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ABSTRACT

This report presents an automatic method of extracting Breaklines and Break-
points from a set of regular grid DEM data. The regular DEM data are
considered as an array of signal which can be convolved by the Laplacian
of Gaussian (LoG) filter. It is found that points having positive maximum
or negative minimum convoluted values (eztremas) between zero-crossings of
LoG are located at places critical for terrain description. The extremas ob-
tained by the proposed method correspond to breaklines and breakpoints of
the terrain. These breakpoints and breaklines contain explicit information
and have more meaning than regular grid points.

Based on the concept of using breaklines and breakpoints as the terrain re-
lief representation, the proposed technique can be considered as a DEM data
compression process. This work shows that contour maps constructed from
the extracted breaklines and breakpoints exhibit similar terrain roughness as
the ones constructed from the full DEM data. The results justify the possi-
bility of implementing this concept. Furthermore, breaklines and breakpoints
obtained by this technique are almost identical to the ones manually collected
by human operators.
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CHAPTER 1
INTRODUCTION

Spatial information is important in describing the geometrical shape of the
landform. Spatial information can be represented in many ways such as
contour lines or hill shading on a map. Such hard copy representations also
serve as the means for storing spatial data. As a result of improvements in
computer technology, the methods of storing and using spatial information
are changing. Computer maps are becoming prevalent, often replacing the
conventional paper or hard copy map. Digital data are no longer new. Spatial
information is now stored in digital form, so that computer technology can
be utilized. The general term used for digital characterization of terrain relief
is Digital Elevation Model (DEM). Since their inception in the 1950’s, DEMs
have been widely developed and implemented. Many techniques have been
designed to generate and capture DEM data, varieties of sampling patterns
have been presented and many new problems have been addressed.

In order to describe terrain relief, a vast amount of data must be used,
especially in the case of rough terrain. The effort to cut down the amount
of DEM data has been realized for a long time, and several techniques have
been proposed for its solution. Representing terrain relief by a mathematical
model is one way to solve this problem. The amount of DEM data can be
dramatically reduced by this continuous form of surface description. For the
discrete form of DEM, varieties of sampling patterns as well as Triangulated
Irregular Network (TIN) are suggested. The TIN requires less data than
a regular grid sampling method. However, all of the proposed techniques
suffer from a common drawback. It is the problem of extracting significant
phenomena from the surface or raw data. These phenomena are generally
known as the points on the surface which have relatively large elevation
changes. In the geomorphological community, many terms such as pit, peak,
ridge, valley, etc. have been used to represent the phenomena. However,
the general terms of breakline and breakpoint are widely accepted, in the
surveying and mapping fields. It has long been recognized that they are the
essential entities to describe the surface’s information. These breakpoints and
breaklines must be extracted as the boundary lines of the region defined by
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mathematical models or sampled by any sampling method. It is also required
that these phenomena must be detected and exploited as a node in the TIN
technique in order to optimize the technique. The process of breakpoint and
breakline detection is generally required as a part of the sampling techniques.

The amount of DEM data has become an important issue when automatic
DEM data generation and a highly accurate DEM data base is proposed.
The National Cartographic Data Base idea presented by the United States

Geological Survey (USGS) [Light 86] will be unattainable if this problem
cannot be solved.

Representing a surface by a set of breakpoints and breaklines is a new way
recently suggested in [Douglas 87]. It is obvious that breakpoints and break-
lines of the surface are the minimum number of entities required for surface
description. However, extracting breakpoints and breaklines from the sur-
face is not a trivial task. It was estimated that more than half of DEM
work cost was breakline related [Kubik and Roy 86]. At the present time,
manual detection is still employed. Another way of viewing the extraction
of breakpoints and breaklines is as a procedure for DEM data compression.
The concept of DEM data compression and breakline detection should be
reconsidered and an automatic technique needs to be developed.

Recently, the results of an edge detection operator in computer vision have
been applied to create a new dimension of photogrammetric and carto-
graphic research [Greenfeld 87, [Thapa 87]. [Schenk 87] proposed to uti-
lize the Laplacian of Gaussian (LoG) edge operator to automatically extract
breakpoints and breaklines from the raw data.

1.1 Scope and Objectives of the Research

This research addresses the problem mentioned above and has the following
objectives:

e to study and apply the Laplacian of Gaussian (LoG) edge operator for
automatic regular grid DEM data compression,

e to evaluate and test a newly proposed technique on the regular grid
DEM data of different surface types signifying whether the proposed



technique can automatically compress, without significant loss of infor-
mation, the data for any surface type.

DEM regular grid data should be regarded as the gray levels of an image
pixel. From this point of view, breaklines on a surface should correspond
to edges on an image. By means of the LoG operator, the automatic reg-
ular grid DEM data compression or automatic breakline detection can be
achieved. Breaklines can be detected by considering the zero-crossings and
the points having the minimum and maximum of the convolution of the sec-
ond derivative of the Gaussian function (Laplacian of Gaussian, LoG) with
the signal derived from the terrain height at every grid point.

In order to conduct this research, a few constraints must be imposed on DEM
data. In this research, the following assumptions are made:

o The regular grid DEM data is available and dense enough to contain
all the surface information such as breaklines and breakpoints.

o The application of DEM and the Nyquist sampling theorem govern the
grid sampling density. This is not considered in this research. There-
fore, all breakpoints and breaklines extracted from the data are re-
stricted to the DEM grid density.

1.2  Organization of the Report

In Chapter 2, different techniques to reduce the amount of DEM data are
presented. Particularlyy, DEM data sampling and TIN techniques are de-
scribed. The idea of data compaction is also included. Both strengths and
weaknesses of each method are presented. Chapter 3 is devoted to the edge
detection operator. Three basic operations, smoothing, differentiation and
detection are emphasized so that the edge detecting operator can be appro-
priately applied. In addition, two types of edge operator, directional and
non-directional, are also discussed. The LoG is presented in detail, including
its drawbacks. In Chapter 4, a new idea of DEM data compression by break-
line detection is presented. The proposed DEM data compression strategy is
also included in Chapter 4. Chapter 5 is dedicated to the experiments and
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results. Test data sets, testing procedure, results and analysis of the results
are presented. The last chapter presents conclusions and recommendations.
An Appendix presenting the derivation of the relationship between spatial
and frequency parameters of the Gaussian function is also enclosed.



CHAPTER 2
DEM DATA COMPRESSION

2.1 Introduction

Digital Elevation Model (DEM) was created initially for route surveying and
design by Prof. Charles L. Miller at the Massachusetts Institute of Technology
(MIT) in the 1950’s [Doyle 78]. Originally, the term Digital Terrain Model
(DTM) was used. Later the term DEM became widely accepted for general
surface description by many organizations in the surveying and mapping
community, such as USGS [Allder et al. 82]. The DEM, which can be defined
as the digital representation of the surface’s relief, can be represented by a
discrete or a continuous form [Burrough 86}, [Mark 78].

In its discrete form, DEM can be represented by the set of X,Y,Z coordi-
nates of limited discrete points. These can be obtained from map digitizing,
ground surveying or photogrammetric systems [Loon 85]. Accuracy of DEM
is governed by the location of sampled points and method of interpolation.
Ideally, the density and location of the discrete points should be such that
the terrain can be reconstructed from the stored DEM data.

In addition to the discrete form, DEM data can also be portrayed continu-
ously using mathematical models. Several models have been developed and
utilized in many applications, such as covariance, variogram, spectrum and

fractals [Kubik and Roy 86].

During the DEM development, many problems have been addressed, and a
variety of solutions have been proposed. One widely discussed problem is the
amount of DEM data. It has long been recognized that the huge amount of
DEM data is a major shortcoming in the process of data storage and data
processing. This problem has been seriously considered in the formation of
the National Digital Cartographic Database, and in the proposed creation
of high accuracy DEM database [Allder et al. 82], [Kubik and Roy 86]. It
is estimated that more than half of the 10 bits of storage space required
for a digital mapping system containing the 54,000 quadrangles covering the



US at 1:24,000 scale is DEM data [Light 86]. In addition, the invention and
application of automatic and semi-automatic DEM data acquisition tech-
niques such as stereo correlation [Claus 84], image matching [Makarovic 84al,
[Makarovic 84b] and Gestalt Photo Mapper II [Elassal 78] has increased the
significance of this problem.

In order to solve this problem, a variety of approaches have been proposed.
These include different techniques of DEM data sampling, representation and
data compression. The next four sections of this chapter will be devoted to
a review of these approaches.

2.2 DEM Data Sampling

As mentioned above, DEM data can be obtained by many techniques such
as digitizing contour lines, ground surveying or photogrammetric system. In
this research, a variety of sampling techniques in photogrammetric system
will be covered due to the fact that the photogrammetric method is more
efficient than any other method.

Generally, DEM data are sampled in the grid pattern fashion, with density
matched to the local roughness of the terrain relief. The sampling process
is usually designed to work automatically or semi-automatically. To under-
stand the merits and drawbacks of DEM data sampling, three well-known
sampling techniques, Progressive Sampling [Makarovic 73], Composite Sam-
pling [Makarovic 77a] and Optimum Sampling [Ayeni 82], will be reviewed.

2.2.1 Progressive Sampling

Progressive Sampling was created by Makarovic [Makarovic 73] to acquire
DEM data in a regular grid form of varying density. In order to proceed with
this sampling technique, the terrain classification as well as sampling density
for each terrain class must first be determined. Then, the process initially
samples (zero run) at low density, and the sampled data are used to compute
second differences between grid points. After that, the second differences
are compared to a predetermined threshold value. If the differences exceed
the threshold value, the sampling density in that area must be increased
for the next run. In other words, curvature analysis is used to determine



whether the grid needs to be locally densified. This procedure is repeated
in successive sampling runs until the local density of the grid matches the
terrain roughness.

The Progressive Sampling technique has some advantages which should be
addressed. First, this method was one of the first to be used in an automatic
system [Hahn and Forstner 88|, because the sampling is not difficult to au-
tomate. Second, the storage requirements of this sampling method are much
less than full grid measurement, if the terrain has only a few breaklines and
is quite smooth. However, if the terrain has a lot of breaklines or features,
the method will not give satisfactory results.

To provide a complete analysis of the method, its shortcomings should be
considered. First, in order to implement this technique, terrain classification
of the surface must be accomplished. Unfortunately, there does not exist
an acceptable terrain classification standard [Roy 87]. Different applications
use the different criteria for terrain classification. Terrain classification is the
application oriented task [Kubik and Roy 86].

The second drawback of this method is the lack of capability to capture
significant features lying within a grid cell. Since the differences used to
control the grid density are computed from the grid intersections, the relevant
features lying inside a grid cell will be overlooked. To avoid this problem,
high density grid can be applied. This solution, however, will produce more
redundant data.

Finally, the grid sampled points of this technique are not the minimum set
of points representing the terrain information. As several authors have in-
dicated [Hahn and Forstner 88], [Peucker et al. 78], terrain relief should be
described by points sampled along the morphological features such as valley
lines and ridge lines rather than in a grid pattern. Therefore, if this technique
is implemented with low density grid, the characteristic of terrain cannot be
extracted. However, if high grid density is employed, the sampled points will
contain redundant data.

2.2.2 Composite Sampling

This sampling method was presented by [Makarovic 77a] to add more terrain



information and reduce sampled points of the Progressive Sampling tech-
nique. In this method, information on relevant morphological features such
as breaklines and breakpoints is included. These features are manually ex-
tracted from the terrain to form the boundary lines of homogeneous regions
so that the Progressive Sampling can be applied within. We can see that
more terrain information is extracted in this method than in the Progressive
Sampling. The manual breaklines and breakpoints extraction are the only
difference between these two methods. At the present time, the Composite
Sampling strategy is the technique widely used in photogrammetric practice
to obtain DEM data [Hahn and Forstner 88).

Even though the Composite Sampling method was developed to add more ter-
rain information into the Progressive Sampling, it suffers from the same draw-
backs held by Progressive Sampling. Terrain classification is still required,
and the sampling pattern is still in the form of a grid pattern. Furthermore,
this method produces a new drawback which can be considered a critical one.
Extracting significant features such as breakpoints and breaklines is a costly
procedure and is difficult to automate. Michael A. G. Toomey estimated
that 60% of the cost of DEM was breakline associated [Kubik and Roy 86).
Breakline extraction is a subjective process which is difficult to standardize
and automate.

2.2.3 Optimum Sampling

[Ayeni 82] proposed a new method of DEM data sampling. This method uses
Harmonic Vector Magnitude (HVM) as a parameter to classify the terrain
roughness and control the sampling grid density.

The optimum sampling method utilizes the least squares technique to fit a
combination of two mathematical functions, i. e. a Linear Filter and Double
Fourier Function, to a surface. The resulting coefficients from the Fourier
Function are used to measure the deviation of the surface from the linear

plane. Then the value of HVM, which Ayeni defined as:

... the square root of the sum of squares of coefficients for terms
of specified m and n harmonics,

is used as the parameter for terrain classification and for determining the
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optimum sample size. Technically, HVM is nothing but the value of square
root of energy at certain harmonics. Ayeni exploited this quantity to measure
the roughness of terrain deviating from the fitting plane. HVM is combined
with the concept of Progressive Sampling to choose an optimum sampling
grid size for different terrain types. The empirical linear regression was also
presented by Ayeni to determine the optimum sample size instead of actually
computing HVM value.

This method has one merit which is worth noting. Terrain classification and
optimum sample size of the optimum sampling technique can be determined
automatically by considering the value of HVM. Recently, [Balce 86] has
shown the implementation of this method as well as the Progressive Sampling
on real data. Guidelines and recommended strategy were also given by Balce
for DEM data sampling in practice.

It is very important, however, to note that the correlation function which
is used to determine the optimum sample size of this sampling technique
is a stationary function. [Hardy 77| indicated that the variations of terrain
are not necessarily stationary random functions. Therefore, the sample size
obtained from correlation function may not be the correct optimum sample
size. In addition, this method still utilizes a grid sampling pattern, which
as stated earlier, cannot give the minimum number of points to describe the
surface information.

2.3 Triangulated Irregular Network (TIN)

As mentioned above, sampling data by grid pattern cannot completely ex-
tract terrain information. Accordingly, many sampling patterns have been
proposed to overcome this problem. [Morrison 71] presented six standard
sampling patterns which are well known in the cartographic community,
namely:

e Unaligned Random
e Aligned Random
e Unaligned Stratified
e Aligned Stratified



o Unaligned Systematic

e Aligned Systematic

The purpose of these sampling patterns is to extract more morphological
features from terrain. The sampled points can be located randomly. They
are not necessarily in the grid pattern. These sampling patterns, however,
are difficult to implement in an automated way.

In 1977 [Peucker et al. 77] presented a new method of terrain representation
by using a set of Triangulated Irregular Networks (TIN). TIN was developed
by considering two important factors, the non-stationary property of terrain
roughness and the real representation of terrain [Peucker et al. 78]. TIN
is the irregular discrete method of DEM representation. Data points are
captured in the form of Triangulated Irregular Networks (TIN) in which every
node of TIN is sampled at the point so that the triangle forms the terrain
facet. These triangulations are usually known as Delaunauy Triangulations.
The triangulations are formed by the following criteria:

o all three angles are as nearly equal as possible

o the longest sides of the triangles are as short as possible

The first step in the TIN method is to determine the Thiessen Polygons.
In a field of scattered points of Figure 1(a), there is an irregular polygon
surrounding each point such that every location within the polygon is closer
to the enclosed point than it is to any other. This polygon is called the
Thiessen Polygon. Surrounding the Thiessen Polygon enclosing point A are
other Thiessen Polygons which enclose the Thiessen Neighbors of A. The
triangle network connecting point A with its Thiessen Neighbors is the De-
launay Triangle as shown in Figure 1(b). For an arrangement of points, both
Thiessen Polygons and Delaunay Triangles are unique. In order to obtain a
good terrain description, the discrete data points used in TIN must be col-
lected at the points where significant changes occur, such as along ridge line.
These points are rich in information and can be viewed as breakpoints or
breaklines, which will be defined later in Chapter 4. This promising method
has created a lot of interest in the surveying and mapping community. Many
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Figure 1: TIN method. (a). The Thiessen Polygons, (b). The Delaunauy
Triangulations [Davis 86|

contouring packages which are available on the commercial market at the
present time utilize the TIN technique.

There are two merits of this DEM representation which should be pointed
out:

o This technique is able to represent more terrain information than the
regular grid pattern presented in the previous sections. This is due to
the formation of irregular triangles which can be viewed as the network
of homogeneous terrain tiles.

e This method requires less storage space than the grid sampling pattern.
As stated earlier, all sampled points in TIN should be the points where
terrain discontinuities occur instead of at grid intersection. As a result,
redundant sampled points from a grid pattern can be eliminated.

It seems as if TIN is the most appropriate approach to solve the problem of
the huge amount of DEM data. However, this method has some deficiencies
which are worth noting.
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o To obtain a good terrain description, the sampled points must be col-
lected so that they consist of all significant terrain discontinuities. It
is obvious that if sampled points are not located at the discontinuity
points, TIN will give the wrong surface description. Unfortunately, col-
lecting these phenomena are costly and difficult to automate; therefore,
one must be aware of exploiting this method.

e Data structure in the data-base is much more complicated than regular
DEM data. In the TIN technique, pointers must be used to keep track
of the connectivity of triangles of the whole surface.

e The TIN has limits in adaptability. [Douglas 87] has shown that TIN
needs the transition density at the region where the terrain changes
from one type to another type. This means that TIN creates some
redundant triangles in the transition area.

e The graphic produced from TIN, such as a contour line, can be distorted
by the effect of construction method [Douglas 87].

2.4 DEM Representation by Mathematical Models

In addition to the discrete form, DEM can also be represented in a continuous
form. Many mathematical models have been used to describe the terrain
relief. The quantities used in this technique are the sets of mathematical
coefficients or parameters derived from the raw data.

Under this type of DEM representation raw data must be obtained first.
Then the terrain roughness is modelled by means of mathematical models.
Different mathematical models have different advantages and are applicable
in different fields. While a geologist prefers to use the spectrum to model the
terrain, a geomorphologist prefers to use the covariance. After the terrain
is modelled, the only quantity needed to describe a DEM surface is a set of
mathematical parameters or coefficients. Even though this technique requires
much less data to store and represent the DEM surface, its drawbacks should
not be overlooked. These drawbacks are :

e Due to the limitation of interpolation techniques, mathematical models
cannot be defined across breaklines. This means that breaklines must

12



2.5

be collected as the boundaries of the homogeneous regions defined by
mathematical models. However, as mentioned above, breakline extrac-
tion is difficult to standardize and automate because of the subjective
and scale dependent characteristic of the breakline.

Information loss can occur during the process of modelling the sur-
face due to the truncation of the number of coefficients or due to the
non-stationary property of terrain variations. Practically, a limited
number of coefficients is used. Therefore, the terrain representation
by mathematical models may be slightly distorted from the real sur-
face by the truncated parameters. In addition, representing terrain
variations, which are not necessarily stationary random functions, by
periodic functions can cause information loss in this technique.

The models are application oriented. As one model may be suitable
for a specific application it may not be suitable for another applica-
tions. There does not exist any one mathematical model satisfying all
applications. So, many mathematical models and standards have been
proposed.

DEM Data Compression

Other than the three approaches presented above, namely,

o Different sampling techniques
o TIN representation of DEM surface

e Mathematical models representing the DEM surface,

the amount of DEM data can also be reduced by techniques of data com-
pression. As [Hahn and Férstner 88] said,

This last strategy is the most promising, as it in principle uses all
available information and conceptually is closest to morphological
sampling . ..
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Figure 2: The principle of Makarovic’s data compression [Makarovic 77b]

The data compression approach should be considered as the most appropri-
ate method for automatic DEM data acquisition, because dense DEM data
can be automatically obtained by many newly developed techniques such
as image matching [Makarovic 84a], [Makarovic 84b] and stereo correlation
[Claus 84]. Actually, data compression or data compaction has long been
widely used in the non-spatial data community such as data communication
[Clarke 85], but a few DEM data compression techniques have been exer-
cised. In general, there are two techniques being considered to be under
DEM data compression. The first one is the technique of extracting relevant
surface information from dense DEM data. This information is explicit in-
formation which has more meaning than grid DEM data which is implicit.
The second one is the technique of physical compaction of DEM data in the
short form, such as binary or integer format, or by using techniques from
data communication theories [Roy 87].

To extract the surface information from dense DEM data, [Makarovic 77b]
and [Makarovic 83] used the inverse procedure of Progressive Sampling to
compress the regular grid DEM data. Figure 2 shows the concept of Makarovic’s
data compression. The second differences between the grid intersections are
computed and compared with the predetermined threshold value. These dif-
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ferences are used to control the grid density for data sampling. If their values
are smaller than the threshold value, the grid density will be reduced. The
procedure is executed in a successive manner until the differences are larger
than the threshold value. [Makarovic 83] pointed out that this method is
influenced by the terrain roughness, grid density and threshold values. It is
important to note that the shortcoming of the grid sampling pattern is still
not eliminated in this technique.

Recently, [Hahn and Forstner 88] have utilized techniques like Feature Base
Matching (FBM) and Least Squares Matching (LSM) to form a dense grid
of the terrain. Then, the number of DEM data is reduced and extracted
based on a grid laid over the terrain. The points within each groundel (non-
overlapping ground element) are reduced to one point. This point is con-
sidered as a representative of that groundel. The reduction is done by the
technique of Median Filtering of the height. The results of this technique are
coordinates of every groundel. The data obtained from this technique are
still in grid pattern and no relevant terrain characteristics, such as breaklines
and breakpoints, are extracted. Moreover, this technique requires the epipo-
lar condition to form the terrain model and yields good results in smooth
terrain and well textured images only. This is one of the newest approaches
presented in the photogrammetric community.

The other technique, which can be categorized under DEM data compres-
sion, is a physical compression method of DEM data in computer media.
This technique sometimes is called DEM data compaction. In order to re-
duce the storage space, DEM data can be stored in the form of integer or
binary values instead of real values which occupy more space. In general,
this technique extracts the surface information from the raw data first, then
stores the extracted data in the short form. The extracted data are obtained
by some criteria from other fields such as data communication, which data
characteristics have been well known. However, these characteristics may not
necessarily be valid for the terrain. [Roy 87] utilized the data communication
theories to compress DEM data. This technique gives a satisfactory result,
but it still needs to be further investigated in terms of noise problems and
compression on different terrain types.

At this time, there does not exist a satisfactory DEM data compression
technique which can give a good surface description and work automatically
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on every terrain type. The existing DEM data compression techniques do
not extract and save the important characteristics of the surface (this will
be discussed later in Chapter 4) from the raw data. Instead, they compress
DEM data by using some arbitrary criteria and terrain classification, for
which there does not exist an acceptable standard yet. Automatic DEM
data compression on every terrain type cannot be achieved, as long as human
intervention is needed for terrain classification and the matching techniques
do not yield a good result on every terrain type.
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CHAPTER 3
EDGE DETECTION OPERATORS

3.1 Introduction

It has long been recognized that physical object boundaries are important
phenomena in the human visual and recognition systems [Attneave 54]. Psy-
chological studies about the human visual and recognition process have a lot
of impact on the research of image analysis. In order to develop an intelligent
system for image understanding, fundamental phenomena in human vision
such as object boundaries must be obtained. “Edge” is the word used to
describe object boundaries on an image, which is considered as an essential
phenomenon for human vision. Due to the importance of edges, extensive
work has been done to extract edges from an image.

In general, boundaries of an object in a scene correspond to intensity changes
on the image. To extract boundaries of an object, the intensity changes
must be extracted. However, not only do object boundaries cause intensity
changes, the reflection of object surfaces, illumination of light sources and
image’s view point are also factors which influence the occurrence of inten-
sity changes on the image [Marr and Hildreth 80]. Therefore, the intensity
changes on the image may not correspond to the boundaries of objects.

To extract edges from the intensity changes, a variety of techniques have
been proposed based on a combination of studies from many disciplines, for
instance, psychological studies, image processing and artificial intelligence
research. In addition to the software development, new hardware was also
designed to increase the capability of new edge detection techniques, e. g.
convolver [Nishihara and Larson 81]. After edges have been detected, they
must be grouped to form a meaningful description of the scene on the image.

In the next sections, the most common operations in edge detection will be
described. Then two types of edge detection operators will be presented later
in this chapter.
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3.2 Edge Detection Operations

In the early days, edges were detected by using a simple technique, such
as an arbitrary threshold of grey level, or simple implementation of gradient
function [Roberts 65] to locate the intensity changes in an image. These types
of edge detection techniques are not applicable to an image of the physical
real world where intensity changes are complicated and do not correspond
to the edges of objects. Therefore, a sophisticated edge detection technique
must be employed.

In order to design an edge detection operator, one needs to understand the
characteristics of edges appearing on an image. [Hildreth 83| stated that

Changes in intensity will occur in the image at a range of different
scales. If we look at individual image elements(pizels), we find
intensity changing from pizel to pizel. Often, there will be uniform
changes over some distance. Most edges in the real world are
sharp edges: the intensity function will be composed of a few steep
changes over a small number of pizels.

This means that an operator which detects intensity changes at one specific
scale is not suitable to detect changes in the real world. A multi-scale oper-
ator is needed for detecting intensity changes occurring at finer and coarser
resolutions. This multi-scale property is the essential characteristic which
the edge operator must hold [Marr and Hildreth 80].

Generally, edge detection operators consist of three basic operations:

e Smoothing Operation
o Differentiation Operation
e Detecting Operation
The following three sections will cover all these operations in detail so that

the operations can be further implemented in another field such as pho-
togrammetry or cartography.
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3.2.1 Smoothing Operation

The intensity changes appearing on an image create the stimuli for object
recognition by a viewer. These intensity changes do not necessarily corre-
spond to the edges of objects. For example, intensity changes may be caused
by the shadows or orientation of the object. Fortunately, intensity changes
due to edges of objects are usually steep. In order to reduce the effect of noise
in the intensity changes, a smoothing function must be applied to the image
intensities. This operation may be considered as a digital filtering process.

The reason why the image must be smoothed can be viewed from the property
of a differentiation operator which is usually used for detecting the intensity
changes. As described in [Rosenfeld and Kak 82|, differentiation is a noise
enhancing operator, forcing an image to be smoothed prior to differentiation.
As a result of the smoothing operation, all minor intensity fluctuations will
be filtered out. This is the first objective of a smoothing operation in an
edge detection procedure.

Secondly, the smoothing operation is used to control the resolution at which
edges will be detected. This means that if an image is smoothed at a coarse
resolution, the detected edges will be the coarse edges appearing on the im-
age. In other words, the image will be blurred by the coarse scale smoothing
function and coarse edges will be extracted. On the other hand, if the image
is smoothed by a fine scale smoothing function, the detailed edges can be
extracted.

In order to smooth the image, an arbitrary smoothing function cannot be
used. The shape, size and properties of a smoothing function or filter must
be taken into consideration because of two reasons:

e Since the changes in the real world are generally localized in space
[Hildreth 83], a smoothing function must be spatially limited.

o If band limiting in frequency is used to restrict the scale at which
edges will be detected, the band limiting generally will conflict with
the spatially localized property above.

Therefore, the smoothing function which will be used in the edge detection
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operator must optimize these two constraints. It is interesting to note at this
point that Gaussian Density Function, which is defined as:

6(r) = Lexp (- 25 W

o 202

where :
r = the distance from the center of the operator
o = the space constant of the Gaussian,

is the only function minimizing the product of bandwidth in both spatial
and frequency domains [Marr and Hildreth 80]. This can be seen by the fact
that the Fourier Transform of the Gaussian Function is also the Gaussian
Function.

3.2.2 Differentiation Operation

After an image is smoothed, the next step in edge detection operation is to
determine what pixels correspond to the intensity changes on the image. A
differentiation technique is utilized in this operation due to the fact that
intensity changes correspond to a peak (maxima or minima) in the first
derivative or a zero-crossing in the second derivative. The choice of using
the first or second derivative to detect intensity change is still arguable.

As stated in [Ulupinar and Medioni 87,

... all detectors using first derivative require a thinning step, since
an edge responds with a broad peak.

In order to avoid the above problem, the second derivative is widely used.

In addition to first and second order, differentiation can also be classified
by its direction. Both directional and non-directional derivatives are used
in several edge operators. The dispute between these two derivatives about
which one is optimal is far from settled.
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In this research, directional and non-directional derivatives will be utilized
to classify edge detection operators.

In the directional technique, a derivative can be taken in some specific direc-
tions such as the direction of the gradient, the perpendicular direction to the
edge orientation. It is not necessary that two perpendicular directions must
be taken. Derivatives may be taken in more than two arbitrary directions.

In contrast to the directional derivative, a non-directional derivative can be
achieved regardless of what the orientations of the edges are. The details,
advantages and drawbacks of these two techniques are worth studying and
will be presented later in Sections 3.3.1 and 3.3.2.

3.2.3 Detecting Operation

As a result of the differentiation operation, pixels corresponding to intensity
changes are determined. These pixels represent information of the image in
which the viewer is interested. Nevertheless, the scattered pixels cannot give
a meaningful description. An operation to group and draw lines connecting
the pixels to form the boundaries of objects in the scene is required. This
process is called Line Segmentation. Line segmentation is another field of
research in which many topics are still open. The result of this process is
the image information described by sets of points and lines. This sketch was
called Primal Sketch of the image, initially created by [Marr 82]. The primal
sketch of an image is an important entity for further image analysis, such as
motion and stereo disparity.

Generally, line segmentation consists of two basic operations. First is the
process of grouping and connecting lines between the edge pixels. Secondly,
after jagged lines are obtained a smoothing process must be applied. The
second operation can be considered analogously as cartographic generaliza-
tion.

In summary, an edge detection operator consists of three fundamental op-
erations, namely: smoothing, differentiation and detection. Each of these
operations can be done by several techniques, but the characteristic of edges
appearing on the image and the knowledge of scene are the constraints which
we must take into consideration to choose what techniques should be applied.
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3.3 Edge Detection Operators

In order to present edge detection operators, some kind of classification must
be used to categorize or group the operators. There exists several methods
to classify edge detection operators. Generally, the derivative technique is
utilized as the primary entity to categorize edge operators. Under this re-
search two types of differentiation, namely directional and non-directional
differentiation, will be used.

3.3.1 Directional Edge Detection Operators

In the early days of edge detection, edge operators used directional first
and second derivatives [Davis 75], [Marr and Poggio 79]. For these types
of operators, derivatives can be taken in as many directions as we want.
According to [Hildreth 85], even derivatives in two directions of vertical and
horizontal are theoretically sufficient to detect edges at all directions. Several
edge operators utilize directional differentiation in many orientations, such
as Persoon’s operator and Canny’s operator [Persoon 76], [Canny 83]. The
directions which edge detection operators use most are:

e the perpendicular direction to edge orientation (Marr and Poggio 79]
e parallel to edge orientation [Marr and Poggio 79]
o the direction of gradient (Canny 83], [Haralick 84].

The advantage of this type of edge detection operator is that more pre-
cise edge location can be obtained by this method. As indicated by several
authors, directional operators give more precise edge locations than non-
directional operators, especially when edge orientation is not linear; see for
example [Marr and Hildreth 80, [Ulupinar and Medioni 87|, [Hildreth 83)].
The reason behind this advantage will be explained later in section 3.3.2.
This is the most advantage a directional operator has over a non-directional
operator.

As [Torre and Poggio 86 said,
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... the choice between rotationally invariant operators (rotational
filters and rotational invariant differential RID operators, as the
Laplacian or the second derivative in the direction of gradient)
or directional operators (directional filters and directional differ-
ential DD operators such as directional derivatives) depends on
the subsequent information processing task. RID operators ensure
closed edge contours, that are not provided in general by DD op-
erators.

While the directional operator is preferred over the isotropic operator in
terms of detecting edge locations, it holds some drawbacks which should not
be overlooked. First, the derivative direction, which is required in the dif-
ferentiation operation, must be determined. This adds another computation
step. In addition, when the cross-sections of the operator are different, more
computation time must be required. Finally, the smoothing operation and
differentiation operation cannot be combined into one step, as is feasible in
the non-directional operator. This can be simply explained by the fact that
the smoothing operator is a scalar quantity while the gradient, defined as
follows, is a vector operator.

=|=—=X,=Y 2
Generally speaking, this method is computationally more expensive than
rotational invariant operators.

3.3.2 Non-directional Edge Detection Operators

To avoid the need to calculate directional derivatives in a variety of direc-
tions at each point, non-directional differentiation is utilized. The Laplacian

Operator 72 which is defined as follows :

2 o o
V' = X2 + FTZL (3)
is chosen to approximate the second directional derivative because its value is
independent of the orientation of the coordinate system. Actually, Laplacian
is the divergence of gradient or dot product of two gradients, i.e.,
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v = div(v). (4)
Therefore, the Laplacian is a scalar operator and it is easy to manipulate
or combine with a smoothing operator, which we will see later. The Lapla-
cian of Gaussian (LoG) is a well known non-directional operator utilizing
the advantages of Gaussian function. It will be discussed in the next three
sections.

3.3.2.1 Laplacian of Gaussian (LoG)

The Laplacian of Gaussian (LoG) operator is the result of a combination of a
Laplacian Operator ( \7? ) and a Gaussian function. LoG utilizes the essen-
tial property of the Gaussian function, localization in both the spatial and
frequency domain. LoG can be derived by applying the Laplacian operator
to the Gaussian function (see Equation 1). For the two-dimensional case,

LoG = vG(r) = & (f- - 2) exp <--’i) (5)
ot \ o? 202 )’

where G(r), r and o are the quantities defined earlier in Equation 1. The-
oretically, LoG operator is infinite in size. However, it is computationally
impossible to use an infinite size operator. Therefore, the certain support or
size of operator must be implemented. Figure 3 shows the shape of LoG with
finite 3W support in two-dimensional space. W in the figure is the diameter
of the inner circle of LoG or excitatory region and is related to o by:

W = 2v20. (6)

The LoG operator simplifies the computation of the smoothing and differ-
entiation operation, due to the fact that the Laplacian is a scalar operator.
This can be shown as follows:

Given:

I  is the intensity function of the image.
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Figure 3: The LoG Function. (a). The profile of LoG, (b). LoG viewed from
the top, (c). 3-D view of LoG [Greenfeld 87).

G  is the Gaussian function.
*  is the convolution operator.
v? is the Laplacian operator.

Therefore:

G=*I is the smoothed image.
V?(G * I) is the Laplacian of the smoothed image.

But, we can write:

V(G + 1) = (V*G) * 1, (7)
due to the property of convolution.

This property implies that the 572G operator can be convolved directly to
the image instead of applying a smoothing function to the image and then

25



differentiating the smoothed image. This is the first advantage which LoG
has over directional operators.

Secondly, all convoluted values from LoG are scalar quantities. It is easier to
manipulate scalar quantities of non-directional operators rather than vector
quantities of directional operators.

Thirdly, zero-crossings from LoG are rich in information. Zero-crossings con-
sist of important attributes such as slopes and directions, in addition to their
locations. These attributes from the different filter sizes are the information
which can be utilized to describe the original signal.[Yuille and Poggio 83|
showed that the original signal can be completely reconstructed from the
zero-crossings of two different filter sizes, by finger print theorem. As they
said,

Our proof is constructive. It shows how the original signal can be
reconstructed by information from the zero-crossings across the
scales.

This is the important advantage of LoG over other edge operators, especially
when reconstruction of the signal is required.

Fourthly, multi-band filtering of LoG can be used to refine the position of
edges. Due to the fact that LoG is a band-pass filter, LoG with large filter
size will smooth out all detailed signals, and zero-crossings will be displaced
from the true edge position. On the other hand, LoG with small filter sizes
gives good localization as well as creates false zero-crossings because of noise
or high frequency phenomena. Therefore, zero-crossings at the coarse scale
should be used to determine the occurrence of edges, while precise location
of edges can be obtained at the finer scale.

However, [Clark 88] showed that zero-crossings of LoG can produce both
phantom and authentic edges if the shape of the signal is similar to double
steps. Phantom edges are false edges which must be eliminated before further
analysis can be done. This means that only authentic edges should be used
in the image’s primal sketch. In order to distinguish authentic edges from
phanton edges, he suggested that the sign of the product of first and third
derivatives should be used:
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x=v(V'f) vf (8)
In this equation, f is the signal function. Clark stated that authentic edges
correspond to the points having the negative value of x. The positive value
of x reflects the positive or negative value of both first and third derivatives.
Therefore, points having positive x are phantom edges. When x is zero,
there is no edge. To precisely locate the real edges, one needs to trace the
authentic zero-crossings through the scale. This is the spatial coincidence
assumption suggested in [Marr and Hildreth 80].

In addition to the above advantages, LoG also has many properties and
advantages which should be addressed.

1. The accuracy of zero-crossing locations can reach the sub-pixel level by
interpolation between two neighboring edge pixels of the opposite sign
(Huertas and Medioni 86].

2. The scale or resolution at which edges will be detected can be controlled
by the value of o or W.

3. The shape of LoG is similar to the shape of a circular symmetric filter
of the ganglion cell of the receptive field at the retina, which human
visual systems use to detect edges [Marr and Hildreth 80].

3.3.2.2 Drawbacks of LoG

Even though LoG holds several advantages, the drawbacks of LoG should
not be neglected. As stated in [Ulupinar and Medioni 87]

o Zero-crossings do NOT always correspond to actual edges,
but to inflection points instead.

e Zero-crossings do not always indicate the true position of an
edge.

The inaccurately located edges of LoG operators are caused by two sources
(Chen and Medioni 87], namely,
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Figure 4: False zero-crossing of staircase edge created by LoG [Ulupinar and
Medioni 87].

o the interaction between edges,

o the lack of symmetry of the edge profile.

This creates a false response of intensity changes as shown in Figure 4 by
[Ulupinar and Medioni 87]. In addition to the false zero-crossings, LoG does
not give a good edge position either. As shown in [Berzins 84], zero-crossings
of LoG at a sharp edge corner can be displaced due to the errors introduced
by approximating the directional derivative by the Laplacian. The error
becomes larger for an acute corner. Approximating directional derivatives
by a Laplacian can also cause the displacement of edges due to the non-
linearity of the intensity change. As [Marr and Hildreth 80] say,

...Zero Crossing of the second directional derivative, in the di-
rection of the gradient, will coincide with zero crossings of the
Laplacian of the image if the intensity variation of the tmage is
linear along the line of the zero crossings.

The size of the error depends on the magnitude of the second-directional
derivative in the direction parallel to the edge. Spurious contours caused
by the non-linearity of the intensity change actually are the phantom edges
named in [Clark 89).

The next shortcoming of LoG which should be pointed out is the detected
edges from LoG always form closed contours [Marr and Hildreth 80]. There-
fore, at the place where there are an odd number of edges, LoG is unable to
give the correct answer. The false edges will be created due to this deficiency.
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To keep everything in perspective, the above problems should be resolved.
[Berzins 84] has showed that displacements of edges by LoG is much less than
o provided that certain situations are fulfilled such as:

e the size of considered region is large compared to o,
e the radius of curvature of the edge is large compared to o,

o the distance to the nearest sharp corner is large compared to ©/c,
when O is the angle of the corner in radians.

Nevertheless, the closed contour character of LoG is still there and it may
create false edges. There is no way to solve this drawback of LoG. This
shortcoming must be realized, if LoG is utilized. It is very important to
state that the properties and drawbacks of LoG presented above are the
constraints establishing the conditions under which it is valid to implement
the LoG for edge detection or other applications. To implement LoG in any
application, the properties as well as shortcomings must be kept in mind.
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CHAPTER 4

DEM DATA COMPRESSION BY BREAKLINE
DETECTION

4.1 General

In Chapter 2, a variety of solutions proposed by many authors has been pre-
sented for the problem of reducing the amount of DEM data. As mentioned
in section 2.5, DEM data compression is the most promising strategy for au-
tomated DEM data acquisition. As a result, DEM data compression should
be deeply investigated. Generally, DEM data compression can be defined as
the process of reducing the amount of data by not losing the information. In
order to accomplish DEM data compression, one must be clear about what
information is important and should be extracted from the surface as sur-
face representations. The information should give a completely meaningful
geometric description of the surface. The process of extracting the explicit in-
formation from regular grid DEM data which are implicit information should
be considered as a DEM data compression process. The explicit information
obtained from data compression is the only entity needed to be saved as the
DEM surface representation in the DEM data-base.

From this point of view, TIN and the method of representing the DEM
surface by mathematical models can be considered as DEM data compression
techniques. Modelling and representing the surface geometry by a set of
mathematical models and parameters is one way to describe the geometrical
shape of the continuous surface. Unfortunately, this method suffers from
several drawbacks, as presented earlier in Chapter 2.

On the other hand, the TIN technique seems to be a promising candidate
method for DEM data compression because it can extract and represent
geometrical descriptions well. However, it also has some shortcomings of
which one must be aware.

In this chapter, a new way of describing the surface information and a new
DEM data compression technique will be presented.
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4.2 Terrain Representation by Breakline Map

It has long been recognized that breaklines and breakpoints are the important
entities in describing shape of terrain. As Gruen said [Kubik and Roy 86],

When it comes down to high precision DTM, ..., and the terrain
will consist solely of breaklines and single points.

The importance of breaklines and breakpoints can also be supported by the
incorporation of manual breakline acquisition in the Composite Sampling
technique [Makarovic 77a]. The TIN method described in Chapter 2, also
exploits these features to optimize its performance.

Generally, breakpoints and breaklines correspond to significant phenomena
on the terrain such as pits, peaks, ridges and channels. These features are
important characteristics for geometrical surface description, especially in
geomorphology and hydrology [O’Callaghan and Mark 84]. These phenom-
ena are the explicit information which contain more information about the
surface than other features.

Recently, [Douglas 87] presented a new type of DEM by locating ridges and
channels. Under his approach, Douglas has proposed to represent the DEM
surface by sets of pits, peaks, ridges and channels. These features can be ob-
tained by the combination of the elaborate geomorphological definitions, such
as pits, peaks, summits, etc. and several computation algorithms, e.g., the
Susan Jensen algorithm and Douglas line reduction algorithms [Douglas 87).
The features are called RICHLINES which stands for RIdge and CHannel and
other information-rich LINES. First, this approach needs to locate basins or
hills by sorting all elevations of DEM data. Then the window size is selected
to search for slope lines by considering the elevation of every point within
the window. In order to accomplish this computation scheme, many logical
algorithms must be programmed based on the definition of geomorphological
terms mentioned above. This technique is in the experimental stage where
many algorithms have been combined and examined. Several methods give
the wrong result in isolating basins and hills from ridges and channels. To
overcome this problem, Douglas devised a new algorithm requiring a series
of tests which was determined to be too expensive [Douglas 87]. The concept
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of using RICHLINES as a DEM representation is very interesting. However,
the procedures proposed by Douglas are very complicated and costly.

Due to the essence of RICHLINES presented above, the idea of DEM repre-
sentation by a set of RICHLINES should be adopted. The generally accepted
term BREAKLINES should be employed instead of RICHLINES, because
both breaklines and RICHLINES represent the same phenomena on the sur-
face. Therefore, under this research, BREAKLINE MAP is accepted as the
real geometrical description of the surface.

A breakline map is a set of points and lines with their data (X,Y,Z co-
ordinates), which correspond to breakpoints and breaklines on the original
DEM surface. The definitions of both breakline and breakpoint will be pre-
sented later in section 4.3. A breakline map may be viewed analogously as
a contour map. In a topographic map contour lines are very important fea-
tures in describing terrain roughness. As a result, the DEM can be obtained
by digitizing contour lines. However, contour lines are the derived quantities
obtained from an interpolation technique. Contour lines are not actually seen
by the human operator like planimetric features such as houses or roads. In
a manual method, contour lines are drawn by the process of interpretation
where personal preference is introduced. So, two sets of terrain descriptions
may be achieved if two different operators who have different knowledge of
the area are used to compile contour maps.

On the other hand, breakpoints and breaklines are not the derived features.
They actually exist on the surface. Representing terrain roughness by the set
of breakline is the real geometrical description of the surface. Nevertheless,
the process of breaklines extraction suffers two majors drawbacks due to
the natural characteristic of breaklines. First, breaklines possess a scale-
dependent property. As we know, one line may be considered as a breakline
at a high precision DEM, but it may not be the breakline at a low precision
scale. This means that two different scale DEM’s must be described by
two different breakline maps. This problem has long been known as DEM
surface generalization in the cartography community. It is very important
to understand that DEM surface generalization and breakline detection are
closely related but different. DEM surface generalization is the process of
determining a breakline map at small scale from a breakline map at large
scale. On the other hand, breakline detection is the process of extracting
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breaklines from the given raw data whose density is controlled by the final
map scale.

Second, the breakline extraction process is a subjective task. According to
the scale dependent character of breaklines, it is very difficult for an oper-
ator to decide which lines or points should be considered as breaklines or
breakpoints. This subjective task is enormous if it is carried out manually.

To keep everything in perspective, two drawbacks of the breakline extraction
process must be solved. Solid definitions of breaklines must be defined and an
automatic procedure should be developed. The concept of using a breakline
map as a DEM representation should be considered a DEM data compression
process. Compressing DEM data by breakline detection and representing
the DEM surface by a breakline map is the approach proposed under this
research.

4.3 Breakline Detection by Edge Operators

In the last few years edge operators have played an important role in many
automatic photogrammetric and cartographic applications. [Greenfeld 87)
and [Thapa 87) utilized LoG for stereo matching in photogrammetry and
for detecting critical points in line generalization, respectively. [Schenk 87]
proposed the new application of LoG for DEM data compression. An edge
operator, being used to detect the intensity changes on an image, can be
implemented to detect elevation changes on DEM surface as well.

To implement an edge operator in DEM breakline detection, one should
view regular grid DEM data as intensity values of every pixel on the image.
Accordingly, the elevation value of each grid point on the DEM surface cor-
responds to the grey level of each pixel on the image. From this proposed
approach, points having significant elevation changes can be automatically
detected by means of an edge operator.

Before pursuing the details of breakline detection by edge operators, the
existing definition of breaklines should be reviewed. There have been some
definitions of breaklines and breakpoints defined by different authors such
as:
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... a characteristic point is a singular point or one where there is
a significant change of slope. [Collins and Moon 81]

These breaklines represent discontinuities in the terrain.

[Kubik and Roy 86)

A terrain breakline has been defined as a line where there is a
sudden or abrupt change in slope. [Ayeni 76]

There does not exist the solid definition of breaklines which is suitable for
this research. Therefore, in this research, breaklines and breakpoints are
defined as follows:

A BREAKLINE is the loci of breakpoints.

A BREAKPOINT is a point having local maximum curvature of the surface,
where curvature is defined as:

1_ " d*y/dz?
P I{1+ (dy/dz)?}}

and p is radius of curvature. When dy/dz is small, we can write

(9)

K=

R =

% ~ |dty/da? (10)

From the above definition, breaklines can be automatically detected by using
elevation data as the input signal to edge operators.

4.3.1 Detecting Breaklines by LoG

As presented in Chapter 3, there exist several edge operators in the com-
puter vision community. However, LoG is a promising operator and widely

accepted [Chen and Medioni 87|,
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... the edges from this detection scheme have become a standard
gauge against which all other methods are compared.

In order to utilize LoG to detect breaklines from DEM raw data, it is impor-
tant to remember that properties, advantages and drawbacks of LoG establish
the conditions under which LoG can be applied. Points having significant
elevation change can be detected from the zero-crossings of the convoluted
value of the second derivative of the Gaussian Function (LoG) with the signal
derived from terrain height at every grid point.

Detecting breaklines by using LoG has more advantages than using any other
edge operator, because of LoG’s properties. To visualize these mernts, it
is interesting to relate the properties of LoG to the process of breakline
detection.

e Breaklines, which correspond to localized discontinuities of elevation
changes on the DEM surface, can be detected by using the localized
property of LoG in both the spatial and frequency domain.

e Breaklines acquired from LoG can give us more descriptions about the
terrain such as ridges or valleys. As will be presented later, points
having a negative minimum second derivative value are the points that
have maximum curvature on a concave-down curve. Therefore, these
points are located along the ridge or at the hill-top. This is very im-
portant because LoG can extract information from the data and make
this information more explicit.

e Even though the Gaussian function is a low-pass function, LoG will not
give a better localization of breakline positions, particularly in the area
where the orientation of breaklines is changing rapidly. However, if the
orientation of breaklines is nearly linear, zero-crossings of LoG will give
the position of breaklines as accurate as a directional operator. Also, if
the size of LoG is small, [Berzins 84] has shown that the displacement
between the true position and the position located by LoG is not more
than the value of o.

However, there exist some problems in applying LoG to detect breakpoints
and breaklines. Generally, all edge operators are interested in detecting the
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(a)

®

Figure 5: (a) Ideal Step Edge, (b) Response of LoG to the edge

ideal step edges as shown in Figure 5. Unfortunately, the occurrence of ideal
step edges in the real world is rare. Ramp and roof edges are common (see
Figure 6, 7 and 8).

The roof edge may be viewed as the cross-section of a hill or a valley which
a ridge and valley line passes through the top of the roof. In addition to
the hill-top point, both points at the bottom of hill are also important for
the description of the shape of the terrain relief. These three points are
breakpoints which we must extract from the raw data. While roof edges
represent a cross-section of a hill or a valley, a ramp edge should be considered
as a cross-section of a localized change of terrain relief. We can see that
only the top and the bottom points of the ramp’s slope sides are critical for
describing terrain shape.

Theoretically, zero-crossings of LoG or zero values of the second derivative of
the convoluted signal correspond to the points having minimum or maximum
slope in the spatial domain. These points are well known as inflection points.
If our task is to detect edge points for an ideal step edge (Figure 5), zero-
crossings should be used because the inflection points correspond to the edge.
Unfortunately, zero-crossings of LoG are not located at the breakpoints for
both roof and ramp edges.

From Figure 5 and Figure 7, we can see that LoG gives the extreme value
at the breakpoint. This is due to the fact that the radius of curvature (p),
as defined in equation 10 (page 35), at breakpoints is minimum between
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(a) \

®)

Figure 6: (a) Ramp edge and LoG, (b) Response of LoG to the edge when
d < s [Huertas and Medioni 86]

two inflection points. When p is minimum, the value of ||d*y/dz?|| must
be maximum. This implies that the second derivative has to be positive
maximum or negative minimum.

In order to extract breakpoints from the given DEM data, points having neg-
ative minimum and positive maximum convoluted values (extremas) between
zero-crossings must be utilized. This also can be confirmed by the statement
[Douglas 87],

It can be easily shown that mazima and minima of the second
derivative of a curve in two-dimensional space will project onto
the curve to locate points of mazimum change in curvature. In
three-dimensional space, mazima of the surface representing the
absolute value of the second derivative, (or the slope of the slope
surface) also represent locations of mazimum curvature in the
original surface. These mazima are, of course, ridge lines, and
their projection onto the original surface are the lines of break in
slope.

Extremas not only give the location of breakpoints, they also give more infor-
mation about breakpoints. For example, breakpoints with positive maximum
values are points lying along the bottom of valleys or at the bottom of basins
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Figure 7: (a) Ramp edge and LoG, (b) Response of LoG to the edge when

d > s [Huertas and Medioni 86]
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Figure 8: (a) Roof edge and LoG, (b) Response of LoG to the edge [Huertas

and Medioni 86|
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because the positive value of d?y/dz? represents the concave-up shape of
terrain and is located at the point whose radius of curvature is minimum.

With these properties, extremas must be used to detect breakpoints. The
first step to find extremas is searching for zero-crossings. Zero-crossings
must be extracted to confine the inflection region such that extremas can be
determined. The detail and strategy of this new method will be elaborated
on in section 4.4.

4.3.2 Computational Consideration of LoG

In order to use LoG to detect breaklines on the DEM surface, all signals
derived from DEM grid data must be convolved by 72G (see section 3.3.1).
Even though the convolution process is straightforward, the computations re-
quired to convolve all the signals is enormous due to the size of LoG. This has
been shown by several authors, viz., [Chen et al. 86], [Marr and Hildreth 80],
and of course [Nishihara and Larson 81]. To solve this problem, several ap-
proaches have been proposed.

First, LoG can be approximated by the Difference of two Gaussians (DoG).
This method was presented in [Marr and Hildreth 80] who developed LoG.
DoG in two dimensions is defined as :

DoG(eo a')——l——ex _F ! ex £ (11)
ne WoLTA P 20} V2o, P 203)"’
where,

R*=X*+7Y2 (12)

They showed that the shape of DoG is nearly the same as the shape of
LoG, when the ratio between the values of oy and o7 is about 1.6. By
this technique, LoG in two dimensions is decomposed into two passes of one
dimension Gaussian, one for each direction, i. e. X and Y directions.

Figure 9 shows that DoG needs a slightly larger support than the LoG.
[Hildreth 80] has proposed to use a support of 4W for DoG while others, like
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Figure 9: Approximation LoG by DoG [Huertas and Medioni 86]

[Huertas and Medioni 86] have found that 3W is sufficient for LoG (W is the
excitatory region of LoG).

The second method to reduce the computation burden of LoG can be done
by decomposing LoG into a sum of two separable filters. This technique was
initially developed at the University of Southern California [Chen et al. 86].
The Laplacian of Gaussian (72G) in two dimensions can be rewritten as the
sum of two separable filters as follows:

Vz G(X, Y) = hu(X, Y) + hzl(X, Y) (13)

where,
hu(X,Y) = hl(X) * hz(Y) (14)
hat(X,Y) = ha(X) % hy(Y) (15)

M@ = (1-5) e (-55) (16)

(€)= o (-5 (17
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This decomposition method uses only a single value of o rather than two
values as used in the DoG method.

In addition to the above two methods, LoG can be achieved by means of
convolution through hardware. Specifically, convolution can be done by ei-
ther parallel processing or a convolver [Nishihara and Larson 81]. By these
approaches, the convoluted results may be obtained in real time or nearly
real time. Nevertheless, the breakline detection process usually is not a real
time task.

For this research, LoG by the method of USC is chosen because of the fol-

lowing reasons:

e It is a real LoG, not an approximation of LoG by DoG.
e LoG requires smaller support than DoG.

e It requires a single value of o, instead of two values of o if DoG is
chosen.

4.4 Proposed DEM Data Compression Strategy

From the definition of breaklines given above, breaklines can be detected
from the surface by detecting extremas within the inflection region confined
by zero-crossings of LoG. In order to utilize LoG to detect breaklines or
breakpoints, one must realize that a smoothing function, namely the Gaus-
sian function, is a low-pass filter. Therefore, if a large filter size is utilized,
some breaklines or breakpoints on the given surface may be filtered out. The
DEM surface needs to be convolved with the appropriate filter size. The size
of filter can be determined from the relationship between o and f, the spatial
and frequency parameters of the Gaussian function. Equation 18 shows the
relationship of these two quantities. The derivation of the equation can be
found in Appendix A.

f=—> (18)



From a given DEM surface, the total power spectrum energy of the surface
can be approximated from its Fourier Transform. Then, the level of the
energy needed to be preserved should be selected. In the frequency domain,
the cut-off frequency (which is defined in equation 20 below) is computed
from the preserved energy level. With the value of the cut-off frequency, the
o or size of filter can be determined from equation 18.

It is important to note that as the density of the DEM data is controlled
by the final map scale, the highest frequency which we can acquire from the
data is the Nyquist Frequency whose wavelength is exactly 24\, where A is
the distance between successive grid points. Therefore, grid density of DEM
data should be determined by considering the highest frequency phenomenon
which will be recovered in the map.

Since LoG is the band-pass filter with bandwidth of 1.2 octaves, the size
of two successive filters must not be separated by more than 1.2 octaves.
However, to account for noise and ease of implementation, a one octave
spacing is preferred. Therefore, the designed o value should be a full octave
value so that the next smaller filter size will be half of this value. The
following are the steps proposed for DEM data compression:

1. Create the signal and design the filter size in the following manner :

e From the given regular grid DEM data of a specific density con-
trolled by the application of DEM and Nyquist sampling theorem,
the signal (h(f)) will be created at every point.

¢ Compute a Fast Fourier Transform (FFT) of the signal, (H(f)).

o Estimate the total power spectrum (Ps) of the surface from the
computed FFT. Since the total power spectrum is defined as the
Fourier Transform of autocorrelation function not of the raw sig-
nal, the power spectrum obtained from this FFT is not the true
value. However, we are interested in computing the relative en-
ergy content and use this value to approximate the size of LoG.
Therefore, the total power spectrum of the surface may be ap-
proximated by Ps from FFT of the raw signal.
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fq
Pe = SIHIP (19)

where f, is Nyquist frequency.

e Design the preserved power spectrum level ( P.) with respect to the
estimated total power spectrum. For example, P, may be chosen

to be equal to 0.95Ps.

e From the value of P., the cut-off frequency (fn) is determined.
The cut-off frequency is the highest frequency contributing to P,
such that

S
Z%HH(f)H’ <P (20)

e With the cut-off frequency (fn), the estimated value of o is de-
termined by equation 18.

o Choose the filter size by rounding off the o value to the nearest
full octave, i. e., 8,16,32.

. Apply LoG with size designed above to the signal.

. Detect zero-crossing points by the method based on a four connectiv-
ity search such that each point will be analyzed with respect to its
surrounding neighbor points [Greenfeld 87).

. Find extremas by detecting points having negative minimum and pos-
itive maximum convoluted values in both the horizontal and vertical
directions between zero-crossings.

. Repeat steps 2 to 4 with the filter whose size is equal to half of the
previous size until the desired level of precision is attained.

. Detect the common zero-crossings and extremas points obtained from
every channel. These extremas are the terrain breaklines and break-
points which can be viewed as the primal sketch of DEM surface.

44



CHAPTER 5
EXPERIMENTS AND RESULTS

5.1 General

This chapter presents the experiments of the proposed DEM data compres-
sion method. It includes the testing data set, testing procedure and the
results. Section 5.2 explains in detail the testing data set used in this re-
search. Then the testing procedure is summarized in section 5.3. The results
are presented in section 5.4, and analysis of the results are described in the
last section.

5.2 Testing Data

Data used in the research are DEM data obtained from United State Ge-
ological Survey (USGS). The data are generated from the combination of
[Elassal and Caruso 83):

o the Gestalt Photo Mapper II,
e manual profile from stereomodels,

o the Digital Cartographic Software System (DCASS).

It covers one 7.5 minute quadrangle map. The data are stored as profiles
from west to east and from south to north in UTM coordinate system. The
spacing of points along and between each profile is 30 meters. Accordingly,
every profile may not consist of the same number of points.

The DEM data covering the area of Grove Oak, Alabama, is obtained from
magnetic tape serial No. RIN785. Originally, there were 387 profiles; how-
ever, only 378 profiles have been used due to the fact that a few profiles at
the beginning and end of the area do not have the same number of points as
the ones between them.
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Figure 10: USGS DEM surface

As a result, only the DEM data of UTM zone 16 from Northings 3,804,000
to 3,817,740 and Eastings 580,470 to 591,780 is used. The data consists of
378 x 459 grid points. The highest and lowest elevation of the data are
394 and 176 meters, respectively. For convenience, data is densified to
512 x 512 grid points by the method of bilinear interpolation. Therefore,
spacing of the grid in easting and northing directions are 22.13 meters and
26.89 meters, respectively. Figure 10 shows the USGS DEM area. The lighter
areas depict higher elevations.

In order to evaluate the proposed breakline detection method, three cross-
sections and three windows featuring different types of terrain are selected
for the experiment. The location of the cross-sections and windows are also
included in Figure 10. The first and second cross-sections consist of 70 points
and lie in a north-south direction. While the last cross-section consists of 100
points in an east-west direction. Every window covers 85 x 85 points. The
details of the size and location of the cross-sections and the windows are
presented in Tables 1 and 2.
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Table 1: UTM Coordinates of the cross-sections

Section

Starting Point

Ending Point

1

Easting = 582,683.307
Northing = 3,808,839.922

Easting = 582,683.307
Northing = 3,810,722.114

2

Easting = 586,777.926
Northing = 3,814,217.613

Easting = 586,777.926
Northing = 3,816,099.805

3

Easting = 582,993.170
Northing = 3,807,791.272

Easting = 585,206.478
Northing = 3,807,791.272

Table 2: UTM Coordinates of the windows

Window

Lower-left corner

Upper-right corner

Easting = 583,015.303
Northing = 3,808,571.037

Easting = 584,896.614
Northing = 3,810,856.556

Easting = 580,577.133
Northing = 3,814,352.055

Easting — 582,458.444
Northing = 3,816,637.574

Easting = 587,109.922
Northing = 3,813,679.843

Easting = 588,991.233
Northing = 3,815,965.362
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5.3 Testing Procedure

In the experiment, the DEM data is convolved by LoG as described in sec-
tion 4.4 with different o’s. Then both visualized and quantitative evaluations
are performed. For visualized evaluations, two aspects are examined. First,
contour maps of all three windows, constructed by using breakline maps
obtained from the proposed method, are compared with the corresponding
contour maps generated from the full grid data points. The experiments are
carried out using different o. The results are the tools used to evaluate how
well the breakline maps can portray the terrain description and be used as
a DEM data-base. In addition, the analysis of scale space delocalization of
zero-crossings can be done within the windows and cross-sections.

Second, the detected breakline maps are compared with the manual ones.
Manual breakline maps were compiled by fifteen people consisting of faculty,
staff, graduate students of the Department of Geodetic Science and Survey-
ing, and five cartographers from Defense Mapping Agency (DMA). They
were asked to draw the minimum numbers of breaklines and breakpoints on
contour maps generated from the full regular grid data. The manual results
were used as the standard of comparison for both visualized and quantitative
evaluation.

The following steps are performed to examine the proposed method as de-
scribed above.

e Original DEM elevations are expanded to cover the whole gray level
range, i. e., from 0 to 255 and used as the input signals for the next
step.

e Convolve the signal derived from DEM data with LoG designed earlier.

e Detect zero-crossings and points having negative minimum and posi-
tive maximum convoluted values (extremas) between zero-crossings as
presented in section 4.4.

e Overlay zero-crossings and extremas on the image of the surface with
different o’s so that one can see the effect of LoG on different channels.
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e Locations of zero-crossings and extremas are plotted on the cross-
sections so that the breakpoints from the multi-values of o can be
investigated. In addition, the goodness of the detected breakpoints can
be examined by considering their locations with respect to the shape
of the terrain.

e For the three windows, the following are performed:

1.

Generate a contour map of all three windows by a contouring
package named QUICK-SURF [Schreiber 88) available at the De-
partment of Geodetic Science and Surveying using every original
grid data point as control points.

Plot the extremas obtained from the proposed method for all three
windows at the same scale as the contour maps acquired above.

. Evaluate the positions of the detected breaklines from (2) by over-

laying them on the contour maps. The evaluation is done with
the different values of o so that the displacement of zero-crossings
across the scales can be investigated.

Compare breakline maps with the manual breakline maps de-
scribed earlier in both visualized and quantitative aspects.

Reconstruct the contour maps of all three windows by using the
same contouring package used in step (1). However, this time,
only the breakpoints obtained in step (2) and points lying along
the window boundary are used as the control points, not all grid
points. The maps are generated from extremas with different o.

. The reconstructed contour maps obtained in (5) now are able to

be visually compared with the original contour maps generated
from the DEM grid data in step (1).

5.4 Results

As mentioned in the last chapter, the frequency response of the surface is
very important to design size of the LoG. Therefore, before applying LoG
to the signal, the estimated total power spectrum level (P.) of the surface
must be determined. Table 3 shows the values of o, cut-off frequency (fn)
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Table 3: Frequency Response and Energy Level of DEM surface

fm Energy Level
22 + 256 96.3 %
43 + 256 98.4 %
86 + 256 99.3 %
173 + 256 99.8 %

—IN W] 00|Q

and power spectrum level (P.) of the surface. In the table f, represents
the frequency obtained from Discrete Fast Fourier Transform of the whole
surfaces. Their values are rounded to the nearest integer.

Figure 11 to Figure 13 are the results of zero-crossings of LoG convolved at
o = 8 to 0 = 2 overlaid on the original surface. Figure 14 and Figure 15
show the extremas between zero-crossings at o equal to 8 and 4, respectively.

Three cross-sections showing the shape of terrain and locations of zero-
crossings and extremas at different o are presented in Figure 16 to Figure 21.
Figure 22 to Figure 25 are the scale space of zero-crossings and extremas.
The contour maps generated from the full grid data points of all three win-
dows are shown in Figure 26 to Figure 28. Figure 29 to Figure 34 are the
zero-crossing maps of all three windows at different o at the same scale as the
contour maps. Figure 35 to Figure 40 show the extrema maps. The contour
maps reconstructed from the zero-crossings at different o are presented in
Figure 41 to Figure 43, whereas Figure 44 to Figure 49 are the ones recon-
structed from the extremas. Finally, in Figure 50 to Figure 52 the results of
manual breakline maps are presented.

Table 4 and Table 5 represent the number of zero-crossings and extremas at
different o as well as the compression rate (C,) of all three windows which is
defined as:
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Table 4: Number of zero-crossings and compression rate of the windows at
different o

Window ng C.

1 219 [ 503 | 1202 | 32.99 | 14.36 | 6.01
218 | 412 | 1047 | 33.14 | 17.54 | 6.90
3 320 | 566 | 1157 | 22.58 | 12.76 | 6.24

N

Table 5: Number of extremas and compression rate of the windows at differ-
ent o

Window ng C,

1 310 | 695 | 1517 | 23.30 | 10.39 | 4.76
256 | 531 | 1346 | 28.22 | 13.61 | 5.37
3 455 | 760 | 1420 [ 15.88 | 9.51 | 5.09

[ %

where,
n = number of grid points within the window
no = number of breakpoints within the window.
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Figure 36: Extremas of window 1, o = 2
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Figure 39: Extremas of window 3, 0 = 4
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Figure 40: Extremas of window 3, o = 2
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Figure 41: Reconstructed contour map of window 1 from zero-crossings
with o = 2

Figure 42: Reconstructed contour map of window 2 from zero-crossings
with o = 2
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Figure 45: Reconstructed contour map of window 1 from extremas with o
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5.5 Analysis of the Results

From Figure 11 to Figure 13, one can see that as the value of o decreases
more zero-crossings show up. This can be explained simply that the LoG
with large o has a larger spatial extent than the one having a smaller o.
As a result, the surface smoothed with larger filter is smoother than the
one obtained from the smaller filter. Zero-crossings detected from LoG with
large o show a rough surface description. However, as we will see later, the
location of zero-crossings at a large o are displaced by the effect of smoothing
and other reasons presented earlier in the last chapter. As the filter size gets
smaller, one can expect a better localization from zero-crossings. At the
smaller o, small variations or high frequency phenomena are not rubbed out.
Therefore, they create noisy zero-crossings as shown in Figure 13.

Spatial coincidence across the scale proposed by [Marr and Hildreth 80] can
be examined from Figure 29 to Figure 34. One can see that zero-crossings
occurring across the scale exhibit significant changes in the input signal. For
this case, the zero-crossings due to the slope of the valleys show up in every
channel, while some zero-crossings in the smallest o (Figure 34) are created
by noisy phenomena. From this result, only strong zero-crossings should be
saved and noisy zero-crossings must be eliminated. This can be done by
locating the common zero-crossings which occur across the scale.

In order to analyze the experiment in depth, three cross-sections presented
in Figure 16 to Figure 18 should be examined. The occurrence of zero-
crossings confirms our expectation that they correspond to the inflection
points. Figure 22 to Figure 23 are the scale space plots showing the position of
zero-crossings against the value of o. The figures show that zero-crossings at
the smaller o values give better localization than at the large scales. Figure 19
to Figure 21 present the extremas detected from the different o. It can be seen
that extremas occur at the points which are critical for terrain description,
i.e. bottom point of the valley and at the edge of the valley. These points
are breakpoints which must be preserved as the surface description. In order
to further examine the property of extremas, Figure 35 to Figure 40 should
be investigated. These represent extremas plotted at the same scale as the
original maps shown in Figure 26 to Figure 28. By overlaying the plot of
extremas on the maps, one can see that extremas give the position of points
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Figure 49: Reconstructed contour map of window 3 from extremas with o = 2

which are essential in surface description. On the other hand, the plot of
zero-crossings in Figure 29 to Figure 34 do not give as satisfying results as
we acquire from the extremas plots. It is interesting to note that breaklines
along the bottom of valleys have positive maximum convoluted values while
the line along the rim of valleys have negative minimum convoluted values.
This information can be exploited for further interpretation of terrain. Scale
space plots of extremas are presented in Figure 24 to Figure 25. Clearly,
extremas across the scale do not exhibit the same properties as zero-crossings.

In order to show that extremas maps should be considered as a compression
set of data of the terrain, contour maps of all three windows are reconstructed
with the same contouring package used in generated the original maps. Fig-
ure 41 to Figure 43 present the contour maps constructed from zero-crossings
with ¢ = 4 to ¢ = 2. Figure 44 to Figure 49 show the maps constructed
from extremas. The results show that maps reconstructed from extremas
give much better results than the ones acquired from zero-crossings. Consid-
ering maps reconstructed from extremas with o = 4 and ¢ = 2, one can see
that they give terrain description similar to the original ones.

There is one important thing that should be said at this point that extremas
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Figure 50: Manual breaklines map of window 1
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Figure 51: Manual breaklines map of window 2
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Figure 52: Manual breaklines map of window 3
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are the points obtained by finding points having negative minimum or pos-
itive maximum convoluted values between zero-crossings in horizontal and
vertical directions. Therefore, if zero-crossings due to noise are not removed,
the extremas will be false breakpoints. As a result, more redundant points
will be obtained. To overcome this problem, authentic zero-crossings occur-
ring across the scales must be detected and noisy ones must be eliminated.
This task needs more exploration in terms of finding the correspondence
zero-crossings across the scales; and it is still open for further research.

Considering Table 5, it is appropriate to say that the compression rate seems
to be terrain-type dependent. This means that for the smooth terrain, such
as window 2, this technique can give a high compression rate. It can also be
simply explained by the rule of thumb that we need more data to describe
rough terrain.

Finally, the manual breakline maps, shown in figure 50 to figure 52 are com-
pared with the ones obtained by the proposed method. As one can expect,
the results from different persons reflect his or her background, knowledge
and experience. The results presented in the figures show all pixels chosen
by the sampler as breaklines and breakpoints with the number of people who
choose those pixels. It is clear that the results from the proposed technique
shown on, Figure 29, 31 and 33 give the nearly complete descriptions. The
detected breakpoints are located accurately about 1-2 pixels away from the
ones most selected by human. Nevertheless, for window-2, some breakpoints
are missing at the three way breakline junction, even at very small filter size
(0 = 2). This is the effect created by the drawback of zero-crossings, as
presented in Chapter 3, and contributes to the occurrence of extremas.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This work presents a new approach for solving the problem of the huge
amount of data of the discrete form of DEM representation. Extracting
breakpoints from the dense regular grid DEM data is considered as a process
of DEM data compression. All breakpoint information is explicit information
which should be kept as DEM data in the data-base instead of storing data in
a regular grid pattern which are implicit and occupy much computer storage
space.

It has been known for a long time that breakpoints and breaklines are im-
portant entities in surface description. Unfortunately, there does not exist a
satisfactory technique to extract breakpoints from a given set of DEM data,
due to the fact that detecting breakpoints is a subjective and scale-dependent
task.

This research presents a new method of extracting breakpoints and breaklines
from the regular grid DEM data by using the LoG (Laplacian of Gaussian)
edge detection operator. By regarding DEM data as the input signal, points
having local maximum curvature can be detected. These correspond to the
points having positive maximum and negative minimum convoluted value of
the signal between zero-crossings of LoG.

Experiments show that both drawbacks of breakpoint, which are subjective
and scale-dependent properties, can be overcome. In addition, it may be
possible to achieve an automatic technique. The detected breakpoints are the
explicit information which has more meaning than just regular grid points.
The new method described above is able to detect breakpoints accurately
to 1-2 grid size for this particular case, compared with the points chosen
by humans. Contour maps reconstructed from detected breakpoints confirm
the possibility of using the concept of breakpoints as a surface description.
Moreover, information from detected breakpoints can also be utilized for

7



further interpretation such as direction of slope, pit, peak, ridge lines and
valley lines.

6.2 Recommendations

This research is only a first step in the proposed conceptional approach, us-
ing breakpoints and breaklines as a surface description. However, more work
needs to be done to reach a workable operational stage. Specific recommen-
dations for further work are given below.

First, other edge operators can be applied and compared with the method
presented here. However, they must be carefully implemented. As stated
earlier, the ramp edge and roof edge shape of terrain are common while
the step edge shape is rare. Consequently, edge operators, which normally
are concerned with step edges must be carefully studied and implemented.
Since edge operators have different drawbacks, some of them might give a
better spatial location than the others. Nevertheless, every aspect must be
evaluated and compared, for example, computation time, compression rate,
accuracy, the possibility of further terrain interpretation.

Second, the improvement of the method presented here can be achieved by
eliminating false zero-crossings due to noise. This can be done by finding cor-
respondence across scales of authentic zero-crossings. The problem of finding
the cofresponding zero-crossings is a problem by itself which needs deeper
investigation. This topic is still open for further research, and its outcome
will contribute extensively to the implementation of LoG. Compression rate
of the method can be increased if only extremas between real zero-crossings
are used instead of all extremas from every zero-crossing.

Finally, the possibility of using LoG for DEM generalization should be ex-
plored. This is due to the fact that the smoothness of surface can be con-
trolled by the size of filter or o of LoG. Breakline maps at the various scales
which are the DEM surface description can be obtained by convolving the
surface with different values of . The concept of using LoG to smooth the
signal and locate the critical points in one dimension has been successfully
implemented in line generalization in [Thapa 87).
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APPENDIX A

RELATIONSHIP BETWEEN ¢ AND f OF
GAUSSIAN FUNCTION

In this appendix, the relationship between o and f, i.e., parameters in the
spatial and frequency domains of the Gaussian function, will be derived. This
relationship is very important for determining how large an LoG should be
used in the DEM data compression procedure. The derivation is conducted
in one dimension starting from the Gaussian function in spatial domain.

The Gaussian function in one dimension can be written as:

G(z) = ! p(—z%:,) (22)

ex
oy/2m

Therefore, the Fourier Transform of the Gaussian function can be obtained
as follows:

+

5(f)=/ c,‘,G(:r:)exp(—127r,f:::) dz

— 00

where, f = frequency

b= VO

Now, we can write the above equation in the form of:

G(f) = ! /jm exp (—M) dz (23)

oV2r 20?

We can write:
z? +14nfzo? = (27 fo?)? + (z +127fo?)?
therefore, equation 23 can be rewritten as follows:
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exp (=LY Lo
o = xp(a 2::2 )/; P (_(zﬂzﬁﬁz)z) S

Let’s define S = z + 127 fo? . Therefore, we can write:
dS =dz

Then equation 24 can be written:

G(f) = oy

20?

_ exp (- 55 L) /+oo exp( Sz)dS

oV2n —c0

& _(2.’t’:)2
C(f) = ""(a - ) Varm

G(f) = exp(-2n*f*d’) (25)
Equation 25 describes the relationship between o and f. One can see that the

relationship is also dependent on the value of G(f). If we continue expanding
equation 25, we will get:

G(f).exp(2n’fl?) = 1

InG(f) +27%f*0c* =0

=1L
2 f3
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From equation 26, if the value of G(f) is chosen the o can be computed from
the cut-off frequency f.

g =

(26)

In order to choose the value of G(f), one may select a small value, such as
0.0001, or by considering the confidence level percentage. However, as stated
by [Huertas and Medioni 86], the maximum frequency passing through the
LoG filter is equal to three times the frequency at the maximum response,
which happens at:

Therefore, we can write:

3
fmas = a'1r\/§
Or,
3
" s 0

Now, if we compare equation 26 with equation 27, we will get:




G(f) = 0.00012341

One may use the value of G(f) above in the process of designing o from
f. This value of G(f) is equal to 99% of the confidence level of the normal
distribution which one can also determine by the usual statistical methods.
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