3.13 Mapping the Unit Disk Onto a Polygon

The author does not intend to repeat the already good documentation about the 5-C
transformation which can be found in textbooks such as Churchill and Brown (1984),
Dettmann (1965), Spiegel (1964), and Bieberbach {1953). [nstead, the author would like

to apply such a transformation 1o the consouction of orthonormal functions and poini out
some possible problems when using them.

The next mapping 10 be used is the one that ransforms the unit disk I£] < 1 o the
half plane Tm(z} 2 0, where £ = a + i), see also Figure 3.13,  The inverse of this mapping
can be found in Churchill and Brown (1984), namely, § = ]J:i- Thus the desired mapping

15

i-if

C+1 (3.177)
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Then
2i

=gy = ——— 3.17
2" =g’ 1) (3.178)

From (3.173), the mapping from the unit disk to the interior of a polygon is

w = f(z) = f(g(T)) {3.17%
Thus

dw _df dz

L dzary

{t+1f

= Afz - xl]'kll[z - xz}']ﬂ v {z - xnyke . [,_;..EJ_]

j=1

AT A

=,uap1¢fh{1+§F“'[£é[l+QF}'[§E[§'%TM]‘[1E§F

(3. 180
Since the sum of the exterior angles of a polygon is 2, and kjr + ot} = &, we have
Ih T Tl
211:22{:{-%}:11:2@1:2 kj=12
=1 j=1 =1 {(3.181)

Substituting (3.181) into {3.180) and grouping all the constants into one single constant,
we get

=Rl - L - G - - g
= Yat/za) (3.182)
with ]
A= %Lﬂ (1+ {u}k*
i=1
Thus the desired ransformation from the ynit gisk 1o the interior of 4 given polygon is:
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1: n
w=h{t}=ﬁf IT{n-gYan+B
o 17 (3.183)

Eg. (3.183) has exactly the same form as (3.173). Important issues related to the
transformation in (3.183) and to the problem of finding orthonormal functions in the
interior of a polvgon are:

{1} The oansformation 1s one-to-one between points inside and on the polygon and points
inside and on the unit circle, except at the singular points ;. To see the one-to-one
correspondence, we recall the Cauchy integral formula

dEm) = 51_ "q'{g_}di
Y E-&
B (31,184}

where o(E) is an analytucal function defined in the domain enclosed by the boundary curve
B and £, is an arbitrary point inside B. Letting ¢{£) = 1 everywhere, we have

B (3.185)

Furthermore, according to Churchill and Brown (1984, p. 169), if N is the number of
zeros of function (L) inside B, then

1 I’(i)d _
1. =lar=N
2m
B I{E;J {(3.186)

Now we let P be the given polygon, C be the boundary of the unit disk, w,, be a point
interior to P and the image of a point b in the unit disk. Furthermore, in (3.185) we let§ =
ht), &o = wo = h(b), we have

Lo 4o g ] osleke

2rt } =2 -
PEJ Fso Ch{[:') Weo

. [h((:] ) wﬂ] ’df;

) 27i h(t..) - Wo
C {3.187)
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Thus, according to (3.186), the function (h{{} - w,) has only one zero inside C, namely,
h{b} = wg5. From this derivation we verify the one-to-one correspondence in {3.183). A
similar proof can be found in (Spiegel, 1964, p. 223}

{2) The function hif) in (3.183} can hardly be an elementary function. The inverse
function of h(f}, ie.,

£ =hi{w)=glw {3.188)

that is needed in (3.164) is even more difficult to find, However, the function g (w) =
dl/dw does have a simple form, as given in (3.182). The polygons that will vield
elementary funcidons h(£} can be found in Churchill and Brown (1984, but normally they
are triangles or "degenerate” polygons (open polygons). If there is no island in the open
oceans and some regularization process is made, then “the oceans” may be a polygon with
an extremely large number of vertices. To find the explicit form of h(() for such a
polygon, we need to first do some series expansicn inside the integral in (3,183}, then
perform the inverse series expansion e get g(w) after the integration is done. Therefore,
the function g(w) will only be approximately obtained.

(3) The polygon is given, thus we know the exterior angles, or the k; values, However,
the constants |Al, arg(A), B and all the points {; on C need to be determined. The solution
of these unknowns can be found by setting up n equations using {3.183) and employing -
the conditions w; = h(£;). Recalling that A has the responsibility of scaling and rotating the
Ealygcm and B i3 used 1o transfer the polygon, these constants (three in total, since we split

into 1Al and arg(A)) must be determined after E;j are decided. Since we only have n
equations, three of {j can be chosen arbitrarily,” An alternative explanation on the
determination of constants can be found in Dettman (1965).

{4) Finally, we have to settle the problem of working on the surface of a sphere. Since the
previous section, we have used the variables u, v for the w-plane on which the polygon of
the oceans is supposed to be defined. The vertices of the polygon of the oceans ate
normally given in the 8, A coordinates. In order 1o have a surface integral over the oceans,
it 18 necessary to use

n=A
{3.190)
v=t=cosf

as the two real variables on the w-plane.

2.5 Some Comments on the Proposed Methods

In this chapter, three methods of constructing a set of orthonormal functions over a
given domain have been presented. They are the Gram-Schmidt orthonormalizing process,
the method of eigenvalue-eigenfunction and the method of conformal mapping. The first
method is purely "mechanical”, requiring only a set of independent functions pre-defined
over the given domain. There is essentially no restriction on the shape of the domain, thus
the consauction of orthononmnal functions i1s possible even for a domain such as the oceans
which has an extremnely irregular boundary. Two detailed algonithms have been worked
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out for this method. What is left is just the calculation of the scalar inner products of the
predefined functions over the oceans. Such a calculation can always be carried out using a
numerical method.

The second method theoretically can lead to an orthonormal (DN) system over the
oceans, as long as we can solve the sphencal Helmholiz equation A*Y + kY =0 or the
Swrm-Licuville-type of eigenvalue problem analytically. Unfortunately, the ON systems
by this approach are found only for twe kinds of domains on the sphere: a spherical cap
and a region bounded by rwo parallels and two meridians. [t should be emphasized that only
the analytical solution will lead to an ON system, since for any kind of domain, a numerical
method for the solution of the Helmholtz equation is always possible, yielding some
approximation for the Y functon. The numernical method can be characterized as the finite
element method in which certain “shape functions™ are chosen to approximate Y according
to the partitioning of the original demain. A useful wextbook dealing with this subject is,
for example, Zienkiewicz and Morgan (1983).

The third method involves the wansfommanon between the given domain and some
other "regularized” domain where an ON syster has already existed. The crucial part is the
transformation function which must be also analydcal. We have introduced the Schwarz-
Christoffel transformation which maps an ocean-like polygon onto the unit disk.
Howaever, due to its non-elementary form, the §-C transformanon will only ¢reate an ON
sysiern over the oceans theorgtically. Unlike the nomerical solution for the Helmholtz
eguation, this time the approximation is needed for the sansfommaton funcdon. Since the
ransformation of domains is a necessary step, the use of an approximated ransformartion
function will create only an "approximated” ON system, namely a system which cannot be
exactly orthonommnal between any pair of the members. A number of other applications of
conformal mapping in physical problems, such as fluid flow and heat conduction, can be
found in Churchill and Brown (1984).

During the discussion of the second method, some ON systems have already been
presented analytically. 1t is also possibie to get the anaiytical forms of some ON systems
using the third method, provided that the domains are such that the $-C ransformaticn has
an elementary form. Therefore, the second and the third methods can provide complete ON
systems for some "regularized” domains where speciral analyses based on these systems
can be made. For example, one could expand the sea surface topography in the Antarctic
area into the spherical cap harmenic series. On the other hand, the first rmethod, i.e., the
Ciram-Schmidt process is very flexible in construeting the ON functions, therefore it will be
chasen for the numerical experiments concerning the expansion of the Levitus sea surface
topography and the simultanecus geoid-SST solution in satellite altimetry.

The requirement of completeness of the ON systems in the sense of {2.20) is also
very important in all the discussions made in this Chapter. The completeness will ensure
the series expansions of functions in terms of these ON systems to be convergent in the
Mean.
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4 Funcrions Ord ; Enrire Spf

In this chapter, functions that are orthogenal on an (entire) sphere are siudied. The
relationship between the sutface spherical harmonics and a 2-D Fourier functions is also
addressed. Two global alternative orthenormal sets of basis functions are suggested
separately in the two sections that follow. If one does not quite care whether the funcdons
used are orthogonal with respect to integration over the oceans, these two orthogonal
systems {on an entire sphere) are highly recommended, due to their simplicity and their
thecredcal justification.

4.1 Spherical H . { 2.D Fourier Ser

This subject has been pursued by Colombo (1981), but it is felt that some important
points have not been made clear. Thus the reladonship between spherical harmonics and 2-
D Fourier series will be discussed here. The associated Legendre function of integer
degree and order can be writien in an explicit formn as (Heiskanen and Moritz, 1967, p. 243

Palt) = 24{1 ) ;ﬁ)'“fi% {I}k k!{n -f]?{r_] ?1:1}: 2K o-m2
k= : - :

={sin8}" zr: aym {cosof ™%
k=0

(4.1)

where T:[Lm]* t=cos B, and &y js a simplified notavon for the coefficients of the
power series in t. The square bracket [-] in the upper limit of a summation stands for "the
integer part” and it will be used throughout this report. Using Euler’s formula
&e® = cos 8 + isin 8, we have:

(cose™ = {ele e .e)‘“ =2 ’“z (Me-Em-25 = - mz Tleos (m - 2s)0
s={] 4.7
Similarly, @2

[sin6)" = (e - eiof sz{lrﬂﬂHms[{ - 25)p + 10T

Jmym pr 2

(-1)22- '“E (-1#7%} cos {m - 25)0, m even

(-1f™ ‘sz mz (17T sin (m - 25)8, m odd
(4.3}

In developing (4.2) and (4.3), the conjugate parts vanish due to the fact that {T} =8 ) and
the sine functicn is an odd function, Note that the terms of the summations in {(4.2) and
(4.3} can be reduced to half their original ones if one wishes to ger a compact form. The
forms of {4.2) and (4.3) have the advantage of clear expression in the sine or cosine
functions. Furthermore,
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sinams[ﬁ:é—sin(u+ﬁ}+%—sin(u—ﬁ} .4y
cos ccos B =L cos (e +B) + 1 cos (- B)
2 2 (4.5)

Therefore, PR(t) can be expressed in the following forms:

(1) Whenm is even

n-m-zk

P;[‘[cos Ei] = {sinE}mz agp™ Z b} cos{n-m-2k-2jQ0
k=0 =0

-1y ¥

_Z D’;’:j‘[ms{n - 2m- 2k + 25 - 2j 0
k=0 =0
[pf)
+cos(n- 2k - 25-2j)ﬂ}= ¥ Tg™cos{n-2q¥
g=0 {4.6)

{2) When m is odd

r 2k

Pricos 0)=1 3 3

k=0 5=0 j=0

n-m
> E:;';[sin (n-2m -2k + 25 - 2)P

(n]
+sin{n~2k-ls-2j}a]= Z S3™ sin(n - 290
q=0 (4.7

In developing (4.6) and (4.7), the coefficients a, b, D, T, E and § are not explicitly
given since the goal of the derivations is mainly to get the final form of the associated
Legendre function in terms of the classical Fourier functions. The final idennties in (4.6)
and (4.7) are made by finding the upper bounds and lower bounds of £ =n - 2{k +5 +))
and £2=n-2m+25- 2k +j). Apparently we get a maximum £y =nwhen k=s=j=0
and a minimum £ =0 when s = m and (k + j) =ﬁ—2m'f we get 2 maximum £2 = n when s
=m, k=]=0and a minimum £3 = -n when s = 0 and (k + j) = n_zm Nota that the
maximum possible value of (k + ) ist = L)y negative £2 value 15 encountered, we
may change the sign of the coefficient of the sine function to get a positive £3. Thus
P ?FCDS 8) is a sum of the cosine functions or the sine functions, depending on whether m
is even or odd. Such a result was stated in Ricardi and Burrows (1972}, but no proof was
given. A real function {, defined on the sphere (at least it must be square integrable) can be
expanded into spherical harmonics as:
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i (anﬂﬂﬁ mA + bp,sin ml}?ﬁ{cus B]

= i aneimlP‘ﬂms EI)
goU me=-n (4.8}

with

an:'zl'(amn'ihmﬂs Fn,-m: ;Lm:%(amn‘l'ibmn} (49}
where Nmax is the maximum degree of expansion, possibly infinite. In (4.8), the complex
form is used in order to simplify the notatiens. Using Euler’s formula and the results in
{4.6) and (4.7), we may write (4.8} as:

T
[fl Tam giln-2q)0 -E gl 29 , M even
Mmax n =
o) 2 2 Fameihy .
n=0 m=-n 22 gnm giln-2a8 . g-in-20)0 m odd
2, S 2i '

MNmax Mmax

= Y Z o eit® + w2

n=-Nmax m=-Nmax

Mmax Nmax

=Y Y (coameos nBcos mh + Bunsin nfcos mh
n=1 m=0

+ YamC0s NOsIiN MA + Eqmsin nsin mil.} (4.10)

where Cp;, are complex coefficients, ¢tym, Bam: Yam and €, are real coefficients. The
relatonships between the complex coefficients and the real coefficients are:
Cp,m = 14 [ - Enan - i (B + Yol
Cn,-m = 1/4 [0ym + Enm - [ﬂn.m - Tnm)]
Con,-m = ¥4 [0y - £ +i{ﬁ,,m +*fm}]l

Cliym = 14 O + Enm + i {Brm - Yo (4.11)

where 0 £ n £ Nmax, 0 € m < Nmax. Therefore

Com = C:ﬂ.*lﬂ! Cnoem = Cnm {4.12)



In the above development, we have shown that a spherical harmonic expansion is
equivalent 1o a 2-D wigonometric series. 'We must emphasize that the form in (4.10) is
merely a 2-D trigonometric series, not a classical 2-D Fourier series, We will explain this
below.

First of all, let us introduce the concept of surface integral, since almost all the
geodetic practices are carried out on the surface of the Earth. The precise definition of
surface integral may be found in Widder (1989, p. 232). Or, we may define that

J. I Bix, v, z)d5
g

15 the surface integral of P(x, v, Z) over the surface S. In the formulations of physical
problem, the surface integral 15 a very important concept. For example, if we are given a

surface S with a coating of density & = dM/dS, then the surface integrals

L
MJ.L (%, v, Z)6(8)dS

give the center of mass of the surface mass M with respect te the x, y, z coordinate system, -
where M is evaluated by

M= If a{5)d5
b

Similarly, the evaluadons of the coefficients for a 2-D Fourier series expansion of a
periodic signal and the 2-D Fourier transform of a non-periodic signal are two examples of
surface integral in which the surface is a plane. However, for the spherical coordinates (r,

8, A), the integral

[ I K0, )00
(4.13)

is not a surface integral with respect 1o the kernel K(8, A) and has no physical meaning.
Therefore, one should not state that the series in {(4.10) is a 2-D Fourler series expansion.
It merely happens to consist of the sine and cesine functions. Secondly, even if we reat 8
and A as planar coordinates, the functions ei(P+m4) are not orthogonal over 0 €8 < x, ) <
AL2n ({,he domain of a sphere). A 2-D Fourier series over that domain will be based on
gil2#+md}  The classical definition of a 2-D Fourer system would require the
orthogonality relationship over the given domain, thus we again verify that the form in
{4.10% is not a Fourier series. This important point is not made clear in Colombo’s
reatment (ibid).

According to the above discussion, we conclude that a spherical harmonic
expansion can be transformed to a 2-D trigonometric series, but the corresponding 2-D
trigonometric functions could not form an orthogonal basis over the entire sphere {but they
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can be onhonormalized on a sphere). Funthermore, an orthogonal series such as the
spherical harmonic series may be called a generalized Fourier series. We then ask ourself
what the 2-D Fourier series over the entire sphere will be if it exists. From surface theory
(Lipschutz, 1969, p. 174}, it is clear that

K(t, Lydedh = ” K(8, A)sindod\., t = cosd
(4.14)

ig a surface integral with respect to the kernel K(B, L) on the sphere, Based on such a
concept, we now propose a 2-D Fourier system on the sphere defined as:

Xonl® A =eilomemi) nom=... 2, -1,0,1,2,--,-1£1£1,05 X 2% (4.15)

The systemn in (4.15) is orthononmal on the sphere since

1 n
[an” qu = ﬁ‘[ f ei{nm+ml] ) e-i[pm-p-qj.,}dtdl _ E'npﬁmq
=-1 4Ai=0 (4.16)

Let us interpret the meaning of the system {X;,(8, A}). Written in products of
sine and cosine funcdons, the system [ X, (8, A)] is equivalent 1o

€05 NTL COS A, SIN DAL COS MA, COS NINL it MA, 51N N7t sin mA {(4.17}

The discussion is mainly related to the colatitude dependent functon sin nat and cos nat,
since the longitude-dependent functions cos mi and sin ma have been treated in the case of
spherical harmonic expansion and no special attention needs to be paid to them. Recalling
the series expansion form of wrigonometric functions, we have

(ame)Rk+!

sinnt = sin{nAcost) = E (- l}k 2k+1)

(4.18)

cos Nt = cos{nrcos8} = ga': IF(?;;};

Or, using the Bessel coefficients, we have (Tranter, p. 12, 1968)
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sinnmt = sin(nftcosd) = 22 (-1 (nmicos(2k + 130
k=0
(4.19)

=}

cosnft = cos(nncose) = I,(nx) + 22 (-1 (nmicos 2k
k=l

where Jk(nm) is the Bessel function of integer order defined in (C.7). Thus the functicns
sin nat and cos nmt are two polynomials of infinite degree in ¢ = cos8 {obviously (4.19)
can be transformed o polynomials of 1). It is possible to have an orthogonal system
formed by polynomials of infinite degree. One example is the Bessel function {see (C.7) in
Appendix C), another one is the Legendre function of non-integer degree (see (3.89)).
Therefore, one should not have t0o much difficulty accepting the erthogonal systemn formed
by sin nmt and cos amt. Now the theoretical questions are: What is the differential equation
associated with sinnntr and cosnmt? Does the series converge? It is easy to answer these
two questons if we treat the funcdons sin oAt and ¢os At just as the regular smf: and
cosine functions. The differential equation associated with them is h"(t) + (ne)h{t) =
which describes a special type of eigenvalue-eigenfunction problem, Since the
gigenfunctions form a complete system (or in this case a separable Hilbert space),
convergence in the mean is guaranteed.

Next we have 10 settle the sampling problem for the expansion using the system
{X (0, AY). Leta function f{8, &) be expanded into X, {0, A) as

f(cos BAY =f(1A) = D, 3, Apgeilmwiemd)
e <o meo (4.20)

then the coefficients A,y are found by

. 1 I
Am=$f L {8 A Jo-drmemi)rdn

=1 Jt=0 (4.21)

If the data are sampled at intervals At = 24y and Ak = 2R/, then the coefficients A, are
found by

M-1

z P'i“ £, po-2rilnk et )

é\“

(4.22}

Thus App, can be calculated by a regular two-dimensional FFT routine. The highest n and
m, or the Nyquist frequencies in co-latitude and longitude, will be N/Z and M/2,
respectively. The expansion in the form in (4.22) is not without problem. First of all, in
the standard sampling process on the sphere such as that in Rapp {1980), the constant
interval along latitadinal direction is measured in 8, not t, namely A6 is a constant. Such a
sampling process has the advantage of easily dividing the sphere into sub-domains
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bounded by constantly increasing parallels and meridians. A conastant interval At will imply
that

At = -5in 9AB = cos dpAD (4.23)

where & is the geocentric latitude. Thus the value A must be adjusted according to the
latitude ¢ to get the constant value At. This will create problerns when using the existing
data bases which are constructed basically using the sampling strategy in Rapp {1986).

The second problem is related to the frequency interpretanon. The use of a constant
A0 in data sampling yields a meaningful interpretation of frequency for a signal on the
sphere. As a signal wavels on the sphere in the north-south direction, the cycles per unit
distance are equivalent to the cycles per unit angle subtended at the center of the sphere,
Thus a constant AR in a spherical case is analegous to a constant distance in a planar case.
On the other hand, the use of t cannot justify 2 good frequency interpretation, at least
gauénau'ica]]}', It can only be regarded as a ransformed coordinate by the mapping t =
cosf.

One way 1o overcome the sampling problem is w0 sacrifice the convenient FFT form

in (4.22) and use the ¢lassical sampling form in a spherical harmonic expansion, namely,
we could write a discrete form of (4.215 as

R > J j o2 e drmemikttn

4% 2o =0 (4.24)

where

[cask&ﬂ costk + DAB ,n=10
ll_ p-infcoskAl | p- um::ns(lcﬂ}.-lﬂ) n=o
ni

(4.25)

1(cm?~ 1)

I.ﬂl ;‘th-lg y M= 0
s

, m#0)

The expansion method in (4.24) is completely analogous to Rapp's method for the global
%eupc-tﬂntlal solution using mean gravity anomalies (Rapi 1986, p. 368). The quantity

1s the mean value of f in an equiangular block AB x AA. In such a sampling strategy,
the sphere is divided mte N x 2N eguiangular blocks in latitudinal and lengitudinal
directions. The indices k, # show the locations of the blocks and the sampled values f.
However, as pointed out by Bath (1974, p.112), "it is only in the case of the Fourier series
and Fourier ransform and the spherical harmenic analysis that we are justified in talking
about frequency and spectra in the usual sense of these terms”, thus the problem of
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frequency interpretation for the system {X,,{6,A)] remains regardless of the sampling
strategies used. Needless to say, the orthogonal systems we have discussed in Chapter 3
all suffer the same problem in interpreting the frequencies.

However, in the approximation theory, a more important issue is the convergence
of the series expansion in the mean, not too much attention is paid to frequency. For some
signals, the Foutier expansion or the surface spherical harmenic expansion cannaot
guarantee the fastest convergence, examples can be found in Bath (1974), To compramise
the requirements of frequency interpretation and convergence, one could use a different
measure for frequency, for example, the "density of nodes” or eigenvalue such as in the
Sturm-Liouville problem is one way to measure the frequency (see Section 3.3.3). Having
such a "generalized" frequency, we now can enjoy a good frequency interpretarion and a
possibly faster convergence using an orthogonal series other than the classical Founer
series. Further, in the study of membrane vibrations in physics, the eigenvalues of the
Helmholtz equation are associated with the "eigenfrequencies”. Physicists adopt the idea
that the higher the frequency, the finer the subdivision of the membrane into regions of
alternating signs (Sommerfield, 1949), The interpretation of frequency in this way indeed
makes sense to us, since by such a interpretation we will know the degree of oscillations of
the orthogonal functions just as we know the number of cycles of the Fourier functions in
some unit distance {or dme).

We have essentially answered this question by introducing the system { X,,(0,A}}
on a sphere in the previous section. Therefore, the surface spherical harmonics are not the
unigue set of orthogonal functions on a sphere. We shall meat this problem in a more
systermatic way. We must first recognize that basically, we are dealing with a set of two-
dimensienal orthogonal functions. The najural choice of the two variables is the spherical
coordinates 8, A. Since the boundary of the domain formed by 0 £9<mand 0 <A < 2n
is rectangular, one can follow the usual techaique of searching a 2-D orthogonal function
and separate the desired orthogonal functions inte a B-dependent orthogenal function and a
A-dependent orthegonal funiction, Further, due to the consideration of the integral on the
sphere, it 15 natural to transform the 6-dependent function te the t-dependent function,
whare t = cos8. In order to maintain the periodicity on the sphere, at least one function
must be periodic. In accordance with the yse of the spherical hammonics, the A-dependent
functions can be chosen to be cosma and sinmh, where m must be integer, either negative
or positive. So what is left is the t-dependent function. Now we may also simpiify the
question to: Can we find any t-deperdent orthogonal functions other than the associated
Legendre funcion PIY1) in the interval -1 £1< 17

In searching the t-dependent orthogonal functions over -1 St £ 1, one also has o
keep in mind that they must form a complete set (with respect to the wopology in 2 separable
Hilber: space), a requirermnent stated in (2.20), If the completeness in the t-dependent
functiens is ensured, then the products of the -dependent functions and the functions
cosmA, sinmi form a complete set in -1 S1<1 and 0 € & € 2r, since the functions
cosma, sinmA have already formed a complete set over 0 €3 < 2x. This follows the
principle stated in Kaplan (1981, p. 177). Checking whether a set is complete is equivalent
10 checking whether a set is closed. A set of orthonormal functions [y;) is said to be
¢losed if no normalized function is orthogonal to every function in the set. In other words,
for a set {y;}, if we can find at least one function £ # 0 such that
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(f.yj=0 forallj (4.26)

then the set [‘qi:j} is not closed; if no such furction exists, it is closed or complete. The
completeness is a necessary property for a separable Hilberi space. If we have an
incomplete set such as

{y} = {1, sinx, cosx, cos2x, sin3x, ...}, -k €x<n

then the series sxpansion into Y will never converge for a function f = sin2x, since the
expansion coefficients (f, ;) wilI] be always zero and the expansion willbe f=04+0 + -+ .

Another thing we must remember is that our orthogonal functions, either in a one-
dimensional form or in a two-dimensional form, bave no obligation to fulfill any
differential equations ner must they be solutions in the potential theory or the quantum
theory {such as Schrodinger's equation). This somewhat gives us more flexibility in
finding the orthogona! functions. With these understandings in mind, we can discuss the
tools of finding the t-dependent orthogonal functions and answer cur question through the
following discussion.

(1) Find orthogonal functions from orthogonal polynomials and their weight function. We
recall that the scalar inner product with respect to a weight function 1s

{Pe(1) , Prft)) = j Po{tOPo{thwdtidt) , w{)2 0 (4.27)

-1

where w(t) is a weight function, which could be infinite at the endpoints t = 1. Pa(1) and
Pm(t) in this case are polynomials of degree n and m, respectively. If the weight function
w(t) is equal to 1, then the orthogenal functions for which we are locking become
orthogonal polynomials; if it is not equal to 1, then the desired orthogenal funciions are

£(1) =~/ w(t) Pi(1) (4.28)
Since
1
(falt) | £m{t)) = f (Yot} Polt)) (Y1) Pf0)) dt (4.29)
.1

Thus f(1} is no more a polyncmial if ¥w(t) is not a polynomial. From this discussion,
we thus know that it is very important to specify the weight function when we are talking
about a polynomiai. For example, for the Legendre pﬂ%ync-mials, wity = 1; for the
Tschebyscheff polynomials of the first kind, w(t) = (1 - t€)-1/2; for the Tschebyscheff
polynormial of the second kind, w(t) = (1 - 2)1/2, If we require that all the inner products
possess wit) = 1, then only the Legendre polynomial is really a polynomial. 1t appears that
all the polynomials (with respect to their weights) we have mentioned can be formed by the
Gram-Schmidt process {Davis, 1975, p. 246} using the sequence 1, t, t2, -~ and one
weight function corresponds to one type of polynomial, The orthogenal functions are
cbtained by just multiplying the square of the weight and the polynomials.
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Even the associated Legendre function PIYt) = (1- tz}m‘&dmpn/d[m falls into this
category. Now the weight function is (1 - (2)® and the polynomial is &Py, and
amazing enough, the Gram-Schmidt process in this case indeed leads o a polynomial
which is just the derivative of the Legendre polynomial, up to a constant factor (see Davis,
1975, p. 246, or Morse and Feshbach, 1953, p. 782). In fact, the {associated) Legendre
function and Tschebyscheff polynomials belong separately to two families of the Jacobi
polynomials defined by Davis (1975, p. 246)

pes) = EL (g8 L (et

{4.30)
with the weight functicn
w(n) = (1-)%( 1+ 4.31)
where ¢ and [ are the parameters that define a family. For the {associated) Legendre
function, & = B = m; for the Tschebyscheff polynomial of the first kind, o0 = B =-1/2; for

the Tschebyscheff polynomial of the second kind, & = [ = 1/2.

We are now in a position to propose an orthonormal system on the sphere based on
the Tschebyscheff polynomials and the functions cosmb, sinmA. The explicit form of the
Tschebyscheff polynomial of the {irst kind is {Beyer, 1987) '

& - 1)

Tqft)= % Eé (-1) [;:{;HTH!{M&J' = ¢cos (ncos1t) {4.32)

T, {cos8) = cosnd {433

and the Teschebyscheff polynorial of the second kind is {ibid.)

[nfa] :
_ A3 g
Unlt) E (1 gl W
or
Udfcos a}:w,u_l(ms 9)=0
sin @ 4.35)

Now, the following Fourier base functions are orthogonal with respect to integraton over (
<9<m

{cos2nB, sin2nB}, n=10,1.2,.. {4.36)

Further,
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T2 t) =cos 206 (4.37)
Uss-{t) = sin 2n0/sin O (4.38)

Recalling the weight fumctions for Tty and Uy, (t) and using the orthogonal system in
(4.36), we get the following complete orthegonal system with respect to wity = 1 over -1 =
t=1;

Tof0) ={1- tﬂ}'m Ta{t) = €08 2n0/Ygin o (4.39)
T =(1 - 3 Uyparit) = sin 200/ g (4.40)

The functions Ty t) and U,(t} are plotted in Figure 4.1. Further, the normalizing factors
are

L =
]
—

ﬁ%{t}dt =, n>0
g1

{2 z 0
2 _jirms=
) cosimAdA 1m0 (4.41)
[2T

sin2midh =7, m >0

i

Combining Tat) , Ugt) with cosmh, sinm and taking into account the normalizing
factors, we finally obiain a complete orthonormal systemon asphere -1 2121, 024 <25
as follows:

Sim = UnmTaeos mA, S2n = OpmUncos ma

83 = Sy Insin mA, S35 = CymUpsin ma, (4.42)
where
VZAR. ifn=m=0
Onm = zfﬁ. iftn>0,m=0orn=0,m=>0Q
\ 22y, itn>0,m>0 (4.43)

The system { S 9.2} } is orthonormal on a sphere in the sense
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b in
{Sﬁm, stl = ﬁf J Sﬁmessin BdedA = 'Sktanrﬁrns
0

p= (4.44)

A square integrable function f(8,A) defined on a sphere can be expanded into 8 as:

.1} = i i i ar_s¥ {6.1)

n=0 {4.45)
and the coefficients are found by
= (1,8T) (4.46)

where the inner produoct is defined as in (4.44). The series in (4.45) is designated as 2-D
Fourier-Tschebyscheff series.

Using the results in {4.39), (4.4} and (4.43), we can rewrite (4.46} in the
following explicit form:

cos 2n8 cos mi

El%m n iR l \
lﬂ%m _ E,mj j 1{3‘1) sin 200 cos mA ! ¥gin g dadi
0 Ja

lﬂ%m 4n cos 2né sin mh
afim sin 2n@ sin mh (4.47)

The simple form in (4,47) is due to the use of t = cosf_in the Tschebyscheff
polynomials. It is also necessary to peint out that the function Tt} has two singular
points t = %1, but the expansion in (4.45) is still valid and will be convergent (in the mean
but not uniformiy) due 1o the fact that To(t) is square integrable over -1 €15 1 (see
Sansone, 1959, Chapter 1),

By the use of orthegonal polynomials and their weights, we have successfully
constructed an orthonormal systemn on a sphere. Now we turn to the second ool of finding
orthogonal functions over -1 €1 < 1.

(2) Find orthogonal functions by solving the self-adjoint Sturm-Liouville problem. We
recall the one-dimensional Sturm-Liouville problem from Chapter 3:

%(p{t)ﬂ- uft) - qftha{t) + kwfthu() = 0 (4.48)

where u(t) is the desired function, p(t) and qit) are two given functions of t, wit) is the

weight function and k is the eigenvaloe. If ui(t) and uy{t), together with kj and ks, are two
functions satisfying (4.48), then
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1

1
(ki - kz}J. wi{thoa{thw{tkit = Ph{ulu;_ - Ifluz} 1

21 {4.40)

as demonstrated in Chapter 3. Suppose k; and k, are two distinct values, then we can
show that uy(t) and u,(t) are mutually orthogonal i% the right side of (4.49) vanishes. We
have done this in finding the spherical cap harmonics in Section 3.3.2.1. We shall apply
the same technigue over -1 £t £ 1 and peint out more theeretical problems.

Apparently, in the following two cases, the right side of {4.49) vanishes:
fa) ufk, tJ such that oudk, 1) + Pu'tk, ) =0art =1,

o and [ not simultanteously zero, p(t} # Qover -1 <t < 1.
{b) piti=0art=x1,

In the first case, we essentially are specifying the boundary conditions. The
function ufk, t} 1s so written that its association with the eigenvalue is clear, One choice of
functions pit), q(t) and w(t) then corresponds to one family of orthogenal functions. For
the soluden udk, ), the most general technigue is the miethod of series soludon in which the
funcuon ulk. 1) is assumed to take the form (Dettman, 1988, p. 196)

ulk,t) =Y a
j=0 (4.50)

Then the series form is substituted into the differential equation to find the coefficients. We
may sometimes obtain a finite series, depending on functions pft), q{t), w(i) and the
gigenvalue. Since we imposs the condition that p{t) # 0 over-1 =t < 1, all the points over
-1 <t =1 are regular points and rwo independent solutions for u{k, 1} can be obtained
{Kaplan, 1981, p. 694}, For a conivenient discussion, we assume the boundary condinon
15 u(k, +1) = 0. Without loss of generality, the solution udk, t) may be a linear combination
of the two independent solutons vy(k, t}, valk, £ in the form

ulk, 1) = vk, t) + bvalk, t) {4.51)

Now we can treat the eigenvalue k and the coefficient b as two unknowns with which the
B.C. ulk, £1) = 0 can be satisfied. Therefore,

vi{k, 1)+ byvolk, 1)=0
vi{k,-1) + bvk, -1)=0 {4.52)

Muliiplying one equation by the other function, then subtracting, one gels

k) = vi(k, 1) votk, -1) - vy(k, -1} volk, 1) =0
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50 the problem becomes the finding of the roots of fik). Onee k is found, then b is found
trom (4.52). Each k correspends to one eigenfunction u{k,t) and the orthogonal system is
formed by all possible eigenfunctions.

Now we discuss the selution for ofp) in Case b. In this case, t = +1 are two
singular points of the differential equatien. Denoting the singular points as i, we can say
that 1y is a regular singular point if pity) = 0 and p (tg) # 0, or p(ty) = 0, p (1) # 0 and
p (tg) = 0 (Kaplan, 1981). At the neighborhood of a regular singular point, one series
solution as discussed in Case a will always exist (ibid.). Nommally, the method to be used
in such a case is Frobenius” method, Since this method is quite invelved and the purpose
here is just to show that we can find the orthogonal system through this approach, no
further elaboration will be made.

From the discussion in (1) and (2), we have presented here one orthonormal system
explicitly on the (endre} sphere. If one is interested in a global expansion of a funcion gn a
sphere, then the system {X,;(6,A)] in the previcus section or the system {SL., .4 0
this current section may serve as an alternative for the spherical harmonics. Alsa, we again
¢conclude that the spherical harroonics are not the unique set of orthogonal functions on a
sphere.

In addition 1o the two ON systems (on the entire sphere) developed in this chaprer,
some other systems of functions are worthy to be recommended. If the data are discretely
given on a sphere, the spherical spline functions introduced by Freeden (1981, egs. (5.1)
and {5.2)) can be used for the purpese of interpolation and approximation of the data.
freeden's spherical spline functions represent combinations of spherical harmonics and
(reen's kernel functions (see Freeden, 1981, Section 4 for the definitions) and are suitable
for both global and local interpolation and approximation. Furthermore, if we approximate
the earth's surface by an ellipsoid of revolution, then the normalized sphereidal surface
harmonics developed by Thong and Grafarend (1989, eqs. 3(9i) and 3(%ii)) can be used for
expanding a function defined on such a surface. Alse, Thong and Grafarend's functions
could be the candidate of a function system that can be used for the orthonommalizing
process over the oceans discussed in Chapter 3,

This chapter has been devoted to finding orthogenal functions on a sphere.
Currenily global functions such as the spherical harmonics are widely used in modeling the
oceanic signal such as SST. Problems about the correlations between the SST harmonic
coefficients and satellite orbit errors have been reported when a simultaneous geoid-SST
estmation scheme in altimemy is used (e.g., Denker and Rapp, 1990). If one is still Tying
1o use global functions to model the 88T in the simultanecus scheme, the global functions
preposed in this chapter could be nsed and hopefully the correlatdons can be reduced.

As suggested in the last section of Chapter 3, we will construct a set of erthonommal
tunctions using the Gram-Schmidt process. The functions to be used for such a process
are chosen to be the surface spherical harmonics. Some properties of the constructed
orthonormal functions will also be presented,
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1 r her i ¥
1.1 Th I 1

In Chapter 3, we have listed two algorithms for the construction of orthonormal
functions over the oceans using the Gram-Schimidt process. It remains to calculate the
inner products of the given functions from which the orthonormal functions are
constructed. We will choose the spherical harmonics to be the given functions. This
means that we need to calculate the inner producis of the spherical harmenics for our
purpose. As pointed out in Chapter 3, we will be using the elevation data to define the
oceans. In practice, the ocean is subdivided into equiangular blocks along the latitudinal
and longitudinal direcdens. Once certain criteria for defimng the oceans are determined, we
¢an have an index function wyy for land and oceans defined as

w |1, ocean
% =10, land (5.1

where k is an index along latitude, and # an index along longitude. Let functions £, g be
two elements of a function space defined on the entire sphere. The inner product of £, g
over the oceans (a subdomain of a sphere) is

N-1 2N-1
(f, g]=lﬂ fgtdo=1l ¥ ¥ WHH fg'do
o 4] AGHe

k=0 =0
OCEATs ¢ {5.2%

where & is the area of the oceans. The number of blocks on the ¢arth will be always N x
2N if equiangular blocks are used. The formula in (5.2) is rigorous according to the
fundamental thecrems of caleulus, provided that the ocean is really a collection of
equiangular blocks. {This is only an ideal case, see Chapter 3). In (5.2), f and g can be
complex functions, and * is the conjugate operator.

Let us nse the notations
Ry = PHcos8cos mh, Spen = Fﬂcosﬁ)sin A, (5.3)

for the surface spherical harmonics, where ﬁ"{CDS 0) denotes the fully normalized
Legendre function. Further, for the reason that will be clear in the following development,
we define a complex form of the surface spherical harmonics:

Yo = ﬁ,'ﬁ{cns §)eim* (5.4

Now our goal is to evaluate four kinds of inner preducts cover the oceans
Al BE, Chp and D as follows:
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1 lcc-s mA cos sh
_1 — sin tnd, sin sk
T g jf ﬁ‘:ﬁ‘(tﬁ{t} COs mA sin sA drdh
pesans sin ok cos sk (5.5)
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o

where 1 = cosf. We will ry to use the inner products of Y, in (5.4} and develop a
compact and efficient formmla for computing the desired inner products.
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Using the formulae

e¥ =cos B +isin @ ]
COS Cl'. }= cos ¢ cos B + sin ¢z sin B
sin {et - }: sin ¢t cos B - cos « sin BJ (5.6)
il is easy to see that
a={Yam Yes) =L Jj PP eitm-sYddp
© oCsans
=A+B-i(C-D) (3.7

where we have dropped the subscripts and superscripts for A, B, C and D in order to
econonuze the notatiens. They will be present in the final eguation at the end of this
section, Similar to (5.7}, we also have

b= {Yom. Yr, s} = A - B +i(C+D)
c={Yy m Yrs)=A-B-{C+D)
d={Yy m Yr o= A +B+i(C-D) (5.8]

Regarding (5.7} and (5.8) as a system of equations, we may solve for A, B, C and
Diin terms of a, b, c and d:

A=i~ (a+b+c+d)

B= ﬁ_ (a-b-cHd)
=d (asp-

C=u (-a+b-c+d)

_ 1 i
D yF (a+b-c-d) (5.9)

Thus, once a, b, ¢ and 4 are found, our goal is achieved. It turns out that a very

simple formula can be developed for a, b, ¢ and d. To see this, we rewrite a = (Y5, Yio)
using the form in {5.2):
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M-l J'-|!'4n]

k=0 £=0

th Ly

2ZN-1

1% esflm,s) Z wipldm,s)

where

Hkﬂ )
€ .= J Pcos 6) B [cos 8sinede
By

{Note: the indices n, m, 1, 5 in IX, .. are all positive)

rﬂl lh] ;‘l.; , M =3

ﬂ:m 5} \1[1 ¢1[m SJthm S} i _.._‘ﬂr.T , m=s

J‘{ms S} = ﬁi{m's}!‘:"l = .321!1[{#1 - SHJIIIEN]

If we write
N1 2M-1 _
Fidm, s)= Y, widdm, s)= 3, wigenl(ms¥n]
=0} F.H3)
which 15 the discrete Fourier transform of wy, at frequency {m-s), then
N-1

L z nrnrsﬂm sJFem, s)

c

Following the development for a, we can easily verify that

N-1 fim,-s) Fx {m,-s)
{ nmrsf{mS}Fk{mt}
1fl m,-3} Fi (-m,-s)

CII'-—'

k=0
Due to the definitions of Fy(m,s) and f{m,s), we can see that

Fi -m.-s) = Fg(m.s), Fi(-m,s) = Fe(m,-s)
f{-m,-s) = f*{m,s}, f(-m,s) = f'{m,—s)

Therefore
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(5.1

(3.11})

(5.12}

(5.13)

{5.1%

(5.15)

{5.16}

(5.17)



a+b = {c+d)*, a-b = (d-c)* (5.1%)
If we write

Uy = f(m,s)Fi{m,s) + f{{m,-s)Fi{ m,-5)
Vi = f{m,s)Fi{m,s) - f{(m,-s)Fym,-s) (5.19)

then, using (5.9) and (5.18), finally we get

Alin
{BE&nl 1 &

{Uk + UE) \
- Iﬁmrs
lcain [ 4o & -

Diim
M1 Re{Uk]\
=Ly IﬁmJ Rﬂ{_‘”’k}
20 kst \ﬁl‘jﬁ]}’ (5.20)

where Re(-) indicates the real part of a complex number and Imi() the imaginery part. Eq.
(5.200) is similar to eguation (6.11) of Mainville (1987, p. 64), except that the index
function wy ¢ of Mainville's formula has a different definition than that in (5.1) and he did
not use the complex expressions for bis results. The form in {3.20) has the advantage that
it is compact and easy to follow when programming.

Let us interpret (5.20) and summarize the computational formulae. First of all, not
all Al BE, Chin and D, values are the desired inner products, only those contained in
the following matrix are needed:

[ (Rop. Roo) i
{R10, Roo) (Ry0, Ry} symumetry
G (R11, Roo) Ry, Rug} (Ru1. Ryy)
{811 Rgg)ecevreranrrrrrrneaninn. (811, S11)
_{Emh ﬁm) ''''''''''''''''''''''''''''''''' {EH]-“‘ gw)_ 521

where G is the Gram matrix (see Chapter 3), and [ is the maximum degree of spherical
harmonics used. The values of Bi, Cly, D5, will be zero whenever the argument of sine
function is zero or S, is present, and these values will not enter the G mamrix. However,
due to the use of FFT method for computing Fi(m. £s) and convenient programming, all
the Al Bl Chin and DS, values are first computed using (5.20), then a selection routine
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is designed 1o obtain the desired elements in the G mamrix. The needed nm, r3 pairs fall into
the following FORTRAN loops:

dolm=0,n
IT=r (5.22)
if {r.eq.n)r=m
dols=0,rT
» {nm, 3 pairs)
1 contihue

The second issue is the use of the FFT for computing Fi(m, *8). The form in (5.14) is
already an FFT form which is defined in some routines such as IMSL's FFTCF, except
that the complex exponential function has a different sign convention. If the maximum
degree of the spherical harmonics used is |, then from (5.14) we know that the lowest
frequency 15 -l for Fi{m, s) and the highest frequency is 21 for Fr(m, -5). Thus, in order
to compute Uy and Vi in {5.19), we must have the values Fy(m, 1s) ready at frequencies -
W to 2p. To get these values, we first performn an FFT for wisto get F(f) at £ = 0, ..,
ZN - 1. Then the desired Fi{m, *s) valves are obtained from Fi (I by using# =m-sor é
=rm + 5. For negative mcﬁces, we can obiain the desired values using the relationship
Fi(-£) = F (2N - £). One can consult, .g., Press et al. (1989, p. 397), to understand
better the above stalement.

The final, yet the most important, mmputauun is ... which is the integration of
the product of two associated Legendre functions in the sub-interval 8, <8 <6,,,. Two
formulae for [K.. will be presented in the following sections. Further, éue to the fact that
fsee equation (4.1} for such a reasoning)

() = PP =lcose)  (sin6] S, efmrdcoss)
X {3.23}
wi have
T(1) = T(cos( - 8)) = (- J-m+5T(y) (5.24)

for sinf and (cnsﬂ}' are always nonnegative over 0 £ 8 £ 1. Therefore, [k, are
reguired for only one hcnnsphcre The values on the other hemisphere can be abtained by
{5 24). The computation of [X__ will be carried out in a separate program and the values
IX .z will be input to the program "for computing the inner products.

The following computational procedure summarizes the above development:

1. Perform the FFT for wy to obtain Fy(m, 1s) at the northern-most latitude belt
and the southern-most lautde belt.

2. Read IK, fms Tor all pnssihlc n, m, r, and s at the northern latituda belt.

3. Within the loops shown in (5.22), accumulate AT, B, Ch, and D{,En values
by first forming Uy and Yy values and then forming the products between Ify, and
Re{Uy), Re{Vy), eic., at these twe latitude belts.
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4. Repeat 1 to 3 at the next northern and southern latitude belts, untl all lattude
belts are exhausted.

5. Select the desired inner products from the final A3, BL3, Cr5 and OFS, values.

Now we present a method for computing I% ., in (5.11). This method is based on
the recursive relationships between PR(t} and itself, and between PRt} and its derivative
PP(1), Detailed derivations for the desired integration Iimrs have been given by
ﬂ’[ainvilln: (1987, Chapter 7), thus no re-denvation is attempted here. We now summarize
his results and list the fomulae that are needed in this study. Mainville's notations will be
used in the following discussion and the typographical emrors (the author believes) will be
corrected based con the author’s verification of his formulae. Alse, the index “k™ will be
dropped in the following formulas.

Mainville used the following formulae for his derivations:

(1- )L < (04 1) Y - (- m 4 1) P

(5.25)
= -0t FR(1) + (n+ m) PRL.(1) (5.26)
(Zn+ 1) vPR(Y) = (n-m+ 1) PRy(6) + (n + m) PRy(1) (5.27)
B(0) = HoP2( 1) | (5.28)
_@n) o aph _{20) (.
Pafe) = n (1 - 12 = 20 (sin0 (5.29)
where
q - |i2- &mjon + tin -m}.!]”2
o (n+ m)! (5.30)

Equaton (5.28) shows the relations between the fully normalized Legendre funciion and
the Legendre function. The final result should be in the “fully normalized™ form as
requested i [0, but the derivation can be carried out using the relationships for the
{unnommalized) Legendre function presented in (5.25) 10 {(5.27).

The idea to get the recursive relationships for I, is to multiply both sides of
(5.25), (5.26), and (5.27) by another function P§(t) and then perform integrations over the
interval O 8 Sy or g4 St 1, depending on the variable used. A necessary
technique 1s the integration by parts. Let t,y =t 4. = 1,, where s denotes "south” and n
denotes "north” {not to be confused by the degree nin P, Mainville obtained the formulac
(see equations (7.24), (7.25) and (7.33) in ibid.)
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Inmes = (nd_:l;_ T].” u:[:‘l :r.l- i:]}:l In-l. mrs + % In-l. m,r-1,5 " {1 = tﬁmlit} E%{[] EJ: n#m
(5.31)
_dr, §) [[r-n-E] (1.2 "’]
Lines = m+r+ lar-Ls) Ton, e-2. 5 {1 t ﬂ{t}ﬁ-l{dh R (5.32)
e = b+ b U - ez r PROP, ] om0t
where a(-,-) and b{-) are two functions defined as
_[20+ 1}2n - 1]}11’2
a(n, m} [{“ Tma-my) ™ (5.34)
b{“1'=|2‘”#]”2-“1:b<1}=ﬂ (5.35)

Similar to the integration of one associated Legendre functon that has been studied
by Paul {1978) and Gersu (1980), the recursive formula in {5.33) for computing L.
becomes unstable in the polar region, as verified by Mainville. One way to resolve this
problem is to use a backward formula instead of the forward formula in (5.33). Such a
backward formula can be obtained by merely re-arranging (5.33) and appropriately
changing the indices:

= 1 + I - t PRY5 Pl .
Lonee {n+r+2]b{n+2}b{ﬂ+l][{n l'+3] n+2, n+2, n% ]{}L] (5.3!‘5)
The use of (5.36) would require the starting values of Ly, Loy g1 -1 -0 and
L1 TR R where W 15 the maximum degree. To compute these starung values, we use the
t}ctrmular:, in (5.29) and the normalizing facter Hyp, 1o obtain (see also equaton (7.36) in
Mainville {1987)

T T et
ton = [T 6T 30 j (1- Py
=1 k=0

L {(5.37)

However, direct integration in {5.37) cannet yield a closed form for I ;. Te get the value
of Lo one way is 1o performn a series expansion of the kernel of the integral. Observing
that B o1 y = sin@ = (1 - t2}1/2 is small in the polar region, we may change the variable
inside the integral from tte y. Then (1 - (2yn+rf2 = y*r dt = -y(1 - }rl)"l dy. Now we
may expand (1 - y2)- 12 into a binomial series such as the one in Rapp (1989a, Vol. I, p.
7). Using such an expansion, we may get I, through term-by-term integration with the
result (see also equadon {7.37) in Mainville (ibid.)}:

= 1T W bitcymeed—L y? 13 ¥ )
Tnore = I} b{t}l_—[u bllyy"* 2{n+r+2 ¥ Zn-rr+d) +2 . 4 (n+re6) ro
- - ¥« {5.38)
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where }rn={l - t%}l 'IIZ, ¥s ={I - &}11’21 The number of terms in (5.38) for a sufficient
accuracy can be determined by Gerstl's formmula (Gerstl, 1980, p. 193 and Mainville, 1980,
p. 71). As we can expect, a smaller 9 will yield a faster convergence hence a smaller
number of terins in {5.38).

Other important issues in computing [pmrs are:

(1} When using the recursive formulae, it is required 16 have the values of the Legendre
functions at t = t, and t = t,. These values can be obtained using the recursive formula in
(5.27). A fully normalized version of this recursive formula is:

a(n-1,m)

PR(t) = a(n,m){tﬁﬁ;(t) — O
(3.39)

Using this formula, we are basically corputing Ph(1) in a degreewise manner. The first
step is to compute ali the sectorial termnis by another formula:

Pay) = o) {1 - &2 Pl (5.40)

which can be easily derived from {5.2%), Then, for a fixed order m, we need o have
another value Pm»rgl , 1o start the recurrence. Pm+1(t) can be obtained by just setting
n=m+] and Jetting Pm.1(t) =0 in (5.39). Thus

Poa(n) =a(m+1,m)Pn( (5.41)

Therefore, the only required starting value in E,( t} = 1, forall Fﬁ( t).
(2) The required I, values fall into the loops shown in (5.22).

(3) Due to the relationship shown in (5.24), 1, values are required only on one
hemisphere.

We will postpone the discussion of the numerical results from the recurgive
formulae until we propose another method of computng L, - in the next section.

- for In ing Praduc fF Two A isted Legendre
Functiong

We now present the second method for integrating products of two associated
Legendre functions. It is known that the associated Legendre functions, PE‘([). as shown
in (4.1}, is basically the product of {1 - t2ym2 angd a lynornial of degree (n-m). Thus the
product of two associated Legendre functions PR‘(I:? and P{(t) will be the preduct of
{1 - t2){m+s¥2 and a polynomial of degree {n +r - m - s). Such a product can be regarded
as a summaton of several associated Legendre functions of order {m + s), namely,
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(vt

POPH = 3, DnuaPrriadt
=0 {5.42)
where

VEN+r-m-s (5.43)

and D, ,.ny are the combination constants. For example,

Pip} =1 63, PPl < L B3, Pl = 3500 PPl = 3 103, popy =4 pue 2,

Thus the integration of PF(t)Pi(1) is equiva[[c 1 to the sum of integratons of Poiy 2 t)
multiplied by constants D24 £ =0, ... ,[%2], The algorithm and software have been
well-developed for integrating one associated Legendre function (for example, Paul
{1978)). Hence, we will be able to find the imegration of PR{t}PX(1) if the constants D,
a2y are known.

Now let us design 2 systematic approach of finding the needed constants. Firstly,
we express PR()PHt) in terms of 1 based on the formula given in (4.1):

+5 [Vh]
PE’{T.]P?[[} = 2-{n+rl‘1 - lﬁ}m Jfl z Cv_utvaﬂ

=0 {5.44)
where
!
Coae= 2 A% b5 2.k}
k=0 ' (5.45)
with
asp =0, n-m-2k<0 \
b, =0, r-s-2k <0
e (2n-2k)! o
o = g ey c N K20 (5.46)
T5 [21'*21(]! A
=1 + - - k 2 I}
=1 ek rs2k) |
Similarly, the right side of (5.42) is:
[viz] " v/ [viz]- ¢ , |
S Dpara PES A =20e0(1 .22 22D 0 3 B, 2
=0 £=0 j=0 (5.47)

81



where
2 o [An+r-20)-24
E!.r-?,{ = (_1}] . . .
_],[{ﬂ +r1r-24 —J]I{v -2 - 251 (5.48)

Comparing the coefficients of the power tin {3.44) and {5.47), we get

4
Cyar = z 4an+r EkEil:éf]r {= ["v‘ ]
k=0 (5.49)
or

Dn+r-2|!' =

4D, . 2(“‘]
,Em[cméﬂ 2E, ]

which is a recursive relationship for the desired constants. It is cumbersome to apply
(5.49) directly. To facilitate the computation, we perform the following manipulations.
First of all, we can find the recursive relanonships

(5.5

nm —_ Tm
3~2[k+]] = Qg a3y

b;!ik+1} = Bax b3y (5.51)
where
{n-m-2k}{n-m-2k-1}
o =
22k + 1)2n -2k - 1}
B _dr-s-2k)r-s-2k- 1)
2T T2k + 1)(2r- 2k - 1) (5.52)
Thus
Cong= {20)!{ 2r)! Tz
“on(o-m)!(e-s)! T (5.53)
where
¢
Coae= 2, Tbey
ko0 (5.54)
with
1,k=10
A =0n-m-2k=<0
&1

H a2y , otherwise
=0 (5.55)
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3 1,k=0
k=]0,r-s-2k<0
k-1
ﬁgj , otherwise
=0
Similarly,
2j 2¢4(Zn + 1]
E 2 (m+1) vl ¢
where
. {1,j=0
f=
l e .i>0
p=0
1,4=0
s,
l dzq.£>0
g=t}
and

+:zpz-{w-21-.'-2]:.}(*,»-2.:.'-2;;:-1}
X {p+li2{n+r-2£]-2p-i]

4 o (v-2q)v-2q- 1)
A" 2 +r-29)-1][2n +1- 2q)-3]

Further, let the fully nermalized form of the product-sum formula be

{¥2]
_':-{l( I}Fi( t) = E Eﬂﬂ'-ﬁff_}]i:ln-;fﬂ( t)
=0
then
Dpoppg = e 2mes 15

(5.63)

(5.56)

(3.57}

(5.58)

(5.59)

(3.60)

{5.61)

{5.62}

where Hy,, is defined in {5.3). Further, we may express Hy,,.27.m+s it & recursive form

as
Hn+r-2€. m+s = Bf Hn+r. m+a
where
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=t {5.65)

with

X __’\/[2{11+r-Ej}-3J{n+r+m+s—2j}[n+r+m+s—2j—1}
P 5
[2fn +1-2§)+ 1]{v - 28)[v - 2¢ - 1) (5.66)

With the above considerations, (5.49) becomes

£
GC,n= z (zk-f Dyvrax gkfe};:k hk)
k=0 {5.6T

where

)

(204 2] 41 + 8 - 5] (5.68)

1

-

ﬁz,\/2{2n+1]{2r+1] JA-EETTSm I m

+3
An+1)+1 o+ }

=

From (5.67), we finally obtain the desired formula for ﬁnﬁ._x:

£1
DI‘I-Fr—H = Lh(G Cv-ﬂ - z, Zk_:ﬁnﬂ-ikgkfi_khk) A=0,1,, [\‘r ]

By k=0 (5.69)
with the starting value P, = G.

_ To compute D, 3 based on the above development, the first step is to calculate
Cyoe, 81, f£-% and by, which can be easily programmed using their corresponding recursive
formulae, for instance

hie = dafi-1) hic-t Be = Xa(k-1) Ek-1 (5.70)

These values are stored in separate arrays and then are used in (5.69) later. The maximum
length of these arrays will be just 4 + 1, where 1 is the maximum degree of the spherical
harmonics. [t took 30 CPU seconds o compute all the needed constants Dy, for p = 36
on the CRAY Y-MP/864 machine. The total numbers of combination constants needed for
all possible nm, rs pairs in the loops given in {5.22) for various maximum degrees are
shown in Table 5.1.
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Table 5.1 Total Numbers of Combination Constants Required for Yarious Maximum
Degrees of Spherical Harmonics

maximum degree number maxinum degree number
3 3545 24 463393
12 19901 28 956285
16 71697 32 1795841
20 193781 36 3155197

From {5.423, it iz evident that if m = § = ), then the number of combination
constants is the maximum among all possible products with fixed n and r values. It is also
predictable that instability could occur when we are computing the combination conseants
for a product of two Legendre polynomials (i.e., m = s = 0) due to the accumulated error
arising from the maximum number of Dy, o used. In the experiments conducted on the
CRAY-YMP/864 machine, the computed D,z becomes unreasonably large after degree
17. Similar phenomenon occurred on the IBM 3081 machine when performing the same
experiments. The problem was then overcome by using the double-precision mode on the
CRAY-YMP/864. The wadeoff is the increase of computer time since vectorization in a
supercomputer cannot be active in a double-precision mode and longer word-length is used
in the double-precision calculatiens.

Having these constants, the next step is to obtain the Ipmes values from the formula

ta

ln [viz] to
Inmes = I ﬁﬁ‘}fﬁtht = 2 ﬁnﬂ:-ﬂ[ an:rfi’-ldt
=0 . (5.71)

To verify the formulae derived in this secton, we may check the Ing.. values in (5.71)
against the values from Mainville's formulae. In fact, the algorithm developed in this
section for computing I, ¢ is totally different from Mainville’s algorithm which has been
discussed in the previous section. With the help of Professor Rapp, the program for
calculating I~ based on Mainville’s algorithm was made availabie to the author. Also,
the program for computing the integrations of one Legendre function that are needed in
(5.71) 1s available in Professor Rapp’s program library (based on the Paul {1978)
procedure).

The comparison of 1., values up to n = m =1 = s = 36 computed from the
product-sum formulae (the formulae developed in this section)} and the recursive formufae
(the formulae developed by Mainville (1987) and described in the previous section) is
shown in Table 5.2, In Table 5.2, cos®, =1, and we have used A8 = 1°. [t can be seen
from Table 5.2 that the discrepancy increases as 8 approaches the polar region, The
maximum difference occurred atn=r= 36 and m=s =4 for almost ail the lantude belts.
When 8, > 45°, the maximum difference has drepped to a value less than 10-10. The large
discrepancies in the pelar region may be due to the instability of the integration of PR(t) in
such a region, as pointed cut by Paul (1978). The combination constants were
appropriately obtaired by the formulae developed here since good agreement of 1.0
values from the two methods was found at most of the latitude belts (if the constants are
wrong, no maich will happen art alll}.
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Table 5.2 Comparison of I Yalues from the Product-Sum Formulag and the Recursive
Formulae at the am, rs Pairs Whers Maxism Differences Ocour

a9, n m [ 5 product-sum recursive max. difference
0 36 0 36 0 | 1.003995.10-2 | 1.00461-10-2 6.111658-10-6
9 %6 0 36 0 | 6033331103 | 6.003284-10-3 | 5.993270-10°3
18 3% 0 36 0 | 7.198512-104 | 7.377833.104 | 1.793202.10-5
27 36 0 36 0 | 6438187103 | 6.439329-103 | 1.142596-10-¢
36 36 0 36 0 | 1720875102 | 1.720877.10-2 | 1,644023-10-8
45 6 0 36 0 | 2135710102 | 2.135710-102 | 4.905332-10-11
54 36 15 36 5 | 1742747102 | 1.742747-102 | 1.976197.10°13
63 36 21 36 1 | -3.794209-10°2 | -3.794209-10-2 8.271161-10-13
72 36 21 36 4 | -2.012995-104 { -2.9122995-10-4 | 1.614411-10-12
R1 36 20 36 1 | -7.644171:103 | -7.644171-103 | 3.863600-10-12
9 36 25 36 | 4.822763-10-3 | 4.822763-10-2 3.271521-10-12

To further compare the two methods, we can perform the inner products in (5.20)
using these twoe kinds of Iy values and assume that wy, = 1 for all k and £, namely, all
the blocks are oceans. Due to the orthonormality of the fully normalized spherical
harmenics, we should expect ail the inner products to be gither 1 or 0 in such a case. The
deviations of the inner products from 1 or ¢ are mainly caused by the I values used.
As a result, the use of L, from the recursive formulae creates a maximum deviation of
1013, while the use Inmes from the product-sum formulas yields a slightly larger deviation.
Such a experiment shows that the recursive formulae have a better accuracy, Further, the
use of [ from the product-surn formulae will worsen the mutual dependence problem of
the spherical harmonics over the oceans (a topic that will be discussed in later sections).

Based on the afcrementioned comparisons, we decided to use the recursive
tormulae for the computation of the I~ values that are needed in calculating the inner
products of spherical harmnonics over the oceans.

To conclude this section, we shall list some of the papers that have dealt with the
product-sum formula similar to the one developed here. In Hobson (1965, p. 86}, a
product-sum formula has been derived for only the Legendre polynomials. Hobson's
resulis is based on Legendre’s differential equation (see (3.74)), thus his idea is totally
different from the one given here. One can also find a product-sum formula for the
Legendre polynomials in Baneri (1920, p. 179). As the last example, we can find a
product-sum formula in Giacaglia (1980, D 3). Giacaglia's formula is derived using the
orthogonality of the Legendre functions PR{t) of the same order and does not have too
much similarity with the one given in this section.

52 C ‘on of Ol func :

Up to this point, we have discussed the methods of computing the inner products,
defined as integrals of surface spherical harmonics over the oceans. As pointed out in
Section 3.2.2, the inner products are the necessary quantities for finding the combination
coefficients Cjj in (3.2). We also talked about the definitions of the oceans in Section 3.1.
It is now necessary to present the detailed process that is related to the use of surface
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spherical harmonics in the constguction of the orthonormal functons. For brevity, we shall
call the orthonormal functions as ON functions from now on.

The first issue to be addressed is the definiton of the oceans. Apparently, the
“oceans” should be unique in the real world. Buti, as the elevation data or shoreline data are
not accurate enough, we simply cannot get the real oceans. Moreover, if we resirict our
study of some phercmena only over a porticn of the real oceans, then the part of oceans
outside the interested area really does not concern us. One example is given in Haines
(1985b). Haines has studied Magsat vertical field anomalies available above 40°N. He
then treated the magnetc field as a local phenomenon and expanded these available data into
spherical cap harmonics (note: his definition of spherical cap harmonics is different from
the one given in Chapter 3). The earth’s magnenc field, like the gravity field, is a global
phenomenon and should not be expanded into local functicns such as the spherical cap
harmonics. This is ue from the physical peint of view. Yet it is an acceptabie idea that
these magnetic anomalies are just some signals without any pre-assumed physical
properties and they can be “fitted” by any local funcdons. Further, the reality is that we
cannot get data cutside the interested area so that any attempt to perform spectral analysis
using global functions will end up with false results. Therefore, when Haines used the
spherical cap harmonics to fit his data, he was doing a “local” spectral analysis with respect
to a set of “local” harmonics. This is completely justifiable from the mathematical peint of
view if we introduce the concept of generalized Fourier series and generalized Fourier
analysis. Based on this example, it is understood why we need to “choose” oceans: we
cannot have the desired signal over the entire oceans and we just want o construct a set of
local hartnonics for data representation and spactral analysis.

Due to the properties of the ON functions constructed by the Gram-Schmide
process, such a “choice” of oceans is meaningfui. These properties will be discussed in
Section 5.4. Although the oceans defined in this ‘way depends on the signal dismibution,
we should choose the one which fits the two tnest important purposes in this study,
namely, the expansion of Levitns SST and simultanecus esimaton of geoid and 55T from
satellite altimetry. Let us now look at the oceans implied by the NWL 80,000-point
shoreline data and the edited TUG 1° x 1° mean elevaton data (Wieser, 1987). In Figure
5.1, the shaded area implies H < 0 where H is the mean elevation in a 1° x 1° block. In the
original TUG 1% x 1° mean elevation data, some in-land blocks also receive negative H
vaiues. This happens in the western part of China and in Ausiralia and some other in-land
basins. It was also found that the mean elevation data do not quite maich the 80,00G-point
shoreling data in the Antarctic area, especially near the Antarctic peninsula. These in-land
blocks and the blocks with H £ 0 inside the shoreline of the Antarcric continent are then
removed. The oceans prasented in Figure 5.1 are based on such edited elevation data.

In Figure 5.2, “the oceans™ are defined to be the area where the modified SST of
Levitus exist. This modified SST data set is described by Engelis (1987, p. 3) and consists
of 30,922 estimated 1° x 1° mean valves, including data in the Mediterranean Sea and the
Black Sea. The oceans in Figure 5.2 have a minimum depth of 2250 meters, except in the
Mediterranean Sea and the Black Sea. In the analysis performed in the next chapter, the
oceans will be the one given in Figure 5.2.
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Figure 5.2 Oceans as the Area Where the Modified SST of Levitus Exists (Set 3 of
Engelis, 1987h), H < -2250 Meters.
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The next issue is the linear dependence of spherical harmonics over the oceans.
The method to check the dependence of funcgons over a domain is the Gram determinant
IGE where G is defined in (3.3). I£1G] 45 zero, then not ali of the given functions are
linearly independent. Now let the systems {L;} consist of all possible surface spherical
harmonics following the sequence

{L;} ={Rao, R1o, Ri1, St1, R0, Ra1, Sz1, Raz, S22, Rag, Rap, 51, Rag o) (5.72)

where Rom =F¥."{-::ﬂs El)cns mh and Spm = Pﬂcos El)sin mA, are the fully normalized
spherical harmonics. The Gram matrix of {L;} is given in (5.21). Note that we have not
defined the oceans in (5.21) and the index function wy, is basically unknown. Now we
would like to find the first harmonic in |[L;] that has dependence with the previous
harmonics over & certain domain. By doing i]us we can determine a certain degres and
order of spherical harmenic up to which no dependance of functions occurs over a specific
domain. Note that we must sirictly follow the sequence of the spherical harmonics shown
in (5.72) in doing this analysis.

First of all, let us define the geographical boundaries of some oceanic areas (¢ =
latimde, A = longitude):

Area 1: The Caspian Sea: 35° <6 <50°,45° s A £57°

Area 2: The Red Sea: 12°£¢<30°,31° <X £43°

Area 3: The Persian Gulf: 22° <§ < 31°, 46° <A < 56°

Area 4: The Baluc Sea: 47° €9 S 60°, 5°sA <3 and 60° S d < 67°, 15° S A < 30°
Area 5: The Hudson Bay and the Hudson Sgraight: 50° <9 £72°, 263° < X £295°

Then we define the following domains for the dependence anaiysis:

Domain 1: The oceans given in Figure 5.1

Dormmain 2: The oceans gwen in Figure 5.2

Domain 3: The oceans given in Figure 5.1, excluding the 1° x 1° blocks with H < ()
inareas 1,2, 3, 4,5

Domain 4: The oceans given in Figure 5.1, excluding the 1% x 1° blocks with H < 0
inareas 1,2,3,4,5 andthcmawhmq:}?z"

Demain 5: The ocean given in Figure 5.1, excleding the 1° x 1° blocks with H«<0
in areas 1, 2, 3, 4, 5 and the area where I¢I > 720,

Five index functicns wyy are created according te the definitions of the above five
domains. Then the inner products using equation (5.20) are generated for the five domains
up to 2 maximum degree of 36. For each domain and for a maximum degree of 36, it took
13 CPU seconds on the CRAY YMP/864 machine to generate the required inner products
(L_-I, Li)e. where e = 1, 2, 3, 4, 5, indicates the domain the inner products to be formed.
To find the ranks of the five Gram Matrices G, Linpack's routine SPPCO (Dongarra et
al., 1979} is used. The maximum j value before which the elements L;'s are independznt is
equal 1o the rank of G, {for a discussion of the independence of functions, see Section
3.2.1). The correspan&ng degree and order of the spherical harmonic can be calculated
from this maxiroum § value. As aresult, Table 5.3 summarizes the maximum j values and
the corresponding spherical harmonics for demains 1, 2, 3, 4, and 5.
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Table 5.3 Maximum } Values in System {L;) Before Which the Elements are Independent

Domain Jjmax spherical hammonic
1 >1369 >516,36
pA 646 S25.10
3 >1369 >83¢,16
4 1321 16,12
5 1321 $36,12

Therefore, for domain 2, we can only get a "complete” set of spherical harmonics
up to a2 maximum degree of 24. By "complete” we mean that ail the (2n+1) spherical
harmonics for each degree n are present in the set of elements we choose. Apparently, at
degree 23, we still can get some independent harmonics for Domain 2, according to Table
5.3. The resuit shown in Table 5.3 does not imply that we can only have a finite number
of harmonics at a domain. To get an infinite number of harmaonics, we can just excluade the
one which first causes the dependence, and then introduce the next harmonic. If the
dependence happens again, the corresponding harmonic is removed. Obviously, the
process will lead 1o an “incomplete” set of spherical harmonics for a domain. Moreover, to
find the harroonics that cause the dependence, we need 1o estimate the ranks as many times
as the number of such hammonics. The process will be extremely computer-time
consuming even if it is possible. For Domains 1 and 3, the spherical harmonics are
independent at least up to n = m = 36. However, it 15 expected that the dependence will
occur at some n and m beyond 36 at these two domains and the same process will be
needed to get an infinite number of harmonics.

It will be shown in Chapter 6 that for the purpose of this study it is sufficient to use
the spherical harmonics up to degree 24 1o construct the ON functiens that are needed.
Thus the construction of the ON functions will basically just require this “complete”™ set of
spherical hanmonics {up to degree 24). Of course, it is without any problem if we use more
harmonics. Such a choice is just for practical use and for convenience, especially in
classifying the frequencies of the ON functions constructed in this way. Now,
construcing the ON functions is equivalent to finding the combination coefficients ¢y (see
also Section 3.2.1) in the following equation:

X {0, 1) = i Coplol8, 2), n =0, 1, ..

ur (5.73)

where X (8,4) are the desired ON functions, Writing the ON functions and the spherical
harmonigs with double indices, we have an alternatve form of (5.73):



_ ko n2. m=0 ]|
Ona, 1) = 43R, 1) + P Ckp'-?{ﬂ' M= {nz +2m-1,m=0
K- |
Q8. &) = ciSnnd 8, 1) + Z OB, 1), k=102 + 2m ? (5.74)
Q8. 0)=0.m=0
n=01,., m=0..,n ]

11

In the above formulae, the index “p" has started from zere which will prove to be
convenient in later discussions. The desired ON functions Oy, (8,4) and Qpp, (8,4} are
defined by exact analogy with the spherical harmonics. Thus n is the dagree and m the
order of the ON funcuons. The definitions of degree variance, error degree variance,
nower spectrum, etc. for the spherical harmonics can then be applicable to the ON
functions Oy, Q- It s also necessary to point out that the ON system [XP] or {Qyne
Q) defined in {%3} or {5.74) is merely one of the systems that will be discussed in ihe
following section. For the simultaneous estimation of gecid and $8T, the system in {3.73)
or (5.74) is in fact not the best choice. We will discuss this shortly.

We have discussed two methods of finding ¢y in Section 3.2.2. The two metheds
are given in (3.18) and (3.27), respectively. The tfrst method is based on a recursive
algorithm; the second method can be characterized as a Cholesky decomposition. Both
methods require the inner products that have been extensively discussed in this Chaprer.
Two programs have been designed separarely for the computation of c,,,. For a maximum
degree of 24, the recursive algorithin consumed 3.480 CPU seconds, while the Cholesky
decomposition teok 1.130 CPU seconds. The computations were made on the CRAY-
YMP/864 machine. In ¢ach computaton, 193625 combination coefficients Cpp Were
found. Note that the CPU tme does not take into account the time for the inner products
{(see the previous section for the CPU dme for the inner products),

The deviation of the nwo sets of combination coefficients increases as the harmonic
degree increases. Table 5.4 lists the maximum difference berween the two sets of
combination coefficients when the computation is made up to a ceTtain maximum degres,

Table 5.4 Maximum Difference Between Combination Coefficients From the Recursive
Algorithm and Cholesky Decompesition up to a Maximum Degree

Max. degree Max, ditterence
10 3.654748-10-10
15 3.717914-10-6
20 3.623193:10-2
24 77977048

It is very surprising to see that the maximum difference can reach 77.977948 when a
maximum degree of 24 is used. However, the magnitde of the coefficient corresponding

10 this maximum difference is on the order of 104, thus the discrepancy is about 0.8% of
the magnitude. Te compare further the two sets of combination coefficients, we may check
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the orthonormality of the functions constructed by these two methods. The formula to be
used is:

P q
(Xp, Xg) = (2 CpeLss 2 c':I.'rL.i)

=0 =0

p q
= D, ot 2, Safles Lj} = By
oSl (5.75)

where (L, Lj} is the inner products of the spherical harmonics over the oceans. For z
maximum degree of 24, the maximum p or q is 624. The deviation of (X, Xy from O or 1
thus 15 a measure of the precision of the combinaton coefficients. In Table 5.5, - overal
pairs of p, g have been chosen to check the orthonormality of the functions constructed by
the two methods.

Table 5.3 Comparison of Orthonormality* of the ON Functions Construcied by the
Recursive Algorithm and Cholesky Decompesidon

p q 8pq recursive Spq Cholesky

0 1 1.77635.10-15 1.77635-10-19

4 9 -7.44249-10-15 72.12330-10-10

5 3 1.000000000000000 1.

14 22 -2.99760-10-13 -5.08621-10-15

16 18 2.28983-10r15 ' 1.55952-10-13

3 73 T OOT00O000 T.000000000000000
499 524 -9.15614-108 1.45972-10-7
624 YE! 0.090090501 28341 0.00500 1688684

* (X Xq) = 8pg, Xp are the ON functions on the oceans

In checking the orthonormaliry of the ON functions, a maximum deviation from &y,
is found to be 1.25161 x 104 for the recursive algorithm, while the Cholesky

decomposition creates a maximum deviation of 9.66554 x 10-3, Generally speaking, both
methods produce good orthononmnality of the ON functons. The maximum difference of
77977948 between the two sets of combination coefficients really has no substandial
influence on the orthonormality of the constructed functions. Nevertheless, the large
deviation indeed shows an instability in the computations. However, based on the
computer ime it is ¢vident that the Cholesky decomposition is more efficient. In particular,
the corresponding formula is easy 10 understand and is conveniemt for programming,
therefore the Cholesky decompaosition is the wechnique to be used in further computations.

To conclude this section, we list the first few orthonormal functions at Domain 2

(corresponding to the oceans in Figure 5.2) as follows {note: the area of Domain 2 is
7420428, unitles )
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Oy =1

D]{] 0338 + 1,160 Rm

On=0203+ 0156 Rm+ﬂ949 R“

Qi1 =0.179 + 0.146 Ryg-0.010 Ry + 1011 §y,

O20=0.413+0.561 Ryg- 0041 Ryy +0.028 5y + 1316 Ry

Oz = 0.206 + 0.207 R1ﬂ+{] 143 R]] +0.126 Sn+ﬂﬂﬁ4 Rm-l—ﬂgﬁﬁ REI

Q21 = 0.344 +0.396 Ryp +0.151 Ry +0.432 S;; +0.162 Ropy+0.087 Ry; +
1.183 §y,

$3 Choices of Ord IS . ormat

Cur final goal of this study is the estimation of geoid undulations and $5T from
sateHite altimetry whiie reducing satellite orbit error. The problem of the correlation
between the estimated parameters needs to be considered and hence we must choose the
functions which approximate S5T in the estimatien model more carefuily. Before we
perform the numerical experiments for such a solution, we must first theoretically
investigate the possibility of closely approximating the 85T and avoiding correlation when
using a particular ON system. For such a purpose, we define 3 ON systems that resulr
from 3 different kinds of combinations of the elements Lj in the sequence {Lj} = {Lq. Ly,
La, ...} (see (5.72)).

(1) System 1: {Xj}, of {Opm, Qum}. see (5.73) or (5.74}

(2} System 2: [Yj], resuiting from combining L, j=1,2, 3...
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T
Yo= 2, duelprtn=0,1,2, .. \
p=0

ar

k-1
Dﬂ_ﬂ". = dkkan + Z dkpl"?+1' k=

p=2

n?-l,m=0
nt+2m-2, m=0}

k-1
ﬁrlm=dkk§nm+ z dkap-n,k=n2+2m

p=0
ﬁm=ﬂ,m=ﬂ
n=1,2, ... m=0,1..,n /
; (3.76)
(3) Systern 3: [Zj}, resulting from combining Lj,j =4, 5, 6, ...
n
Zn= 2, eaplpss, 1=0,1,2,...
p=1
. _ k-1 2.4 =0
or n , M
O = exkRam + 2, Cploprds k=
nm = CkkSnm g{'f n24+2m-5,m=0
N _ k-1
Qnn = €kSnm + 2, Ceplprds k =02 + 2m - 4
p=0
Qam=0,m=0
n=213 .. m=%41,..n
(5.77)

in system 1, all the spherical harmonics are used in constructing the ON functions;
in System 2, the first harmonic Rop = 1 is not used; in System 3, the first 4 harmonics
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Rog. Rip. Ri1, 811 are not used. We will prove by numerical experiments that System 2
and System 3 can approximate the Levitus SST as close as System 1 does, provided that a
sufficiently high degree of the ON funcdcens is used. By the above definitions, System 2
has no degree 0 and System 3 does not have degrees 0 and 1. System 3 has an important
advantage that the correlation between its elements and the satellite orbiial errors due 1o the
initial state vector {see Chapter 7} is small, especially when a priori information is used.
Systern 2 is virtually identical to System 1 when the signal to be approximated has zero
mean value {or is centered}.

We will now numerically show that the three ON systems are all complete over the
oceans (see (2.20) for the defininon of completenass). For system {X 1, such a property
is clear since we combing all the independent spherical harmonics into su{:h A system, any
later spherical harmonics having dependence with previous spherical harmonics are
eliminaied, thus the cornpleteness of systern [X;] 15 guaranteed by the fact that no other
harmonics will be orthogonal to this system {see (4.26)). For system {Y.}, we stll can
use the same argument. However, this time instead of eliminating “later” harmonics, we
remove the first spherical harmonic Ly before we consiruct system (Y}, since eventuatly
there will be a spherical harmonic that is dependent on Ly and we can Lﬂcp that particular
one instead of Ly. Indeed, using the Gram matrix, we can find that particular spherical
harmonic as it was done numerically. Due to the complex geometry of the oceanic
boundary, it is practically impossible to verify the above statement analytically, For the
same reason as that given to system {X ), we show that system {Yj] is complete. For
system {Z }, the argument is still the sarm: since eventually we can find the spherical
harmonics that are dependent on Ly, L}, L, and L3, as verified by the author’s computer
work. Thus we show that the three ON systemns are all complete and any signal defined on
the oceans can be approximated by them 0 any accuracy specified. Numerical resulis
showing the convergence of the three ON systems.will be given in Chapter 6. The point of
presenting three ON systems here is 1elated to the sateilite radial orbit error encountered in
Chapter 7 where we try to choose an ON system that can avoid the radial orbit error’s
"sensitivity spectrum” {Wagner, 1986).

We now have more than one ON system on the oceans. We may change the
representation of a signal frem one system to ancther. This can be achieved by unitary
transformation in a Hilbent space as follows: For the moment, we assume that we have two
complex complete ON systems {¢;} and {v;} on some domain. A function defined on that
domain may be expanded into (¢} and {y;} as

f=2 aidi=2 b

j=1 iml (5.78)

where a; and by are expansion coefficients with respect to systern (¢;} and system {y;],
respectively. Nlnw if the expansion coefficients a; have been obtained In some way and we
would like to get the coefficient b; in order te have a representation of f in terms of ¥ then
we can perform the transformation:
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b; = {f, yi}= (Z a;0;, "Fi)

j=1

1= {3.79)

where

o = (¢'j- Vi) {5.80)

To show that the transformation in (5.79) is unitary, we write ¢; = Z {¢'h 'tlfk]\m; and
k=1
obtain

8= [, ¢j) =3 {01 wi) (v ¢j}=§ (6, Wk){qus ik

k=1

= 2 i {I;L
k=1 (5.81)

Imagine that we have a vector of infinite elements formed by ajx, k = 1, -, e, then two
such vectors are orthonormal due to (5.81). Hence {3.79) 15 a unitary ransformation (or
an orthogonal cransformation if systems {¢;} and (/) are real). It is possible to find the
applications of unitary ransformation in cur smdy if the signzal to be represented is band
limited {a signal is bandlimited with respect to a generalized Founier series such as (5.78) if
&; = 0 for i > n where n is the "highest" frequency). For exammple, the SST ({(0, A)) on the
oceans may be represented by systems {Y;) and (Z;} as follows:

do.)- 3 pvfe.a) - z wzfo. A)

i=0 (3.82)

where M and N are two numbers comresponding to the highest harmonics for accurately
representing {(8, 1) in systems [Y;} and (Z;], respectively, Therefore,

N
Bi = D (Zj, Yily;
o (5.83)

where
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i i
(Z, Y =1 Y eiplpias 3, diglass
g={

p=0

j i
= E Ejpzf dif Lpads Lgu)
p=0 o=l (5.84)

Thus we obtain the representation coefficients B from y; through such a finite
transformation. In the next Chapter, we will show that the [§; obtained by unitary
rransformations are numerically equal to those by direct expansion of {(8, &) into the
system {Y;], provided that N goes up to a number corresponding 1o degrae 24 of the ON
functiens (of system {Z;] ).

The use of a unitary tansformation in the estuimation of geoid undulations and S5T
from satellite altimetry is as follows. We first choese an ON system whese representation
of 88T vyields the least correlation with orbital errors and undulation comections. The result
1s then wansformed to an ON system of our choice which can then be used for comparison
to some existing solugons.

Ky 1 N Function n ram-Schmidt

In thig section, we present two important properties of the ON functions
constructed by the Gram-Schimidt process. Although the properties are common to any ON
functions constructed by this process, the emphasis in the following will be on the ON
functiens constructed using the spherical harmonics, such as X;(0, A), Y;(0, A}, and
Z;(8, &) presented in the previous section. Also, in the discussions that follow, system
[X;(8, 2)} will be used. The resuits can be immediately applied to systems {Y;(8, A}}
and {Z;(8, A)}.

Theorem 1; [-A™X,, X,) = ky =[] (va] + 1), (5.85)
where A* is the Laplace surface operator defined in (3.98), X, is defined
in(5.73),n=0,1,2, ..., and [-.fﬁl:]mirs the integer part of o .

Proof: We recall that the eigenvaiue of a spherical harmonic LF of degree £is k= #(£ + 1).
Arranging the spherical hammonics in the sfequnfnc shown in (3.72), i.e., {Lg. Ly, ... LpJ,

it is easy to see that the eigenvalue of Ly is ky = ¥p| ((¥pj+1). For example, ko=0-(0
+)=0forRop; kg=1-A+1h=2forRyops kp=1-(1 +1)=2"for Ry, etc. Therefore

"] [ ]
Alptkple=0 or Aly=-kly (5.86)
Recalling the definition of X, in (3.73}, we have
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(-4, Xa) = -(a'i caoLo x,,)

p=0

{($ eutiox]

p=0

n-1
= (Z cnpka'p + CanknLon, Xn)
p=0 (5.87)
From (3.11%, we know that [Lp, X =0 if p < n Thus for the inner products in (5.87),
only the last one, 1.e., (L, X} will have contributions to the result, the rest are all zero,
Since they are zero, we may replace the eigenvalues of L, p < 1 by a constant eigenvalue
Ky, and the result will be unchanged. Therefore, we can show that

n-1
['ﬁ*xm xn} =(knz 'canp + Canknly, Xn)

p=0
= kn ( i Cnpl--ps Xl'I]
p=0
= kn {Xq, Xq) ={va}(va] + 1} (3.88)

where we have made use of the fact that (X} is an ON system. Such & property of X, has
close resemblance to that of eigenfuncdons in the Sturm-Licuville problem Lu) + ku = 0,
where L 15 a linear operator, u is an eigenfuncion, and k is an eigenvalue, see also Section
3.3.1. However, it will not be possible to find an eigenvalue A, for X, with respect to the
Laplace surface operator A*. For, if such a &, exisis, we will have

AT+ AX =0
Then

i Capkp - :."’ﬂh"P =0
p=0

Since Lp are ali linearly independent, all the coefficients of Ly must vanish if the above
equation is to be tme. Thus

cnp{kp—ln)=[}<=>l,,=k p=0,..,n

This will be impossible since A, is a2 constant while k, changes as the index p changes,
Thus we conclude that X, does not have an eigenvalue with respect to the operator A*.

Theorem 2: Let £(8,A) be a bandlimited signal on the enrire sphere with respect to the
frequency of spherical harmonics Lp, namely,
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Iy |
(00) = 3 agle( 1)
p=0 {5 893

where N is & number which corresponds 1o the maximum “frequency”™ of f(8,4) with
respect to the system {L,}. Then on the oceans where L, are orthonormalized to form the
ON system {Xp}, f{B,A) 1s exactly represented by Xp as

o).~ & orxlon)

OCEANE

(3.90]

: 'We must state the situation further before we prove the theorem. In this case, the
signal f(8, A} is only sampled cn the oceans, even though it is possible to obtain it
glsewhere. For example, the geoid is a global signal but only the part on the oceans can be
observed by a saiellite altimeter, We ¢an further assume that the globai geoid is bandiimited
it the spherical harmonic expansion. Given such a signal on the oceans only, we would
like 10 determine its property in the spectral domain. Having explained the situation, we
denote the signal f(8, &) on the oceans as f,(8, 1), We assume that we have no idea about
the spectral behavior of £,(8, &) and we will expand (8, 1) into the ON functions X, (9,
A} to a degree as high as possible, namely,

M
f(8.0) = 2, aX(.1)
p=0 {3.91)
and ot is found by

ap= (f(8,4), Xp(8,A) Yoceans (5.92)

where subscript “oceans” is imposed to emphasize that the inner product is carried out over
the oceans. Now, ong must remember the expansion in (3.89) is valid for the entire
sphere, including the oceans. Thus, over the oceans the signal £,(89, A) can be completely
recovered by using (5.89) if we know a, forn=0,1.., N. (D? course, we do not know
anything about a,). Thus o can be obtained by

S

Again we use the property that (Lg, Xp) = 0if g < p, then we have

(5.93)

¢p=0ifp>N (5.94)

Thus f,(8, A) is bandlimited with respect to the system {X;} and can be exactly
represented by



£(O.1) = i aX(6.4)

b0 (5.95)

This theorern is particularly useful in case that the sampled data are used. The
beauty of this theorem and the ON functions in such a case is that we do not need 1o have
sammpled data outside the oceanic area yet we still can determine the highest frequency of the
glebal, bandlimited signal. In the next chapter, we will create 4 sets of 1° x 1° mean geoids
using QUSEYB poetential field (Rapp et al., 1990) up to degrees 15, 18, 20, and 24, We
will then expand these sets of geeids into the ON furctons using the oceanic values only.
Tt will be seen that, after the corresponding highest degrees of the ON functions for the 4
oceanic geoids, the powers immediately drop to zere. It is not the case when we expand
these oceanic geoids into spherical harmonics.

In fact, the signal that we get on the oceans, unlike the geoid, does not have to be a
global one. For exampie, SST is not even defined on land. For the signal defined only on
the oceans, the ON functicns will prove to be useful for the spectral analysis. With the
spherical harmonic representation, one cannot even talk about spectral analysis for the
oceanic signal due to some theoretical problems and practical problems concerming some
utr}'lrerzsmahle phenomena when a relatively high degree is used. We will discuss this
shortly.

This chapter will be devoted to the expansions of S8T and oceanic geoid in the
orthonormal functions constructed in Chapter 3. The SST data used are the modified SST
of Levitus, while the oceanic geoid used is obtained from the OSUS9B potential field, The
analyses of the results of the expansions will be concentrated on the spectral behavior of the
signals in such expansions.

ign T finic

The 5ST data set w be used in the following expansions is a modified SST of
Levitus described as Set 3 in Engelis {1987h, p. 3). The spatial distribution of the data is
given in Figure 5.2. In section 5.2, a short description of this data set can also be found.
A good summary of this data set is available in (ibid., pp. 2-3). A contour plot of the ST
in this data set i3 given in Figure 6.1.

This data set consists of 30922 1° x 1° mean 88T with the mean value removed.
The mms value of the data is 62.4 cm, The data in the Mediterranean Sea were replaced by
the estimates from a map by Lisitzin {1974). In Figure 6.1, one can see the major
signatures that are associated with oceanic currents. However, it is possible that some
spurious data remained even after an editing process has been employed by Leviws (1982).
This is justified by irregular contours in the Atlantic Ocean and at the west coast of the
South America. According tc Engelis (1987b), in this data set any signal with wavelengths
less than 800 km is eliminated due to the weight function that was used in editng the data
(see alse Levitus, 1982, pp. 9-10). We will investigate this statement using the result of an
ON function expansion later in this chapter.
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Figure 6.1 Modified Levitus SST (Set 3 in Engelis (1987b)), CI = 10 cm,



Some quantities that will help to explain the results of the ON expansions will be
defined here. The total power of a signal f is

=fj oo = 1B couns A
o (6.1)

where ¢ indicates the oceans in which f{@) is defined. For the Levitus $8T (from now on,
the Levitus SST mean the SST data just discussed above), Pr = 2.142547 m? which is
obtained by numerically integrating (6.1) using the 1° x 1° mean values. The average
powser of fis

1
meg = E Pr= ”ﬂ%rxam (6-2}

where A is the area of the oceans {unitless). For the Levituys 55T, Pavg =0.288736 m2.
If a function i$ expanded inte the ON functions in the system {X;}, and the expansicn
coefficients are «;j, =0, [, ..., then the quadratic content of f (Mayhan, 1984)uptoj=N
is

N
QiN}= 2 of
j=0 (6.3

Therefore by Parseval's theorem (see (2.21)) we get Qflse) = Pavg. As a measure of the
approximations by the ON funcdons, we define the figure of merit as

Py g - el N} 100%

n=
Pavg (6.4)

Of course, the terms P, Payy, Qf(N) and n are not the enly measures of the quality of the
expansion. Some other factors such as the fit of expansicn 1o the data and the spectral
behavior also need to be considered when investigating the expansion resulis. These will
be discussed right after the expansions are completed.

6.2 Expansion Methods
2.1 Numerj Formul

The first method to be used is the numerical quadratures. A function F defined on
the oceans may be expanded into the ON functions in the system [Xj(E', AT or {Ogm(8,
At Qnm(B, L)} as follows:

Th
f(8,A) = 3, ;X (8, 4)

j=0 (6.5)
or
A Neax 1
8,0 = % 2 (tnnOwn(8. &) + BrnQu(®, 1))
n=0 m=0 (6.6
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where (L O Unm, Bnm are the expansion coefficients. Eq. (6.5) is a single-index form,

while (6.6 i 13 a double-index form. | or Nmax is the highest "degree” of the expansion and

j.L (N + 1}2- 1. To make the norm of approximation error (f - f) minimum, we must have
= (f, X;), as shown in {2.15), namely,

o = EI-”b f{8, A}Xi(8, A)do , 6 = oceans
(4]

(6.7
Ustng the index function wyg in (5.1), the integration becomes
N-1 2M-1
o = i- Y wu £(8, 1}X,(8, A)sinBdBdA
k=0 {=np
Ay (6.8}

From {6.7) to (6.8), no assumption is made if the oceans are formed by the equiangular
blocks. Now we assume that the funcuon finside a block is a constant represented by its
mean value in the block, then

N-1 2NM-1

ey = i wafis Ij X;(0, A)sinBdBdA
k=0 f=o ﬁgj
A Ocf 6.

where fi¢ is the mean value at block k, L. Rﬁcalhng_the relationship between the ON
functon X_,(EI A) and spherical harmonic Lp = Rom or 8,y in (5.72), we obtain the desired
formula:

! -1 2N1
o = i;} ¢ u(k p wufuJ. Lp(Q, 3)sin0dOd )
Aty

i
=__ﬂ-‘.z a
A o “infp (6.10)

where ¢jp are the combination coefficients which have been found in the previoys chapter,
The value ap is precisely the spherical harmonic "expansion” coefficient of {wi¢ fxs) on the
sphere. This is not to say we need o have land value assumption for the SST or the
oceanic geoid. The convenience of calculanng ap arises from the way the ON functions are
constructed. Fia-il‘mus can be calculated by the formulas given by Rapp (1986, pp. 370-

371), where has been nsed. A more compact FFT form is presented as follows: we
wish to compute ap by
N.1 M.
A = f 2 2 witfir ICJT \
v 184, | ®.11)
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where E—‘L‘m is the integration of the fully normalized Legendre function PR(cos8) {whose
degree n and order m depends on the index p) from 8¢ 10 41, and

Aen
[Icfnl=f [msml ‘dl
st he | siomh |
(6.12)
Let IEL, be defined as
LV
IEL, = I eiMAd}, = him)eimisd
W (6.1
where
Jﬁl=?l.,g+1 -?Lg ) m=0
h{m) =
{1-emsd)
= ,i=Y1 ,m=0 (6.14)
Futhermore, we define
M1 B B
F = 3, wiekiddBS = h{im)FFT (i)
£=0 (615}

where FFT(wyy fi.,) 15 the (fast) Fourier Transform of (Wi fip). Using Euler's formula,
we nave
R { 1ct, | { Re{FE) |
Wity = .
HrdFk) | (6.16)

1st, |

L=
Finally we obtain

L {a&ﬂ;})
i iy nm

4:“:}; o I-IU[FE}
It is very easy to verify that (6.17) is a compact form of eq. (300 in (1986, p. 371), upto a

constant. The program for computing ap is obtained by modifying Celombo's subroutine
"HARMIN" {Colombo, 1981, p. 107}

6.17)

One concern is the mean value approximaton made in (6.9). A standard technique
for reducing such an approximation is the introducton of a desmoothing operator such as
the one given by Rapp (1986, eq. (118)). Specifically, the desmoothing qn operator was
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used in the recovery of geopotential coefficients from mean gravity anomalies and was
given by Pellinen (1966, p. 83)

n
J. AQyP,(cosysinydys

Go =
J.ﬂ Aly)sinydy
where ’ (©19
1 wsw
Mw_\ﬂ » ¥V (6.19)

Wo is the size of a spherical cap where a mean gravity anomaly is to be computed, n is the
degree of Legendre function. In realig:, we do not form the mean valie in a spherical cap,
rather in an equiangular block A9 x AA. Thus for a given AB value the corresponding W,
value needs to be obtained. For example, Katsambales (1979, p. 70) used

of- s

2 e (6.20)

In the practical application of the desmoothing operator qp, further considerations based on
the ranges of degree can be made, as given by Colombo (1981, p. 76).

The desmoothing operator dpn is due to an important property of spherical harmonics
stated by Meissl (1971, p. 57) or Miller (1962, p. 22):

f f‘ | Revl®:) }m _ JL.,( Rod80: 1) }

| { Soul®, 2) SamiBo. Ao) (6.21)

where t = cos8, Ay is the eigenyalue with respect to the kernel K{y/), y is the spherical
distance between point Tﬂo, J and an arbitrary point (9, A) on the sphere. The

relationships between (B, o), (0, A} and W can be found in Figure 6.2. The value of A,
is given by Meissl (1971, eq. (6.46a))

in
An= Z:rtj K{y)Picosylsinydy
o (6.22)

Replacing K{y) by A(y) in {6.22), we get the numerator in (6.18).
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Figure 6.2 Yariable y in Equadon (6.21).

Using exactly the same argument as the one given for the eigenvalue of operator A®
in Secton 5.4, we can show that there 1s no eigenvalue with respect to K(yr) for the ON
functions X;(0, A). Therefore, an analytical desmoothing operator cannot be found for
Xj(8, A). I\}evarﬂmlcss, if the function to be expanded possesses a long wavelength
feature the approximation made in (6.9} should not cause too much trouble, since the
values of such a function in a block such as 1° x 1° should not vary substantially and can be
assumed to be a constant. In the numerical experiments that follow, no desmoothing
operator has been used.

The expansions of 2 function in the other two ON systems, ie., [Y;(0,2)} and
[Z;(6, X)) follow the same formulae given above, except that the combinadon coefficients
need o be changed and an appropriate index for (Lp) must be used. Further, in
accordance with the definitions of degree vanance and errer degree variance in a spherical
harmonic expansion, we define the corresponding quantities for an ON function expansion
as follows:

Degree_variance of ON coefficients :

T

2 _ 2 1
@ m);o (o2 + Bon) 622

where ¢ and By, are defined in (6.6).

Error VAT ients : €2

d= 3 (5.

{6.23)

where €q,,, and £ are the standard deviadons of the expansion coefficients gy and Brin-

We must emphasize that for the ON functions in the systems {X;}, {Y;) and {Z;)
introduced in Chapter 5, the terms "degree” and "order” have been used for the frequency
classification in the same way as the "degree” and "order" for the spherical harmonics
which are orthogonal on the entire sphere. When we analyze the expansion results, we
often compare the degree variances of the ON funcions and those of the spherical
harmonics in the same table or figure. Thus care must be exercised in correctly interpreting
the quantities of interest.

106



22T ares Fit (£

In the numerical quadratures formula disgussed in the previous section (eq. {6.7))
the expansion coefficients are found by letting IIf - fil2 be minimum, i.e.,

g - 1 =i-” (t - T do = a minimum
o (6.24)

The total error {f - ) is evaluated on the oceans by integration. Now we shall use a discrete
version of {6.24} as a minimum criteria for calculanng the coefficients. We still let the
norm of the approximation error (f - £) be minimum, but the norm of error will be defined
in a different manner. To do this we calculace the mean value of f{B, A) at block £ by the
gxpansion

£{e, 1)=f”; flo, 3)do = El_i o ” X;(6, 1)do

o o
¢ ay £ =0 T

= aIxt
AGY io (6.25)

Now in (6.25), we let the maximum expansion "degree” be a finite number, u. An error ey
will be introduced in the approximaton, namely

i1
?}(E, ?L:I + = —]-—Z ujl}{_f
A0t j=o {6.26)

Due to the use of finite expansion terms in (6.26), ey can be interpreted in two ways: [f f;
15 errorless, then ¢y is purely the "truncation error”; if the given data f; has noise then the
noise will be blended with the truncation error in the form of (6.26). In any case, we could
solve for o by requiring

M
¢=E ef = VIV, = a mininmm
=1 (6.27)

where Vs = (g1, €2. ... , eM)T is a vector containing the errors with M (M > W) being the
number of mean values used {(or the number of the AB x AX blocks that form the oceans).
The use of (6.27) gives rise to the familiar least-squares adjustment problem in geodesy in
which a solution is readily established. The squares of the errer norm measured in (6.27)
is a discreie version of {6.24). Recalling the discrete version of inner products defined in
(2.9), we can also easily see that
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P = {e(8, :'I"-}r e(d, 1}}01:::&11.5 = llerror )2 (6.28)

where e(9, A) is the pointwise error function on the oceans. Now we can treat (6.26) as
"gbservation equations” at "points” £, £ =1, 2, ..., M. In accordance with the classical
least-squares adjustment problem (Uoctla, 1986), we define the following mamices:

x!/ae, IXVag, - IXEJaql
A, = design matrix = : : (6.29)

491
X, = unknown vector =
Oy uxt {6.30)
fi
L. = observation vector =
YR (6.31)

Thus (6.26) can be written in a matrix form:
vs = Ang - ]_‘S {EL?'Z}
To get a minimum errer norm according to (6.27), we must have

9 0, 5=l

aa}- {ﬁ~33}
The solution for the unknown vactor X is then

Xq = (AJAQ HATLy) (6.34)

Eq. (6.34) can be reduced to a form which can take advantage of the least squares fit
problem using the spherical harmonics. First of all, we recall the relationship batween the
ON functions and the spherical hammonics in (5.73):

X Cop Ly
X Cip €11 0 L2

Xp | Low cu oo o || Ly (6.35)

where ¢;j; are the combination coefficients. Let C denote the matrix of the combination
coefficients in (6.35). Now we would like to find the relationship betwean matrix Ag in
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(6.29) and a matrix that contains the integrations of spherical harmonics, To this end, we
transpose and integrate both sides of (6.33), then divide the result by the area of a block, -

!—]]_.ia"r.ﬁﬁl ﬂ/lza'lrﬁﬁl ]LJU&U]
ﬁ,s = CT
Il,lfll"ﬁcm H.Pz'if’ﬁUM ]L}]I{J’(ﬁﬂm
= BCT (6.36)

where matrix B is easily identified by the relationship in the equation, and

of
AT (6.37)

is the integration of surface spherical harmonic at block £, Substtuting (6.36) into (6.34},
we have

Xs = (CTyL(BTB)- 1(BTLg) (6.38)
= (CTyly,
where
Y= (BTB)}{BTLy) (6.39)

is regarded as an intermediate vector for solution X;. Therefore, we can split the solution
inte two steps. The first step is to get Y by (6.39), then X is found by (€.38). To obtain
Y, we first interpret the meaning of BTB and BTLy: The elements K1, in matrix BTB are

M
Ki,=2 —LILimg , j=123,4
t=1 AGj (6.40)

Eecailiglﬁ that lLf, is the integration of spherical harmonic Ry, = PP(cosB)cosmh or
Snm = P (cos@)sinmi, and using the index function wyge in (5.1), we can write K;]q
explicitly as

‘ KJ&.I‘I‘L!’S
Kines | S
\ K%mrs ’ k=0

Kil‘.ﬂfﬁ
where n, m correspend te p. and 1, § correspond to q in (6.40). The area of a block will

depend on latitude only, thus the notation Aoy is used. Note that not every element in
(6.41) will enter matrix BTB. Similarly, the element T}, in matrix BTL; are
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55, T 3 wyg| "
=0 \IC{T, I5¢ ’

IS, 1CE

::-‘H
wla

(6.41)



(o) % 0 B[

V12, [ =0 Box =0 | 154, | (6.42)

Again, we know that elements T2, will not enter BTL;. The elements Ki_ . in (6.41} and
T} in (6.42) have close resemblances with the elements shown in equation (4.27) and
equation {4.29) in {Pavlis, 1988, pp. 72-73). To evaluate these elements, one can just
accumulate the contributions at each latitude belt k in a straight forward mannﬂg_mand take
advantage of the property of the associated Legendre functon PI{-t) ={-1P*+™PP  (See
Pavlis, 1988, Chapter 4, for a mice discussion), Nevertheless, the regular forms in {6.41)
and (6.42) should enable a more efficient method to be developed. We now exploit these
forms by FFT and later we shall arrive at an astonishing result as compared to the result
obtained in Pavlis (1988, Table 5) in terms of computationat efficiency.

We shall basically follow the principle used in Section 5.1.1. Ttis clear that
B4 = h{m)emAh = ICL +i1S4 (6.43)

where all the needed definitions can be found in (6,12), (6.13) and (5.14). Let us define

a =104 ICk
B =184 184
(6.44)
= 1C4 184
3 =184 ICE
and
a= ]:E.]-f-. IE‘-S = h(m}h{,s}ﬂi{m-s}tﬁl
b = [E4 IE = h{m)h(s)ei{m+s)ah
(6.45)

¢ = IEL, IEL = hi-m)h{-g)e-i{m+s)}£aL
d = [E & [EL = hi-m)hs)e-im-s}AL

If we expand a, b, ¢ and d into real parts and imaginary parts using the relationship given in
(6.43), we get

a=q+P-ify-8)
b=o-B+ify+d)

(6.46)
c=a-f-ify+d)
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d=a+p+ify-5)

Thus

{fa+b+c+d)

o fr—

{r =

p

l—(a—b—c-i-d}
_1 b d
Y= {(-a+b-c+d)

g (a+b-c-d)
From (6.46), it is easy to see that
a=d¥ , b=c*
oT
a+b=(c+dy¥ ,a-b=(d-c¥

Furthermore, we define the FFT of wyy at frequency {m + s} as

2N-1
Fk{m, 5= Z Wkt allm+s AR , Ak = i
=0 2N

where k indicates the k'M latitude belt. Moreover, we define
Uk(m, 5) = k{mih(-s)Fk(m, -5} + himih(s)FK(m, §)
Vk(m, §) = h(m)h(-s)Fk{m, -8) - h{m)h(s)FK{m, s)

Using (6.44) to (6.52), it is not difficult to see that

Kﬁmrs

i1

Krlu'nrs [Uk(m, S} + {Uk(m, S}}*]
K%mrs _ 1 3 Lﬁm ﬂs ) {Vk(m, 5) + (Vk(m. S)}"]
Kimes | 440 ACt [-Viem, 9 + (Vim, 5kl

fUX(m, s - (UX(m, s)}*Jf

(6.47)

{6.48)

{6.49)

{6.50)

{6.51)
{6.52)



{ RefUX(m, s)} ]

Nt RefV¥(m, 5))
=LY _L _7pk iPk ’ (6.53)
2 E} Aot Im{-VK(m, 5)) !
Er{Uk(m, s))

which is the desired FFT form for evaluating the elemenis in matrix BTB. To get the
required elements, one can follow exactly the same computational procedure listed at the
end of Section 5.1.1. The process will be first calculating K3 ., j = 1, 2, 3, 4, then
selecting the needed elements and finatly identifying the night positions of the selected
elements in matrix BTB.

It is much easier to deal with elements T, , required in matrix BTL;. In fact, the
needed FFT algorithm has been developed in (6.17). One only needs to remove the factor
4w and consider the area element Agy at each latitude belt in (6.17). Specifically, the
computational formula for T, is

{ Thm }=N21, LT I Re{Fk)
Tim | k-0 AGY | 1mlEk) (6.54)

where the definition of FX is given in {(6.135).

A pm%m called FFTSOL has been developed for computing the glements neede:d
in matrices BB and BTL; by the FFT approach and solving for the Y vector. A program
which solves for Y based on the straight forward accumulation method was also available
in Professor Rapp's program library (it is called ADISST, the program sequence number is
t¢ be determined). Now we shall call the process of obtaining elements Kl . and TJ . as
the formation of the "normal marrix”. According to Pavlis (1988, p. 88), the most
expensive part in solving for Y is the formation of the normal matrix. Let us now look at
how much imprevement the FFT method can achieve as opposed to the conventional
method (in program ADJSST). In Table 6.1, we list the CPU nmes on CRAY Y-MP/864
needed for the formatiens of normal matrices by programs FFTSOL and ADJSST. The
CPU times for inverstons of (BTB), which are the same for both programs, are also listed.
Nmax is the maximum degree of the spherical harmonics. The soludons Yy by the two
programs are exactly the same within the accuracy of the computer used. However, as we
can see from Table 6.1, enormous saving of computer time in the formations of normals
can be achieved by the FFT method. Cne can alse observe that the saving factor (CPU
ratio in Table 6.1) grows with the Nmax used. This is due to the fact that a larger Nmax
will enable a more efficient use of the FFT method.
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Table 6.1 CPU Times Comparison using FFTSOL and ADJSST on CRAY Y-MP/864.

Normals fseconds) CPU Inversionst

Nmax FFTSOL ADJSST ratios {seconds)
10 0.409 1.015 17 0.042
15 0.882 41.951 43 0.237
24 3856 186.120 65 2.160
36 9273 830.410 26 17.285
50 27.319 ~3272 121 103.740
70 R6.930 ~12986 149 ~750

~ @stimated
t same for both programs. Linpack's routines SPPCO and SPPDI (Dongarra et
al., 1979} are used.

The FFT method will achieve the maximum efficiency in the case that Nmax is
equal to the Nyguist frequency (ZN/2) due to the fact that no waste of computation in
(6.50) will be made in such a case. Roughly after Nmax = 30, the CPU time needed for
inversion will exceed the CPU time needed for the formulation of the normal equations in
the FFT method. Tn the conventional method, however, the former is always less than the
latter.

The success of FFT method suggests that the formation of netmal matrix for the
geopotential coefficients from the surface gravity anomalies can be made much more
efficient. To see this, we Kst the alternative forms of equations {4.27) and (4.29) in
{Pavlis, 1988, pp. 73-74):

|
[N] C2.CE = GM(n - 1)(r- 1]2 _P“ﬁmﬁ’r‘sz -L[-L *Pie 155 IS5 (6.55)
-0 Aot 0 Ty ICE, Iﬂi{
1L, 1Y
UICEn = OM(@ - 1)y, LT, > LR TP hase | 160 |
) ﬁﬂk t=0 Tig l1st, | (6.56)

where [N}C"‘mcﬂm are the elemnents of the normal matrix, {UJC%, are elements of the "U
vector” (the vector on the right-hand side of the normal equations), and Cf, are
geopotential coefficients. To avoid unnecessary descriptions, the reader is referred o
Pavlis (1988, Chapter 2} for the precise definidons of GM, Ty, a and Agyy. Here the data
Agyy are the mean gravity anomalies. The weight function Pyg s different from the index
function wyy in {6.41) in that

L mean gravity anomaly exists at block k¢
St
][} . mean gravity anomaly does not exist at block kf
(6.5
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where Oy i5 the standard deviation of the mean gravity anomaly Agyy . More computer
time is expected in this case due to the factors

[_a_ +t [_1_"1:1
el ru}

that involve degrees n, rat each latitude balt. Unlike the forms in (6,41} and (6.42) where
only one FFT process is needed at one latitude belt for all degrees and orders, the forms in
(0.33} and (6.30) also require the FFT processes for degree n and r at each iatitude belt.
To eliminate the degree dependence {or the ratio “Ty in (6.58)) of the FFT process, one
can reduce the mean gravity anomalies to a sphere with radius = a using downward
continuation and ellipsoidal correction {see Rapp, 1986). By doing such a reduction, we
can achieve exactly the same efficiency as we have in (6.53) and (6.54).

If we insist on the rigorous forms in (6.55) and (6.56) and consider the degree
dependence for the FFT process, then the desired formulae for 2 FFT approach are

J Re(Uk{n +r, i, S}} l

N-1 Tk
Nleget =L M- - 1) S, L 1B, 1 | RV e nm o) | o
2 i=0 Ac? Ied- V0 + ¢, m, 5)) [
In{ﬁ"{n +r, m, s}]

RelE¥n. ) |
[Ulce. = GM(n - 1) —L—ﬁm{ '

E} Ao B, ) { (6.59)

where

ﬁk(n +r1,m,s}= h(m)h{-s}ﬁk(n +r1,.m, -8} + h{m)h(s)?'k(n + T, m, s (6.60)

VK(n + v, m, s) = him)h(-s)F¥(n + 1, m, -5) - Wmh(s)F*(n + r, m, ) {6.61)

and
IN-1
Fn+r,m,s)= 3, ;L[J-]“"’Pu eilmsitan
0 Tt (6.62)
N-1 I
EXn, m) = h{m) E _L[?ﬁ-]npu Agyy eiméai
£0 Tig K (6.63)

_ These formulae can be obtained by using exactly the same derivations for elements
Ksand T4 A program called FFTSOLA was also developed for computing the
elements in (6.58) and (6.59) by FFT. Having these elements, we can calculate the
disturbing geopotential coefficients Cpy, , Sy in the formula (Pavlis, 1988, eq. (4.11))

114



— Mmax n
At =-‘—G_r2M 2, - D[RS, (G ICh + SumISh) Prn
A% T H e (6.64)

A simulated data set of mean gravity anomalies was generated from the OSUI8SB
geopotential model (Rapp et al., 1990) to Nmax = 50 at 1° x 1° blocks (the ratio ¥, is
considerad). Then the data set was served as the input file for program FFTSOLA to
compute the geopotental coefficients Cpp, Sppio Nmax = 50. Comparing the computed
coefficients with the original ones, some nurmerical differences (about 1% of the signal after
degree 24} were found. Since the recovery of geopoiential coefficients from Ag is beyond
the scope of this study, no further effert was made 1o find out the reason of numerical
differences. The discussion here is merely to emphasize the importance of the FFT
technique. Further, to show the substantial reduction of compurer times in forming the
elements in (6.58) and (6.59) by FFT, we list the CPU times on CRAY Y-MP/864 needed
for these calculations in Table 6.2.

Table 6.2 CPU Times on CRAY Y-MP/864 for Forming Nommals and U Vectors by FFT

Nmax CPU times? (seconds)
10 3.661
15 G6.144
24 11.636{432)*
36 24.617(211%)
50 53.206{8544)
70 146.154

t The ratio ¥f,, is considered
* CPU times in parenthesis are from Rapp (1989, p. 273, Table 1), who
used CRAY X-MP/24.

The CPU times in Table 6.2 are much less than those in Table 1 of Rapp (1589,
One reason is the different computers used; another is of course the methods used. To do
an expansion to Nmax = 100 from the surface gravity anomalies, it i3 estimated that 1300
seconds is needed for forming the normal by FFT, while 6400 seconds is needed for
inverting the normal, The memory required wili be about 66 Megawords (for FFTS5OLA).
S0 now one can see that the major difficulty in high degree expansion using "least sguares
adjustment” method is the CPU time of inversion and computer's storage space, even if a
FFT approach as illustrated above is used. Toe overcome this difficulty, one may just
consider the near diagonal terms of the normal as suggested by Rapp (198%h, p. 276},
provided that the parameters (i.e., the coefficients) are organized in an opinmum way so that
the terms not considered can be safely assumed 1o be zero.

Returning to (6.34), we have accomplished our goal of finding the coefficients of
ON expansion by sclving Y by the FFT methed. In the experiments shown later, we will
find that the numerical quadratures method and the method of least squares error fit produce
essentially the same expansion coefficients. Such an outcome is expected since the two
methods are closely related.
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)3 ¢ o0, Analysis of Two Signal C {1 the ON Function Expansi

Spectral analysis of a function using certain basis functions lies on an important
property, namely, independence of two signal components. Without independence we
essentially cannot isolate one signal component from the other, thus the term “spectral
analysis” does not make too much sense in such a case. In the statistical sense,
independence implies null correlation between two signal compenents. However, the terrn
"correlation” has somewhat different definitions in the geophysical literature and the

tatistical literature. Geophysicists (e.g., Bath, 1974, Chapter 3) define correlation in
vonnecdon with signal analysis of analytically defined functions, although in most cases
empirically observed (or discrete) data are used; statisticians define correlation in the
context of estimation theory. Nevertheiess, certain relationships between these two
definitiens exist. We will discuss their relationships below by gradually stepping from the
geophysicist's point of view to the stadstician’s point of view. Such a discussion will help
to interpret the results from the ON function expansions or the spherical harmonic
expansions.

As we have shown in (2.24), the two signal components apXL,(EI, A) and 0 Xq(®,
) in the ON expansion (6.5) are statistically independent, since (assuming crgndicii';g

M(op0tgXpXg) = U'PuQi' If XpXqdo = 0By,
b (6.65)
where M is the averaging operator over the oceans. In a more general discussion, Let us

define the correlation coefficient berween two ergodic signals (o), f2(a) on @ as (cf.
Bath, 1974, p. 90 and Papoulis, 1977, p. 359)

Jffﬁﬂﬁﬂﬂﬁu

Ci2 = g

[[oom [T

¢ ¢ (6.66)

where o) and ¢tzj are the ON expansion coefficients of f1(0) and f2(¢), respectively.
Clearly in the ON expansions, we should ideally have for two signal components

€pq = Bpq (6.67)

In the numencal quadratures, the condition (6.67) is awomatically satisfied otherwise eq.
(6.7) wall not be true. In the method of #sf, one can calculate a "modified” correlation
coefficient ¢y berween two signal components from the elements of matrix ATA,. Now,
the elements of ATA, are
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M
JPq = z —1—2 I_XPIXq
=1 ATy (6.68)

Eq. (6.68) is another kind of "inner product” which is different from either the one in (2.9}
or (6.28) due o the presence of the area element AGy . To calculate c,, according 1o the
definition of inner product in (6.68), we follow {6.66) and define a "correlation coefficient-
like" gquantity

e JEE
o = L2
qupJqq: (6.69)

For two Xp and Xy, there is no guarantee that g = 8pq- But the departure of ¢’ from
will be stnall if the blocksize AGy 15 small as el be vertified by performing sormie limiting
process in (6.68) and raking into account the orthonormality of X, Therefore by using the
method of #sf, we still can expect statistically independent signal components opX (0, )
if Agyp is sraall.

A different interpretation of correlation coefficients arises if we can remove the
signal conmibution from "degrees" W + 1 to == and hence ey in (6.26) is regarded as purely
"noise”. In this case, the problem becomes a "minimum variance” estimation problem if
we still impose the conditien in {6.27) and possibly consider the "weights" of the
observations. The estimation formula for X will remain the same except that a weight
mamix could be introduced. In general, the estimation formula in this case is

X, = (ATPA, (ATPL,) (6.70)

where P is a weight matrix associated with the data. Let Ng = ATPA; and Q; = N3,
Mikhail (1976, p. 301) recommended two gquantities for the definition of correlation:

(1) Ppq :{'“ﬁ . Tipy i an element of N, . (6.71)
Rppllag

(2)  Ppq= [m-% , g is an element of Qs . (6.72)
Wpplig

As noted by Mikhail (ibid.). pPpq 15 generally larger than ppg. In the usual leasi-squares
adjustrnent problem, the definition of the correlaton coefficient according to (6.72) is
widely adopted since 's are closely related 1o the accuracy estimates of parameters,
Nevertheless, the partial “correlation coefficient” ppg (defined by Mikhail, 1976} has
exactly the same definition as ¢__ in {6.69) except the sign convention. Therefore, the
partial "correlation cuefﬁt:ient”rﬁpq is applicable to either the case where e in (6.26) is
regarded as "truncation error + noise” or to the case where ey is purely neise. However, in
accordance with the classical definition of cormrelation coefficients of least-squares
adjustment problems in geodesy, the definition (6.72) will be the only acceptable choice for
the definittion of correlation coefficient as we present the numerical results later in this
chapter.
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Based on the above discussion, we can see that the connection between the
correlation coefficient defined in (6.66) and the correlation coefficient defined in the
parameter estimation theory occurs as soon as discrete data are used. The discussion here
is mainly to distinguish the two kinds of correlation coefficients arising from rwo different
disciplines (the key is the assumption of "ergodicity” implicit in formula (6.66)). One thing
we have 1o emphasize is that in the approximation theories such as those in Davis (1975),
Rivlin (1981), Gaier (1987}, Sansone (1959), Tolstov (1976), etc., the approximation
accuracy is a major issue, the statistical properties such as the accuracy of the coefficients
are not even mentioned. However, by proper manipulations of the given functon such as
removing the "truncation error” or "high frequency content", we may treat the
approximation problem as a parameter estimation prablem provided that discrete data are
given. In such a case the coefficients of expansion become "parameters” and all the
statistical concepts such as correlations, accuracies, etc. can be applicable to the estimated
coefficients. Using such a statistical approach, ocbviously the ON coefficienis are still
nearly uncorrelated due to the way we construct the orthonormal functions (see Section
3.1, 3.2, 3.3} and the forms in (6.68) and {6.69). On the other hand, the spherical
harmonic coefficients are expected to be highly correlated due to the non-orthonommality of
spherical harmonic functions provided that an incomplete set of data is given on a sphera.

Although a spherical harmonic expansion for oceanic data {no land value is
involved) cannot provide independent signal components, Engelis (1987b, p. 10} found
that up 0 a sufficienty high degree the corresponding expansion can reproduce the original
data. The good fit in case of using high degree expansion is atributable to the
completeness and closedness of non-orthonormal systems of functions which build a so-
called "Schauder basis” for the space of continuous functions {Schaffrin et al., 1977, p.
151). (For a proof of the completeness and closedness of non-orthonormal sysiems, see
Smimov and Lebedev, 1968, pp. 235-237). A further discussion on the relationship
between the spherical harmonic expansion and the ON function expansicn will be made in
Section 6.3.

24 H ic Synthesi

Given the expansion coefficients ¢tj of Gy, Pnm of the ON functions for a signal
f(@, &) on the oceans, we now seek a way 10 perform the harmonic synthesis to a "degree”
below the maximum “degree” available. We shall still take advantage of the relationship
berween the OGN functions and the spherical harmonics. Now the problem is:

Given: @j,j=0,1,.., 1
or

Gnam, Pam-00=0,1, ..., Nmax, m=90, ..., n

Find:

n
t8. A}= 3, eXfo.2) . nsp
or J=0

fK{B,l}=i Y { anOucnd®. A) + BanQuel®. 1)) . K < Nmax

n=0 m=0
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For system {Xj(8, %)}, the relationship between P and Nmax is i = (Nmax + 137 - | (note
that j starts from 0). It turns out that the discussion using the one-index form of ON
functions is easier to handle. The ansform betwesn the one-index form and the double-
index form for system {X] {6, 1)) can be found in (5.73); for system {Y;(P, A1}, the
transform is found in (5. ?5} for system {Z4(8, A}, the transform is found in {5 76).

We express the expansion in a vecter-product form as:

g

s
fT‘I(Br ?\'}:[Xﬂ X1 X‘n] !

[ On 6.73)
Recalling the reladonship in (6.353), we have

Cpg Cup C2p - -+ Cqd iy

€11 €21+ Gyl oy

6. A)=[Lo Li--- Lo

- a0
a
Lo Li-w Lo)j .
Lan
1
=ZajLJ
j=0 (6,74}

where 2; are defined as "pseudo coefficients” and can be found by

m
&= E Cipllp
p=j

{6.73)

The aj values can be interpreted as intermediate coefficients for the synthesis process, An
mtcrpretatmn of a; is that they are just the spherical harmonic coefficients due 1o the form in
(6.74). {Remember that L; are surface spherical harmonics). The second interpretation is
aue from computational pmnt of view. We must emphasize that the signal £(8, A} is
assumed to gxist only over the oceans. The expansion in {6.74) will basically allow us to
compute fiB, A) anywhere on a sphere. However, any signals outside the oceans
computed by (6.74) will be meaningless since they do not exist and the ON functions are
defined only over the oceans,
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The form in {6.75) thus provides a convenient way to perform harmonic synthesis
using existing package such as SSYNTH in (Colombo, 1981). In all the discussions made
so far in this chapter, one can see the importance of the combination coefficients cip,
without which the ON function expansions are impossible. However, to get these
combination coefficients, the complex computations discussed in Chapter 5 must be made.
In later discussions on the numerical results, we will see how much we can benefit from
the analysis and use of the ON function expansion.

It 15 necessary to point cut that (6.75) is equivalent to {6.38) where we also
mterpret Y a5 an intermediate vector containing the spherical harmonic coefficients. In the
following section we will further address the relationship between the ON function
expansion and the spherical harmonic expansion using a minimum error norm pringiple.
Impertant distinctions between them, especiaily in the context of specual analysis, will be
also made.

3 Soherical H. ¢ Expars | ON Furcrion Exnnsi

Since the ON functions are constructed from spherical harmenic functons, the
expansions by using these rwo kinds of basis functions possess certain relationships. First
of all, we still can approximate the signal on the oceans by the spherical karmonics,
although they do not form an orthonormal system on the oceans. Such an approximation,
or expansion can be written as {note: the domain 15 always oceans)

fle, 4) = i a0, 1)

j=0

Nmax =1 _ —
=3 Y {aumRunl8 )+ buSand6, 1)
. (6.76)

where ?{E, A) is an approximation to f(8, A). Now we still can dernand that the error norm
be minimum, namely

¢=(-1,1-D

=i” (€ - Hido

- kj I [f . i aiL{6, 1]}2.;1:: = a mininm

=0
o (6.77)

where o is the oceans, and A is the area of the oceans, A necessary condition for (6.77) is
that
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a—{P::} ,fori=0,.,p1

da; (6.78)
By {6.78) we obtain a set of equadons;

(Lo, Loyao + (Lo, Lidag ..+ (Lo, Lyday = (f. Lo)

(L1, Lodag + (L, Lyjar « ..+ (L1, Lyap = (£, L) (6.79)

Ly Lodao * (ys Lot 4.+ (s, Ly = 6 Ly

Written in a matix form, {6.79) becomes the nonmal eguakons:

_ {LII}, LU]{LQ, Ll}" . {]_,0_ LH-} 7 "30 - I:f_ L{;] _

(L1 Lod{Ly, Ly {Ly, Ly |} ay (f, Li)
. } . (6,800

| (Lo Lop(Lows Lt (Lo g} | 3;1 L (f Ly} |

from which the spherical harmonic coefficients aj can be solved. Recatling the definition
of Gramn marrix of spherical harmonics in (5.21) and denoting

Y, =(apa; - a,)’ (6.81)

L, = {(f, Lo} (£, L} -+ (£ Ly))" (6.82)
we can write (6.80) as

GY, =L, (6.83)
Now, according to (3.27), we have

G = C-1C-UT = C-1(CTy-1 (6.84)
Therefore, by substititing (6.84) into {6.83), we gt

(C)' Y, = CL, (6.85)
it is not difficult 1o see that (¢f. (5.72))

Cao [ (f, Lo) |

Cig S0 (f, Ll]

CE5= . . ¢

Lewo €1 - G S| {f L)
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[ (F, Xp) |
(f, X1}

L (F X)) | (6.86)

Denoting X, = (C1)'Y, = foeg ooy - - -'J,H]T, we have

(g | [ (f Xo) ]
i
_ £ i [f, X
%, - .1 _ ( . 1)
o] Xy (6.87)

The matmix form in (5.87) is precisely the ON expansion expressed in (6.7) which has been
approximated by the numerical quadratures formula, Therefore, by the minimum error
L nciple, th herical harmonic ¢x ion and the ON function expansion are
gquivalent in the sense that both functions can approximate a function on the oceans equally
well. However, there are some important distinctions between tham in both theory and
applicaton:

{1) It is not justified to perform spectral anatyses using the surface spherical harmonics on
the oceans, since under ergodicity they are not statistically indzpendent there (see {6.65)).
In reality, such a practice has been done by numerous researchers {e.g., Engelis, 1987b,
Nerem, 1989). As shown later, the spectral components {i.e., coefficients) will look
“reasonable” under either of the following conditdons:

a. The maximum degree of expansion is below approximately 12 or 13 {(using the #sf
method and the oceanic data only). For, in these low degree expansions, "reasonable”
amplitudes of coefficients can be obtained. Normally we claim that the coefficients are
reascnable only by comparing the amplitude of the expanded function and the amplitudes of
the coetficients, since there is no theoretical justfication for performing spectral analysis
for ocean data using functions which are not orthogonal over the oceans. These
coefiicients are just the result of minimum error fit, as was done in {6.80). Now, if the
maximum degree of expansion exceeds a certain limit and hence the amplitudes of
coefficients become unreasomably large, then comes the second condidon:

b. An a-priori power rule of spherical harmonic coefficients is used for estimating the
spherical harmenic coefficients, Such a power rule implies that the amplitudes of
coefficients diminish as the degree goes higher. An example is given by Nerem et al.
{1990, eq. (2()):

ve = 0.192-127  meters (6,88}
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which they derived from the Levitus SST with zero values on land {obvicusly they treated
the Levitus 85T as a global signal). In (6.88), ¢ is the degree of the spherical harmonic
and vy is defined as (ibid., egn. {19)):

mog 2£+1 (G.89)

To use the power rule, we can change the minimum error critetien from {(6.77) 10 {now the
degree "¢" 15 associated with "j")

- 2
o=(e-T.6-T+ > a?/vlz = a minimum
=0 (6.90)

Then by (6.78) and following the derivation for (6.83) we get

Y, ={G+Py'L, (6.91

where P is a diagonal matrix containing yvf, namely,

1
vi 0

S

P= _ (6.92)

The new solution ?; i {6.91) is thus different from Y, in (6.83) due to the presence of P
maix.

In practice, we may only have mean values for the signal £ on the oceans, then
{6.76) becomes

n W
F40, h)+ e = 2 aJ-” Lo =~ ajLf (6.9%)

1
AGY

where f, is the mean value at block £, and ey is the error due to the finite terms used. If we
change the definition of inner product to
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b= 3 g |
=1 AGy
M

(6.24)

(f Lpy= 2, L-1tF, j
t=1 Aoy

then all the above derivations and formulae are valid for the soiutions of the spherical

harmonic coefficients using rnean values,

Now the problem of using a power rule in the estimation of the coefficients of a
spherical harmonic expansion is as fellows: a pewer rule with diminishing amplitude such
as the one in (6.88} is normally valid for global signals. When it is applied to an oceanic
signal such as SST, the convergence of a spherical harmonic expansion is slow due to the
fact that the oceanic signal is anificially forced to follow the spectral behavior of a global
signal. This means that to achieve the same approximation accuracy the expansion with a
power rule will require more harmenic terms than the expansion without & power rule. As
demonstrated later, the expansion to degree 10 without a power rule will approximate the
Levitus $ST as well as the expansion to degree 24 with a power rule. The power rule
method will also create Gibbs' phenomenon (the poor approximation near the
discontinuities of the approximated function) at the continental boundary for S8T if the
maximum degree is not sufficiently high,

In the authot's opinicn, the power rule, which is used to stabilize the solution for
certain problems, should be used in a compatible domain, For example, Kaula's rule {or a
modified version) may be used 1 constrain the behavior of geopotential coefficients since
the earth's gravity field is a global signal, see, for example, Nerem et al. (1990, eq. (22)),
Marsh et al. (1589), ew.

Even if a power rule is used for a spherical harmonic expansion and "reasonable”
coefficients are obtained, misleading results could be obtained from the spectral analyses
(for example, the study of degree variances, error degree variances at various degrees).
Indeed, 1t is possible that, due to the use of power rule, the correlation coefficients from the
inverse of normal matrix may be small and the spherical harmonic coefficients are "atmost”
stadstcally independent

(2) The ON function expansion, of course, allows us to perform spectral analysis on the
oceans. The expansion will always result in coefficients with decreasing magnitude. If the
ON coefficients are to be estimated in a model where other parameters are also present, then
we may use a power ruie of ON coefficients to stabilize the solution over the oceans.
When using a power rule of ON coefficients, we are basically dealing with a compatible
domain and hence a faster convergence of the expansion is expected.

(3} The ON function expansion possesses the property of permanence (Davis, 1975, p.
173), while the spherical harmonic expansion does not. By permanence we mean that the
expansion coefficients that have been determined will not be affected by adding more terms
in the expansion. For the ON function expansion, this is clear from the use of the
expansion formula o = (f, X;), which shows that o is determined independently.
However, by adding one more element in the spherical harmonic expansion, we need to
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add one more row and column in the normal matrix in {6.80), thus by inverting such a new
normal matrix the whole soluton will be changed.

In this section, we shall describe some experiments and results related to the ON
function expansions of the Levitus SST data specified in Section 6.1. We shall carry out
the experiments using the three ON systems that are described in Chapter 5 and this current
chapter, namely, {X;}, {Y;) and {Z;}. Although most of the formulae in this chapter are
developed for system {}{j‘}, it is rather simple to extend these formulae to systems [ Y}
and {Z}, since all that is required is the change of combination coefficients in the existing
formulae bearing in mind that for the latter two systems the lowest ] values of systemn {L;)
from which the two systems are constructed are I and 4, respectively. If the data used are
centered, namely, the mean value over the oceans is zero, then system [ Y} is equivalent 1o
system {X;}. As stated in Section 6.1, the Levitus 58T has been centered by Engelis
(1987b) so that we shall obtain the same results from using systems {X;] and {Y;}. For
comparisons, the spherical harmonic expansions will be made in some cases.

Due to a large number of experiments that have been done, only selected results are
presented. The important implications of the results will be stressed in Section 6.4.2,

i Some Definit

In order to avoid the use of lengthy names for the sclutions, we introduce the
following abbreviadons:

« Onngloxx :
The ON funcdon expansion using the numerical quadratures. "xx" is the maximum
degrae of the ON functions in a expansion. The formula used is (6.10).

= Ondsfloxx :
The ON function expansion using the least squares fit. "xx" is defined as
above. The formula vsed is {6.34).

« Shoqtoxx :

The spherical harmonic expansion using the numernical quadratures. This is only
possible when the land value of SST are assumed to be zero (see also Engelis,
1987b). The formula used is (6.17).

« Shisfroxx:

The spherical harmonic expansion using the least squares fit. The accuracy of
approximaton to the data should be as good as that of onésftoxx, as proved in the
garly sections. The "spectral content” in this expansion will be different from the
one in onfsftoxx. The formula used is (6.39). Many comments will be made on
the speciral content {e.g. degree variance, eic.).

+ Shisfptoxx

The spherical harmonic expansion using the least squares it with a power rule
obtained by using the degree variances of the coefticients in solution shnqloxx.
The formula used is (6.91) with the inner products defined by (6.94).
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In addition, the following definitions are introduced for later references:
+ Degree variance of the sphenical harmonic coefficients:
1]
= 2 (o + b
m=0 (6.95)

whem anm and b"T are defined in (6.76). Attention must be paid to the distinction between
62 in (6.95) and 14 in (6.22).

» Percentage of energy up to degree N: (for the ON functions only!)
By = Q{NVP,., (6.96)

where Paug and (W) are defined in {6 2)and (6 3, respectively. QfN) can be re,garded
as the cumulahve average power (it is "average” due to the area of the oceans A in (6.27).
The Ex is "absolute” not relative percentage because Pyyy is derived from the original
signal.

» Geostrophic currents: (Officer, 1974, eqs. (4.70) - (4.73))

o8 e
2Rmsin¢ aq] (6.97)
gy ——E o.M oo

where vy and vy are the velocity components of the geostrophic currents along east and
north dlrcc:rmns, g the mean gravity, B the mean radius of the earth, and @ the rotational
velocity of the earth. The quantity {{¢, &) is the SST from any of the expansions. The
physics behind the current {v5, vy) is that, when water particles are in constant motion, the
Coriolis force (or the geostrophic acceleration) arises. [n such a case, the sea surface is not
a level surface so that a force due to the horizontal pressure gradient is created to balance
the Conolis force, resulting in egs. {6.97) and (6.98). To calculate the geostrophic
currents from the ON function expansions, we first transform the ON coefficients to the
spherical harmonic coefficients using (6.75). Then the computation can be made using the
existing package that deals with the spherical harmonics.

6.4.2 Results

In Table 6.3, we have summarized the experiments (for the Levitus S5T) that have
been done and the fits of the expansions 1o the original data. The abbreviations in Table
6.3 are defined in the previous section. The selected contour plots of SST from the
expansions are given at the end of this chapter.

From Table 6.3, we see that based on the RMS5 fit to the original data the ON
function expansions and the spherical harmonic expansions have the same degree of
approximation to the data. The fit of the expansions to the original dala improves as the
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maximum degree {Nmax) of the ON functions or the spherical harmonic function increases.
Above degree 15 of the ON functons, systems X}, {Yj} and [Z;j) produce essentially
the same approximation accuracy if the Nmax used is the same.

For atl the systems (including the spherical harmonics), the expansions with Nmax
< 15 yield unacceptable approximation accuracies. In particular, the Gibbs' phenomena
prevail at the continental boundaries. For example, in Figure 6.8 and Figure 6.10 the
discrepancies are fairly large in the areas of Gu!f Stream (especially at the east coast of
USA}, the Antarctic circumpolar current and the Kuroshio current. Using the method of
least squares fit without the use of a power rule (note: the power rule is applied only in
solution shésfpto24), the agresment between the original SST and the $ST from the
expansions is on the order of 2 ¢m when Nmax = 24. For all the expansions, the
maximum discrepancies occurred in the Mediterranean Sea and the Black Sea, which are
basically two "isolated" regions of the domain of the oceans. If we exclude these two
regions, we can reduce the discrepancy to about | cm when Nmax = 24 and the £sf method
without the use of the power rule.

When using a power rule in the #5f method for a sphernical harmonic expansion, as
we expected the approximation accuracy has been degraded. This case is shown in Figure
6.22. As compared to Figure 6.12 where the discrepancies comespond to a spherical
harmonic expansien to Nmax = 24, Figure 6.22 shows very large discrepancies at the
continental boundaries even if the Nmax is still 24. Note that in Figure 6.12 we have used
the ON function expansion which is equivalent to the spherical harmenic expansion if the
#sf method is used. Using the RMS difference criterion, we may say that selution

shfsfpio24 is equivalent to solution onésftolQ) which is shown in Figure 6.7. Using the
numerical quadratures for the spherical expansion with S8T = 0 on land, the approximation
accuracy is even worse than that obtained from the £sf method with a power rule, as shown
in Figure 6.24 (assuming that Nmax is the same in both expansions}). As we explained
earlier in this chapter, the use of a power rule in the spherical harmonic expansion is
equivalent to forcing the expansion coefficients in the £5f method to follow the. behavior of
the expansion coefficients as obtained by assuming S5T = 0 on land so that solution

shfsfpto24 yields poorer results than solution shisfto24, but better results than solution
shngqto24.

So why do we use a power rule for the spherical harmonic expansion in the #sf
method if it yields degraded results? The most important reason Is to get "reascnable”
degree variances, or, amplitudes of the spherical harmenic coefficients. This can be
explained by the use of Figures 6.4 and 6.5. In Figure 6.4, the maximum square root of
degree variance of the spherical harmonic coefficient is about 2.90 meters (at degree 13)
which is impessible for a low-amplitude signal such as SST. Now, in Figure 6.5 we have
successfully "reduced” the amplitudes of the spherical harmonic coefficients. Of course,
the accuracy of approximation has been sacrificed in such a practice. Engelis (1987b, p. 7)
has artributed the cause of the large amplitudes of spherical harmonic coefficients to the
folding of frequencies from high degree terms to low frequency terms when an incomplete
data set is used.
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Table 6.3
Various Expansions of the Levitus 38T and the Comparisons with the Original Data

Expansicns Mean diff.| RMS diff. | Max. diff. Figures
onfsfroll, {X;) -0.001 0.067 0.3%3 | 6.7, 68,6013
onfsfrell, {X;) -0.001 0.049 0.281 69, 6.10

onéstio2d, (X} | 0001 | 0021 | 0217 | 611, 6.12, 6.14
onnqto 10, (X J] 0001 | 0066 | 0406
onnqo24, (X)) | -0.001 | 0025 | 0.440

onésftol(, {Y } -0.001 0.067 0.3%4
ondsftals, '[Yj} -0.001 0.045 0.280
ondsfro2d, {Y;l -0.001 0.021 0.216
onfsftol 0, [Z;] -0.013 0.083 1.080 6.15, 6.16, 6.19
onfsflol5, (Z;) -0.003 0.049 0.328
onfsfto2d, {ZJ}’r -0.001 0.021 0.216 6.17, 6.18, 6.20

shfsfto 10 -0.001 0.067 {0.393
shésfiols -0.001 0.049 0.281
shésfto2d -0.001 0.021 0.217
shlsfpto244 -0.015 0.069 0.723 6.21, 6.22
shngto24* -0.001 0.110 0.718 6.23, 6.24

unit = meters
t: Best; *: worst; 2 power rule

(n the other hand, the ON funcdons provide a way to approximate accurately the
35T withont worrying about the excessively large amplitudes of the expansion coefficients.
This is shown through the degree variances in Figure 6.4 where the property of
permanence of the ON function expansion (see Section 6.3) can be seen, since the
expansion coefficients are not affected by the use of different Nmax values. For example,
for solution ondsfio2d4, Nmax = 24; for seluton onfsfiol(, Nmax = 10, but the
coefficients before degree = 10 are the same for both solutions. The property of
permanence {over the oceans) does not hold for the spherical harmonics since the
coefficients vary as the Nmax values are changed. One ¢an alsc see that the temm ag, of the
spherical expansions is not zero for ail the expansions, which contradicts the fact that the
SST data have been centered. On the conwaary, the ON functien expansions using system
{Xj) always yield a zero Cgo, where by definition ¢fgq is the mean of the SST over the
OCERANS.

The ON function expansion, like the Fourier series expansion, enable us to study
the energy distribution of 58T. Table 6.4 shows the cumulative average powers and
percentages of energy from the expansions using system {Xj}. Again, we confirm from
Table 6.4 that there is no energy at degree § (of the ON funcuons} Up to degree 10, the
percentage of energy has achieved 98.52 (by the #5f method); vo degree 24, the
corresponding value is 99.90. For system {Y;}, the resuit is the same. For system {Z }.
the energy distribution is shown in Table 6.5 where only selected degrees are presemcd
The figure of merit (see Section 6.1) is 0.1 up to degree 24, for all ON function expansions
using the ¢sf method. Therefore, by using Nmax = 24 in the ON function expansions, we
can recover 99.90% of the energy of SST with a RMS fit of 2 cm (including the
Mediterranean Sea and the Black Sea), Based on the energy distribution using the ON
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function expansion and Theorem 2 in Section 5.4, we conclude that the Levitus S5T has a
resolution of 750 km (= 180/24 x 100 km).

It is clear that we cannot perform a spectral analysis over the oceans using the
spherical harmenics. However, if we assume that $8T = 0 on land, the S5T can be
artificially regarded as a global signal. By the land value assumption, we have expanded
the SST into the spherical harmonics for Nmax = 36 by the numerical quadratures. To
investigate the energy distribution, it will be more appropriate to use the curmnulative lotal
DOWET:

N

Pry=4mn Z o3
=0 (6.99}

Then the cumulative percentage of energy is Pg/Pr, where Pt is the total power of 58T
defined in (6.1). It was found that the curmulative percentages of energy are 21.73, 94.26
up to N = 24 and N = 36, respectively. This indicates a relatively slow convergence in
such an expansion, The land value assumption alse leads to a RMS fit of 11 cm when
Nmax = 24—an approximation accuracy poorer than that obtained from the ON expansion
with Nmax = 10.

It must be pointed cut that there is no need for a land value assumption in the ON
function expansion (This is also true for the spherical harmonic expansion if the £sf method
is used). [n addition, a powet rule is not required to conmol the behavior of the ON
coefficients and yet the expansion sill yields a rapid convergence and excellent spectral
behavior of the expansion coefficients. We ¢an say that the spherical harmonics can have
fairly good performance in accurately approximating an oceanic signal but fail to yield good
spectral behavior due to the obvicus thecretical problem pointed out in Section 6.2.3.

The next issue to be discussed is the correlation between expansion coefficients and
the accuracy estmates of the coefficients. In the usual least-squares adjustment in geodetic
problems, the mathematical model is exact. For example, if (xq, 1, 21} and (x2, ¥2. 22)
are rectangular coordinates of two points on the earth, then the distance d between the two

points is d = (X1 - x2)2 + (y1 - y2)° + (21 - z2)%)V/2 which describes an “exact” relationship
between d and the coordinates. Then, we may use the measurement d, wgether with some

other measurements such as angles, 1o determine the coordinates. The measurement d
cannot be perfect so we have a noise v due to factors such as insmuments, etc. In such a
case, the observaton equation is

d + v = (X3, ¥1. 21, X2, ¥2, 22) (6.100)

Now 10 approximate a function by a linear combination of other functions, the concept is
somewhat different. In (6.77), we have talked about the approximation “error”, but not the
noise which is basically random. The "error” is caused by the insufficlent terms of the
approximating functions used, but not the noise. If the data such as 55T really have
noises, we should re-write (6.76) as (in case of approximation by the ON functions)

MNmax n
prerve Y, D (tamOnd® &)+ BunQunl6. 1)
=0 m=0 {ﬁlﬂl}
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Cumulative Average Powers in Meter**2 and Percentages of Energy for Sclutions

degree

D =] Oh O e 0 B D

Table 6.4

(1) onfsfro24, [Xj} {2) onngto24, {Xj}

cumulative ave. power

{1}
0.0000
0.0922
0.2305
0.2533
0.2706
0.2729
0.2761
00,2780
0.2821
0.2837
0,2845
0.2849
0.2855
0.2861
0.2867
0.2872
0.2874

{2)
0.0000
0.0925
0.2309
0.2534
0.2695
e.2717
0.2753
0.2773
0.2816
0.2833
0.2841
0.2845
0.2851
0.2857
0.286]1
0. 2864
0.2867
C.2869

percentage

(1)
0.00
31.95
79.83
87,73
93.71
94.51
95,63
S96.27
97.70
98,27
58.52
98.67
948.487
99.10
99,28
99,35
99.47

(2)
0.00
32,0%
79.98
a7r.74
93.33
94.11
95,36
96,06
97.52
98,12
98,39
98.54
98.73
98,94
99.10
99.19
99,29

0.2a77
0.2879
0.2881
0.2882
0.2883
0.2884
0.2885

0.2872
0.2874
0.2876
0.2877
0.2878
D.287%
0.2881

Table 6.5
Cumuiative Average Powers, Percentage of Energy and Figure of
Merit for Solution ondsfto24, [Z;)

99.54
99.63
99,71
99.77
99.80
99,84
599.87
99.90

9g.38
99.46
$%.53
99,59
99.64
89,67
99,72
2¢.76

Degree [ Cum. ave, power | Percent. energy | Figure of ment*
10 0.2836 98.92 1.08%
15 0.2870 Q040G {.60%
24 .2884 90 90 0.10%
* see eq. (6.4)
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where {op is the observation of the signal, e the approximation error or the truncated signal
and v is the noise of the observation, Unless Nmax goes to infinity or §, is a bandlimited
signal, the approximation error will never disappear from (6.101). When ¢ exists, we are
minimizing the norm of (g + v), instead of v alone, 1o get a solution for the coefficients
Cnm and Bpm. In such a procedure, we cannot claim that the valoes from the diagonal
elements of the inverted normal matrix be the "standard deviations” of the coefficients, due
1o the mixed effect of e and v {as one could find from Figure 6.8 that e can be very large
when Nmax = 10). A trick to avoid this dilemma is made by Rapp (1989b} who removed
the error ¢ by assuming that the ouncated signal from Nmax + 1 to e is available from
some model and the ohservation equation is refotrmulated by using the "modified” signal (£
- e). {Note that Rapp (1989b) dealt with gravity anomalies and geopotential coefficients,
but his principle 13 applicable in this discussion).

In short, the problem in estimating the accuracies of the expansion coefficients is
that the truncated signal exists and we cannot get an exact model such as (6.100).
Therefore, we may just talk about the correlation coefficients according to the discussions
made in Section 6.2.3. Engelis (1987b) has found the phenomenon that the correlations
between the spherical harmonic coefficients are high if Nmax 15 greater than 10 and only
oceanic data are used. The results from the above expansions agree with his findings.
However, we found that by the £sf method the correlations berween the ON coefficients are
negligible regardless of the Nmax values used, and these low correlations also explain why
in Figure 6.4 the two sets of ON coefficients agree very well.

Next we shall discuss the unitary transformation between system {Y;} and {Z;)
{see _also Section 3.3} Although system {Z;] is constructed from
Rzg, R, 821, Raz, 823, -+ (without Koo, R1g, R11 and S1; terms), it approximates the
SST as well as system {Y;} does provided that Nmax > 15 {below 15 [Z;} has poorer
performance than [Y;}, see Figure 6.16). If we prefer a SST expansion using system
(Yj}, we can perform 2 unitary transformation from the coefficients of system {Z} to the
coefficients of system {Y;} using (5.82). As we mennoned in Section 5.3, the maximum
expansion degree (the N value in (5.82)) must thecretically be infinite in order to make the
unitary transformation possible. Since with Nmax = 24, the expansion using system {Z;)
can recover 99.9% of the SST energy, we have tried this limited expansion, for our unitary
wransformation, Let us denote the wransformed coefficients as o and By (clearly now
they become the expansion coefficients of system {Y;}), and the coefficients from the
direct SST expansion using system (Yj} as Onm and Pam , the RMS difference by degree is

n (__ _,}z (_ _,)2 '
Dy = z {In.m'ﬂ.“m + E‘nm'ﬁnm

m=0 (6.102)
Up to degree 15, the Dy, values are shown in Table 6.6. Clearly, the difference between the
two sets of coefficients is negligible. Thus for a signal such as the SST used in this study,
it is possible to perform a unitary ransformation between two ON systems using a Finite
terms in (5.78). (Note that (5.78) is a "theoretical” one and (5.82) is the "practical” one
used in this discussion).

As stared at the end of Sectien 5.3, we again emphasize the imporiance of the
unitary transformation in the joint estimation of geoid and 53T using satellite altimewy: we
try to find an ON system for the SST in the joint model that can avoid the "sensitivity
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spectrum” of the geoid and the strong 1 cyclefrev radial orbit error (cf. Wagner, 1986).
After recovering the coefficients of this system from the jcint solution, we then transform
these coefficients to the coetficients corresponding o another systam.

Table 6.6
RMS Differences Dy, Between the Unitarily Transformed Coefficients and the Coefficients
From the Direct S5T Expansion Using System {Yj)
Unit : meters

Degree {n) jEN Degree Dy,
| 0.0001 {0002
2 0.0002 10 0.0002
3 0.00002 11 0.0003
4 0.0001 12 0.0003
5 0.0002 13 {3.0002
6 0.0002 14 0.0003
7 0.0002 15 G.0003
2 0.0002
6.4.3 Geostrophic Currents at the Congnental Boundarjes

Finally we have 10 settle the problem of the directions of current flow at the
continentzl boundaries. The directions of geostrophic current are computed by (6.97) and
(6.98). Apparently according to those equations the only required quantity is the
approximated 55T, assuming that everything else can be found in some standard fonmulae.
Based on oceanographers' idea, "near continental coasts, the currents are forced to follow
the coastlines, forming eastern and western boundary currents” (Neumann, 1968, p. 73).
However, depending on the character of forces that act upon a water body, and on the state
of balance of these forces, the resulting motions of water particles can be different (ibid., p.
127). In additon to geostrophic currents, other major types of currents are inertia currents,
gradient currents, drift currents, etc. (ibid., Chapter 4). Thus the boundary currents could
be a combination of varicus currents. 5o, using the geostrophic currents alone, can we
demand thar the current flows must Fellow the coastlines? In addition, Wansch and
Gaposchkin (1980, p. 729) pointed out that, due to the existence of alongshore pressure
gradients on the coasts, the current flows must become significantly nongeostrophic in the
immediate vicinity of the boundaries. They ailso quantitanvely showed such a deviation on
that page. Furthermore, even if the flows computed by (6.97) and (6.98) must follow the
coastlings, the observations that can be used for developing a 85T model may not be close
encugh (depending on the depths) to the coastlines {a typical case in satellite altimery due
1 data editing) and hence the computed flows at the place where no chservation is made
really do not make sense.

Unfortunately, as shown in Figures 6.13, 6.14, 6.19 and 6.20, none of the
expansions described in the previous section yield the cumrent flows that everywhere follow
the coastlines. To get a better insight into the condition of the current flows at the oceanic
boundaries and possibly to make improvement of the representation, we first present the
geometry of some needed unit vectors at a point of the oceanic boundaries in Figure 6.3,
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B9, A} =

Figure 6.3 Unit Vectors at the Oceanic Boundaries
It F1gu_rf: 6.3, B(p, A) =0 is an equation describing the ﬂccam{: bt:tul'u:laruf:~='.,_n.tL is a

langent vector, ey is an outer normai obtained by the cross-product el x k, where k isthe
unit vector along the radial directzon. Applying difterential geometry, we have

e =L yVV1+ )
en=ly. -0/ 1+ o (6.103)
where

, | %/a;

cos § 3B/ay (6.104)

Now, if the flow vector (vy, Vy) is to be parallel 1o the tangent vector, then we should have
—»
En - (Vr. ¥y} =0 (6.103%)
Substituting vx and vy in (6.97} and (6.98) and & in {6.103) into (6.105), we get

o, aB o oB _
dd oA I 8¢* {6.106)

which is the desired constraint for the current flow. To incorporate this constraint to our
least squares error approximation, we write (6.106) as

where X contains the expansion coefficients, Assuming we use the £5f method and the
ON functions, then the new approximation model is (in case that mean values are given,
see also (6.26))
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VIV, ={AX, - L)TfAX: - L) = minimum\
subject to (6.108)
KXg = D !

where Ag, L are defined in (6.29) and (6.31), respectively. The solution of (6.108) can be
found in (Uotila, 1986, p. 105):

X, = N1U, - N RT{KN;IKTT IR NG, (6.109)

where Ny = ATA, Ug = ATL.. Tn (6.109), we have denoted the new solution vector as X,
to distnguish this new one from the solution vector without constraint, 1.e., X;. Asin
{Uotila), we can write (6.109) as

X, = X, - NKTRNF KT KX,
= Xs + 8K, (6.110)
where AX, denotes the change of X due to the constraint given in {6.107).

__ There are many preblems in using the constraint in (6.107) to get the new solution,
Le., X, First of all, since the boundaries of the oceans are not simply connected polygons
(see Section 3.4.1), the flow vector constraints have to be specified locally, namely, we
would need several equations Bi{g, A =0, j =1, 2, .... constructed in local coastai areas
by fitting polynomials to the {9, A) coordinates of shorelines, to accomplish the constraint
equation (6.107). The construction of Bj will be a formidable job even if it is possible.
Secondly, from (6.109), it is clear that the number of rows in matrix K {i.e., the number of
constraints) cannot exceed the number of columns in matrix K (i.e., the number of
expansion coefficients) or the matrix {KN; KT} will be singular. Therefors, only limited
constraint equations are allowed 10 be established. If the total length of the world's
shorelines is 10 times of the equator, then for Nmax = 10, we can at most astablish a
constraint equation every 3300 km along the shorelines. This sparse distribution of
constraints, of course, cannot prevent the flow vectors from peinting to the continents.

Based on the above discussion, the constraint equation {6.107) could be hard to
realize in reality. The second possibility of achieving the parallelism of fiow vectors along
the coastlines in the expansions of 88T is 1o find a system of functions (not necessanily
orthonornal) whose elements all satisfy the boundary constraint in (6.106) so that the
resulting expansion gives a S8T model from which the flow vectors follow the coastlines
automatically. From the experience of eigenfunction and eigenvalue problems in Chapter
3, such a systern probably does not exist.

s E : ¢ Qceanic Geoid i ON Funict

In this section, we shall perform expansions for the oceanic geoid obtained from the
OSUBYRB potentiai coefficients (Rapp and Pavlis, 1990). We can do so if we regard the
geoid undulation as a geomeric guantity. Later on we shall also introduce an important
technique to assess the error spectrum of the geoid undulation correction (1o the satellite-
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field implied undulaton) from satellite aldmewy based on this concept. By Bruns’ formula,
the geoid undulation N at a point {r, 8, A) may be calculated by a set of disturbing potential
coefficients Cpp, Sam as follows (Rapp, 1986):;

Mmax n
Nir, 9, 4) = GM Z {?:)" 2 (Emncnsml + gnmsinml) PM{cosB}
T 2 " moo (6.111)

where ¥ is the normal gravity and a ig a scaling factor which is normally the equatorial
radius. By using r =a = R, and assuming ¥ = GM/RZ, we get

Nmak
N{g, L) =R, z z {Cmnccrsm?l. + gnmsinm?-.) PP{cosd)
n=1 m=0 (6.112)

By treating N as quantties like the 85T, we can perform exactly the same experiments as
before. Since most of the important points of the ON function expansions and the spherical
harmonic expansions have been discussed in the previous experiments, we shall focusena
different issue here.

For the simulated data, we generate 1° x 1° mean undulations by Colombo's
SSYNTH (Colombo, 1981) and use a modified formula of (6.112) for the mean value:

e =22 S Y (ConlCl + SamlSh) B
AGE n=2 m=0 (5 Y

where Ack, Il.':fm etc, can be found in (6.64). Four sets of 1° x 1° mean undulations with
Nmax = 15, 18, 20, 24 were generated. To perform the experiments, we usg the ocganic
mean undulations only, although (6.113) can give a global coverage. The issue to be
discussed here is related to Theorem 2 in Section 5.4. That theorem implies that if now we
expand the above oceanic geoids into the ON functicns up to a maximum degrae, then all
the expansion coefficients with degree greater than Nmax will be zero. This is, however,
not the case for the spherical harmonic expansion for the oceanic geoid.

Since it is clear that the three ON systems will yield identical approximation
accuracy if the Nmax value exceeds a certain limit, we shall only use one system here,
namely, system {X;]. For all the ON function expansions and the spherical harmonic
expansions, the Nmax value is 24 and the #5f method is used. The four sets of 1° x 1°
oceanic geoids have the names as follows:

Setl: Nmax=15
Set2: Nmax =18
Set 3: Nmax =20
Set4: Nmax =24

To show the validity of Theorem 2 in Section 5.4, we list the degree variances of
the ON funcdons {tﬁ in {6.22)) and the degree variances of the sphenical harmonics {0% in
{6.95)) from the expansions in Table 6.7.
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Based on the results in Table 6.7, clearly Theorem 2 is numericaliy proved. For
exampie, for Set 1, the Nyquist frequency of the oceanic geoid is 15; thus after degree 15
of the ON funciions, the square root of the degree variances (of the ON function}
immediately drop to zero. On the other hand, for Set 1, the spherical harmonic expansion
still possesses some energy after degree 15 (of the spherical harmonic) . For the other sets,
the same phenomenon can be found. Therefore by using the ON functions we can detect
the maximum spadal resoluticn of an oceanic signal if it is bandlimited.

Table 6.7
Square Roots of Degree Variances of the ON Functions and the Spherical Harmonics
Using 4 Sets of 1° x 1° Mean Oceanic Geoids

Degree Set | Set 2 Bet 3 Set 4
ON ] SH| ON [ SH| ON | SH | ON [ S0 ]|
0 |O.IRL F0.735| 0.280 | (.722 | 0.303 [ 0707 | 0.349 | 0.974
10 1.382 | 2.240 | 1.373 | 2.233 | 1.345 | 2.249 | 1316 | 2.345
14 0.642 | 1.076 | 0.664 | 1.081 | 0.651 | 1.0%0 | 0.648 | 1.960
15 0.404*| 0.949 | 0.606 | 0951 | 0.666 | 0955 0.674 | 1.340
16 0.01¢ J0.332| 0.517 | 0.920 | 0.530 | 0915] 0.546 | 1.648
17 0000 | 0.249 ] 0482 | 0728 | 0.494 | 0.733 | 0.426 | 1.303

18 000 | 0.179 | 0.356% | (.764 | 0.352 | 0.755 | 0.287 | 1.232
19 . 0,123 0.011 | 117 [ 0.358 | 0.648 | 0.416 | 1.074
20 ¢.077 ] 0.006 | 6.671 | 0.247* | 0.589 ) 0.325 | 0.826

22 0.021 ] 0.000 | 0.021 | 0.005 | 0.0223 0.312 | 0.592
23 . C.008 | 0.0003 | 0.008 | 0.0600 {0.008§ 0.225 | 0.486
24 10000 J0.002( 0.000 | 0.002] 0.000 | 0.002 | 0.144%] 0.425
URIL ; TS

ON : orthonommal function expansion

SH : spherical harmonic expansion

* : Noenergy beyond this degree of ON function {theoregcally)

0
0.00{4
0.000
21 | 0.000 |{.044 | 0.000 | 0.043 | 0.010 10041 ] 0.322 § 0.744
0.000
0.000
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Figure 6.7 53T From Solution onlsftol0, {Xj}, Cl=10cm
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Figure 6.9 SST From Solution onlsftol5, {X;}, CI =10 cm.
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Figure 6.11 SST From Solution onlsfto24, (X}, CL= 10 ¢m.
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Figure 6.17 SST From Solution onlsfto24, {Z;}, CI = 10 em.
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Figure 6.22 Difference Between the Levitus $ST and SST From Solution shisfpto2d,
Cl=5cm.
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Figurs 6.23 S5T From Solution shnqto24, CI =10 cm.
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Figure 6.24 Difference Between the Levitus SST and 58T From Solution shnqto24,
CI=3cm.
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In this chapter, we shall apply the erthonermal functions developed in Chapters 5
and & to the joint mode! of radial orbit error teduction and 58T estmation. A short review
of analytical satellite theory related to the radial erbit perurbation wall be made first. Then.
some practcal problems in the existing joint model used by previous investgators will be
pointed out and some new considerations are made. Finally, the experiments will be
conducted with emphasis on the use of the ON functions.

2.1 Lineanized Lagrange's Fquati ion and Radial Orbat Errg

Tracing back to the late 50°s and early 63, one ¢ould find that the starting works
on analytical satellite theory are due to Brouwer (1959), Garfinkel {1959), and Kozai
(1959), which all appeared in the journal “Celestial mechanics”, Vol, 64. Following these
piongering works, numerous analytical satellite theories have emerged (even up to date).

For this study, it is felt that a brief review of analytical satellite theory, especially
the one related to radial perturbation is needed, since later on some additional
considerations for our estimation model will be made. Let us start with the motion of an
aruficial satellite in the earth’s gravitatnonal field (the non-gravitation origin force such as aw
drag, solar radiation pressure and the luni-solar atraction are not considered for the time
being):

T=VV (7.1)

where V is the earth’s gravitational field and © = {x, y, z) contains the rectanpular
coordinates in either an earth-fixed systemn or the inertial system. From classical
mechanics, such as Goldstein (19807, itis known that in somne cases a set of generalized
coordinates, will be a better choice o describe the motion of a syster either for the purpose
of interpretation or for the purpose of calculation. One particular choice involves the
canonical variables (coordinates) described as follows. Let T and V be the kinematical
energy and potential energy respectively of asystemand L = T - V be the Lagrangian of
that system. Furthennore, let the generalized coordinate be g, & = 1, 2, ..., so that the
generalized morenta of the system are:

pg:f,ﬂ-g 1, 2,

O (7.2)

Defining the Hamiltonian of a system as H = T + V for a conservadve system (such as the
earth’s gravitational field, excluding all the non-gravitational effects described above), one
can find the equatons of motion of a system as (Spiegel, 1967):

. dH . oH
Pa=—T—— . da=—"

o« dpy (7.3

Such a formulation of equations of motion have been used to derive the analytical satellite
theeries in some cases. The representation (p,.q,) for a system s calied a phase space

149



{Spiegel, 1467). The quantities p,, gy are known as the canonical variables (Goldstein,
1980}, One well-known example of such a formulation 1s the use of Delaunay’s variables
L, G, Hand |, g, b in the anatytical satellite theory.

Despite the usefulness of canonical variables, in some cases a set of non-canonical
variables can provide a better insight into the geomerry and characteristics of a system. It
turns cut that for the motion of a satelliie in the earth’s gravitational feld, the use of the
Keplerian elements {a, g, I, M, ®, Q} lead to a special system suitable for many analyses.
The definitions of the six Keplerian elements are: a - the semi-major axis, e - the
eccentricity of the osculating ellipse which osculates with the actual orbit at the point of
langency, I - the inclinatdon, M - the mean anomaly, @ - the argument of perigee and Q -
the right ascension of the satellite ascending node with respect 1o the vemal equinox. The
use of the Keplerian elements for the motion of a sateilite leads 1o Lagrange’s equations of
motion (Kaula, 1966):

da_ 2 ¥R
dr  na M

de _ 12 OR _{1-4':1}1’II2 dR
dt  naZe gp nale 2w

dw . _ cos | ‘,E'Eﬂl'ﬂ}”i oR
de naz{l-eﬁ}l‘fzsinl a1 nale Qe

cos | J9R . 1 IR
naf1-e2} 2 sin 1 de na?(1-62)" 2sin 1 9Q

2=

dQ _ 1 dR
dt naz{l—ﬂz}”}sml al

dM ., 1c29R 2 oR
dt nafe g 12 3

(7.4)
where R is the earth’s gravitationai field, excluding the central term GM/r (GM is

gravitabonal constant, 1 is the geocentric distance 1o the satellite) and n is the mean motion
defined as

n = YOM/;3 {7.3)

Apparently (7.4} is a system of non-linear first-order differential equations. A solution for
(7.4) is possible only in some neighborhood of reference points (or coordinates) through
some linearization. To this end, we first transform the function R from the spherical
cocrdinates to the Keplerian elements, as done in Kaula (1966);
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R = E oMa ): Fmp(t}z Gpee)S tmpel 00.M.2,6)

=== {7.6}

where £ and m are degree and order of spherical harmonics respeciively, & is the
Greenwich sidereal angle, a, 1s the earth’s equatorial radius and S gppq 18

£-moeven
] s Y

Stm ]I-m aven
“Stm ] £.modd

SIN Wem

s, =[
mrd £.m 084 (1.7

and where Cypy, and 3 gy, are the geopotential coefficients. The argument Wyppg 1s

Wempg = (£ - 2pjo +(€- 2p + qM +m{©2 - 8} (7.8)

The function F;m (I} is known as inclination function for which many new algorithms for
evaloation have been derived, see ¢.g., Goad (1987), Kostelecky et al. {1986) and Sneeuw
(1941). The function Grpq(ﬁ] is the eccentricity functdon which is basically the coefficient
in the expansion (Gooding and King-Hele, 1988):

@ leileel = Y Gppgleleilt i
a= (7.9)

or equivalently {multiplying e-It-2PM on both sides of (7.9)).

(%}Hlai{t-lplfam] = 2 GipqlereiaM
g (7.10)
which enables a FFT evalvation of Gy (e), as described in Goad (1987). In (7.9), f is the
true anomaly (the angle batween fine of apsides and the line from geacenter to satellite).
Based on the observed fact that the dominant perturbations of geodedc satellite are the

secular motions in , {2, M due to the earth’s oblateness, we may linearize (7.4} in the
neighborhood of an initial system whose motion has the form

da_de_dl_pdw-g d2_g dM_y
d T drdr e e ﬂ'dt Mo (7.11)

where O, ﬂa and M, are the secular rates of 0, {3y, M, 0 be described later.
Consldering that the only titne dependent variables on the right hand sides of {7.4) are w,
£, and M, we can write the arguments of the cosine-sine functions in R as:

Wempg = ‘I}fmpq T+ Ye (7.1
where
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\irzmpq={f-pra+{f-29+q}ﬁia+m[ﬁo-éa) (7.13)

and Wy, i3 a constant that will become clear in the coming discussions and 8,, is the mean
rotational rate of the earth. For each émpq component of R we may integrate both sides of
{7.4} to get the first order correcton (or perturbation) o the initial system (Kaula, 1966):

) £
ﬁazmpq: A (k"ﬂ) F!mprpqS-!qu

na£+?‘j]
!
ac
lf:‘l’al'n'q:mq = a ; T‘[ﬂ{k+q}-k] thpGl'pqSImpq
iy
Hag . , . =
paf
ﬁI{mpq = - {k cos |- I.'Il} FgmpGgpngmpq
nat+>nsinly
pag T
AL = F
fonba naf*3n sinly Ftmy Otpa>tmes

nat*3y (7.14)

where [=GOM,k=¢-2p,n=(1-e'2, F,  =dFemlydl, G|, =dGpdekde, V=
Wempq and Simpq is the integral of § tmpq With respect 1o its argument. By (7.11) and
(7.14}, we can obtain the approximate orbit at some epoch:

(1) = a5+ Aa

e(t} = e+ Ae

I(t) = I, + Al

w(t) = g + Wt + A = gt) + Aw

Qt}aﬂﬂ+ﬂnt+.ﬂﬂ=ﬂa(t} + Afl

Mt} = M, + Mot + AM = Mt] + AM (7.15)

where Aa, ..., AM ate the sums over individual terms in (7.14) up t0 a maximum harmonic
degree, a,, ... My are mean Keplerian elements at the beginning of the orbit, and t s the
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tfime elapsed since the beginning of the orbit. The quantities a,, eq, Iy, Wg, 24, Mg and
thy, (3, M, define a reference orbit which, tage@her with Aa, ..., AM, provides an
approximate solution to Lagrange’s equations of motion (7.4) in the form of (7.13).

At least two methods can be used to determine a reference orbit. In one method
{e.g., Engelis, 198%a, p. 32), I, t,, Q,, M, are obtained from a satellite’s initial state
veclor; &, and e, are found by subwacting the periodic effect on a and e due to J5 from the
corresponding values given in the initial state vector; €, and M, are computed by {(Kaula,
1966

. 2
3l L My=n+ ?’I"‘I—za‘f(ScmsZI— 1)
A1 ez}:az 41-¢2) 1252 (7.16)

and finally ¢, 15 calculated by

"I

= 3ntgad {I-Scnszl}+d};
° a{1-e?fa2 (7.17)

where m:, is the effect on o doe to all odd zonal harmenics, as described by Cook (1966},
In a second method (e.g., Colombo, 1984}, the reference orbit is obtained from a least-
squares fit of the precise ephemeris by a model S, + Soﬁl where S, indicates the mean
elements ag, ..., Mp and S the secular rates Mg, £q M,. In this study, we will use
Engelis’ method to determine a reference orbit. However, the secular rates (3, and M, are
computed by (7.16), plus the second order effect due to J3. The second order effect used
here is from Kaula (1966, p. 48, eq. (3.113)),

In alrimetry, the radial position of the sateilite is of greatest interest. For a small e
(on the order of 10-3), we have

r = a{ 1-ecos E) = a( I-ecos M) + O(e?) (7.18)
The approximate schution for 7 at epoch ¢ (relative 10 the beginming of the orbit) 15 then

(1) =1o(t) + Ar(1) (7.19)
whate -

Ar(t) = Aa( 1-egcos M 1)) - aghecos My(1) + agAMsin Md(1) (7.20)

and r,(t) = a5 l-e,cosM(t)) is the reference radial posidon. In deriving (7.1%), the second
order terms such as Aade are neglected and the assumption that sinAM=AM is made. The
beaury of {7.20) is that it is already a linear form in terms of the geopotential ceefficients
Come Spm which appear in Aa, Ae and AM. Thus, the errors in the coefficients can be
linaarly propagated to the radial position throngh (7.20). On the other hand, when (1) 1s
the ohservable, as in altimetry, the lincar form of (7.20) has amomatically provided the
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elements of the design matrix in the parameter estimation problem involving the
geopatential coefficients.

Consequently, using the linear form (7.20} one is able to investigate a satellite radial
orbit error if the errors in the geopotential coefficients are known. In such a case, we may
regard Ar(t) in {7.20) as the radial orbit error and express Ar as:

Ar = Ar(ACpm ASpm 1) (7.21)

where AC|, and AS, . are coefficient errors {so one can merely replace Cpp, and S,y in
Az, Ae and AM by AC,, and AS,p, to make Ar become "error” or "increment” to the 1nitial
value}. Another advantage of such a linear form is offered by the fact that the arpument
Wempg @8 expressed in (7.12) allows the radial orbit error to be classified into different
frequencies and thus provides a possibility of spectral analysis for the radial orbit error. To
get a complete form of the frequency representation for Ar in (7.21), we have to subsotute
the errors Aa, Ae, AM (now they are “errors” due to AC,L, ASyp) from (7.14) into
{7.20). Such a substitution requires considerable algebra and will not be shown here. A
detailed exposition of the substitution can be found in Colombo (1984) or Engelis (1987a).
Engelis’ {1987a) derivations for Ar showed almost every possible step needed for an actual
calculaton and the software for the simultaneous solutons conducted in this chapter will be
based on his results {for the orbit error part only). Furthermore, for a small &, it is
sufficient to use g values only up to q = 21 for the components in Az, Ae and AM (Engelis,
1987a).

An approximate and compact form of Ar using the Fourier representation approach
is provided by Wagner (1985). In his approach, the following approximate formulae for
the eccentoicity functon thq are used:

- -t
Gepole) = 1, Ggpurfe) = $1¢2 2k + 1) (7.22)

where k = £ - 2p. Then, Ar can be expressed as (Wagner, 1985, eq. (13)% also Schrama,
1989; Engelis, 1987a, p. 72):

drar  den fmas, £,k parity

At)= 2, D, Y Hpw ComtoS Vimt + Semsin Wignt]
k=lme M=) f=ton {(7.23)

where

{-m evan
ACrn . A * i
N - ] COSWemo "'[ e A Sifme  {7.24)

-ASym . ACp, ACyn . ASynm

F
{Ct‘kms Sﬂcm} =E
i - ocd

a5 i B 1128

plp? - 1) (7.25)
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Vi = Koo + Mo} + mlQ - 8o, Wemo = K + M) + ml2, - 8) (1.26)

8= ¥km
NIO (7.2T)
Emin=max(}d, 2, m + mod(}d - m. 2)). k=24 -2p (7.28)

The summation over £ is evaluated for the £ values having the same parity with k (k and £
are simultanecusly even or odd). £, 15 the maximum harmonic depree sensitive to the
earth’s gravitational field (depending maialy on the satellite’s height). The P valve shows
the satellite orbit frequency in terms of cyc/rev. Of high importance is Hp , known as
"sensitivity spectrum” (Wagner, 1985). Hp,, becomes singular when (1) |§k= 0, the case
when Yi.=0 , or the resonance case; (2) [J = £1, this will require thatm=0and k = 1,
hence £ = 2p + 1, Thus the second case is due to the odd zonal terms. Further, in the
second case since k = 1, m = 0, the correspending orbit frequency 15 1 (assuming @, i$
small enough 10 be neglected, see (7.26)). Due to the singularity of Hypy,, in these two
cases, it turns out that in the linear orbit theory the resonance effect and the 1 cyc/rev
frequency cause most rouble in representing the satellite radial orbit errors.

Although Wagner's (1985) approximate formula (7.23) provides a good insight
into the radial orbit frequency, a more rigorous classification of frequency will be based on
the W empq value in (7.13). Re-writing {7.13) as

Witmpq = (£ - 29 + @) (60 + M) + €2, - 8,) - qade
=k{d}o+Mq}+m[na- Ba]‘qu]u (7.29)

we ay use the conditions of k, m, £ to ¢lassify the orbit frequency, as done in Table 7.1.
Table 7.1 has been based cn Colambo (1984), Schrama (1986), Engelis (1987a) and
Reigher (1959). In (7.29) we have defined that k¥ = £ - 2p + q and the q values are
restricted to 0, £1.

Table 7.1 Frequency Classification of Satellite Orbit Using Keplenian Elements

Designation k ™m ! Wimpq | Typical period
i (days)
perfect resonance™ 0 0 even ¢ 2o

deep resonance [ 0 odd -(0g 100 - 200
shallow resonance | >0} >0 ={ 5
m-daily 0 [1smeo 1O, - 0.} 1/m

long period 0 0 odd | (£ - 2pkn,

shor period #{ >0 1/20
*Excluding the c?mmepsmte obitm=fy, k=ay,v=1.2,..,q=0

t Ko + M)~ 8, - O}, q =0
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In the case of perfect resonance or even deep/shallow resonance, the formwlae such
as (7.14) and (7.23) become invalid and hence a different formmula for the radiat orbit error
must be derived. Such a derivation may be found in Engelis (1987a) or Colombo (1984).
In additicn to the radial orbit error arising from the linearized solution of Lagrange's
equations of motion, the radial orbit error can alse be caused by the second order effect not
accounted for by the lingar theory discussed above. Furthermore, the errors of non-
gravitational origin, such as initial state vector error, air drag, solar radiation pressure, etc.,
will also give rise to radial orbit error. The follewing is a summary of radial orbit errors
considered in this study:

(1) Eirst order radial orbit error

The error Ar(t) in (7.23), but with Engelis' (1987a) rigorous formulations {see
Secnon 5.2, thid.). We now denote such an error as A r(1).

{2) Resonance effect (perfect, deep and shallow)

As mentioned before, the solution such as (7.23) fails if the argument Wempq = 0.
In such a case, we will still assume that a, e, [ on the righthand side of (7.4} are time-
invariant and now the rates of change of a, e M become secular or nearly secular
{depending on whether Wempq is exactly zero or very "close” to zero, see also Table 7.1).
Colombo (1984) showed that, in such a case, the pertorbation Aaf, Ae® and AMY (the
counterparts of those in (7.14) for a resonance case) can be modeled as

2 .
ASi =Y, clad
e (7.30)

where AS] are Aaf, Aef and AME, ¢! are constants and At is the time relative to the middle of
an orbit arc. Substotuning (7.3() inft} (7.20), the radial error due to resonance effect is

Al = Co + ©1ALCOS M) + Coatsin Myt) + catdcos Myt) + catt®sin M (7.31)

where ¢; are coefficients to be determined. In the experiments conducted later, we will
show that ¢4 and ¢4 are very small for the Geosat arcs from GEM-T2 orbit,

(3) Second order radial orbit error

The linear theory provided by Kaula {1966) only gives an approximate orbit and
hence an approximate radial orbit error model such as (7.23). Improvement to the linear
theory can be made by considering the interaction between the Aa, ... , AM values in
(7.14) and rates of change da/dt, ... , dM/dt in (7.4). An elegant approach for such an
improvement is Vo Zeipel’s method which may be found in Kaula (1966} or Brouwer and
Clemence (1961). Another approach is to use the Lie-series. A detailed exposition of the
application of the Lie-series for the first order and second order soludon can be found in
Cui {1990) who used Hill’s variables instead of Keplerian elements,

Engelis {1987a) carried out direct integrations for the second order effect by
considering the interaction between A5, and §; in such a way:
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& 138, _
AaS; = Z —&8dt,i=1, .., G

=1 | 9§j
{7.32)
where S,- are the rates of change of Keplerian elements in (7.4), A;S, are the first order
perturbations in (7.14), and A.§; are the second order perturbation of Keplerian elements.
Negiecting small guantities, Engelis {(1987a) obtained the final result for the second order
radial orbit error as:

Aar = b1Atsin My{1) + baAtsin2M {1} (7.33)
where by and by are coefficients,

(4) Radial orbit error due to initial grate vegtor

The inital state vectors are necessary quantities for orbit calculations. If errors exist
in the initial state vectors, the first order radial orbit error due to such errors can be
approximated by

IO a4 O e 1+ 0 g
da de oM
= Aay - (Aag + ader) cos M) + aerAMisin Mo(t) (7.34)

Arr

where Aap, Ae; and AM; are the initial state vector errors in the components a, ¢ and M
respectively. The expression for r{t) is taken from (7.18). If we further consider the
interaction between the ininal state vector error and the first order radial errer, we will get
time-dependent coeffictents for the sine-cosine functions, as shown by Engelis (1987a).
'['l'uer%fc:re, the tota] errer due to the initial state vector error is (cf. Engelis, 1988, egns {33)
and (34)):

Ar = oy + ot cos Mt + aasin Mot + cadtsin Mo + ogdtsin 2 Mo (7.35)
(3) Other radial orbit emors

Other errors due to factors such as air drag, solar radiation pressure, etc. are mostly
composed of a constant term and 1 cyc/frev terms with both time-dependent and time-

dependent amplitudes (Engelis and Knudsen, 1989). Therefore, they can be modeled by
the sine-cosine functions in a similar form as those in (2)-(4),

©) fial orbi dered in hi |
From {1)-(5}, the total radial orbit etror considered in this study is:

Arr(t) = A0 + &, + 21008 M) + azsin My{t) + asAt cos M)
+ 48t sinML (1) + asAt sin 2M(1) + agAticos M) + a7AtsinM, (1) (7.36)
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Therefore, the first order radial orbit error A (t) is the "centerpiece™ of the errors, the rest
of the errors possess simple mathematical forms. In some cases, the coefficients ag,...,ay
are called "empirical” coefficients, due to the mixed effect arising from various error
sources. Model (7.36) presents the radial orbit errors that are beth of gravitational corigin
and non-gravitational origin,

It tums out that for a near-circular orbit, the position of the perigee cannot be easily
defined {(see Cook, 1966, or Engelis, 1987a, p. 31}, therefore, the argument M, (1) of the
sine-cosine seties in (7.36) is hard to detemmine. The argument eg{t) + M(t}, however, is
well defined, as pointed out in Engelis (1987a, p. 31). If we treat the coefficients as truly
“gmpirical” coefficients, then for a near-circular orbit it will be more stable w0 use the
argument g(t) + Mg(r), instead of My(t). Using such a concept, we replace Mgt} in
(7.36) by walt) = aalt) + Malt) = Loy + MU}: + Y= Yt + Yy to get a new mathematical
form for the total radial orbit error:

Arrt) = Ayr(t) + ap + ajcos Yalt) + agsin yWilt) + azAtcos Yylt) + a4AL sin yiplt)
+ asAtsin2yg(1) + agAL? cos y(t) + ;A sin y) (7.37)

The new form in (7.37) is also used in Denker {1990} and Denker and Rapp
(1990). The y value is the frequency associated with the 1 cyc/rev. However, the model in
{7.37) s still not the final form adopted for this smdy. A slight modification for (7.37) will
be made when we discuss the correlation between the | cyc/rev term in (7.37) and the
origin shift of satellite tracking system,

7.2 Mathematicat Models for Simultanequs Radial Orbit Error Redpction and Geotd-SST
Estiman
7.2.1 Existi lems in imul lution

Before we present the models of simuitaneous solution, some important 1ssues will
be discussed first, By defininon, the {stavonary) S8T is the departure of the sea surface
from the geoid. The geoid itself is a surface whose determination still requires effort to
date. Ideally, the geoid, and in tun the $ST, will refer to a geccentric system. In satellite
altimetry, the S5T will be a quantity that is implicitly defined as the difference berween the
satellite-derived sea surface height and the geoid height implied by some geopotential
model. In the simultaneous scheme, such a geopotential model will be the one that is used
for orbit integration. The geoid according to such a model will refer 1o a geoceniric system
if the first degree harmonic terms vanish. However, for many obvious reasons (such as
configuration of satellite racking stations, instrument accuracies, etc.), the satellite orbit
cannet be a perfect geoceniric system and thus the satellite-derived sea surface height will
also not be in a perfectly geocentric system. Since two reference systems are implied in the
SST determination problem, the transformation between them must be considered.
Assuming that the geoid system is geocentric and the satellite system is non-geocentric,
th3en the S8T error due to such a system incensistency is (see alse Rapp, 1989a, Vol. II, p.
134)

AL = AZsind + AXcos dcos A + AYcos dsin A (7.38)
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where we have assumed that such an inconsistency is only due to a translation vector (AX,
AY, AZ) berween two systems (disregarding rotations and scaling factor). In (7.38), AX,
AY and AZ can be defined as the coordinates of the origin of the saellite system in the ideal
geocentric systemt. It is easy to derive (7.38) if we project the translation vector on the unit
normal vector of S5T, (cosd cosA, cosd sinA, sind). The maximum error occurs when
AL 3 = 0AL 33 = 0, or tan A = AY/ayx and tand = AZ/(cosi AX + sind AY). If we use
AX = 30cm, AY =-25cm, AZ = -5cm, we find that ¢ = 7°17'47", 4 = 323°11°40)" and the
maximum SST error is 39cm. Such a geocentric shift problem has been pointed out by
numerous researchers, e.g., Wagner (1986), Koblinsky (1989}, Denker and Rapp (1990).
To elimninate this type of 85T emor, obviously we need to get a geocentric satellite system,
of we have to include it in the simltaneous esimaton model.

2

i

Gresnwich Meridian

Figure 7.1 Satellite Orbit Geometry in a Near-Circular Orbit

Another problem is related to the I cyc/rev orbit error. From Figure 7.1, we have

sing _ sin (@+M}
sin [ sin 907 {7.39)

Since in the linear orbit theory discussed in Section 7.1, we treat T as a constant, (7.39}
becomes

sin @ =c sin (+M) (7.40)

where ¢ 15 2 constant. Now from (7.37), the sine teum of 1 cycfrev radial orbat etror is

159



Ar, = agsin wylt) = agsin (w+M) = %3 sin ¢ (7.41)

Obviously from (7.38) and (7.41) we know that the etrors due to the AZ-component of the
geocentric shift and the sine term of 1 cyc/rev error are exactly the same (up to a constant).
Therefore these two errors are indistinguishable in the adjustment process and must be
modeled i 2 single functional form - either using sing o sinfw + M). Consequently, it is
only possibie to determine the AX and AY components of the geocentric shifi
Nevertheless, the error due 1o AZ has been taken care of by the mixed term, sind or sin{a +
). In this study, we decide to use singd.

An additional problem arises from the use of spherical harmonic representation of
SST. The problem is in the degree | terms. Using Pg(t) = sin ¢, P}(t) = cos ¢, the degree
1 terms of sphencal harmonic are

Ci=aising + apcos doos A + byjcos @sin A (7.42)

Therefore, the degree 1 terms share exactly the same functonal form as the error inroduced
by the geocentric shift, Furthermore, from (7.41) and (7.42), the functionat form of the
sine term of 1 cyc/rev error is exactly the same as that of ajg term, and this explains why
numerous researchers have found a near-100% correlation between these two terms in the
simultaneous estimation model (e.g., Wagner, 1986; Denker and Rapp, 1990). However,
we must emphasize that such a result is due te the assumpton that [ = constant in the linear
orbit theory.

The functional resemblance between the sine term of 1 cyc/rev error and the ag
term of spherical harmonic in (7.42) is somewhat artificial, in that it exists because we
model the 35T using the spherical harmonics. It can be taken care of by a different
representation for S8T, such as the ON functions or the Fourier-Tschebyscheff series
discussed in Chapter 4. The functicnal resemblance between the AZ-component and the
sine term of 1 cycfrev error is quite real; since they all have physical meanings and cannot
be replaced by other functional forms. Fortunately, they all belong w the "error” part of the
simultanecus estirmation model, and are theoretically solvable by error modeling with no
harm to the SST.

A further trouble in the simultaneous model is caused by the mixed effect of the
geocentric shift, 1 cyc/frev orbit error and the SST. The trouble is related to the geometry of
the alhmetric observation—the range between a satellite and the sea surface, Tr appears that
the three quantities are all mixed in the radial direction and hence a distincion between them
requires some effort. Furthermore, they are all purely geomerric quantities and lack the
dynamical property such as that of the geoid which can be connected to satellite orbit
mechanics through potential coefficients. The siwation is almost like a case where we only
measure the total length of a line having three marked segments, but we siill try to
determine the individual lengths of the three segments. Therefore, it is only possible o
estimate any of the three quantities when gsome a priori infermaton is available. Exactly
how we apply the a priori information will be discussed in the next section.

Although many uncertainties exist in the simulianeous model, the results from the
works by, e.g., Engelis and Knudsen (1989), and Denker and Rapp (1990, still
demonstrated the capability of such a model in improving the radial orbit accuracy and
determining the geoid and SST even if an altimetric system (including the comections o
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observations, the orbits used, etc.) of moderate accuracies is used. As peinted out by
Engelis (1987a, p. 131), in order to get a good result from the simultaneous maodel a
necessary requiremnent is the existence of a well scaled and reliable geopotential error
covariance matrix. Adso, it is believed that a starting orbit of good accuracies is needed to
lessen the uncertainties. With the state-of-the-art GEM-T2 orbits {Haines et al., 1990% 1o
be used in the coming analyses, such reguirements should be somewhat met. These points
will be further enhanced when we analyze the results from the experiments in Section 7.5,

Despite the aforementioned problems, the experiments of simultaneous estimation
will still be conducted using the GEOSAT altimeter data. The emphasis of such
experiments will be on the applications of the ON functions to both geoid and 58T. A
slightly modified (with respect to that used by Denker and Rapp {19900} orbital error model
will be developed based on the zbove discussion.

7.2 Models for the Sizoul Solu

Now we turn to the description of the mathemancal meodels used for the
simulianeous solutions, We first present the observation geomeiry in Figure 7.2 where we
assume that the altimeter observations are made only over the oceans. Our goal here is to
use the range observation p to solve for the comections to the geopotential coefficients used
in the orbit and geoid calculagons, the empirical coefficients a5, ... , a7, the geocentric shift
components and finally the 55T which are represented by some basis fanctions
(orthonormal functions or spherical harmonics). The meanings of the guantities shown in
Figure 7.2 are:

p:  range observation of altimeter

v:  noise of p.

he  compuied satellite’s ellipsoidal height, according to some force model and satellite
tracking station coordinates. h, refers to an ellipseid consistent with the force modet
and the satellite trackang station coordinates.

T height correction due to the geccentric shift of the satellite coordinate system,
containing the effect of AX and AY only.

Ar:  radial orbit error due to incorrect force model, incorTect initial stale vector, etc., as
defined in (7.37) with a5 changed according to the discussion in Section 7.2.1.

g {quasi) sea surface topography, represented by some basis functions.

N.: computed geoid undulation from the geopotential model used for orbital calculation,
up to a maximum degres Nmax.

ANp: omitied undulation due to spherical harmonics Nmax + 1,...,%e. Practicaily it is

computed from an existing high degree geopetental model.
AN:  correcton te N, due to the incorrect geopotental model used for computing N..,
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Figure 7.2 Geometry of Altimeter Qbservations Over the Oceans

Considering the total radial orbit error in (7.37), the discussion about the inseparability of
the AZ-compoenent of the geocentric shift and the sine term of 1 cycfrev error, and all the
parameters unplied by the quantities shown in Figure 7.2, we can obtain the observation
equations as follows:

he+ Ar+T-(p+v) - - (No+ ANg + AN) =0 (7.43)
I we write

Assh =h, - p - No - ANp {7.44)

Ah = Ar- AN + T - § = AR(X) (7.45)

then the observation equations in a mawix form are:
a¥1 =nAeX) + 4l {7.46)

where n is the number of observations, and u is the number of unknowns. Vector ¥V
contains the noises, X all the parameters to be estimated, L the observations. The derived
observation Assh in {7.44) is called "residual sea surface height” which is also an element
of vector L {(in fact Assh is an “incremental” sea surface height). The unknown vector X
consists of four parts, namely,

Xg geopotenial comections

X, SS5T coefficients
XK1= X |= geocentric shift
Xel : empircal coefficients

(7.47)

where X, = (ACam. ASom)Ts X5 = @ums bom) 1. X = (AX, AY)T, X, = (ap, a4,
a....a7) 1. "For the moment, the S8T coefficients refer to either the ON function expansion
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or the spherical harmonic expansion (the spherical harmonic expansion is for the purpose
of comparison, the emphasis here is on the ON function expansion). In vector X, the
coefficient a» corresponding to the sine term of 1 cyc/rev error has been replaced by the
coefficient of the mixed term sing (see the previcus section); for the geocentric shift, only
AX and AY are solvable (see also the previous section}. Using NR3% = 50, Nﬁsﬂz 24
{using the ON function expansion) and using only one single altimetric arc (1o be discussed
latery, the total number of unknowns u, is 3226, One additional are will incoduce another
8 parameters (for that particular arc only) assuming S8T remains the same.

The elemenis of the design mawrix A are obtained from

aji= o( &hi) X (7.48)

where 1 is the index for the rows and j the index for the columns of matrix A, X are the
elements of vector X. Due to the definitions of funcdons Ar, AN, T and { in (?.45), Ahis
already linear in terms of the unknown vector X, Thus elements a;; are just obtained by
identifying the functions associated with the parameters.

The stochastic model to be used for estimating X is the "random effects model”
{Schaffrin, 1989, p. 396):

¥=AX+L , E{X}] =X -e=0given

NEAREH

where & i3 the residual to the prier value of X, and Cy and D are the covanance matrices of
X and ¥ respectively (Cy and D are the prior information to be described later). &2 is the a-
priori variance of unit weight (chosen to be 1 in this study). To get the estimate for X, we
employ the least-squares principle:

Tl Trelyy _ MOHAIMUM

Schaffrin (1989, p. 395) pointed out that by the Least-squares principle {7.50) the estimate
for X is numerically identical to that from the collocation method with a finite dimensional
form (Moritz, 1980, Section 21) in which X is "signal” and V is "noise”. The estimate for
X is (Schaffrin, 1989, p. 397

X ={ATDA + Gl ATDIL (7.51)

To find the covariance matrix for the error {X - X}, we first derive the covanance mamx of
L:

Cy = coviL,L) = cov(V-AX, V-AX) = AC,AT+D (7.52)

where we have assumed no correlation between X and V. Furthermore, the cross-
covariance matrix between the observation L and signal X is
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Cox = cov(L,X) = cov{AX + V, X) = AC,
Cyg = CF, = CeAT (7.53)

Thus the covariance matrix for (X - X)is (Moritz, 1980, p. 105):

CRx=Ex= C, - C“CEICEE
=C, - C,ATAC AT +DJ'AC,
= {ATD'IA + ) }'i (7.54)

where we have employed a malirix idenaty found in Uotila {1986, p. 157).

The reason why we need to use conditioning or a priori informatteon in the
simultanecus solution has been given in the previous section. A detailed account on the
conditioning of the system is given in Engelis (1987a, Chapter 8). Wagner (1986) also
pointed out the need for the conditioning of the system. Then the next question is how we
get the C, and the D matrices. Fer DD, we assume ne correlation among the observations so
that oniy the diagonal elements exist and are equal to the variances of the noises. Tt is more
problematic to find C, due to four kinds of unknowns in vector X (see (7.47)). Tt is
practically impossible to find the cross-covariances among the four kinds of unknowns,
thus we assume that the cross-covariances are zero, Within each unknown set, the
covariances are determined below.

For the covariance matrix of geopotential coefficients, one way to obtain the needed
elemnents in the matrix is the so-cailed power rule. Such a method is based on a global
covariance model and a covariance propogation technique (ef. Moritz, 1980, p. 160):

C'DV{Enm, g-n-m} = U, CGV{Enm, Em) = {0y Snm, §pq} = E} (T.SS)
if n # p or m # g or beth

where 01 is the degree variance of geopotential coefficients of degree n:

G% = i [Ezn.m + §12111'1}
m=0 (7.56)

where Com and Spm may be found from some existing model or ¢f may be direcily
cbtained from Kaula's rule (Kaula, 1966, p. 98). Thus by this technique, we will get a
diagonal covariance mamix for the geopotential part. Such a power nule has been used by,
e.g., Marsh et al. {1990}, Nerem et al. (1990). It is also known from Schwarz (1974, p.
403 that Cx in {7.49) is the covariance matrix of the remaining signal (with respect o a
priori estimated signal), thus use of power rule o2{2n + 1) is meaningful when the
expectation of the signals (coefficients) are zero.
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A more promusing covariance matrix of geopotential coefficients will be a well-
calibrated Cy which wuly reflects the accuracies of the coefficients. The calibration
technique can be found in, for example, Marsh et al., {1989), Lerch (1991). If the
correspending gecpotenoal coefficients are used in the orbit integrations for altimetric arcs,
the well-calibrated covariance matrix is suitable for the a priori information needed in
{7.49). In fact, such a choice is made in the present study.

For the covariance matrix of 58T coefficients of ON functions, we shall use a
power rule by analogy with that of spherical harmonics, since a well-calibrated covariance
matrix is not available. For such a choice, the 35T covariance matrix is a diagenal matrix
with elements computed by

% me=0,]
Ym = Spey Tl (7.57)

where 12 is the degree variance of the ON coefficiemts defined in (6.22) (for the actual
values used in the experiments, see Section 7.5.1), n and m are the degree and order of the
ON functions, respectively. If a spherical harmonic expansion for the S8T is desired, one
can simply replace t in (7.57) by the degree variances of spherical harmonic coefficients.
Use of (7.57) implies that the coefficients of the same degree receive an “average” power
due to the obvigus torm in (7.57). This is done in a similar way as for the spherical
harmonics (i.e., {7.54) and (7.55)}.

Since no information is available for the stadstical properties of the geocentric shifi
and the empirical coefficients, the covariances of these two quantites are assumed to be
infinity. Using the choices of covariance matrices of X, X, X, and X,, we finally obtain
the desired matrix needed in (7.49).

In Chapters 5 and 6, we have emphasized that if a power rule is needed for
conditioning a systeri, then it should be applied in a compatible domain, otherwise, the
solution will result in a degraded resolution, For the SST power rule, the use of ON
funcaons will be a suitable one since the ON functons have a compatble domain with that
of S5T. The power rule from spherical harmnenics is normally based on a global analysis
in which the 55T on land are assumed to be zero, providing a conditioning that results in
an inferior reselution at the continental boundaries, as experimentally shown in Chapter 6.
As shown by Reigber (1989, p. 221), a disadvantage of using the power rule (in both ON
functions and spherical harmonics) is that it reduces the absolute values of the coefficients
because the implicit assumption of using model {7.49) is that the expected values of the
unknowns are zero, In later experiments, we really find that the ON coefficients of higher
degrees {larger than 13 roughly) from the Geosat solution approach zero faster than those
from the Levitus SST. The result is the loss of high resolution 85T, With the use of
spherical harmonics, the situation is even worse.

Finally we have to discuss the problem of truncation effect due to the limired temms
used to represent the SST. In a case where the 58T is the only signal, such an effect,
especially for the accuracy estimates of the expansion coefficients, has been discussed in
Chapter 6. In the simultanecus model, in addition to the SST, we have other signals.
Unlike the geoid undulation of higher degree (than NP3L), i.e., AN in Figure 7.2, that can
be taken care of by some existing high degree gecopotential model, the 85T of higher
degrees (than N35T) so far really do not have a promising model. They are even neglected
in the simultaneous solotions, such as those conducted by Engelis et al. (1989}, Denker
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and Rapp {1990}, Nerem et al. {19%0). As shown in Chapter §, an ON funciion expansion
tor degree 10 or a spherical harmonic expansion to degree 10 (using least-squares fir) really
cannot pick up the high frequency 58T signal (see Figures 6.7 and 6.8). In the
simultaneous solution, such a low-degree expansion (below 15) of S8T then produces
residual S5T signals that are mixed with ¥V in (7,46) which are supposed to be “noises”
only. Appareatly, with a low-degree expansion, the residual 38T in the arcas of energetic
circulation should have relatively larger effect on the noises V. Consequently, we are
minimizing the “noise + residual S5T™ instead of the “noise” alone. To avoid such a
disturbing effect by the residual 55T, it is sugpgested that we model the 55T to a maximum
degree as high as possible. According to the tests in Chapter 6, ON degree 24 is a
sufficiently high number. Obviously, cne has to worry about if we really can obtain the
SST signal to the degree we model in the simultaneous solution, since the errors of geoid
and others probably do not allow us to do so. This can be overcome by runcating the SST
expansion after the simultanecus solution is made based on the signal-to-noise ratio,
provided that the correladons of the expansion coefficients are negligibly small.

In the simultaneous model, we are in fact dealing with a problem of approximating
a function {(now S$5T) in the presence of other signals (geoid correction and radial orbit
grrors).  Recalling the least-squares error pringipie ip finding the ON coefficients in
Chapters 2 and 5, we can easily see that minimization of XT{"J,'X + VTD'IVj:cannnt lead to
an approximaton of $8T with minitnum ervors, Therefore, in the simultaneous model, the
approximation to SST by any basis functions is not the “best" in the least-square
approximation error sense. The expansion coefficients are simply treated as parameters,
like rectangular coordinates of a point, to be recovered in a model such as (7.49) (see the
discussion in Section 6.4.2). Treating the expansion coefficients in such a way will be
more statistically meaningful in the parameter estirnation problem under two conditions: (1)
the signal (now S8T) to be approximated is bandlimited with respect 10 the same basis
functions used for the approximation and (2) the expansion is made up to the “highest
frequency' term. Under these conditions, the signal is thus “represented’” by an exact form
through the basis functions and the rest of the problem in a model such as (7.49) will be
taken care of by statistics {of course the estimated parameters will stili be subject to the
assumption in the model).

A totally different way of using a priori informatien for S8T in the simultaneous
solution will be to incorporate the equations of ocean dynamics into the soluton, as
proposed in, e.g., Wagnar (1989}, Marshal (1985). Under steady-state conditon, the
equations of monon of water particles are (Officer, 1974, p. 126):

) oP

2vysin § = -&-a—x

. oP

2oywv,sin d = 1
¥ P gy (7.59)

or

int =L 48
2wavsin B o 7.60)

where x and y are local herizontal coordinates along the east and north directions, o is the
garth’s rotational velocity, p is the water density, P is the pressure of water particles,
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v=+v? +v¢ , and n is a coordinate direction perpendicular to v with its positive
direction to the right of v,

Then Officer showed that the dynamic height, £, which is the 38T we analyzed in
Chapter 6, is {ibid., p. 128)

Py
=11 1
G EL pdp

where g is the gravity, and Py is the pressure at the depth of no motion. What we now
have is the “product” - £, not the equations of motion, which invelve more quantities.
Thus we have to lock at the £ value in (7.61) in a different way. Assuming that § , which
results from the equations of motion, can be treated as an obsarvation and can be expanded
with respect to some basis functions:

Ve={(X2) -§=BXz-{ (7.62)

{(7.61)

where we have treated £ as a vector containing all the observations of 85T. X5 is a vector
containing the expansion coefficients and Vr is a noise vector. The expansion degree must
be sufficiently high (for the Levitus 85T, ON expansion to degree 24 will be enough) to
make Vr purely “noise”. Now we group all parameters cther than the SST coefficients in
{(7.47) into vector X , so that (7.46) can be rewnitten as

X1
Y =AhX, X L=i{A A L
h(X, Xa}+ L=(4 2]‘ X )+ (7.63)

Now we assume that we have the a prien weight mairix Py for the unknown vector X, and
a solubion is sought with the condition !

¢ =XIPX, + VDV + v'gp,;vg — a minimum

(7.64)
Then we have
X, ] ATDA+P, ATpa, V! ATDL
X2 ATDA) ATDVA; + BIP B, | | -AJDTL + BIPL (7.65)

In. the above discussion, we need 1o find the accuracies of the S5T in order to form the
weight mamix Pr. For the Levitus SST, it is believed that the error upper bound is25cm
{see also Nerem et al., 1998, p. 3168), due to the unknown effects of the level of no
motion. Since the Levitus SST data are scattered with respect to time (a period of almost
70 years), it i5 ne doubt that the 58T from the one-month or even one-year Geosat selution
will not be compatible with the Levitus' SST values. Thus wvsing the Levitus S5T as
addidonal observations in the sitnultaneous solution {in the form of nomai equations of the
coefficients of some basis functions) is more or less to provide the a prion information for
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enhancing the separation of the geoid and the S5T. Consequently, in addition to assigning
pasmm;sm accuracies for the Levitus 35T, dewwmghung the normal of the Levitus SS8T,
BiPeB is also neaded. These will be discussed in the experimental part.

73 licat * ON Functions | Simal Solu

{Ine obvious applicanon of the ON functions is to serve as basis functions for the
58T representanon in the sirnultaneous solution. Using the oceanic a priori information,
specifically that derived {rom the Levitus 88T, condilioning of the system is possible
through the use of the power rule - the so called “mild” constraint {(Wagner, 1986) or
“light” consmaint (Reigher, 1989) for the SS8T ON coefficients. The other application is on
the spectral analysis for the signalferror of geoid and S8T. For the SS8T, the spectral
applicadon of the ON functions is clear, as we have done in Chapter 6, for the geoid, we
cbvicusly can only concentrate on the oceanic part, i.e., the oceanic geoid, and it is only
the oceanic domain where we can take advantage of the orthononmality of the ON functions
for spectral studies. Since the geoid is not modeled direcily by the ON functions in the
simultanecus soluticn, a spectral analysis for the signalferror using the ON functions
requires some transformations.

To get the ON coefficients of the oceanic geoid, one can follow the steps llustrated
in Chapter &: we first performn harmonic synthesis from the spherical harmonic coefficients
obtained from the simultanecus selution to get mean undulations (strictly speaking, they are
undulation corrections) at the equiangular blocks over the oceans (for this current study, the
blocksize is chosen to be 1° x 19); then the ON coefficients are obtained by harmonic
analysis using these mean values. Or, one can perform direct transformations as follows
{now we use system {Zj}, see (5.76)):

Nmax

o ={f}.N, Z,] =R, Z z {5Cru'n{_mm Z]} + *’-‘lsnm{—mﬂs ZJ}}
n=1 m=0 (7.60)
where &F are the ON coefficients with respect 1o system {Zj}, and AN is the geoid
undulation correction. The inner preducts (-} are carried out by integration over the
oceans, Again we have used an approximate formula for AN as in (6.111),

A more convenient way to calculate the accuracy estimate of ajy will be that based
on the first method, namely, we first obtain the ON coefficients from

&f BL ff AN{8 Z,[B A)do, o=cceans
g

£1 {7.67)

where a5 is the area of the gceans, M the number of equiangular blocks, AN, the mean
unduladon at block £, and IZ; the integration of function Zj over block ¢, see alsn (6.9) and
(6.29) for better understandmg (where we dealt with systern {Xj}1). Written in a matrix
form, (7.67} 15
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ar

Xz = {B;}T z

1
g (7.68)

where B, is a matrix containing 1Z¢, N, is a vector containing E._I;I“!, and jt is the highest
“degree” of the ON function expansicn. Now AN, ¢an be obtained from the geopotential
coefficient corrections n the simultaneous solution as follows:

—_ | —
AN, =LY% ac,-” L{8. Mo
Ay

=~ T4
=13 ac,
AG¢ =0 (7.69)

where Ej is a4 single-index form of the geopotential coefficient corrections ACy . and
ASpm V18 a number corresponding to Nmax of the geopotential coefficients and IL; is the
integration of spherical harmonics over block £. Egn. (7.69) can be written in a matrix
form as:

. o Jlwh ny o wh | ac
Ay
1. —
AG I i ... L} || AC
Nz=
0 - _
i Agy | M oM ... oM || AC, |
= AALY, 170

where the definitions of matrices A, A; and Y; are clear in the equation. Vector Yz contains
the corrections to the geopotential coefficients. Using the same argument for the
relationship in {(6.36), we can show that
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[ w ok o |
1 2
; Ly ... pM
{B;)'=cBT=C
1 2 M
R T 8 (7.71)

where C is the matrix containing the combination coetficients &jj in (5.76), B, is a matrix

containing the integrations of spherical harmenics. Combining equations (7.68) and
{7.71}, we get

=1 CBY
XI Ay CB: ﬁAZYE {??2}

From the simultaneous solution, we can get the covariance matrix of Y,, which is now
denoted as From he definition of Yy, Zy i3 the covariance matrix of the corrections to
the geopoten ial coefficients. However, from the adjusaent theory, we also know that Zy

is the covariance of the complete coefficients (see Uotila, 1986, p. 64). Using error
propaganon, we can compute the error covariance matrix of X; as

T, =Ll CRTAA T ATAR.
2% S ARLT (7.73)

If we perform Cholesky decomposition for L, namely let Ly =RRT, where R is 2 lower
triangular matrix, then {7.73) becomes

%, =-LEE
a4 (7.74)

where

E = RTATAB,CT (7.75)

L ) . ) N
If we are just interested in the standard deviatdons of the ON coefficients &t then we have
T\ A2 /
(efei g

where &: i3 the jth column vector of matrix E and . is the standard deviation of a The
most difficult part in computing 6 is the formation of matrix E in (7.75), which'in tum
requires the formation of matrix AJ\BT If we write

ALAB; =[Piilvxu (7.77)

(7.76)
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where Py is an element of ATAB, then Pj; has an “inner product™ form of spherical
hammonics over the oceans, since

LlLfH_f
! AGy (7.78)

Eg. (7.78) is merely a formal expression in that the exact harmonics comresponding 1o
indices i,j must be identified according to the definition of the orthonormal system [Z)} in
{5.76). Note that in this chapter and in Chapters 5 and 6, we have consistently used the
notation £ to indicate the block sequence of the ocean blocks and M o indicate the number
of such blocks. Afier obtaining Py; , the computation of matrix E is easy since R and C are
simply two mangular mamices,

Having computed §; in (7.76), we then can compute the error degree variances of
the ON coefficients of the unduladon corrections. This can be done using the property
shown in (2.23), even if correlations among the ON coefficients exist. By performing the
ON expansion and finding the accuracy estimates of the coefficients, we are now able to
compare the fwo major signals - the eceanic geoid and the S3T in the same domain - the
oceans. We thus can disregard whatever happens on land. The spectrai companson of the
two signals both in the signal part and the errer part should be more reasonable in that the
disturbance from land values has been eliminated. Such an advantage holds not only in the
case of using purely altimeter data but alse in the case of simultaneously using altimeter
data, surface gravity data, other macking data, et

In view of the non-uniformity of the distribution of the geoid error {see Denker and
Rapp, 1990, Figure 9} in the altimewic solutions (or even in the soluticns with multiple-
types of data), an error spectrum concerning only the domain of oceans should provide
more realistic error assessment for the resulting signals (mainly the geoid and the S5T),
since now we are dealing with a unique domain - the oceans. However, due to two
obvious reasons, correlations between the ON coefficients of the SST exist: (1) The
domain formed by the altimeter data peints cannot exactly match the domain of ON
functions. (2) The SST is not the unique signal to be found in the simultaneous solution.
The correlations inttoduced by the presence of other signals can be explained as follows:
The normal matrix of the system consists of two parts, namely, the S8T part and the part
that includes geopetental coefficient corrections, empirical coefficients and geocentric shift.
Formally, the normal matrix and its inverse can be written as:

Nﬁlz(ATA"'Pt ATB )_1= Qi le)

BTA BTB+P, Qa1 Q22 (7.79)

where {BT‘B+ Pz} is the $5T part, Py and P> are a priori weight matrices discussed in
Section 7.2.2. Matrix Qg provides the error covariance of the ON coetficients of the 55T
and ¢an be analytically written as:

Q2 = (BTB+P; - BTA{ATA+P, ) ATR] " (7.80)
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Thus even if {BTB+ Pz} i3 clese to a diagonal matix, the presence of the other matrix in
{7.80) will destroy such a characteristic. However, later on we will find that the
correlations ameng the ON coefficients are only concentrated at the low-degree parts {lower
than degree 10), thus a signal decomposition of the 85T from the simultaneous solution is
still possible after a certain degree (to be discussed later).

7.4 The Al Data Used o the Solut

The altimeter data to be used in the experimentally simultaneous solutions, with
emphasis on the applications of the ON functions, are the Geosat data. Starting from the
GDR’s in Cheney et al. (1987), the Geosat have evolved from the low-accuracy NAG
orbits that used the GEM10 potential coefficients as the force model, 1o today's GEMT2
orbits (Haines et al., 1990). The original GDR orbits {in Cheney et al., 1987} have radial
accuracies of 4 m while GEM-T2 are claimed (o have radial accuracies of 35 cm. The
orbits used by Denker and Rapp (1990) were based on GEMT1 which, according to
Haines et al. (1990}, have radial accuracies of 85 cm.

‘The starting orbits to be used in this study are the ones based on the GEM-T2 orbits
(Haines et al.,, 1990). 1n addition to the U.S. NAVY's OPNET wmacking system, DMA's
TRANET macking system has also been incorporated in the orbit determinatons that lead to
the GEM-T2 orbits 10 be used here. Unlike the GEM-T1 orbit’s 17 day arcs, the GEM-T2
orbits are determined on a 6-day basis with roughly one-day overlap (Koblinsky et al.,
1993}, For the purpose of experiments, 6 6-day arcs will be used. These 6 arcs have a
duration of 2 ERMs, or roughly 32 days and are suitable for testing some factors that will
be described later. The arc numbers (defined by Koblinsky et al., 1990} and the start/stop
times of the six arcs are listed in Table 7.2.

Table 7.2 Stan/stop times of the 6§ GEMT2 arcs used for experiments

Arc # Start nme* Stop time* No. of normal points

23 870220-1104 R70226-0000 103508

23 §70225-0000 £70303-0000 11734
24 R 7030.2-0000 B70308-0000 11328
25 | 8703070000 | 8703130000 10864

26 870312- 870313-000C 10718
27 | 870317-0000 §70323-0000 TI280

* Year-mnonth-day-hour-minute

These arcs are created at 1 minute time intervals while the original GDR’s have data
spaced at 1 second intervals so that interpolations are needed to replace the original orbits in
the original GDR's {those by Cheney et al., 1987). For the simultaneous solution, data
editing is required before the simuhaneous solutions are made.

Normally altimeter data editing for a simultaneous solution consists of two steps.
In the first step, we can eliminate the spurious alimeter data existing in shallow-water
areas, land, etc. Also, altimeter data over some rough-gravity field areas will not be
suitable for generating cbservables since current high degree models may not be able to
remove the “omitted” undulation AN. Mumerous other factors that should be considered
may be found in Denker and Rapp (1990). These factors could serve as editing criteria and
the altimeter data to be used in the simultaneous solutions must pass the criteria first. On
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the other hand, if all the accepted data (after testing against the criteria) are used, the
resolution implied by such data will be higher that implied by the modeled geopotenaal field
{say, to degree 50) and the SST field (say, to ON degree 24), resulting in & waste of
computer ime. So the second step for editing is 1o compress the raw data into “normal
points” (Denker and Rapp, ibid.). A normal point in this study is selected as follows: A
linear model was least-squares fitted to 20 successive altimeter peints and the residuals are
found. Then a 3o criterion is used for an iterative cutlier rejection {see Denker, 199, p.
13 and Cheney et al,, 1987, p. 9). The convergence of such iteranons is achieved when no
more peints are rejected. Then, the normal points values are computed from the linear fit at
the cenwal time of the interval,

Since the experiments on the simultanecus solutions were done in paraliel with the
research ¢arried out by Rapp et al. {1991), the editing criteria for the Geesat data adopted in
this study are the same as those used by Rapp et al. (ibid, pp. 3-5). Such edited raw
altimeter data are then used to generate the 20-second normal peints by the algonithm stated
above. The number of 20-second normal points of the six selected Geosat arcs can be
found in Table 7.2, Figure 7.3 shows the point distribution of the 2{-second normal
poinis from arcs 22, 23 and 24. Qne particular issue i3 related to the reatment of the
permanent tidal sffects. Fellowing Rapp's (198%¢) suggestion, in order to cbtain the
“mean geoid” consistent with the definition of the SST to be determined here, we need to
add a correction of 9.33 x 102 to the I» coefficient from the GEM-T2 field to get the so-
called “zero” geoid undulation, and add

ANg = -0.198(3/2 sin% - 1/2) {meters) (7.81)
to et the mean geoid (i.e., N in Figure 7.2). See alsc Rapp (ibid.} for more details.

As shown in Figure 7.3, the data in the Mediterranean Sea have been edited out,
while in the fuil-year solution of Rapp et al. (ibid), some selected data in that area have
been used.

75 N :cal Experi f Simul Solut i Resul
131 Experiments

In connection with the models of simultanecus solutions presented in Section 7.2.2
and the data described in Section 7.4, we shall classify the expenimenis by first defining the

types of soludon:

2. l-arc solution: using data of one 6-day arc

b. 3-arc solution: using data of arcs 22, 23, 24 or 25, 26, 27 {each solution covers
17 days}. The information about these arcs has been given in Table 7.2.

€. Garc selution: using data of arcs 22, 23, 24, 25, 26 and 27 (32 days)
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Figure 7.3 Distribunon of 20-second Normal Points Form Arcs 22, 23, and 24,

Then the factors considered in the varicus experiments are:

.

O oLt o

Fm

Geopotential coefficient corrections ACym, A8y for GEM-T2 field to degree
50 and orbit errors of gravitational origin and due to initial state vector error
{2595 potental coefficients + (8 arc coefficients) x number of arcs)
Orthonormal function representation of SST w degree 24 (621 coefficients)
Spherical hammonic represemation of 55T to degree 15 or 24

Geocentric shift of the orbit coordinate system (AX and AY)

Degree variances of the ON coefficients from the Levitus SST as “mild
constraint”

Degree variances of the spherical harmonic coefficients from the Levis 85T
as “mild constraint”

Downweighting altimeter normals

Use of surface gravity anomalies

Use of the Levitus SS8T as additional observables in the form of the normal
equations of the ON coefficients (see (7.62) and (7.63))

GEM-T2 error covariance matrix
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Regarding factor a, the starting potential field, GEM-T2, are pnly complete o
degree 36, with extended coefficients to degree 50. Thus the comections AC,, ASqyy from
the simultaneous solution for the absent coefficients are not really “corrections” but the
complete coefficient. The use of the spherical hammonic representation of 35T is for the
purpose of compatison, since the spherical harmonics are currently the most popular basis
functions for deing SST expansion. The downweighting process is now almost a standard
practice in the simultaneous solutions, since it 15 believed that the long-wave length
characteristcs of the satellite mode! (now GEM-T2) will not be destroyed by doing this and
also the altimeter data are basically repeated in space if more than one ERM data are used.
A theoretical justification of using downweighting for various data may be found in Lerch
(1991} In Engelis and Knudsen's (1989) reatment of downweighting, the best result is
achieved if a factor of 1/4 was used for one 17-day Seasat arc, while Rapp et ai. (1991}
used 1/96 for 24 ERM data to obtain an optimum sclution. Thus both seemed to
downweight the one 17-day arc by a factor of 1/4. In the current study, various
downweightng factors will be med and the resulis will ke described in the next section.

The use of surface gravity data, in the form of the normal matrix and the "U"
vector, 18 ingcreasingly popular and even i3 thought to be necessary for separating the geoid
and the SST. Furthermore, the use of gravity data tends to aveid obtaining 2 "tailored"
geopotential model over the oceans, since we now have data related to earth’s potental field
on land. However, it 1s also possible that the gravity data may deteriorate locally the
oceanic geoid if the accuracies of the gravity data are not comparable with the aitimeter data.
Overall speaking, more geophysically meaningful geopotential coefficients should be
obtained by incorporating the gravity data in the simueltaneous solutions.  For the
experiments performed in this section, the swface gravity normal equations are formed by
using the gravity anomalies continued to the ellipsoid, denoted as "V2" solution in Rapp et
al. (1991, pages 14, 22, 23). The gravity data distribution can be found in Figure 2 ot
Eapp et :Jl. (ibid.}. The V2 solution was alse used in the final soludon FYS10. W96GW in

app etal.

As stated above, some coefficients above degree 36 are absent in the GEM-T2
model, therefore a prion information is needed to augment the original GEM-T2 error
covariance matix. To do this, we first invert the original error covariance matrix to get the
weight matrix. Then the minimum value of the diagenal elements of the weight matrix is
found. Finally a value that is 100 times smaller than this minimum value is assigned to the
diagenal elements of the augmented weight matrix that correspond to the absent
coefficients. The off-diagonal elements pertaining to these absent coefficients are simply
assumed to be zero, This procedure will give more freedom for the absent coefficients 1o
be adjusied since their weights are relatively small. Although this is not quite justifiable it
i a necessary step te get a "complete” error covariance matrix o degree 50. Note that the
degree 0, 1 terms and the C3), S2; terms are not included.

For the degree variances of the ON coefficients and spherical harmonic coefficients
that are needed for constraining the SST coefficients, we shall use the results from the
analyses of the Levitug $3T (3ee Secton 6.4.1). These values are listed in Table 7.3. For
the ON functions, we shall use system {Z;] which have no degree ( and 1 terms. The
degree variances of spherical harmenics inJTablc 7.3 are obtained from a global analysis
assuring 38T = 0 on land (solution shnquo24 in Secdon 6.4.1). Therefore, these values
are different from the degree variances used by Rapp et al. {1991, Table 5). This is done
hecause we will model the S5T in the experiments to spherical harmonic degree 24 and the
a priori degree variances of spherical harmonics of decreasing magnitudes (especially afier
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degree 10) are possible only through a global analysis {see Chapter & for more
discussions).

Table 7.3 Square Roots of the 55T a priori Degree Vanances for Conditioning the
Simultaneous Solutons in Meters

Degrec] ON* | SHY [ Degree | ON SH
1 0.182 i3 0.029 | 0.043
2 | 0.4307 0.221 14 0.020 | 0.044
3 | 0115 0.094 15 0.017 | 0.030
4 | 0.176; 0.071 16 0.017 | 0.029
5 101201 {.072 17 0.015 | 0.029
& | 01001 0.137 18 0.017 | 0.022
7 10.076] 0.109 19 0.014 | 0.021
8 {0.081} 0.076 20 0.013 | 0.026
9 | 0.063| 0.061 21 0.011 | 0.023
10 | 0.034] ¢.030 22 0.010 | 0.025
11 ] 0.028| 0.03% 23 0.010 | 0.022
12 1 0.029] 0.051 24 0019 | 0.021

* . Orthonormal functions, System {Z;}.

¥ : Spherical harmonic functions.

{Considering the types of solutions and factors, we divide the experiments into five
categories, as shown in Table 7.4. This is for a better explanation of the results in the next
sectien and for finding the optimum solution strategy that can be recommended for future
work.

Table 7.4 Categories of Simultaneous Solutions

Category Factors Types of soluticns Remarks
1 a,b,d.e.g. l-arc, 3-arc, 6-arc | standard solunon
Il a,b.e.g.j 1-are, 3-arc, 6-arc | wfo geocentric shift
I a,b.d,eg.h,j I-arc, 3-are, 6-arc | standard sol. + ﬁs
v a,b,d.e.i,] l-are, 3-arc, 6-arc  { standard sol. + S5T ("obs™}
v a,c,f,z.h,j 1-arc, 3-arc, &-arc  { spherical harm. rep. of 88T
7.5.2_Results

In this section we will present the SST models from the simultanecus solutions and
the geostrophic currents implied by these models.

In Category I, we basically follow the strategy used in Denker and Rapp (1990)
where only Geosat altimeter data were used. As proved in (ibid.}, the goal of satellite
radial orbit error reduction and geoid-8SST determination can still be achieved with
promising results in such a strategy. Figure 7.4 shows the 35T to ON degree 15 from the
ON (24, 24) 6-arc solution with altimeter normals downweighted by 1/6 (to be discussed
later}. Although such a solution strategy yields a reasonable signature {this can be visually
inspected from Figure 7.4) a serious problem found is the extremely large standard
deviations of geoid undulations {larger than 10 meters) on land. This is due to the lack of
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observations on land. Such excessively large standard deviations were reduced when
incorporating surface gravity data as in Category IIL

The difference between the strategies in Category I and Category II is the
elimination of AX and AY in Category II. Figure 7.5 shows the SST to ON degree 15
from the ON (24, 24) 6-arc solution with the same downweighting factor as used for the
55T in Figure 7.4. Figure 7.6 shows the difference berween the 58T in Figure 7.4 and the
SST in Figure 7.5. The difference berween these two sets is of long wavelength nature and
is attributed to the differences in the low degree ON coefficients which may be caused by
solving for AX and AY in one of the soludons. Table 7.5 show the RMS differences by
degree (see eq. (6.102)) between these rwo sets of S8T. In general the 58T from Category
I and Category IT yield almost the same SST signamres. However, one could question that
how reliable the solved parameters AX, AY are, due 1o the complex simultaneous model
and the poor observation geometry (see the discussion in Section 7.2.1). One way 1o judge
the reliability of AX and AYY is to invesagate the correlations between these two components
and the 88T coefficients and other parameters, This will be discussed in Section 7.5.2.3,

Table 7.5 RMS Differences by Degree Between the SST in Figure 7.4 and the 55T in
Figure 7.5 Using ON Functions in Melers

chrcc diff, De diff.
{1.044 1 0.001

3 0.039 i5 0.000

4 0.036 18 0.000

5 0.027 20 0.000

6 0.019 24 0.000

In Category III, we incorporated the gravity normal equations (see the previous
section for the exact normal equations that are usad). As compared to the strategy used in
Category |, the standard deviadens of geoid undulations en land in Categery 111 have been
significantly reduced (see later discussion). Figure 7.7 shows the 58T to ON degres 15
from the ON (24, 24) 6-arc solution with allimeter normals downweighted by 1/6. The
comparison between the 58T ON coefficients in Category [ and Categoery III (the cases
without/with surface graviry anomalies) show that the cumuladve difference is 6.1 cm up to
ON degree 15 and is 6.2 cm up to ON degree 24, indicating that the large differences in the
ON coefficients are concentrated at the low degree terms. In general the SST signatures
from the solution withfwithout gravity data {those in Figure 7.4 and Figure 7.7} agree well,
but deviaticns can be found in the Kuroshio Current, the Peru Current, and some other
areztlls. An experiment was made to downweight the gravity normal equations by 1/2 in
such a way

N1+%Ns Npz|| * ] U1+%Ug
N N U
21 2|[ x, 2 (7.82)

where X containg the geopotental coefficients, X7 containg other parameters including the
SST coefficients, Ny is the gravity normal matrix and Uy is the gravity "U" vector. Figure
7.8 shows the 88T resulting from such a downweighting factor, The differences between
the S5T in Figure 7.7 and Figure 7.8 amount 10 2,2 cm at ON degree 15 and to 2.4 cm at
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ON degree 24 and thus the change of 85T due to the downweighting of the gravity normal
is about 4% of the signal up to ON degree 24 (the RMS SST value in Category I is (.58
meter based the ON coefficients). Also, based on the ON function analysis of the geeid
undulation error {see Section 7.3}, we found that the increase in the geoid undulation errors
over the oceans is (.5 cm up to ON degree 24 (about 5% increase) when using the factor
1/2. In addition, the crossover analysis (see Section 7.5.2.5) using the 6 Geosat arcs
shows that exactly the same RMS crossover discrepancies can be obrained from using
downweighting and from not using downweighting. Therefore, the downweighting factor
1/2 to the gravity normal seems to have no substantial impact on the solution.

The idea of using oceanic equations of motion as constraints for separating the
geoid and the 55T have long been proposed, but not been tried bafore (see the discussion
in Section 7.2.2 on how 1o use the oceanic equations of metion), In Category IV, we try a
"modified” idea of using the cceanic equations by incorporating the Levitus S5T as
addinonal chservables in terms of normal equations of the ON coefficients (see (7.65)).
This is done by analogy with the surface gravity data which are treated as additional
ohservables related to the graviry field. Figure 7.9 shows the 88T 1o ON degree 15 from
ON (24, 24) 6-arc solution in Category [V. For the 88T shown in Figure 7.9, the Levitus
SST are assumed to have a uniform accuracy of 25 cm and a downweighting factor of 1/4
15 applied to the SST normal equations (for the reason see Secton 7.2.2). The assumption
of 25 cm oniform accuracy for the Levitus S8T is somewhat unrealistic, but it is so
determined simply due to the fact that the accuracies of the Levitus SST are hard to obmain
because of the level of motion in the oceans and some other factors. A somewhat
"unfortynate” situation is that the resulting SST from the simultaneous solution are too
"close” to the Levims S8T: the cumuladve RMS difference between the Geosat $ST in this
category and the Levitus S8T is 7 cm up to ON degree 15 and 9 cm up to ON degree 24,
The small RMS differences show that an independent SST model cannot be obained if the
Levitus SST are treated as additicnal observables in the simultaneous model, However,
based on the correlation analysis in Section 7.5.2.6, extremely low comelations (below
U.03) between the above mentioned parameters were found in this category and this
suggests that the oceanic equations of motion should have grear potential in efficiently
separating the gecid and the 88T and in decorrelating the parameters of interest.
Qceanographers may provide a better idea of how exactly the oceanic equations of maticon
can be used in the simultaneous solution.

In comparison 1o the use of the ON functions, we use the spherical harmonic
functions as the basis functions for the 58T in the simultaneous solutions in Category ¥
where both Geosat data and the gravity data were used (as in Category OI), Figure 7.10
shows the SST from the spherical harmonic (15, 15} solution using the & Geosat arcs. The
S8T in Figure 7.10 can be compared to the SST in Figure 7.7. Figure 7.11 shows the
SST differences between these two SST models. From Figure 7.11, we find thar the large
difference occur in the coastal areas. Over the oceans, the RMS difference between these
two models is 13 ¢m, the mean difference is -0.7 ¢m and the maximum difference is 83 cm.

Using the SST models discussed above, we have computed the geostrophic
currents using (6.97) and (6.98). Due to limiwed space, only selected current plots are
presented. Figure 7.12, 7.13 and 7.14 show the geostrophic currents implied by the SST
models in Figure 7.4, 7.7 and 7.10 respectively. Of particular interest is the differences
between the current patterns in Figure 7.13 and Figure 7.14, which cormrespond to the
selutions using the ON functions and the spherical harmonic functions respectively (Ag
were aiso used in both models). Overall speaking, the use of the ON functions yields more
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realistic current patterns in the coastal areas, e.g., in the Peru Current. However, in
general the current patterns implied by these two models agree well in the open oceans. It
should be noted that the ON function representation of the 58T not only provides a more
realistic current flow, as shown in Figure 7.12 and Figure 7.13, but also gives more
theorztically justifiable basis for the signalferror spectral analyses for the results from the
simultaneous solutions, as will be camied out in Secton 7.5.2.4. Further comparisons on
the resulis from the use of the ON functions and the use of the spherical harmonic functions
will be made in later development.

A comment will be made on the downweighting factors for the altimeter normals.
The problem of determining the optimum downweighting factor for the altimeter normals in
the simuitaneous solutions has been studied in detail by Denker and Rapp (1990) and Rapp
et al. (1991). Denker {1990, p. 25) also showed numerically the necessity of the
downweighting factor using the calibradon rechnique developed by Lerch (1935). Rapp et
al. {1991) studied the problem in greater detail and concluded that a factor of 1/96 is the
optimum number for downweighting the altimeter normals from 24 Geosat ERM data. The
factor used by Rapp et al. (ibid.) thus implied a factor of 1/4 for each ERM data. These
analyses have provided useful information on the downweighting factor in the solution
performed here. Various downweighting factors ranging from 1/2 to 1/8 for the normal
from the 6 arcs were tested and it was found that the factor 1/6 yields the most
oceanographically meaningful $ST signature and the best-defined ocean currents.
Although such a decision is somewhat “subjective”, it still relies on the resulis from the
previous investigators such as Denker and Rapp (1990). A more “objective” approach of
determining the optimum downweighting factor should be based on the procedure in Rapp
et al, {1991). Due to such a decision, we have used 1/6 as the downweighting factor for all
the 6-arc solutions and 1/3 for the 3-arc solutions discussed in this section.
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Figure= 7.9 S58T o ON Degree 15 from ON (24, 24} 6-arc Soluton, Downweighting
Levitus's Normal by 1/4, Category IV, CI = 10cm
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Figure 7.11 Difference Berween the 83T to ON Degree 15 from ON (24, 24) 6-arc
Solution, Category III and the Spherical Harmonic (15, 15} Solution,
Category ¥V, {1 =35 cm
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Figure 7.12 Geostrophic Currents Implied by the SST to ON Degree 15 from ON (24, 24)
&-arc Solugon, Category I, CI = 10cm
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It is customary to compare the 88T from the altimetric solutions to the hydrographic
data. In Table 7.6, we list the correlations by degree between the five 6-arc solutions in
Category [ to V and the Levitus SST. The correlation by degree is computed according to
the defimtion of comrelation in (6.66). Specifically, let rwo signals at degree n be expressed
as

£ A = 3 (G 1runDrant® 1) + BramOan(®, 1))
t=1]

(7.83)
fan(8, ) = E [Eana'nrn':es Ay + ﬁ!nmanm(an J'v:l')

m=(}

then the correlation at degree n for the ON coefficients is

f f]_ nfﬁnd )
J

Prn= {7.84)

14
( ] f%ndcj f%nau)

Z [alt‘lmalnm + ﬂlntlnm]

m={]

) 3 (Bt B 3. 6 Bl
=0 m=0

where @ is the oceans. If we replace @ by the entire earth and the ON functions by the

spherical harmonics, the definition (7.84) can also be used for the correlation at degree n
for the spherical hanmonic coefficients.

From Table 7.6, it is found that in all the 6-arc solutions the degree 2 terms have the
highest correladons with those of Levitus SS5T models. After degree 10 (for both ON
function and spherical harrnenic), the cotrelations between the Geosat SST and the Levims
SST become relatively low as compared to those before 10, reflecting the fact that the high
degree SST components from the Geosat solutions have larger deviations (than the low
degree components) from the Levitus model, The high correlations between the 6-arc
solution in Category IV and the Levitus model confirm that the Geosat solution in that
category (treating the Levimus as additional observables, but with very pessimistic
accuracies) and the Levitus model] are indistinguishable (see also the previous discussion).
It is interesting to see that the degree 4 and degree 5 terms of the spherical harmonic
coefficients have negative correlations with those of Levitus, These negative correlations
may be caused by the fact that the correlations by (7.84) for the spherical harmonic
coefficients are evalnated on the entire globe and the meaningless SST land values can also
affect the calculations. From this view point, the use of the ON functions in calculating the
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correlation coefficients should be more meaningfui since the demain of concern is only the
oCeans.

The comparison between the SST maps presented in this section and those in
Chapter 6 show that significant deviations between the Geosat 55T and the Levitas S5T
exist in some areas. Such differences are expected, since the Levits S§T are based on
data over a period of 70 years and contain various error sources. A good summary of the
reasons for the differences between the Geosat 88T and the Levilus may be found in
Neremn et al. (1990, p. 3173). However, qualitative comparisons reveal that the ocean
currents in the five solutions in Table 7.6 are comparable with the currents defined by the
Levitus SS§T. Except in Category IV, the 58T from the Geosat solution yield a hugh

centering at about ¢ = -207, A = 250°. Such a high was also found in the solution of Rapp
et al. (1991, p. 38) who used one-year of Geosat data and a spherical harmonie
Tepresentation.

Table 7.6 Correlatons by Degree Berween the 6-arc 85T Solutions in Category [to V and
the Levitus SSTT in Percentage

" Degree i* I 11 v v
I 71.2
2 99.5 98.8 99.7 1900.0 99.9
3 58.2 63.4 63.1 98.6 90.4
4 63.1 72.0 69.8 99.0 -20.6
5 46.3 62.9 37.5 098.6 -38.5
& 559 62.3 68.4 68.1 89.5
7 55.6 64.7 54.3 67.1 71.1
8 70.6 72.5 67.1 98.3 £6.5
10 22.7 24.8 32.8 80.5 306
15 10.3 10.5 9.3 53 10.6
20 22.2 22.3 17.8 80.5
24 3.2 2.6 3.1 66.5
Ave 1o
Deg. 15| 45.7 49.3 49.4 87.3 46.3
Ave, to
Deg. 24| 34.2 36.6 36.1 83.5
T: ”% Levitus 351 models are from the solugon onlsito24 (for the ON

functions, see Figure 6.17) and from shnqto24 (for the spherical harmonics,
see Figure 6.23). Except in Category V, all refer to ON coefficients.

*: In Categories L [I, 11, IY and ¥V, the 55T models correspond to thase in
Figures 7.4, 7.5, 1.7, 7.9 and 7.10, respectively.

In order to compare the FYS10.W36GW solution (the spherical harmonic (19, 10)
solution) in Rapp et al. (1991), we perform the unitary ransformation from the $5T model
from the 6-arc solution in Category I (see Figure 7.7) 10 a 85T mode! corresponding to
system [ Y]] which is comparable to the spherical harmenic SST mode] of Rapp et al.
(1921} in terms of solution strategy and the SST function space spanned by the elements.
The transformation technique can be found in Section 5.3 and Section 6.4.2. Figure 7,13
shows the ransformed SST model up to ON degree 10 with respect to system { Y]] (see
(5.76) for the definition). The 58T model in Figure 7.16 may be compared with that in
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Figure 10 of Rapp et al. {ibid.). Both models reveal the similar S8T signature. However,
deviations between the S5T magnitudes exist, especially in the area of Kuroshio Current,
where the difference can amount to 20cm. The S8T in FYS10.W96UW show greater
details in the cumrent structure (or "sireamline” as seen from a 55T map). In some other
areas, such as the Peru Current, the Gulf Stream, etc., the SST magnitudes in the two
medels agree very well. The differences in the SST magnitudes and the local 58T
structures between the two models seems to be teasonable since the model of Rapp et al.
fibid.) used one-year of Geosal data while the 6-arc solution used only 32-days of Geosat
data. Study will be needed to find out the reason of large difference in the S8T magnitude
in the area of Kurishic Current. In addicon, from the current flow map in Figure 7.13, we
se¢ that the currents missing in the map of Rapp et al., such as the Agulhas Current, stlt
cannot be detected in the é-arc solution of Category III and it could be atributable 1o the
lack of normal point data in those areas (see Figure 7.3).

7523 The Estimability of G ¢ Shifi C \X and AY

As an experiment, we modeled the geocentric shift components AX and AY in
Category L, III and IV. It will be necessary now to discuss the estimbility of these
quantities. The first issue to be discussed is the correlaticns berween the geocentric shift
components AN, AY and other parameters from the simultaneous solutions, [t was found
that the correlations between AX, AY and SST ceefficients, geopotential coefficients are ali
below 0.10. However, the AY component has relatively high correlations with the orbit
erTer ay, ay terms, except in Category V. Table 7.7 shows the correlations found in
various categories. Alse included in Table 7.7 are the comrelatdons between the above terms
in case that a prion information for the AX and AY are used in Category III (the case of
using Ag). The correlations are at the 604% level and it seems that the AX and AY
components may be recovered with some degree of confidence in the simultaneous
solution. In addition, these components from the solutions in Category [ and Category HI
are quite consistent and are about AX = .17 + 0.08m, AY = (.05 £ 0.08m. However, the
solution in Category IV shows that AX =-0.14 £ 0.04m, AY =0.10 £ 0.03m.

Table 7.7 Corralations Betweean the Geocenwic Shift Components and a,, a2 Terms of

Orhit Errors
erm | I | I0%, Gax = Say = 0.20m | IOI*, Sax = Gay =0.10m IV
plAY, ag) | .63 | 0.67 0.65 (.59 Q.03
pIAY, az) | (.59 | 0.63 0.61 .55 0.03
pAX, AY) | 0.19 | 0.19 0.17 0.13 0.06

* ]/oix and l/ﬂi‘f are used as a prion weights for AX and AY

Te further investigate the estimability of the AX and AY components, 2 test was
performed below. We assume that the AX and AY are known and have the values

AX=050m , AY =04 m

These values are then used to generate errors to the alnimeter-derived sea surface height in
such a manner {se¢ also (7.38)):
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Ahe = AXcospoosA + AYcosdsinh {7.85)

where Ahg is error due 1o AX and AY. Using arcs 22, 23, and 24 and incorporating the
surface gravity normal equations, we then perforrmed the simultaneous solutions
with/without Ah, applied to the original data {Category 1If). The results for the AX and AY
COMPONENts are:

Case [: Ahe is not applied
AX =0.20 £ 0.08 meters
AX = -0.02 + 0.08 meters

Case I : Ah, is applied
AX = -0.30 £ 0.08 meters
AX = -0.42 + Q.08 meters

Amazing enough, the differences in AX and AY berwsaen these two cases are
precisely the known AX and AY values! In addition, the resulting SST values are gxactly
the same. This shows that the incerporation of the AX and AY components in the
simuitaneous selution is not totally vnrealistic, although the geometry of the altimetric
observation is not quite streng for such a purpose. It should be noted that such a
determination of the AX and AY components is only possible through the use of the ON
functions or ather basis functions than the spherical harmonics for the SST representation
and the use of a priori 5T information,

524 Acc i £ T i i from lution

Up to this point, we have presented the results (mainly the SST maps and the
current flow paiterns) from the 6-arc solutions in the five categories. We shall begin to
assess the qualities of the various solutions and determine the optimum strategy among the
five presented in Table 7.4. In addition, some "old issues” may now be discussed by the
use of the ON functions.

We start with the accuracy assessments of the 35T and geoid undulations from the
solutions. Due to the large amount of tests and limited space, some results will be
descriptively presented and some will be illustrated in figures. Using the full error
covanance matrix of the parameters (namely potental coefficients, SST coefficients, orbit
error parameters, and geocentric shift components) from the 5 aforementioned 6-arc
solutions, the standard deviations of the geoid undularions and the SST have been
compulted at regular 5% x 57 grid points and the results were then interpolated at 1° x 1°
grids. Figure 7.16 shows the geoid undulation errors from the 6-arc solution in Category
1. From Figure 7.16, we find that the gecid undulation errors are not uniformly
distributed on the endre globe. However, over the oceans the geoid undulation error is
quite uniform and the RMS errors are about 10 cm. In the coastal areas, the geoid
undulation error increase significantly, due to the lack of altimeter data there. In Category
L, If and I'V where no gravity anomalies have been used, the geoid undulation errers from
the 6-arc solution on iand are totally unacceptable since the magnitudes can reach 10 meters
in some land areas. However, the RMS errors in these three categories over the oceans are
still about 10 cm which is about the same magnitude as obtained in Category Il {Ag used).
Thus, the non-uniformity of the geoid undulation errors in Category I, IT and IV is even
meore serious than that in Category III. For the geoid undulation errors in Category ¥
where the spherical harmonic representation for SST is employed and the gravity data are
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used, the error distribution patterns and RMS error are almost the same as those obtained in
Category III. From the above discussion, it seems that for the purpose of obtaining
geophysically meaningful geopotential coefficients, the inclusion of surface gravity
anomalies, especially on land, is necessary or the resulting geopotential coefficients will be
"tailored" to an unacceptable extent. Therefore, from the point of view of the geeud
undulation errors, the soluton strategy in Category L is the optimum one.

Figures 7.17 and 7.18 show respectively the ST errors from the 6-arc solutions in
Category LIl and V (the difference in these two categories is only con the SST basis
functions). From the standard deviations of the ON coefficients, it was found that the
EMS S5T error shown in Figure 7.17 is 11 cm {over the oceans). The RMS 55T error
shown in Figure 7.18 is about 13 ¢m (over the oceans). The larger RMS 38T error found
in Figure 7.18 is attributable to the large standard deviations of the spherical harmonic {1,
0 tarmn {about 10 cm). To reduce such a error, a standard treatment 15 to fix the (1, 0) term
in the course of adjusunent (e.g., Denker and Rapp, 199 and Rapp et al., 1991}, Sucha
meatment should be reasonable in that the (1, 0) term represents the signal component of the
"longest” wavelength and it is believed that the average of this term should not change
significantly over 1 or 2 years and it should be reliably determined by the oceanographic
method. However, smaller oscillations of this term should be expected and it is
unfortunate that this term cannot be reliably determined by the aldmetric method shown
here. The SST model obtained from Category ¥, as shown in Figure 7.10, does reveal
most of 88T signamres, although some of them are not as ocsanographically meaningful as
those obtained from Category 1I{ {the ON function case). In addition, Figure 7.19 shows
the degree variances of the SST signal/ervor and the geoid undulation emror in case of using
spherical harmonics as basis functions for the 85T (namely Category V). Due to the non-
unifornmity of the errors of the S8T and geoid undulations over land and the oceans, and
due to the fact the degree variances of the spherical harmonic coefficients are evaluated over
the entire sphere, any conclusicn on the "cut-off” frequency of the SST (the ransition point
where the signal-to-noise ratic is 1) from a plot such as Figure 7.1% could be misleading.
This point has been made very clear in Denker and Rapp (1990).

Due 1o the use of the ON functions, we shall now re-investigate the problem of the
maximum determinable degree for the Geosat S8T in terms of the ON functions. Figure
7.20 shows the degree vanances and error degree variances of the SST and the geoid
undulations using the orthoncrmal functions from the &-arc solution in Category [ The
ON error degree variances of the geoid undulations have been computed by the technique
developed in Section 7.3. To show a more realistic geoid error estimates cver the oceanic
ar¢a using the ON functions, we present the error degree variances using the spherical
harmonic functicns (the basis functions used for modeling the geoid in the simulianeous
solution) and using the ON functions (the functions for estmating the geoid error posterior
the solutions using the technique in Section 7.3) in Figurs 7.21. Also shown in Figure
7.21 are the error degree variances of the geoid unduladens in case of including the graviry
data and in case of downweightng the gravity normal. Based on Figure 7.21, substantal
improvement on the accuracies of the geoid undulations has been achieved when
incorperating the gravity data. Also, the downweighting factor 1/2 has no substannal
impact on the accuracies of the geoid undulations. It can be seen from Figure 7.21 that
after ON degree 8, the ermor depree variances (of the ON coefficients) start to decrease,
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reflecting the real situation that the altimeter data can provide a better resolution for the short
wavelength geoid undulations over the oceans. On the other hand, the error degree
variances of spherical harmenic coefficients always increase with degree due to the fact that
the spherical harmonic functions are global functions and their error degree variances must
reflect the global accuracies of the geoid which ceuld be superior over the oceans and and
infertor on land. Therefore, the use of the ON functions should provide a better way of
determining the maximum S8T degree {of the ON funcoons) since the domain of concern is
only oceans where the 55T are defined. The nop-uniformity of the geoid undulation errors
over oceans and land can be found in Figure 7.16, as mentioned before.

To further show the nemerical results for the signalferror analyses using the ON
tunctions, we list the signal/ferror degree variances of the SST and the geoid undulations
from the 6-arc solution in Category III in Table 7.8. In additien, in Figure 7.22, we plot
the signalferror degree variances from the 6-arc solution in Category IV, although this
solution provides a $8T model that could be dependent on the Levims' model (see the
analysis in Section 7.5.2.2), From Figure 7.20, Figure 7.22 and Table 7.8, we see that
the 55T signalferror and the geoid error are comparable in magnitudes from degree 11 to
degree 15. However, after ON degree 15, the S5T error and geoid error start to obscure
the 55T signal considerably. Based on such an analysis, we conclude that the current
{icosat system (including the GEM-T2 orbits, the corrections to the raw observables such
as tropospherical corrections, tidal corrections, etc.) may not yield a SST model with
resolution higher than ON degree 15. Note that such a conclusion is based on the data in
the 6 Geosat arcs. The resolution may be higher than ON degree 15 if the one-year or two-
year of data are used. It is becanse of such a cut-off frequency {ON degree 15) that we
present the SST discussed so Far only up to ON degree 15 although they were modeled up
to ON degree 24. In fact, based on the energy distaibutions of the 85T signal components
in terms of the ON functions, only about 0.02% of the energy (relative 1o the energy up to
ON degree 24) is contained within ON degrees 16 to 24 for the 6-arc solutions in Category
I 1o II1.

Table 7.8 Square Roots of S5T Signal/Error and Geoid Error Degree Vanances from
(Geosat H-arc Solution Using ON Functions, Category ITI

chree SST signal SST error (eod error

(.482 0.042 0.007
3 0.192 0.039 0.012
4 0.209 0.035 0.015
5 0.059 0.032 0.020
6 0.076 0.029 0.022
7 0.077 0.029 0.026
8 0.081 0.030 0.027
Y 0.053 0.030 0.028
10 0.033 0.024 0.024
11 0.016 0.022 0.023
12 0.01% 022 0.022
13 0.020 0.022 0.023
14 0.012 0.018 0.019
15 0.007 0.015 0.018
16 0.006 9.015 (0.018
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We shall now assess the orbit accuracies from the various solution sirategies and
present some statistics about all the 6-arc sojutions. First of all, we show the RMS values
of corrections and some other interested quanttes in Table 7.9; Table 7.10 shows the RMS
values of orbital errors. These RMS values are computed from the comesponding vaines at
the normal points (see Table 7.2 for the number of normal points in the & Geosat arcs).
The EMS values for AN and 55T here will be slightly differznt from those implied by the
ON coefficients since they are evaluated in two different ways and the "domains” are aot
quite the same. In these two tables Apr is the total radial orbit ervor defined in (7.37), &1
15 the error of gravity origin whose de?uﬂﬁc-n may be found in (7.37). T is the error due to
the AX and AY compenerts of the geocentric shift. Comparing Table 4.8 in Denker
{1990} and Table 7.9, we can see that the GEM-T1 orbits contain larger orbit errors. The
undulation cerrections based on GEM-T1 erbits are also larger than those based on GEM-
T2 arbits. The RMS values of the S5T obtained from this study are generally larger than
that obrained by Rapp and Denker (1991). Figure 7.23 shows the geoid undulation
correctons corresponding to the §-are soluton in Casegory IIT (for the corresponding 58T
model, see also Figure 7.7). The RMS undulatdon comrection of 1.16 meter obtained here
i3 congistent with the GEM-T2 error estimates and consistent with the results in Rapp et al.
{1991, Table 7).

From Table 7.9, we find that for the 6-arc solution, the largest crossover
discrepancies occur in Categery IV the next in Category Iil, and then in Category I where
the ON functions were used for representing the SST. The adjusted residual sea surface
heights are also the largest in Categery IV. This shows that the Levitus 88T indeed are not
quite compatible with the 32-days of Geosat data used here (recalling that in Category IV
we treat the Levitus S8T as additional observables). The increase of crossover
discrepancies from Category [ to Category LI is | cm, about 5% of the magnitude of the
average discrepancy. Using the formula ox/V2 £ oT € ox where ox is the crossover
discrepancy and o is the RMS error due to geopotential, we find that the total orbital error
after the §-arc solution ranges from 13 to 21 em,

The most important comparison will be on the results from the 6-arc soludons in
Category IIl and Category V (ON functions versus spherical harmonics). From Table 9(c)
and 9{d}, it is found that the use of spherical harmonics increases the RMS residual sea
surface heights (after the adjesiments) by 1 cm or about 3% as compared to the model of
using the ON functions. Thus the latter model {its the observations better than the former.
The crossover discrepancies after the adjustments in these two models are the same at arcs
22, 23, 26 and 27, bur at arcs 24 and 25 the use of spherical harmonics vields 1 cm
increase (about 3%). The recovered AN values in these two models are exactly the same
except at arc 23. For the individual orbital error terms, the maximum deviation between the
two models occurs at the 1 cyc/rev terms. According to the comparisons on the RMS
residual sea sarface heighis and the crossover discrepancies after the adjusmments in these
two models, it is evident that these 1 cyc/rev terms should be more properly recovered in
the case of using the ON functions than the case of using the spherical harmonics. In
addition, we found that the sine term of 1 cycfrev error has a standard deviadon of 17 cmin
the case of using the spherical harmonics, proving that these terms cannot be accurately
recoverad in such a model, Based on these discussions, we conclude that the case with the
N functions yields a better orbit accuracy than the case with the spherical harmonics.
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Table 7.9 RMS Values of Corrections to the Residual Sea Surface Heights and Adjusted
Crossovaer Discrepancies in Meters

fa) Garg seludon, Category I

arc | Apr+T| AN | SST §Ah model | Ah resid. § Crossover discr, MNo. of
before | after Crossovers
22 0.78 | 1.16 | D.6% 1.63 0.18 0.36 019 1646
23 079 | 1.15 1 070 1.61 0.1% 0.41 0.20 1858
24 0.84 | 1.15 | 0.71 1.67 0.17 0.50 0.20 2083
25 0.75 | 1.15 | 0.70 1.58 0.17 0.42 0.158 1749
26 077 | 1.16 | 0.69 1.59 0.17 0.37 0.1% 1724
27 0.83% | 1.15 | 0.69 1.63 0.18 0.47 0.21 1898

{b) 6-arc sclution, Category 1T

arc Apr | AN | SST |Ahmodel | Ah resid. ] Crossover discr.(after)
22 1077 | 1.16 | G.70 | 1.63 0.8 019
23 {078 |1.15| 070 1.61 0.17 0.20
24 | 0B84 |1.15]| 0.72 1.67 0.17 0.20
25 1075|115 | 071 1.58 0.17 0.18
26 1076 | 1.16 | 0.70 1.59 .17 0.18
27 | 0.83 1 1,15 | 0.70 1.63 0.18 0.21

{c) 6-arc solution, Cawegory 11T

arc |Arr+T | AN | S8T | Ah model | Ah resid.| Crossover discr, (after)
22 | 0.76 { 1.17 | 0.69 1.62 0.18 0.20

231 0.76 1 1.16 | 0.69 1.61 0.18 021

24 | 0.81 1.16 | 0.70 1.67 0.17 .20

251 0.73 1.15 | 0.69 1.58 0.17 0.19

26 ] 0,74 | 1.16 | 0.69 1.60 0.17 .19

27 I (.81 1.16 | 0.69 1.63 0.18 (.22

(d) 6-arc solution, ogsT = 0.25m, Caregory IV

arc |Ar+T| AN | SST | Ahmodel | Ah resid { Crossover discr. (after)
_fz‘_h! 1.15 | 0.09 1.61 0.19 0.20

23 0.63 1.18 | D.AG 1.59 019 .21

24 | 0469 1.19 | 0.71 1.64 0.19 .20

25 0.61 1.18 | 0.70 1.57 0.18 0.20

26 | 0.61 1.19 | .69 1.58 018 .19

27| D68 1.18 | (1.6% 1.62 0.19 .22
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Table 7.9 {continued}

(e} G-arc solution, N33L = 15, Category V

arc AT AN | 85T |Ahmodel | Ah resid. | Crossover discr. (after)
22 ﬂ.ﬂ T.17 |0.73 1.62 0.19 0.20
23 0751 1.16 | 0.73 l.61 0.18 0.21
24 080 | 1.16 | 074 1.67 0.18 0.21
25 073 | 1.15]10.73 1.58 017 0.20
26 0.73 1.16 | 0.73 1.59 0.17 Q.19
27 0801 1.16]0.72 1.63 0.19 0,22

Table 7.10 RMS Values of Orbital Errors (Solution Categories are the Same as Those in

{a)

Table 7.9) and Geocentric Shift in Meters

arc| Ayr | const. |1 cycfrev+ AZ| leyeirevit)| loyao/rev (12) Ecych'ev{t)l AX | AY
221 022 [ 0.57 0.31 0.06 0.02 0.01

231 0.23 | 0.561 0.24 0.09 0.06 0.00 0.17 | 0.05
241023 0.59 0.29 0.24 0.01 0.00 |£0.08 |H).09
251023 | 0.60 0.20 0.13 0.06 0.00

261 0.23 | 0.43 Q.19 0.03 0.03 0.01

271 0.24 1 063 0.24 0.15 0.04 0.00

(b

arc | Ayr | const. | lcycrev+AZ | 1eycirev (i) | 1 cychrev 12 2 cycirev (1)
22 | 0.21 | 0.33 {1.33 06 00z 0.01

23 | 023 | 0.57 .27 0.09 0.06 .00

24 | 0.22 | (L55 0.32 0.24 0.01 0.00

25 | 0.22 | 0.56 0.23 0.13 .06 .00

26 | 0.22 | 0.59 0.22 .03 0.03 0.01

27 1 0.23 | 0.50 0.26 0.15 {.04 0.00

{c)

arc | Ajr| const |1 cycirev + AZ | | cycirevit)] 1 cyciev(i2) | 2 cycfrev(t) AX | AY
22 | 0.23] 9.34 0.20 0.06 0.02 G.01 [0.17 |0.04
23 | 0.24| 058 0.23 6.09 0.06 0.00 [+0.07 [+0.08
24 | 0.23| 0.56 0.29 0.24 0.01 6.00

25 | 0.23] 0.58 0.19 0.12 Q.06 000

26 | 023 060 0.18 .03 0.03 0.01

27 10241 0.60 .23 .15 0.04 (.00
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Table 7.10 {continued)

{d)

arc | Agr {const. |1 cvefrey + AZ] 1 oycfrev (1) { 1 eve/rey (122 cycirev (1) | AX AY
22 | 0.241 0.51 0.21 0.06 .02 .01 -0.14 | 110
23 | 0.24] 0.55 0.14 0.09 0.06 4.01 +0.04 |£0.03
24 1 0.25] 0.53 0.20 0.24 0.01 .01

25 10,231 0.54 0.11 0.12 {+.06 .00

26 1 0.25] 0.57 011 0.03 .03 (.01

27 | 0.24) 0.57 0.15 0.15 {1.04 $.00

(e

are] A const. | lcycirev+AZ | leye/rev(ty | 1eyefrev (i) | 2 eyoirev ()
221 L23 0.55 0.24 0.06 .02 0.01

231 0.24 (.59 0.18 0.09 .06 0.01

241 D23 0.57 0.23 0.24 .01 0.00

251 0.23 0.58 0.14 0.12 .06 0.00

2691 0.23 0.61 0.14 0.03 (.03 0.01

271 9.24 0.61 0.18 (.15 .04 0.0{

In all the categories, three types of sclution, namely, the 1-arc, 3-arc and 6-arc
solutions, have been tested. The crossover differences (for the numbers of crossovers in
individual arcs, see Table 7.9) after adjustment increase from about 15 o in the 1-arc
solution to about 20 cm in the 6-arc solution. This is reasonable since in a multi-arc
solution the least-squares solution must simultanecusly take care of the rasiduals pertaining
to individual arcs, resuiting in a poorer fit of the residual sea surface heighis to the
unkpown parameters in some arcs. However, such a slightly inferior accuracy of orbits
will not create problems in future use of the arcs (such as the prediction of gravity
anomalies), since remaining errors can be further reated by a simple mode! in a local area.

The orbit errors of GEM-T2 orbits are of different nature as compared to those of
GEM-TI found in Denker and Rapp (1990). For the purpose of comparison, we show the
RMS values of the orbit errors from one of Denker's 6-day arcs and from arc 27 (see Table
7.10(c)) in Table 7.11. Although such a comparisen is not quite valid, it provides a
general feeling of how the emrors of these two kinds of orbits behave. Indeed, one can find
that before the adjustment process, the GEM-T2 orbits are superior 1o GEM-T1 orbits. In
particular, the emrors due to resonant effects in GEM-T2 orbits are much less those in
GEM-T1 orbits. The ime-dependent 2 cyc/rev terms are almost zero in both GEM-T1 and
GEM-T2 orbits. The censtant terms of the orbit errors from the two orbits are very
consistent and arc about 60 ¢m., This term is normally interpreted as the comection to
equatorial radius of the ellipsoid implied by the satellite field (now GEM-T2 or GEM-T1).
However, from the radial error analysis in Section 7.1, we know that this term should have
included the mixed effect of the equatorial radius comrection, the initial siate vector error and
the error of gravity origin, but it is believed that the first one has the dominant effect,
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Table 7.11 Comparison of Orbit Errors of GEM-T1* and GEM-T2+ Orbits

orbit | Ayr  |const.|1cychrev | lcyofrev (1) { 1eyeirev (1) | 2 cycirev (1)

GEMTII| 0.40 |0.60 0.47 .63 0.16 0.02
GEMT2| 0.24 |060 | 0.23 0.15 0.04 0.00

Unit = melers
* GEM-T1 orhit from one 17-day selution at epoch 870416
T GEM-T?Z orbit from the resuls in Table 7.106c), arc 27

7.5.2. mralation Analysi

Correlation analyses using the covariance mawaix frem the 6-arc solutions show that
there is no significant (below 50%) correlation between the SST ON coefficients and
geopotential coefficiems. However, significant correlations (about 60%) were found
between the constant terms of orbit errors and the ON degree 2 terms of the 88T {in
Category I). Use of gravity data has reduced such a correlation to an acceprable level
(below 50%). High correlations between the constant terms {i.e. ap terms) and the
spherical harmonics degree 1 and 2 temms (Category V) were also found and such a
phenomencn is consistent with Engelis and Knudsen’s {1989, p. 200) finding.

To calculate the correlation coefficienis between the geoid undulation corecten and
the S5T, we write formally

mN1 = mAugXy (7.86)
mb1 = mBwXi (7.87)

where N is the vector of geoid undulation corrections, [ is the vector of S8T valuves, X is
the voctor of geopotential coefficients, Y is the vector of S8T coefficients, A is 2 mamix
containing the spherical harmonics, B is a mamix containing the basis functions of 55T, m
is the number of points where the N and { are evaluated, u and v are associated with the
maximum expansion degrees of the geopotential coefficients and the S5T coefficients.
From the adjustment process, we can obtain the error cevariance matrix between X and Y
as

EH

Lyx Zvyy (7.88)

Then we can get the error covanance between N and [ at the m points wsing error
propogation:

AT AT AZygyBT
BInAT  BIyyBT {7.89)

I Ing
I Zgy

then the correlation coefficient berween N and L at one point (0,A) is
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oNg
ONOT, {7.90}

p(¢ :}'-'} =

where oy is from Loy and the standard deviations of N and §, namely oy and oy, are
from the marrices in (7.89). Such a procedure for determining p(d, A) has been uséd by
Nerem et al. {1990). To evaluate the pld, X) at 5% x 5° grids on the entire globe, m will be
36 x 72 = 2392, Using such a procedurs and 5° x 5° grids, five sets of correlation
coefficients between N and { for the 6-arc solutions in Calegories I to V are calculated.
Based on these sets, the lowest correlations between the geoid undulation corrections and
the S5T are found in Category IV, the next is found in Category II1, then in Category I {all
CN function cases). The miean values in these sets are all negative showing the geoid
undulation corrections and the S8T are negatively comrelated. Of particular interest is the
comparison between the cormelation coefficients in Categories IIT and Y (all &-arc solution).
It was found that the correlation coefficients in Category IIT have a mean value of -0.373,
and a RMS vatue of 0.386, while in Category V, the corresponding values are -0.034 and
0.071. Both sets of values show that good separation between N and { are achieved in the
cases of using spherical harmonics and ON functions. Despite the advantage of relatively
low cormrelations in Category IV, that the oceanographic S5T will dominate the resulting
SST from the simultaneous solutions does not look like a preferable situation since we
want to cbtain an independent SST esdmate from satellite altimetry. Therefore, the best
solution strategy seems 1o be that in Category IIT in this regard since in this category we can
obtain the geophysically meaningful geopotential coefficients, reasonable 85T signatures
and low correlations between the undulation corrections and the SST.

L1327 Counclysions

The primary goal of the experiments has been to investigate the capability of the ON
functions in representation of the SST and speciral analyses of the signals from the
simnultansous solutons, The above analysis in various aspects have shown that the ON
functions have the required capability. However, some problems are basically inherent in
the simultaneous solutions and any kind of basis functions for the 5T cannot resolve these
problems. One preblem is related to the geometmy of the functions of the unknowns in the
observables - the residual sea surface heighis. Al these functions lie in the radial direction
and creates difficulty in separation of the individual components. Although additional data,
such as gravity data, can improve the situation, the results still rely on the accuracies of the
incorporated data. The other problem is in the linear orbit theory. Althongh such a theory
provides a good insight into the orbii ervor characterisucs, it has certain limit. Wagner
{1986) and Wagner (1991, private communication) pointed cut that the linear theory has a
defect in recovering the orbit error arising from the odd-degree zonal terms of potential
coefficients. Unless an improved analytical orbit theory is made, the weakness in the
simuftaneous solution still exists. Nevertheless, it is believed that a prioni information and
a good starting altimeter system should have reduced such a defect.

Despite all the possible problems in the simultangous selution, the ON functions
still provide a good tool for assessing the accuracies of the estimated quantitias. The ON
funcaons offer an advantage over the spherical harmonic functions that our analyses on the
estimability and the resolution of the SST will not be affected by the sitnation on land and
hence the analyses can lead to correct conclusions. Also, the accuracy of the estimated
geoid, which could be superior over the oceans and inferior on land, now ¢an be compared
with the signalferror of the SST in the same domain using the ON functions and the
transformaton technique given in Secton 7.3.
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Several important conclusions can be drawn from the results of the experiments
described in this section:

1. The solution using altimeter data, surface gravity data (Category {I1) is the optimum
among all the solutions, considering all factors such as SST signatures, geoid undulation
accuracies, e,

2. The S3T resolution from the é-arc solutions should not exceed ON degree 15 based on
the signalferror analysis. To improve the reseiution, the Geosat needs a refined system
taking into account better orbits and better correction models 1o the raw data.

3. The geocentric shift components AX, AY can be esimated with 60% correlation existing
between AY and the orbit error ag and ag terms, The correlation may be reduced by some a
priori informaton of these two components.

4. The use of ON functicns for modeling the S5T in general yield better defined ocean
currents and better resclutions in the coastal area as compared to the spherical harmonic
functions.

5. If correct oceanic equations of motion are incorporated in the simultaneous solution, the
separation between the §ST and geoid is the best in terms of correlaton analysis.

8. Conclusi I R fati

In this study, a set of orthenormal functons have been constructed using one of the
methods proposed in Chapter 3. Tests have shown that the spectral behavior of a funcdon
in such a orthonoermal functon expansion is remarkably good as compared to that in a
spherical harmonic expansion over the oceans. Experiments in the simultaneous model
with the orthoitormal functions as basis functions for the 88T also demonstrated the
capability of these functions in modeling the SST.

The ON functons provide an ¢pportunity for signal decomposition of oceanic
signals such as the S8T and the oceanic geoid. They also provide an excellent tool for
assessing the accuracies of signal components over the oceans. These analyses can also be
carried out using the spherical harmonic expansions, but theoretical jushfications cannot be
found and ofien the analyses lead to incorrect conclusions,

Many other othenormal functions have been developed in Chapter 3 and Chapter 4,
Of particular interest are the spherical cap harmonics which are orthonormal over a
spherical cap and sausfy Laplace’s equation, The idea of finding the spherical cap
harmonics was formed one century ago (see Thomson et al., 1879}; the latest development
on this subject is given by Haines (1985a). However, all these investigators have their
own definitions of spherical cap harmonics which are not consistent with the definition of
the fully normalized spherical harmonics, and detailed computational formula such as those
presented in Chapter 3, cannot be readily found. The work done in Chapter 3 has provided
all necessary definitions and software for future applicatons of these functions. The
applicanons could be expanding the gravity anomalies in the Arcric and Antarctic areas,
expanding the SST in the Pacific ocean for sea surface variation studies and expanding any
signal within a spherical cap.
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Also provided in Chapter 3 are the onthonormalized Fourier-Bessel functions, or in
the author's definition, the generalized Foorier-Bessel functions, which are suitable for
series expansion of a signal defined cn a domain beounded by two parallels and two
meridians. The applicadons of these functions are thus similar to those of spherical cap
harmenics. One may employ these functions te approximate the surface topography in the
United States or Europe. As the final method, the conformal mappings also contrbuie to
this study in providing complex orthonormal functions. In comparison to the eigenvalue-
eigenfunction methed, the method of confermal mapping has greater flexibility in
"choosing” an oceanic domain, such as a polygon. Unfortunately the mapping functions
often do not have simple forms or even closed forms, vielding only "approximate” complex
orthogonal functions in some cases. [n addition to being 2 tool for finding orthogenal
tunctions, conformal mapping can also be applied te the solution of boundary value
problem (Churchill and Brown, 1984). The idea is to transform a supposedly complicated
boundary and its boundary condition to a simple boundary and its associated boundary
condition, then the problem is solved using the simple boundary and the associated
boundary condition. Finally, the desired solution is found through the relationship implied
by the mapping. Thus conformal mapping could be a tool for selving the geodetc
boundary value problem.

The generalized spherical 2-D Fourier functions and the generalized Fourier-
Tschebyscheff functions are proposad in Chapter 4. These orthonormal functions can be
basis functions for representing a global signal, such as the surface topography, the geoid
etc. Nawrally they can be alternative functions in the simultaneous solution but they will
probably suffer the same problem in the spectral domain as the spherical harmonics do.

The geodesist's cld friends—spherical harmonics, apparently do not lose their
importance in this study. They are the necessary functions for constructing the
orthonommal functions that are used in the $ST expansion and in the simultaneous selution.
An unfortunate situation is that they are independent only up to a certain degree and order
over the oceans. Due te such a function dependence, 3 orthonormal systems have been
constructed using different combinations of the spherical harmonics. A compact FFT form
for computing the inner products of the spherical harmonics over the oceans was
developed. A relationship between one associated Legendre function and the product of
two associated Legendre functions was found. Such a relationship thus provides a new
technique for computing the integration of the product of two associated Legendre
functions. However, in this new technigue a numerical instability problem exists when
using CRAY single precision or IBM double precision io compute the combination
constants. Although such a problem can be solved by using Cray double precision, it will
be an interesting topic to find a stable algorithm for computing constants in a CRAY single
precision environtnent or an [BM double precision environment.

One important thecrem which has been proved and numerically tested is related 10 a
technique for detecting the maximurm spherical barmonic degree of a global bandlimited
signal given data only over the oceans. Another theorem states that the orthonormal
funciions constructed by the Gram-Schmidt process do not have eigenvalues with respect
1o the Laplace surface operator A*. The second theorem has been a basis for arguing that
there is also no eigenvalue with respect to any kernel function for the ON functions (See
Section 6.2.1).

_ The results from the expansions of the Levitus SST show that to approximare the
high frequency 88T, the maximum expansion degree must be at least 15 using either the
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ON funcdons or the spherical hammonics. Using only oceanic data, the spherical harmonic
expangions with Nmax > 10 yield excessively large coefficients, thus the "optimum™ Nmax
was normally set to 10 in the past (Engelis, 1987b). However, as we just stated, such a
low Nmax will lead to a poor fit to the data. Whar the ON functions have conmibuted in
resolving this dilemma is to obtain explainable expansion coefficients without losing the
approximation accuracies.

As a "by-product” of this research, a FFT method was developed te compute the
elements of the nonmal matrix and the "U" vector (see {6.56)) in calculating the geopotential
coefficients from gravity anomalies. It has been found (see Table 6.2} that for Nmax = 70
only 146 CPU seconds is needed to form the normal matrix and U vector on the CRAY Y-
MP/864 machine, about 130 times faswer than the conventional method {Rapp, 1991,
private communication). Such a highly improved method will allow researchers to test
various aptions of data weightings and selecon strategies without worrying about the
computer time, This method can be extended to take into account miscellaneous data such
as gravily anomalies, geoid undulations. For such a purpese, the modification to the
software developed in Chapter 6 should not be a problem.

The spectral analysis of the Levitus S8T using the ON functions shows that
98.52% of the energy is contained within ON degree 10; up 1o ON degree 24, 99 20% of
the energy 1s recovered. Thus we conclude that the Levitus SST are low frequency signal
{with respect to the ON functions). This result is not surprising since a smocthing function
has been employed by Levitus when he constructed his SST. Tt will be lmpossible to detect
such a phenomenon using the spherical harmonic expansions either due to the theoretical
problem or the pracdcal problem. The theoretical preblem is that the signal component
obtained form the spherical harmonic expansion is not truly a "component” for an oceanic
signal in the Fourier analysis sense. The practical problem is that the expansion
coefficients do not have the permanent property since the coefficients change significantly
as the Nmax values change. As a result, different conclusions on the energy distribution of
the Levitus 58T can be made as different Nmax values are used. Although the above
theoretical and practical problems can be resolved by artificially setting 55T = 0 on land,
the results on the energy distribution from the spherical harmonic expansions are
misleading due to a relatively slow convergence of the expansion coefficients and the
artificial energy intreduced at the continental boundaries.

In Chapter 7, the linearized Lagrange's equations of motion have been briefly
reviewed with an aim to explain the ongins of satellite radial orbit errors. In a detailed
analysis of functional forms of radial orbit errors due to initial state vector, the geocentric
shift components and the spherical harmonics, we agalytcally verified a comelation
problem pointed out by other researchers in the past. The use of ON fuactions only
remaoved the part of correlation between the sine term of 1 cyc/rev radial orbit error and the
38T {1, () term, the problem of geocentric shift is stll present. Due 10 a further
complication of the functional relationship, it is proved that only the mixed emmor due to the
AZ - component 2nd the sine term of 1 cyc/rev orbit emor is solvable. Therefore, in terms
of geocentric shift, only the AX, AY components are independently modeled in the
simultaneous model. The solutions show that the two components are on the order of 10
cm for the GEMT2 orbits. The correlation between them is low (about 16%) since the
altimeter data cover a large portion of the earth and allow a relatively good estimability of
the transformation parameters—AX, AY, between the geocentric system and the satellite
SYSLET.
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Simultaneous models other than the one used in Benker (1990 have also been
tested in Chapter 7. It was found that the model which treats the Levitus S5T as additienal
observables vields a S5T model almost identical 1o the Levitus', even if a very pessimistic
accuracy and a small downweighting factor are used. This particular model was med in
response 1o the ideas of using oceanic dynamic equations put forward by, for example,
Wagner {1989}, Marshall (1985), Engelis (1987a). However, it appears that a differem
way of mying this idea will be more appropriate. Another model incorporated gravity
anomalies im0 the solution, yielding batter gaoid undulation accuracies and increasing the
separability between the geoid and the S5T. In all these models, we have used the ON
functions to perfonn spectral analyses for the SST signalferror and for the gesid ermor.
Again, it is mere theoretically justifiable to use the ON functions for such analyses and it is
believed that comect conclusions have been obtained by using the ON functions for spectral
analyses. In terms of the S5T resolution from the Geosart data, we found that the cutoff
frequency is in the vicinity of ON degree 15, depending on the models used. As stated in
Wunsch (1991), "Geosat was a crude sysitem and there was no expectation that it could be
used to study the large-scale ocean circulation,” the analyses using the ON functions here
may somewhat prove his statement {note that this is only based on 6-arc solutions).
However, this current Geosat system may be improved in the future by using more
accurate orbits and more reliable correction models to the raw altimeter data.

It is hoped that an improved Geosat system will be available soon or the
TOPEX/POSEIDON mission (Fo et al., 1991} will fill the gap between system capabilities
and the required accuracies. Then, the orthonormal functions used in all the numerical
gxperiments in this study, as well as other proposed yet not tested orthonormal functions,
will contribute to the geodetic and oceanographic communities in correctly performing
speciral analyses over the oceans and extmactng useful informations.
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Appendix A

From the process shown in (3.1), we get

{_Es fl] —L{hzs fl} II_'l%{ } [fz, f1lf1, f1 ={

.= g ths ) mL( gfg,fk}fk,a)

=hl_§|:(f3’ f] - f3, f|If1, f] - “3: EITL f1}']
={-,l;[{f3’ fi) - (F3. Fy)]
=90

(Faifa) = g tba, B = o [, Ba)- (6, TR - (65, a2 B2

-1 rAN I
hj{[f:h f2}- (f3. T2))
=1{
Following this line, we can prove that fori £ n-1,j < i, [E, fj] ={

Nowfori=n,j<n-1, we have

. _ n-1 _ _
(Fn, £;) =i1h {hn. fj} =l (fn - kz (£, Biclfic, fj)

:&ﬂm, f;)- Z (£, fk)(fk.f}}}

:'hld[{fm fj-}-(fn, fj)]

={

Thus we prove that (f;, £;) = &;;.
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Appendix B

vilj irrat I

1. Background

In the development of a set of orthogonal functions on the surface of a sphere, an
important identity derived below, will be employed. The identity states that

j[ {m‘mga"f]dc:f (fa—h-hﬁ s
& ' « dn gn (B.l]

where A" is the Laplace surface operator on the unit sphere, ¢ is a region on the unit
sphere, C is the boundary of g, and n is the outer normal of line C, lying on the tangent
plane of C. The simation is shown in Figure B.1. A~ is defined as

2
ﬁ* = _1.__|ii(31n Bi] + _L_a_]

sin 0 |99 a8/ sin% g2 (B.2)

where 8 is the colatitude and A is the longitwde. On a 2-D rectangular coordinate system
(B.1} becomes the well-known Green's second identity on a plane, which has been proven
by many authors (e.g., Kaplan, 1981, p. 814). The purpose of this appendix is to extend
Green's second identity to a curved surface that is defined by some curvilinear coordinates.
The extension to the surface of the unit sphere will heip some of the developments in
Chapter 3.

2._Proof of the identity
Consider a regular paramerric representation of a surface o in E3:
xi=x{ul, ud) i=1,2.3 (B.3}

where u! and u? are two parameters. x! form a rectangular coordinate system in E3. On o,
the arc lengih form is

(dsF = gyduidul,i,j=1,2 (B.4)

where gi; 15 the covariant metric tensor. In {B.4), the summation conventon of tensor
calculus has been employed and we will do so in the following development. Let r = (x!,
%2, x3), and r; = 0r/u', gy may be obtained from

gjj = ri - Fi, i, _] = 1, 2 {BS}
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(B.41 15 the well-known First Fundamental Formn of a surface.

Assume u! and u? are orthogonal, then gij will vanish if i # j. Under this
condition, we re-write (B.4} as

(dsp = g, fdul? + gaddu?f (B.6)

Let e be a unit tangent vector along ul and e; a unit tangent vector along u?, then the unit
tangent vector and unit normal vector of an arc € on O can be written as

] 2
E:=r311dd“5—ﬁ1+‘fgzzdé“;ﬂz B.7)

3 ]
En=ﬁlxﬂ3=‘f322§é’;61-fgn%“;¢: (B.8)

where ey is a unit vector nermal to the plane expanded by vectors e and €1, ¢, 15 obtained
by rotating e; by H)° clockwise on the e - g5 plane. "x" denotes the cross-product.

Stokes’ theorem (Spiegel, 1959, p. 106) states that the surface integral of the curl

of a vector A taken over any surface & is equal io the integral of A taken around the
periphery of the surface. The theorem can be expressed as

JI {?:m} erpds = % Aeds (B.9)
e} C

Since e, e; and €5 form a local orthogonal system in E3, we can express vector A in the e;-
basis:

A= PLI'EI + AZE’Z + Hjﬂ_‘; . (B ID)

Let A= Aje; + Ages. Werotate A on the ey - e plane by 90° clockwise to obtain B,
defined as

B=Ax-Ae; (B.11)
By the definitions of ¢, and ey, it is easy to see that
A-g,=A -¢=A,=B.¢, =B, (B.12)

where A ; is the projection of vector A on e B is the projection of B on €n-

For (VxA) - g3, again we assume that we are working in the ¢;-basis and we are
abie to obtain the “sca_lse factor” ¥ @33 for vector e3. With such an assumption, we can find
(VxA) from (Spiegel, 1959)
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(B.12)
where u? is the curvilinear coordinate associated with ey. From (B.12), we get
(Vxajes =——t—o i{*f g22 Ag) - "ELH 211 Al
Y 811822 aui aul (B.13)

Clearly g3z and u? plays no role in our derivation. With (B.11) and (B.13), we can rewrite
(B.9) as

L [i 7 A VBT Alldo = (Age; - Areshends
JL m{ V822 Ao} - — (Vg1 A) c{ 261 - Ajezken

Eiu Eiu (314}
Assume f{ul,n2} and hiul,u?) are two functions defined on &. By the subsiitution
_p 1l 9
VE11 du! (B.15)
Ayp=-f—L_ a_hz
YE22 du (B.16)
and the definition of gradient on &
1 % .1 9
1211 aul ¥ E22 aui (Bl:‘r)
we get
% [Aze; - Areq) - epds =§ faﬂ ds
€ c on (B.18)

where 90/gn is the derivative of h along €n- O the other hand, the left-hand side of {B.14)
is
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'y 9h a | oh of
—

. .g11 ou’ Au' 2 Em2 au2

(B.1%9)
Recalling that the Laplace operator in a curvilinear systern is (Kay, 1988, p. 157):
Af= % i(f—g gi _a.f_
1
£ au av’ (B.20)

where g is the determinant of the covariant metric tensor g;; and gh is the contravariant
metric tensor. g can be obtained by inverting 8

(8 hm = {gighiem (B.21)
where m is the order of the matrix. For an orthogonal system,

gll = gp=0, i#] (B.22)
Thus it is easy to see that (for an orthogonal system)

T
S (B.23)

Now, we define the Laplace surface operator A*f as

—?—_(@ g E]
E o' du’

a{ xl o of
__ 1 O [Bn S, Y BT O
_"'gllg22|i ( 43 )+au2( g2 zﬂ

[

Af=

=l

! 1
&u au au {524}

Combining (B.18}, (B.19) and (B.24), we have
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fA hdo + ('—a—hla—f;JrLa—za—Z}dn: 8 s
G o Bl gt ant 5225,% 5y oo

C {B.25)

Interchanging f and h in (B.25}), we get

” nA tde + t ah] afl +-L ahz afz)dc = hg ds
a o g“au ou £22 gu” du c on

Subtracting (B.26) from (B.25), we finally obtain the Green’s second identity on a curved
surface:

(£a™h - hA Thio = (fa—h— hﬂ] ds
- on  on

c (B.27)

(B.26)

Assume now ¢ i$ on the unit sphere and ul = 8, u? = A, it can be shown that (Kay, 1988,
p. 147)

£11=1

g19=5in8

Thus on the unit sphere, the Laplace surface operator is

5 1
&*f= 1 {i(sinﬁﬁ}+ 1 ﬂ

5ind | 26 88/ sin 8 3.2

(B .28)

From the above derivations, we know that {B.27) is not only valid for a sphere, but
alsc valid for other surfaces (e.g., ellipsoid) which are parameterized by two crthogonal
curvilinear coordinates. The anthor could not find the existing derivations for this idemiry
in literature, thus the detailed derivaticns are given here,
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Figure B.1 Coordinate Systern and Vectors on a Surface Parameterized by ul and u2.
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Here we will be proving the orthogonality of two Bessel functions of two distinct
frequency (zeros), but of the same order. The Bessel equaton 1s (Lebedev, 1972}

V) + Litr) +{1 -:—:’J{r} =0 .

where n can be any real or complex number. The argument r can also be any real or
complex variable. For this study, we restrict the case to the real n and r. n s the order of
the solution J{rj. Thus we often denote the solution of (C.1) as Ju(r) to emphasize the
order of the Bessel function.

By changing the variable r = kx and denoting the new function as Z(x} = J,(kx),
we obtain a moddified form of the Bessel equabon (of the same order):

i l 2 —
ZJx) + L 740 + (2 - Bz = 0 o

By another substitution r = £x and notation Zp(x) = J,{fx), we arrive at another equation:

Zjix)+ L Zx) + [32 : sz-)z,{x} =0 -

Multiplying (C.2} by xZy and {C.3) by xZ and subtracting one equation from the other
yield:

(- k2hz,2) = 1[2121: - Zkz:] + (Zfz; ] zkz;] (C.4

Without loss of generality, we assume () £ x £ 1. Taking integrals on both sides of (C.4)
and applying integration by part, we have

1 |
(,Ez - kz}j k2 dx = K(Z;Z; - Zkz;l | = (zlz,k - Z'kz;_'] ’ B
; 0 x=1 (C.5

Recalling that Zp = Jn{fx), Zj = Jp(kx) and Z; = E.T;{.Ex}, Z; = kI {kx]}, we write (C.5) as

1
(£2-x2) f xJnl£x Pn{kxidx = kI £0 (k) - €1,(kY {£)
0 (C.6)
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The solution of {C.1}, 1.¢., Jyir), for any n is well-known in literature. Normally
J () contains an infinite power senes in r. For example, for a non-negative integer n,
IL(r) is the Bessel function {of the first kind}

In(r) = z (ﬁ]-n_any (Lszi

Using such an analytical form of Jo(r), we are able w find the zeros (roots). Let the zeros
be fpm. M= 1, .. Le=, and if k and £ in (C.6) happen to be two of 1y, then we see that

(C.7)

1
{I‘ﬁ; }J. XJn{TneX Pr{rmex)dx = 0
¢ (C.8)

Since ry # oy, we conclude that Jo{rysx) and J,(rakx) are orthogonal with respect to
weight x in the domain $ £x £ 1,

For the nonmalizing factor, we apply L'Hbpital's rute in (C.0):

1
I xJ5{kx)dx = i’_i‘lkf " hu LWk fJn[ku;{f}]
(3

, 2 ; "
=-2-11-{—[K{J“{k}) - Ik Y (k) - kJn{k]Jn{k}] (C.9)

If we regard k as a variable and hence Jq{k} satisfies (C.1), we have

{k}+LJ (1 Il-}l

(C. 10}
Thus
k(07 + Tk ik = 41 - D23k
R+ 3ok 119 = {1 - k) o
Substituting (C.11) into {C.9), we get
1 -
J xT¥kx)dx = L{(J’{kﬂz + {1 . BE]J%{H]
2100 k2
b (C.12)

If k 15 one of the zeros for J(r) = 0, then from the recursive formula (Lebedev, 1972, p.
100y

T (k) - % Tk} = -Jpnlk) (C.13)
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We ger (since Ik =)

Ik} = -Janfk) (C.14)

Theretore, from (C.12) and (C.14}, we obrain the normalizing factor for the Bessel
funcoon:

[
J‘ xJpfkx)dx = ]5 k)
n (C.15)

where k must be a zero of J(1).
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