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ABSTRACT

This dissertation was undertaken in view of finding a numerical solution on a
spherical earth of a mixed boundary value problem, the one of altimetry-gravimetry
which is defined from gravity anomalies determined by gravimeter measurements
mostly on continents and from geoid undulations known on the oceans from the
methods of satellite altimetry.

The disturbing potential is represented by an expression of new orthonormal
base functions over the sphere. These new base functions are formed using the
Gram-Schmidt orthonormalization process applied to the spherical harmonics base
functions. Also the Orthonormalization process needed to be applied to mixed
domains. The new orthonormal base functions are related to the integration of two
associated Legendre functions. This integration is computed using newly
developed recursive relations similar to the ones integrating one associated
Legendre function developed by Paul (1978). Then the fast Fourier transform is
used in a similar way as the spherical harmonics analysis and synthesis.

The result of this solution to the "altimetry-gravimetry problem" is a set of
coefficients of the new orthonormal base functions. These coefficients were
retransformed into the ones of the usual spherical harmonics expansion. The
spherical harmonic coefficients can then easily be analyzed and compared with
existing earth's gravity field expansions.

This method is a "Least-Squares method" solution but it is different than a
"Least-Squares adjustment”. It is stressed that the Least-Squares method i.e.
minimizing the integral and not the sum of the squares of the residuals is solved
using orthonormal base functions. It is the solution that has been numerically
applied here but it should be emphasized it is also the solution that permits the
computation of the usual spherical harmonic geopotential coefficients in the classical
single boundary value problem in physical geodesy. Numerical tests show that this
Least-Squares method can solve the altimetry-gravimetry problem.
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Errata Page for Report No. 373
Department of Geodetic Science and Surveying

The Altimetry-Gravimetry Problem Using Orthonormal Base Functions

by A. Mainville, December 1986

On page 38, before the 3rd line from the bottom, add:

The weight function used in this work is simply two values, one to scale
all the Ag; 4 values and a second one to scale all the T; 4 values. Hence, the
weight function of equation (4.5) defines 2 values which were only used
initially i.e. before any iterations. The two values used as weight after each

iterations k were the inverse of the mean of the squares of the residuals

2 . .
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43 %% g wen (4.5Db)
On page 104, 1st line, change "value" to "residual"”.
On page 104, 4th line, change "values" to "residuals”.
On page 104, 10th line, change "values"” to "residuals”.
On page 120, 4th line, change "values" to "residuals”.
On page 120, 10th line, change "values" to "residuals”.
On page 120, 14th line, change "values" to "residuals”.
On page 138, 16th line, change "values" to "residuals”.
On page 138, 17th line, change "values" to "residuals”.
On page 138, 18th line, change "squares" to "square residuals".
On page 104, 11th line, change "4.5)" to "4.5 and 4.5b)".
On page 120, 4th line, change "4.5)" to "4.5 and 4.5b)".

On page 119, 12th line, change "RMS(AgOij), RMS(TOij)"
to "RMS(Aglij), RMS(Tlij)".
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INTRODUCTION

This dissertation contains 9 chapters, 7 annexes including one for well
documented FORTRAN routines. Chapter 1 contains the background explaining the
altimetry-gravimetry problem, the needs for a solution to the altimetry-gravimetry
problem (e.g. the direct use of altimetry data) and the needs for a knowledge of the
higher frequencies of the gravity field.

Chapter 2 contains some definitions and is divided into 5 smaller sections of 2, 3
pages each. Section 2.1 introduces the expansion in spherical harmonics in a
notation used throughout this work that permits an easy and clear way to write
derivatives and write shortly long equations. Section 2.2 shows that the usual
spherical harmonics expansion is a solution of the least-squares "method" (not
"adjustment") without weights. Section 2.3 shows the notation used for the scalar
product of functions. Section 2.4 and 2.5 generalize the scalar product for the case
where weights are used and for the case where there is more then one domain as in

the altimetry-gravimetry problem.

Chapter 3 describes Arnold's (1978) global solution to the altimetry-gravimetry
problem using new orthonormal base functions derived from solid spherical

harmonics. This is the solution to the altimetry-gravimetry problem that it is
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intended to numerically apply in this work. The solution is the disturbing potential
in a series expansion that describes the potential of the earth globally at all latitudes
and longitudes. Itis a least-squares "method" (not "adjustment"”) solution, and it is
the most natural kind of solution to the altimetry-gravimetry problem as the

expansion of spherical harmonics is to the single boundary value problem.

While chapter 3 describes the proposed solution in general, chapters 4, 5, 6, 7
and 8 give the details of its computations that lead to the first numerical application

in chapter 9.

Chapter 4 describes a first of three parts of the solution using fast Fourier
transform applied to mixed data such as gravity anomalies and geoid undulations.
For clarity this chapter refers to appendix F where the spherical harmonic analysis
of Colombo (1981) using fast Fourier transform is introduced for easy reference.

The De-smoothing operator is introduced there.

Chapter 5 introduces the Gram-Schmidt orthonormalization process. In 4
sections it describes successively the process itself, the organization of the
computations, the process with mixed domains such as the altimetry-gravimetry
problem, and the organization of the computations using spherical harmonics since

these are used as starting base functions.

Chapter 6 shows that the solution requires the integration of two associated
Legendre functions and that these are used in another fast Fourier transform

application to compute the second of three steps of the solution.

Chapter 7 is used to derive the recurrence relations for integrals of two

associated Legendre functions.  First the recurrence relations for the integration of



3

"one" associated Legendre function of Paul (1978) are introduced and there
derivations are in three appendices for easy reference. The recurrences to compute
the integral of the product of two associated Legendre functions are then fully
derived. The validity of the newly derived relations is ensured by some properties

of the spherical harmonics.

Chapter 8 gathers all the equations required in the last of three steps of the
solution of the altimetry-gravimetry problem. It shows how the spherical harmonic
coefficients are computed directly without having to compute new orthogonal base
functions and coefficients. It shows how the orthonormalization process can be
computed by a Cholesky factorization followed by a forward and backward

solution (Freeden, 1983).

Chapter 9 shows a first numerical application of this solution to a model.
geopotential coefficient set GEML2 (Lerch et al., 1982) is used to compute gravity
anomalies and geoid undulations mixed on a sphere. The coefficients are computed
back using our proposed solution and recovered exactly as they are in the single
b.v.p. solution. Thus a numerical proof is made that this solution can solve the
altimetry-gravimetry problem. The results are analyzed using tables of RMS

differences, anomaly degree variances, storage required and cpu times.

Still in chapter 9, a difference is made between an "iterated" least-squares
solution where the residuals are minimized after some iterations and a
"deterministic" solution where there is no iteration and the residuals are not

necessarily minimized. The solution demonstrated here can be used in both ways.

Chapter 9 makes also a return to the single boundary value problem to apply

what we have learned from the mixed altimetry-gravimetry boundary value
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problem. It stresses that being a particular case of our solution, the usual spherical
harmonic expansion with the coefficients being found so simply because of the
orthogonality relationship can also be a least-squares solution found using
iterations. It is also stressed that the difference between the least-squares
adjustment techniques where the "sum" of the residuals (weighted and squared) are
minimized while the least-squares method used here minimizes the "integral” of the
residuals (weighted and squared) (Collatz, 1960). Due to approximations in
computing the integrals involved, the numerical solution without iteration does not
minimize the residuals even though the system of equations is linear. Again this is
often called the deterministic solution. Being a least-squares method, the solution
can be iterated until the sum of the squares of the residuals is minimized. It is
shown that the iteration allows one to recover the coefficients exactly for a model
and can allow one to improve the solution when using real world data. It is also
suggested that this iteration process could be used to find a solution when the de-
smoothing operator required can not be found such as solutions involving the
ellipsoid and the topography. Numerical examples of iterative solutions of the usual

spherical harmonic expansion are shown.

The conclusion summarizes the contribution and knowledge acquired by this
work. One is the integration of 2 associated Legendre functions that might be
necessary in other proposed solution to the mixed boundary value problem
(Sacerdote and Sanso, 1985). Suggestions that might bring this solution to be
more efficient are made which would make this solution ready to be used with real
world data. Such practical solution would provide us with higher degrees of the
spherical harmonic coefficients which can represent the disturbing potential on and

outside the Earth.



CHAPTER I
BACKGROUND

In the classical boundary value problem (b.v.p. ) of physical geodesy, the
surface of the Earth is considered as a sphere and the gravity anomalies are the
known boundary values. With these hypotheses the disturbing potential at the
Earth's surface and in the external space of the Earth can be computed using
Stokes' formulae which results from Stokes' theory. This solution is referred to as
the "local solution" to the "single b.v.p. " since it is usually computed with a dense

grid of gravity anomalies locally around the computation point.

The disturbing potential can also be represented by a spherical harmonic
expansion. In the external space of the Earth we use a "solid" spherical harmonic
expansion and on the Earth's surface a "surface" spherical harmonic expansion.
The coefficients associated to the individual spherical harmonics, called also
Stokes' constants, are obtained from a similar integration, as Stokes' formulae, of
the gravity anomalies on the Earth's surface. This solution (given in appendix E) is
referred to as the "global solution” to the "single b.v.p. " since when the Stokes'
constants are found one can compute the disturbing potential and its components at

any location on the globe.

This problem has been given a new form by the developments in the field of
satellite altimetry. The altitude of the satellite above sea level can be determined

-5-
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directly point by point using an altimeter installed in a satellite. From an accurate
determination of the satellite orbit, the values of the geoid undulations on the oceans
are obtained point by point with an accuracy of about * 2 metres and with a great
abundance of details. From these geoid undulations, N, and Brun's formula,
T =NvY, where Y is the normal gravity, the disturbing potential, T, is also known
point by point over the oceans. However, since the method of satellite altimetry
fails on the continents, in this case one has to resort to the gravity anomalies
obtained from gravimeters. Thus the classical Stokes problem is given a new form.
Now the values of the disturbing potential are given on the oceans, while gravity
anomalies are given on the continents; an analytical expression for the disturbing
potential on and external to the Earth's surface on the basis of these heterogeneous

data is required.

One such analytical expression is again the spherical harmonic expansion.
However the Stokes' constants have to be found by other means than a full
coverage of gravity anomalies around the Earth. It is the global solution to this
mixed b.v.p. that is sought in this dissertation and the spherical harmonic

expansion is the form of solution expected.

Rapp (1978, 1981) has solved numerically the global solution to the single
b.v.p.. In Rapp (1981) satellite altimetry data were used. However having no
analytical expression to use directly with the geoid undulations, these undulations
were transformed into gravity anomalies. Having bypassed the problem of using
heterogeneous data the full coverage of gravity anomalies could be used to find a
solution as a single b.v.p.. Many assumptions and approximations have been used

in that enormous task of transforming undulations into anomalies (Rapp, 1979).
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By all means an alternative solution would be welcome. Arnold (1981) has
proposed an alternative and it is this global solution that has been numerically tested

in this dissertation.

VAs in the classical b.v.p. of physical geodesy where the disturbing potential can
be represented over the sphere by an expression of orthonormal base functions, the
spherical harmonics, Arnold (1981) has proposed a similar expansion of the
disturbing potential into another set of orthonormal base functions. These new base
functions are formed using the Gram-Schmidt orthonormalization process applied

to the spherical harmonics.

This kind of solution to the mixed b.v.p. was first given by Brillouin (1916)
from which Arnold was inspired. This solution shows the Gram-Schmidt
orthonormalization process using mixed integrals i.e. mixed scalar products. It
then shows how the Least-Squares method i.e. minimizing the integral of the
square of the weighted residuals can be solved using orthonormal base functions.
It is different than Least-Squares adjustment where the sum and not the integral of
the square of the weighted residuals is minimized. Here the solution sought
computes integrals. It is an integral formulas solution and it will be shown that it
can be reduced to the classical spherical harmonics orthogonality relationship which

solves the single b.v.p..

One can easily imagine that the computations in this solution to the mixed
altimetry-gravimetry b.v.p. are more demanding than for the simpler single
gravimetric b.v.p. alone. Brillouin (1916) has given some directions on how to

organize these computations. First one must relate the new orthonormal base
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functions to the integration of "two" associated Legendre functions. Then one must
derive recursive relations between these integrals of "two" associated Legendre
functions similar to the ones for "one" associated Legendre function developed by
Paul (1978). These newly derived recursive relations are verified against the later
and by other means. Other numerical problems had to be overcome, and fast
Fourier applications have been used in view of having a practical solution that

integrates as many gravity anomaly and geoid undulation information as possible.

The result of this solution to the altimetry-gravimetry problem is a set of
coefficients of the new orthonormal base functions from which the components of
the gravity field anywhere on and outside the Earth could be computed. However
these coefficients were retransformed into the ones of the spherical harmonics
which permits one to use existing efficient software to compute any component of
the disturbing potential. It also permits the analysis and comparison with existing
Earth's gravity field expansions. And most importantly it allows one to ultimately
combine this solution with "satellite-derived potential coefficients". This ultimate
combination would give the desired solution to the mixed altimetry-gravimetry
b.v.p. i.e. the improvement of the knowledge of the geoid and the Earth's gravity
field by deriving a better set of high degree spherical harmonic potential

coefficients.

As it is well known now, the use of such potential coefficients is well
appreciated for computing geoid undulations, gravity anomalies, etc., in both global

and local gravity field applications.
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Chapter 9 shows that it has been possible to solve numerically the altimetry-
gravimetry problem. As it will be seen in chapter 8 and 9 the numerical tests show
that a large computer or improvement in the efficiency of the computations is still
required to get a practical solution for the high degree of the gravity field. Least-
Squares collocation (Moritz, 1980) and (Colombo, 1981) or Least-Squares
adjustment (Wenzel, 1985) could have been tried to solve the problem. Their usage
in physical geodesy is often rejected because they require a large matrix inversion or
the solution of a large system of equations. Still this same inconvenience has been
encountered here. But the similarity with the spherical harmonic solution to the
single b.v.p. pushed us to try Arnold and Brillouin's proposal to obtain a simpler
and possible numerical solution. After reading other geodesists' works on the
subject we became aware of the theoretical drawback of using a Least-Squares
solution (Svensson, 1985). However it was thought that any parts of a numerical
task like done in this dissertation could become a contribution to help future
numerical and perhaps theoretical studies to solve in a practical manner the mixed
altimetry-gravimetry b.v.p. in physical geodesy. Disregarding efficiency it is
believed that the numerical results in chapter 9 proves that the least-squares solution
proposed by Arnold (1981) for the "global" altimetry-gravimetry problem is

successful.



CHAPTER 11
SOME DEFINITIONS

2.1 The Expansion in Spherical Harmonics.

Through all this dissertation we will be on a spherical Earth and will use the
polar spherical coordinate system (6, A,r) where 0 is the colatitude, A the longitude
positive east and r the radius vector. A piecewise continuous (Colombo, 1981,
p.2) function £(8,A) known on this sphere of unit radius can be expanded as an
infinite series of fully normalized surface spherical harmonic functions, R,(8, 1),

Spm(0,A), as in Heiskanen and Moritz (1967, eq.1-75) (herein abbrev.

(HM,(1-75)) thus;

oo n
£(0,0) = ¥ X (apy cosmh + by, sinmd) P, (cosB) (2.1)
n=0 m=0
oo n . . . .
= 2 2 (a3pm Rum(8,A) + byy Spn(6,4) (2.2)
n=0 m=0
o0 n . _
= 2 ¥ Com Ym0, (2.3)
n=0 m=-n
f(G,?») = 2 fn gn(er)\f) . (24)
n=0

These equivalent relations show different notations found in the literature. We will

mostly use the last one where the surface spherical harmonics, R, and S, are

-10-
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arranged in vector form, g, (without overbar) also fully normalized. This vector

gn(8, A) of orthogonal base functions and the vector £, associated to it is related to

(2.2) as follow

9o Roo o ago
gn (0,X) = 91| = |Rip fho= | £f1]| = |a10 . (2.5)
g2 Riq f2 ai;
g3 S11 f3 b1y
94 Ry 4 azo
gs Ry fs as;

In practice the infinite summation in (2.1) is always truncated to a maximum
A

degree n = N and the function £ is thus approximated by the truncated series f

A N n
£(0,A) = X X (apy cosmh + by, sinml) P (cos®). (2.6)
n=0 m=0

To get an equivalent truncated single subscripted series one has to truncate (2.4) at

v=(N+1)2-1, i.e. equation (2.6) is equivalent to

A \Y
£0,A) = X £, 9,(0,Q) (2.7)
n=0
where
vV = (N+1)2 - 1 . (2.8)

The "~1" term appears because the series (2.7) starts at n = 0.
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Due to the orthogonality relations of the surface spherical harmonics (HM, (1-68),

(1-69) and (1-74)) the coefficients in equation (2.1) are given in (HM,(1-76)) as

= _l__JJ £(6,A)
4T

)

cosmA
sinmA

Pom(cosB) do . (2.9)

Here do is sinB dO dA, an element on the surface © of the unit sphere. According

to the notation in (2.7), (2.9) becomes simply

£, = "LJJ £(6,1) 9,(0,A) do . (2.10)
4
o)

With this notation, clarity in the expressions related to scalar products will follow

throughout this work.



2.2 The Spherical Harmonics and the Least-Squares Method.

In the preceding section we have seen that the coefficients a, and b, in (2.6)

are obtained using (2.9) because of the orthogonality relationship. In this section

we want to recall that the a,, and b, are more than due to the orthogonality

relationship but that they are a solution of the least-squares method. The error in

approximating a function £(6, A) by a truncated series like (2.6) is

<

£(B,A) - X £, 9a(0,A) . (2.11)
n=0

I

According to the least-squares method (Collatz, 1960, p.29, eq.4.5), one must

minimize the integral of the square of the error i.e.

A%
r =JJ [£(B,A) - X £, g,(0,A)12 do . (2.12)
n=0
[¢)

The minimum of (2.12) is obtained by making equal to zero the differentiation of I"

with respect to the unknowns, the coefficients £ q i.e.

A"
__d_I_‘_=‘” [f - X £, 9l 9q do = O. (2.13)
dfq n=0

O

-13-
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which can be written directly

JJ fgCI do = A fnJJ 9n g do . (2.14)
n

G 9

M<

i

Now this equation reduces to (2.10) or (2.9) because of the orthogonality
relationship. Thus (2.9) is a least-squares solution in the sense specified by
equation (2.12). Not a solution of a least-squares adjustment but of a least-squares
method. It is with this method that solves the single boundary value problem
(b.v.p.) that we intend to solve the mixed b.v.p.. In the next section another

notation will be presented that will be required extensively later on.



2.3 The Scalar Product of Functions.

It is widely known that the above concept of finding easily the coefficients (2.9)
of a series approximating a function such as (2.1) is due to the scalar product and

orthogonality relations of two functions. We shall denote the scalar product of two

harmonics, g, (6, A) as

(Inr9g) = _L_JJ 9n 9q 40 = 0 , n#q . (2.15)
a7

)

This equation is equivalent to (HM,(1-68)) and shows that two harmonics of
different degree or order are orthogonal on the sphere i.e. onthe domain(0<6<x

and 0 <A <2m.

The non-negative square root of (gn,gq) is called the norm of g,(6, ) and is

denoted by |lg,|l; thus as (HM,(1-74))

/2
2
llgnll = [(gnrgn)11/2 = [_;_ JJ g, (0,A) do T =1
an

c . (2.16)

If one would apply the scalar product of g4 to £(6,1) of (2.4) he would get

™3

fn (gnrgq) .
n=0
o (2.17)

(f,9q) = ZL_JJ £(8,A) gq(8,4) do =
Fi

-15-
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In view of the orthogonality (2.15) and (2.16) the only non-zero integral happens

when g = n; thus (2.17) reduces to

(£,945) = £, lloqlle = £, . (2.18)

This equation is the same as (2.10). This notation related to "scalar products of
functions" is widely used in the literature (Kreyszig, 1972, pp.134-135), (Courant

and Hilbert, 1953, p.56) and will be used throughout this work.



2.4 The Weighted Scalar Product of Functions.

Following the ideas of the previous section one could also generalize and find

some sets of functions say h, (8, A) which would be orthogonal only with respect
to a weight function W(6, A) on the domain 0 < 6 < w and 0 < A < 21 (Kreyszig,

1972, pp.137-138). We have

(hp,hg) = 1 ” N, (8,4 ny(8,A) W(B,A) do , n#gq
4T
o . (2.19)

The norm of h,(8, A) would now be defined as

2 /2
ol = 1 h,(6,A) W(6,A) do ) (2.20)
4t

)

It would be equal to 1 if h is orthonormal but in respect to the weight function

Wi, A).

The weight function W(8, A) must be positive so one can take its square root and
write say g,(8,A) =wl/2n _(6,)) and then (2.19) and (2.20) are equivalent to
(2.15) and (2.16). Clearly if all these functions h,, g, are to be real, W(6, A) must
be non-negative.

-17-
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Like (2.17) and (2.18) if we want to expand a function as a Generalized Fourier

Series (Kreyszig, 1972, p.136) of h (6, A) then

£(8,A) = X ¢, hy(B,A) (2.21)
n=0
and
¢, = 1 ” £(6,A) h,(0,A) W(O,A) do . (2.22)
ar |Inyll?
(6

Equation (2.22) differs from (2.10) by the weight function which we have
introduced in this section to keep the following theory as general as possible and to
leave open the possibility of considering the Method of Least-Squares with
weights. In fact it will be demonstrated in Chapter 9 that the weight function is

required to solve the mixed altimetry-gravimetry b.v.p..



2.5 The Weighted Scalar Product of Functions on Mixed Domains.

Similarly to the previous two sections one can start with the following

orthogonality relationship involving two functions X, (6, A) and Y(X, (8, 1)) of

varying rank k (i.e. degree and order) and a weight function W(6, 1)

0, n#qg
1 Xn Xq W do + _1 Y (X)) Y(Xq) W do =
a7 4T 1, n=qg

G G2
(2.23)
Then one can think of expanding a function in a series
£0,A) = X E, X,(0,A) . (2.24)
n=0

Using the scalar product by X on the domain 0 of (2.24) gives

o
,U £ Xqg Wdo = }:O Ep ” Xy Xg W do . (2.25)
n:

g(£(0,A)) = X E; Y(X,) . (2.26)
n:
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This time the scalar product by Y(X) on the domain 6, of (2.26) gives

JJ g Y(Xy) Wdo = Eg JJ Y(X,) Y(Xy) W do
n=0

Gy 62

8

[ 3!

One can now sum (2.25) and (2.27) to get

JJ,quWdG+JJgY(Xq)WdG=
= 2 E, JJ X, Xqg W do +JJ Y(X,) Y(Xq) W do
n=0

Gy 07

Because of the assumption (2.23), (2.28) reduces to

E, = _1 JJ f X, Wdo + ]JJ g Y(X,) W do .
4T 4T

Gy G2

(2.27)

(2.28)

(2.29)

One can verify that what we have done in this section is the same as what was

done in sections 2.2 and 2.3. Chapter 3 which follows shows how this scalar

product on mixed domains is used to solve the altimetry-gravimetry boundary value

problem. Chapter 5 will show how one can form X and Y(X,) such that the

assumption (2.23) is satisfied. This will permit us to use (2.29) in chapter 4 to find
the coefficients E, which defines £(6, L) and g(f(8, A)) in (2.24) and (2.26).
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If one sets W= 1 in (2.29) he gets

E, = _1 JJ £ X, do  + _1 ” g Y(X,) do . (2.30)
am AT

Cn G»

This is quite similar to (2.10). In factif g = £ then by comparing (2.24) to (2.26)

we see that Y(X,)) = X,,. It follows that (2.30) reduces to (2.10) i.e. (2.9) which

is what physical geodesists are familiar with (Colombo,1981).



CHAPTER III
THE DISTURBING POTENTIAL EXPANSION OF THE

ALTIMETRY-GRAVIMETRY PROBLEM USING
ORTHONORMAL BASE FUNCTIONS

This chapter follows the solution given by Arnold (1978) to solve the "altimetry-
gravimetry problem" using orthonormal base functions. This chapter also shows
that the use of orthonormal base functions, such as the expansion of spherical

harmonics, is a solution of the Least-Squares method (Brillouin, 1916).

If one would subtract a normal or reference gravity potential U from the actual
potential W to obtain a disturbing potential T that is harmonic, then T would satisfy

the Laplace equation i.e.

VZm-u)y = V21 = 0 . (3.1)

Using the same polar spherical coordinates system of chapter 2, the solution of the
Laplacian (3.1) is (HM, (2-152))
n *

hog 1 — — —
T(O,A, r)=_GM X (B_)mr Y (Cpm COSMA+S,y, sinmA)P,. (cosb)
R

n=2 \r m=0
(3.2)

*

GM is the geocentric gravitational constant, R a constant near the earth radius, Enm

and S, are dimensionless coefficients called Stokes' constants. This solution on

22
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the surface r = R is then

o0 n * _
T(O,A)=_GM Y Y (Cp,cosmh + Spp sinmd)P,(cosB).(3.3)
R n=2 m=0

In the notation of section 2.1 equation (3.3) is written as

TO,A) = _GM_ X T, S,(6,A) . (3.4)
R

n=0

In this notation the T, coefficients are the Stokes constants and the S,(0, X)

functions without overbar are still fully normalized and are related to the surface

spherical harmonics R,;,(8, A) and S.,,(6, A) (see equation (2.2)) as

"
To C20 So Ry
[T,] =|T1| =|Cp1| » [Sn(B,A)] =|S1|=|Ry1 . (3.5)
T2 So1 S2 S21
T3 Cz2 S3 Ry
Ty S22 Sy VY
Ts Csg Ss R3o
Tg Ca1 Se R31
T S31 Sq S31
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The relation between the gravity anomalies Ag and T is (HM, (2-154))

Ag(®,h,r) = - 9T _ - 2 T . (3.6)
or r

Inserting (3.2) in (3.6) gives the usual relation (HM, p.108)

g +2 0 _* — —

Ag(®,A,r)=GM X(n-1) (RY 2 (CppcosmA+S, sinmh) P, (cosB)
RZ2 n=2 r m=0

(3.7)

Again setting r =R one gets

o0 n *
Ag@,1) = _eM ¥ (n-1) I (CppcosmA+S,,sinmh)P_ . (cosh)
RZ n=2 m=0
(3.8)
or simply
Ag(@,A) = GM_ ¥ (R,-1) T, S,(8,)\) (3.9)
RZ n=0

where (R,~1) is equivalent to the term (n-1) in (3.8). One can use the relation in

(3.5) between vectors to verify that

R, = INT[ (n+4)1/2] . (3.10)
This notation is necessary to shorten the equations that follow and allows a clearer
presentation of the following development. In (3.8) one usually does not compute

the coefficients to infinity but from degree 2 and order 0 up to degree and order N.
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In (3.9) the equivalent is to compute the coefficients T,, from rank 0 up to rank
V-4=(N-1)2-5 asdefined in (2.8). The number -4 reflects the absence of the
coefficients Cqg, C19, C17 and 517 in (3.8) and (3.9). The error in finding

truncated series up to degree and order N ie. up to rank v-4 is

V-4
T(O,A) - _GM_ X T, S,(0,A) (3.11)
R n=0
and
V-4
Ag®,A) - _GM_ ¥ (Ry-1) T, S,(8,A) . (3.12)
R?2 n=0

If one assigns a weight W(0, A) =W(o) to T(c;) and Ag(c,) where the domain

G =071 + Oy then according to the Least-Squares method (Collatz, 1960, p.29,

€q.4.5) one has the following conditions for the weighted sum of the errors

V-4 V-4
r =JJ{T— Y T,S,12W(0,\)do+ JJ{Ag— 2 (Ry-1)T,S,12 W(O,A)do
n=0 n=0
01 G2
, (3.13)

which we want to minimize. Instead of carrying units and for simplicity T and Ag
will have no units within these mixed integrals, i.e. T(no units)= T(with
units)/(GM/R) and Ag(no units)=Ag(with units)/(GM/R?). The use of GM/R and
GM/R? will clearly show without confusion when T and Ag have units or not.
This shortens the equations and clarifies the developments. In the same manner it
will always be possible to transform the weight function W into a non-units

function.
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The condition to minimize (3.13) is

dl”_ =0 . (3.14)
dTq

Inserting (3.13) in (3.14) gives

Jf [T-XT,S,]SqW do+ JJ [Ag-Z (Ry=1) TpS,] (Ry=1) S dG = 0

G, 07
(3.15)

The integral (2.15) is zero because the integration covers the complete sphere ©,

but not here in (3.15) where the integration covers only the domain 64 or o,.

Thus (3.15) cannot be simplified further and we are left with

,” T Sq W do + J:[ Ag (Ry=1) Sq W do =

1 G

V-4
= Tn JJSnSqW do + (Rq"’l) (R-1) ‘[J' SnSqW do
n=0

31 Gy

(3.16)

where g=0,1,2,..,v-4. Equation (3.16) in matrix notation is shown on the

next page as equation (3.17) where W =v-4= (N+1)2 -5. In (3.17) T, (ie.

—%

Cpm 2nd Spp) are the unknowns.
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(s py) (1-Tgy) + T(Msep)

C(Ssbyyz+ T(Ss'1)
C(vs oy) + T(Fs‘1)
C(Esby) + T(Eg 1)
Z(Csby) + L(Ts'L)
S(ls ey + L(lsy)

C(0sby) + T(0571)

¢ (Mg mg) (1-Thyy+ T (Mg M) - -

Z(Ss Mgy (1-Th) z+T (55 Ms)

z (515 (1-Thn)
¢ (€sMs) (1-Th)
z(2g Mgy (1-Th)
Z(TsMs) (1-Thy)

¢ (0sMs) (1-Thy)

+T(rg i)
+T(E5Mg)
+T(2sMs)
+T(Tgs)

+T(05+Mg)

z (Ms+Ss) (1-Thy) z+T (s «Ss) - -

©r 2(55Ss)
T (b5 Ss)
-+ T{Eg’Sg)
t+ C(Cs'Ss)
-+ C(ls‘Ss)

-+ Z(05Sg)

4

+1(55Ss)
+T(P5Sg)
+1(€5*Ss)
+1(Zg1Ss)
+T(TsSs)

+1(0sSs)

Z(M50g) (1-Thy) +T (M5 0g)

©r C(S505)z+1(Ss03)
Tt C(bg 0g) +1(¥505)
©r T(Es05) +I(E5405)
*r C(Cs0g5) +1(C50g)
o C(ls0s5) +1(1s0g)

*+ T(0s/0g) +T(0509)

" (L1°€) uonenbg
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If blocks of 1°X1°mean Agand T covering the complete earth were used in
equation (3.17) to find the potential coefficients C,,, and 'S, up to degree N = 180
it would result in trying to solve p+1 = (N+1)2-4 = (180+1)2-4 = 32757

unknowns from a system of 32757 equations.

We can show that this system of equations (3.17) reduces to the solution of the
single b.v.p. when only values of Ag (or T) are given. In this case, the scalar
products (S;, S4) are zero if 1 # j and unity if i = §. Thus the square matrix in
(3.17) reduces to a diagonal matrix with terms equal to (n-1) (n-1). The array
to the right of the equal sign contains terms equal to (n-1) (Ag, Ry or (n-1)
(Ag, S,). The inverse of the diagonal matrix is another diagonal matrix; thus the
unknowns [T, ] become simply (Ag,R,,)/ (n-1) or (Ag, Spm)/ (n=1) which

is (E.1), the solution of the single b.v.p..

(Brillouin, 1916) showed that such a system involving the Least-Squares

method applied to a set of base functions here S, can be solved by forming
another set of orthonormal base functions say x,. Thus instead of the solid

spherical harmonics the functions X,(8, A, r) are introduced in another series

representation of the disturbing potential

" v-4
TO,Ar) = _GM ¥ E, X,(8,A 1) . (3.18)
R n=0



29

Using the well known Gram-Schmidt orthonormalization process one can form the

orthonormal base functions X, satisfying the orthonormality condition (3.33) with

n-1
X, (0,4, ) = un{ > Chp Xp * ILp ) , (n=0,1,2...) (3.19)
p=0

where u, and ¢, are some constants to determine. The functions L, will herein

be the solid spherical harmonics

R+l
L,(0,A,r) = s, |_R (3.20)

r

and the functions S, are given by (3.5). One can verify that the functions L are

solid spherical harmonics i.e.

Lo Ryo (RY
[Lh] = = |z . (3.21)

L1 Ro1 (3}3
L Sp1 (RP
2 _21 5
L3 Ryp (RP

_ Az
L, Sp2 (RY
L R }12{4
5 30 =)

One can differentiate (3.18)

v-4
0T = _GM ¥ E, _0Xa (3.22)
or R n=0 or
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which leads one to differentiate (3.19) where (3.20) is needed to obtain

n-1
oXn_ = u, 2 Cpp Ko -~ _(Rntl) Ly | . (3.23)
or p=0 or r

Inserting (3.22) and (3.19) in (3.6) one obtains successively

Ag(®,A,r) = - 9T - _2 T
dr r
v-4 V-4
= _GM | - X By 9dXn_ - _2 3 Ej X,
R n=0 or r n=0
V-4
= GM XY E, |- 9Xa - _2 X,
R n=0 or r
v-4
Ag(@,A,r) = _GM_ ¥ E_ Y(X,) (3.24)
RZ n=0
where Y(X,) was defined as
Y(X) =R |- _dXn - _2 X, . (3.25)
or r

The relations (3.22) to (3.25) were found to show how Ag is related to the new

base functions x,(8, A, r).
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We can now get back at (3.13) and introduce X, (6, A, r=R) instead of

S4(08,A); thus we now have

v-4 v-4
r = [T- ¥ E, X 12W do + [Ag- Y E, Y(X,)1%W do

n=0 n=0
o, N
(3.26)

where again T and Ag have no units. In the preceding equation, the two functions

X, and Y(X,,) are now evaluated at r = R; thus with r = R (3.20) becomes
L,(8,A) = S,(0,%) . (3.27)

This also modifies (3.19) as

n-1
X, (8,A, r=R) = ug [ Y Cpp Xp + Sy } ,(n=0,1,2..) (3.28)
p=0
and (3.23) as
n-1
0Xn = u, 2 Cpp OXe - (Rn+1) S, . (3.29)
or p=0 dor R

r=R r=R
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Inserting (3.23) and (3.19) in (3.25) and evaluating at r =R one gets Y(X,) at r = R

n-1
Y(Xp) | = un 2 cpp Y(Xp) + (Rp-1) S, . (3.30)
p=0
r=R r=R

Ry, was given by (3.10). The relations (3.27) to (3.30) will be required in chapter

5. We can now apply the same condition (3.14) to (3.26) which yields instead of
(3.15) and (3.16) the following forms

JJ[T—ZEan]XqW do + [J [Ag-2E,Y (X,) 1Y (X)W do = 0

Gy G2

(3.31)
and
JJ T Xq W do - JJ Ag Y (X4) W do
01 02
V-4
- X E, X, Xg W do + Y(X) Y(Xg) W do [=0
n=0

Gy G
(3.32)
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This time we can simplify this system of linear equations by finding %, and Y(x,))

(n=0,1,2,.., (N+1)2-5) such that the above bracket becomes zero or one, i.e.

0 n®qg
1 Xy Xg W dG + _1_ Y(X,) Y(Xg) W do = .
4T 4T 1 n=q
51 G2
(3.33)

In chapter 5 it will be shown that the condition (3.33) can be realized using the

Gram-Schmidt orthonormalization process. We will obtain X, from (3.19),

defined with the coefficients ¢, and uj, such as

Cpp= =1 JJ Ly Xy W d6 - _1 JJ Y(Ly) Y(X5) W do
it aTr

Cq Os (3.34)
and
n-1 2 2 2
= -2 cCppt 1 L, Wdo + _1_ Y(L, W do
Up p=0 an 4T
0, 02
p<n, p=0,1,2,.,(n-1), n=0,1,2,. . (3.35)

Then from (3.32) the desired coefficients are obtained as

En=_L_”TXHWd<5 +_.1_”Agy<xn)Wdc.(3.36)
an ) 4TC
G Go
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This relation solves the system of linear equations (3.16) and the coefficients E
give us the disturbing potential T everywhere on and above the surface of the
spherical Earth. This is Arnold's (1978) and Brillouin's (1916) proposed solution

to the "mixed altimetry-gravimetry b.v.p.".

Since expansions in spherical harmonics are usually employed, one can imagine

how useful it would be to get a retransformation of (3.18) into the spherical

harmonics i.e. to determine the T, coefficients from the following equality

~ v-4 v-4
TO,A) = _GM_ XY E, X,(0,A) =_GM ¥ T, S,(8,A)
R n=0 R n=0

(3.37)

This will be done in chapter 8. Chapter 5 will explain the Gram-Schmidt

orthonormalization process to find (3.34) and (3.35) required in (3.19) to define X,
and Y(X,). Meanwhile, the next chapter will show how to organize the

computations to obtain the coefficients E ,.

One can follow the similarity between section (2.5) and this chapter which
shows the applications of the mixed scalar product of functions and that we could
generalize its application to more data sets then T and Ag known in more regions

then ¢, and 5.

One can also follow the similarity between section (2.2) and this chapter which
shows that the proposed solution to the mixed b.v.p. is a solution of the least-

squares method like (2.9) or (E.1) is for the single b.v.p.. According to these



35

similarities if one considers (2.9) to have the simplest solution of the global single
b.v.p. then the proposed solution might be the simplest solution to the global

mixed b.v.p..



CHAPTER 1V

COMPUTING THE ALTIMETRY-GRAVIMETRY
COEFFICIENTS FROM MEAN GRAVITY ANOMALIES AND
MEAN DISTURBING POTENTIAL VALUES

We will call the E, coefficients of (3.18) and (3.36) the altimetry-gravimetry

coefficients. We would like to numerically compute (3.36) which we rewrite here

E, = Fpt G, = _1 JJTondc+ 1 JJAgY(Xn)Wd(S
4T 4w

Gl 02 . (4.1)

We have defined F, and G, as being each an integral. Also define I and J, as

the following two integrals

Ey'= I, + J, = _1 JJTSanG+ Rao JJAgSanG
4T AT

o, o, (4.2)

R, is given by (3.10) and S, are still the surface spherical harmonics as defined in

(3.5). We know how to compute (4.2) and this is shown in this section. But first

let us derive the relation between (4.1) and (4.2).

-36-
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One should remember from chapter 3 and the comments around (3.26) that the
integrals in (4.1) are evaluated at r = R, Thus we insert (3.28) and (3.30) in (4.1)

to obtain

n-1 n-1
En = Uy X Cpp Fp + I, |+ uy Y Cpp Gy *+ Jy

n-1
=uy X cpp (Fp + Gp) + I, + Jn)

or

n-1
En = Uy X Cpp Ep + Ep . (4.3)

From the recursive relation (4.3) one sees that the integrals in (4.2) are the only

computations needed to compute (4.1).

According to (3.5), (4.2) can be written at length as

R
Enm _ cosmh

= _1 jT(G,?&) W(O,A) P, (cosb) sin® dA dO +
Fom\ 47T J sinmk

G,
( cosmA
+ _n-1 JAg(O,?L) W(8,A) P,,(cosB) sin® dA d@

41 J Sinml

163)) (4.4)

where T(6,A), Ag(6,A) and W(B,1) have no units. We will use the Fast Fourier
transform to compute this relation. Appendix E shows how to apply the Fast
Fourier transform to the simpler case of the single boundary value problem. All the

details are given there and one should refer to it to follow this discussion. First the
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sphere is partitioned into a finite number of discrete equiangular blocks of the size
of the data available, here 1°X1° mean values for T and Ag (see figures 9.1 and
9.2). Thus we divide the spherical Earth into a regular grid as defined in appendix
E, equation (E.3). The block mean values available for T, Ag and W will be defined

as Ti4, Agyy and Wy4. Ay will be the associated areas as defined in appendix

E, equation (E.4).

Chapter 9 shows the numerical computations where we have verified that the

weight function W(B,A) assigned to each Tij and Ag 14 should be defined by

2
1 if i,3 € oy,
RMS (T} 4)

Wij = (45)
2

S S if i, € o,
RMS(Agij)

The RMS (. ) is the root mean square computed as

2 1/2
RMS (T33) = 1 X X Ty Agy where 1,3 € o,
ix i j

and

2 1/2
RMS (Agzq) = |1 X X Agyy Asy where 1,3 € o,
iax 1 3 .

If T (similarly for Ag) were constant within each block G . then every point

j
disturbing potential T inside the ijth block would equal its mean value T 14 and one

could take T (and Ag) out of the integral (4.4) as follows
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Enm N-1 2N-1 ij ([_ cosmA
=_1 X X Giy Wiy Ry P,m(cos0) sinB® AA A6
Fom 4 i=0 =0 sinmA
Gij
r (4.6)
where we have set
Eij if 1,3 € 1921
aij = . (4.7)
Agij if i,3 € Oy
and
1 if i,j [ Gl
ij
R, = (4.8)
n-1 if i,3 € G,

The integral (4.6) might become applicable in the future when the block size used
will be smaller then the 1 X 1 degree that we will use herein. However it is

obvious that usually every point value in the ijth block is different than the mean

value Tij (or A_gij) and thus this integral is not exact. Pellinen (1965) and
Katsambalos (1978) have shown that for circular blocks of radius \, the Pellinen-
Meissl smoothing operator 3, must be used to compute a better approximation.
Colombo (1981, p.76) has shown that the de-smoothing operator 1, which is a

function of the square of B, is more appropriate and thus (4.6) becomes

Enm N-1 2N-1 ig [ cosmA
=_1 X X Gjy Wiy Ry P (cos0) sinBdAd6
F.\ amn, i=0 =0 sinmk

Gij
(4.9)
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Appendix E gives details about 1,, and its computation. Equation (4.9) can be

written as
]
Enm I (A)
N-1 i 2N-1 ij
=_1 X I,,0 X Gyq Wiy Ry (4.10)
Fom  471m, i=0 =0

j
Ky (M)

where I (), Jri(k) and K,i(?\.) are defined by (E.11) and (E.13) in appendix E.

Finally inserting (E.13) in (4.10) results in

Enm N-1 1 A(m) 2N-1 ij
=_1 X TI,.(0 2 Gy Wiy Ry cosmjAA +
Fhm 4mm, i=0 =B (m) 3=0
B(m) 2N-1 ij
+ z Gij Wij Rn sinmjA?x
A{m) I=0

(4.11)

Due to the similarity of this relation with the case in appendix E where we
describe the Fast Fourier "analysis" of Colombo (1981) one should be able to find a

way to compute this equation also using the FEFT. One can write (4.11) as

Enm N-1 i A (m) i B (m) i
=1 X I, RE [X, (m) ] + IM[X, (m) ]
Fom 41N, 1i=0 -B (m) A (m)
(4.12)
where
i 2N-1 1
RE[X,(m)] = X Ya(3) cos(mjAl)
=0

(4.13)
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i 2N-1 i
IM[X,(m)] = 2 vn(3) sin(mjAl)
3=0
and
i L i
Yn(3) = Gijy Wiy Ry . (4.14)

Xni(m) is still dependent on "n", while this was not the case in (E.21). Here a
latitudinal row "i" of mixed values T ; and Ag, 4, without units, is entered in the
IMSL FFTCC subroutine and the same row is reentered in FFTCC for each
"n" value of Ri j Thus each latitudinal row of data is Fourier transformed "n"

times.

Equation (4.12) will be computed in chapter 9. This chapter has shown how
(4.3) solves (3.36). The E,' coefficients are obtained from (4.12) where the

relation between E,' and E, and F,, is still the same as (3.5) i.e.

Eg' Ezo
Eq' Ezq
Ep' Foq
Ej’ Ep»
Eg' Fao
E5' = E30 . (4.15)
Eg' E3q
Eq' Fa3q
Eg' E3p
L Ey' L Fyy

The coefficients Cpp and uy, in (4.3) are given by (3.34) and (3.35). However
these two relations have not been proven yet in this work and it is not clear from

looking at them what computations they imply. Next chapters 5 and 6 will clarify

these 2 equations. Chapter 7 will show how to compute T, (0) in (4.14).



CHAPTER V

THE GRAM-SCHMIDT ORTHONORMALIZATION PROCESS
USING SPHERICAL HARMONICS

5.1 The Orthonormalization Process.

Here we want to find a function X, such that it satisfies the following
orthonormal relation

0 n=#qg
1 Xy Xg W do = (5.1)
4T 1l n=q
or simply
(XnrXg) = 0, n#q ; (XnrXp) = (%012 = 1 . (5.2)

The Gram-Schmidt process can be used to form such orthonormal functions X,
(n=0,1,2,..,m) from a base of linearly independent functions, say L,
(n=0,1,2,..,m)is well known in the literature (Pearson, 1974, pp.958-963),

(Courant and Hilbert, 1953, p.4 and p.50). A first notation often encountered, say

method A, forms the X, as

X, = Y Cpp X + L, , n=0,1,2,3,..., (5.3)

Applying the scalar products (5.2) to (5.3), one can develop the following Table to

find the coefficients Cnp-

42-
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Table 1 A First Notation for the Gram-Schmidt Process.

+ C10 Xp = cqg9 = —(L1,X0)

b
'_.l
i

£
'_.l

]
1
=
>

Xy = Lp + cpo9 Xp + Cp1 Xg = C2p

b
w
]
-
w
]
1
[
>
-l

+ C13p XO + Ca1 Xl + C3o Xz = C3g

It

1
-
<

= C31

From this Table one finds that the coefficients of method A are given by
Cpp = —=(Ln, Xp) ' p<n, n=1,2,3,.. . (5.4)
CAE

A second notation, say method B, forms the X, as

n-1
Xn = un( 2 cpp Xp LHJ, n=0,1,2,.. (5.5)
p=0

Compared to (5.3), the coefficients u,, are added to simplify the computations as

shown below. Applying the scalar products (5.2) to (5.5), one can develop the

following Table to find the coefficients Cpp and uy,.



44

Table 2 A Second Notation for the Gram-Schmidt Process.

Xg = uy Lg = (1/ug)2 = [ILylI2
Xy =u; (Ly + cqg Xp) = Ccy10 = —(Lq1,Xp)
2
= (1/u1)? = L2 - <5
Xy = up (Lp + cpg Xg + Coq Xq) = Cpqp = —(Ly,Xp)
= Cp1 = —(Ly,Xy)
2 2
= (1/uz)? = L2 ~ ¢3¢ - coy
X3 = uz (Lztcjzg Xptc3y Xitc3p X5) = Cc3¢9 = — (L3, Xp)
= c31 = —(L3,X;)
= Cc3p = —(Lj3,X5)
2 2 2
= (1/u3)? = |ILgll2 - c39 - ¢33 - cap

From this Table the coefficients of method B are given by

Cnp = ~(Ln,Xy) , p<n, n=1,2,., (5.6)
and
n—-1 2
1 — — z Cnp + ”Lnllz ’ n=0,l,2,... « (5-7)
up p=0
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These coefficients inserted in (5.5) ensure us that the X, (6,A) are orthogonal

functions satisfying (5.2) or (5.1). From either method A or B one can expand a

function £ into a series of orthogonal functions X, such that

f =2 a, X, (5.8)

where

a, = (£,%X,) (5.9)
because the X, formed in that manner satisfy (5.2) and thus
(£,Xg) = X ap (Xp, Xy = a, X2 = a, . (5.10)
It appears preferable to use method B because ||L,]|2 in (5.7) is simpler to compute
than [|X[|2 in (5.4). It will also be simpler to organize the computations such that

instead of the (L, XP's in (5.6), the simpler expression (L, Ly will be required.

This will be shown in the next section.



5.2 The Organization of the Computations.

It is possible to decrease the number of integrals involved in (5.6). To do this
another notation is used, the one on the left side of Table 3. The left parts of Table

3 and 2 are compared to find the right part of Table 3.

Table 3 A Third Notation for the Gram-Schmidt Process

Xo = 9o0 Lo = Joo = Yo
X1 = 910 Lo + 911 In = gi11 = up
= J10 = U1 €10 Y00

X2 = 920 Lo + 921 L1 + 9y Ly = Jp2 = Uy
= 921 = Uz Cp1 911

= 920 = Uz [c21 910 * C20 Yoo

X3 = 930 Lo + 931 L + 932 Ly + g33 Ly = g33 = uj
= 932 = Uz C32 922

= 931 = uz [c32 921 *+ c31 911]

= g30 = uz [C32 920 * C31 910 * C30 Yool

-46-
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From Table 3, the coefficients g are given by

gpp = Up I pzolllzl"'l
and (5.11)
p=1
9pg = U Z Cpi Jigq r asp, p=1,2,
1=q

Then one inserts the left part of Table 3 in (5.6) to get

Clo = ‘(Ll,Xo) = “'goo (L].’LO) (5.12)
C20 = —(Lp,Xg) = —gpo(Ly,Lg)

C21 = —(Lz,X3) = -g10(Lp,Lg) - gy1(Ly,Lq)

c30 = —(L3,Xp) = —ggo (L3, Lp)

€31 = —(L3,X3) = -9310(L3,Lg) - gy1(L3,Lq)

c32 = —(L3,X3) = -g20(L3,Lo) =~ 921(L3,Ly) - gpp(Ls,Ly)

From these last relations one gets

p

- z gpq(Lanq) ’ p<n . (5.13)
g=0

Cnp
This is an easier way than (5.6) to compute the Cnp- The only integrals to compute
now are (L, Lq) in (5.13), and [z ]|2 in (5.7). This is much simpler than trying

to compute (L, , Xp) and ”Xp"2 in (5.4) by the usual method A.

Equation (5.13) and (5.7) show that one can always simplify the computations
involved in the Gram-Schmidt process to the integrations involving only the starting

base functions L.
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The order of the computations would here be 1st: [|Lg|[2, uy (e. ggq) and X,
then ao, 2nd: (Ll’LO) (i.e. ClO)’ ”L1”2, uq (i.e. gll) and g].O’ Xl’ aq, 3I'd:
(L,,Lg) (e. cpq), (Ly,Lq) (ee. cy 1) IL2lI%, us (e gz2) and go0, 951, Xo

then a,, etc..

These last two sections have shown the usual orthonormalization process and
the organization of the computations for the usual single integral. However our
application, equation (3.31), requires a more complicated orthonormalization
involving two integrals. These sections were included to show clearly what may be

less apparent in the next two sections.



5.3 The Orthonormalization Process on Mixed Domains.

We will here go on using the previous method B with (5.5)

n-1
X, = un[ 20 Chp Xp + Ly ) . (5.14)
p:

However the problem will not be to form orthonormal functions X, that satisfy the

conditions (5.1) or (5.2)

0 n#qg
(XnrXg) = _1 Xn (0) Xq(6) W do = (5.15)
o
but the following one
0 n#q
1 Xp Xg W do + _1 Y(Xp) Y(Xy) W do =
in in 1l n=qg
G G2
(5.16)
or simply
0 n#g
(XnrXg)1 + (Y(Xp) , ¥ (Xg))p = (5.17)
1 n=q

-49-
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This condition is the one previously met at (2.18) and in our solution to the
"altimetry-gravimetry problem" at (3.31). Y (Xp) = Y (X,(6,A)) is a function of Xy

as shown in section 2.4 and chapter 3, and accordingly one can use (5.14) to write

Y (X,) = uy ( 2 Cpp Y(Xy) + Y(Lp) ] . (5.18)

Equation (5.18) shows that the functions ¥ (X,) are formed with the same

orthonormalization process as the X, in (5.14). Equation (5.17) with the indexes

1 and 2 is the notation used in the following Gram-Schmidt orthonormalization
process on mixed domains. The following also shows the details of what one must

do to produce the previous Table 2 now on mixed domains.
From (5.14) one has forn =0
2 2 2
XO = U LO => ”X0”1 = Uy IILO”l (5.19)
and from (5.18)
2 2 2
Y(Xg) = up Y(Lo) = [¥(Xp)llz = ug ¥ (L)l . (5.20)

One can sum these two equations to get

2 2 2 2 2
IXolly + Y (X)ll, = 1 = ug [lLolly + Y (Lg) o] (5.21)
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where we have used (5.17) with n = g = 0. The right side of (5.21) can then be

written as

2 2 2
(1/ug) = Lol + Y (@)l . (5.22)

Equation (5.22) can be compared with is equivalent relation in Table 2. We can go

on with the next functions, n = 1, in (5.14) and (5.18) to have

Xl = Uq (Clo X0+ Ll)

and (5.23)

Y(Xl) = U4 [Clo Y(XO) + Y(Ll)]

Again applying the scalar product to (5.23) one gets

2
(X1,X0)1 = ug c1o IXelly + up (Ly,Xg) 1

and (5.24)

2
(Y(X1) Y (Xg))p = up cyg Y (Xp)llz + ug (Y(Ly),Y(Xg)) o

Summing the two equations in (5.24) results in

(X1,X0) 1 + (Y(X1),Y(Xg))p = 0 =
2 2
ug cio [Xelly + ¥ (Xg) o] +

up [(Ly,Xg)p +(Y(Ly) ,¥Y(Xp))p] . (5.25)
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According to (5.17) the first bracket [ . ] in (5.25) equals unity and (5.25) reduces

fo

Cip = — (Ll'xo)l - (Y(Ll)fY(XO))Z . (5.26)

This relation can also be compared with its equivalent in Table 2. Applying

another scalar product on (5.23) results in

2 2
x40 + Y X, = 1 =
(5.27)

2 2 2 2
up { ¢y [ITqlls + IXelli] + 2 cp9 (L1,Xg)q } +

2 2 2 2
u; { cyig YTz + Y (X 21 + 2¢c19 (Y(L1), ¥ (X))o }.

Using (5.26), (5.27) reduces to

2 2 2 2
(1/uy) = = cig9 + |ILallz + ¥ (@Dl . (5.28)

This relation can also be compared to its equivalent in Table 2. Proceeding on for

n =2, 3,... and comparing to Table 2 one finds the coefficients to be given by

Q
|

mp = = (TnrXp)1 = (Y(Ly),Y(X,))p . (5.29)

and

n-l 2 2 2
L |=- X cpp * oLl o+ Y@l . (5.30)
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One can compare these relations with (5.6) and (5.7). One should also compare the
equivalence of these two relations with the previously mentioned equations (3.32)
and (3.33) which were given without proof. The above notation will be used in
the following discussion. However one should not forget its relation with the
"altimetry-gravimetry problem" and that the integrals 1 and 2 implied in (5.29) and

(3.30), each covers only a fraction of a sphere.



5.4 The Organization of the Computations with Spherical
Harmonics.

The last section left us with equations (5.29) and (5.30). We have used the first
three sections of this chapter to explain the reason for these two relations in our
solution of the "altimetry-gravimetry problem" of chapter 3, equations (3.32) and
(3.33). The computation of these two relations would be practically impossible

without the following organization of the computations.

First the number of integrations required can be simplified as it was done in

section 5.2. Following Table 3 one can write for the mixed case
Xo = goo Lo » Y(Xg) = ggg Y(Lg) . (5.31)
Comparing (5.31) to Table 2 one gets
900 = Yo - (5.32)
Again from Table 3
X1 =910 Lo T 911 L1, Y(X3) = g19 Y(Ly) + g1 Y(Ip)

and comparing it to Table 2 one gets

911 = U1 , 910 T U1 €190 Y00 . (5.33)

-54 ~
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Going on, one finds out that (5.11) is still valid for the mixed case. Similarly to

(5.12) one can write

C10== (L1, Xp) 1+ (Y (L1) , Y (X)) 2==ggo [ (L1, Lg) 1+ (Y (L), ¥ (Lg)) 2]

The relation between Table 3 and (5.13) is established and this for the mixed case,
it is
p

Cpp = — ZO Ipg [(Lnrlgdy + (Y(Ly),Y(Lg)ol . (5.34)
q::

To find out about the functions L, we now look back to chapter 3, the
altimetry-gravimetry problem. The functions L, in (5.34) comes from (5.14)
which is (3.19) where L, is defined by (3.20) as the solid spherical harmonics. It
should be remembered from the comments surrounding equations (3.24) and
(3.25) that all the integrals in (3.24), (3.32) and (3.33) are computed near the

earth's surface, r = R. Because r =R we found in (3.25) that

L, = Sp , (5.35)
and thus in (5.34)
(Ins/Lp)1 = (Sp,Sp)1 (5.36)
and in (5.30)
oy = lsale (5.37)

Thus the integrals in (5.34) involve simply the surface spherical harmonics.
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To discover the functions Y(L,,) in (5.34) one must go back to its definition (3.25),

replace X, by L, and use the definition of L, in (3.20) and differentiate, i.e.

Y(L,) =R | - dln_ - _2 1L,
or r
Tl 1’1+1
= - S, (Ry+1) |_R_ -—R |- _2R_S; [ R_
ey r r r
L+2
= (Rp~1) S, |_R_ (5.38)
r

where R, is given by (3.10). As a check we also had from (3.25) and (3.25)

Y(Xn)=R[— 9xXn —_z__xn]
or r

]

n-1 n-1
-u, R Cnp —9Xp - (Rotl) L, (2R u,| X Cnp Xptln
p=0 dr r r p=0

n-1
= Up ( 2 cpp Y(Xp) +  (Rym1) _R_ Ly J . (5.39)
p=0 r

Comparing (5.39) with (5.18) and using (3.20) one finds that

at2
Y(Ln) = Ln (Rn_l) __R_.. = Sn (Rn'—l) (._B__T (5.40)
r

r
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which equals (5.38) as it should. Since the integrals (5.34) and (5.30) must be

computed at r =R, (5.38) or (5.40) becomes

Y (L) = (Ryp~1) S, . (5.41)

r=

Thus we have just found out from (5.41) that the scalar products in (5.34) and

(5.30) become simply
(Y (Ln) Y (Lp)) o = (Ry~1) (Ry=1) (Sp/,Sp)» (5.42)
and
2 2 2
Y (L)l = (Rp=1) ISyl . (5.43)

where S, are simply the surface spherical harmonics, R, is given by (3.10) and

the term (R,-1) is equivalent to (n-1) in equation (3.8). Finally (5.34) and

(5.30) are simply
P
Cnp = = 2 Jpg | (SnrSq)1 + (Ry=1) (Rq=1) (SprSy) 2 (5.44)
g=0
and

n-1 o 2 2 2
L |=- 2 C1'1p + ”Sn”]_ + (Rn”l) "Sn”2 . (5.45)
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The coefficients g4 are still given by (5.11). While we had no idea of the

computations involved by (3.32) and (3.33) now it is becoming much clearer with

these integrals of surface spherical harmonics S, (8, A). These integrals will be

solved in the next chapter.

To close this chapter we have used (3.5) and (3.8) in (5.44) and (5.45) to show

a table of the relations between the coefficients u,, Cnp and the harmonics Sy, Ry,

and S, .

Table 4 The Equivalence Between Different Notations Used With Harmonic
Coefficients.

Ug & Sp © Ryo & Axpoo

u; & 51 & Ry & Apiog

u & S & Sy1 & Bpin

uz & S3 & Ryy & Ajxroo

ug & S5 & Sy & Boooo

us & Ss; & Rzg & Azp3)




Table 4 The Equivalence Between Different Notations Used With Harmonic
Coefficients (continued)

c1p © S1S9 © RpRyg € Apipg
C20 € S28) © SyRpg € Dyipg
Cp1 & 5351 © Sp1Rp; € Dpipg
C3g € S3S) © RpoRyp € Agupg
c31 € S3S1 © RyRy; & Agyyg
c32 € S35 © RSy € Cppo
Cqo € 5459 © SyRyp € Dppag
Ca1 € 5451 © SpRy; & Dogpg
Cip € 5457 © Sp5;7 ©  Byop
Cg3 € 5453 © SyRyy @ Dppyy
Cso € SsS9 € S3gRzp € Aszgz




CHAPTER VI

THE NEED TO INTEGRATE TWO ASSOCIATED
LEGENDRE FUNCTIONS.

According to the relation in (3.5) between S, (6,h) and the R, (6,X) and

S (6,A) the integrals in (5.44) and (5.45) can be written at length as

A cosmA cosgA
Bi?;g _ sinmA| singA
=1 P (cosB) Pog (cosB) W(B,A) sinBdAd0+
Chmpq| 47 cosmh singh
Dnmpq 5 sinmh cosgh
cosmA cosgA
_ sinmh| singA
+_Rop P (cOs0) Pog(cosh) W(B,A) sin® dA d6
4T cosmh singA
sinmA cosqgA
(e2) (6.1)
where
Rpp = (n-1) (p-1) . (6.2)

The weight function Wij is defined by (4.5). Again it has no units for the reason

explained after equation (3.13). Also there is no relation between the indices n, p

and g here and the ones in (5.44) and (5.45). Table 4 shows the relation between

the cp, and uy, coefficients and the A B C and D Equation

nmpg’ Tnmpq? Unmpg nmpq-

(6.1) will be computed using Fast Fourier transform i.e. with the same kind of
development that was performed in appendix E and chapter 4.

-60-
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In practice the area of the sphere is subdivided into a number of blocks (viz.
59X5°, 1°X1°, 30'X30', see Figures 1 and 2 in Chapter 9) and the weight function
W(8,\) can be assumed constant over any such block and thus, the above integrals

(6.1) can be rewritten as

J
Anmpq qu(x)
J
B Kopg (M)
e N-1 2N-1 _ ij i K
=_1 X X Wiy R I (0) ] (6.3)
, j “np -—nmpqg
Chmpg 4% 1=0 3=0 Lpg (M)
J
In (6.3) we have set
1 if 1,3 € O1
ij
Rpp = (6.4)
(n-1) (p-1) if 1,7 € Oy

In (6.3) we have also gathered together all the terms dependent on 6 as

. 041
1

Tompg () = J Pom(cosB) Ppg(cosB) sin® db . (6.5)
0.

1
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These integrals involve the integration of two associated Legendre functions and
we will develop in next chapter 7 the recurrence relations that compute them

efficiently. Also in (6.3) we have gathered together all the terms dependent on A as

j (}ujﬂ r_jA?» + AA
Img cosmA cosgh cos (m—-q)A + cos (m+q) A
J
Kmg sinmA singA cos (m~gq)A - cos (m+q) A
= dA = _1_ di
] 2
Ling cosmA singh sin(m+q)A - sin (m-qg)A
J
Mg sinmA cosgAi sin(m+q)A + sin(m~g)A
J J
Ag JAN
(6.6)

Since in practice we are using blocks of size AL, we have replace the integration

limit A5 by jAA. The integration of (6.6) is straightforward and gives

<y
|

mg = A(m-q) cos(m~-g)jAL + B(m-q) sin(m-q)JAL +
A(m+q) cos(m+q) JAL + B(m+q) sin (m+q) JAL

Kiq = A(m-q) cos(m-q)JAA + B(m-g) sin (m-q) AL +
-A(m+q) cos (mtq) JAL - B(m+q) sin (m+qg) JAL

Lr?xq = B(m-q) cos(m-q)jAA - A(m~q) sin(m-q)JAA +
-B(m+q) cos(m+q)jAX + A(m+qg) sin (m+q) JAA

Mn:iq = -B(m-qg) cos(m-q)JAA + A(m-qg) sin (m-q) JAAL +

-B(m+q) cos(m+q)JAN + A(m+qg) sin (m+q) JAA
(6.7)
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where A (k) and B (k) are defined as

sin (kAA) if k # 0
2k
A(k)y =
AA if k =0
2
cos(kAM -1  if k # 0
2k
B (k) =
0 if k=0
(6.8)
Inserting the first relation of (6.7) in (6.3) gives
N-1 2N-1 _ i3 i
Anmpg =1 X X Wiy Ry Inppe(®) [A(m~q) cos (m-q) JAA +
4 i=0 J=0

B (m~q) sin (m~q) JAA +A (m+g) cos (m+qg) JAAL +B (m+q) sin (m+q) JAX]

(6.9)

We can write (6.9) as

N-1 i 2N-1 i

Anmpq =_;_. Enmpqw) [A(m~q) ,Z Wiy Rpp cos(m-q) JAL +

2N-1 _ ij

+ B (m~-q) Wis Rpp sin(m-g) JAA +

2N-1 _ ij

+ A(m+q) '5_‘, Wiy Rpp cos (m+q) JAL +

2N-1 i3

+ B(mtq) X Wiy Ry sin(m+q) JAR

(6.10)
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Similar to (6.10) one obtains the relations for the other coefficients B

Crmpq and D4 by inserting (6.7) in (6.3) to get

A (m-q)

N-1 i A (m—-q)

=1 2 Inmpq(e)
4T 1=0

nmpg

B (m-q)
-B(m-q)

Cnmpq
Dnmpg

B (m-q)
B (m-q)
+
-A(m-q)
A(m-q)

A (m+q)

—-A (m+q)
.}.

-B (m+q)

-B (m+q)

B (m+q)

-B (m+q)
+

A (m+q)

A (m+q)

i3

I ™M
=

nmpaqg:

ij
Rpp cos (m-q) JAL +

ij
Rpp sin(m-q) JAA +

i
Rpp cOs (m+q) JAL +

ij
Rpp sin(m+q) JAM |.

(6.11)

As in chapter 4 we can here again use the Fast Fourier transform to compute

(6.11). Because of (E.22) we set

i 2N-1 4
REAL [Xp, (mtq) ] = X
=0
1 2N-1 4
IMAG [Xpg (mtq) ] = X
J=0
1 2N-1
REAL [Xp, (m-q) ] = X

j=0

Ynp (J) cos (mt+q) JAA

Ynp (1) sin (m+q) JAA

Ynp (J) cos (m-q) JAA
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1 2N-1
IMAG [Xp, (m=q) ] = )y Ynp (1) sin(m-q) JAA
j=0
(6.12)
where
i _ ij
Ynp (3) = Wiy Rpy . (6.13)

Using the preceding relations one can write (6.11) as

Anmpg A(m-q)
Bhmpg N-1 i A (m~-q) i
= 1 X Inpg(0) REAL [ Xp,(m-q) ] +
Cnmpq 4T 1= B (m-q)
Dnmpq -B (m—-q)
B (m-q)
B (m~q) i
+ IMAG [ Xpp(m=q) 1 +
-A (n-q)
A (m~-q)
A (m+q)
~-A (m+q) 1
+ REAL [ Xpp(m+q) ] +
-B (m+q)
-B (m+q)
B (m+q)
-B (m+q) i
+ IMAG [ Xpg(mtq) ]
A (mt+q)
A {m+q)

(6.14)

Here X;p is dependent on n and p. This implies that a latitudinal row "1" of W(o,)
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and (n-1)(p-1)W(c,) are entered in the IMSL FFTCC subroutine and the same

row is reentered in FFTCC for each possible value of n and p. More details

concerning the computation of (6.14) will be given in chapters 8 and 9.

This chapter has shown how to use Fast Fourier transform to compute the

coefficients Ay, Bampgr Cnmpg a1d Dpppg Which are the elements forming the

symmetric positive definite matrix in equation (3.17). Itis also shown that to

compute these coefficients it is required to compute Tnmpq(e), the integrals of the

product of two associated Legendre functions. The following chapter 7 will show

how to compute these integralsT 1mpq(@) which are defined in (6.5).



CHAPTER VII
INTEGRATING ASSOCIATED LEGENDRE FUNCTIONS.

7.1 Integrating One Associated Legendre Functions.
This section describes how integral (4.17) that we reproduce here

, 0;41 tn
1
I (0)= J Pom(cosB) sin® df= J Poo(t) dt= T (tg, ty)
0.

1

ts
(7.1)

is efficiently and stably computed using recurrence relations. These results are
known (Paul, 1978) but they are a required preamble to new developments shown
in the next section regarding the integration of two associated Legendre functions
instead of the one shown here in (7.1). The development of the recurrence relations
of this section is reproduced in appendices B, C and D for reference in developing
the more complicated relations of next section. The notation used in this section is
consistent with the next section and can easily be recognized in the Fortran routines

PNMI and PNMI2 given in appendix H.

We remember having divided the spherical earth into O, 3 blocks for which 6;

and 8, , ; are respectively the northern and southern geocentric colatitude of each

block (see chapters 4 and 6, and appendix E). Accordingly we have set in (7.1)

tg=cosOgoyry and ty=cosOyorpy and also t=cosO with dt=-s1n0dH.
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From (Paul, 1978, eq.20a) or our appendix C the fully normalized recurrence

relation solving (7.1) is

Iom(ts,ty) = _n-2 _a(n,m) Tpo2,mlts, ty) -
n+l a(n-1,m)

tn
- a(n,m) _1-t2 P, . (t) , m#n, (7.2)

n+1

ts
where
/2
a(n,m) = (2n+1) (2n-1) . (7.3)
(n+m) (n-m)

For m = n, one finds from (Gleason, 1983, p.15) or our appendix C

BY
Inn(ts,ty)= nb(nyb(n-1) Tn-2,n-2(tg,ty) + _t_ B, (t)
n+1l n+1l
ts
(7.4)

where

/2
b (n) =( (2n+1) jl , n>1 ; b(l) = 31/2 | (7.5
2n

The required fully normalized associated Legendre functions P (t) are also
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computed from recurrence relations. These can also be found in (Paul 1978,

eq.13a and 21a)

§nm(t) = a(n,m) t gn-l,m(t) - af(n,m) En-z,m(t)r m#n,
a(n-1,m)

(7.6)

and form = n

P, (t) = b(n) (1-t2)1/2 Pho1,n-1(t) . (7.7)

The computation of all the above recurrences is simplified because they share the
same coefficients a (n, m) and b (n). The starting values for all these recurrences

are also given in (Paul, 1978, eq.26a) and are

Poo(t) = 1, Pyo(t) = 31/2 ¢, Py (k) = [3(1-t2)]1/2 ,
_ _ 1/2 2 2
Too(tsrty) = ty~ts, Ijolts,ty) = _3 (ty—tg)
2

ty
_ 1/2
I11(tg,ty) = _3 [t (1-t2)1/2 -~ arccos(t)] ,

2
ts

Pom(t) = 0 and I, (t) =0 if m>n . (7.8)
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(Gerstl, 1980) and (Gleason, 1983) show that (7.4) quickly becomes unstable in
polar regions but also that such instability arises at higher degrees and orders in
mid-latitude regions. They show how to overcome this instability problem by

using the backward version of (7.4)

f1'11'1(tS’tI\I) = 1 { (n+3).fn+2'n+2 (tS’tN)
(n+2)b(n+2)b (n+1)

tn
= t Ppip, ptn(t) ] . (7.9)

ts

obtained by directly inverting (7.4). Wherever the forward recurrence (7.4) is
unstable the backward recurrence (7.9) is stable and vice-versa. To use (7.9), the
starting values required are Iywax, nvax (Esrty) and Tywax-1, nmax-1(Ess tx)
where NMAX reflects the maximum degrees implemented. These are obtained by

integrating a McLaurin series and the result is given in appendix D as

Ipn(tgrty) = - b(mb(n-1)...b(1) y**2 [_1 + _1 y2 +
n+2 2 n+4
YN
+ .13 4 + 135 y5 + ...] (7.10)
2 4 n+6 2 4 6 n+8

Ys

where y1/2 = (1-t2) = sin@ and b (n) is defined at (7.5). To attain a desired
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accuracy of €, e.g. £ = 10-12, a sufficient number of terms "M" needed in the series

expansion (7.10) is given by (Gerstl, 1980) as

M = 1 + INT(Mp) (7.11)

where

Mg = 1 + 1n(g) , x = sin?( On + 6s ) . (7.12)
In (x) 2

INT denotes the integer part of the argument M,. (Gerstl, 1980) shows that the

condition number

k = NMAX (7.13)
(NMAX+1) (sinbn) <

can determine whether the forward (7.4) or the backward (7.9) is most stable for

any given 0g, 0y and NMAX situation. If k < 1 then the forward sectorial

recurrence should be used and if k > 1 the backward recurrence should be used.

All the algorithms of this section were programmed in Fortran and can be found
in the routine PNMI of appendix G. The first version of this efficient and stable
routine was developed by Gleason (1983). Even if it looked rather complicated to
compute the I, (tg, ty)'s, the integrals of the sectorials P, (cos8), one
should be aware that this problem of instability is due to compute the rather simple
integrals I, =c(n) [ sinn+10 d@, since the P, (cosB)'s are simply equal to

c(n) sinn®. Here c (n) are integer values depending on "n".



7.2 Integrating the Product of Two Associated Legendre Functions.

We will now develop the recurrence relations that solves the integral (6.5) which

we rewrite non-normalized and with t = cosB

tn

Tnmpg (Esr ) = Tponm(tsr tx) =J Pom (t) Ppg (B)dt. (7.14)

ts
We will later need to remember the symmetry in the indices "nm" and "pq".

It might be the first time that these recurrence formulae are developed but only
because it is the first time that they are required in an application. These
derivations are simple and follow the integration of one associated Legendre

function given in appendices B, C and D.

As in appendix B where we derived (7.2), we start with equation (A.4) from

appendix A multiplied by P, (t)

A= J(l—tz)danqudt= J(n+l)tanqudt— (n=1+1) Tny1,mpg
dt

(7.15)

-72-
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In this section the two following abbreviations are used to simplify the writing

Pom = Pon(t)  and  Toooe = Tppog(tg,ty) (7.16)

and the integration limits t, and tg are omitted as it was done in (7.15).

Integrating by parts the left integral in (7.15) with

u=(1-t2)Ppy, du=-2tP, dt+(1-t2)dPpedt, dv=dPamdt, v=P,.,

dt dt
(7.17)
one gets
tn
A= (1-t2)PppPog + J 2tPppPpqdt - J (1-t2)dPpg P, dt
dt
ts
(7.18)
For the right integral in (7.18) equation (A.5) is used;
J (1-t2) dPpoP, dt = J “PtPnPpgdt + (P+Q) Ing, p-1,q
dt
(7.19)

Inserting (7.19) in (7.18) and then equating (7.18) to the right side of (7.15) one

gets
tn

(1-t2) PppPpg

= J (n—p-—l)tanqudt + P+ Inm,p-1,q9 ~

ts
= (n-m+1) Inig mpg . (7.20)
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The integral left in (7.20) is taken from equation (A.6)

(2n+l}J;anqudt = (n-m+1) Inyq, mpg * (n+m) Ipo1 mpg

(7.21)
By inserting (7.21) in (7.20) one gets the final result
In+1' = (n-—D"l) (n+m) In—l,m +
P (n+p+2) (n-m+1) Pd
ty
+ _(p+q) (2n+1) Inm,p-1,q = —(2n+1) (1-t2) P Pog
(n+p+2) (n~-m+1) {(n+p+2) (n-m+1)
ts
(7.22)

However this equation must be normalized to not get large numbers unfitted for use

on computers. From equation (B.7) and (7.14) we see that

Inmpq(ts’tN) = Hpm Hpq Inmpq(tSItN) (7.23)

where H_ . is given by (B.8). Inserting (7.23) and (B.7) with (B.8) in (7.22) we

get the final relation

fnmpq(ts,tN) = _a(n,m) (n-p=2) —I—n_z,mpq(ts,tN)+
{(n+p+1) a(n-1,m)

tn
+_(2p+1) Tp 1 m p-1,q(tsrtn) = (1=t2)Py_q, n(t) Ppg(t)
a(p,q)
ts
(7.24)

where m # n and we have used a (n, m) defined in (7.3).
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From the definition of a (n,m), (7.24) is undefined for m = n. This seems to
restrict us to finding for example I55;,. But because of the symmetry in (7.14),
Tnmpg = Ipgnm and Tp,14 can be computed with (7.24) by computing T;55.
Following this finding, one can set p =g in (7.24) and rename the indices to
obtain the following result

Innpg(ts/ty) = _alp.q) (p=n=2)  TInn,p-2,q(tsrty) +
(p+n+1) a(p-1,q)

tn
+ (1-t2)Py_q, o (£) Ppp (L) . (7.25)

ts

Thus one finds out that the only integrals which cannot be computed from (7.24)

are the I, kind. One can see the similarity between the development in this

section and the previous section.

Following the idea in appendix C where we derived (7.4), we will now find a

recurrence relation that solves the following integral

tn ty
T e P.. P dt = _(2n)! (2p)! (1-t2) (n+p) /2 Q3¢
nhpp J ne o 20n! 2Pp! J

tg tg (7.26)

where we have used equation (A.3). Lets integrate by parts the right side by setting

u=(1-t2)2%/2 , du=-zt (1-t2)2z/2-1 4t, dv=dt, v=t, (7.27)
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where we have put z=n+p. One obtains

En tn Exn
‘[ (1-t2)z/2dt = t(1-t2)z/2| + nJ. t2(1-t2)z/2-1d¢
tg tg tg
(7.28)
When one has verified that the last term can be written as
t2(1_t2)z/2-1 — (l~t2)2/2'1 - (1_t2)z/2 (7.29)
then (7.28) becomes
En tx tn
(z+1)J.(l—t2)Z/2 dt= t (1-t2)z/2 + ZJ'(l~t2)Z/2'1 dt
ts ts ts
(7.30)
Again z = n+p thus one can insert (7.26) in (7.30) and use (A.3) to get
tn
(z+1)2°n! Inapp= £280l PP | + 22072(n-2) ! In-2,n-2,pp
(2n) ! (2n) ! (2n-4) !
ts
(7.31)

This can be simplified to the final relation

txn

I 1 [tPynPpp

n+p+l

+ (n+p) (2n-1) (2n-3) I, 5 5, pp)

nnpp

ts
(7.32)

In the computations we use the normalized relation of (7.32) which is obtained

from (7.23) and (B.7) with (B.8). This results in
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ty
Tonpp (tsrty) = n+;+l [t Pop(t) Ppp(t) +

ts

+ (n+p) b(n) b(n-1) Iy o no2, pplts,/ty) ]

, n#0, n#l, (7.33)

where again b (n) is defined at (7.5). Since in (7.33), "n" cannot be equal to 0
(zero)in b (n) and "n" cannot be equalto 1 (one) in b (n-1), we have to find

Toooor I1100and Ipq1q3.

One will find out that these 3 numbers, Tggg0, 1109 and T;177, are the

only required starting values for all three recurrence relations (7.33) and (7.24) and

(7.25). These starting values are

En ty

TIgo00 (tgrty) = J Pgo(t) Pgo(t)dt = J dt = ty-tg,
ts ts
En En

i

I1100(tssty) ———J P11 (t) Pyolt)dt 31/2J (1-t2)1/2 dt

ts tS
i.e.
Ex
- 1/2 )
T1100 (tgrty) = 3 [ £(1-t2)1/2 - arccos(t) ]| ,
2
ts

and
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ty tn
Ti111(tgrty) = J Py1(t) Pyp(t)dt = (3t - t3)
tg ts
(7.34)
As described in the previous section 7.1 the forward recurrence relation (7.4) is
unstable and so will be (7.33). The great similarities between both relations is a

sufficient proof and could be seen numerically.

As described in section 7.1 this problem of instability in (7.33) is solved by

using a backward recurrence relation which is directly obtained from (7.33) itself as

Tnnpp (tsrtn) = 1 [(n+P+3)Tn42, ne2,pp =
(n+p+2)b (n+2)b (n+1)
ty
= t Ppyp,nez(t) Py (t) J (7.35)
ts

To use (7.35) the starting values required are fmx, NMAX, NMAX, NMAX>
Tamax, nvax, Nvax-1,nvax-1 a0 Tnvax-1, nmax-1, NMAX-1,NMAX-1- Lhese
starting values are obtained from the integration of a McLaurin series as it was done
in appendix D to get (7.10). From (D.4) we have
tn
Tnnpp = b(n)b(n-1) ... b(1)b(P)b(p-1)...b(1) J' yZ dt

ts
(7.36)

where z = n+p and y is defined at (D.2). The integration is performed in appendix

D where one can compare (D.5) with (D.8) with (7.36) to find that
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Innpp= “b(n)b(n-1) ... b(1)b(p)b(p-1)...b(1)yRrtP*t2 [ 1 +

n+p+2
En
+ _1 y2 + 1.3 yv4 + ]
2 (n+p+4) 2 4 (n+p+6)
ts
(7.37)
where  yg = sinfg and yy = sinfy. This relation is used to find
ENMAX, NMAX, NMAX, NMAX fNMAX, NMAX, NMAX~-1,NMAX-1 and

TNMAX-1, NMAX-1, NMAX-1, NMAx-1- The procedure explained in section 7.1 was

used to decide on the number of terms required in (7.37) and when to use the
forward or the backward recurrence. It is appropriate because the
Tnnpp (ts,ty) s are basically the same functions as the I, (tg,ty)'s. By
definition they are both related to the integrals of sine functions (see last paragraph
of section 7.1). It was numerically verified, see below, that this procedure was

appropriate.

Since the above relations are newly developed they must be checked in some
way. While the relations of section 7.1 were checked against a Gaussian
quadrature by Christodoulidius and Katsambalos (1977) this will not be required
for the new relations. We have verified numerically the results of the new
recurrence relation against the following analytical relations:

Tnmoo (tsrty) = Ipg(ts,ty)

cos0
—_ _2
Inmnm(cos (n/2), cos0) = J‘ Pom(t) dt = 2, m#0

cos(n/2)
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cos0

_2
Tnono (cOs (R/2), cos0) = Poo(t) dt = 1

cos(rt/2)
(7.38)

We have also verified numerically the following summation

Tnmpq (COs (0;+A0) , cosB;) = Tnmpg (€OS (T/2), cos0)

(7.39)

which agreed to ten digits. "k" in (7.39) is the number of A6° in the northern
hemisphere i.e. 90° divided by A8°. During these tests we could also verify an
important relation between the values in the northern and southern hemispheres.
Similar to the relation between the associated Legendre functions computed in the

northern and southern hemisphere (Colombo, 1981, p.15, last paragraph) where

Pon(-0) = P (0) when n+m is even
— _ (7.40)
Pon(=6) = = P (0) when n+m is odd
and between the integrals of one Legendre function where
_NH _SH
Inm(tsrtn) = Ipm(ts,ty) when n+m is even
(7.41)
_NH _SH
Tom(Esrty) = — Ign(tg,ty) when n+m is odd

we have found that between the integrals of the product of two Legendre functions

the following relations exist between the northern NH and southern SH hemispheres
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NH SH
Tnmpg (Esrtn) = Inmpg(ts,ty)  when n+m+p+q is even
(7.42)
_NH _SH
Inmpq(ts,tN) = - Inmpq(ts, tN) when n+m+p+q is odd

These last relations (7.42) like (7.41) and (7.40) permit us to save computer
time by requiring only the values in the northern hemisphere to be computed. The
Fortran routines PNMI and PNMI2 in appendix H compute respectively the Inm(6)
and Tnmpq(e) values required in (4.12) and (6.14). These routines PNMI and

PNMI2 can also be incorporated as subroutines into routines that require them.

While the altimetry-gravimetry problem is the first application known to the

author requiring fnmpq(e) values, these could very possibly be required in the
future for other applications such as the one of Sacerdote and Sanso (1985)

regarding the "Overdetermined b.v.p. in Physical Geodesy" where the Tnmpq(e)

are required to compute their equation (A2.A, p.207).

The recurrence relations developed in the first section of this chapter can be used
for the integral computations required in equation (4.12) while the recurrence
relations of the second section can be used for the computations of all the integrals
required in (6.14). This second set of recurrence relations for the integration of two
associated Legendre functions are developed for the first time. Their validity was
obtained by comparing them with other analytical relations (7.38) and numerical
summations (7.39). This chapter completes the relations needed to solve
numerically the altimetry-gravimetry problem. The next chapter will collect all the
final equations and will analyze this theory of the proposed solution to the altimetry-
gravimetry problem. Then chapter 9 will describe the computations and tests done

during this project.



CHAPTER VIII

COMPUTING THE ALTIMETRY-GRAVIMETRY SPHERICAL
HARMONIC POTENTIAL COEFFICIENTS

8.1 Transforming Altimetry-Gravimetry Coefficients into Spherical
Harmonic Ones.

A
We have seen at equation (3.37) that one can express the disturbing potential T

at the earth's surface into the following two series expressions

~ V"4 V"‘4
T(O,A) =GM ¥ E, X,(0,A) =_GM T, Sn(0,A) . (8.1)
R n=0 R n=0

In the previous chapters we have shown how the orthonormal base functions

X,(8,1) in (8.1) are used to compute the E,, coefficients, herein called the altimetry-

gravimetry coefficients. These coefficients are the solution to the altimetry-

gravimetry problem. In physical geodesy however, the second expansion in (8.1)

is used where the S,(6,A) are the spherical harmonics, see equations (3.2) to (3.5).

Thus it is desired to retransform the altimetry-gravimetry solution E_ into the T,

harmonic coefficients.
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From table 5.3 and using (3.27) one can write the matrix equation

Equation (8.1) can also be written as a matrix equation

- -

Xp 900 So
0

Xq 910 911 Sy

Xp | = 920 921 922 Sy

Xu guo a e e guu Su

A
Tz[EOElEZ"’Eu] XO =[T0T1T2

where |L = v-4. Inserting (8.2) in (8.3) gives

A
TZ[EOEIEZ ...Eu] 900
J10 911

920 921 922

9o

Juu ]

83

(8.2)

(8.4)
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Comparing (8.4) to (8.3) one gets

[ Tg Ty Tz2...Tyl = [ Eg Ey Ep...Eyl | ggo 0
910 911
920 921 Y922
Suo - - - Jup
(8.5)

We know that the above comparison is usually not a valid matrix operation.

However since the S, (6,A)'s are linearly independent one can compare each line

independently which makes (8.5) valid. More clearly, comparing (8.3) and (8.4)

we have

TO So+T1 Sl+...= (EO g00+E1 g10+'") So+ (El g11+E2 g21+...) Sl+”'

(8.6)

Since S, is linearly independent of S, and S, etc., we can write from (8.6)

TO = (Eogoo + Elglo + ... + Euguo) (8.7)

which is the result expressed in (8.5). The matrix relation (8.5) can be simply

written

Tn = X Ep Jpn (8.8)
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where v is given by (2.8) and the coefficients Jpn and E, respectively by (5.11)

and (4.3).

Relation (8.8) is the result sought. This transformation of the E coefficients
into the spherical harmonic coefficients T, will permit one to use the existing
efficient software to compute the components of the Earth's gravity field, gravity
anomalies, geoid undulations, deviations of the vertical, etc. Contrarily to the E,
the T,, coefficients can be compared with existing earth's gravity field expansion
and better analyzed coefficient by coefficient; this is another advantage of this
transformation. But most importantly this transformation allows one to combine
this solution with "satellite-derived potential coefficients". This combination is very
important because it is well known that the low degree spherical harmonic potential
coefficients are best determined from satellite solutions while the high degree
coefficients are best obtained from one using terrestrial data. Both sets complement
each other and their combination permits one to derive the optimum Earth's gravity
field expansion. This sort of combination was performed by Rapp (1978). We
will now focus our attention to the computation requirements and the numerical

computations of our altimetry-gravimetry problem.



8.2 Gathering All Relations for Computations.

All the equations obtained so far that solve the altimetry-gravimetry problem will

be gathered to clearly see the computations required.

From (4.12) one has

nm N-1 i A (m) i B (m) i ]

=_1 X TI,..(0 RE [X, (m)] + IM[X, (m) ]
Fom 47N, i=0 -B (m) A (m)

(8.9)

One can write (8.9) as

i

Enm N-1 i Enm
=_1 X I, i (8.10)

Fom 47, i=0 From

i i
where E;,; and F,;, are the expressions within the brackets of (8.9)ie.

k

Enm A (m) k B (m) k

k = RE [Xp, (m) ] + IM[X,(m)] . (8.11)
Fom ~B (m) A(m)
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Because of (7.41) the computations involved in (8.10) can be reduced in half by

writing it as follows:

i i
Enm E,p (NH) Epp (SH)
N/2 i
=1 2 I,,(0) | i + (1-2*MOD (n+m,2)) i
Fom 47N, 1=0 Fpom (NH) Fpm (SH)
(8.12)

As in (7.41) HN and HS means North and South Hemispheres. And MOD (1, J) is

the remainder of I divided by J.

The same reduction in the computations applies to (6.14), because of (7.42).

We can write (6.14) as

i
Anmpg Anmpg
1
Bhm q N-1 1 Bhm
-3 Tompg () 100 (8.13)
Crhmpg 4T 1i=0 Compg
1
Dnmpq Dnmpq
where
i
Apmpg  A(m-q) B (m~-q)
1
Bnmpq A{m~-q) i B (m-q) i
i = RE [X,, (m-q) ] + IM[Xpp (m-q) ] +
Compg  B(m-q) ~A(m-q)
1
Dhmpg  —B(m-q) A(m-q)
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A (m+q) B (m+q)
-A (m+q) i -B (m+q) i
+ RE [Xp (m+q) ] + IM[Xy, (mta) 1. (8.14)
-B (m+q) A (m+q)
—B (m+q) A(mtq)

Because of (7.42) the computations involved in (8.14) can be reduced by half by

rewriting it as
i
Anmpq Anmpq (NH)
i
Brmpq N-1 i Brmpq (NH)
=1 X Iyppg(® 1
Crmpq T i=0 Crmpq (NH)
i
Dnmpq Dnmpq (NH)
i
Appog (SH)
i
Bnmpq (SH)
+ (1 - 2 MOD(ntmtp+q,2)) 4 . (8.15)
Chmpq (SH)
i
Dmpq (SH)

These relations (8.12) and (8.15) and their notation can be recognized in the two
FORTRAN routines that computes them, FFTENM for (8.12) and FFTABC for
(8.15) in appendix G.
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Going on in view of gathering all the equations required to compute a solution

we have from (5.11)

(8.16)

from which (4.3) becomes

p-1
Ep:gpp[ > Cpn En+Ep‘], p=0,1,2,...,v-4, (8.17)
n=0

(5.11) becomes

p-1
ok = g Cpn 9nk r k<p, P=1,2,...,v-4, (8.18)
P i =k P k=0,1,2, ./ V-5,
(5.44) remains unchanged
n
Cop = - X Ing Cpg'r <P, P=1,2,...,V-4, (8.19)
i ag=0 Pd n=0,1,2,...,v-5,
and (5.45) becomes
p-1 2
1 = - X cppn tuy', p=0,1,2,...,v-4. (8.20)
Ipp n=0

The E, ' coefficients in (8.17) are given by (8.12). The c,,' and u, ' coefficients
in (8.19) and (8.20) are given by (8.15). The relation between the E,' and the

Enm and Fpp is as described in (3.5). The relations between the Cng'sup ' and the
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Anmpq» Bampg Cnmpq and Dy are shown in Table 5.4. Once all the above
relations have been computed up to W =v-4=(N+1)2-5, (see (2.8) and the
paragraph before (3.11)), allows one to compute the final harmonic coefficients

with (8.8), i.e.

V-4
Tx = X Ep gpk » k=0,1,2,...,v-4. (8.21)
p=k

More precisely the computations of (8.17) to (8.20) start as shown in the following

table.

Table 5 Storage Required by the Gram-Schmidt Orthonormalization Process.

We
replace: by: where:

up' 900 900 = ug = 1/(ug')1/2

Eg' Egp Eo = ggo Eo’

Cio' C10 €10 = ~900 C10'

up' 911 911 = uy = 1/(“0120 + up')1/2

Ep! E; E1 =911 (c10 Eg + Eq")

€10 J10 910 = 911 €10 Y00

Co1' C21 €21 = —910 C20' -~ 911 C21'

c20' C20 €20 = ~900 C20'

2 2

uy’ 922 922 = Uz = 1/(-cpp -cpp + uy')l/2
Ep' Ep Ez = 922 (cz0 Eg + cp1 By + Ep')
C20 920 920 = 922 (€20 900 * C21 919)
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Table 5 Storage Required by the Gram-Schmidt Orthonormalization Process.

(Continued).

We
replace: Dby:

C21 921
c32' C32
C31' C31
c30' C30
uz' 933
Ej' Ej3

C30 930
C31 931
€32 932
ETC. ..

where:

921 =
C32 =
C31 =
C30 <

933 =

930 =
931 =

dzz2 =

922 C21 Y11

=920 C30' ~921 C31' ~922 C3z2'
~910 C30' ~911 C31'

=900 €30’

uz = 1/(‘C§o _Csl “C§2 +ug') 1/2
933 (¢3¢0 Egtcsy Ejtcsy Ep + Egz')
933 (€30 Joo tc31 910 +C32 920)

933 (€31 911 *C32 921)

933 €32 922

From this table one finds out that the storage required is as follow. The Cnm Teplace

the c ' and the g, replace the c; also the E,, replace the £, ' and the T,

replace the E,. So a lower triangular matrix g (n, n) and the vector E (n) are the
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storage required to compute the vector T, as shown with the following matrices

equivalence:
up' 900 900
Ccio' up' C10911 910911
Cpp' Cp1' up' C20C21922 920921922
1= 1=
c3p' c¢31' c32' uz' C30C31C32933 930931932933
S - .. ) .. )
and
[ Eo' | [ Eq | [ T ]
Eq! Eq T,
Ez' > E2 &> T2
: 1

The following table gives the size of the arrays required to store the above vector
E (n) and lower triangular matrix g (n, n) when a maximum degree and order of

surface harmonic coefficients is sought.
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Table 6 Vector Sizes for the Altimetry-Gravimetry Solution.

N = Maximum degree and order of surface harmonic
solution,
L = V-3 = (N+1)2-4 = Vector size to store the
above vector E(n),
W(W+1l) /2 = (v=3) (V-2)/2 = Vector size to store the
lower triangular matrix
g(n,n).
E (W) g(U,l) symmetric
N L= v-3 (v=3) (v=2) /2
28 837 350,703
36 1365 932,295
180 32757 536,526,903

The coefficients E,* of (8.12) are computed using FFTENM in appendix G. The
Cpp' anduy’ of (8.15) are computed with FFTABC in appendix G. The results
of FFTENM and FFTABC are entered in ORTHO of appendix G which computes
equations (8.17) to (8.21) as shown in Table 5. The result of ORTHO is T, the
desired spherical harmonic coefficients that solves the altimetry-gravimetry b.v.p..
Geopotential coefficients defined with no units are usually manipulated. Thus by
having previously defined T, Ag and W without units (see around equation

(3.13)) i.e. T(no units)=T(with units)/ (GM/R) and Ag(no units)=Ag(with
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units)/ (GM/R2) , W(o,)(no units)=W(c)(with units) (GM/R) 2 and W(o,)(no
units)=w(c,)(with units) (GM/R2) 2, all the coefficients cnp",up' (€. Anmpg
B

C and Dypq) En ' (€. By and Fp), Cnp, Uns En and T, (i.e. Cpp

nmpqQ> ~Nmpg

and S,;) have no units.

Numerical results are presented in the next chapter. The next section shows

how to make the computations cheaper.



8.3 The Cholesky Factorization.

One might have recognized that equations (8.17) to (8.21) are the relations that
involve the inversion of a matrix. This is proven in this section. The Cholesky
factorization enables one to solve a system of equation without having to compute a
matrix inverse. This is much cheaper than computing the matrix inverse. Freeden
(1983) shows the relation between the Cholesky factorization and the Gram-
Schmidt orthonormalization. As suggested by Freeden (1983) we have used the
efficient routines provided by the mathematical package "LINPACK" (Dongarra et
al, 1979). This section shows how the Cholesky factorization is applied to

compute T, when E,,', c,' and u,, ' are provided, i.e. to compute equations

(8.17) to (8.21).

The coefficients T, are the solution of the system of linear equations (3.17)
where the matrix is the Gram matrix G which contains the c,,' and u,, ' given by

(8.15) or (6.1). The right hand side vector of (3.17) contains the E, ' values given

by (8.9). Since G is symmetric and positive definite G can be decomposed uniquely

in the form

G=CC . (8.22)

-95-
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In (8.22) C is a lower triangular matrix with positive diagonal element. The
splitting of G is known as the Cholesky factorization (Dongarra et al., 1979, p.10-
1). Equation (3.17) can be written as

GT=E" . (8.23)

Inserting (8.22) in (8.23) gives

T
CC T=E" (8.24)
or simply
CE=ZE" (8.25)
where we have defined
T
C T =E . (8.26)

Following these last equations we have used the "LINPACK" subroutines;
DPOFA which find C from ¢ because of (8.22), DPOSL to solve for E from
(8.25) and DPOSL again to solve T from (8.26) which is the desired solution.
The "LINPACK" subroutine DCHDC also finds C from G but by pivoting. The
use and cost of pivoting was found unnecessary due to the high stability of the

Gram matrix G.

We can write (8.5) as

T =D E (8.27)
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where we have defined D as the lower triangular matrix of element gpp. Replacing

(8.26) into (8.27) one gets

T=D C T or T =T CD (8.28)
which is true only if

D =2¢C . (8.29)

This proves that the gpp in (8.5) are the elements of the inverse of C, thus
computing (8.17) to (8.21) is computing the inverse of C. In other words the
Gram-Schmidt orthonormalization does not compute the inverse of the Gram matrix
G butof C, the triangular factorization of G. Since from a numerical point of
view the inversion is often not very economical it is preferable to avoid any

inversion, of G or C, and use the Cholesky factorization.

For comparison with equations (8.17) to (8.21) we here give the relations to

compute the solution by the Cholesky factorization.

The triangular decomposition or Cholesky factorization (8.22) is computed with
Coo = (ug") /2
Cop = Cop' / Coo

and
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p-1
- X

Con = ( Cpn' Cqp Cqn ) / Cpp

a=0
The forward solution (8.25) is computed with

Eg = Eg' / Coo

And the backward solution (8.26) is computed with

Ty-4 = Ey-g4 / Cy-g

n
Tp = ( Bp = X Cok Tn ) / Cpp
k=p+1

(8.30)

(8.31)

(8.32)

The solution using the Cholesky factorization is computed by the routine ORTHOC

in appendix G.

Tt was verified that both the Cholesky factorization using the ORTHOC and the

Gram-Schmidt orthonormalization using the routine ORTHO give the same results.

While it is much more efficient to use the Cholesky than the Gram-Schmidt

solution the Gram-Schmidt equations can be of much more help when analyzing the

solution than the Cholesky equations. With the Cholesky solution one does not see

the base function X,(8,\) and its associated set of coefficients E,,. With the Gram-
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Schmidt solution one finds out that each coefficient E,E1,Ep, ... 18 "independent”

since they are defined as a base vector (associated to a base function). As can be
seen from Table 5 the coefficient E, is computed from the previous coefficients £
and E and the coefficient E3 would be computed from the previous coefficients
E,qto Eg. This shows that each coefficient Eg, Eq, E, ... is "independent" of

the degree and order of the solution sought in the same way the Com and Sy

coefficients are in the single b.v.p. solution; this is desirable.

Also the Gram-Schmidt solution shows that the last computed coefficients Ty

are "dependent” of the degree and order of the solution, this is undesirable but
unavoidable. As can be seen from equation (8.5) the coefficient T is computed

from the coefficients Eg,Eq,Ey, ... ,up to Ey_4 where v-4 again is the rank of the
soluton. If v is large the effect of the other coefficients E_3 up to the ones at
infinity E,,, will be small on Ty and T4, etc.. But where ever the solution is
truncated, say to degree and order 180 where v—4 = 32756 then from (8.5) or

(8.22)

T32756 = 932756,32756 £32756 . (8.33)
This coefficient would better be defined if computed with the other coefficients up
to infinity such as

T32756 = 932756,32756 E32756 t 932757,32756 E32757 T

+ g32758,32756 E32758 * ... ) (8.34)
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So we should compute terms higher than E, to compute good Ty, coefficients. And

this shows why we must expect the last coefficients to be less well defined and
why it would be acceptable to reject the last coefficients of this least-squares
solution. Again we emphasize that this could be found out only when one studies
the Gram-Schmidt orthonormalization equations and not when one tries to analyze

the equations of the Cholesky factorization.

While it is much faster to compute the Cholesky factorization than the Gram-
Schmidt orthonormalization, the same amount of storage is required. Table 6 gives
the size of the two main arrays required during the computations. The last column
gives the number of different elements in the symmetric Gram matrix. Since we
have not tried to use magnetic disk or tape storage to solve the problem due to high
cost, we can see from Table 6 that at least 350K words (double precision values) is
required for a solution up to degree and order 28,28. We can also see from Table 6
that the computer storage and the computation time required increases drastically
with the number of coefficients we want to solve for. To overcome this main
drawback of the solution we have tried to solve the problem by using only the
diagonal of the Gram matrix. The diagonal elements are generally ten times larger
than the other elements. These numerical results and others, with their analysis,

will be given in next chapter.

Finally this chapter has shown that the least-squares solution to a mixed b.v.p.
like the altimetry-gravimetry problem involves the computations of coefficients such
as (8.12) and (8.15) and the solution of a system of linear equations by the

Cholesky factorization (equations (8.30), (8.31) and (8.32)) which can be
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computed using the efficient Fortran routines of the "LINPACK" package or of the

"IMSL" library.



CHAPTER IX
NUMERICAL RESULTS AND ANALYSIS

All calculations were carried out on the Ohio State University's AMDHAL 470
V/8 computer using the IBM's Multiple Virtual Storage (MVS) operating system
and the VS FORTRAN Level 4.0 (Oct 1984) compiler.

The solution to the altimetry-gravimetry problem as proposed here from chapters
2 to 8 was tested using geopotential coefficients, those of GEML2 (Lerch et al.,
1982). They are complete to degree 20 with additional terms to degree 30, order
28. Large matrices can be manipulated by direct access files and magnetic tapes.
By not doing so, for financial reasons, we restricted ourselves to the size of
matrices involved in the solution that would fit the memory available in the
computer. This restricted us to test our solution on recovering the GEML2

coefficients only up to degree 28 and order 28.

Up to degree 28, the GEML2 fully normalized potential coefficients (Cp, and
S,.) Were used to compute mean gravity anomalies Ag; y and mean disturbing
potential values T} 4 for equiangular blocks ©; 5 of size equal to 1 degree of latitude
by 1 degree of longitude. Such values were computed on a regular grid covering
the Earth (spherical unit sphere) using the efficient FFT harmonic synthesis of
(Colombo, 1981). A brief summary of the equations involved to compute such a
grid of mean values is given in appendix F, while the FORTRAN routine used is
FFTDGN in appendix G. All the computations in this volume were done on a

sphere.

-102-
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From the values of the two regular grids (Ag 14 andT_I?ij) we have produced one
regular grid of mixed values of Ag;y and T;4 tosimulate the mixed boundary
value problem. The situation is shown on Figure 1 where Ag 15 aregiven on
continents and T; 5 on oceans. That mean disturbing potential values T,y be
provided or mean geoid undulations values N 1 5 be provided is of no concern here
since according to Bruns' formula, N=T /7y (HM, 1967, eq.(2-144) ) and I\Tij

can always be transformed into T ;4 using normal gravity v.

Of more concern is the fact that the set of T; 5 obtained from satellite altimetry
might not be consistent with the set of Kc}ij obtained from terrestrial gravimeter.
In other words, if one computes the mean of the altimetry data T 15 givenover the
oceans oy this mean value is directly related to the zero degree harmonic Ty(C1)
which zero degree term defines an ellipsoid different from the mean earth ellipsoid
(HM, Section 2-19). Similarly the mean value of the gravimetry data Ag ;4 alone is
related to a zero degree harmonic Agy(G,) which will most probably define another
ellipsoid. To be consistent, the solution must shift or scale at least one of the data
sets, the T i4's orthe Ag. i4's, in such a way that the solution defines only one
ellipsoid. To overcome this inconsistency between Ag; 4 and T, some authors

like Sacerdote and Sanso (1985) suggest a solution with overlapping areas between

the two sets of T 5 and_A—gij. Svensson (1983, p.350) states

"in the spherical case it is shown that the problem has one and only one

solution ..., and provided that the zero degree component is removed.”.
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In response to this statement, Arnold (1984) suggests that the mean square value of
T (G1) (i.e. fp) and of Ag (03) (ie. Ky should be the weight used in his least-
squares solution (Arnold, 1981) which we are developing in this dissertation.

According to Arnold this scaling by the mean square values would remove this

inconsistency between the two sets Ag; 5 and T; 5. Arnold (1984, p.350) states

"In the least-square solution of the mixed b.v.p. the relative residuals T/Wy
and Ag/pg come to be adjusted and not the heterogeneous residuals T and
Ag. Wypand pgare the associated mean square residuals. The mean square

values of T/Wyand Ag/Ugare both equal to unity.”

As shown later we have used the scaling by the mean square values (see equation
4.5) and it proves to be exact in the sense that this scaling was required to solve the
altimetry-gravimetry problem. However the precise reason for this weight

procedure as suggested by Arnold (1984) is not clear in his paper.

For our numerical solution to be feasible we had to use an efficient way of
performing the calculation. Without the FFT applications of Colombo (1981) it
would not have been financially possible. The FFT application restricts one to use

a regular grid where overlapping is not possible.

To find an FFT harmonic analysis solution with overlapping data (two values,

one Ag 13 and one T 15, for the same block G 5 ), if at all possible, is a suggestion

for future research.



105

Apart from this altimetry-gravimetry problem with different data on continents
and oceans (Figure 1) we have also tried our solution on a mixed b.v.p. which has

a random distribution of Ag; 4 and T 5 (Figure 2). Results obtained were similar to

the continent/ocean case and are thus not shown.

To later analyze the solution of the mixed b.v.p. we first solved the single
b.v.p. with the same apriori model. That is, the previously derived 1° X 1° mean
values Ag i3 computed using the GEML2 coefficients, up to degree 28, were input
in the harmonic analysis FFTCNM routine of appendix G to compute back potential

coefficients. These new potential coefficients were input in the harmonic synthesis

FFTDGN routine to compute another set of Ag; ;. The agreement of the two sets

of 55-13-, the maximum difference, the RMS difference and the mean of the

difference between the two sets are given on the first line of Table 7.

As we have seen in section 2.2 this solution of the single b.v.p. is a least-
squares solution. We are not performing a least-squares adjustment but as a
solution of the least-squares method the residuals should be minimized. When
computing (E.1) with (E.6) we make approximations. These approximations are
due to the use of mean values and of an approximated de-smoothing operator M,
sometimes referred to as a noise amplificator. Because of these approximations the
residuals (3.11) and (3.12) are not minimized. When trying to recover a
geopotential model known apriori, as done here, the residuals should be zero.
Similar to the least-squares adjustment where one must iterate because the model
has been linearized we can iterate the solution to minimize the residuals. Thus the
set of differences 0Ag 1 5 between the two sets of Ag ;4 are the residuals and these
were entered in the analysis FFTCNM routine to compute corrections to potential

coefficients. These corrections are added to the last set of potential coefficients
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50% of 1°X1° Mean Disturbing Potential Values.
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using ADDCNM routine, also in appendix G. These new potential coefficients are

entered into the synthesis FFTDGN routine to compute another set of Ag ;- The

maximum difference, the RMS difference and the mean of the difference between

this set and the first set of Agy; s derived from GEML2 are given in Table 7 as the 1

iteration case. The ADDDGN routine, also in appendix G, computes these statistics
and creates the next set of gravity anomaly differences, 6Ag; 4 for the next
iteration. As seen in Table 7 the RMS differences converge, and it is possible to
recover all the GEML2 coefficients exactly to 7 digits after 5 iterations. The

iteration process is shown on a flow chart in Figure 3.

One important remark should be given at this point. A least-squares solution
where the residuals are minimized after some iterations shall be referred to as an
"iterated" solution. When the mathematical model is not linear it takes some
iterations to minimize the residuals. Here the mathematical model is linear but
because of approximations during the computations it also requires some iterations
to minimize the residuals. However, we will see that in practice, with actual
observed data, an iterated solution may not be desired. Iterating causes all the
frequency information up to infinity to enter into the finite number of coefficients,
thus distorting the coefficients. On the other hand we will also see that one or two
iterations might not yet distort the coefficients. There may be a problem here in
deciding when to stop iterating. This problem might require further studies. In any
case if no iteration is performed then the computation of equation (E.1) with (E.6)
is called a "deterministic" solution. For the same reason as above, a deterministic
solution instead of an iterated solution might be desired for the mixed altimetry-
gravimetry b.v.p.. And we will show that this option is offered by the solution

presented in this dissertation.



Table 7 Statistics on Single b.v.p. solution using GEML?2
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dAg (mgals) ON (metres)

ITERATION| MEAN RMS MAX MIN |MEAN RMS MAX MIN

0 0.0 .06 .07 =-.06{ 0.0 .008 .06 -.0¢6

1 0.0 .00 .00 .00} 0.0 .000 .00 .00

Ag (mgals) (metres)
MEAN RMS MAX MIN |MEAN RMS MAX MIN
0.0 14.06 44.0 -51.6} 0.0 30.31 76.6 —-104.2
SAg (%) ON (%)
Degree | # of ¥ of

n coeff. | iter.: O 1 0 1
2 5 .01 .00 .00 .00
3 7 .01 .00 .01 .00
4 g .01 .00 .01 .00
5 11 .03 .00 .03 .00
6 13 .03 .00 .03 .00
7 15 .04 .00 .05 .00
8 17 .05 .00 .06 .00
9 19 .08 .00 .08 .00
10 21 .06 .00 .07 .00
11 23 .10 .00 .14 .00
12 25 .11 .00 .13 .00
13 27 .11 .00 .15 .00
14 29 .10 .00 .13 .00
15 31 17 .00 .23 .00
16 33 .14 .00 .15 .00
17 35 .22 .00 .30 .00
18 37 .15 .00 .16 .00
19 39 .17 .00 .25 .00
20 41 21 .00 .23 .00
21 31 .28 .00 .39 .00
22 31 .24 .00 .25 .00
23 11 .31 .00 .41 .00
24 11 .43 .00 .48 .00
25 11 .27 .00 .34 .00
26 5 .50 .00 .46 .00
27 9 .31 .00 .31 .00
28 11 .25 .00 .24 .00
29 6 n/a n/a n/a n/a
30 2 n/a n/a n/a n/a
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Figure 3 Flow Chart to Test the Single b.v.p. Solution

(Boxes are FORTRAN routines and curves are data sets).
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The same process of iteration as above was applied using a set of mean geoid

undulations N, . The statistics are also given in Table 7. The deterministic

solution is given as the 0 iteration case.

The same process of iteration can be applied to a larger set of geopotential
coefficients. Those of (Rapp, 1981) known up to degree and order 180 were used
and recovered to produce similar statistics (see Table 8). The iterations converge
and Table 8 indicates that it would be possible to recover all the coefficients exactly.
As in Table 7, in the lower part of Table 8 we give in percentage the disagreement
between the recovered coefficients versus the original coefficients and this by
degree and for each iteration. It is interesting to note how the coefficients converge,
the lowest first and the higher last, as it will be the case for the mixed b.v.p.

solution. Again the deterministic solution is given as the O iteration case.

The same process of iteration can be applied without using the de-smoothing

operator M. In this case the convergence is slower but still converges as shown in
Table 9. This is important since integrals for which the My, function would not be
known could still be computed accurately. Knowing the 1, function or its
approximation is however useful for faster convergence. Our results in Table 8 and
9 show the correctness and effectiveness of the de-smoothing operator m,,. Without
using M, it took 4 iterations to recover the 64800 N 13 values with an RMS

difference of 11 cm while using m,, it took 2 iterations to recover the 64800 N i3

values with an RMS difference of 10 cm. The deterministic solution is the case

with no iteration. Comparing the zero iteration case of the last two tables one
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Table 8  Statistics on Single b.v.p. Solution using RAPP81 and the
De-smoothing Operator Np,.
8Ag (mgals) SN (metres)
ITERATION |MEAN RMS MAX MIN |MEAN RMS MAX MIN
0 0.0 2.09 38.5 -26.9} 0.0 .133
1 0.0 .49 8.2 -6.1| 0.0 .029
2 0.0 .15 1.9 -1.6] 0.0 .010 n/a
3 0.0 .06 7 -.71 0.0 .006
4 0.0 .03 6 -.6, 0.0 .005
Ag (mgals) N (metres)
MEAN RMS MAX MIN |MEAN RMS MAX MIN
0.0 22.5 255 =-229| 0.0 30.37 81.7 -106.8
0Ag (%)
Degree | # of # of
n coeff.|iter.: O 1 2 3 4
2 5 .01 .00 .00 +00 .00
3 7 .01 .00 .00 .00 .00
4 9 .01 .00 .00 .00 .00
5 11 .03 .00 .00 .00 .00
6 13 .02 .00 .00 .00 .00
8 15 .05 .00 .00 .00 .00
10 21 .06 .00 .00 .00 .00
20 41 .28 .00 .00 .00 .00
30 61 .47 .01 .00 .00 .00
40 81 .88 .02 .00 .00 .00
50 101 1.21 .04 .00 .00 .00
60 121 1.86 .08 .01 .00 .00
70 141 4.89 .28 .02 .00 .00
80 161 6.89 .53 .04 .00 .00
90 181 8.72 .82 .08 .01 .00
100 201 10.71 1.21 .15 .02 .00
110 221 12.31 1.68 .24 .03 .01
120 241 14.13 2.29 .38 .07 .01
130 261 16.02 3.10 .60 .12 .03
140 281 18.41 4.04 .90 .21 .05
150 301 22.22 5.46 1.43 .37 11
160 321 24.58 7.02 2.03 .59 .18
170 341 28.57 8.64 2.85 .94 .36
177 355 29.28 9.86 3.43 1.24 .53
178 357 29.76 11.00 5.47 3.98 3.54
179 359 28.51 10.01 4.24 2.31 1.49
180 361 30.56 15.75 12.11 10.77 9.97




Table 9

Statistics on Single b.v.p. Solution using RAPP81 and no
De-smoothing operator T,
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dAg (mgals)

8N (metres)

ITERATION| MEAN RMS MAX MIN |MEAN RMS MAX MIN

0 3.83 .255

1 1.43 .088
2 n/a .56 n/a n/al n/a .040 n/a n/a

3 .19 .020

4 .06 .011

Ag (mgals) N (metres)

MEAN RMS MAX MIN |MEAN RMS MAX MIN
0.0 22.5 255 -229| 0.0 30.37 81.7 -106.8

dAg (%)

Degree | # of # of

n coeff.| iter.: O 1 2 3 4
2 5 .01 .00 .00 .00 .00
3 7 .02 .00 .00 .00 .00
4 9 .04 .00 .00 .00 .00
5 11 .06 .00 .00 .00 .00
6 13 .09 .00 .00 .00 .00
8 15 .16 .00 .00 .00 .00
10 21 .24 .00 .00 .00 .00
20 41 1.00 .01 .00 .00 .00
30 61 2.06 .04 .00 .00 .00
40 81 3.48 .13 .01 .00 .00
50 101 5.59 .33 .02 .00 .00
60 121 7.81 . 64 .05 .00 .00
70 141 10.18 1.10 .12 .01 .00
80 161 13.58 1.95 .29 .04 .01
90 181 17.12 3.04 .55 .10 .02
100 201 20.66 4.43 .97 .21 .05
110 221 24.03 6.05 1.55 .40 L1l
120 241 27.61 8.02 2.38 .72 .22
130 261 31.21 10.36 3.53 1.22 .43
140 281 35.14 13.16 5.05 1.96 .77
150 301 39.94 16.90 7.30 3.20 1.41
160 321 43.88 20.51 9.80 4.74 2.30
170 341 48.60 24.89 12.99 6.85 3.80
177 355 51.14 27.59 15.22 8.50 4.78
178 357 51.31 28.22 16.21 9.84 6.51
179 359 51.76 27.98 15.61 9.01 5.43
180 361 50.91 29.42 19.29 14.55 2.31
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verifies how useful the use of the de-smoothing operator is for the deterministic
solution since it enables us to recover the coefficients two times more accurately,
with an RMS difference of .133 metres (in Table 8) instead of .255 metres (in

Table 9).

The same process of iteration can now be applied to our solution of the mixed

b.v.p.. The same tables will be produced and compared with the preceding ones.

The two sets of Ag:

15 and T; produced earlier from GEML2 are entered into

the FFTENM routine, with the continent/ocean distribution. This routine computes
the E,', i.e. E,,and F . coefficients using equation (8.12) (which is also (4.4)).
The FFTABC routine used the same distribution to compute the ¢, " and u,’ i.e.

the & B C and D

nmpe> Bampg coefficients using (8.15) (which is also

nmpqg nmpqgq

(6.1)). These two pieces of software (FFTENM and FFTABC) use FFT but not as
efficiently as the FFTCNM and FFTDGN routines do. This is due to the (n-1)

and (n-1) (p-1) factors inequations (4.4) and (6.1) that must be applied to the
Ag ;4 values while it is not required for the T ;4 values. This causes the row of
values along one latitude which is entered to FFTCC IMSL subroutine to be

dependent on "n" or "n and p". To visualize the problem we can represent one row

of 45° X 45° mean values as
T11 Tip T3 T4 Tis Ty Ty17 Tig

This latitudinal row of values (without units) is entered into FFTCC and the
frequencies m=0,1,2, 3,4 are returned. In the usual harmonic synthesis
FFTCNM case, the task is then completed since we can compute all the coefficients

from these frequency informations,m= 0, 1,2, 3, 4. Howeverin FFTENM and
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FFTABC we have to enter the row again and again in FFTCC for each factor

(n-1) or (n-1) (p-1) like this

lst time: Ti11 T12 T13 T1ga Agys Agye Ti7 Tig
2nd time: _Tll le T—13 @14 25&15 25—9:16 '_I‘_17 T—lg
and so on: _Tll le 513 'i‘l‘l 35&15 3@'16 Tl? T-IB

To find a solution to this problem is another suggestion for future research that
would improve the efficiency of our solution. Because of this problem FFTENM is
at least 25 times slower than FFTCNM. The computer control processing unit
(cpu) times are given in Table 10. FFTABC suffers from the same problem as
FETENM but in addition it has to compute many many more coefficients. As
shown in Table 10 FFTCNM or FFTENM computes 2*NENM coefficients
where NENM = (NMAX) (NMAX+1) /2 while FFTABC computes 4 *NANMPQ
coefficients where NANMPQ = (NENM) (NENM+1) /2, thus is much much more

time consuming than FFTENM.

The two sets of coefficients E,p, Fpp and A oo Bompgr Cnmpg 304 Dnmpg
representing E,' and c,,,' and uy,' are then entered into the ORTHO routine to
perform the Gram-Schmid orthonormalization, equations (8-17) to (8- 21). This

provides us with the final deterministic solution.

The same solution is obtained if instead of ORTHO we use the ORTHOC
routine which performs the Cholesky Factorization, equations (8.30) to (8.32)

(which is also (8.22), (8.25) and (8.26)).
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It was verified that both routines, ORTHO and ORTHOC, give the same
solution but the second routine is, as expected, much faster. The cpu times are
given in Table 10. The output of this ORTHOC routine is our final solution to the

altimetry-gravimetry b.v.p. given as spherical harmonic potential coefficients.

From these coefficients a 1° X 1° regular grid of 64800 mean Ziéij values were
computed. Another 64800 mean T 15 values covering the Earth were also

computed. These two sets can be compared to the original two sets Ag i5and Ty 4

derived earlier from GEML2. The statistics are given in Table 11. The zero (0)
iteration case is the deterministic solution just obtained. This table shows the result

where the weight function was set to one (unity). We will later be able to

appreciate the improvement brought by using the mean square values of T (G;)

As previously noted we can iterate the solution and look at the convergence,
Figure 4 shows the flow chart of the computations involved and of the iteration
process. The one (1) and two (2) iteration cases in Table 11 show that it is
converging, which shows the correctness of the theory and of the numerical
computations (routines) in this dissertation. However one can see in the lower part
of the table how strange the first degrees 2, 3, 4 and 5 converge with the agreement
decreasing after 1 iteration and then increasing. Also the zero (0) iteration case does
not show an as good agreement as in the single b.v.p. solution. This is seen by
comparing the first line of Table 11 with the first line of Table 7. A root mean

square value of 1.02 mgals is obtained instead of 0.06 mgals. On the same line we

can notice that the mean value of the 64800 Ag; 5 recovered is no longer zero. The
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Table 11 Statistics on Mixed b.v.p. Solution using GEML2 with Unity as

Weight.
0Ag (mgals) ON (metres)

ITERATION| MEAN RMS MAX MIN | MEAN RMS MAX MIN

0 -.06 1.02 6.2 -5.5{0.40 2.08 5.0 -4.5

1 -.02 .39 2.7 =2.41-.10 .80 2.3 -2.5

2 -.01 .11 7 -. |-.06 .38 9 -.9

Ag (mgals) N (metres)
MEAN RMS MAX MIN|MEAN RMS MAX MIN
0.00 14.06 44.0 ~-51.6f 0.0 30.31 76.6 -104.2
dAg (%)
Degree | # of ¥ of

n coeff. | iter.: O 1 2
2 5 .17 1.63 .76
3 7 .43 1.35 .44
4 9 .81 1.83 .48
5 11 .87 2.20 .49
6 13 1.71 1.56 .47
7 15 2.20 .78 .35
8 17 3.35 1.82 .65
9 19 3.96 2.16 .66
10 21 3.04 2.79 .75
11 23 4.89 2.95 .87
12 25 5.80 3.53 .93
13 27 5.20 2.29 .70
14 29 6.92 3.67 1.05
15 31 9.77 4.08 1.21
16 33 10.26 5.11 1.47
17 35 12.49 5.44 1.73
18 37 9.66 4.51 1.25
19 39 12.82 5.19 1.40
20 41 11.38 4.64 1.44
21 31 19.91 5.43 1.64
22 31 15.86 4.79 1.84
23 11 15.31 7.76 2.19
24 11 14.35 4.77 1.48
25 11 15.69 5.22 1.66
26 5 24 .74 5.82 1.37
27 ) 19.18 4,24 1.17
28 11 19.00 3.61 1.10
29 6 n/a n/a n/a
30 2 n/a n/a n/a
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Figure 4 Flow Chart to Test the Mixed b.v.p. Solution. (Boxes are FORTRAN
routines and curves are data sets).
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solution is obviously wrong when no weight is used. The following test corrected

the situation.

Table 12 shows the same computations with the Ag; ; and T34 now scaled by

their mean square values as computed by (4.5). Now the convergence is almost as

fast as in the single b.v.p. solution (compare Table 12 with Table 7). And now the

mean value of the 64800 Ag; 5 computed from the recovered coefficients is zero.

And the mean value of the 64800 mean T, 4 values computed from the recovered

coefficients is also zero. The improvement obtained here, with a convergence in
only 3 iterations, proves undoubtedly that it is mandatory to use some kind of
weight in the solution. The use of the mean square values is one possibility.
However it is not understood how this scaling affects the mean value (and the zero
degree harmonic). As mentionned earlier it is not clear why Arnold (1984, p.350)
suggested this weight. Further research would be required to find out if
the mean square values are the only weights that would solve the problem. The

mean value in Table 12 was computed from the 64800 mean Ag 14 values derived

from the coefficients of the solution. The mean value being zero should indicate

that the Coo harmonic of the solution is zero. However the C,, term was not
directly computed here since the software was developed to compute the
coefficients starting at C,q. In the future it would be more appropriate, specially
with real data, to compute the Cy, coefficient through the Cholesky solution and
verify how close to zero Cgq really is. Inany case the results in Table 12 prove
that we have a viable solution to the mixed b.v.p.. For the deterministic solution
i.e. without iteration the 64800 Ag 14 are recovered with a RMS difference of

0.48 mgals and the ﬁij with a RMS difference of 0.18 metre (Table 12).
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Table 12 Statistics on Mixed b.v.p. Solution using GEML.2 with the Mean

Square Values as Weight.
0Ag (mgals) ON (metres)

ITERATION| MEAN RMS MAX MIN|MEAN RMS MAX MIN

0 0.0 .48 2.21 -2.63} 0.0 .182 .91 -1.17

1 0.0 .01 .0 ~-.04, 0.0 .002 .02 -.02

2 0.0 .00 .00 .00] 0.0 .000 .00 .00

Ag (mgals) N (metres)
MEAN RMS MAX MIN | MEAN RMS MAX MIN
0.00 14.06 44.0 -51.6} 0.0 30.31 76.6 -104.2
6Ag (%)
Degree | # of # of

n coeff. | iter.: O 1 2
2 5 .07 .00 .00
3 7 .14 .00 .00
4 9 .32 .00 .00
5 11 .37 .00 .00
6 13 .64 .01 .00
7 15 1.00 .01 .00
8 17 1.42 .01 .00
S 18 1.65 .01 .00
10 21 1.50 .01 .00
11 23 2.32 .03 .00
12 25 2.53 .03 .00
13 27 2.42 .04 .00
14 29 2.80 .04 .00
15 31 3.83 .05 .00
16 33 4.48 .07 .00
17 35 4,86 .05 .00
18 37 4,03 .06 .00
19 39 4,63 .06 .00
20 41 4,94 .07 .00
21 31 8.09 .10 .00
22 31 5.97 .10 .00
23 11 5.06 .09 .00
24 11 5.29 .09 .00
25 11 6.24 .12 .00
26 5 8.83 12 .00
27 9 10.82 .16 .00
28 11 12 .37 .13 .00
29 6 n/a n/a n/a
30 2 n/a n/a n/a
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As a check, the software developed here that solve the mixed b.v.p. must also

solve the single b.v.p.. First we entered only the Ag ;14 in FFTENM to compute
the £, and F,, coefficients. Asseen in (4.4) these coefficients are multiplied by
(n-1) instead of being divided by (n-1) as in the familiar equation (E.1). But
FFTABC computes for this single b.v.p. case a Gram matrix (left matrix of
equation 3.17) which is diagonal and with terms in the diagonal which are equal to
(n-1) (n-1) coming from the factor (n-1) (p-1). After having solved the
system of equations using ORTHOC the results were exactly the same as the output
from FFTCNM i.e. of the single b.v.p.. This was demonstrated analytically in

chapter 3 just before equation (3.17).

All the software mentioned here can be found in appendix G; they are: PNMI,
FFTDGN, FFTCNM, ADDDGN, ADDCNM, PNMI2, FFTENM, FFTABC,
ORTHO and ORTHOC.

As was mentioned at the end of chapter 8 and as also seen from the cpu times in
Table 10 the main drawback of the solution is the large system of equations to
solve. To overcome this problem we have tried to solve the system by inverting
only the diagonal. This possibility is very attractive since it would make the
solution applicable with the existing mainframe computers and for high degree

solution. Inverting the diagonal is no cost compared to solving a system of

equations. Inverting the diagonal also means thatonly the integrals T, . (8)
and the coefficients A, and B, (instead of Thmpg (9) PAnmpgr Bampo

Crhmpg and Dy ) are required to be computed which reduces drastically the

number of coefficients to be computed. Table 13 shows the results of 5 iterations
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Table 13 Statistics on Mixed b.v.p. Solution using GEML2 with the Mean Square
Values as Weight and using only the Diagonal of the Gram Matrix

dAg (mgals) ON (metres)
ITERATION |MEAN RMS MAX MIN |MEAN RMS MAX MIN
0 0.0 17.0 90.3 =105} 0.0 12.2 56.6 =-69.1
1 0.0 7.0 47.8 -341 0.0 5.9 36.6 =27.0
2 0.0 4.2 27.9 -261 0.0 3.8 22.2 -=17.8
3 0.0 3.1 17.9 -171 0.0 3.0 19.3 -13.¢
4 0.0 2.7 15.¢6 -191 0.0 2.6 17.0 -13.7
5 0.0 2.5 14.9 -201 0.0 2.3 15.7 =13.5
Ag (mgals) N (metres)
MEAN RMS MAX MIN |MEAN RMS MAX MIN
0.00 14.06 44.0 -51.6] 0.0 30.31 76.6 -104.2
SAg (%)
Degree| # of # of
n coeff.|iter.: O 1 2 3 4 5
2 5 11 6 3 3 2 2
3 7 18 10 7 5 4 4
4 9 34 20 16 12 11 10
5 11 62 33 23 18 15 14
6 13 60 43 26 21 17 15
7 15 79 36 20 16 13 12
8 17 81 44 26 22 19 18
9 1¢ 147 64 38 32 27 25
10 21 150 62 42 35 31 28
11 23 156 49 33 26 24 22
12 25 204 67 38 30 25 22
13 27 177 55 35 30 27 25
14 29 222 52 35 30 27 25
15 31 160 54 30 26 22 20
16 33 233 47 31 30 27 27
17 35 261 63 36 35 33 32
18 37 179 54 28 22 20 19
1% 39 201 71 38 30 27 25
20 41 210 94 42 28 25 24
21 31 260 112 53 28 26 26
22 31 193 86 47 26 26 26
23 11 89 96 48 25 23 22
24 11 154 110 57 19 20 21
25 11 148 S0 6l 14 14 13
26 5 259 138 108 8 17 22
27 9 139 82 53 13 14 13
28 11 132 82 44 11 10 10
29 6 n/a n/a n/a n/a n/a n/a
30 2 n/a n/a n/a n/a n/a n/a
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where we are trying to recover the GEML2 coefficients. It is converging but if we
compare the RMS with the ones of Table 12 the convergence is rather slow. In fact
it does not dispose one to try solving for higher degree solution. Some way to
accelerate the convergence should be assessed. This is another suggestion for
further research. The use of a banded matrix (Wenzel, 1985) could be a possible
compromise between the use of the diagonal and a full matrix which could improve
the convergence and reduce the cpu time. Only for an iterated solution is that option
possible. For a deterministic solution no iteration is permitted and one must solve
the system of equations with the full Gram matrix; unless one accepts that few
iterations do not distort the coefficients. Only further testing will answer this

question.

Meanwhile, it is easy to be convinced that this solution is to the mixed b.v.p.
what the harmonic orthogonal relationship is to the classical single b.v.p. in
physical geodesy. It is certainly the most equivalent solution. Thus we can do all
the testing with the single b.v.p. and the results and understanding will apply to the
mixed b.v.p. as well. This is why we did other testing with the single b.v.p.
which can be done with a set of coefficients of higher degree and at lower cost than

the mixed solution.

As shown by Colombo (1981) the computation of the spherical harmonic
coefficients is contaminated by the sampling error. The "sampling error"
(Colombo, 1981, p.13) includes two errors, the "aliasing error" and the
"quadrature error”. The aliasing error is commonly encountered in Fourier
analysis. It is the error resulting from frequencies in the data to analyse, being

mixed with other frequencies. To have mixed frequencies is to have frequencies



125

added or subtracted with other frequencies. It is then said to have "aliased
frequencies”. The quadrature error is the error resulting from the numerical
integration. Some integrals satisfy the mean-value theorem for integrals and their
numerical integration is performed exactly without quadrature error. This is the
case in Fourier analysis where the Fourier integral formulas can be computed
exactly using finite discrete Fourier formulas dependent on some regular grid
(Colombo, 1981, p.10). In spherical harmonic analysis the second theorem of the
mean for integrals (Gerald and Wheatley, 1984, p.A.3) could be satisfied if a
special grid was used where the parallels are situated at the same latitudes as the
zeros of Py, (cosB) (Colombo, 1981, p.12) (Payne, 1971). Because an equal
angular grid is used, for practical reasons, the second theorem of the mean for
integrals is not satisfied and the numerical integration gives rise to a numerical
integration error, the quadrature error. Note that even if the quadrature error was
eliminated using the special grid we would still be left with the aliasing error. The
de-smoothing operator is used to attenuate the sampling error, it does not eliminate

it completely.

During numerical simulations the aliasing error can be made totally absent and
the quadrature error can then be eliminated completely. These simulations are very
instructive and the results will be shown below. In practice however the quadrature
error and the aliasing error can no longer be separated and we refer to them by the

sampling error,

The fact that the iterative process permits one to recover the coefficients exactly
is true only when there is no aliased frequency in the data to analyse. In this case

the recovered coefficients have no aliasing error and the quadrature error can be
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eliminated by iterations. Such regular grid of data (point or mean gravity
anomalies) which does not contain aliased frequencies can always be computed
using the harmonic synthesis (appendix F). When N is the maximum degree at
which an apriori geopotential model is used, the rule to compute a regular grid of
values without aliasing the frequencies is to compute point values at every A8° <
180°/N or mean values of size AB° < 180°/N . If this rule is not respected the
grid values will contain aliased frequencies. This will be numerically demonstrated
below. This rule is in accordance with the Nyquist frequency in Fourier analysis.
It can be shown that "k " values regularly spaced on a circle where k = 180/A8°
can contain only N non-aliased frequencies where N<k ie. N <180°/A6°.

This rule has important implications on real data. A grid of "observed" gravity
anomalies or geoid undulations of size A6° contains an infinite number of
frequencies, and thus N > 180°/A6°, and the grid contains aliased frequencies.
In that case the coefficients obtained from the harmonic analysis will be tainted with
the aliasing error, in addition to the quadrature error, and the iterative process under
the effect of the aliasing error will produce distorted coefficients. This will be
simulated below. However the simulation will show that it takes more than one

iteration to distort the solution and that one iteration can improve the solution.

There is also another very important advantage of the iteration process. We

know that if the Pellinen-Meiss] smoothing operator B, or the de-smoothing

operator M, would not be known we would not be able to recover as well the

coefficients. This is true for the case of the single b.v.p. as well as for the case of
the mixed b.v.p.. The de-smoothing operator is known for these two cases on the
sphere only. With the iteration process it is not required to know the smoothing

operator. Hence in cases where we are unable to derive the smoothing operator as
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for the complicated cases involving the ellipsoid or the topography the iteration

process would enable us to recover acceptably well the coefficients.

The following simulations were done to sustain these facts. We have seen that
using the iteration process we can recover all the coefficients of the RAPPS81 set, up
to degree 180, from 1° X 1° mean anomalies (Table 8). This time only the first
coefficients up to degree 36 will be recovered from the same set of 1° X 1° mean
anomalies computed from the coefficients up to degree 180 of RAPP81. The
calculations are, however, difficult to follow when one iterates the solution. One
should follow the iterative computations using the flow chart in Figure 3. From
RAPP81 to degree 180, 1° X 1° mean anomalies are computed. From these mean
anomalies, a first set of coefficients up to degree 36 are recovered . From these
coefficients, a new set of 1° X 1° mean anomalies are computed. This set of mean
anomalies is subtracted from the initial set of 1° X 1° mean anomalies computed
from RAPP81 coefficients to degree 180. Here the residuals of equation (3.12)
have just been computed and these are being minimized in the iteration process.
They are large as expected with a RMS of 16.76 mgals (Table 14) compared to the
RMS of 22.54 mgals (Table 14) for the true set of 1° X 1° mean anomalies
computed from the RAPP81 coefficients to degree 180 and compared to the RMS
of 15.07 mgals (Table 14) of the true set of 1° X 1° mean anomalies computed
from the coefficients up to degree 36 of RAPP81. The set of 1° X 1° mean
residuals computed above is entered as shown in Figure 3 in the harmonic
"analysis” software to compute corrections to the previously recovered coefficients
up to degree 36. From these improved coefficients up to degree 36 another set of
1° X 1° mean anomalies are computed and their subtraction with the true set of

1°X 1° mean anomalies computed from RAPP81 to degree 180 gives the new
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Table 14 Statistics on Single b.v.p. Solution using RAPP81 and Recovering up
to Degree 36 From 1 Degree Mean Anomalies.

0Ag (mgals) (36-36)* | 8Ag (mgals) (36-180)**

ITERATION|MEAN RMS MAX MIN|MEAN RMS MAX MIN

0 0.0 .03 .2 =.2| 0.0 16.76 235.7 =-203.1

1 0.0 .01 1 -.1] 0.0 16.76 235.7 -203.1

true residuals 0.0 16.77 235.8 -203.7
i

Ag (mgals) (36)*** Ag (mgals) (180)****

MEAN RMS MAX  MIN|MEAN RMS  MAX MIN

0.0 15.07 64.4 -59.3| 0.0 22.54 255 =229

Table 15 Statistics on Single b.v.p. Solution using RAPP81 and Recovering up
to Degree 36 From 2 Degree Mean Anomalies.

SAg (mgals) (36-36)*| 8Ag (mgals) (36-180)**

ITERATION| MEAN RMS MAX MIN| MEAN RMS MAX MIN
0 0.0 .42 4.2 ~-3.4] 0.0 11.99 89.7 =-116.2

1 0.0 .37 4.1 -3.3] 0.0 11.9%9 89.4 -116.2

2 0.0 .37 4.1 3.4, 0.0 11.99 89.4 -116.2
true resilduals 0.0 12.00 89.4 -117.6
Ag (mgals) (36)*** Ag (mgals) (180)****

MEAN RMS MAX MIN{ MEAN RMS MAX MIN

0.0 14.68 64.0 -58.2| 0.0 18.98 128.5 -130.7

* Statistics between the Ag ; 4 computed from the recovered coefficients up to
degree 36 and the apriori Ag 1 3 computed from RAPP81 up to degree 36.
** Statistics between the Ag; 5 computed from the recovered coefficients up to
degree 36 and the apriori Ag 14 computed from RAPP81 up to degree 180.

*okrk

kokskok

Statistics of the apriori Ag 14 computed from RAPP81 up to degree 36.
Statistics of the apriori Ag 1 3 computed from RAPPS1 up to degree 180.
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residuals. The RMS of these residuals is shown as the 1 iteration case in Table 14
and they are being minimized at 16.76 mgals, as they should since the true residual
should be 16.77 mgals. The agreement between the coefficients up to degree 36
recovered after each iteration with the RAPP81 coefficients up to degree 36 were
computed. The agreement is given on the left side of Table 14 in terms of RMS
difference values which were derived using the 1° X 1° mean anomalies computed
from the recovered coefficients and the RAPP81 coefficients to degree 36. These
RMS difference values on the left side of Table 14 show that a set of coefficients up
to degree 36 can be recovered exactly by iterations from a set of 64800 mean Ag i3
containing RAPP81 information up to degree 180. One must realize that this result
was not evident because the iterations are processed with large residuals of 16.76
mgals. How come the frequencies information from degree 37 to 180 did not
contaminate the solution during the iterations? These residuals must contain clean
information, i.e. very specific frequencies from degree 37 to degree 180 which
were not aliased with the lower frequencies. And it is so because the 1° X 1° grid
used could contained all the frequencies up to degree 180 according to the above
rule of the Nyquist frequency. We must assume this is why the gravity information
above degree 36 was not mixed with the first 36 degree. In conclusion, with the
iterations the sampling error was reduced to zero. However it is really just the
quadrature error which has been reduced to zero since there was no aliased
frequencies in the data to produce the aliasing error. In the same way we have been
able to recover exactly different set of coefficients to degree 45, 90, 120 and 160
with few iterations and large residuals. In addition we have been able to recover
exactly the coefficients up to degree 90 from a grid of 2° X 2° mean anomalies
computed with RAPP81 up to degree 90. This shows the validity of the above rule

to compute a regular grid without aliasing the frequencies. As long as the grid
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values do not contain aliased frequencies the coefficients can be recovered exactly
after few iterations. But we will see that it is not the case when we use a grid of

data which contains aliased frequencies.

We have computed a set of 2° X 2° mean anomalies from the same RAPPS1
coefficients to degree 180. When computing these 2° X 2° mean anomalies the
frequencies are being aliased. When the harmonic synthesis is performed with the
FFT algorithm it is easy to see that the aliasing of the frequencies occurs when
computing equation (F.21) of appendix F (or Colombo, 1981, p.10 and 106).
With other algorithms such as the efficient trigonometric algorithm in (Rizos, 1979)
or the usual computation on a point-by-point basis, the aliasing of the frequencies is
not as apparent but certainely present since all these algorithms give the same
numerical result. Following the flow chart in Figure 3 we tried to recover a set of
coefficients to degree 36 from this set of 2° X 2° mean anomalies. Table 15 shows
that with the iteration process the residuals converge (right column) to an RMS of
11.99 mgals. But we are unable to recover the coefficients up to degree 36 exactly.
By computing a 2° X 2° grid of mean anomalies from the recovered coefficients up
to degree 36 and subtracting these values from a 2° X 2° grid of mean anomalies
computed using RAPPS81 to degree 36 the RMS differences in the left column of
Table 15 were obtained. These RMS differences of .42, .37 and .37 mgals do not
converge to zero. This is at first glance surprising since we would have thought
that according to the rule of the Nyquist frequency we can recover exactly the
coefficients up to the frequency N = 180/A8° from a grid of A6° X AB°, We
should have been able to recover exactly the coefficients up to degree 90 from a set
of 2° X 2° mean anomalies. However as it is shown here even the frequency

information up to degree 36 is no longer contained in the 2° X 2° mean anomalies
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and this is because the frequencies in the set of 2° X 2° mean anomalies were mixed
ie. aliased by forcing into the grid all the RAPP81 frequency information up to
degree 180. Here we can no longer differentiate between the aliasing error and the
quadrature error, and the RMS differences of .42 and .37 mgal must be referred to

as the sampling error.

Table 16 shows the results when trying to recover a set of coefficients to degree
90 from the same grid of 2° X 2° mean anomalies generated from the RAPP81
coefficients to degree 180. Here again the iterations converge (right column), but
we are unable to recover the anomalies from the coefficients up to degree 90 (left
column). We see two possible explanations. The grid of 2° X 2° mean anomalies
has "lost" some information about the frequencies lower than 90 degrees, possibly
when they were aliased with higher frequencies. Or the solutions in Table 15 and
16 have "added" information from the higher frequencies into the recovered
coefficients. If this is true, then even the deterministic solution has already
distorted the solution with the higher frequencies. This is supported by the RMS
value of the residuals of the deterministic solution (the 0 iteration case) in Table 16
which is 6.21 mgals, smaller than the true residuals of 6.67 mgals (Table 16)

between the 2° X 2° mean anomalies computed with RAPPS1 to degree 90 and to

degree 180.

Table 17 shows the same test but without using the de-smoothing operator

Mn. Without the de-smoothing operator we knew the deterministic solution would

not recover the coefficients as well; compare the RMS value 3.41 mgals (Table 17)

with 2.80 mgals (Table 16). But with one iteration the RMS value (the sampling
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Table 16 Statistics on Single b.v.p. Solution using RAPP81 and Recovering up
to Degree 90 From 2° Mean Anomalies with the De-smoothing Operator

Nn-
dAg (mgals) (90-90)*| B8Ag (mgals) (90-180)**
ITERATION| MEAN RMS MAX MIN |MEAN RMS MAX MIN
0 0.0 2.80 22.0 -35.7| 0.0 6.21 55.5 =-54.5
1 0.0 2.85 23.7 -40.5| 0.0 5.96 54.6 -54.2
2 0.0 2.97 27.7 -42.0] 0.0 5.93 54.7 =53.9
true residuals 0.0 6.67 57.3 -54.0

Ag (mgals) (90)*** Ag (mgals) (180)****

MEAN RMS MAX MIN |MEAN RMS MAX MIN

0.0 17.75 131 -111} 0.0 18.99%9 128.5 -130.7

* Statistics between the Ag 1 4 computed from the recovered coefficients up to
degree 90 and the apriori Ag 1 3 computed from RAPP81 up to degree 90.
™ Statistics between the Ag; 4 computed from the recovered coefficients up to
degree 90 and the apriori Ag 1 3 computed from RAPP81 up to degree 180.
Statistics of the apriori Ag 1 3 computed from RAPP81 up to degree 90.

skokok

okskeok

Statistics of the apriori Ag 1 3 computed from RAPP81 up to degree 180.
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Table 17 Statistics on Single b.v.p. Solution using RAPP81 and Recovering up
to Degree 90 From 2° Mean Anomalies without the De-smoothing

Operator 1.

0Ag (mgals) (90-90)* 0Ag (mgals) (90-180)**

ITERATION| MEAN RMS MAX MIN| MEAN RMS MAX MIN

0 0.0 3.41 35.4 -31.3} 0.0 6.78 58.7 -66.4

1 0.0 2.69 19.8 -38.0}/ 0.0 6.09 54.8 -57.0

2 0.0 2.79 22.0 -39.8, 0.0 5.97 54.7 =-54.8

3 0. 2.89 25.8 ~-41.2!1 0.0 5.94 54.8 -~54.2

true resiquals 0.0 6.67 54.0 -~57.3

Ag (mgals) (90)*** Ag (mgals) (180)****

MEAN RMS MAX MIN|MEAN RMS MAX MIN

0.0 17.75 131 =-111| 0.0 18.99 128.5 -130.7

dAg (%)
Degree | # of ¥ of

n coeff.,| iter.: O 1 2 3
2 5 .06 .04 .04 .04
3 7 .11 .04 .04 .04
4 9 .20 12 12 .12
5 11 .27 .07 .07 .07
) 13 .44 .22 22 .22
7 15 .43 .21 .21 .21
8 17 .77 .31 . 3 .30
10 21 1.18 .49 .49 .49
20 41 4,95 3.18 3.19 3.19
30 61l 11.81 7.26 7.07 7.05
40 81 16.67 11.28 11.29 11.31
50 101 24 .29 15.29 15.06 15.11
60 121 31.33 22.29 22.91 23.43
70 141 43.21 35.89 37.01 38.00
80 161l 50.68 41.84 43.15 44 .97
87 175 53.57 44 .51 46.77 49,81
88 177 60.53 51.55 52.71 55.24
89 179 57.81 50.41 53.24 56.68
50 181 54.28 49.05 53.74 58.12
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error) in Table 17 is now 2.69 mgals, compared to 2.80 mgals, with the
deterministic solution in Table 16. At this point we should agree that the solution
with one iteration without the de-smoothing operator is as acceptable as the
deterministic solution with the de-smoothing operator. It is however dangerous to
iterate too many times as it can distort the solution as shown in Table 17. There are
two important messages one should remember from the above discussion. A set of
1° X 1° "observed" mean gravity anomalies like those of Rapp (1983) is a set in
which the frequencies are "aliased". This is so because a set of "observed" 1° X 1°
mean anomalies contains an infinite number of frequencies of the earth gravity field
but not all the frequencies can be recovered exactly, like the simulated data set with
aliased frequencies. This is very important to remember becau‘se if we try to
compute a set of coefficients up to degree 180 from this set of "observed" 1° X 1°
mean anomalies the iteration process will not converge to zero but it will converge
in the same manner as given in Tables 16 and 17. And because of this the second

important message of all this is that Table 17 shows that if the de-smoothing

operator M, or 3, was not known, one iteration would enable us to obtain as good
or better a solution than using the de-smoothing operator T,. And thus, other
single or mixed b.v.p. involving the ellipsoid or the topography for which the
smoothing operator is not known could be solved. Similar tests but involving few
degrees set of coefficients showed that the solution to the mixed b.v.p. obtained in

this dissertation reacts in the same way as the above tests for the single b.v.p..

In conclusion, it was seen that the coefficients cannot be recovered exactly after
some iterations when using observed gravity anomalies because the frequencies in it
are aliased. We have seen the rule to create a simulated set of anomalies containing

aliased frequencies. And the conclusion is that any test to look at how well
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coefficients can be recovered using any method such as least-squares collocation or
least-squares adjustment or integral formula should be done using such sets of

values containing aliased frequencies.

This chapter has shown numerically a solution to the altimetry-gravimetry
problem. It showed the equivalence between the solution to this mixed b.v.p. and
the classical solution to the single b.v.p. in physical geodesy. It also showed how
an iterative process can improve existing solution and it suggests that this iterative

process could help solve other single and mixed b.v.p. involving ellipsoid or

topography.



CONCLUSION

A solution to the altimetry-gravimetry problem, a mixed boundary value
problem, has been developed and tested numerically. The solution is a set of
spherical harmonic coefficients. These coefficients are here denoted [Chmr Spml-
The test was made to recover a set of 837 geopotential coefficients known apriori
up to degree and order 28. The solution established and solved the matrix equation

(3.17) in which the array [T,]=[C,,, S,.] are the unknown coefficients to

estimate.

The elements of the right hand side array of (3.17) are given by equation (4.4).

These elements are denoted [E ., F,,.]. Already one can see in (4.4) the similarity

between this solution and the usual solution of the single b.v.p. given by the

integration over the sphere of the gravity anomalies to compute the spherical

harmonic coefficients [C,, 5, ] (see equation (E.1) in appendix E).

The left hand side matrix in (3.17) is called the Gram matrix, and its elements

are given by equation (6.1). These elements are denoted [A B

nmpq’  Snmpq’

Cnmpgr Pampgl- The Gram matrix is positive definite and thus the Cholesky

factorization can be used to solve this system of equation (3.17). This we have
done and we could recover the coefficients as accurately as we could do it to solve
the single b.v.p. using the usual orthogonality relationship.

-136-
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This solution to the altimetry-gravimetry problem was given by Brillouin (1916)
and Amold (1978). It is the solution of a least-squares method but again the usual
integration to compute the spherical harmonic coefficients that solves the single
b.v.p. is based on the same least-squares method (Brillouin, 1916). In the single
b.v.p. case the Gram matrix in (3.17) is a diagonal matrix for which the inverse is
simply obtained by taking the inverse of each element in the diagonal. The solution
(3.17) is to the altimetry-gravimetry problem what the usual solution (E.1) is to the
single b.v.p.. It is the most natural solution and perhaps the simplest solution to
the mixed b.v.p. if one considers (E.1) to be the simplest solution for the single

b.v.p..

The problematic part of this solution is the Cholesky factorization since the
system of equation to solve is terribly large when the high degree coefficient are
sought for. This is why we were restricted to test numerically the solution with a
smaller set of coefficients than we usually carry out for the single b.v.p.. One good
aspect during the factorization is the high stability of the Gram matrix due to the

structure we gave it, by ordering the unknown coefficients by degree, from the

largest coefficients to the smallest coefficients T, Cp1, S51, Coo, Sy, C3g, €t

The most efficient way we found to compute the elements of the Gram matrix
and of the right hand side array in (3.17) was the fast Fourier transform. The fast
Fourier applications used are mostly based on the spherical harmonic "analysis" and
"synthesis” of Colombo (1981). These are described in here respectively in
appendix E and F. By using the fast Fourier technique we restricted us to use a
regular equiangular grid covering globally the earth. On such a regular grid no

overlapping of data (2 values in the same block) is permissible. Nevertheless the
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mixed coverage of mean gravity anomaly and mean disturbing potential values can
be distributed very randomly like figure 9.2, as well as by oceans and continents
like figure 9.1. Because of the mixture of gravity anomaly and disturbing potential
data on the same row of latitude, the efficiency of the fast Fourier technique is
partially destroyed making the computations for the elements in (3.17) more time

consuming then the usual spherical harmonic analysis or synthesis. However the

computation of the coefficients [E,,, F,,.] which are the elements of the right hand

side array of (3.17) and the computation of the coefficients [a B

nmpq’ Snmpq’

Compgr Dnmpgl Which are the coefficients of the Gram matrix in (3.17) are
independent by degree like the [, 5] coefficients computed from the usual
integration (E.1) is. Thus the computation of these coefficients can always be
performed independently, thus by small jobs or on a super computer having parallel

processors.

In this solution to the altimetry-gravimetry problem the input observations differ

from the input in the single b.v.p. in that they must be scaled. The input must be

T/Wr and Ag/uG where pr and pg are respectively the mean square values of
T on the domain 67 and Ag on the domain 6. The mean square values of T/pur

and Ag/pUg are both equal to unity. The use of these mean squares as weight in

this least-squares solution is a necessary weighting scheme which takes out the

inconsistency between the zero order harmonic of both group of data, the T and

Ag.

When solving the single b.v.p. by the usual integration over the sphere of
"point" gravity anomalies, recurrence relations are required to compute "associated

Legendre functions”. When only "mean" gravity anomalies over some block size
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are available then the integration requires recurrence relations to compute the
“integral over some block size of one associated Legendre function” denoted
[/Pomdo]l. To solve the altimetry-gravimetry problem with "mean" gravity
anomalies and "mean" geoid undulations it requires recurrence relations which
computes the "integral of two associated Legendre functions", i.e. [f?nmﬁpqdc].
These recurrence relations were here derived for the first time in chapter 7. While
it is the first time that an application requires these new recurrences other solutions
to the mixed b.v.p. might require them in the future. It would appear that already
the proposed solution by (Sacerdote and Sanso, 1985) could use these newly

developed recurrence relations.

Because it is a least-squares solution we have shown an iterative process which
can be used to improve the mixed b.v.p. solution as well as the single b.v.p.
solution. This iteration process permits us to recover the coefficients even in
situations where the smoothing operator like the Pellinen/Meiss] operator Bn would
be unknown. Such situation could occur when trying to solve the single b.v.p. on

the ellipsoid or when taking into account the topography and the sea-surface

topography.

What is left is to compute this solution to a higher degree, to use real altimetry
data and to compare such solution with the existing single b.v.p. solutions; not

before would we have solved the real problem of altimetry- gravimetry.

P
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APPENDIX A. Recurrence Relations for Associated Legendre
Functions.

The purpose of this appendix is to have an easy and consistent reference list of

recurrence relations for the functions P m(t). From (Gradshteyn and Ryzhik, 1965,

€q.8.810) here abbreviated as (GR-8.810) we have

Pom(t) = _(=1)™ (1-t2)m/2 gmpy (+) . (A.1)
28 nt dtm

In (HM,(1-60)), in (Paul, 1978, eq.10) and in most geodetic references the

definition of P, (t) used does not include the (~1)™ term like in (A.1). We shall

also follow the geodetic definition and use the following definition

Pom(t) = _(1-£2)m/2  gmp, (+) . (A.2)
20 nl datm

All our recurrence relations are taken from (Gradshteyn and Ryzhik, 1965). From
(GR-8.812) withm = n we have
Pon(t) = _(2n)! (1-t2)n/2 (A.3)

20 n!

where the (-1) ™ term was taken out to satisfy the definition in (A.2).
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From (GR-8.733.1a) and (GR- 8.733.1b) we have

(1-t2)dPxa(t) = (k+1)tPy, (t) - (k=1+1)Pyyq,1(t), (A.4)
dt
= = ktPyy(t) + (k+1)Py;(t) . (A.5)

From (GR-8.733.2) we have

(2k+l)tpkl (t) = (k_l+l)Pk+l,l(t) + (k+l)Pk"’1,l(t) . (A.6)

From (GR-8.733.4) we have

Pr-1,1(t) = Pyyq,1(E) = —(2k+1) (1-t2)1/2 py 1 1 (t) (A.7)

to which we have added a sign correction to satisfy the definition (A.2). And from

(GR-8.753) we have

Pkl(t) = () for 1>k . (A.8)



APPENDIX B. Derivation of Equation (7.2).

The purpose of this appendix is not as much to show the derivation of equation
(7.2) which solves (7.1) as to show a model to follow in deriving the more

complicated equation (7.24).

The derivation of (7.2) is shown in (Paul, 1978), (Gerst],1980) and (Gleason,
1983) and the idea is as followed.

Similar to (7.1), let define the non-normalized integral T,

En
Tom = Ipm(tsrty) = J' P (t) dt . (B.1)
ts

From equation (A.4) of appendix A we have

SN, tn N
J}l—tz)dPgm(;)dt = J}n+l)tan(t)dt— J}n—m+1)Pn+l'm(t)dt
tg o tg tg
(B.2)
Let integrate by parts the left side by setting
u=1-t2, du=-2tdt, dv=dPan(t)dt, v=P.,(t). (B.3)

dt
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The result is
ty
(1-t2)P,, (t) = (n=1) I tPpp(t) dt - (n-m+l) I,
ts
(B.4)
From (A.6) we have
=Y
(2n+1) ( tPpp(t) dt = (n-m+l) Ip4q q + (n4m) Ipoq g
JtS (B.5)

where we have again used the definition (B.1). Replacing the integral in (B.4) by

(B.5) gives
tn
Tn+i,m = —(n=1) (n+m) Tn-1,m - (2n+1) (1-t2) P__(t)
(n+2) (n-m+1) (n+2) (n-m+1)
ts
(B.6)

This is the final result which must however be normalized to not get large numbers
unfitted for use in computers. Following (Heiskanen and Moritz, 1967, equation
(1-73)) the fully normalized associated Legendre functions and their integrals are

defined by

gnm(t) = Hpm Ppm(t), Enm(tSItN) = Hom Tam(tsrty) (B.7)

where

1/2
Hpm = [2(2n+1) (n-m) ! , m#0; Hpg= (2n+l)1/2. (B.8)
(n+m) !

Finally (7.2) is obtained by introducing (B.7) in (B.6).



APPENDIX C. Derivation of Equation (7.4).

The purpose of this appendix is not as much to show the derivation of equation
(7.4) which solves (7.1) as to show a model to follow in deriving the more

complicated equation (7.32).

Similar to (7.1), let define the non-normalized integral Inn

tn
Inn = Ipp(tg,ty) = J P, (t) dt . (C.1)
ts
From (A.3) we have
Pan(t) = (2n)! (1-t2)n/2 . (C.2)

2% n!
As required in (C.1) let integrate by parts the right side of (B.2) by setting

u=(1-t2)"/2, du=-nt (1-t2)7/2-1 4t, dv=dt, v=t. (C.3)

One obtains
Ex tx tn
J (1-t2)n/2dt = t (1-t2)n/2| + n ftZ(l—tZ)n/z"l dt
ts ts ts

(C.4)
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When one verifies that the last term can be written as

t2(1__t2)n/2—l = (1_t2)n/2—1 _ (l_tZ)n/Z (C.5)
then (C.4) becomes
En tn En
(n+1)J (1-t2)n/2dt= t (1-t2)n/2 + nJ (1-t2)n/2-1 4t
tg ts ts
(C.06)
Inserting (C.2) in (C.6) gives
tn tn SN
(n+1)20°n! J Pondt= £2%n! P, | + n28~2(p-2)! JPn_Zn_zdt
(2n) ! (2n) ! (2n-4) !
ts ts ts
(C.7)
which with (C.1) simplifies to the final relation
tn
Inn = 1 [ tPyy(t)| + n(2n-1)(2n-3) Ip_p n.0] . (C.8)
n+1
ts

The desired normalized equation (7.4) is obtained after the insertion of (B.7) with

(B.8) in (C.8).



APPENDIX D. Derivation of Equation (7.10).

The purpose of this appendix is not as much to show the derivation of equation
(7.10) which solves (7.1) as to show a model to follow in deriving the more

complicated equation (7.36).

The derivation of (7.10) is shown in (Paul, 1978), (Gerstl,1980) and (Gleason,

1983) and the idea is as followed.

From equation (A.7) with u = n and v = n-1 and using (A.8) we have

where
y = (1-t2)1/2, dy = -t/y dt i (D.2)

We will already normalized (D.1) by inserting (B.7) with (B.8) in (D.1) to get

Phn(t) = D(n) y Ppog,aoq(t) (D.3)

where b (n) is defined at (7.5). Inserting many times (D.3) into itself we get

Pap(t) = b(n)b(n-1)b(n~2)...b(1l) yn . (D.4)
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Following (C.1) the integration of (D.4) gives

tn

inn(tSrtN) = b(n)b(n-1)...b(1) J yn dt (D.5)
ts
and
YN
In(tg,ty) = -b(n)b(n-1)...b(1) J Y+l (1-y2) -1/24y
Ys (D.6)

where we have used (D.2). The McLaurin's series of the last term is

(1-y2)"1/2 = 1 + _y2 + _oy% + ... . (D.7)
2 4

Inserting (D.7) in (D.6) and integrating term by term one gets the final result

Inn(tgrty) = =b(n)b(n-1)...b(1) y»*2[_1 + 1 y2 +
n+2 2 n+4
YN

+ 13 vi o+ ... . (D.8)
4 n+6 Vs



APPENDIX E. The Spherical Harmonics Analysis using Fast
Fourier Transform.

The purpose of this appendix is to describe a known application of the Fast
Fourier Transform (FFT) technique to Spherical Harmonics Analysis (Colombo,
1981), (Gleason, 1985) to which we are required to refer in chapters 4 and 6. Here
we apply the FFT to the single boundary value problem (b.v.p.) which can help

understand the application of the FFT to the mixed b.v.p. in chapters 4 and 6.

In the single b.v.p. where a continuous set of point gravity anomalies is given

everywhere on the surface of a unit sphere ¢ the corresponding set of fully

normalized geopotential coefficients are given by

Com cos mA
= 1 Ag(8,)) Pom(cosB) do.(E.1)

Spm 4T Y (n-1) sin

g
We are always using the same polar spherical coordinates of chapter 2 and y =

GM/R? is the mean value of normal gravity associated with the reference ellipsoid

employed.
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In practice we are provided with a set of discrete mean gravity anomalies
covering all the surface of the earth. Thus to compute (E.1) the sphere is
partitioned into a finite number of discrete equiangular blocks of the size of the data
available, here 1°X1° mean values of Ag. Thus we divide the spherical Earth into a

regular grid of meridians and parallels which defines blocks G4

Gij = (E.2)
where
Gi = iA9 ’ i=0,l,2,...,N“l
(E.3)
Ay = JAN , j=0,1,2,..,2N-1

N is equal to t/A6 = /A and, as in (2.6), N is also the highest degree at which
one can wish to compute a complete set of potential coefficients. The harmonic
coefficients up to infinity, are all independent when one is dealing with the
continuous case. It is said that the set of harmonic coefficients is complete. But in
the discrete case like here we are dealing with N independent latitudes and thus the
harmonic coefficients are said to be complete (i.e. linearly independent) only up to
degree and order N. Trying to solve for more coefficients then up to degree N
would result in getting a sampling error (Colombo, 1981, pp.11-13). Also in
(E.3), AB and AL define the dimension of the blocks in latitude and longitude
respectively, and we will herein use blocks of size AB X AA = 1°x1°. The area of a

block on the unit sphere is

Asy = JJ do = AL [ cos(8;) - cos(Bi47) 1 . (E.4)

Gij
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For blocks of area A; 5 we can define block mean values of gravity anomalies as
Ag ij(e,x). If Ag(0,A) was constant within each block Cis then every point
gravity anomaly Ag(8,A) inside the ijth block would equal its mean value

Ag ij(e,x) and one could take Ag ij(e,x) out of the integral (E.1) as follows

Crm N-1 2N-1 _ cosmi
=1 X X Agiy ||Pum(cosB) sinOdAd0

Spm A% Y (n-1) i=0 =0 sinmh
Gij
(E.5)

The integral (E.5) might become applicable in the future when the block size used

will be smaller then we will use herein. However it is obvious that usually every

point value Ag(6,X) in the ijth block is different then the mean value Ag ij(G,K)

and thus this integral is not exact. Pellinen (1966) and Katsambalos (1979) has

shown that for circular blocks of radius y, a smoothing operator B, must be used

to get a better approximation. Colombo (1981, p.76, eq.(3.9)) has shown that the

de-smoothing operator 1, was more appropriated. Thus a better approximation is

obtained by using instead of (E.5) the following

Com N-1 2N-1 _ cosmA
=___ 1 ¥ 3 Agiy | [Ppm(cosB) sinBdAdo

Spm  A™Y(n-1)M, i=0 3=0 sinmA
Gij
(E.6)
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where
2
By if 0 <n <£N/3 ,
M, = B, 4if N/3 <n <N,
1 if n >N
and
By, = 1 1 [Ph-1(cosY ) = P,iqi(cosyy)] (E.7)

1-cosyy 2n+1

The Legendre polynomials in (E.7) are computed from the recurrence relation

Pp(cosypy) = _2n=1 cosY, P,_j(cosyy) - _n-1 P, ,(cosVyg)
n n

(E.8)

The starting values for (E.8) are P(cosy,) = 1 and Py(cosyy) = cosyy,.

As we have said, equiangular square blocks are employed in practice and not

circular blocks. Thus one must find the y radius of the circular cap on the sphere
whose area is approximately equal to the area of the equiangular square block G 4

at the latitude 0.

Although the areas of the blocks will vary with latitude Katsambalos (1979) has

shown that if A® = AA is in radians then one can use

VYo = 2 ARCSIN [( A8 sin A )1/2} (E.9)
am

on a global basis in (E.7) and (E.8) for most applications.
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Equation (E.6) can be written as

_ J
Chm T (A)
N-1 i 2N-1
_ o= —1 X Ina® X Agyy (E.10)
Shm 4ny(n-1)M, 1i=0 j=0 J
K (A)
where we have set
. 0141
..._l —
I,m(0) =J Pom(cosO) sinb d6 . (E.11)
0.

1

The solution of (E.11) is given in chapter 7. In (E.10) we have also set

‘ Ayi1 JAL + AL
Ji(x) —J cosmh dA = _1_ (sinmA)
Ay "’ JAN
(E.12)
‘ A1 JANL + AA
Ki(?\.) =J sinmA dA = _1  (-cosmA)
m
A
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Since we are using a regular grid of blocks of size AN, we have replace the

integration limit A by JAA as defined in (E.3). The integration of (E.12) gives

Mo

J
Jp(A) = Jcosm}. dA = A(m) cos(mjAA) + B(m) sin(mjAd)

(E.13)

A
where
sin (mAA) if m#0
m
A(m) =
AL if m=0
(E.14)
cos (mAA) - 1 if m#0
m
B(m) =
0 if m=0

Inserting (E.13) in (E.10) results in

Cnm N-1 i A(m) 2N-1
o= 1 Iom(0) 2 Ag;s cosmjAk +
Shm dry(n-1)M, 1i=0 -B(m) 3=0
B(m) 2N-1
+ > Ag;s sinmjAk
A(m) 3=0

(E.15)
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To evaluate this last equation the Fast Fourier transform has been proven to be very

efficient (Colombo, 1981), (Goad and al., 1984).

By definition, the discrete complex Fourier transform sequence X of an input
sequence y of P complex numbers is given (Gleason, 1985) and (I.M.S.L., routine

FFTCC)

P-1 it(2x_ k1)
X(k) = 2 y(l) e P (k=0,1,2...,P-1) . (E.16)
1=0

Here i' = (-1)1/2 and P is the number of given complex numbers in the sequence y
to be transformed. In Fourier Analysis textbooks the index k is referred to as a
Frequency Domain Counter. The value of k = P/2 is called the Nyquist
Frequency. The Nyquist Frequency P/2 is the highest frequency counter that can
be properly recovered from a given input sequence y of P complex number to be

transformed.

From elementary complex variable theory it follows that for any complex

number z = x+i'y

ez = ext1'¥Y = eX (cosy + i' siny) . (E.17)
Substituting (E.17) in (E.16) with x = 0 yields

P-1
X(k) = X y(l) [cos( 2K k 1) + i' sin( 2k k 1)].(E.18)
1=0 P P
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This can also be written

X(k) = REAL[X(k)] + i' IMAG[X (k)]

where
P-1
REAL[X(k)] = X vy(l) cos( 2k k 1)
1=0 P
and (E.19)
P-1
IMAG[X (k)] = X vy(1) sin( 2rx_ %k 1)
1=0 P

Comparing the elements in (E.19) and (E.15) we find the following equivalence

P < 2N L
yv(l) & Aglj + 0 1' = Aglj(j) + 0 1if
1 &
k & m
28 & AL
P
We can thus write (E.15) as
Com N-1 i A (m) i B (m) i
_o=_1 2 Inn(®) REAL([X (m) ]+ IMAG[X (m)]
Spm (n-1)M, 1=0 ~-B (m) A (m)
(E.20)
where
1 2N-1 i
REAL[X (m)] = Y, v (3j) cos(mjAX)
3=0
(E.21)
i 2N-1 i
IMAG[X (m)] = X y (3) sin(mjAR)
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in which

i —
y (3) = _1_ Agzy . (E.22)
amy

The REAL[.] and IMAG[.] parts are obtained from the complex Fourier
transform sequence X1 (m), output of the routine FFTCC (IMSL Library of
FORTRAN 77) after the input of the complex sequence of gravity anomalies
y1 (j) along a parallel (i). Since 2N Ag ;4 are input, the output recovers X1 (m)
up to the Nyquist frequency here m = N. The subroutine FFTCNM in appendix G

computes the algorithms contained in this appendix.



APPENDIX F. The Spherical Harmonics Synthesis Using Fast
Fourier Transform.

To numerically test the solution of the mixed b.v.p. gravity anomaly and
disturbing potential values covering globally the Earth are required. Such values
can be computed from geopotential models given by spherical harmonic series.
When such values are computed on a regular grid it is called synthesis and fast

Fourier transform (FFT) is well suited to perform efficiently this task.

The purpose of this appendix is to describe this known application of the FFT
technique to "spherical harmonics synthesis" (Colombo, 1981) and (Gleason,

1985) which we are required to refer in chapter 9.

Let us divide the spherical Earth into the same regular grid of equiangular blocks

G, 4 as described in appendix E. From equation (3.7) in chapter 3 the fully

normalized spherical harmonic representation of the "point" gravity anomaly for the

ijth block is given by
= n+2 I _x — _
Ag;5 = GM X (n-1)(a Y (ChmcosmAy+SypsinmAs) Poy (cosb;)
a2 n=2 R m=0

(F.1)

where R, 0, Xj are the polar spherical coordinates of the southwest corner of the

block ©; 4 and the gravity anomaly is given at the surface of the sphere i.e. r = R.
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In (F.1) "a" is the semi-major axis of the reference ellipsoid employed. For the

ijth "mean" gravity anomaly (F.1) becomes

Aye1

ei+l 3
e bt n+2 n % _
Agiy = __%M_—- 2 (n-—l)(_a_) ) J J (CppCOSMA+S sinmd) e

ac Ajs n=2 R

e P, .(cosB) sin® d0 dA . (F.2)

In (F.2) A; 5 is the surface area of the ijth equiangular block as given by (E.4) and
the term a /R is constant at the surface of the sphere. Making use of (E.11) and
(E.12) one can write (F.2) as

i * 3

& n+2 It _ _ _ J
M ) (n—l)(_@) Y T (8 [Com Jm M) +550 Kn(M) ]
; m=0

Agi' =
J
3.2 Alj n=2 R

(F.3)

One can verify that we can interchange the order of summation in (F.1) and (F.3).

This and denoting as before the maximum degree and order attained as N yields

N N n+2 _*x .
Agjy = _GM ¥ |cosmky X (n-1)(a Cpm Pam(cosBy) +
a? m=0 n=m R
i N n+2 _
+ sinmky % (n—-l)(_a_) Sem Poam(cOsB;) | (F.4)
n=m R
and
_— N J N n+2 _*x _1
Agjy = _GM X | Jp(M) X (n-1)fa Chm Inm(0) +
a2 A;y m=0 n=m R

] N n+2 _ __i
+ Kn(M) X (n—l)(g) Som Tom(0) |. (F.5)
R
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We can simplify the writing and the computations by defining the coefficients alpha

i N n+2 _* _
oy = X (n—l)(g) Com Pom (cOsO;)
n= R
and beta (F.6)
i N n+2 — _
Bu = Z (n-—l)(_a_) Spm Pnm(cos8y)
n=m R

These coefficients allow one to write (F.4) as

N i i
Agjy = GM X [ oy cosmhy + Py sinmhy ] . (F.7)
a2 m=0
Similarly by letting
__.i N n+2 _* ___i
Op = X (n-1) (,a_) Com Inm(0)
n=m R
and (F.8)
1 N 2 _i
Ba= £ (n-1) (g) Som Iom(0)
n=m R

. i3 i3
Aggy = _GM X [0y JuA) + By KM 1. (F.9)
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Substituting equations (E.13) for J,(A) and K(A) in (E.9) gives

N
Agjy=_GM X%

i i
( [0, A(m) - By B(m)] cosmijAl +
m=0

a2 Aij

i i
+ [0 B(m) - Bn 2(m)] sinmjAl} (F.10)

If we want to compute a set of NLON equally spaced gravity anomaly values going
completely around a constant colatitude band "1" starting at the zero meridian, then

it follows from elementary trigonometry that

cos (m?\.j) = cos (mjAA) = cos(mj_2& _
NLON
(F.11)
sin (mhy) = sin(mjAA) = sinfmj_2&;
NLON
where
AL = xjﬂ - xj , 3=0,1,2,..,NLON-1,
thus (F.12)
AL = 2%
NLON

Inserting (F.11) in (F.7) and (F.10) gives

N i i
Ag;y = _GM_ X o, cos(mi_2m \ + sin(mj_2x
a2 m=0 NLON NLON

(F.13)
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and

N i i
Zgij =_6M __ Y| [0y A(m) - By B(m)] cos(mj_2x ) +
a2 Ayy m=0 NLON

i i
+ [0y B(m) - Bp A(m)] sin(mj_2x
NLON

(F.14)

(F.13) can be written using complex numbers with i' = (-1) 1/2 a5

N i i
Agis = S REAL[ 2 (=i Bg) [cos(mj__zﬂ_ i sin(mj on ) ])
a

=0 NLON NLON
(F.15)
or simply
N i i i'mj 2%
Agy; =_%4_REAL Y (oa-i' Bp) e NLON . (F.16)
a m=0

To use the fast Fourier tansform we can compare (F.16) with (E.16) and one finds
out that instead of a summation up to N we must have a summation up to NLON-1

1.e.

LON-1 i i 2R
(F.17)

N
Agiy = gxg REAL( ) C (m) e NLON
a m=0
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For (F.17) to be equivalent to (F.16) one can verify that when 2N = NLON the

coefficients C1 (m) are related to the coefficients o, and Bt by

i i
C (0) = oy for m=0,
i i i
C (m) = _1 (o — i' Bp) for m=1,2,..,N-1,
2
(F.18)
i i i
C (N) = OCN - 1" BN for m=N.
and also
i i i
C (m) = _1 (o + 1" Bp) for m=N+1,N+2,..,NLON-1.
2
(F.19)

This is the case where we compute a grid of values say at 1°X1° spacing from an

harmonic expansion up to degree 180, then N = 180 and 2N = NLON = 360.

When 2N < NLON, this is the case where we compute a grid say at 1°X1°
spacing, NLON = 360, from an expansion up to degree 36, N = 36, then (F.18) is

still valid but we must also have

C (m) =0+ 1" 0 =0 for m=N+1,N+2, .., NLON-N

and (F.20)

i
C (m)

i . i
—;ZL—(OLNLON—m + 1' Byron-m)

for m=NLON- (N-1), NLON-(N-2),.., NLON-2, NLON-1.
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When 2N > NLON, this is the case where we compute a grid say at 5°X5° spacing,
NLON = 72, from an expansion up to degree 180, N = 180, then the coefficients
alpha and beta must be aliased (Colombo, 1981, p.10 and p.106). For this
example where we want to compute a grid at 5°X5° from a set of coefficient up to
degree 180, the 180 coefficients alpha and beta must be aliased i.e. reduced in
quantity and merged into 36 coefficients (180°/A8° = 180°/5° according to the
rule of the Nyquist frequency). When the coefficients have been aliased to degree
N, where now 2N = NLON, then the relations (F.18) and (F.19) can be used to find

the coefficients C* (m).

It was numerically verified that aliasing the coefficients alpha and beta (same as
aliasing the frequencies) from degree 180 to degree 36 and computing a grid of
5°X5° mean anomalies and on the other hand, computing a grid of 1°X1° mean
anomalies from the set of degree 180 and then taking the average of the 1°X1°
mean anomalies to obtain 5°X5° mean anomalies, we obtained the same mean

values. The "aliased coefficients" alpha hat and beta hat are computed as

A

i i M4 i
Op = Op + 'EO Op+intoN T ONLON-m
l:
" (F.21)
~i i i i
B = B * ‘20 Butinzon * Binvon-m
l::

where m= 0,1, ..., NLON/2 and M is a large enough integer like "N". Here the
coefficients alpha and beta without hat are defined by (F.6) i.e. to compute point

values.
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All what has been said from (F.15) to here is also applicable to compute "mean”
gravity anomalies. Comparing (F.14) to (F.13), (F.13) would provide us with

mean values if its alpha and beta coefficients would be defined as

i i i
Oy = 1 [ O A(m) - Py B(m) ]
Aij
(F.22)
i i i
Bo = _ 1 [ Oy B(m) - Pum A(m) ]
As g

The coefficients alpha and beta with bar are defined by (F.8). Then all the relations
(F.15) to (F.21) are still valid but to compute mean values. Hence (F.14) for mean
values and (F.13) for point values are computed in a very similar way using fast

Fourier transform.

Having computed the sequence Ci (m) containing complex numbers for point or
mean values this sequence for a colatitude band "1i" is entered in the IMSL routine
FFTCC which according to equation (E.16) returns the discrete Fourier transform
x1(9), a vector of complex numbers. The real part of it, REAL[ . ], contains
according to (F.17) the NLON gridded gravity anomaly values desired along the

colatitude band "i". (F.17) is computed for each colatitude band i, i =

1,2,..,NLON/2.

Because of the relation between the associated Legendre functions in the
northern and southern hemispheres, equations (7.40), or (7.41) for their integrals,

the computations are carried out with both hemispheres at the same time, for
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efficiency. The subroutine FFTDGN in appendix G computes the theory contained

in this appendix.

This subroutine computes mean and point values. By convention, the grid
employed when the input geopotential coefficients were generated, starts at the zero
meridian. To compute point gravity anomalies at the "center” of each square,
instead of the southwest corner as was derived in this appendix, the reference grid

must be rotated by AL/2 eastward from the zero meridian. Colombo (1981,

p.106) shows that this can be accomplished by modifying the input coefficients as

follow

A% % _
Cpm = Cpm COS_mAAL  + S, sin_mAA

2 2

(F.23)

~ _ %
Spm = Spm COos_mAA_ - Cp sin_mA)

2 2

This rotation is accomplished in this routine FFTDGN of appendix G. Should
point anomalies be desired at the grid intersections instead of the center of the

squares then the input coefficients should remain unchanged.



APPENDIX G. Listing of Computer Routines.

Routine Page
PNMIL . 171
FETDGN . . o e e e 174
FETCNM . . e e e 178
ADDDGN. . .. 182
ADDCNM. L. 183
PNMI e 185
FETENM . . e e e 191
FETABC. . . e e 195
ORTHO . . .. e i i 199
ORTHOC . .. . e e e e e 201

-170-
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