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Absiract

The earth's gravitational potential, as described by a spherical harmonic
expansion to degree 180, has been compered to the potential implied by tihe
topography and its isostatic compensation using five different hypotheasia.
Initially, series expressions for the Airy/Heiskanen iopographic/isostatic model
were developed to the third order in terms of (h/R) where h is equivalent
rock topography and R is a mean earth radiuas. Using actual topographic
developments for the earth, we found the second and third terms of the
expansion contributed (on average) 30% and 3%, respectively, of the first term,
of the expansion. With these new equations it is possible to compute depths
(D) of compenasation, by degree, using ihree different criterial I} the power
in the actual field at a specified degree should be the same as implied by the
Airy/Heiskanen model; II} the topographic isostatic reduced potential should
show minimum correlation with the earth’s topography; III) the norm of the
residual potential should be a minimum. The results show that the average
(over all degrees) depth implied by criterion I is 60 km while it is about 33
km for criteria II and III with smaller compensation deptha at the higher
degrees. Another model examined was related to the Vening-Meinesz regional
hypothesis implemented in the spectral domain. The fifth model tesied took D
to be a constant of 30 km at all degrees. We have compared these model
fields with the actual field in terms of =anomaly, geoid undulation and
percentage differences, as well as with correlation coefficienta and anomaly
maps’ in the Caribbean/South America region. The differences beiween all
models is small with the exception of the model defined by criterion I is used
where larger differences are seen. For example, the average perceniage
differences between the 0SUS81 potential model and the five models ouilined
above, from degrees 15 through 180 is 87.2(I), 80.5(II}), 79.8{I11), B80.1(VM},
80.5(D=30km). Finally oceanic and continental response functions are derived
from the global data seis and comparisons made io locally determined wvalues,
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1. Introduction

In recent yemrs very efficient computer algorithms have been developed
for spherical harmonic analysis up to high degrees and orders, (Colombo,
1981). In addition, terresirial gravity material has become much more
complete, through the results of asatellite aliimetry, see e.g. (Rapp, 1981).
Thege facts and the availability of a global set of 1°x1° mean elevations make
it very atiractive to re-evaluate the older studies on global isostasy, carried
oui by Balmino et al. (1973) and others. A first step in ihis direciion was an
article by Rapp (1982). In Figure 1 of his paper a number of potential degree
variance spectra are displayed. The spectrum of the "observed" gravity and
the one derived from topographic heighis and based on the Airy compensation
model with a compensation depth of 50 km agree almost perfecily for the
degrees 50 to 180, One may imply the following ideas from this figure:

1. A compenasation depth D=50 km sgeems io be much more realistic than the
generally accepted one of D=30 km for the Airy model.

2. Since the two specira agree for n>50 but deviate for n<50 it may be
feagible to apply an isostatic reduction to the obaserved gravity and,
igolate those wparis in the anomalous gravity field, that are not
compengated isostatically, but are due to lateral inhomogenities in the
earth’s mantle.

It is of general! interest in geodesy, whether or not the potential of the
igostatically compensated topography could be used as a device for the
smoothing of the earth’s gravity field, before it is used in geodelic
approximation techniques, similar ito the practice in local gravity field
approximation (Forsberg and Tscherning, 1981)., We reslize thai the fuill study
of isostasy is a complicated issue. Isosiatic behavior can vary from region to
region and can be dependent on numerous faciors that we do not consider.
Nevertheless we feel that it is important tc find out what we can learn from
the models we formulate.

2. Basic Eguations for Airy Isostatic Model

The gravitational potential al a point P ocuiside the earth T is by Newton’s
law of gravitation

vp) =6 [ 244 g5, (1)
Iy PQ

with G, the gravitational constant, p the density inside the earth, ¢ the
distance between P and the infinitesimal volume element dZy at @ We insert
for the inverse distance 1/£pq its spherical harmonic expansion:

n

1. 1% fra"_1l 3 ; :
o = Ty ngo [rp] ool méo Pam {(cosfp) P,, (cos8y) [cosmhp cosmhg

+ sinmAp sinmig] (2)

where P,, is the fully normalized associated Legendre function.
In a shorter notation:



R ro}" _1_
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Ty n,m,
with
. cosmhp  Tor o=0
Ynmd(P) = P(cos8p) (3
sinmhp for o=l
If we further assume that the geocentric radius rp of P is greater than the

pradius of convergence of the series in (3), then (1) becomes after
rearrangement

wey = 3 retr) (gl [ o p(@ Yana(@ @S ) Yomu(®)
nym, T
8 B Gk [0 e @ ) e 0@

with M, the mass of the earth and R its mean radius. From equation (4)
follows the well-known expression

GM

1 =M 1 B e Yo (5)
R Ryt Tp namel * nmol
with the dimensionless coefficients
Cn
m _ B _dﬂug—___ l_ ra n
5 ] ® Comat = ZRS(en+D) 4r ) [F8)" 2(@) Yama(@) dzg (8)
nm

where M is replaced by 4/3mpR> and p is the mean densiiy of the earth.

We consider now the model of local isostatic compensstion by Airy. The
coefficients of the potentinl generated by isosiatically compensaled topography
Cl.x become, with equation (8):

Clmot = Iﬁ:—(gn_ﬁj Z}T £[AT(Q) — AP(Q)] Yamu(Q) dog €7)

The integration is performed over the unit sphere s, The gurface topography
part iz

wr@ = [T (B8] per@ drg (8)

with h, the surface elevation, and p.,. the density of the topography in land
areas., In ocean areas p., is replaced by po—py, where p, is ithe density of
sea waler. The compensation part in equation (7) is:

@ [T, 7w @

with D, the depth of compensation, t, the rcot (or anti-root} thickness,



Ap=pm=pors 8B0d pn the densily of the mantle. If it is assumed that neither p.p.,
Or por—puy respectively, nor Ap vary in radial direction, integration yields:

AT(@) = per (@) By [(BER@J™® _ 4] (10)
and
ac@ = apc@) B (BT - (BR=E@)™ (11)

In practical computations h(Q) is replaced by mean elevations usually 1°x1°,
For the geographical distribution of the densities one could in principle
employ & classification into land, lake, sea, and ice areas. In practice,
considering the limited quality of the daia material, we can only distinguish
between land and ocean areas with

per = 2670 K& for hpo  (land)
oy = » 12
Per—pw & (2670-1030) o9 for hy<0 {oceans)

The derivation of the root thickness t shall be deslit with in the next chapter.

with AT and AC evaluated e.g. in blocks of 1°x1* and inserted into
equation (7), the coefficients Clna of the isostatically compensated topography
can be computed. Based on 5°x5° mean elevations such a computation was
carried out by Lachapelle {1976) up to degree and order 36,

3. Condition of Equilibrium

The root thickness t(Q) is derived from the Airy model of local isostatic
compensation. The equilibrium of mass condition between an element of mass
at the surfmce and that at depth becomes for a spherical earth:

H

R¥h R—D
I per 2 dr do f Apr? dr do
F=R reR-D—t

or

Lo [(Reb)® - R°] = % [(RD)® - (RD-t)°). (13)

We rewrite it as a third-order equation in -HE—D:

) - sl + olas) - 5 &%) (B + @)+ sl - o
or simply as:

T3 ~ 3F2 4+ 3T - n{H?® + 3H2 + 3H] = 0 (14}
ﬁE_D’ = %’ and 7 = Bﬁ;[agn]s'
starting value T, = yH yields up to the third order:

with T = An iterative solution with the



w3
1

= o + AT = AL + B(ptl) ~ & B (n*-1)] (15)

or
e ) n e o -} ) s

Since h/R < 2'10~? and n % 4.5 the error of a lnear spproximation remains
below 1%. Hence we shall compute the root-thickneas from

t = &arx

Ap {a—u] h =4.45 ["‘E"]zh (17)

7D
with Ap = pyper = 3270 <& - 2670 X

4, Series Expansion of Topographic and Isostatic Effects

The problem with the dirsct application of formulas (10) and (11) for the
computation of AT and AEf, is, that they have to be compuited anew at each
block for each degree n. Hence, even with very efficient computer algorithms
a high degree and order expansion, say n{max} = 100 or 200 becomes very
tedious and time consuming. An alternative approach siarts from a binomial
expansion of the expressions in brackets of equations (10} and (11). Up to
third order in h/R it is:

AT(@) = por(@ 2o [1+ (uv3) BQ . (i) (@), _(@13) (242) ()

Q)"+ oy -]

2 h(Q) | (p+2)(n+]) (h(Q)}?
2 R 8 [ R ] ]

% per(@ h(Q) [1 + (18)

A corresponding expansion of eguation (11) yields
R_ [(R=D]"*+? R-D) 3 £(Q)
@ = 0@ s Y - BT - o 55

(n+3)(n+4 [t(Q)] (n+3)(n+2)(n+l) [ ] + (04)]] =

= 2p(Q) +(Q) [%'D'] [1 n+2 tlgﬁr)J . (n+2)(n+1)[t(0}] ] (19)

The question is8 now at what term the geries expansion has io be truncated
without commitiing an unacceptably large error.

We assume as an upper bound for h=10 km and take for R=6370 km, D=30
km, and t ® {p.-/Ap)h ® 4.45-h = 44.5 km. The resulting values of the firsi,
second, and third order ierms in the brachketzs of equations (18) and (18) are
listed in Table 1 for a number of degrees n. Because of the chosen high
value of h the numbers in Table 1 have the character of upper bounds. 8till,



Table 1: <Contribution of the second and third order terms in equations (18)
and (19) relative to the first order term.

AT Terms AL Terms
a nt2 b | (0+2) (n+l) h2 nt2 _t | (p#2)(nil)  t2
2 R 6 R 2 R-D 5] (R-D)*
2 | 0.003 c.0 0.014 0.0
10 6.009 0.0 0.042 0.001
50 0.041 0.001 0.188 0.023
100 0.080 0.004 0.364 0.088
200 ; 0.158 0.017 0.721 0.345

in order to keep the truncation error below 10%, the second order terms have
to be included for degrees greater than about 150 when computing AT, and for
degrees greater than about 30, when computing Af. For AC one should even
congider the inclusion of the third order for degrees higher than 160. The
numbers in Table 1 are not very sensitive to changes in D. In conclusion for
ithe high degree and order expansions, considered in this study the inclusion
of at least the =second order is required, in conirast to what iz stated in
(Dorman & Lewis, 1970, p. 3359).

However, there is an additional aspect. We are actuelly interested in the
combined effect of AT and AC, namely AT-Af, which enlers into equation (7).
If we insert for the root-thickness t from equation (17)

- £or B2
t(Q) = 225 popye B

Ap (B
we find
@ 10 - pn ([ (52 52 s e e (5078
v ) o - 5 E 16 (20)

The alternating sign of the series expansion of A® causes the first order

— 111
term to almost cancel and since {ER—D] converges very slowly, it is true even

for high degrees of n, The percentage values of the second, and third order
terms in equation (20) relative to the firast order are displayed in Figure 1.
We see that Lhroughout the entire spectrum from degree 2 to 200, the upper
bound value (h=10 km) for the second order term either exceeds or remains
little less than the firsi order term. The third order term reaches 25% of the
first and second order for high degrees. 1f the upper bound value h=10 km
is replaced by the approximate root mean sguare value of the topography of



about 2.5 km, the order of magnitude still remaina between 18 and 46% of the
first order, whereas the third order drops io below 1% in this case.

Now we insert equation (20} into equation (7), where ocean deptha d
(which are negative in magnitude) are replaced by eguivalent roc

topography, (see (12)):

hy = ﬂr—;—cfm d; = 0.614 dy for hy < 0 (21)

Then the (fully normalized) coefficients (up to and including 3rd order} are:
3 B=D17] _1 { h{@)
CrIImd = £eo {[1 - ["ﬁ_] ] EI i) Yome () dd’q +
Q

2n+l p
co2 [y (7] TRy a
o D) [ - gk (BT 2 [ B v@ 4o - 22

With the surface spherical harmonic expansions

1 [ ha
hono = 7 | 28 Vona(@) dog,
aq

2
B2mme = g | 25 Yoma(Q) do, and (23,a-c)
o
1 [ h3(Q
h3nmat = ar _[ _ﬁ_sLl Ynmd(g) der ,
o
we obtain
3 R-D}n nt+2 i
e = 5y 2= {[1 = (Y] boma + 52 [+ 255 (B)7] m2ma

» 2 @el) [ - gat (R B3] - (24)

This iz the series expansion up to 3rd order for the computation of the
potential coefficients of the isostatically reduced topography. In praciice very
often only the very convenient formulas of the first order expansion are used.
They can be interpreted as a double layer expangion. Bui as we =saw, this
may result in considerable distortionas in the computed coefficienta. The need
for a second order expansion was already emphasized in (Jung, 1950) with
calculations carried out by Uctila {1965}, In Arnold (1880) the second order
expansion has been treeted, too. The evaluation of the series expansion
represented by (24) iz much more efficient than the evaluation of the rigorous
equations given by Lachapelle (1976). A comparison of coefficients - computed
from the rigorous application of (10} and (11} to the =series resulis
represented by {24) shows agreement on the order of 0.2x107%.
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In numerical tests we noted that the power specira of (h/R}* and {h/R)*
were approximately 107% and 107'%, respectively, of the power of (h/R}).
However to see the whole picture we examined the relative contributions of ithe
homar N2pmas 80d h3ppe terms to the topographic-isostatic potential at various
degrees. We found that the h2,.n contribution is on average 30% (2 maximum
of 110%) of the h,mg contribution while the h3,y,y terms coniributes an average
of 3% (maximum 11%) of the h,,y contribution. Thesae figures are consisient
with the estimates made earlier. The significant role of the second terms is
caused by the small value of the coefficient of hgny in (27)

Another computation was the comparison of the polential implied by the
three, two and one term topographic/isostatic models with Dz=30km. The
ariomaly, undulation, and percentage difference by degree were calculated.
(See Section 8 for equations). The overal difference (degrees 2 to 180)
bhetween the three and one term models was 1.5m, 4.4mgal, and 35%. These
differences were essentially the same (1.5m, 4.4mgal, 34%) for the two vs one
term model. The magnitude of the undulation difference was greatest at Lthe
lower degrees while the anomaly and percentage differences were similar
independent of degree. It is clear from these comparisons that a substantial
error is caused by using only the first term in the model. For subsequent
calculations, we will use the two term model.

We finally note here that the =series expresgion for the potential
coefficients of the uncompensated topography can be written from {24) by
letting D=R. We have:

T 3 2 n+2) (n+l

Crmot = Fpr1 '9';";"' { Braa + 5= D2amat L""‘%&—“‘)‘ h3nma } (25a)
The coefficients of the isostatic compensation would be:

¢ _ .3 pee {[BR]T _ 02 pgp (EEDINTP

Cnmn!‘ 2ntl p {[ B ] hpmot 2 Ap [ R ] hZnmac

L (nt2) (nt1) pi. [;@_] L ] (25b)
6 Apz R nmo!

The coefficients of the isostatically compensated topography would then be:

1 T [
Chamot = Camet — Cramot (25¢)

with equation (24) representing this difference.

5. Preliminary Comparisons
For the first series of numerical resulis we have computed the potential

coefficient spectrum implied by the topography, and by the isostatically
compensated topography. The spectrum of a set of coefficients A would be:

a (A) = 2 E Coma = £ (Can + Soa) (26)
The elevations snd depths for these computations have been taken from a

1°x1* mean slevation file (TUG86.DTM) described by Sinkel {1986). This file is
besed on land elevations received from the Defense Mapping Agency Aerospace



Cenier in 1983 (with corrections for 12 values) and an averaging of a 5'x5’
data set (NGDC, 1983) over the oceans. In ocean areas the depths (d) were
converted to rock equivalent topography using the nominal denaity of ihe
crust and sea water using equation {21}). No special consideraiion was given
to ice areas because of lack of information.

The harmonic coefficients of h/R and (h/R}? were computed to degrss 180
using program HARMIN (Colombo, 1981) using integraied associated Legendre
functions. These coefficients are represented by equation (23, a,b,c), With
these coefficienis the potentisl coefficients of the uncompensated topography
(Clne) and the isostatically compensated topography ({(Cl,«) have been
computed for the nominal compensation depth of D = 30 km. Plots of the
spectra {from equation (26)) are shown in Figure 2, Also shown in this figure
is the spectrum implied by the observed gravitational field of ihe earth as
described by the 0SU81 (Rapp, 1981) model which is complete to degree 180.
From this figure we asee the significant power in the uncompensated
topography that is considerably reduced when isostatic compensation is taken
inio account. However the power of the D = 30 km case is less than that in
the observed field which was noted by Rapp (1982).

In Section 8 we will consider a number of comparisons between the
observed potential field and model fielda. At this point, however, we must
discuss how the appropriate value of D is selected.

6. Optimal Compensation Depths

The isostatically reduced gravity potential dV is obtained by subiracting
the potential dus to the isostatically compensated topography, VI, from the
"obaerved" gravity poiential V:

dv(P) = ¥(P) —- VI(P) (27)

If the isostatic hypothesis of Airy fit remlity perfectly, dV would be free of all
influences of the earth’s crust and solely reflect the lateral densily
inhomogeneities of the earth’s core and mantle. As mentioned in the
introduction, from the degree variance specira of V end of VI for the
compensation depths D=30 km and 50 km in Rapp {1982), one might conclude
that a compensation depth of 50 lkm is more realistic than one of 30 km.
HBowever, if one derives, from (27}, the formula connecting the degree variance
spectra of dv, V, and VI, we have:

a2(V) = o2(VI) + 2cov,(VE, dV) + a2(dV) (28)

One sees, that an agreement of «i(V) and #2(V1) does not necessarily imply
that «2{dV) is small. One also has to take into account the covariance cov(VT,
dV).

We shall now discuss the compuiation of optimal compensation depths per
degree, still within the Airy type model of compensation. Thus, the
compensation depth D zhall become a function of degree n. Three models for
different optimality criteria shall be discussed.
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Criterion 1: &2({V) = «2(V1)

As mentioned above this criterion has little physical relevance. Its application
shall only result in an optimal agreement of the degree variances of the
observed gravity field, o¢2(V), and of the topographic-isostatic model, « 2(vIy,
It doses nol necessarily produce a small residual field of dV. The criterwn is
included only for the purpose of showing thet iis application leads to
compensation depths D, of about 50 km. To evaluate this definition we form
the following function:

£(D,) & ¢3(V) - c2(VI(D,)) = O (29)
with
i (V) = E g {Crmat} ? (30)

and with eguation (24)

a3 (VE(D,)) = E 5 {Clm)*
=13 (mnse{[1 - (B o + 221 « £2=(3) " [z,
R )
=1 5 {01 - Qlhopa + B o1+ 82 QT b2y + =" (31)
with &, = 5o 825, B, = A, 22 and , = 2Da

For the computation of the approximate compensation depths D§ the linear model

for Cl.x is empleyed:

Clmat ® 45[1 - Q8 lhymo (32)
From
fo(Dg) = “ﬁ(v) - A!?lil - QR}Z g nmd
= g2(V) — A3[1 - Qpi?ei(h) = (33)

which can be solved for DY in the following steps:

_ a2 (V
L-@® = /i
_(RDY)Y | o)
1 [ R } T AuTq(h) (34)

pg = &[1 ~ [1 - K;Eﬁ%%%]l/"]

Based upon the approximate values DJ, the actual depths can be obtained by

11



Newton iteration. We write:

(D]
with the derivative £ of f from equations (30) and (31) and where the
superscript i is an iteration index.

af_
D,

H

£ (0}) y

2 E g C;I.mu(D,i;}[An Pﬁ [B:%i‘]ﬁhnm - fﬁ" D'r_ig['nr_z_n’a] e }
and ¥° = 0.

Using the 0O8UB81 field and the rock equivalent topography expansions D,
values have been computed. They are listed in Table 2, column 2 =and
displayed in Figure 3. The average D value iz 64 km for degrees 2 to 180,
and 58 km for degrees 30 to 180.

Table 2. Depth (D) of Airy Compensation Based on Three Criieria

Degree Criteria
1 2 3 Vening-
Meinesz
5 144 ¥m 0 0 29
10 paTis 85 84 29
15 54 40 49 29
20 40 27 27 30
25 40 3l 31 30
30 34 22 23 30
50 52 30 31 31
70 49 29 30 31
20 60 30 30 32
110 6l 35 37 32
130 79 38 40 33
150 56 29 32 34
170 68 25 29 34
175 8l 31 33 35
180 56 26 29 35
Criterion 2: lcov,{(V7,dV)| = min

A very wvalid requirement is the choice of the depths of compensation such
that the topographic-isostiatic reduced potential dV shows minimum correlation
with the earth’s topography. The correlation can be expressed as:

COVn(VT; dV) =X E C!";mddcnmo{ (37)
m

12
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or using equations (25c):
COVH(VT, dv) = I E med(cnmo( - Cﬁmo( + c%md)
m

= cov,(V, ¥T) - &2(VT) + cov,(VF, VC) (38)
In linear approximation equation (37} becomes with the definitions in (31):
cov, (VT, d¥(D2)) = A cov,(V, h) — AZsZ(h) + AZQne2(h) (39)

If by definition DY = {D3! 0 # DY £ R} then A2Q"¢2(h) is a monotonously
decreasing function with :

A2a2(h) for DY

0
aganai(ny = {AGR(R) 2o8 D3

R
Now three cases can be distinguished in order to attain the minimum of
cov, (VT, dV(DZ%)):
if Apcovn{V, h) — A2si(h) > 0 => DY =R
if Ajcov,(V, h) - Alci(h) < A%e2(h) => DS =10
otherwise, lcov,(VT, dV{(D3}! = min implies:
cov,(VT, dv(D3)) = 0

(40)

13



Then, with equatien (39):
Q" = AZc?(h)~A cov,(V, h) _ 1 - covy (¥, h)

AZs2 (h) Ano2(h) .
or
og = &1 - 1 - el ] (a)

For the actual solution, again the three cases D, = R, D, = 0, and 0 <{ D, < R
can be distinguished. In the latter case, i.e. 0 ¢ D, < R, the compensation
deptha are derived from a Newton iteration, as before, with £(D,) =
cov,(VT, dV) according to equation (38).

The resulting compensation depths are listed in Table 2, column 3, and
digplayed graphically in Figure 3. The average D value igs 32 km for degrees
2 10 180, and 3! km for degrees 30 to 130.

Criterion 3: #dV#3 = min

Whereas criterion 2 seems to be more relevant for geophysiciats, the next
criterion (3) is esapecially interesting for geodetic application. In geodesy
topographic-isostatic reduction is mainly applied to produce a smooth residual
field which allows simple and accurate interpolation. This is achieved with
criterion 3. It is:

hdvaz = 3 [z I [Camat ~ Chma * Cﬁmd(Dn)1=]
n "m o
= 3 {13 (Chna + (Chned® + (CEna(n))? = 2CnmaChna
+ 2Cnmdcl{':lmo{(nn) - zc;mdcﬁmo{(nn)l]- {42)

idVd2 = min. is obtained from a soclution of

[
leccd.‘?g.ﬁm+cmda_cm_ch.a.gﬁm¢=0
ol nme 3D, n aD,, nmet D,

c
or 1% Lana o, 0 = 0 (43)
m n

, . act . . .
In linear approximation, “g—““‘u, with equation (25b), can be written:
3D,

C
Chin = — A, .11.;. Q"_lhnmtx

ab,
= - % Q" el
Consequently equation (43) becomes:
- % Qn"teov, (VT, dv) = 0 (44)

Equation (44) is satisfied either by
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—, _ {R=D8ym=t _
I: gt = [—'-R—n] =0
which is true for DY = R, or by

II: cov,(VY, 4V) =

which is identical to the linear case of criterion 2, treated above. 3Solution I
leads to C&.x = 0, and resulis in a pure Bouguer reduction, compare equation
{25). In conirast to solution II, solution I represenis a maximum of equation
{42) and is therefore of no interest. Hence, in linear approximation, criteria 2
and 3 agree, or in other words the minimum norm of dV and minimum
correlation of VI and dV result in one and ihe same compensation depths Df,

In second and higher order approximation, #1dVi2 = min. differs from
feov(VT, dV)! = min. The solution ia again obiained by Newton iteration with
equation (42) in the following form:

_ Ay
f(Dn} = 5 E aD dcnmd
- n—3 —
=21 (- Au B O b + By B5E 222 Qreh2py — —]

Tcnmd = A, (I“Q")hnmd Byl + EG; Q“—s]hznmd + "“}
£(0,) = @t {- B A,[cova(¥, B) - A, (1-07)s3(h) - B,
[1 + Enﬂ Qn—2 ]cov (h, hz)] = =3 ﬂﬂa B,Q™?

{covn(‘l, h2) - A,(1-Q"}cov,(h, h®*) - Bn[l + 'Z—:-t Q“"‘:’] dﬁ(hz)}

(45)

'f

from which £7(D,) = follows by straightforward differentiation.

The resulting compensation depths are given in Table 2, column 4 and
displayed in Figure 3. | They differ from those obtained from criterion 2
typically by 1 to 2 km with the greatest differences at the higher degrees.
The average D value is 33 km for both degrees 2 to 180 and 30 to 180.

At this point we have three differeni procedurea io compute the depth of
compensation by degree. Given the depths, which will depend toc some exteni
on a potential and topographic model of the earth, the iopographic/iscsiatic
potentisl can be computed using equation (24) with D now a funciion of n.
Numerical comparisons beiween these and other models will be discussed in
Section 8.

7. Optimal Vening Meinesz Isogtatic Models

Half a century ago Vening Meinesz argued that the simple isostatic concept
of Airy/Heiskanen, which is governed by a strictly local compensation, is not
very realistic because, due to its elasticity, the mantle is able i{o support a
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certain amount of local topographic load without local yielding, whereas in the
Airy/Heiskanen model free mobility between vertical mass columns is
presupposed - a highly unlikely assumption {(Vening Meinesz, 1939).
Therefore, he proposed a regional compensation model which is now dencted
the Vening Meinesz model (Heiskanen and Moritz, 1967).

Regional mass compensation can be described by a smoothing operator,
applied to the non-smoothed isostatic masses implied by the Airy/Heiskanen
model. This idea has been pursued by Siinkel (1985, 1988). In the following
we shall describe how to best estimate both the depth of compensation and the
parameter{s) of the smocthing operator.

In linear approximation the harmonic coefficients of the topographic/
isogtatic potential for the Airy/Heiskanen model are given by

0k = 57 257 [1 - (55D o (46)

(cf. eq. (24)), where the term with "1” is the coniribuiion of the topography,
end the term with {(R-D)/R)® is the contribution of its isosisiic compensation.

If the isostatic masses are subject to a smoothing procedure, implied by
a homogeneous and isotropic zmoothing operator B,

B(P,Q) = § (2n+1) fn P (cos¥ea) (472)

with eigenvalues 8,
1
B = 2n [ B(t) By (t)dt (47b)
—%

{P, «. Legendre polynomial; t = cosy; ¥ ... gpherical distance}, we then obiain,
by observing the convolution theorem, the harmonic coefficients of the
topographic/isostatic potential in linear approximation for a Vening Meinesz
model,

Cm = 23_{.1 2'5': [1 - [B_ﬁ'p']nﬂn] Romo - (48)

{Note that the topographic part remains unchanged; only the isosiatic pari
changes because of amoothing!)

Various models for the set of eigenvalues {f,] could be envisioned, each
particular model controlling the features of the corresponding smoothing
operator f. We list here & very few:

a) B,=1V¥n
In this particular case there is no smoothing involved. Therefore, this
operator represents the standard Airy/Heiskanen wmodel with the
compensation depth D as the only parameter.

b} fo=1,8,=0¥Vn>0
In this case the smoothing operator degenerates into the global average
operator with equal weight; the smoothed compensation masses form a
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homogeneous layer which is equivalent to a point mass at the origin.
Therefore, this operator represents the other exireme case of the
Airy/Heiskanen model where the "level" of compensation is at the aorigin,
D =R

c) Bp=0Vn
Thig =set of eigenvalues represents the annihilalion operator which
annihilates all isostatic messes. Therefore, only topographic masses are
left (unchanged) in this particular case. Consequently, the corresponding
harmonic coefficienis are those of the topography only, which represent
ihe topographic potential.

d} With

R~ "

Bn i= [R——D ]
a smoothing operator is implied which is identical to the isovstatic model
used in section 6: a model where the compensation depth formally depends
on the degree n, rather than being constant as in the genersal case of eq.
(48). We think it is important to siress and therefore, we repeat it: the
multi-compensation depih model discussed in section 6 represents, in
linear approximation, also some type of smoothing operator which is
applied to the compensation masses.

1t should be obvious that there exists an infinite number of other models

for the eigenvalues {f,} of the smoothing operator B, e.g. e5?n? or the like;
{here b is the only medel perameter of the smoothing operator). Generally,
the smoothing operator of eq. {47a) depends on a certain number p of model
parametera; together with the compensation depth parameter D we have
therefore to estimate p+l parameiers of the isogtatic model.

The three optimization criteria for the estimation of the model parameters,
which have been discussed in secticn 6, can be applied here as well, In
principle the estimation procedures agree with thoge of mection 6 with two
gmall differences:

a) In the case of the Vening Meinesz model each harmonic Cl,y depends on
all p+l model parametersa, while in section 6 a harmonic of degree n
depended exclusively on the degree~specific compensation depth Dy:

b) through the smoothing procedure, the operator B enters into higher
degree terme like hZ2.,4 h3ppay o+ in a rather complicalied manner,
requiring for iis computation a (quickly converging) iteration procedure.

Because of property (a) the estimation of the degree-apecific compensation
depths D, according to criteria I - III of section 6 is possible on a degree by
degree basis. Here, in the general smoothing model approach, this is no
longer possible {exception: g, according to model (d}). Instead of the
solution of N, (= highest degree of model) optimization problems with one
parameter D,, we have to solve now one optimization problem with p+l
parameters.
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Because of property (b) an iteration procedure is involved: eq. (48)
presupposes a linear relation between the harmonic coefficients of the
topographic~isogtatic potential and the topographic height. But according to
eq. (26b) this relation is non-linear because of the higher degree terms h2,.y,
h3;mes oo+ {Note that in the Vening Meinesz model h,,y is replaced by 8, hpme
therefore h¥,,y i85 the harmonic coefficient of the smooihed topography B¥h,
raised to the power J). Therefore, the following iteraiion process offers itself:

step 0: 1= 0
get. a priori estimates for the isostatic model parameters D{°) and
b{e) (here b is the vector comprising all p parameters of the chosen
smoothing operator); harmonic analysis of the topography and its low
powers, yielding hames D2nmos +ee3

step 11 i:=i+ 1 .
smoothing of compensation masses, implied b{ Bli~1)xh uming D(i-t)
and b{i-1), yielding a smoothed topography hli

step 2: harmonic analysis of low powers of h{i 13 yvielding a first order term
CI,.,U) of eq. {48) which will be considered as a function of D and b,
and higher order {correction) terms CZI,Si), C3In(,i), «s which will be
considered as constants in the subsequent step;

step 3: optimal estimation solution (least-squares adjusiment or least-squares
collocation with parameters) for D and b with Taylor point pli—r y
6(i-1) and linearization restricted to the linear term CI,S, 1) of step 2
stop if 1Di) - pli—1hy ¢ zp and 1B{1) - i1} ¢ £y, elae go to (1).

The result of this ileration process yields both best estimates for the
isoatatic model parameters (compensation depth D and the parameters of the
smoothing operator B}, and the set of harmonic coefficients of the itopograhic -
imostatic potential of the implHed Vening Meinesz modsl.

This procedure has been applied to the determination of a two parameter
model with D = constant and 8, = e™d*n”’. The result is D=29 km and b=0.00223.

The values of D, found by setting g, = ~b%n? 4o ({(R-D,)/(R-D})" are shown in
Table 2. The values are similar to the other wvalues above degree 20.

8. Observed and Model Comparigonsg

The two main resulis obtained so far are: 1. In isostatic computalions
linear approximation may result in significant distortions. Second and higher
order approximations can be implemented very easily., 2. In addition io the
classical Airy/Heiskanen local compensation model with constant compensation
depth D, three models with degree dependent compensation depihs D, and a
Vening-Meinesz regional compensation model have been derived.

We now turn to a comparison of the different models. In Figure 4 we
show the spectra of the 08SU81 (Rapp, 1981} field, the model with degree
dependent D wvalues based on criterion 3 and the Vening-Meinesz model

with smoothing coefficients 8, = e~b®n® (D = 29 km, b = 0.00223). The D=30 km
model, if plotied, would be almost the same as the Vening-Meinesz model. All
models, except the one based on criterion 1, have less power than the observed
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potential at the higher degrees.

Next a set of quantities is introduced thai can be used to compare two
sets of potential coefficients. We define the difference between the
coefficients Camx ©f the observed gravity potential and the isostatic
coefficients Cl,y {model) as derived from the mean elevations by applying one
of the five models &s

AChma = Chmat — cEmd {model}. (49)

The first quantity of interest is the root mean square undulation differences
between degrees n, and nj!

%
= g2 §* 2
on = R ng,,l D) 8CAma] (50)
The next is the roct mean square anomaly difference between degrees n, and
ng:
2

%
og= [y 5 DI L 8CE na) (51)

n=n,
We nexi have the percentage difference by degree!

z § Acémd 4
P, = [LWI 100 (52)

The average perceniage difference between degree n, and n, is:

1 __ $2p, (53)

P=——
nz“"‘n1+1 n=n,

The ¢Z{V) =re the dimensionless signal wvariances of the observed gravity
potential as derived from the 0SUB1 met of spherical harmonic coefficients. As
can be seen from the above formulas at each degree the relative behavior
among the AC.no derived from the five models remains the same in eqs. (50),
(51), and (52). Only when the root mean square {r.m.a.} quantities in a range
from degree n; to n, are computed this relative behavior cculd change. This
is due to the multiplication by (n-1)2 in (51) or the division by «3(V) in (52},
which changes the relative weight of certain degrees or degree ranges,
reapectively.

The rool mean square undulation and anomaly differences are chosen,
because they provide a good insight into the expected size of the residual
undulation and anomaly field. The percentage difference is a valuable measure
if Lhe differences are small as compared to g2(V), Its disadvantage ig that it
is unbounded, i.e. the perceniage can reach infinity.

A parameter containing the same information as the percentage difference
is the smoothing coefficient s,. It has been used by Tscherning {1985) in
comparing different geopotential models to the potential implied by the
topography. It is defined as
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z z Acrzamd
g, = Bl
n ai (V)

Another measure is the correlation ({coherence) coefficient by degree
between Cpmy and Clux (model)

ELE Comot Chmo(model)
Prn = g (V)on(Vi{model))

Finally we have the average correlation coefficient between degree n, and n.

(54)

(85)

_ 1 P
L —— ,,Enl'o“ (56)

The degree correlaiion coefficient (or coherence coefficient) im a quantity that
can be used to judge the agreement between any two quantities represented
in a spherical harmonic expansion. Our particular cage can be explained by
taking the linear approximations to Clny from equation (24):

Clne = 2n_3,_1 eﬁn 1- [E_E_Q}"] hmet

so that

3 R-DI"
a0 = oy 28 [1 - (Y] ot
Hence, in linear approximation ihe correlation coefficient per degree becomes,
with {54):

IL Cnmo{C%mc{(mOdel) I Comhnmot
= mol = o
Pn = g (Wan(Vi(model)) = on(V)aq(h)

The latter is the correlation coefficient between the observed gravity potential
and the obgerved equivalent rock itopography. We conclude that in linear
approximation, the p, are independent of the choice of the isoatatic model.
Consequently the differences in the correlation coefficients of the five models
must be small and represent the influence of the second and higher order
terms. In addition, since the second order term of Cl.y (cf. (24)) is positive
by definition, one can show that the correlation coefficients of the linear
models must be higher than those for the corresponding quantities in higher
order approximations. On the other hand, since we know that the models in
linear approximation represent rather unrealistic double layer models, we
conclude that higher correlation coefficients do not necessgarily imply a more
realistic model.

(57)

Table 3 shows the anomaly, undulation and percentage differences, and the
correlation coefficients for the various topographical isostatic models. The
gimple Airy model iz represented through & D = 30 km depth of compensation.
Other depths (28 and 32 km) were used but no gignificant changes noted. In
addition, three degree ranges (2 to 180, 15 to 180, 30 to 180) have been used
for the comparisons. All models yield very similar comparisons except for the
case when D is computed by Criterion 1. This points out ithe clear problem of
gseeking D values that yield the same power as in the observed field.
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Table 3. Comparisons Between OSUS1 Model and Various Topographic/Isostatic
Models for Three Different Degree Ranges.

Ancmaly Diff Undulation Diff Percentage Correlation
{mgals} {meters) Difference Coefficient

2 15 30 2 15 7 30 2 15 30 21157 30
180 | 180 | 180 | 180 § 180| 1801 180 [ 180 [ 180 [ 180] 180] 180

D=30 20.64(16.27115.4330.57{2.30(|1.46{81.48{80.51|80.41[.575|.599|.539
p=Crt) [24.11|17.64116.74]45,35|2.48(1.58(89.19;87.18{87.18}.593(.616|.617
D=Crt2 {20.16116.27115.42{29.59(2.31|1.47|80.48{80.54;80.38}.584(.6031.602
P=Crt3 {20.15116.12|15.30(29.59|2.26(1.44(|80.43{79.75.79.75}.587(.603].603

;er.‘i"g‘ 20.58116.20|15.36(30.57|2.29!1.46|81.12180.12|80.00].581| .604|.605
elnesz

Solution

Computations were also made with the TUG87 (Wiser, 1987} elevation model for
selected cases. We found that this model yields better agreemeni with the
OSU81 field than the TUGC88 model. Por example, using TUG87 the average
percentage difference for D=30 km, degree 15 to 180, is 79.47% compared to
80.51% with TUGS86. The correlation coefficient, in the same case is 0.614 as
compared to 0.599. All computations were not carried out with TUGB7 as it
became available after most of the computations were completed for this paper.

Table 4 contains information on the smoothness coefficient (s,) for selected
degrees and for the same three degree ranges used previously. The smaller
the s, value, the better the agreement between the observed field and the
models. - Al isostalic models, excepi that based on criterion 1, yield basically
the same smoothing coefficients with those from criteria 2 and 3 being slightly
better, i.e. smaller, for the 2 to 180 degree range. It lies in the wvery
definition of eriterion 3 - minimum norm of dV = V - VI - that the smallest
values of AC,nq for each degree and therefore alsc of 6N, ég, Py, and s, must
be obtained with this criterion. In practice the differences between criteria 2
and 3 and the Vening-Meinesz model are very small. Obviously the smallest
covariance values cov,(VT, dV} must be obiained for criierion 2. We note that
the use of the TUGS87 model would have yielded slightly smaller P, wvalues.
For example, for degree range 30 to 180, the s value is 0.626 for TUGST wva
0.647 for TUGSHSE.

Correlation coefficient information by degree range has been shown in
Table 3. The correlation coefficients by degree show no significant variation
between the models as expected. At degree 12 the correlation is about 0.04
which is unusual because most correlaiions in this degree area are on the
order of 0.6. This small correlation at degree 12 also holds for other potential
coefficient models.

Anomely degree varisnces are a measure of the spectrum in the asnomaly
domain. We write:

22



table 4. Relative Mean Square Coefficient Differences {s) Between QSUS1 and
Various Topographic/Isostatic Models

Fixed D {km) Variable D Vening

£ 30 1 2 3 | Meinesz
2 1.05 2.856| .98B| .98{ 1.06
5 1.18 2.78| .97 .97] 1.18
10 .B8 .B83] .53| .53 .BB
12 1.18 1.89]1.05/1.05¢f 1l.16
15 .56 B8} .501 .50 .55
20 .16 .B88| .75} .75 .75
25 .AB .51| .46| .46 .46
30 .73 780 671 .67 .72
50 .B4 .78| .64} .64 B4
70 .59 .73 .59| .59 .59
a0 .70 .90} .701 .70 .70
110 .80 .B7| .58{ .58 .58
130 .65 .76| .63| .63 .64
150 .68 .79 .68| .68 .87
170 9 L9655 791 .79 .78
180 .67 .79] .67| .68 .66
22180 .B64 .796] .648].647 .658
15-180 .648 L760].649} .636 .842
30»>180 .647 .760|,646] .636 .540

cn = 72(a-1)* I I Chna (58)

The ¢, values computed from the modelz used in this paper are interpreted to
refer to a sphere correspending to the mean earth radius of 6371 km due to
the spherical approximations of the model, Values of ¢, are given in Table 5.
The model with the most power is the variable D case with criterion 1. The
other models have power by degree, and cumulatively, that is significantly
less than what is in the observed field as represenied by the OSUSB1L field.

The coefficients have nexl been used to create gravity snomaly wmaps in
the Carribean region and in northern South America. This area was aelected
due to the complex nature of the gravity fisld due to the presence of both a
trench area {the Puerto Rican Trench) and a aubstantial mountain range {the
Andes Mountains). From the point of view of an area where isostatic
compensation would be most apparent, this area may not be ideal. These maps
have been created using the potential coefficients from degree 30 to 180 of
the OSU81 field {Figure 5) and the Vening-Meinesz regional compensation field
(Figure 6). The anomaly piots for the D=30 km case and the depiths from
criterion 1 case are very similar,

The OSUB1 field reflects ihe known anomaly field structure in this region.
There is clearly a correlation of the significant anomaly structure between the
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0SU81 field and the topographic/isosiatic model. However the range of the
anomalies is much smaller in the model case.

Table 5. Anomealy Degree Variances (mgal®)

Fixed D | Variable D | Joning-
Meinesz

2 osus1 30 lon 1| 2] 3
15 3.0 0. | 3.0] 1.1| 1.6] 0.8
30 2.5 2.0 | 2.4} 1.1] 1.1] 1.9
50 3.8 1.4 | 3.8} 1.4] 1.5] 1.4
70 2.7 1.1 | 2i8f 1.1} 1] 1.2
a0 2.6 0.9 | 2.8| 0.8} 0.9] 0.9
100 2.6 0.8 2.6| 0.9] 0.9 0.8
120 2.1 0.8 | 2.8| 1.1] 1.3} 0.9
140 2.2 0.8 | z.2| 1.0| 1.0} 0.8
160 1.8 0.8 | 1.8 0.8] 0.9] 0.9
180 1.8 0.8 | 1.5} 0.7| 0.7 o0.9
25180 586 176 | s82| 201} 218] 1m1
15180 412 160 | aos| 173} 182 174
30180 372 149 | ses| 155] iea] 155

Quantities that are primarily used in the geophysical lilerature ars the
continental and oceanic response functions. The response function (as
discussed here) iz a measure of the transfer of information between
topography and gravity field guantities, gsuch as Bouguer or free air gravity
anomalies. Discussions of response functions in flat earth approximation
applying two dimensional Fourier transforms can be found, for example in
(Dorman & Lewis, 1970; McKenzie & Bowin, 1978, or McNuti, 1979). A general
review is given by Boskelo (1985). A discussion of the response function
technique for a spherical earth can be found in (Dorman & Lewis, ibid},
(Boekelo, ibid), (Cazenave et al., 1986) and other sources.

The response function iechnique assumes a linear relationship between

gravity anomalies and equivalent rock topography. Let us define the
coefficients of the free air gravity anomaly field as

Eimat = 7(0-1)Chnat (59)

and those of the Bouguer gravity anomaly field (compare {25a)) as

88mat = y(n-1) {Comx — Chmc}

3
y(n-1) {Cnmo{ T S+l E%L hnmol} (60)

Then the assumption is that there exists an unknown linear transfer function
7., {gf,h) such that
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grfimd = Zn (gfsh) hnmo( + elfimd (Gl)
and a transfer function Q, (gb,h) such that
ggmd = Qn(gh- h)hnmd + Ede (62)

In both cases the ef,; and el y are assumed to be small and (almost)
randomly distributed. Then the coefficients Z, and Q, can be determined in
the least-squares sense from

E E gﬁmdhnmd

- J2/ B
Z, (g%, h) T (83)
m ol
and
E Z gﬁmdhnmd (54}
- W S,

b =
Q"(g i h) E z hnmdhnmd
m ol

In function Z, is ususlly referred to as oceanic or free-gir response, whereas
@, is denoted isostatic or continental or Bouguer response.

The theoretical values of Z, and @, for our five models become

- — 3_ per _ [B=D)"
b <o) 5 25 1 - (B o
and
- - 3_ per [EEDY"

@ = v(0=1) 507 (522) "8 (85)
where

8. =1 for the Airy/Heiskanen model (D = const)

Bn = [g—:gﬂ]n for the models based on criteria 1, 2, and 3 and

8o = e-b*n® for the Vening Meinesz model.

Figure 7 shows the oceanic {free-air) response functions Z, of our five
models and as directly derived from the data, It can be seen that they all
agree very well, except the one based on criterion 1. As to be expected, the
free air anomaly field has little correlation with the topography at low
frequencies wherens for high frequencies the correlation increases. it is
remarkable that the response as derived from the data stays significantly
below that determined from the models for wavelengths smaller than 300 km.

In Figure 8 the analogous curves of the continental (Bouguer} response
functions are given. Again the curve based on criterion 1 departs from all
others. For the long wavelengths down to 2000 km all other curves show
approximeiely a Q, value of -0.10 mgal/m, somewhat lower than the well known
Bouguer gradient of ~0.1118 mgal/m. For small wavelength the correlation of
the Bouguer anomalies with topography decreases, as to be expected.
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Alss shown on Figure 8 are sample values of continental response of
Eastern U.S., Wesitern U.S., and Australia, as derived from regional studies.
The values are taken from {McNuti, 1978 and 1980). ‘The values are =acattered
around the curves of the global models and data. This would indicaie that
our data can be seen as a global average. Only for wavelengths smaller than
about 400 km are the sample values throughout smaller, which could indicate
that especially for these wavelengths there exists a significant difference in
response between continental and oceanic lithosphere. It should be pointed
out agnmin, that a general drawback of the response technique is, that it
agsumes a linear relationship and consequently implies a simple, double layer
approximation.

9. Conclugions

This paper has considered improved procedures to compute the
topographic/isostatic effects due to Airy compensaiion taking into account
three terms in a series expansion. Normally only the first term is used.
Tests showed that the second term in an expansion contributes an average of
30% of the first ferm while the third term contributes an average of 3%
Overall differences betwsen one and three component models of #4.4 mgal and
35% indicate the importance of the higher order terms. The potential field
implied by this theory has been compared with an observed field defined by a
set of potential coefficienis to degree 180. Comparisons were also made with a
Vening-Meinesz type model derived by Stinkel. Comparisona were carried out
for fized depths of compensation and for depths computed as a function of
spherical harmonic degree using three different criteria. Two of these criteria
(Il and III) led to nearly the same depths of compensation while criterion I
led to depths of compensation larger than normally accepted for the Airy
hypothesis. The resulis of the comparison of the theoretical models with the
observed field were given in Tables 3, 4, 5. No substantial differences occur
beiween the models except for the case of depth Crilerion I which implies
substantially poorer agreement with the observed field.

The rather high compensation depths D,, for the very low degrees, that
were obtained, when applying criteria 1, 2, and 3 (see Table 2} could be an
indication that the compensation of the large scale topographic features cannot
be explained by some simple Airy or Vening-Meinesz type of model. The great
depthe could be a hint that the long wavelengths compensaiion is related to
the convection mechanism in the upper mantle.

The Vening-Meinesz model applied by Siinkel resulis in the response
function (cf. (54) and (85)):
= 1y 3 ger [BIDYY
Q= vi-1) 5oy 222 (B2 6. (67)
with g, = eb®n? Purcotte & Schubert (1982) discuss the flexure of the
lithosphere under periodic loading, derived from the equation of equilibrium of

a deformed plate. The result - when transformed from a plane to =z spherical
approximaiion - iz a smoothing factor
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where D’ is the flexural rigidity (see also e.g. (Banks el al, 1977)). Hence
this smoothing model behaves basically as 1/(1+kn*) with k a constant. It can

easily be shown that a smoothing model with e 5*n* and an appropriate choice
of b, can be made to agree almosi perfectly with the above expression. This
allows us to interpret the constant b of the Vening-Meinesz regional
compensation model in terms of the flexural rigidity D’ of the the deformed
plate model in {Turcoite & Schubert, ibid).

Four of the five models discussed here show a very similar overall
behavior, despite the different assumptions on which they are based. This
leads to a twofold conclusion. First, a rather large variation in the chosen
isostatic models has liille effect on ihe resuliing iscstastic gravity potential.
Second,; the other way round, despite today's availability of rather good
observed gravity and topographic elevations, the data are not selective
enough to identify one particular isostatic model. This also implies that the
uncertainty of parameiers derived from the isostatic models, when dealing with
global models. It means also that one of the two primary objectives, stated in
the introduction can hardly be met, namely to isolate and dieplay those parts
in the anomalous gravity field, that are not compensaied isostatically, but are
due to lateral inhomogeneities in the earth’s mantle. This basically reconfirms
Dahlen (1982; p. 3947) who states "... that this can never be done
unequivocally even if the topography d and density anomalies p, are known
exactly, since it reqguires that the concept of local isostasy be defined
extremely precisely, more precisely, in fact, then the concept iiself probably
warrants,”

The remsaining gravity potential, after subtracting the iszostatic part from
the observed one, must to some extient be attributed to the faci, that the
approech chosen here does mnot eagily sasllow the application of different
isostatic models for different tectonic zones {e.g. continenis and ocean areas)
and that no corrections were made for geoid-age, depth-age effects or
sediment loading as has been done e.g, in {(Cazenave et al., 1988) or (McNutt
and Shure, 1986),

Since the isostatic behavior of the earth is dependent on a number of
factors, and considering that such behavior varies substantially from area to
area, global modela cannoi be expected to reflect the full picture. This paper,
however, has examined what can be learned from global modeling technigques,
and does not imply that the mechanisms employed are the only ones involved
in the complex physical process of isostasy.

Our results and conclusions depend to a lesser extent on the accuracy of
the topographic model and the observed potential field model The
topographic model used is a clear improvemeni over previous models. However
we gtill do not have ice thickness used in the computations. The observed
potential Tield could be updated to more current models (e.g. Rapp and Crug,
1986, Wenzel, 1985) but no substantial changes are expected.
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