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Abstract

Investigations on the upward continuation of gravity anomalies given on
the surface of the earth’s visible topography are reported. Results are
compared for three upward continuation procedures: first, the direct Poisson
integration of the original terrain-uncorrected surface anomalies; second, the
direct Poisson integration of terrain-corrected (i.e., Faye) surface anomalies;
and third, the so-called indirect method. In the indirect method the original
anomaly field is basically split into three frequency ranges that are then
modeled separately: the low frequencies are modeled by spherical harmonics;
the medium frequencies are modeled by Poisson integration of residual surface
anomalies with long~wavelength terrain correction applied; and the high
frequencies are modeled by prism integration of the gravitational effects of
certain shallow topographic masses of assumed constant density.

Values of 5'x5’ mean anomalies, 5’x5’ mean elevations, and 30"x30" point
elevations in a 7°x9° area covering both mountainous and smooth topography in
New Mexico are used in actual upward continuations. Upward continued values
are obtained for test profiles at elevations 30, 10, and 5 km, as well as for
points in the float section (30 km elevation) of a balloon-borne gravity
measuring project being coordinated by the Air Force Geophysics Laboratory
(AFGL). The test profiles resulting from the direct Poisson integration of
terrain-uncorrected anomalies are negatively biased (i.e., too low) by about
(0.6, 0.5, 0.7) mgal at elevation (30, 10, 5) km compared with the profiles
resulting from the direct Poisson integration of terrain-corrected anomalies.
There is no detectable bias between the latter set of profiles and those from
the indirect method. The standard deviation of the differences among the
three upward continuation methods reaches the order of (0.5, 0.6, 1.3) mgal at
(30, 10, 5) km elevation, for the profiles tested. Also presented is an analysis
of errors associated with upward continued anomalies and with computed
normal gravity values. It is projected that values at the AFGL balloon points
have been recovered with about 0.9 mgal total standard error in gravity
anomaly with data error propagation as dominating error source, and about 0.7
mgal error in normal gravity with vertical position error as dominating error
source. In a separate series of tests, it is shown that upward continuations
using Fast Fourier techniques produce results that agree with Poisson
integration on the level of (0.1, 0.3) mgal at (30, 10) km elevation.
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1. Introduction

This report is concerned with the upward continuation of gravity anomaly
data given on the surface of the earth. A number of computational procedures
to be presented here are offshoots from the studies of Cruz (1985) dealing with
modeling the external gravity disturbance vector field.

Various modern possibilities exist to model the external gravity field of the
earth for the realistic case of free-air anomalies being given on the surface of
the earth’s visible topography. These possibilities fall under two general types
of modeling approaches: the continuous approach, and the discrete approach.
In the continuous approach the free-air anomalies are assumed to be known al
every point of the earth’s surface, and the Molodensky problem is being
solved. In the discrete approach the anomalies are known only at discrete
points of the earth's surface, and the Bjerhammar problem is then being
solved. In tLhis report we have used the discrete approach, specifically least.
squares collocation, only in the first stage of data processing, for the purpose
of generating an optimal set of mean surface free-air anomalies from the
originally given irregular and discrete distribution of point anomaly data.
After this, using the optimal set of surface data and concepts from the con-

tinuous approach we generated our quantity of interest which is the upward
continued anomaly.

The simplest conceptualization of a solution to the (continuous)
Molodensky’s problem is by means of analytic continuation advocated in Moritiz
(1969). The cxternal gravity anomaly field is analytically continued to a level
surface which may be entirely above, partly above and partly below, or
entirely below the earth’s surface. Once the level surface anomalies are
known, then under a spherical approximation the external gravity field can be
generated from these anomalies using classical procedures for data on a

sphere. A general procedure for analytical continuation is by means of Taylor
series:

aA 1 a2a
bgpk = Agg + -;5 (Hp~ Hg) + 5 “—=B(Hp~ Hs)? + ... (1.1)

2 aH?
where
Agg surface free—-air anomaly, defined more precisely in section 3
Agpk anomaly in the same plumb line as Ags, but located on the
level surface, to which the surface data are being reduced
Hg elevation of the surface point to which Agg applies
Hp elevation of the level surface of Agpk
aA
‘—55 vertical gradient of the gravity anomaly field

If the level surface to which the data are reduced is entirely below the earth’s
surface the analytical (downward) continuation may also be done by an
inversion, usually by successive approximations, of the classical Poisson



integral (see equation (2.1.13))

4 2

in accordance with the procedures of Bjerhammar (1964).

The use of (1.1) presents practical difficullies because the computation of
Lthe required vertical gradients of the gravity anomaly field, even just the first
gradient and the more so the higher order gradients, poses ralher severe
requirements on the density and accuracy of gravity data (for a study of
numerical evaluation of the gradients, see Noe, 1980). Therefore, the tech
niques that we have used in this report have a common motivation, namely lo
avoid altogether the use of correction terms in (l.1) and therefore use only Lhe
first term. The different manners in which Lhe correction terms are avoided
give rise to three methods for upward continualion which we numerically tested
and compared using real gravity and elevation data. The first method, and the
crudest, i8 to simply drop the correction terms and take Agp* to be equal to
Agg; we therefore simply insert Agg directly inlo the classical Poisson upward
continuation integral for data on a sphere. This procedure will obviously be in
error especially in areas with rough anomaly field and our numerical study will
provide a feeling for the magnitude of this error. The second method is to
drop all correction terms, only after the terrain correction has been applied to
Aga. The application of tLhe terrain correction is viewed as a first order
attempt to reduce the surface data Agg to a level surface; the reduced data are
then inserted into the Poisson upward continuation integral. The third method
i to drop the correction terms, only after smoothing the anomaly field by the
subtraction of the gravitational effects of certiain shallow topographic masses of
assumed density. The total upward continued anomaly field is then the sum of
two fields: one generated by classical Poisson integration from the residual
anomalies left after the removal of topographic masses, and the other is the
field generated by inlegration of the gravitational effects of the removed
topographic masses themselves. This third method is in the splrlt of the
"remaove-restore”  dechoique  advocaled  in Lhe vorls T colou and

Forsberg (see Tscherning, 1979; Tscherning and }“orsberg, 1983; and Forsberg,
1984, p. 41).

Other concerns of this report include the use of spherical harmonics in
anomaly field modeling, the use of Fourier series for upward continuation, and
the application of studied modeling techniques to the balloon-borne gravity

project being coordinated by the Air Force Geophysics l.aboratory (Lazarewicz,
el al.,, 1983),






2. Upward Continuation Formulas

2.1 Spherical-Farth Poisson Integral

Let us use the spherical coordinates r (geocentric radius), ¥ (geocenlric
latitude), and A (geocentric longitude). The anomalous potential T(r, &, A)
being a harmonic function in space has surface spherical harmonics Txh(R, §, A)
attenuating with r-(n+1) (Heiskanen and Moritz, 1967, p. 35):

n+i

Tn(r, %, A) = (W™ 1(R, 7, ) (2.1.1)

The surface harmonics of the gravity anomaly Ag(r, 3, A) and anomalous
potential T(r, ¥, A) are fundamentally related, in a spherical approximation, as
follows (ibid., pp. 88-89):

Agn(r, &, X\) = Dil Tn(r, ¥, A) (2.1.

[a]
N~

The last equation becomes for r=R:
sgn(R, ¥, A) = "L (R, %, A) (2.1.3)

Substituting (2.1.1) into (2.1.2):

- R + .
sgn(r, ¥, A) = 2L (H™* @, 7, ) (2.1.4)

Substituting (2.1.3) into (2.1.4):

pgn(r, ¥, A) = (H™ agn(R, 7, V), (2.1.5)
that is, the surface harmonics of Ag attenuate as r—(n+2), The wupward

continued anomaly Ag(r, ¥, A) is found by summing the terms in (2.1.5). Afler
omitting the zero and first degree harmonics as customary:

sgr, 7,00 <y M2 g, 7, A) (2.1.8)

n=2
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The space domain equivalent of (2.1.8) is:

sg(r, % N = = [ [ K(t, ¥) 2g(R, 3, ') do (2.1.7)
where ’
t = @
K(t, y) = - (2n+1) t0+2 P, (cos ¥) (2.1.8)
n=2
cos ¥ = sin ¥ sin ¥’ + cos ¥ cos ¥’ cos (A’ - &) (2.1.9)

A closed form for K(t, ¥) can be obtained using the following relation (ibid., p.
35):

(]

—t2
Iﬂﬁﬁ—l = > (2n+1) t0+! P (cos ¥) (2.1.10)
n=0
where D = (1 + t2 - 2t cos ¥)* (2.1.11)

Multiplying (2.1.10) by t, removing the zero and first degree ha monics, and
combining with (2.1.8) we get the closed form:

2 —4% 2
K(t, v) = S0 e 545 cos y

3 (2.1.12)

Equation (2.1.7) with (2.1.12) is the same as equation (2.160) in ibid., p. 90,
and is in fact the well-known Poisson integral formula for the space domain
upward continuation of gravity anomalies given on the surface of a geocentric
sphere. Note that the second and third terms of the integral kernel K(t, ¥) are
related to the removal of the zero and first degree harmonics from the gravity
anomaly field. For our (low altitude) applications, however, these terms have
negligible effects and so it is sufficient to retain only the first term of the
integral kernel, giving:

sg(r, 3, 1) = ) [ 22(®oFL 0D g, (2.1.13)
a



Note that (2.1.13) needs gravity anomalies to be given on the surface of a
(geocentric) sphere. In practice, we have gravity anomalies given on the
surface of a (geocentric) reference ellipsoid (the problem of the topography is
taken care of separately). To still use (2.1.13) in practice, we follow the
spherical approximation used in Heiskanen and Moritz (1967, p. 241):

Spherical Approximation

(
2 42 A ” x’
sg(r, ¢, A) = & (}lnt ) J’J‘J(rEJD;‘ ) 4o (2.1.13a)
a
_ _R
t = R¥H, (2.1.13b)
cos ¥ = sin ¢ sin ¢’ + cos ¢ cos ¢’ cos(A’'-A) (2.1.13¢)
where

(r, ¢, 2\) geocentric radius, and geodetic latitude and longitude of
the computation point in space.

(rg, ¢’, %) geocentric radius, and geodetic latitude and longitude of
data point on the reference ellipsoid.

R a mean earth radius, taken as R=6371 km.

Hy height of the computation point (r, ¢, A) above the refer-
ence ellipsoid; we will also call H, the upward continua-
tion distance, i.e. the distance through which the data are
upward continued to arrive at the value of anomaly in
space.

D

still evaluated by (2.1.11), but now using t from (2.1.13b)
and cos ¥ from (2.1.13c).

2.2 Spherical Harmonics

The surface spherical harmonics of the anomalous potential T(r, ¥, A) on a

" n

sphere of radius "a" can be written as (Rapp, 1982):



n

kM - - -
A) - KM X . i si . in )
Th(a, &, A) a § (Cnmgos mA -+ Snm91n mA) an(51n $ (2.2.1)
m=0
where
a usually an equatorial radius
kM geocentric gravitational constant
Eﬁm , _nm fully normalized potential coefficienls with even-degree
zonal reference values subtracted
kM"* l_(_" . .
ct , S spectrum of T(r, ¥, A) on the sphere of radius a
a nm’ a nm

ﬁnm fully normalized Legendre functions

The upward continued gravily anomalies from spherical harmonics are obtained

by substituting (2.2.1) into (2.1.4) with R=a, then summing the surface
harmonics:

@ n
Ag(r, ¥, A) = };—T E (n—l)(-ﬁ‘:)lﬁ2 E (szcos mA + Snmsin mA) an(sin %)

=9 —
n=2 m=0 (2.2.2)

For the purposes of this report we would like to use spherical harmonics
to generate a rigorously self-consistent field of gravity anomalies on the
earth’'s surface and in space. This field is to be uscd as reference, to be
subtracted from the observed field as part of upward continuation procedures.
For this purpose (2.2.2) can be used, but during our applications and because

we used the Rapp (1981) field we decided to use the following equation
instead:

k = . a nit2 L
Ag(r, ¢, A\) = = } (n-1) (m) }
n=2 m=0
oK cos 3 i 3 - 9 o
(Cnmco&, mA + Snmsm mh) I’nm(sm $), (2.2.3)

where, as in (2.1.13b), H, is the height of the computalion point (r, ¢, \) above
the reference ellipsoid.




Equation (2.2.3) was motivated by the fact that for a point on the ellipsoid
(i.e., r = rg, Ho = 0) (2.2.3) becomes:

" n
ag(rg, ¢, A)= g’;" Z (n—-l)Z .
m=0

n=2

—* K = . g .
(Cnmcos mA -+ Snmsm mA) an(sm $). (2.2.4)

The last equation is essentially the equation inverted in Rapp, 1981, eq. (2)
(except that Rapp used the geocontric latitude ¥ instead of the geodetic
latitude ¢) to compute his coefficients C}"lm, S¥m from terrestrial data
Ag(rg, ¢, A); realizing this we merely constructed (2.2.3) as an upward
continued version of (2.2.4) under a spherical approximation. The rationale
behind (2.2.3) does not hold at lower degrees (say, n < 36) of the Rapp-1981
field, these degrees being dominated by satellite derived coefficients CT¥m, S¥n.
Nevertheless, we decided to use (2.2.3) entirely, for n=2 to 180°; in any case,
(2.2.3) serves our above stated purpose of generating a self-consistent, spatial
reference anomaly field from a set of spherical harmonic coefficients.

2.3 Flat-Earth Poisson Integral

For our applications of the Poisson integral (2.1.13a) it is sufficient to use
a planar approximation, namely (Rapp, 1966; Hirvonen and Moritz, 1963):

H A b ] ” X’ )
ag(r, ¢, A) =52 ff Airy 3° L gx dy (2.3.1)
A Do
where
A fixed integration area
Do (x2 + y2 + HZ)*
X R cos ¢’ (A’ - 1)
y R(¢’> - o)

Equation (2.3.1) represents a flat-earth, space domain upward continuation
formula for gravity anomalies. This equation is indicated to be valid for a
distance up to 20° from the computation point and up to an upward continu-
ation distance of 250 km (Hirvonen and Moritz, 1963, p. 71).



2.4 Fourier Transform

In this section we briefly introduce the 3-dimensional Dirichlet problem for
the half-space and state its solution. This forms the theoretical basis on which
the Fourier transformation technique can be implemented in upward continu-
ation problems. Fourier technique offers high speeds in computation, requiring
no more assumptions than the planar Poisson’s integral method does. Now we

will state the problem theoretically (refer to later sections for examples of
practical implementation).

The Dirichlet problem in three-dimensions consists of the Laplace equation

a2f  acf _ acf _ _,. _
axz T ay? T agz - VE =0

within some region V with boundary surface S, together with data prescribed
on S,

We will use the usual planar approximation to the earth’s surface, where
the boundary surface S is the plane z=0 and the volume of interest V is the
half-space z>0. The solution to this problem is known in the literature
(Robinson E.A., M.T. Silvia, 1981, p. 223) as the Dirichlet integral.

y Z > O

< f(«, p) dadf
L

fz(x, y) = f(x, y, 2) = ’é’;zr' ;[ (x—a)2 + (y-p)? + zz]s/z

(2.4.1)

where f(«, ) = f(«, #, 0) are boundary values of f for z=0.

In this report the function f to be upward continued is gravity anomaly
function. The gravity anomaly is a harmonic function in case of the planar
Dirichlet problem as stated above. We use the fact that in our planar case
vertical gravity satisfies the Laplace equation if the potential does. The proof
can be found in (Robinson E.A., M.T. Silvia, 1981, p. 213).

The solution (2.4.1) is identical with the Poisson’s integral for gravity
anomalies introduced in Section 2.3. Poisson’s integral can be viewed as a
limiting case for the sphere of radius R when R9®, On the other hand the
Dirichlet solution (2.4.1) is derived for the planar case of half-spuce z>0 using
the Green’s second identity (Robinson E.A., M.T. Silvia, 1981, ch. 4). Notice
that (2.4.1) represents the 2-dimensional convolution integral.

Equation (2.4.1) can be written in the form:

200, v) = | [ £(a, ) a(x-a, y-6) dx dp (2.4.2)



1
z
where a(x, y) = on (x2 + y2 + 22)3/2 (2.4.3)

a(x, y) can be viewed as the impulse response function of the upward
continuation operation (2.4.2).

Now, the 2-dimensional Fourier transform of (2.4.3) is defined as
(Robinson E.A., M.T. Silvia, 1981, p. 224):

A(ky, ky) = ‘[ ‘[ a(x, y) o (ethyY) 4oy = 2 AV IR HKG L (5 40

for z >0, i =V -1

(see equation 7, p. 11 and equation 44, p. 56, Erdelyi et al., 1954).

This is the frequency response or transfer function associated with
upward continuation operator. The function A(ky, ky) is a spatial frequency
function of two continuous variables ky, ky representing the frequencies (in
cycles per unit length) along x and y directions.

The boundary values f(a«, f) can be transformed to the frequency domain
by means of the Fourier integral:

Flo, ky) = [ [ 206, y) & H00099) gyqy (2.4.5)

Using this transform the equivalence of the Dirichlet integral (2.4.1) in the
frequency domain turns out to be the multiplication of the transfer function

(2.4.4) and the Fourier transform of the data measured at the boundary
surface:

—_ 2 2
Fz(ky, ky) = Alkx, ky) = Flhy, ky) = & 2™ KRG g gy (2.4.6)

Finally, the desired upward-continued function is obtained by the inverse
Fourier transform of the frequency function F, (Bhattacharyya, 1967):

200 V) =5 | | Falke, ky) e 20X P kgY) g g (2.4.7)



2.5 Direct Topographic Mass Effect

Topographic heights are a much more readily available and cheap type of
information than gravity anomalies themselves, and can be effectively utilized
in gravity anomaly interpolation and upward continuation problems. The idea
is to subtract, from the originally given gravity anomaly boundary values on
the earth's surface, the gravity anomaly effects caused by topographic masses
of assumed density. The residual anomalies are then smoother and can be
much more easily interpolated and upward continued than the original
anomalies. The removed effects of the topographic masses are then added back
at the interpolation points or at the upward continuation points by direct
integration of the gravitational influence of the masses at those points.

Topographic masses of assumed constant density p (e.g., p=2.67 g/cm?® is a
standard density for land areas) directly generate gravitational attractions at
points on or above the earth's surface. Considering the topographic masses as
anomalous, we have the following "topographic" anomalous potential gencrated
at the point P in space (Heiskanen and Moritz, 1967, p. 3):

3 A

Bt = ke [[] I (2.5.1)

v
where

k Newtonian gravitational constant

p constant density of the topographic masses

dvq element of volume

v volume occupied by the masses

g (rp2+rQ2 — 2rprq cos ¢pq)x, i.e., the spatial distance between
P and Q

¥pQ angular distance between P and Q

rp, rq geocentric radius of P, Q.

We have the following fundamental relation between gravity anomaly Ag and
anomalous potential T in a spherical approximation (ibid., p. 88):

ag = 2T _

ar T (2.5.2)

=N

Substituting (2.5.1) into (2.5.2), exchanging the order of iniegration and
differentiation, and performing the differentiations, yield:

10



sgh = kp [[[ Fpracostpn 2 gy (2.5.3)
\% q 'p

The last equation gives the ("topographic") gravity anomaly in space generated
by topographic masses of assumed density.

For the generation of topographic gravity anomalies right on the surface of
the earth, a 8special treatment is sometimes convenient. Assuming that the

masses referred to are those lying between the actual topography and the
geoid we can perform the following split (see ibid., pp. 130-132):

Ath = AgQBA - tcg (2.5.4)
where
Ath vertical attraction at the surface point Q generated by topo-
graphic masses lying between the actual topography and the
geoid.
AgQBA vertical attraction at Q generated by a Bouguer plate through Q.
tcq the well~known gravimetric terrain correction at Q, to account

for the difference between the attraction AgQBA caused by the
Bouguer plate and the attraction Ath caused by the actual
topographic masses.

In terms of formulas:

AgQBA = 2nkpHg (2.5.5)

— 2
teg = % ken2 | [ {HHQ)Z 4, (2.5.6)
a

in which (Moritz, 1966, p. 88):

R mean earth radius

H elevation of integration point

Hq elevation of computation point

o unit sphere

de element of solid angle

Lo 2R sin y/2

v angular distance between Q and do.

The use of the symbol "A" in (2.5.4) is intended to suggest that in this report
we are using the attractions agQt and AgQBA as components of gravity

11



anomalies at the point Q. This means that we are viewing Ath and AgQBA as
components of excesses or deficiencies of the actual gravity at the point Q
over the normal gravity at the "corresponding” normal point Q' (the
correspondence between @ and Q' is that the actual potential at Q is equal to
the normal potential at Q’, and Q@ and Q' lie on the same plumb line of the
normal field - see Heiskanen and Moritz, 1967, p. 83). In this sense we may
also call Ath and AgQBA as gravity anomalies generated by the topographic
masses and Bouguer plate, respectively.

2.6 Normal Gravity in Space

The spatial relationship between the actual gravity field and the normal
gravity field generated by a given ellipsoid of reference is given on the
diagram on the next page. The geop passing through point P has the same
constant potential as the spherop passing through the point Q, where the geop
and spherop are the equipotential surfaces of the actual and ellipsoidal gravity
field respectively.

Normal gravity corresponding to a given value of gravity anomaly at a
fixed location P in space is defined to be the vertical component of attraction
generated by the equipotential ellipsoid of revolution (rotating with the same
angular velocity « as the real earth) at the respective point Q located on the
equipotential surface of the ellipsoidal field corresponding to point P. The
spatial correspondence between P and Q is uniquely determined by the
requirement that the earth’s gravity potential at P is equal to the normal
gravity potential of ellipsoid at the corresponding point Q. The normal gravity
in space is fully determined by the geometric (size and shape) and the
physical (surface potential and the rotation) properties of the level ellipsoid.
Combined with the gravity anomaly the normal gravity can be used to compute
the vertical attraction due to the actual Earth at any location. For the
purpose of this report we use the equations by (Hirvonen, 1960), as
implemented by (Rapp, Feb. 1966) in his FORTRAN subprogram 'SGAMMT’.

Although the method of Hirvonen was fully described by (Rapp, Jan. 1966)
and then fully documented for the computer implementation in (Rapp, Feb. 1966)
we decided to state here the equations used by the subprogram 'SGAMMT’. For
details the reader is referred to (Hirvonen, 1960) and (Rapp, Jan. 1966).

Suppose we need the vertical component of normal gravity 7yt cor-
responding to the computation point P having the coordinates ¢, A\, h, where h
is the geometric height of P above the reference ellipsoid. Then, following
(Heiskanen and Moritz, 1967, eq. (8-5)) the normal gravity 7yt should be
referred to some point @ which is the 'normal’ counterpoint of P. Point Q can
be found by projecting point P from the geop having potential W, on to the
corresponding spherop having normal potential U=Wp (see diagram below). The
distance between P and Q or the geop-spherop separation is called the height
anomaly ¢. The geometric height of 'mormal’ point Q above reference ellipsoid
is defined to be the normal height H¥ of the corresponding point P.

12



:S geop W = WP

spherop U = WP

T ellipsoid U = W,

Diagram for Section 2.6

The relation between the geometric height h, normal height H¥ and the height
anomaly ¢, for a given computation point P in space.

For the computation of normal gravity yp we require the normal height H¥,
Based on (Heiskanen and Moritz, 1967, eq. (8-5)) H* can be derived from h and
height anomaly ¢ according to the formula:

HY = h - ¢ (2.6.1)

For our balloon project we converted the known geometric heights into the
normal heights using the height anomalies estimated from the spherical
harmonic expansion of gravity field up to degree 180 (Rapp, 1981).

Here we will give a summary of the procedure as presented in (Rapp,
January 1966, pp. 14-16):

13

= const.

= const.



Input: (¢, A, H¥) plus parameters of the normal ellipsoid.

Compute:
X = (N + H¥) cos ¢ cos A (2.6.2)
Y = (N + H¥) cos ¢ sin A (2.6.3)
Z = (N(l1-e?) + H¥) sin ¢ (2.6.4)
with N = a/(l-e? sin? ¢)% (2.6.5)
p? = X2 + Yy? (2.6.6)
r?2 = p2 + 72 (2.8.7)
c = ae (2.6.8)
K2 = r2 + 2 (2.6.9)
h? = K4 - 4p2c?)* (2.6.10)
3 - K3-h?
sin?a = —2;2— (2.6.11)
tan f = —L— (2.6.12)
P cos « t
qQ =% [a -3 cot a (1-a cot )] (2.6.13)
s - 3(1 -~ « cot &) _
q’ = 5in? o 1 (2.6.14)
w = (1 - sin?a cos?g)* (2.6.15)
_ KM sin?a w2?a?q’ sin?a , . ,. 1
g = pem + Zcaow (sin?p 3) (2.6.16)
rg = w?a?q sin « sin g cos f (2.6.17)
CQoW
_ _ w2c cos?p
Ya = Ta w tan o (2.6.18)
_ w2c sin f cos B
g = ~fg + W sin o (2.6.19)
1= (r0 + 7R)* (2.6.20)

where y7 is the normal gravity in the vertical direction.
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3. Upward Continuation of Surface Free-Air Anomalies

In this section we will describe a procedure that can be used for the
upward continuation of free-air anomalies given on the surface of the earth.
These surface free-air anomalies arc boundary values of free-air anomalies in
space. Recall from Heiskanen and Moritz (1967, pp. 91, 292) that the gravity
anomaly on or above the surface of the earth is defined as follows:

agpCh, ¢, ) = gp(h, ¢, A) - yq(H¥, o, 2) (3.1)

where (see diagram on p. 13)

Agp gravity anomaly at P

h height of P above the reference ellipsoid

¢, A geodetic latitude and longitude of P and Q

Q normal point of P; point Q is established such that the actual

gravity potential Wy at P is equal to the normal gravity
potential Ug at Q, and P and Q lie on the same plumb line of
the normal gravity field.

¥ height of the normal point Q above the reference ellipsoid;
H* is called the normal height of P.

gp gravity at P

7Q normal gravity at Q.

Below we first show that operationally available anomalies can be closely
interpreted as surface free-air anomalies, and then we describe a strategy for
upward continuation of these anomalies combining Poisson integration, spherical
harmonics, and topographic mass effects.

3.1 Available Anomalies as Surface Values

In practice, available gravity anomalies had been computed from:

] i _
og = gp(h, ¢, X) - ;,%]pH = 7p* (0, ¢, ) (3.1.1)
where
h, ¢, A ellipsoidal height, geodetic latitude, and geodelic

longitude of a gravity station P
gp(h, ¢, A) measured gravity al P
H orthometric height of P

15



[-g% vertical gradient of the normal gravity at P
P

7p’(0, ¢, A) normal gravity on the ellipsoid, at the point P’ that has
the same (¢, A) as P.

At this point, agsume that we do not know the vertical location of the point at
which the Ag found by (3.1.1) applies, and let us find this location. Let H¥ be
the normal height of P as defined in equation (3.1); we can then perform the
following manipulations on (3.1.1):

ag = gp(h, ¢, A) - [7p’(0, o, A) + 27]pu]

oh

gp(h, ¢, X)) - [7p'(0, o, A) + %%]pn r [%ﬁ]pu* - %ﬁ]pu*]

gp(h, ¢, A) - [7p7(0, &, A) [%ﬁ]pu*] ) [%%]p (¥-11) (3.1.2)

The quantity in brackets is the normal gravity, upward continued from the
ellipsoidal point P’ to the normal point @ of P defined in equation (3.1):

* - . 127} x o 7 -
ro(H¥, ¢, X) = 7p2(0, ¢, X) + ah]PH (3.1.3)

To a good approximation we may assume
H & H¥ ' (3.1.4)

(see equation (3.1.7) below for an estimate of the actual difference, H-H¥).

Substituting (3.1.3) into (3.1.2) and neglecting the small third term because of
(3.1.4) we get:

ag = gp(h, ¢, ) — 7qu*, ¢, N) (3.1.5)

The right side of (3.1.5) is, according to (3.1), the gravity anomaly al the point
P, which in the present case is a station on the earth’s surface. Therefore we
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have found that under the approximation (3.1.4) the Ag as operationally
computed from (3.1.1) is a free-air anomaly on the earth’s surface. Using n

subscript "s" to denote a surface free-air anomaly we finally have the
interpretation:

ag 2 Agg(h, ¢, X) (3.1.6)

The error of the interpretation (3.1.6) is given by the last term of (3.1.2)

arising from the difference between the normal height H¥ of P and the ortho
metric height H of P:

a
e = dgg(h, ¢, \) - Ag = ~[5ﬁ]p(n* - H) (3.1.7)

An estimate of this error can be obtained using the standard normal gradient

%% = -0.3086 mgal/m (3.1.8)

and an approximate formula for (H¥ - 1) found in Heiskanen and Moritz (1967,
seclion 8-13):

(n* - H) (meters) = —28BA(gals) ° H(km)> (3.1.9)
where Agpp is the Bouguer anomaly given by
Agppa = Ag — Z2nkpH. (3.1.10)

A standard wvalue for 2nkp, where k=Newtonian gravitational constant and
p=density of topographic masses, is

2rkp = 0.1119 mgal/m, (3.1.11)

corresponding to k=66.7 x 10~? cm®/g/sec? and p=2.67 g/cm?®. Using equations
(3.1.8) to (3.1.11) into (3.1.7) and using gravily anomaly and elevation data in
our test area in New Mexico we found that the error ¢ has a maximal value of
0.2 mgal, occurring over mountainous terrain of the area.
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3.2 Rationale Behind an Indirect Method of Upward Continuation of Surface

Anomalies

We are given free-air anomalies Agg on Lhe earth’s surface,and we want Lo
upward continue them. The difficulty with the use of Poisson integral to solve
this problem is that the Poisson geometry requires that the data to be upward
continued refer to points on the surface of a sphere. Conceptually, what could
be done would be to first analytically continue the surface anomalies Agg to
level surface anomalies Agg. A simple conceptlualization of this continuation is
by Taylor series, wherein certain corrections that depend on the wvertical

gradients of the field are added to Agg to arrive at Agé (see equation (1.1) of
the Introduction):

aA 1 a2a :
sgh = dgs + 5B (p - Hg) + 5 2K (i - Hg)? L (3.2.1)

It is to be expected that the rougher the anomaly field (from which Agg and
Ap:g nre samples) the larger will be the difference hetween bdgg and AL{]’S,
because high degree frequencies are affected much by downward/upward
continuation (see, for example, Rummel, 1975, pp. 42-43) while low frequencies
are not as critically affecled.

There is a theoretical problem in the case of downward continuation of Agg
(Agg lies below Agg), namely, that very high irregularities in the field caused
by very high irregularities in the topography may cause the solution Agl’f, to
diverge, or, at least, be very unstable in the sense that small errors in Agg
will amplify tremendously to errors in Agl’f,. Another, now practical, problem is
that the computation of the vertical gradients of the field, even just the first
gradient and the more so the higher the gradients, places rather severe
requirements on the densily and accuracy of the given Agg.

The above problems reduce for the case of a smooth anomaly field. The
corrections (Agf,—AgS) will be small, the downward continuation stable, and
simpler computational procedures for the corrections may be devised. IiL is
then the central strategy of what we would call the indirect method of upward
continuation to explain away most of the high frequencies preseni in Agg as
being the effect Agt (see section 2.5) of certain shallow topographic masses, in
order to be left only with a relatively low frequency residual field (Ags—Agt)
which can then be upward continued less problematically by the Poisson
integral. The missing upward continuation of aglt to space points is then
carried out essentially by an equivalent source technique, which says that the
field for which Agt are boundary values has the topographic masses as
"sources” and, therefore, the said field can be generated by direct integration
of gravitational influences of the masses (see section 2.5). In the next section
we will detail the equations that can be used to implement an indirect method
of upward continuation of surface anomalies Agg.

It is to be noted that the Poisson integration, with its associated problem
of requiring data to be located on a level surface, can be altogether avoided
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with the use of either least squares collocation or Bjerhammar-type equivalent
source technique. In these methods it would still be advisable to reduce the
original anomalies Agg to the smoothed anomalies (Agg-agt) in order to maximize
convergence and economy of solution. The residual anomalies (Ags-bgt) are
essentially inverted into a new set of parameters (the solution wvector
(C+D)"‘(Ags—Agt) in collocation; the fictitious quantities Ag¥ on the Bjerhammar
sphere, in the Bjerhammar method) and then the new parameters rigorously
generate the external gravity field. The rigor of the collocation or Bjerhammar
approach lies in that they can handle the fact that the data (Ags—Agt) are
located on a non-level surface. The main disadvantage of these methods is that
they require expensive matrix inversion.

3.3 Direct and Indirect Upward Continuation

A. Direct Method

In what we will call the direct method, either the surface free-air anomalies
Agg or the terrain-corrected free-air anomalies (Faye anomalies) Aggttc are
input directly in the Poisson upward continuation integral to model the external
gravity anomaly field. Using the planar approximation (2.3.1) we have the
following directly upward continued fields:

H A
(ags)} = Uplags} = 52 [ [ 285 ax ay (3.3.1)
o A °
and
A + t
(ags + to)] = Up((ags + to)} = 52 [ [ (odagtted ay qy (3.3.2)
A o

where the superscript D denotes the direct method; the subscript H, denotes
the upward continuation distance H,; U, denotes the Poisson upward con-
tinuation operation; Agg is given by (3.1.15); and tc is formally given by (2.5.6).
Equation (3.3.1) is the usual simple-minded application of the classical upward
continuation solution. Equation (3.3.2) is the well-known Pellinen type of
approach (see details in the next paragraphs) in which a first order reduction
of surface data Agg to a level surface is implemented using the terrain

correction and an assumption of strong correlation between Agg and elevations
(MOI‘itZ, 1968, pp. 1-2)0

Note that in both equations (3.3.1) and (3.3.2), the vertical position of the
level surface to which the input anomalies are assumed to refer has no
clear-cut theoretical definition. It is only implicitly required that this level
surface be close to the earth’s surface, in order to minimize the differences
between the surface anomalies Agg and the level surface anomalies ag¥, A
natural choice for the position of the reference level would be that of some
mean elevation in the area covered by the surface anomalies. In the section on
numerical investigations (section 9) we present a study of the sensitivity of
the upward continuation results to the choice of the position of reference level.
Given the reference level, the upward continuation distance H, to be used in
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(3.3.1) and (3.3.2) follows as being equal fo the elevation of the computation
point above the reference level surface.

The anomalies Agg are anomalies on Lthe surface of the earth, and therefore
the level surface to which Agg refers is strictly changing from point to point.
These data with changing level are therefore not direclly useable under the
problem formulation of the original Poisson integral, namely, that the data musl
be on the surface of a single level sphere. However, compared with Agg, the
quantities (agg + tc) are closer to being level surface anomalies. This use of
the terrain correction to approximate a reduction of surface data to a level
surface is discussed in Moritz, 1966, pp. 104-107. There it is shown that for
long wavelengths (n, small) we have:

~aa
(tce)y = (5B AH]D (3.3.3)

where AH=Hg-II, is the vertical distance beiween the surface anomaly Agg and
the level surface anomaly ag¥ and the subscript n denotes the nth surface
harmonic of the quantity in parentheses. We therefore have this relation
between the harmonics for relatively small n (see (3.2.1)):

(JA « Ly
sgX = (ags — 55 M) = (agg + to)y (3.3.4)

where Ag}'{ is the nth harmonic of the level surface anomalies Ag¥. Equation
(3.3.4) with the provision that n is small, means that in the space domain the
use of a (4gg + tcS), where now we let tcB denote a long wavelength form of
the actual tc, serves to implement a first order long wavelength reduction of
the surface data Agg to level surface data Ag*. Again, as stated in the
previous paragraph, the level of A4g¥ is not clearly defined under this
"tc-technique” of data reduction, and the sensitivity of upward continuation
results to a particular choice of reference level for ag* will be studied in
section 9.

The use of tc instead of a tc® in (3.3.2) forms a theoretical objection to
this equation, because according to the last paragraph the interpretation of the
terrain correction as a data reduction to a level surface is Lheoretically
guaranteed to be valid (via (3.3.4)) only at long wavelengths. As one of the
desirable features of the indirect method Lo be discussed next this objection is
minimized because a tc¢8, i.e., a long wavelength form of lc, is used instead of
the tc itself.

B. Indirect Method

In order to explain the indirect method let us first definc some quantities.

The surface free-air anomaly is given in (3.3.1) as:



a Q
Agg = g~;}ZlH—7 (3.3.5)

A reference free-air anomaly can be gencrated from potential coefficients
to degree Npgx using (2.2.3) with Hy=0 (see also (2.2.4)):

KM Nmax n _ _ _
AgS = a2 2 (n-1) E (CXp cos mA + Spp sin mA) Ppp(sin ¢) (3.3.6)
n=2 m=0

Lhe superscript s denoting spherical harmonics.

The gravity anomaly on the earth’s surface, caused by masses of density p
lying between the actual topography and the geoid is given from (2.5.4) as:

agt! = 2nkpH -~ tc (3.3.7)

The gravity anomaly on the surface of a reference topography, caused by
masses of density p lying belween the reference topography and the geoid is
given analogously to (3.3.7) as:

sgtz = 2nkpHS - tcS (3.3.8)

where H8 is the orthometric height and tc8 the terrain correction of the
reference topography. For our purposes H8 will come from a spherical
harmonic expansion of topography to degree and order Npax, corresponding to
the maximum degree and order of the reference anomalies ag8 of (3.3.6):

Npax n -
HS = E E (Apm cos w\ ! Bpp sin mA) Ppp (sin ¢) (3.3.9)
n=0 m=0

The gravity anomaly caused by positive and negative masses of density p
lying between the actual topography H and the reference topography HS® can be
wrilten as:

Agf = Agtl — Agt."’ (3.3.]0)

Note that agl! refers to a point on the earth’'s topography, whereas agl? refers
to a point on the reference topography. Since bgl? is a smooth field it is
reasonable to assume that the analytical continuation of agl? to the position of
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Ag;t‘ is approximately equal to agt? jigelf. 1n this case (3.3.10) therefore gives
a Agl that refers to the earth’s surface.

Substituting (3.3.7) and (3.3.8) into (3.3.10):
agt = 2nkp(H — HS) - (Lc - tcS) (3.3.11)

Now a residual anomaly aAgl can be obtained by rcmoving from the surface
anomaly Agg of (3.3.5) the spherical harmonic anomaly AgS of (3.3.6) and the
topographic anomaly agl of (3.3.11):

Agl

Ags _ AgS — Agt, or (3.3.12)

AgTl

Ags — AgS — 2mkp(H — HS) + (tc - tcS) (3.3.13)

If the reference guantities (those with superscript s8) did not appear in (3.3.13)
then this equation would give the expression for a refined Bouguer anomaly
(Heiskanen and Moritz, 1967, p. 132); but because of the presence of the
reference quantities we will call agl the residual refined Bouguer anomaly.
Equation (3.3.13) states that the original anomalies Agg are de-trended (l.) in
the long wavelength, by subtracting free-air anomalies 4g® generated from
spherical harmonics and (2.) in the short wavelength, by doing a "Bouguer
reduction” not with respect to the geoid but with respect to the higher order
but still smooth surface H8 from spherical harmonics. Since Agl of (3.3.12) is a
smooth quantity (as will be shown numerically later) the point on the earth’s
topography at which Agrl applies can be moved vertically to the point on the
reference topography HS8, so that for subsequent processing agl is assumed to
lie on the reference topography.

Considering the above definitions, what we will call the indirect upward
continuation method then takes place as follows:

(1) The residual refined Bouguer anomalies Agl of (3.3.13) are terrain
corrected by tc8, then upward conlinued using the Poisson integral given
by (2.3.1):

r | 5
(agl + tcS)ﬂo = Up{agl + tcS} = !2{‘,: f f ﬂg—nai‘j;—c‘)' dx dy (3.3.14)
A 4]

where the superscript DI denotes the fact that (agl + tcB) is input directly
into Poisson integral; H, is the upward continuation distance and Up
denotes the Poisson integral operator. The use of (4gl + tcB) instead of
simply Agl is in accordance with earlier discussion on the use of long
wavelength terrain correction (terrain correction indeed has some long
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wavelength power-see p. 74 for a feeling for magnitudes) to approximate
the reduction of surface data to a level surface (4gl is data lying on Lhe
reference Lopography HB). Note from equation (3.3.13) that the usc of
(4gT + tcS) amounts to the transposition of tc® to the left side of the
equation; this significantly reduces the computational effort needed for the
evaluation of the right hand side and is therefore a definite practical
advantage.

(2) The spherical harmonic anomalies 4g® of (3.3.6) are implicitly upward
continued using (2.2.3):

Nmax n
kM a n+a
S = S = == —_
AgHo Us{2g%} a? E (n-1) [a|~Ho] }
n=2 m=0
(Ckm cos mx + Spp sin mA) Ppp(sin ) (3.3.15)

where Ug denotes the upward continuation of the spherical harmonic series.

(3) The topographic anomalies Agi of (3.3.11) are implicitly upward continued
by integration of the gravilational attractions caused by the masses
generating Agt, namely, the masses lying between the actual topography
and the reference topography (see equation (2.5.3)). In practice the
integration can be implemented using prisms as integration elements. This
prism integration is implemented in an operational program by Forsberg
(see section 7). In symbolic form,

Agﬁo = Upf{agt) (3.3.16)

where URr denotes the upward continuation by prism integration of masses.

(4) Adding tc® on both sides of (3.3.12), applying the Poisson integral operator
Ups and transposing terms, we arrive at:

Up{ags + tcS} = Up{agl 4 tcS} + Up{agsS} + Up{Agt} (3.3.17)

The indirect upward continuation method consists of replacing the last two
terms in (3.3.17) as follows:

(2gs + LeS)f ~ Ur{egs + teg) = Up{agh + tcS) + Us{agS) + Up{agt} (3.3.18)
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that is, the operator Up operating on anomaly data Ag® and Agt have been
replaced by operators Ug operating on spherical harmonic coefficients and
Ugr operating on topographic masses. The superscript I in (3.3.18) denotes
the indirect upward continuation method, and the Uj symbolizes the
(implicit) indirect upward continuation operator. The last two terms of
(3.3.18) are given in (3.3.15) and (3.3.16).

Starting from Section 7 and onwards we give the relevant numerical
studies on the direct and indirect upward continuation methods, as well as
studies on the Fourier transform method of upward continuation. Meanwhile, in
the next three section (4, 5, 6) we present a general global study of truncation
theory for the anomaly field, spectral characteristics of the anomaly signal, and
error analysis for the (Poisson) upward continuation operation.
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4., Anomaly Field Truncation Theory at Altitude

We can collect equations from section (2.1) as follows:

sge(r, %, N == | [ K(t, %) ag(R, ¢, A") do (4.1)
o .
K(t, ¥) = t_f_(ll)_;t_’l - t2 — 3t3 cos ¥ (4.2)
K(t, ¥) = Z (2n+1) t0*+2 Pp(cos ¥) (4.3)
n=2
bar(r, 7,0 = ) UM agn(R, F, 05t & (4.4)
n=2
A "truncated" gravity anomaly field can be generated as follows:
1 —
=5 || Kt, 9 sgdo (4.5)
a
0 ’ 0 & '#' < 'wo
K(t, ¥) = (4.6)
K(t, ¥) , Yo £ Y <4 m
Yo ... truncation cap radius.

This truncated field is generated by data function values Ag outside a cap of
radius ¥, centered at the computation point. In this sense, this field is really
a "remote zone" field being generated by remote zone data. The truncation
kernel can be expanded into a series of Legendre polynomials as follows:

O M e S Y CR) (4.7)

n=0
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and the frequency domain generation of the truncated field is then given by
(see analogous manipulations in Jekeli, 1980, for example):

I?I:(r, M) =% Z qn Agn(R, ¥, A) (4.8)
=2

The truncation coefficients g, can be obtained as:

w

an = I K(t, ¥) Pp(cos ¥) sin ¥ dy (4.9)

w
= | K(t, ¥) Pp(cos ¥) sin ¥ dv (4.10)
Yo

Putting v = cos ¥, yo = cos VYo, we have:

Yo
an(t, vo) = | | Kt ) Pa) (4.11)

Substituting (4.2) into (4.11) and using recursive integral evaluations found in
Shepperd (1979, p. E-1) we arrive at the following recursive computations for
the truncation coefficients:

qn(t) Yo) = t?(l_t2) Ln(t, Yo) - t2 1n(Yo) - 3t3 Hn(Yo) (4.12)
Yo

In(t, yo) = I En%¥l dy (4.13)
-1
Yo

In(t, yo) = I ) Pp(y) dy (4.14)
Yo

Hp(t, vo) = _[ y Pp(y) dy (4.15)
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1o(Yo) = vo *+ 1
N PR
Li(yo) = 9 (yo - 1)
2n-1 Ih— - (n=2) Ipn- .
In(Yo) — (2n-1)y, In 1(y§i] ( ) In—2(ya) , n22 (4.16)
S
Ho(yo) = 2 (yo - 1)
n+1) Ty (Vo) + 1 Tpoy (
Hn(Yo) - (n+1) Ty, o%n+1l n-1{Y¥a) , n21 (4.17)
. _ 2(1+y,
Loty o) = TTey (T t+m)D
1+t -0
Lu(t, yo) = BEELYa =Dy )
Lp(t, Vo) = 1+t t L - Lp-2 - lgzl , n &2 (4.18)

The above recursive computations were checked for correctness and
stability against other published results (with excellent agreement) as part of
the studies of Cruz (1985) on truncation coefficients for various gravimelric
quantities in space. The recursive formulas (4.18) for Lp(t, yo) which is
probably the main source of instability of the recursions can be derived either
analogously to the way Shepperd (1979, pp. B-1 to B-3) derived his Kp(l, yo)

functions, or as a special case of a general formula given by Jekeli (1982,
equations (18) to (22)).

The truncation method expressed by equations (4.5) and (4.6), where the
original kernel K(t, ¥) is set to zero for 0 € ¥ < ¢, is in accordance with what
is referred to as an unmodified Molodensky truncation method. Other methods
of truncation can be defined by specifying the truncation kernel as in (4.6),
and deriving, using (4.9), the truncation coefficients that will enter (4.8).
Well-known alternative mcthods for generating a Lruncated field include Llhe

Meissl truncation method and an improved Molodensky truncation method, all
these being discussed in Jekeli (1982).
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The interest in truncated fields usually lies in trying to generate the
various truncated fields (unmodified, Meissl, or improved Molodensky truncated
field) from a finite set of available spherical harmonic coefficients of the
earth’s gravitational potential. This is in contrast to generating the field from
a set of Ag values on a geocentric sphere. The spherical harmonic generation
of the truncated field can be accomplished by using in (4.8) the surface har-
monics Agy generated from potential coefficients to degree Npax (see Rapp,
1982, p. 4). Specifically, we can collect the  necessary equations for the

spherical harmonic generation of a truncated anomaly field at altitude, as
follows:

e L Mmax
Agl,"(ra ‘r A) = E E ‘h’](t) yo) * Agn(R’ W, A) (4']98)
n=2
Nmax
— kM nt2
R, B0 =500 Y ant v - @D - (BT
n=2
n — — —
E (Cnﬁ cos mA + Spp sin mA) Ppp(sin ¥) (4.19b)
m=0
. R _R
i) RtHy, ~ r (4.19c)
Yo = CO8 ¥, (4.19d)
where
r, ¥, A geocentric radius, geocentric latitude and
"geocentric" longitude of the computation point;
dn(t, vyo) truncation coefficients;
Agnh(R, ¥, A) surface harmonics of the spatial anomaly field, on a
sphere of radius R;
R a mean earth radius, taken as R=6371 km;
g% =9 an average value of gravity;
Eﬁm’ Snm fully normalized potential coefficients with even
degree zonal reference values subtracted;
a radius of the sphere to which C¥y and Spp refer,

usually an equatorial radius;
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He height of computation point above the sphere of radius
R;

Yo angular radius of the truncation cap

The truncated spherical harmonic field g given in (4.19b) contains two
types of errors: the commission error, which is the error due to errors in the
polential coefficients being used, and the omission error, which is the error
due Lo the use of only a finite sel of potential coefficients and the consequent
omission of the higher frequencies which may exist in the actual truncated
field Tg, being represented. The combined global mean squarc value of

commission and omission errors can be expressed as (Jekeli, 1980, p. 16; see
also (4.19a):

Nma ®
— =1 1
mg = 7 6Cn + 4 2 a3 Cn (4.20)
n= n=Npax+1
where
dp truncation coefficients as found from equations (4.12)-(4.18);
&Cy, anomaly error degree variances referred to a sphere of radius
R (R=6371 km, the mean earth rad1us) 5Cp_is caused
by potential coefficient errors «C¥, and ¢Spp. Considering
(4.19b) we have:
a)2ntd D - - _
5Cp = 72 (n-1)* (§) Y LeThm? + (B2 (4.21a)
m=0
Cn modeled anomaly degree variances referred to a sphere of radius
R. According to the Tscherning/Rapp (1974) model (with
R=6371 km):
cp = 420.28 (n-1) 5 gq9gy7)n+2 (4.21b)

(n-2) (n+24)

Optimization of truncation method usually means modifying the definition (4.6)
for the kernel K(t, ¥) (and therefore modifying the truncation coefficients qp)
such that the mean square error mi in (4.20) is reduced compared with the
unmodified case, for a given number and accuracy (Npax and 6Cp) of potential
coefficients and given model (Cp) for anomaly degree variances. Jekeli (1982)
has shown that for the upward continued gravity anomaly field, optlimizalion of
truncation method by using the Meissl or improved Molodensky technique does
not offer a significant improvement over the unmodified Molodensky method

defined by (4.5) and (4.6). In this report we limit ourselves to the use of the
unmodified truncation method.
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As an application of the important equations (4.19) and (4.20) of this
section, we considered the main inlerest in this report, namely, the upward
continuation of anomalies in the New Mexico area to an approximate altitude of
28.5 km. We first applied (4.19) by modifying program 1388 at OSU (sce
Section 7) Lo introduce the truncation coefficients qp(t, yo). We used:

* the Rapp-180 field (Rapp, 1981)

* Ho = 28.5 km (upward continuation distance)

¢ = 979770 mgals (mean value of gravity)

* Yo = 3° (truncation cap radius)

a = 6378137 m (equatorial radius)

« R = 6371000 m (assumed ground level radius)

The coefficients qp were computed by a subroutine modified from a subroutine
published by Shepperd (1979). The resulting truncated anomaly field for thc
area of interest in our balloon-borne gravity experiment (Sectlion 8) is given as
Figure 1.

If we were using the Rapp-180 field to account for the remote zone outlside
a 3°-cap centered at the computation point, the values on the map would be
added to the result of integration of data inside the 3°-cap. Note that in this
case the data cap of integration moves from computation point to computalion
point. For our final operational procedures, however, we simply used a fixed
data cap to compute our anomalies in space and neglected remote zone effects:
this neglection is justified by selecting a sufficiently large size for the fixed
integration cap. In the case just considered an integration cap of radius 3° is
appropriate since the remote zone effects are small as shown in IFigure 1.

Let us now turn to an application of equation (4.20). Application of (4.20)
yields a global analysis of the effect of remote zone anomalies on the upward
continued anomaly and gives an indication of the ability of spherical harmonic
model to account for this effect. As a firslt application we used only the
second term of (4.20) and started the summation from nz2. This is equivalent
to not using any spherical harmonic model to account for the remote zone
effects, the total error being one of pure omission. Using the Tscherning/Rapp
(1974) Cp-model (4.21b) the results of summing the second term of (4.20) for
altitude 30 km and various truncation angles are shown in Figure 2 as the lop
curve, This curve shows that a cap of radius 3° is needed to reduce remote
zone effects to submilligal level; the 3° cap radius {(about 300 km at ground
level) is about ten times the upward continuation distance of 30 km and is
therefore in accordance with the rule that data out to a distance ten times thc

upward continuation distance should be used (Hirvonen and Moritz, 1963, p.
68).
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Figure 2. Error Incurred When Not Using and When Using a Spher.ical
Harmonic Model to Represent, at Altitude 30 km, the Remote Zone Field
Generated by Data Outside a Cap of Given Radius. Cpn-model from

Tscherning/Rapp (1974); 6Cp from Rapp-180 field with magg = 10 mgals (Rapp,
1981, eq. 30).



For a second application of (4.20) we introduced the Rapp-180 field to
account for the remote zone effects (Npax=180). In addition we used a more
optimistic set of errors associated with the Rapp-180 potential coefficients,
found by using mar=10 mgals instead of 20 mgals in equation (30) of Rapp
(1981). Again using the Tscherning/Rapp Cp-model and upward continuation
distance of 30 km, the total error (commission plus omission) incurred by using
the Rapp-180 field to account for remote zones were computed by (4.20) for
various truncation cap radii and plotted as the bottom curve of Figure 2. We
see that now the total error is drastically reduced compared with the case of
the top curve where no spherical harmonic model is used to account for remote
zones. For a truncation radius of 3°, the error reduced from RMS 0.9 mgal to
RMS 0.1 mgal. For a truncation radius of 1°, the bottom curve of Figure 2
shows that the use of the Rapp-180 field o account for the remote zone field
incurs a commission plus omission error of 0.45 mgal global RMS.

Note that Figure 2 represents a global error analysis that may not be
representative of a local area. Figure 1 is more suited for analysis of specific
areas. For example, Figure 1 says that for a truncation radius of 3° it is
immaterial whether we use the Rapp-180 field to account for the remote zone or
not because the Rapp-180 truncated contributions are small anyway. On the
other hand Figure 2 says that not using the Rapp-180 field at truncation angle
of 3° causes an ommission error of 0.9 mgal RMS, and the use of Rapp-180 field
decreases this error to 0.1 mgal (commission plus omission error).
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5. Global Characterization of Anomaly Fields

A most common statistical characterization of anomaly fields can be made by
giving the degree variances of the field, which gives the break down of field
power by wavelength. Given the degree variances CpRr on a sphere of radius
R, the degree variances on an external sphere of radius r is given by using
(2.1.5) and analogous derivations to Heiskanen and Moritz (1967, p. 260-261):

R 2
Cnr = s™2 Chr 5 8 = [;] (5.1)

The factor sN*2 indicates how each component wavelength power of the field
attenuates with the upward continuation distance (r-R). Note that the degree
variances Cpr correspond to the power of field features on a sphere of radius
R, these features having a minimum half-wavelength of approximately:

A= E% (linear units) (5.2)

A second field characterization is obtained by summing the degree
variances of the field above a specified degree N. This sum gives a measure of
the amount of field information (RMS) beyond the harmonic degree N:

saga(N) = Z Cnr (5.3)
n=N

The sum (5.3) is important because given the resolution N of a particular field
approximation, the sum indicates how much field information (RMS anomaly) is
left unresolved by the approximation.

A third method of global characterization is obtained by giving the mean
square upward continued anomaly on a spatial sphere, caused by boundary
values of Ag outside a cap of radius ¥,, for various heights of the spatial
sphere. This mean square anomaly is the same as the mean square anomaly of
the truncated field defined by (4.8) and can be obtained from (4.20) by using
only the second term of that formula and starting the summation from n=2:

sAgE(t, Vo) = Z ad(t, ¥o)CnR (5.4)
n=2

-1
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The sum (5.4) is important for studying the remote zone effects on upward
continued anomalies.

Formulas (5.1), (5.3), and (5.4) were used at altitudes 30, 60, 100 and 150
km, the results being given as Figures 3a, 3b, and 4. The Tscherning/Rapp
(1974) Cphr-model was used (see (4.21b)). Figure 3a gives the gravity anomaly
information beyond degree N: for example, using a 180-field to represent the
external anomaly field leaves 5 mgals to be resolved at 30 km, 1.7 mgals at 60
km, 0.4 mgal at 100 km, and 0.1 mgal at 150 km. Figure 3b gives the gravity
anomaly information due to data outside a cap of given radius: for example,
using a truncation radius of 3° leaves a 0.9 mgal remote zone anomaly at
altitude 30 km, 1.8 mgals at 60 km, 2.8 mgals at 100 km, and 3.8 mgals at 150
km. A combined interpretation of Figures 3a and 3b says that the higher the
point of upward continuation the larger the data cap needed to maintain a
desired accuracy level (Figure 3b), however, at the same time the resolution
needed for data inside the cap becomes less and less with altitude (Figure
3a) - this conclusion is well-known and is true for the computation of all
gravimetric quantities in space. Finally, Figure 4 gives the degree variances
of the anomaly field at altitudes 30, 60, 100 and 150 km to show the effect of
upward continuation on component powers of the field.
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6. Error Propagation for Upward Continuation Operator

6.1 Flat-Earth Dala Error Propagation

Based on (Moritz, H., 1962) we can formulate the problem in the following
way.

The upward continuation integral (in planar form) for gravity anomalies is:

dgp(x, y) = f f ag(x’, yr) AL (6.1.1)

where x'y’ are variables of integration,
D? = H? + (xx’)2 + (y-y’)?
H is the upward continued distance.

Then formally any error #(x, y) in terrestrial Ag will propagate as:

em(x, v) = gn [ e, vy SO (6.1.2)

Equation (6.1.2) has the exact form of the original Poisson’s integral with
gravity anomalies Ag replaced by the error function s. As the computational
point (x, y) sweeps the particular level plane at the elevation H above the
reference datum plane, the function zy(x, y) describes the variation of the
directly propagated (upward continued) error.

Formula (6.1.2) describes the sensitivity of the upward continuation
operation to the uncertainties in the data. It assures that the errors attenuate
according to exactly the same law (upward continuation law) as the original
data. The frequency domain equivalent of formula (6.1.2) is: (see eq. 2.4.4)

— 2 2
Eu(ky, ky) = e 2™ M+ K i k) (6.1.3)

where &, E and ey, Ey are Fourier transform pairs and kx, ky are spatial
frequencies along x and y directions (Robinson E.A., M.T. Silvia, Chap. 2.4,
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1981). Equation (6.1.3) shows that the weakly correlated (white) noise in the
data will attenuate very rapidly with the elevation H, whereas the long
wavelength widely correlated components of the noise will propagate almost
unattenuated into upward continued gravity field.

This discussion shows that the correlation lengih of the errors present in

the gravity material will play the major role in the upward continuation error
analysis.

As a statistically appropriate measure of the upward continued error
function (6.1.2) we choose (after Moritz, H., 1962) the mean square error
defined as:

H? ; sy dxdy dx'dy’
M(e?H) = m?g = 7.3 f I I’f, a(x, v, x*, y*) ST FEF (6.1.4)
XYy X'y
where o(x, y, x', ¥') = M(s, €’) is the error covariance function, which is a

statistical description of the errors =(x, y) in Ag. M is the suitable averaging
operator.

In (Moritz, 1962) it is shown that introducing some specific model of the

error covariance function we can produce explicit expressions for the upward
continued mean square error (6.1.4).

Suppose we model the error covariance function present in Ag to be
(Moritz, 1962, p. 3):

a(x, y, x’, y’) = 0, €7C?82 = g(g) (6.1.5)

which is a function of distance only (stationarity and isotropy). In eq.
(6.1.5):

s = VvV (x-x’)2 + (y-y’)? is the Cartesian distance between two locations
on the plane.

Ty is the error variance (square of the standard
error present’in the datum surface anomalies Ag)

The constant c = Ven2/¢ is inversely proportional to the correlation

lengih ¢ of the error function present in Ag (& has to be in the same units as
s and H).

Using this model (Moritz, 1962) shows that the mean square error (6.1.4)
present in the upward continued field takes the simple form:

l o .
mH = FE o2 (6.1.6)
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Now we can evaluate (6.1.6) using different trial correlation lengths ¢ at
different clevations H. The results are shown in Table 1 using the parameter
a0=(10 mgal)?. The closed formula (6.1.6) was derived under the assumplion
that the ratio ¢/H remains small (see Moritz, 1962, p. 7). For that reason the
numbers in the lower right-hand portion of Table 1 have been crossed-out as
they are considered not to have any physical meaning.

To overcome this assumption see below for a spherical earth analysis.

Table 1

Square root of upward continued error variance at different elevations
my in [mgall; ¢, = 100 mgal ?
(crossed-out values have no physical meaning)

Assumed correlation

distance in error

function at zero

level (¢ in [km]}) H =30 Im H = 10 km H =5 kn
2 0.28 0.85 1.70
5 0.71 2.12 4,25
10 1.42 4.25 819
30 4.25 1278 2548

6.2 Spherical-Earth Data Error Propagation

Let us now study the propagation of data error through the upward
continuation operation, using as error model an attenuated while noise process
(see Heller and Jordan, 1979, for interesting geodetic applications of such
process), The degree variances of white noise can be written as:

dp = 962 (2n+1) (6.2.1)

where the unit variance ¢,2 is a constant and is equal to the variance of a
single harmonic of degree n and order m of the white noise process. White
noigse is useful for approximating an uncorrelated noise process.

The covariance function corresponding to (6.2.1) is:
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D(P, Q) = a4? E (2n + 1) Pp(cos ¥) (6.2.2)
n=2
where we start the summation from n=2 in anticipation of inputlting D(P, Q) to

an upward continuation operation that starts with n=2. D(P, Q) represents a
dirac delta function (Rummel, 1982, p. 30):

o for P =Q

D(P, Q) = { P, Qz o (6.2.3)
0 for P #Q

that is, the total variance is infinite and the correlation lengih is undefined.
To obtain a finite variance and correlation length we upward continue the noise
process, resulling in the attenuated covariance function (note that we are
using the gravity anomaly upward continuation operation):

o

Dr(s, ¥) = ao? Z sht2 (2n+1) Pp(cos ¥) (6.2.4)
n=2

2
where s = [32] , and

we visualize that the white noise process is located on a sphere of radius Rp
internal to the earth sphere of radius R, and the attenuated white noise
process described by (6.2.4) is located on a sphere of radius r with r>Rp.

Two important quantities to characterize the covariance function D, are its
variance vp and correlation length ¢,.. A numerical study of (6.2.4) reveals the
following good approximations:

(I“"Rb) = % 13 (6.2.5)
ve. = const. (6.2.6)
U " (r-Rp)? T

that is, the correlation length ¢, is 1.5 times the upward continuation distance
(r-Rp), and the variance of the attenualed white noise process atltenuates with
the square of the upward continuation distance. The same relations were
found by Sunkel (1981, p. 12, 14) for a slightly different covariance function
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from (6.2.4). In Figure 5 we show the covariance function (6.2.4) for r=R (i.e.,
on the surface of the earth) and varying depths (R-Rp) to the white noise
process. Figure 5 shows clearly the relation (6.2.5); the graphs were scaled to
yvield the variance v;=100 mgalZ2,.

The functions (6.2.4) such as shown in Figure 5 can be used as error
models, on Lhe earth sphere, and it is of interest to see how these functions
propagate through the upward continuation operator for gravity anomalies. We
have the following procedure for applications:

1. we have, given, the error variance vp and error correlation length ¢R of
the error process that we want to model on the earth sphere R.

2. Lhe depth D (not to be confused with the same symbol in (6.2.2)) of the
white noise process generating ¢R is then found from (6.2.5):

wiN

D= (R-Rp) = £ ¢p (6.2.7)

w

the constant of proportionality in (6.2.6) is found from
const. = vp(R-Rp)?2 = vp D2 (6.2.8)

4. the upward continued error variance at allitude H above the earih spherc
R is found by applying (6.2.6) with r=R+H and Rp=R-D:

_ .const. _ D )? .
Vr = (r-mp)z - 'R [H+D] (6.2.9)

5. the upward continued correlation length ¢, is found from (6.2.5):
3 3 < e
Ep = 5 (r-Rp) = 5 (H+D) (6.2.10)

We applied (6.2.7) - (6.2.10), starting with vR=100 mgal? and various
correlation lengths éRg. The upward continued values vy and ¢, for various
upward continuation distances are shown in Table 2. The values (vr)’9 in the
table are directly comparable with the values myg in Table 1, and we see a
reasonable agreement; note that (v,‘)’4 has no specific problems associated with
large correlation lengths ¢R whereas my has problems with this as mentioned in
Seclion 6.1. The conclusion from Tablec 2 is that error correlations in the
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terrestrinl dala should be avoided as much as possible, because these causec
errors to show up significantly in the upward continued anomaly field. Note
from Table 2 that the larger the error correlation length the slower the rate at

which the error loses ils total energy (variance) with altilude, an expected
result.

Table 2

Upward Continued Error Variance and Correlation Length,
for Attenuated White Noise Error Model.
vR = 100 mgal?

H=30 km 11=10 km H=5 km
£R £r vV Vr € v vr {r v Vr
(km) (Jem) (mgal) (Jem) (mgal) (Jkm) (mgal)
2 a7 0.42 17 1.18 10 2.10
5 50 1.00 20 2.50 12 4.00
10 55 1.82 25 4.00 18 5.71
30 75 4.00 15 6.67 38 8.00

6.3 Flai-Earth Representation Error Propagalion

The effect of representation error can also be evaluated. This error is
committed when the continuous function ag is replaced by the step function
composed of the mean values representing it over rectangular blocks used in
computation. See (Sunkel, 1981). Following (Moritz, 1962) where the same
error was considered (but under Lhe name of integration error) we pose the
problem in the following way:

Instead of the exacl Poisson’s integral (6.1.1) in the actual computation we use
the summation:

A

.3
1

H s o
Agy = 5, ¥ By (6.3.1)

1

=



where D is defined by the relation:

D S dA ~ 2 - |2 “x’)2 4 (y—y’)?2
Y IAI e with D? = H? 1 (x-x")? + (y-y*)
i

and Aj is the arca of the rectangular block which is represented by the mean
value Ag7j,

Define the error of representation & to be the funclion such that over cach
rectangular block i the following relation holds:

.o

=|, = tg|, - e (6.3.2)

which is the difference between Ag and the constant Tg] over the rectangular

block i. Then, from (6.1.2) the propagated error of representation due to
single block i is:

T on J I hE dA (6.3.3)
Aj

where the total representation error is the sum of 7i’s.

Similarly to (6.1.4) the mean square representation error due to single block
(ay x by) is:

Xo*g% Yo "l% Xo*'% Y()"“bz
HZ
M(n3) = pi = 7.2 f N f . J N J o
Xo 9 Yo"?" Xo"—é Yo__-é'
F(x, y) F(x’, y’) C(s) dxdy dx’dy’ (6.3.4)
where s2 = (x-x’)2 + (y-y’)? is the Cartesian distance on plane

|

{so consequently [ [ F(x, y) dxdy = 0)
Aj

S
F(X, Y) - D3

3

]
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C(s) = M(4gdg’) is the covariance function of actual gravity anomalies,
that is a statistical characterization of Ag field itself (and not
the errors in Ag)

After (Moritz, 1962) assume the following model covariance function for gravily
anomalies:

- Gy
C(s) = m%)z (6.3.5)

where C, is the assumed gravity anomaly variance.

If we define a constant « such that «? = %% then in first approximation
(6.3.5) reduces to:

C(s) = Cy, - a?g? (6.3.6)

Assume also all blocks are squares having the area A{ = a; = a? = A,

Then (Moritz, 1962) gives the following closed expression for the mean square
represenlation error (6.4.3)

H 4
pi = o B (6.3.7)
4ny" 2 0
where
ra = x3 +y2, D2 =H? + rd

Equation (6.3.7) gives the effect due Lo a single compartment. Next, neglecting
again correlations between compartments we can find variance of the total
effect just by summing variances of each contributors:

= ¥ p? - - '
my }]"- pl 3847 14 (6.3.8)

or my = 0.0288 av a’b?/H? where a and b form the sides of the block,

This is the square rootl of error variance of upward conlinued representation
error.
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With the numerical values of C, = 683 (mgal?), d = 40 km and A implied by 5’x5’
blocks we compute

my = 11.6/H? mgal (H in km).

So for flight elevation H = 30 km

mf

0km - 0.013 mgal

which is a much smaller contribution than any of the effecls given in Table 1
or 2. A spherical-earth analysis of the representation error for gravity
anomaly upward continuation may also be done based on Sunkel (1981, p. 17);
however, the effect of representation error is so small (using 5'x5’ mean
values) that we do not repeat this Lype of analysis here.
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7. _Operational Program for the Generation of Anomaly Fields

In this section we summarize the programs that can be used to
operationally generate the different types of anomaly fields we use in this
report. These anomalies are the Poisson anomaly, the spherical harmonic
anomaly, the Lopographic anomaly, and Lhe Fourier anomaly.

What we call the Poisson anomaly field is generated in planar approximation
as (2.3.1). A Poisson anomaly field can be operationally generated using a
FORTRAN program fully documented in Rapp (1966). The program accepts 5’x5’
mean anomalies as boundary values in the flat-earth upward continuation. For
a more detailed field generation smaller blocks of 2!5x2!5 mean anomalies may be
input near the computation points, and the program then automatically rejects
any 5'x5’ mean anomalies covered by the input 2!5x2!56 values. The program
also has the wuseful feature of rigorously computing the normal gravity
corresponding to the anomalies being computed, the sum of these two quantities
being a model for observed total gravity. The program exists as program 499
in the OSU program library.

For the generation of spherical harmonic fields, there are Lwo types of
existing operational programs that can be used. If the intention is to generate
anomaly wvalues at individual points not on a grid, the program described in
Rapp (1982) can be used. If, however, values on a limited grid are desired
then the program described in Rizos (1979) can be used. The program by
Rapp, to generate values at individual points, exists as program F477 in Lhe
OSU program library, and the program by Rizos, to generate values on a grid
exists as program F388. A comparison of these and other spherical harmonic
programs is given in Tscherning et al. (1983). The input to F477 and F388 are
the set of potential coefficients and the geodetic latitude, longitude and height
above the reference ellipsoid (¢, A, h) of computation points. The set-up of the
programs is to implement equation (2.2.2); however, for reasons stated below
equation (2.2.2), we have slighlly modified F477 and 388 for our applications
to compute (2.2.3) instead.

Another anomaly field of interest to us is the topographic anomaly field,
generated by intergrating the gravitational effects of topographic masses of

assumed densily. ‘The operational generation of a topographic anomaly field
can be done using the FORTRAN program described in Forsberg (1984) and
existing as OSU program 4189. There are various modes under which the

program runs, as detailed in Forsberg (ibid.), but the most important one for
the purpose of our studics is that for computing the external gravity anomaly
field generated by the (positive and negative) residual masses lying between
the actual topography defined by a digital elevalion model, and a reference
topography such as the topography to 180 spherical harmonic expansion.
Another mode of interest to the procedures recommended in this report is the
terrain correction (tc) computations which will be needed in case the tc are not
given on the gravily data records.

Finally, by Fourier anomaly we mean an anomaly which is upward continued
using Fourier transform techniques. TFor the generation of a Fourier anomaly
field we used a simple program given in Appendix B and exisling as OSU
program F498. The theory behind this program is detailed in Section 2.4 and
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tests are conducted in Section 9.3. A more extended program for Fourier
upward continuation exists in the OSU Depariment of Geology (R. von Freese,
private communication), and this program has options to choose from among
several different windowing techniques. However, our tests with this program
have not shown a need for the application of windowing for gravity anomaly
upward continuation.



8. Data Preparation for Upward Continuation Tests in New Mexico

For testing alternative models for the operational upward continuation of
surface free-air anomalies, we prepared data in a 7°x9° area in New Mexico.
The location of the area is such that it centers the site of the balloon-borne
gravity project coordinated by the AFGL (Lazarewicz, et al.,, 1983), with surface
data coverage extending 300 km on all sides of the balloon flight.

8.1 Available Gravity and Elevation Data

Our gravity and elevation data was based on that supplied to us earlier
(April, 1983) by the National Geodetic Survey (NGS). The gravity data were in
the form of irregularly distributed point values of surface free-air anomalies,
as shown in Figure 6. The gravity data record included the following items
(Hittelman et al., 1982):

(1) Geodetic latitude (¢), geodetic longitude (}), and orthometric height (H) of
the station.

(2) Measured gravity (g) referenced to a recoverable base station. Base
stations had been adjusted to the International Gravity Standardization
Netw_ork 1971 (Morelli, et al., 1972).

(3) Normal gravity (y) at the Geodetic Reference System 1967 (GRS67) reference
ellipsoid, computed as:

v = 978031.85(1 + 0.005278895 sin? ¢ +
+ 0.000023462 sin® ¢) mgals (8.1.1)

(4) Surface free-air anomaly (Agg) computed as:

Agg = g + 0.3086 H — 7 (8.1.2)

where 0.3086 mgal/m is the normal gradient of gravity.

(5) Simple Bouguer anomaly (Ag’p) computed as:

ag'p = Agg — 0.1119 H (8.1.3)

where the term 0.1119 H is the attraction of a Bouguer plate of standard
continental density of 2.67 g/cm3.

(6) Terrain correction (tc) formally given by (Moritz, 1966, p. 88):
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te =% ke R? U 1“—":53 do (8.1.4)

where k = Newtonian gravitational constant, p = density; R - mean earth

radius; H = elevation; P = point to which tc refers; ¢ = unit sphere;
de = element of solid angle; ¢, = 2 R sin ¥/2; ¥ = angular distance between
P and do.

(7) Standard error of Agg and Ag’p.

(8) Various codes: Agency code, quality code, elevation code, and source
code.

There were a total of 18,386 original gravity points in our area. Out of these,
13,455 were NGS coded as 'ACCEPTED’ while 3,931 were coded as 'NOT EDITED’.
We decided to consider all the 18,386 points regardless of code as input to the
data thinning step (see Section 8.2 below).

The elevation data were in the form of 30x30 arcsec grid point values. The
data covered our 7°x9° New Mexico area except at three 1°x1° blocks in the
southwest corner from latitude 29° to 30° and longitude 251° to 254°. We
decided to fill these missing blocks by 5'x56’ mean elevations from data supplied
by the Defense Mapping Agency (DMA). The NGS data were used in our
procedures both as the original 30"x30" point values and to obtain 5’xb’
averaged values. The 5'xb’ mean elevaions were formed by straight averaging
all 30"x30" wvalues that fell inside the 5'x56’ block (disjoint averages). A
contour map of the topography in our area based on 5’x5’ mean elevations is
shown in Figure 7 for a contour interval of 50 meters.

8.2 Data Thinning

The original set of 18,386 NGS points shown in Figure 6 were input into a
data thinning procedure. This step was done to make the data distribution
more uniform and to later avoid collocation inversion problems associated with
data points that are very close together. To thin out the data a single pass
was made to select only the first point that fell inside each element of a
3.5 km 3.5 km (a¢ = 20, aAx = 2!5) grid mesh. After the thin out procedure a
total of 10,208 data points were left. Of these, 2 points were later discovered
as blunders and removed leaving a final selection of 10,206 points which are
shown in Figure 12 of Section 8.7.

8.3 5'x5’ Mean Anomalies

A mean anomaly can be derived by first subdividing the mean block into
prxq sub-blocks, predicting point anomalies at the centers of the sub-blocks,
then averaging the predicted point anomalies. A predicted point anomaly is
given by least squares collocation as follows: (Rapp, 1978, p. 134):
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agi = Cij (Cjj + Djj)~" ag; (8.3.1)

where
Cij anomaly covariance vector between the point i being predicted
and the data points j.
Cjj anomaly covariance matrix of the data points
Djj error covariance matrix of the data points, taken as diagonal

with elements the variances of the data points.

Aspects on the covariance function to use in (8.3.1) and on the removal of
known trends in Agj are discussed separately in Sections (8.4), (8.5), and
(8.6).

The mean anomaly is related to the pxq center point values inside the
block by

LS 1 X
P L ﬁ a5 (8.3.2)

i=1

Substituting (8.3.1) into (8.3.2) we get

bg = o7 (Cj5 + Dyt g (8.3.3)
where
T 1 Ex
CKEJ = ;;a Cij (8.3.4)
i=1

is nothing but the covariance vector between the mean value and the data
points j. Equation (8.3.4) expresses a numerical integration procedure
(Heiskanen and Moritz, 1967, p. 277) for the determination of mean value to
point value covariance using a pxq subdivision of the mean block. Equation
(8.3.3) expresses the direct prediction of the mean anomaly from given point
anomaly data. The standard error of the predicted zg is the square root of:

m = C—— - ¢—T (Cj; +D‘j‘j)‘l C— (8.3.5)

2.
Ag Aghg Agj Agj

where C is the variance of the mean value being predicted, given by

Aghg
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1 X X
Cigiz = (pxa)? i 5 Cik (8.3.6)
k=1

i=1

that is, Cagag is the average of all covariances between subdivision block
center points inside the mean block.

For our applications to be detailed later (Section 8.7) we used equations
(8.3.3) to (8.3.6) to predict 5'x5’ mean anomalies from the the thinned out data
of Section 8.2. We used a 2x2 block subdivision (p=2, q=2) and only the ten
closest data points to the center of the 5'k5’ block being predicted. The
limitation to ten data points was motivated by the computer expense required
to invert the matrix in (8.3.3) with dimension equal to the number of data
points. This (approximate) collocation from the ten closest data points was
compared with a more rigorous but much slower collocation, giving a mean
difference of 0.1 mgal and an RMS difference of 2.7 mgals for a 12x12 array of
prediction points in the data sparse 1°x1° area from latitude 30° to 31° and
longitude 254° to 2556° (See Figure 12 for data distribution). The predicted
quantities were refined Bouguer anomalies with roughness (standard deviation
from the mean = 15 mgals for the 1°x1° test area) shown in Figure 13. The
differences between the rigorous and approximate collocation are expected to
get smaller in the immediate area of the balloon flight because of the increased
density of data there. The rigorous collocation used a one-time inversion of a
matrix of size b524x524, giving data coverage out to 0.6 away from the
prediction points while the approximate collocation used 144 inversions, with
each inversion involving a 10x10 matrix. The rigorous collocation was about
100 times slower than the approximate collocation in this test case.

Theoretical and practical aspects on the choice of covariance functions to
use in (8.3.3) and ways to de-trend the data are discussed in the next three
sections.

8.4 Covariance Function

The covariance function to use in (8.3.1) or (8.3.3) is well-defined only in
the global case. However, for local applications the choice of covariance
function to use is rather arbitrary. This arbitrariness comes from the fact
that the covariance function to use should be tailored to approximate the local
empirical covariance function, and this local function has no clear-cut
theoretical definition. The most important questions are: what size of local
area should be used to derive the function?, and what trends should be
removed from the data? Once a practical decision has been made on these two
items, however, the estimation procedure becomes clear: The empirical
covariance function is first derived by averaging products of de-trended data
samples in the specified area, according to the definition of covariance function
(Heiskanen and Moritz, 1967, p. 253). The derived empirical covariance function
is then usually approximated by a simple analytical function that lends itself to
closed form covariance propagation if needed, resulting in a self-consistent
system for the estimation of various linear functionals of the earth’s anomalous
potential. The way to approximate an empirical covariance function by an
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analytical function of specified form, is by satisfying the three essential
parameters of the empirical function, namely, the variance, correlation length,
and curvature parameter (Moritz, 1980, p. 174).

For our applications we used a simple tailoring procedure for the covar-
iance function. We took the global anomaly covariance function of Tscherning
and Rapp (1974) and first subtracted the first 36 harmonics. This resulted in
a new covariance function with a correlation length of about 20 km, approx-
imating the correlation length of the de-trended data (see below) used in our
estimation procedures. The covariance function was then scaled to satisfy the
variance of the de-trended data. This scaling would not affect the previously
tailored correlation length. For the cuvature parameter, there was no specific
treatment given to satisfy the data; the practical problems associated with the
empirical computation of the curvature parameter, as well as its approximate
computation by finite differences, can be found in Schwarz and Lachapelle
(1980).

8.5 Data De-Trending at High Frequencies

It is well-known that short wavelength free-air anomalies are strongly
correlated with short-wavelength topography - for an instructive physical
interpretation of this fact using a simple crustal density and isostatic com-
pensation model, see Moritz 1968, p. 28. Therefore, the computational removal
of the attraction caused by topographic masses is certain to remove most of
the roughness that may be present in an anomaly field.

This removal of roughness of the field is very important in interpolation
problems. With the removal of as much roughness as possible, the correlation
length of the residual field will be enlarged as much as possible. This implies
that the ratio

. correlation length
mean data spacing

will also be enlarged as much as possible, and this is a key to strengthening
the interpolation of the residual field (see Sunkel, 1981, pp. 88-93, where
values of p of at least p=3 are indicated to be desirable). Of course, once the
interpolated value from the residual field has been obtained,the total field
value can be obtained by adding back the influence of topographic masses.
This influence is computable from detailed topographic height data which are
assumed to be readily available in the prediction area.

Anomaly data de-trended at high frequencies can be the simple or the
refined Bouguer anomalies. The simple Bouguer anomaly is given by (8.1.3):

Ag’g = Agg - 0.1119 H (8.5.1)
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where -0.1119 H means the removal from surface data aAgg of the gravitational
attraction of a moving Bouguer plate of standard density 2.67 g/cm®. The
refined Bouguer anomaly is given by:

Agp = 4gg - 0.1119 H + tc (8.5.2)

where tc is the gravimetric terrain correction formally given by (8.1.4).
Whereas (8.5.1) represents the removal of a moving Bouguer plate, the
application of tc to (8.5.1) to arrive at (8.5.2) means that now in (8.5.2) the
gravitational attraction of the actual (non-moving, fixed) topography is removed
from Agg. The tc were given for our NGS gravity data; if they had not been
given, we would have had to compute them using the operational program by
Forsberg (see Section 7). Such computations of tc tend to be expensive (about
0.2 CPU sec per point on the Amdahl 470 V/6 system) if they have to be done
for all observation points. In this respect the studies by Sideris (1984) on the
computation of tc by Fast Fourier Transforms (FFT) should prove to be very
important.

8.6 Data De-Trending at Low Freqguencies

The Bouguer anomalies produced by (8.5.1) or (8.5.2) are much smoother
than the original Agg field but are biased, having large and systematically
negative values in mountainous areas - again, it is instructive to see Moritz
(1968, p. 28) for a physical explanation of this fact using isostatic compensation
theory. In accordance with the statistical aspect of the least squares
collocation interpolation procedure, gross trends should first be removed from
the data before interpolation (see Moritz, 1980, Sec. 38: "The Meaning of
Statistics in Collocation").  To de-trend the Bouguer anomaly data, one way
would be to postulate a low order trend surface and fit this surface to the
data, possibly in the context of least squares collocation with systematic
parameters (Sunkel, 1983), or possibly in the context of a simple least squares
adjustment. For our purposes we de-trended the Bouguer anomaly data using
available spherical harmonic expansions to 180 of free-air anomaly and topo-
graphy. The effect that the de-trending at low frequencies has on inter-
polation results is described later under Section 8.7, step (7).

The free-air anomaly on an equatorial sphere can be generated from
potential coefficients to degree Npgx, using (2.2.3) with Hq=0:

M Ninax n_ _ _ -
AgS = a? E (n-1) E (C¥m cos mA + Spp sin m\) Ppy (sin ¢) (8.6.1)
n=2 m=0

(the superscript 8 denotes spherical harmonics). The topography can also be
expanded in terms of spherical harmonics to degree Npgx:
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N Xmax n

HS = (Apm cos mA + Bpy sin mA) Ppp (sin ¢) (8.6.2)
nm

n=0 m=0

We then have a Bouguer anomaly to resolution corresponding to harmonic

Agg = AgS - 0.1119 HS (8.6.3)

Subtraction of the reference Bouguer anomaly Ag8p from the Bouguer anomaly
in (8.5.1) and (8.5.2) gives, respectively, the residual Bouguer anomaly (8.6.4)

and terrain corrected residual refined Bouguer anomaly (8.6.5) (see equation
(3.3.13) for a fuller understanding of equation (8.6.5)):

agt’ = (Agg - 0.1119 H) - (agS - 0.1119 HS) (8.6.4)

(Agr + tcS) = (agg — 0.1119 H + tc) - (agS - 0.1119 HS) (8.6.5)

The last two equations can also be written as
agr’ = Agg - AgS - 0.1119 (H - HS) (8.6.6)
(agl + tcS) = Agg — AgS - 0.1119 (H - HS) + tc (8.6.7)

The last two equations state that the original anomalies Agg are de-trended (1)
in the long wavelength, by subtracting free-air anomalies Ag8 generated from
spherical harmonic expansion; and (2) in the short wavelength, by doing
"Bouguer reduction" not with respect to the geoid but with respect to the
higher order but still smooth surface H8 from spherical harmonics.

8.7 Actual Predictions of 5’x5’ Mean Anomalies

In accordance with the previous discussions we took the following steps to
predict 5'x5’ mean anomalies, for use in our anomally upward continuation
procedures, The starting anomaly data were the point surface free-air
anomalies (look ahead to Figure 12 for point location), resulting from the thin
out procedure of Section 8.2. As stated in Section 8.1 the gravity record also
contained the elevation H of the station and the terrain correction tc. Here are
the various steps:

(1) Reference free-air anomalies Ag8 (8.6.1) were generated on a 0:25x0.25 grid
using the Rapp-180 (Rapp, 1981) potential coefficients with Npax=180. A con-
tour map of this data is shown in Figure 8 with a contour interval of 5 mgals.
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(2) Reference elevations HS (8.6.2) were generated on a 0:25x0.25 grid using
topographic coefficients available at OSU (tape GS1490, file 15) with Npax=180. A

contour map of this data is shown in Figure 9 with a contour interval of 50
meters.

(3) Reference Bouguer anomaly values AgB8p (8.6.3) were generated on a
0:.25x0:25 grid from the AgS and HS of steps (1) and (2). This data is contoured
in Figure 10 with a contour interval of 5 mgals. In our procedures we could
also generate AgSp directly in one step because we had combined the two
series in (8.6.1) and (8.6.2) to produce a Bouguer anomaly series to degree 180,
with its own Bouguer anomaly spherical harmonic coefficients.

(4) Refined Bouguer anomalies Agp (8.5.2) were computed at the irregularly
distributed data points using Agg, H and tc given on the gravity records. The
RMS value of the original irregularly distributed Agg was 26 mgals. The RMS
value of the refined Bouguer anomalies Agp with the mean removed was higher,
49 mgals, because although Agp was smooth it had significant long wave trend.

(5) Terrain corrected residual refined Bouguer anomalies Agl 4 tc8 (8.6.5) were
computed at the irregular data points by first interpolating the 0:25x0.25 grid
of Ag8g from step (3) to obtain the reference Bouguer anomaly at the data
point, then subtracting this reference value from the refined Bouguer anomaly
of step (4).The RMS value of the irregularly distributed anomalies (Agl 4 tcS)
was a smooth and centered 15 mgal.

(6) 5'x5’ mean values of terrain corrected residual refined Bouguer anomalies
(8.6.5) were predicted from the data of step (5) using the "collocation from the
closest 10 points" procedure described in Section 8.3. To repeat, a 2x2
subdivision of the 5’x5’ block was used. The covariance tailoring procedure
used is described in Section 8.4. A contour map of the predicted 5’°x5’ mean
regsidual refined Bouguer anomalies is shown in Figure 11, with a contour
interval of 5 mgals. Note that this de-trended anomaly surface is much
smoother and, therefore, much more reasonable to interpolate than the trended
original Agg surface (look ahead to Figure 14). The point location of the
irregularly distributed data from which 5’x5' predictions were made, as well as
the formal standard errors of predicion coming out of the collocation
procedure, are shown in Figure 12. The collocation error estimates shown are
at least correct on a relative basis, but also their absolute values are expected
to be meaningful because of the use of an empirically tailored covariance
function (Schwarz and Lachapelle, 1980, p. 33).

(7) A "back solution" could now be made starting from the predicted 5’x5’
mean values of step (6). 5'k56’ grid point values of AgS8p (8.6.3) were first
interpolated at the centers of the 5'x5’ mean blocks of step (6) using the
(n25x0:25 grid of AgBp values from step (3). These interpolated values were
then added to the values in (8.6.5) from step (6) to produce 5'x5’ mean values
of refined Bouguer anomalies Agp (8.5.2), contoured in Figure 13 with a contour
interval of 5 mgals. The difference between the Bouguer anomalies in Figures
13 (from this step) and 11 (from step (6)) is the presence of long wave
Bouguer anomaly trend in Figure 13.

To test the significance of de-trending at low frequencies we repeated the
predictions of the quantity shown in Figure 13, this time using the simple data
average as reference value, instead of the "Bouguer anomaly to 180". The
covariance function of step (6) was accordingly scaled to reflect the variance
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of the "mean-value centered" data, which was 2400 mgal?. For comparison, let
us distinguish two prediction procedures as follows:

Method A: Bouguer anomaly to 180 used as a reference surface. Variance of
data used in predictions: 225 mgal?.

Method B: Simple average used as a reference value. Variance of data used in
predictions: 2400 mgal?.

We observed the following:

(a) In areas with good data coverage (i.e., areas with standard error of
prediction less than or equal to 5 mgals as shown in Figure 12), the
predicted values from Methods A and B generally agreed to better than 0.2
mgal.

(b) In areas with poor data coverage (standard error greater than or
equal to 10 in Figure 12), differences of 7 mgals were observed between
Methods A and B. In these areas the used reference value "anchors" ihe
predicted wvalue, in the sense that the predicted value tends to approach
the reference value.

(c) The most significant difference between Methods A and B, affecting
both areas of good and of poor data coverage, was the scaling of the
formal error estimates. Error estimates from Method B were more
pessimistic than Method A, by the ratio (2400/225)%,

From the above we conclude that the advantage in using a higher order trend
surface than the simple-average surface lies in a better scaling of the error
estimates; the predicted wvalues themselves are not critically affected by the
choice of trend surface for areas of reasonable data coverage.

(8) To the 5'x5’ refined Bouguer anomalies (8.5.2) from step (7) we added
0.1119 H, where the elevations H were the 5'x5’ mean elevations mentioned at
the end of Section 8.1. In accordance with (8.5.2), the results would be 5’x5’
mean values of terrain corrected (i.e. Faye) surface anomalies (Agg + tc),
contoured in Figure 14 with a contour interval of 5 mgals. Throughout our
procedures we of course assumed that 5’x5’' mean values of free-air anomalies
referred to 5’x5’ mean elevations, and this assumption is justified because of
the strong local correlation between point free-air anomalies and elevations; for
a further discussion of correspondence between mean free-air anomalies and
mean elevations, see Sunkel, 1981, p. 5.

(9) It was also of interest to our studies to predict 5'x5' mean anomalies
without having first applied the terrain corrections to the irregular data Agg
in step (4). In other words, we essentially repeated all the de-trending,
prediction, and back solution steps working with simple Bouguer anomalies
given by (8.5.2), The end results analogous to those of step (8) were 5’x5’
mean_values of (terrain uncorrected) surface free-air anomalies Agg.

REMARK: Note that implicitly in step (9) we carried the quantity "-tc" (present
in the original Agg data) through the prediction procedure. Therefore,
implicitly we attempted to predict 5’x5’ mean values of "-tc" which would have
to be very inaccurate because of the very short correlation length associated
with the terrain correction (correlation lengths on the order of only 2!5 were
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found by Forsberg, 1984, p. 82). A theoretically better alternative would have
been to take the Faye anomalies of step (8) and subtract rigorously computed
tc values using Forsberg’s (Section 7) program, but this alternative would be
prohibitively expensive at the present time. A possible way out of this

expense would be the development of FFT techniques to compute tc (Sideris,
1984),

The "predicted" tc of step (9) was brought to light as follows:

e (predicted) = (*8s * tC)gpp(g) ~ *Esgpp(9) (8.7.1)

Values of tc(predicted) were taken in the 1°x1° area from latitude 32°* and 33°
and longitude 254° to 255°, and these values compared with rigorously

computed tc from Forsberg’s program. We found the following statistics using
a 6x6 grid of comparison points (units: mgals):

Difference Actual Value
Statistics tc(predicted) — tc(rigorous) tc(rigorous)
Mean -1.18 2.68
Std. Dev. $2.69 2,95
RMS 2.06 3.99
Maximum Absolute Value 6.06 14.38

On average, one can say from the above table that 50% of the true
tc~-information has been recovered in the prediction. Inspection of the actual
differences which are not given here reveals that the general shape of the
tc-function can be reasonably predicted, but that a reasonable prediction of
detailed features basically relies on the chance that there is a data point close
to the prediction point. One could expect that for a reasonable prediction of
detailed features of tc the data spacing would have to be much less than the
correlation length of tc in the area, say, one-third the correlation length; this
is indicated from the discussions of Sunkel (1981, pp. 88-93) who gives general

data density requirements as a function of the correlation length of the
function being interpolated.
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9. Mumerical Investigations

9.1 Comparison of Direct and Indirect Upward Continuation Results

We applied the indirect and direct upward continuation methods described
in Section 3.3 to our 7°x9° study area in New Mexico. Figure 7 on page 52
shows the topographic features in the area. Upward continuations were done
for a 60-point profile running east-west from longitude 253° to 258°. Upward
continuation distances used were H,=28.5, 8.5, and 3.5 km. These rather odd
values of Ho resulted from considering the data to be at a mean elevation of
1.5 km and the uplifted profiles to be at 30, 10 and 5 km elevation. The 60
upward continuatuation points were located at the centers of the 5'x5' mean
data blocks directly beneath the profile. Although 60 points were used, it was

sufficient to present results only for every 6th point giving 11 presentation
points.

The entire 84x108 grid of 5'x6’ mean anomaly data (Section 8.7) and 5'x5’
mean elevation data (Section 8.1) covering the 7°x9°* area were used in upward
continuations. The types of anomalies used were the terrain corrected residual
refined Bouguer anomalies (AgT+tc8) for the indirect method, and the surface
anomalies Agg and terrain-corrected surface anomalies (Ag8 + tc) for the direct
method. The detailed 1km x lkm point elevation data (Section 8.1) were used
near the computation points for the prism integration of the attraction of
topographic masses needed in the indirect method. Also for the purpose of the
indirect method, the Rapp-180 potential coefficients and a set of degree 180
spherical harmonic coefficients for the topography (Section 8.6) were used to
generate reference values of gravity anomalies and topography. The opera-

tional programs used in the numerical investigations are described in
Section 7.

Tables 3 to 5 give the results of the indirect and direct upward continu-
ations for the 11 presentation points, for H,=28.5, 8.5, and 3.5 km. Columns 1
to 3 of the tables give the three components of the indirect method, namely (1)
anomaly contribution from the medium wavlength part of terrestrial data, (2)
anomaly contribution from the long wavelength spherical harmonic field, and (3)
anomaly contribution from shallow topographic masses. Column 4 gives the

total anomaly (Agg + tc8) from the indirect method (see page 20 for the
rationale behind the use of tcSB).

The results from the indirect method were compared with those from the
direct method, with differences shown in columns 5 and 6 of Tables 3 to 5.
Column 5 shows that the direct method using the surface anomalies alone (Agg)
produces a profile that is systematically too low compared with the expectedly
more rigorous profile of the indirect method. The biases have mean values of
0.64 mgal (H,=28.5 km), 0.54 mgal (Hy,=8.5 km), and 0.71 mgal (H¢=3.5 km).
Column 6 shows that the use of terrain-corrected surface anomalies (Agg+tc) in
the direct method improves the bias of column 5 down to 0.03 mgal (H,=28.5
km), 0.11 mgal (H,=8.5 km), and 0.06 mgal (H,=3.56 km). The standard deviation
of the differences of columns 5 and 6 (direct method) with column 4 (indirect
method) also improves slightly with the use of (Aggttc) instead of Agg in the
direct upward continuations. In the next section we will make further studies

68



L2 0% £5°0% *a2(q °P3IS
€0°0- ¥9°0- uesy
200 90°0 96°1- 6G°1- €2°G 09°G6- 09
10°0- GE"0- 02°L 11 Sy G011 05 1- SG
S1°0- ¢G 0- 69°61 LT 2- gL ¢l €1°6 6V
80°0- g2 0- 09°8 6€°1- 19°4 8€°¢ 547
L0°0- vE-0- YLt L- 16 °9- 19°1 v - LE
(AN ve 0- 1] A by 11°8- 141 A4 12°¢ 1€
81°0 69°0—- 18"Vl €9°1 TG°01 €L 14
Sy 0- 96 1~ 28°G2 €EL 12" L1 82°1 61
¥G 0- gL 1- Lv°8 ¢L 9- Le"v1 28°0 €1
90°0 ¥6°0- £9°0- vy °8- €8°¢ 86°€ L
L2°0 06°0- L1871~ 16°G- Lg v- 16°4L 1
(2-ge°g) (1°¢°€) eE+2+1 (91°¢°€) (¢1°€°€) (¥1°€°¢) sousnbag
-bo *ba ‘ba *ba ‘ba
2 Hoolomﬁo..xmuq ) ) HoolomA 58v) em (s21+°8v) oM&< ..Mm< omﬁmouﬁum v) ated
9 4] ¥ € 4 T
gresw s1IUf)
(POY3IsW 199J1d :d ‘POYIeW 3oedipul 1 jdigoszadng)
‘wy g°gz = °H 9ouw}sIg uorenunuo) pJemdn ‘ss{eWOUy penurjuo) premdn Jo uostaedwo) °¢ 9[qelL

69



16°0= 09°0+ ‘a9q "P3IS

11°0 ¥s°0- uB3ap

AN\ 16°0 80°¢- es 1- 88°9 '8 09

S0°0- Ly 0- vi's 96°¢- GL°ST S0 ¥ 1]

1¢°0- ¥9°0- LE 9E vo°"&e- LG°81 ¥8°0¢ 6V

10°0- L0°0- 66°E1 G0°0- L2°01 LL°€ eV

vZ2°0- v o- LL 91— 69°11- 60°0- 66" V- LE

0€°0 16°0- v 01— 0€ 91— 6€°0 LE"SG 1€

0TI 10°0- 1S°€2 1€°6 ¢6°21 82°1 114

¢S°0- 89°1- SL°EV IV 61 6L°€2 96°0 61

€9°0- eL1- 9L°2- 11 12~ Gy °61 0T 1- €l

98°0 LL°0- 6G°¢€ ae6°v- v.°2 LL°S L

Sv°0 91°0- 81°8- 9€° L~ 8°6 00°6 T

(z-g°€) (T°g°¢g) e+2+1 (91°£°€) (sT°£°8) (y1°€°€) sousnbag

*ba “ba ‘ba ‘ba ‘ba
(5)T0>-"H(23+587) | (»)100-°H(%8v) | °H(som%Bv) | Hov By | “H(soeBv) | T
9 S 14 € 4 1
seiwm  sjIuUn
(POYISN 1900a1d @ ‘POYIPW 30aaipul :I jdiIosaadng)
‘wy Gg°g = Oy eouw}sSyJ UOI}BNUIIUO) mvhd;nmb. *89[[eouy panurjuo) —U.Hﬂb»AHD Jo GOMMHQAHEOO ‘¥ 9qel

70



60" 1= CYARES *ASQ °P3S
90°0- 1L°0- uBSp
90 ' 0- GI°0- ££°2- LE T- 1£°L L2°8- 09
8€°0- 2L 0- L8 20° - £2°L1 VL v GG
L5°0- 18°0- 26° 1P gh-e- 6V°02 982 6b
¥2-0- 92°0- 8€°GT 89°0— 91 11 ¥5°¢ eb
10°0- 21°0- 01°02- 61°EI- 89°0- £2°9- LE
g.°0 16°0 19°€1- LS 61— LE 0~ ££°9 1€
GG°T LE°0 L0°92 18°21 ¥9°¢1 8¢°0- G2
¥6°2- £0° V- ¥6°€G ¥8°12 26°G2 81°0 61
00°0 88°0- 89°11- ¥ °0g- 1112 8€°2- £1
Ge'0 G0"2- 86°E1 ¥6°2 ££°2 1.°8 L
68°0 GE'0 19°11- 25°6- 14°11- 29°6 1
(2°g°¢) (1°¢°¢) €E+2+1 (91°g°¢) (gT°g°8) (¥1°8°¢) souwanbag
‘ba *ba ‘ba ‘ba ‘ba
(1)T00-"H(o1458v) | (1)T0o-°H(S8v) | °H(so1458v) | °HBv BBy | “H(sdmaBy) | OO
g G 14 g A 1
sefm  sjuf
*(POYIoW 109J1Q0 :d ‘POYISN 10aaipu] :I jdirossadng)
‘Wwy G°¢ = °H 9ouwisig uolenuriuo) pJaemd ‘saeuouy panuijuo) pJemd[) jo uostaedwo) °G I[qu]

71



into the causes of the numerical differences between the direct and indirect
methods.

For visualization Figure 15a shows the 60-point terrestrial anomaly profile
and its upward continued version at altitude H,=28.5 km. Correspondingly the
Rapp-180 anomaly profile at the ground level and at altitude 28.5 km are shown
in Figure 15b.

9.2 Other Studies

This section presents other studies that we conducted using the data in
New Mexico. The objective is to give more information on the numerical aspects

of various procedures related to upward continuation of surface free-air
anomalies.

9.2.1 Formally Upward Continued Terrain Correction

For the direct method we had the terrain-uncorrected version:

D H A
(28s)Ho = Up{ags} = 51 IAI 5%3 dxdy (9.2.1)

and the terrain—corrected version:

A
(bgs + to)o = Uplags + te} =S [ | 1—38—53591 didy (9.2.2)
A 1]

The numerical difference between these two versions of the direct method is:
D D
(ags + to)fe - (2ege)flo = (ten)fo (9.2.3)

that is, the upward continued terrain correction. The subscript "1" is used in
(9.2.3) to indicate that the terrain correction tc, is not equal to the true
terrain correction but is rather a terrain correction that contains errors
caused by the errors in the individual predicted quantities Agg and (Agg + tc).
In other words tc,, formed as the differences between predicted aAgg and
(agg + tc), can be called a "predicted” terrain correction. A comparison of tc,,
with the rigorously computed tc has already been given in Section 8.7. For
the upward continued tc,, i.e. (t,c,)DHo we found the statistics shown in Table
6. The statistics were found for various upward continuation distances H,,
using the 60-point upward continuation profile described in the previous
section and 5°x5’ tc, data in the 7°x9° New Mexico test area.
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Table 6. Statistics of Upward Continued Terrain Correction, (tc,)ﬁo

Altitude
of Upward
Continuation (Hp) Mean Std. Dev. RMS
28.5 km 0.38 mgal 0,61 mgal 0.71 mgal
8.5 0.52 0,65 0.82
3.5 0.70 0,66 0.94
0.0 0.72 1,16 1.32

The relatively fast decrease of standard deviation from 21.16 mgals (Ho=0 km)
to *0.66 mgals (H,=3.5 km), illustrates that tc; has energy in the very high

frequency range, and this energy gets lost by attennuation at a very short
upward continuation distance H,.

As stated in Section 8.7, the terrain correction has a very short correlation
length, but it also contains a weak long wavelength signal. This long
wavelength signal attenuates rather slowly with altitude, and shows up in Table
6 as some significant effect (RMS 0.71 mgal) even at 28.5 km altitude.

9.2.2 Direct vs. Indirect Upward Continuation Terms

To analyze further the numerical differences between the direct and
indirect upward continuation methods, let us first review what we did in the

indirect method. First we performed the following split of the surface free-air
anomalies:

Agg = Agl + ags + agt (9.2.4)

where Ag® is the spherical harmonic contribution, Agt is the influence
contributed by topographic masses, and Agl is the residual anomaly. Then to
both sides of (9.2.4) we added the terrain correction tc8 of the reference

topography H8 (for H®8 we used a topography to spherical harmonic expansion
180):

(agg + tc8) = (agF + tcB) + ags + agt . (9.2.5)
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Then we indirectly upward continued (Agg + tcS) as follows:
syl _ r s\D s t
(agg + tcS)g, = (8gF + tcS){, + AgHo + AEHo » (9.2.6)

that is, the indirectly upward continued value is the sum of three separately
upward continued terms: the first term is a direct upward continuation by the
Poisson integral; the second term is an upward continuation in the spherical
frequency domain; and the third term is an upward continuation by the prism
integration of the gravitational influence of topographic masses.

In the comparison stage (Tables 3, 4, and 5) we get a good mean value
agreement between the set of results from the indirect method and those from
the direct method that used the terrain-corrected surface anomalies (Agg + tc).
The latter set of results could be conceptually obtained by adding tc to both
sides of (9.2.4) then applying direct upward continuation:

(8gs + to)], = (agr + to)l, + (ag®)B, + (agH)], (9.2.7)

Therefore, to explain the numerical differences shown in Tables 3 to 5 between
(Agg + tcB)IHo and (Agg + tc)DHo we need to examine the differences between

the corresponding terms on the right hand side of equations (9.2.6) and
(9.2.7).

A. Comparison of First Terms

The difference A1 between the two terms is:

AT = (AgF + tc)go ~ (agr + tcs)ﬁo = (tc - tcs)go (9.2.8)

As stated in (9.2.3) we were able to obtain some sort of predicted tc denoted
by tc,. On the other hand, the determination of the quantity of tc® was
problematic in terms of computer time requirements; the set-up of Forsberg's
program that we were using (Section 7) required 0.2 cpu sec. per point on our
AMDAHL 470 V/6 system, and we needed at least 84x108=9072 values of tcB,
Therefore, we did not specifically perform an evaluation of A = (tc-tcB)DHo.
However, the numerical comparison of the third terms below show that on
average A1 is canceled out by the difference (denoted by Ajry) between the
third terms (see equation (9.2.20)). In any case, we would expect (t.c--t.cB)DHo
to be small, because the long wavelength quantity tc8 will tend to cancel the
long wavelengths of tc (tc-tcB); as we have seen in Table 6 only these long
wavelengths (and not the very short ones) would have had the chance to filter
through the upward continued value (tc-tcB)DHo.
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B. Comparison of Second Terms

The second term of (9.2.7), which is (AgS)DHO, uses the spherical harmonic
series derived Ag® and upward continues this using the Poisson integral. The
second term in (9.2.6) conceptually uses the same quantity Ag8 but upward
continues it using the spherical harmonic series, upward continuation being
efffected by multiplying the spectrum of AgB by the factor (R/r)n*2, To
compare these terms we took the Rapp-180 field used in Section 9.1 and, with
program F388 of Section 7, generated 5'x56' center-point values of AgB on the
equatorial sphere level. These values, taken as 5’x5' mean values, covered the
7°x9° test area in New Mexico. We then upward continued the 5'x5' mean
values by Poisson integration (program F499, Section 7):

D _H AgS
(hgo)fo = 52 | | 55 axdy (9.2.9)

and compared the results with the rigorously upward continued values
(program F388, Section 7):

180

+ n__
(Ags)go = ];—% Z (n-1) [a+§°]n : Z (C¥p cos mA +
n=2 m=0
+ Spm sin mA) Ppy (sin ¢) (9.2.10)

The implementation of equation (9.2.9) was done in two versions. In the
first version (called center-point kernel version) the contribution of a §'x5’ ag8
to the upward continued value was obtained by multiplying 4g® by the step
function evaluation of the integral kernel at the center point of the 5'x5' block.
In the second version (called integrated kernel version) the 5'x5' AgS was
multiplied by the rigorously integrated value of the kerne! inside the area
covered by the 5’x6' block (see RapB, 1966, for specific equations). The
statistics of the differences ajy = (4g8)Vyg, - Ag8y, are shown in Table 7. The
statistics were obtained for the same eleven presentation points of the profile
used in Section 9.1. We observe that the integrated kernel implementation of
equation (9.2.9) can keep the error of (AgB)DHo under 1% of true value AgB8y,.
This is true down to the lowest upward continuation altitude tested which was
Ho=1 km. The center-point kernel implementation, on the other hand, can keep
the relative error under 1% down to 10 km, but below 10 km the use of the
integrated form is necessary since the tests show that the errors of the
center-point form reach 15% at 56 km and blow up at 1 km.

To conclude, the second term Ag8py, of equation 9.2.6 and the second term
(AgB)DHo of equation 9.2.7 are in close agreement, and therefore their
difference Ar; is not a major contributing factor to the differences found in
Section 9.1 (Tables 3 to 5) between the direct method and the indirect method
of upward continuation. However, in spite of the small differences found

76



between AgS8p, and (AgB)DHo, the rigorous quantity AgByg, is still advisable to
use (in an indirect method setting) because its evaluation does rot increase the
computational burden very much and it has the advantage that in principle it
uses continuous and global data whereas (Ag'E*)DHo (which is the implicit
evaluation in the direct method) uses a step function approximation of the
terrestrial data and a limitation of integration to within a finite data cap.

Table 7. Statistics of the Absolute Error Incurred in Using the Poisson
Integral for the Upward Continuation of the Rapp-180 Anomaly Field.
5'x6’ Center Point Rapp-180 Anomalies Used as Data, Covering the
7°x9° New Mexico Test Area. Units: mgals.

Altitude of True AgS Error Error
Upward —Ag180 (Center Point (Integrated
Continuation =he Kernel Used) Kernel Used)

Ho=30 km Mean= 7.38 0.05 0.03

S.D.=%6.17 0,08 0,07

RMS = 9.43 0.09 0.08

10 km 9.02 0.05 0.08

9,83 +0.06 +0.13

13.01 0.08 0.15

5 km 9.52 1.31 0.10

£11.05 £].63 (.13

14.20 2.03 0.16

1 km 9.94 107.46 0.03

£12.15 £]132.98 (.03

15.27 166.20 0.04

C. Comparison of Third Terms

Finally let us now turn to a comparison of the third terms, i.e. Agt}{o in
(9.2.6) and (Agt)DHO in (9.2.7). The quantity AgtHo is the indirect, and
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(Ag't)DHO the direct, upward continued value of Agt. In turn agt is given by
equation (8.7):

agt = 0.1119 (H - HS) - (tc - tcS) , (9.2.11)

where in our case the reference elevations H8 and terrain corrections tc8® refer
to a 180-expansion of the topography. We have the indirect quantity:

Agf'{o found by integration of the attractions caused at the

computation point by residual topographic masses sub-
divided into prism integration elements (see
Section 7 for operational program used);

and the direct quantity:

- - - S
A

= D

As we indicated under equation (9.2.8) we did not evaluate tcB because of
computer time limitations. Therefore, we also did not evaluate (9.2.13) where
tc8 appears. However, tests of interest could still be conducted by dropping
some terms in (9.2.13); we used two versions:

D H agl
(2ef)m, = 52 IAI —gé dxdy (9.2.14a)
with agt = agt - tc8 = 0.1119 (H - HS) - tc; (9.2.14b)
and
D H agl
(gPRo =32 [ [ 52 axay (9.2.15a)
A (1]
with agt = agt + (tc - teS) = 0.1119 (H - HS) (9.2.15b)

Using our 5'x5’ data in New Mexico, various upward continuation distances
(Ho=28.5, 8.5, 3.6 km), and the eleven presentation points of Section 9.1, we
compared (9.2.14) and (9.2.15) against (9.2.12) and obtained the statistics shown
in Table 8. The statistics are given for the results of (9.2.12) and for the
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differences: [equation (9.2.14) or (9.2.15)] minus [result of (9.2.12)]. We should
note that in view of the results of Table 7 we used the integrated kernel
evaluation for Ho = 3.5 km, and simply used the center point kernel evaluation
for Ho = 8.5 and Hy, = 28.56 km to implement (9.2.14) and (9.2.15).

Table 8. Statistics of AgtLHo , and of the Differences ((Agtl)DHo - AgtHo) and
((agt2)Pho - 8gbHo), in mgals. See equations (9.2.14), (9.2.15), and

(9.2.12).
Altitude of (P D(Z) l()3) t
Ul"fard . Agy,o (‘g};)ﬂo ¥) AE\Ho (ASE)H.,— AgHo
Continuation (9.2.12) (9.2.14)—(9.2.12) | (9.2.15)—(9.2.12)
Ho=28.5 km Mean=-3. 11 -0.63 -0.02
S.D.=%4.74 £0.51 £0.24
RMS = 5.49 0.80 0.23
8.5 km -3.71 —0.64 0.06
£11.24 20,62 £0.58
11.34 0.87 0.55
3.5 km -3.39 ~1.58 0.08
£15.57 £1.22 +1.04
15.23 1.30 0.99

The small mean differences in Table 8, column 3 imply that numerically:
t
M{bgho} = M{(2gb) Ho} (9.2.16)

where M denotes the straight averaging operator, operating on the test point
samples. Therefore, for the difference (let us denote this difference by a1yy)
between the third terms (9.2.12) and (9.2.13) we have the approximation:

M{aTTT} = M{(agt)Ro - Bafio} ® M{(ag)Do - (8e5)Ro} - (9.2.17)

79



By virtue of (9.2.15b),
M{(agt)h - (85I} = M{~(tc - t88)p,) (9.2.18)

Combining ((9.2.17) and (9.2.18) we finally have the approximate mean difference
between the third terms (agt) Ho and AgtHo:

M{arTT} = M{(agt)], - agh.} & M{=(tc - tcS)D,} (9.2.19)
Combining (9.2.19) and (9.2.8) we have:

M{arr} & -M{a1}, or

M{ay + Ar77} # O. (9.2.20)

From the discussions related to Table 7 we also learned that M{aAr;} & 0, and
therefore the mean of the total difference A = A7 + Ajy + 4117 is small, i.e.,

M{a} = M{A1 + Ay + A1y} % O (9.2.21)

Equation (9.2.21) repeats the results of Tables 3, 4, and 5, namely, that the
mean difference between the indirect method, on the one hand, and the direct
method that uses terrain corrected surface anomalies (Agg + tc), on the other
hand, is small.

9.2.3 Sensitivity of Anomaly Fields to Changes in Upward Continuation
Distance Hg,

As mentioned in Section 3.3 (A) there is an uncertainty as to what value
of upward continuation distance H, to use in the Poisson integral. Recall that
Ho is theoretically the vertical distance between the computation point P in
space and the level surface to which the anomaly data are assumed to refer.
The uncertainty in H, is caused by the fact that the given surface anomaly
data refer to a varying level surface, rather than to a single level surface.
Even in the case when the terrain correction is applied to implement an
approximate data reduction to a level surface, the position of the final
reference level is uncertain (see Section 3.3 (A)). In our final procedures we
simply assume that the reference level coincides with the mean elevation
surface in the area covered by our anomaly data. The error in upward
continuation distance H, that results from this assumption is expected to be

80



related to the deviation of the actual topography from the mean elevations
surface. In this section we give a feeling for the sensitivity of our results to
the choice of value for H,.

The mean elevation in our New Mexico study area is about 1.5 km. For
sensitivity analysis we compared upward continuation results for the case when
the reference level for the data is assumed to be at the 1.5 km level, and for
the case when this level is assumed to be at the geoid (i.e., the 0 km-level).
The difference between the two cases is, therefore, the use of upward
continuation distances H, that differ by 1.5 km. We performed our comparisons
using the eleven presentation points of the profile in Section 9.1. The
statistics of the comparisons, for various values of H, and various types of
anomaly fields, are shown in Table 9.

Table 9 says, for example, that in the direct method that uses the total
field (agg + tc)DHo, (see (3.3.2)), an uncertainty of 1.5 km in H, for H,=30 km
directly causes an uncertainty of 0.43 mgal (3.8% of computed value) in the
upward continued anomaly. If data reductions are used, as in the indirect
method, such that only the residual part (agl + tcS)DHo is used (see (3.3.14)),
the uncertainty reduces to 0.19 mgal (4.2% of computed residual value). Table
9 also shows that the residual topographic field Agt-Ho (see (3.3.18)) is the part
of the total field that is most sensitive to changes in H,, the reason being that
agl contains the high frequency part of the field. This last sensitivity does
not introduce any error into the computations, since AgtHo has no problem
associated with defining an "upward continuation distance". Finally, Table 9
also shows that the spherical harmonic (long wavelength) component of the
field is the least sensitive to altitude changes.
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Table 9. Sensitivity of Sample Profile Anomalies to a 1.5 km Change in Upward
Continuation Distance H,, for Various Values of H, and Various Types
of Anomaly Fields.¥

Upward Total Residual Spherical Residual
Continuation Field Field Harmonic Topographic

Distance Field Field
(bgs + tc)ms | (ag® + to)Hy |  Aews agu

(3.3.2) (3.3.14) (3.3.15) (3.3.16)
Ho = 30 km 11.32 4.49 9.65 5.49
0.43 0.19 0.24 0.27
3.8% 4.2% 2.5% 4.9%
Ho = 10 km 19.92 8.02 13.35 11.34
1.35 0.51 0.37 1.14
6.8% 6.4% 2.8% 10.1%
Ho = 5 km 23.70 9.41 14.59 15.23
2.15 0.73 0.41 2.29

9.1% 7.8% 2.8% 15.0%

*Key to entries in table for each box:

(1) BRMS value of profile anomalies at height H, (mgals).

(2) BRMS change in profile anomalies when height H, is reduced by
1.5 km (mgals).

(3) Percentage ratio: (2) + (1).
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9.3 Fourier Computations

From the numerical point of view it is very attractive to use frequency
domain processing. The theoretical equations are summarized in Chapter 2.4,
Here we will show how the Fourier Transform principle can be utilized in
practice to upward continue the gravity anomaly field from one level surface to
another. It should be stressed here that the Fourier technique requires
exactly the same assumptions as the flat Earth Poisson’s integral. After all
these two procedures give the unique solutions to the same Dirichlet problem
for half space - one in spatial the other in frequency domain. Fourier
technique is much cheaper in computational stage but requires the special care
in controlling the edge effects. As our balloon experiment shows, these effects
are negligible far from the edges where the upward continued value was
computed.

In practice the evaluation of upward continuation operator is done by
means of digital Fourier transformation defined by (Robinson and Silvia, 1981,
ch. 3.3). (Notice that we define the forward transform with a + sign in the
exponent).

(o [OxMx | Dylly
F(mx, my) - : f(nx, ny) e127|' Nx + Ny (9.3.1&)
nx=0 ny=0
1 NZ"_I P ~ion(Bxfx DMy} (9.3.1b)
f(nxr ny) = Nx Ny F(mx, my) e NX Ny
my=0 my=0

nx, mx 8{O, 1, s o0y Nx"'l}
ny, my 5{0, 1, o ey Ny—].}

If we choose Ny, Ny to be powers of 2 we can use the Fast Fourier Transform
algorithm to evalualte (9.3.1).

The integers ny, ny, my, my are defined by:

X = nyg 4x y = ny Ay
kx = My Afx ](y = my Afy (9.3.2)
Afy = 1/(Ny AX) afy = 1/(Ny Ay)
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where the spatial increments are related to angular increments by

Ax = R cos ¢ A\ (E-W direction)

(9.3.3)
Ay = R A¢ (N-S direction)

Here the regular spatial grid intervals Ax and Ay are computed using the mean
latitude ¢=%=32.5° of the data location. The original data are considered here
as the discrete point-measurements of the gravity anomaly field of the surface
of the earth using uniform angular spacing A4=4A=5'. This uniform spacing on
the sphere under transformation (9.3.3) becomes strictly speaking non-uniform
on the plane due to meridian convergence. Using a fixed value of ¢ in (9.3.3)
introduces some distortions to the original spacial distributions of the data.
Our study indicates that this distortion produces an essentially negligible
effect on the results due to the use of rather fine 5'x5' grid defined on a
relatively small portion of the sphere (7°x9° block). In other words the flat
earth approximation being wvalid for the original Poisson space processing of

data is also valid for its frequency implementation, at least for small regions as
discussed in this report.

Summary of frequency domain digital upward continuation procedures:

1. compute Ax and Ay; (9.3.3)

2. transform the data to the frequency domain as indicated by (2.4.5) using
(9.3.1a);

3. multiply the transformed data in the frequency domain by the transfer
function A (2.4.6)

4. invert the result back to space domain as indicated by (2.4.7) using
(9.3.1b)'

The above procedure was applied to our 7°x9° New Mexico study area, to
upward continue the entire 84x109 grid of 5'x5’' mean Faye anomalies (see
Section 8.7). The uplifted grid for an upward continuation distance of 28.5 km
is contoured in Figure 16, with a contour interval of 5 mgals. This figure
should be compared with Figure 17 in which the corresponding grid from the
Rapp-180 field is contoured. The long wave agreement between Figures 16 and
17 is evident, with Figure 16 expectedly showing more detail because of the
use of high frequency terrestrial data.

For the Fourier upward continuation we used only a simplified procedure
including no windowing of the data or any other regularization routine in
frequency domain (i.e., no specialized filters used).  We found the results
produced by this simplified procedure in satisfactory agreement with the space
domain processing of original Ag+tc field by means of Poisson’s integral. The
difference in results on the order of 0.15 mgal at 30 km flight altitude can be
associated with the differences in numerical implementation. We employed this
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Figure 16. Upward Continued Faye Anomalies Using Fast Fourier Upward
Continuation, New Mexico Balloon Gravity Test Site.
C.I. = 5 mgals; Upward Continuation Distance = 28.5 km.
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procedure using the Fast Fourier Transform routine modified from Claerbout
(1976, p. 12). The technique was tested using the original terrain corrected
free-air anomaly field. The results were compared along E-W test profile with
the results of the Poisson’s integral operating on the same field.

The RMS difference over the test profile between those two results were
0.12 mgal for the upward continuation distance of 28.5 km. For the upward
continuation distance of 8.5 km the RMS difference along the same test profile
was 0.32 mgal.

The magnitude of the above differences is in fact on the order of
differences between the indirect and direct space domain procedures already
discussed. This indicates that the Fourier method can prove to be competetive
with the one-step space domain processing (direct method) with respect to
accuracy of the results. It can be recommended for fast processing of large
volumes of gridded data to produce the image of the field (in a gridded form)
at any level surface above the data surface. To get the values at any location
outside the grid point the interpolation has to be performed which is a wvalid
routine provided the original data were gridded in accordance with the
sampling theorem (Robinson and M.T. Silvia, 1981, ch. 2.6).

On the theoretical side it provides an elegant uniform treatment of all
frequencies present in the original signal. On the practical side, it provides a
fast numerical procedure to transform the data upward from one level surface
to another. As far as accuracy is concerned the edge effects (inherent in
Fourier techniques) should be treated with care by appropriate windowing
routine or (if possible) the region with data should cover enough grounds
surrounding the point of interest.
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10. Applications to Balloon Gravity Project

The theory outlined in this report was applied to the Balloon Gravity
Project coordinated by the Air Force Geophysics Laboratory, Bedford,
Massachusetts. The experiment took place in New Mexico and was designed to
test the theory, procedures and instruments used for both the measurements
and the prediction of gravity in space.

The comparisons between the observed and predicted gravity will give in-
sight into the accuracy and performance of the theories and techniques of
gravity recovery in space which are in the operational stage today. It is also
a test of the accuracy and performance of the balloon-borne instruments and

techniques that are used today for the measurements of the external gravity
field.

In this section some technicalities of the actual gravity prediction
procedure used for the Balloon Project are given. The method we chose for
the final application is the indirect method described in Section 3.3. To repeat
briefly, the rationale behind this method is to extract the high frequency
variation in the original surface gravity. Here by high frequency variation we
understand the topographic effects (irregular geometry of the terrain plus tc
correction). As we have seen in the previous chapters this high frequency
component of the gravity signal cannot be conceptually nor practically
converted downward to the Poisson’s spherical geometry so we did not try to
do this. Ingtead we immediately upward continued this high frequency
component (right from the original surface where it was defined) up to the
balloon’s attitude using partially the ideas of equivalent source method as
implemented in the prism integration of topographic effects.

After the removal of this short-wavelength variations, the remaining
regular portion of the gravity field was converted downward (formally) to the
Poisson’s spherical geometry (see Section 3.3). Then the long-wavelength or
global portion of this signal is upward continued in the frequency domain
(using spherical harmonics) and the mid-frequency portion is upward continued
by solving the usual Dirichlet problem for half space (in planar approximation)
by means of Poisson’s integral.

In the actual computation we used the FORTRAN implementation of the
Poisson’s integral procedure as described in (Rapp, February 1966). The
routine was run using the gridded mid-frequency portion of the gravity
anomaly signal as discussed in Section 3.3.

10.1 Preparation of the Balloon Tracking Data for Upward Continuation
Procedure

The balloon tracking data were sent on the magnetic tape dated 4 May
1984, The tape name is DUCKY Ia Radar Tracking Data. The tape contained

four files, with the float portion of the experiment contained as part of
file #3.
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The positions of the balloon during the experiment were provided in the

form of geodetic coordinates (¢, A, h) with respect to the WGS72 ellipsoid (see
Table 10).

The original tape contained 462,200 positions. The original records were
parameterized by the time of measurements. On Figure 18 we show the spatial
location of the balloon’s trajectory. The average spacing of original tracking
data for the float portion of the experiment was approximately 0.6 m on the
ground. At the first step we reduced the number of data-points spatially by
choosing only the clusters of 10 original records spaced every 30" angular
distance apart from each other. During this step the false data records were
rejected and the remaining set containing 3160 records was checked for

blunders. The false data records on the original tape occurred at the end of
each file due to technical reasons.

Since we were primarily interested in the flight altitude portion of the
experiment (29-30 km altitude) it was sufficient to select only 1 data point
every 2' spacing (in angular distance) along the track. The 2' spacing is
sufficient for all interpolation purposes at flight elevation because the
anomalous gravity field is already very smooth at that altitude (see Figure 15a,
for example). The resultant data-set contained 31 values equally spaced in 2’
intervals covering the flight portion of the balloon’s trajectory, that is the
portion of the original data tape (file #3) which falls in the time interval
<67445.95, 66955.95>. The time is UTC time in seconds. In the computational

stage of this project we used the time only as a convenient parameter to locate
the data on tape.

10.2 Reference Systems Used in the Balloon Project

In this section we give the summary of reference systems and conversions
used at the stage of data preparation for the balloon project. The geodetic
coordinates (¢, A, h) of the balloon positions provided on balloon tape were
given with respect to WGS72. The terrestrial gravity anomaly field that we
used in this project was given in the GRS67 system. The spherical harmonic
expansion of the global gravity field up to degree 180 was assumed to refer to
GRS80 (Rapp, 1981) (referred to as Rapp 180 field). The ellipsoid parameters
for the reference systems used are given in Table 10.

Ellipsoid a [m] 1/f
WGS72 6378135 298. 26
GRSE67 6378160 298.2471674273
GRS80 6378137 298.257222101

Table 10. Parameters of the reference ellipsoids involved in the data
preparation for the balloon project.
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Now we will summarize the conversions used for upward continuation of
gravity anomalies. Since the original gravity anomaly field that we used in our
project refers to GRS67 ellipsoid we decided to convert the given geometric
heights hygs72 that refer to the WGS72 ellipsoid to the normal heights H¥grsg7
that refer to the GRS67 ellipsoid.

geop

/ T spherop

h < K

/—_ ———— geoid

//""_ ellipsoid

Figure 18. The Spatial Relationship Between Selected Gravimetric Quantities

From Figure 19 we have the relation:

H =H+ (N-¢) (10.2.1)

X
GRS67 GRS67

where { is the geop-spherop separation or height anomaly at balloon’s
altitude.

Instead of the difference (N-¢)grse7 we will actually use (N-¢)grsgo in the
approximate relation:

H g H+ (N - ¢) (10.2.2)

X
GRS67 GRS80
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For the orthometric height H appearing in (10.2.2) we can write the relation
(see Figure 19):

H = hgpsgo ~ Narsso (10.2.3)

To get hgrsgo from a given hwgs72 we implement the well known formulas of
geometric geodesy (Rapp, 1984, Geometric Geodesy Notes, Vol. 1, pp. 121-122) in
the following procedure

input: hWGS72 , ¢

. _ 2 . .
compute: Zyas72 © (N(1 e?) + h) sin ¢ using WGS72
constants

convert: ZarS80 = ZWGST2 + Az & ZyGsT2 (10.2.4)

here we set the origin shift AZ to zero so that
the ellipsoid WGS72 and GRS80 have a common center

. - 2 — 2 :
compute: hGRSBO Sin ¢ N + e*N wusing GRS8B0 constants

where N = a/Vl-e?sin?¢ , e? = 2f - f2,

In practice, instead of converting each data point separately using the
above formulas, we applied a single common constant Ah = -1.66 m to each
height given in the WGS72 system:

horsso = Pygs7z + 4h (10.2.5)

where the particular value of Ah = hgrsgo-hwgs72 = -1.66 m has been
evaluated by the sequence of equations (10.2.4) (starting from a nominal
hwgs72 and computing the equivalent hgrsgg) using the mean latitude of the

balloons trajectory (32.40°) and the mean altitude of the flight section of the
experiment (30 km).

Using (10.2.3) and (10.2.5) we can write (10.2.2) in the final form:

X 2 -
Herse7  (Pwgs72 * M) ~ {gpego (10.2.6)

In the actual implementation of equation (10.2.6) we used the Rapp 180 field
(based on the spherical harmonic expansion of gravity potential up to degree
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and order 180) to generate the required values of height anomalies ¢gRrsgo-
Due to the smoothness of the height anomaly field at flight altitude a single
constant mean value of ¢grsg80 = -23 m (*0.26 m) was used in formula (10.2.6).

The normal heights (10.2.6) were subsequently used in the FORTRAN
subroutine for Normal Field Computations (Rapp, 1966) (see also Section 2.6) to
generate normal gravity at the exact balloon positions. The routine was run
using GRS67 constants.

10.3 Upward Continuation Resultis

The upward continuation procedure of gravity anomaly described in this
report was actually applied only to the 31 points selected in Section 10.1. The
results are shown in Table 11. The position of each point is defined in
columns 1 to 4: (1) time tag in the tracking record; (2) latitude; (3) longitude;
and (4) height above the WGS72 ellipsoid. Columns 5 to 7 give the upward
continued anomaly contribution from: (5) residual defined Bouguer anomalies;
(6) spherical harmonic anomalies; and (7) topographic anomalies. Columns 5, 6,
7 were summed to form column 8, which is the total upward continued anomaly
from the indirect method of upward continuation. Column 9 gives the normal
gravity to be added to the upward continued anomaly to produce the first
model for measured gravity at the space point. Columns (10) and (11) give the
upward continued anomalies resulting from the direct method of upward
continuation of surface anomalies using terrain-uncorrected and terrain-
corrected surface anomalies, respectively. Columns (12) and (13) give the
errors of columns (10) and (11) relative to the expectedly more rigorous
indirect method (column 8) of upward continuation. The mean error and
standard deviation of errors are as follows:

Error of Direct Method Error of Direct Method

without use of tc (col. 12) with use of tc (col. 13)
mean error -0.51 mgal 0.14 mgal
s.d. error $0.35 mgal 0,18 mgal

In agreement with earlier results, we see an improvement with the use of
terrain correction in the direct method.

10.4 Interpolation of the Results at Altitude

In the last step the upward continued values were interpolated at all
original data-records on the balloon tape that fell in the time interval covering
the flight portion of the experiment (190,201 data-points). Only results from
the indirect upward continuation method were used (Table 11, Col. 8.). The
actual interpolation was done using the one-dimensional cubic spline routine
(subroutines SPLINE and SEVAL, Forsythe et al., 1977) applied to the flight
sequence which has been parameterized with longitude only.
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To check the internal accuracy of this interpolation process we removed
every other record out from the 31 "master" points and treated the remaining
16 points as the new knots in the spline interpolation procedure. In this way
we interpolated values at the removed knots and compared with the "true"
values obtained directly from the upward continuation process. The
differences were on the order of 0.01 mgal in gravity anomaly.

For the normal gravity computation the chosen 31 grid points were not
dense enough to properly recover the normal gravity at flight altitude, mostly
due to the vertical gradient of normal gravity. It was evident especially at
both ends of the flight portion of the experiment where the balloon changes
altitude very rapidly. Therefore we decided not to interpolate normal gravity
but to compute it rigorously at every observational point (see Section 2.6).

10.5 Propagation of Positional Errors

On the original balloon tape the positional accuracy of the balloon in all
three directions were provided with each data-record. The average accuracy
of the 31 points selected for actual upward continuation was on the order of
2 m in all x, y and z coordinates.

Considering that the largest horizontal gradient of the actual computed
anomalous gravity field along the flight portion of the balloon trajectory is
about 0.0006 mgal/m (this is the actual gradient of the computed results for
the balloon project), we assess the maximal error due to the 2 m uncertainty
in the horizontal position of the balloon to be 0.0012 mgal in gravity anomaly

and 0.0011 mgal in normal gravity (for normal gravity computation, only the
uncertainty in N-S direction must be considered).

The uncertainties in altitudes will also produce uncertainties in the
computed components of the gravity field., From Table 9 we learn that the
vertical gradient of the actual Ag field at 30 km flight altitude is about 0.0003
mgal/m. Therefore the 2 m error in the balloon vertical position will show up
as the uncertainty of about 0.0006 mgal in the computed Ag field. Similarly
the vertical gradient of normal gravity of 0.3086 mgal/m (Rapp 1982, p. 8) will

cause the uncertainty in the computed normal gravity of about 0.6 mgal (due to
the 2 m uncertainty in the altitude).

Also, the error in geoid undulation (more precisely in height anomalies)
used in the data reduction propagates directly to the uncertainties in the
clearance of the balloon above the datum surface. In our project we used the
height anomalies field implied by the set of potential coefficients up to degree
180 computed by (Rapp, Dec. 1981) and referred to as the Rapp 180 field. The
height anomalies were needed in data reduction process to convert the WGS72

geometric heights given as the data to the normal heights in GRS67 (See
Section 10.2).

The Rapp-180 field used in the data reduction process gives the
undulations (height anomalies) with the accuracy on the order of #1 m (Rapp,
Dec. 1981, p. 31). For our actual sub-balloon trace in New Mexico we decided it
is sufficient to represent the Rapp-180 height anomaly field in this area by a
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constant value of -23 m (*0.26 m) which is the mean height anomaly computed
for the flight portion of the experiment only. We conclude that the usage of
the Rapp-180 undulation field introduces about 1 m uncertainty into the balloon
vertical position. Using the same vertical gradients stated above we find the

0.0003 mgal error in the computed Ag value and the 0.3 mgal error in the
computed normal gravity.

In conclusion, we notice that the positional errors in the balloon
coordinates and the height anomaly error do not noticeably affect the gravity
anomaly computation, but they have an effect on the computed normal gravity
and on the predicted observed gravity (mainly due to the altitude error).
Therefore, the predicted observed gravity may be contaminated by at least 0.6
mgal uncertainty due to the vertical positional errors.

10.6  Other Sources of Errors

In Section 6 we considered theoretically how the errors present in gravity
data propagate through the upward continuation integration. Here we can try
to use some of the results of Section 6 to give the rough evaluation of errors
that affect the actual procedure.

The main source of the gravity data error probably comes from the
gridding procedure of the gravity material by means of the collocation pre-
diction of the mean 5'x5’ values. If we assume that the mean values computed
by the collocation prediction procedure are contaminated by the error function
having error variance of 25 mgal? (this number is a rough estimate from the
formal errors output by the collocation prediction in the area of the balloon
flight; see Figure 12, central portion) and the correlation length of about 10
km (this correlation length is unavoidably due to the gaps in the original
gravity data of about this size which cause the adjacent 5'x5’ blocks to be
correlated), then we can use Table 2 together with (eq. 6.2.9) to conclude that
at 30 km flight altitude the propagated effect is about 0.9 mgal (in standard
error) with 55 km correlation length. This puts the limit of accuracy on our
entire procedure. This limit is due to the quality of the original gravity data
mainly in spatial distribution and cannot be overcome by refinements in
procedure unless the geometry and quality of original data are improved.

It should be noted here that errors present in the mean anomalies (for
which 25 mgal? variance and 10 km correlation length at ground level was our
rough estimate) are due to both: errors in the original gravity point-values
(on input to collocation prediction routine) and errors of interpolation. The
error of interpolation comes from the difference between the true gravity
anomaly and the gravity anomaly model implemented by the subtraction of the
reference field in order to center the original data. Of course where the
original data are very dense the computed mean values are (almost)
uncorrelated and are affected mainly by the point-gravity data error. If this
error in original point-values could be modelled by a weakly correlated noise
having correlation length shorter than 5'x5’ blocks (used in prediction) then
this type of data error would tend to cancel during the computation of 5'x5’
means, producing essentially negligible effect at 30 km altitude. If the
point-data field is sparse in some areas then the predicted mean values will be
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affected by both data error and the interpolation error. In sparse areas the
computed mean values tend to be correlated with each other and so will be the
interpolation error. The correlation length of this error is dependent on the
size of the gaps in the original data - the larger the gaps the wider correlated
errors (from this type of analysis comes our rough estimate of 10 km
correlation length errors present on output of collocation prediction
procedure). As we learn in Section 6 such widely correlated errors do not
attenuate very fast with altitude. For example, according to our rough
estimate (see Table 2) at 30 km flight altitude the correlated errors produce
the effect that can be descibed as the distortion function which is 0.9 mgal in
amplitude and 55 km wide in correlation length. This type of effect can very
eagily be misinterpreted as some sort of systematic error and wrongly
associated with errors in the modeling of the upward continuation distance (see
Section 9.2.3) or the data reduction error. We consider this type of error as
the main limitation of accuracy of final results.

Another effect considered in Section 6 is the representation error due to
the conceptual replacement of the true gravity field by the step function
composed of the flat patches over 5'x5' blocks. At 30 km flight altitude the

rough estimate of this effect in gravity anomaly is only about 0.01 mgal
(standard error).

If we assume that the effects considered here act independently of each
other we can sum the error variances of each component to get the rough
estimate of the total error to be 0.92 mgal (total standard error) in gravity
anomaly and about 0.7 mgal error in normal gravity.

In Table 12 we give the summary of errors that affect the actual results of
upward continued gravity anomalies and normal gravity for the Balloon Project.
Notice that the indirect method is to some extent free of the truncation error
(Section 4) since we carry up the complete global long-wavelength information

represented by the spherical harmonic expansion of the gravity field up to
degree 180.

In order to get a feeling of the actual magnitude of propagated errors it is
possible to perform some simplified numerical test. (Rapp, 1966) suggested a
simple numerical check (not estimate) on the relative magnitude of propagated
uncorrelated errors in the upward continuation process. The trick is to
upward continue the estimates of accuracies of gravity material using the same
computer program which was used to process the actual gravity data.

In a computer implementation the upward continuation integral (6.1.1) takes
the form of summation:

- i dxdy
b8y = on E > Ag ~3 (10.6.1)

This is a weighted average operator. Now, if we know the accuracy m’Ag of
each component 4gij used in the summation (10.6.1) we can neglect the
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correlations between adjoining blocks (i, j) and simply sum the individual error
variances m?jg over all blocks used according to the formula:

mag, = (sz;z Z Z g [2"—5%1]2 (10.6.2)

Table 12. Error Budget of the Gravity Upward continuation for the Balloon

Project
Effect at 30 km Altitude
Source Gravity Anomaly Normal Gravity
The original gravity material 0.9 mgal standard unaffected
error and the error in predicted error
5’°%5’ mean anomalies (interpola- 55 km correlation
tion error) (see Section 6) length

assumed: standard error 5 mgals
correlation length 10 km

Errors in the modelling of the 0.2 mgal uncer- unaffected
upward continuation distance tainty
(on the transition from the true
earth to the Poisson’s spherical
geometry). (See Table 9, col. 3).
assumed uncertainty: 1.5 km

Representation error 0.2 mgal standard unaffected
(See Section 6) error

Errors in the balloon position
(See Section 10.5)

horizontal errors of 2 m 0.0012 mgal 0.0011 mgal
maximal error uncertainty

vertical errors of 2 m 0.0006 mgal 0.6 mgal un-
uncertainty certainty

Height anomaly error
(See Section 10.5)

Estimated uncertainty of 1 m 0.003 mgal 0.3 mgal
uncertainty uncertainty
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This is the quadrature formula similar to (10.6.1) but with the squared kernel.
Therefore, we used the actual upward continuation program described in (Rapp
1966) to upward continue the uncorrelated errors in the gravity material due
to the prediction of mean values on the 5'x5’ grid, using (10.6.2). For
programming details see (Rapp, 1966). Computation was performed exactly at
the balloon locations giving the accuracies on the order of 0.2 mgal for the
flight portion of the balloon trajectory (30 km upward continuation distance).
From this single experiment we observe the attenuation of errors from about 4

mgals (on average) at the ground level to about 0.2 mgals at 30 km flight
altitude.

It is important to realize that this numerical experiment is valid only for
one specific type of error (namely errors due to prediction of the mean gravity
anomaly values on the grid, see Section 8.3 for details) assuming the error is
uncorrelated. Also the arbitrary scaling of error variances on the ground
would produce the respective rescaling of upward continued variances of flight

elevation. In that sense only the relative degree of attenuation is a meaningful
outcome of that numerical check.
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11. Summary and Conclusion

We have presented operational procedures for the upward continuation of
gravity anomalies given on the surface of the earth. The main conceptual
difficulty is that operationally available anomalies are referred to the earth’s
surface, which is not an equipotential surface. These surface anomalies can be
upward continued using discrete estimation procedures such as collocation or a
Bjerhammar-type of approach, but in this rcport we have avoided such
techniques because of the expensive matrix inversions that they require.

Instead, as stated in Section 1 we used collocation only in a preliminary
step, to predict an optimal set of mean anomaly wvalues from the available
irregularly distributed point anomaly data. This application of collocation is
operationally feasible because in contrast to the prediction of upward
continued values, the prediction of mean anomalies requires information to be
inverted only from a small number of data points around the computation block.
After obtaining a complete set of mean anomalies over rectangular blocks we
turn to a continuous upward continuation problem, in which it is assumed that
at every point on the earth’'s surface we know the gravity anomaly function, as
represented by the mean values.

The upward continuation of a continuous gravity anomaly function given
on the (non-level) surface of the earth is by no means a simple problem. The
simplest conceptualization of a solution is by means of Taylor series expansion,
in which the surface anomalies are first used to derive anomalies on a level
surface using the vertical gradients of the anomaly field. Once the level
surface anomalies are known classical Poisson integration yields a solution to
the upward continuation problem with relative accuracy on the order of the
earth’s flattening. However, for rough anomaly fields the computation of
vertical gradients required for data reduction to a level surface, itself requires
such density and accuracy of data that is not usually available in practice (see
Noe (1980), for example). Moreover, for such fields downward continuation of
surface values cannot be expected to be regular. Therefore, as reasoned out

in Section 3 we have resorted to the so-called indirect method of upward
continuation.

The most important feature of the indirect method is the extraction and
separate modeling of the high frequency irregularities of the original gravity
anomaly signal. This high frequency component is due to shallow topographic
masses, and can be modeled by directly integrating the gravitational effects of
those masses without need for any sort of data reduction to a level surface.
Operationally, the topographic effects on gravity anomalies at altitude can be
computed by prism integration as stated in Section 2.5 with an operational
program mentioned in Section 7, while on the earth’s surface the topographic
effect on gravity anomaly at a point is conveniently formed as the sum of a
"Bouguer plate" effect and a "terrain correction" effect (see (3.3.11)). In this
report we modeled the high frequency component of the 3-dimensional gravity
anomaly field using as "equivalent sources" the positive and negative
topographic masses of assumed density 2.67g/cm3, lying between the actual
topography and a reference topography to spherical harmonic degree and
order 180. With the extraction and separate modeling of the high frequency
anomaly signal we circumvent the major difficulties associated with the
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reduction of surface data to a level surface, these difficulties being precisely
due to the high frequency irregularities of the field.

The residual field left after removal of topographic effects is much
smoother than the original field. From this residual field we decided to
further remove and separately model the low frequency component using the
Rapp-180 (1981) field. This was done in order to formally free the upward
continuation from truncation error caused by neglect of remote zone data. In
order to remove the effect of the Rapp-180 field from the surface data, the
data points were basically taken at their actual horizontal positions, but an
assumption had to be made that the data points all lie on a common level
surface and not in their actual vertical positions. The assumption was
necessary to keep evaluation time for the Rapp-180 field reasonable. The
assumption seems justified because the vertical gradient of a 180-field is
expected to be small, but this point can be further studied (see, for example
Table 9). The Rapp-180 field was evaluated at ground level using a program
for fast generation on a grid, while at isolated computation points at altitude
another program suited for single point computations was used (see Section 7).

The medium frequency residual field, left after removing both the high
frequency topographic effects and the low frequency spherical harmonic field,
was then modeled by the Poisson integral. Since the data points were still
located on the earth’s surface, a data reduction to a level surface was still
called for. However, since the residual field is much smoother than the
original field, an approximate reduction can be used. To do this a
long-wavelength form of the terrain correction, namely, the terrain correction
tc® of an expansion of the topography to degree 180, was implicitly applied to
the residual anomalies. The application of long-wavelength terrain correction
to approximate a first order long-wavelength reduction of surface anomaly data
to a level surface is discussed in Moritz (1966). Since the final position of the
level surface to which the data are reduced is uncertain in this procedure, it
was simply assumed that this position coincides with the mean elevation of
topography in the area of upward continuation. Such uncertainties in defining
the data level directly causes uncertainties in defining the upward continuation
distance H, which is the wvertical clearance between the data level and the
upward continuation point in space. The numerical effect of such uncertainties
on upward continuation results can be examined from Table 9.

The final upward continued gravity anomaly model of the indirect method
was then the sum total of three contributions: low frequency contribution from
spherical harmonics, high frequency contribution from topographic mases, and
medium frequency contribution from Poisson integration of terrain-corrected
residual field. The relative order of magnitude of the three contributions
depends on the spectral distribution of power of a particular field,and for the

profiles tested in Section 9 the contributions were about the same in
magnitude.

As a matter of interest, we compared the results of the indirect method to
those of two simpler upward continuation procedures. The first was the direct
Poisson integration of the original terrain-uncorrected surface anomalies,
simply assuming the anomalies to lie on a common level surface. The second
was the direct Poisson integration of terrain-corrected surface anomalies, with
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the terrain-corrections intended to effect an approximate data reduction to a
level surface. The terrain corrections in the second method originated from
the point terrain corrections given in the original data records, these
corrections having applied to the original point anomalies before the prediction
of the mean anomalies used in Poisson integration.

For the numerical tests we developed 5'x5' mean anomalies and 5'x5' mean
elevations in a 7°x9° test area in New Mexico, starting from available
irregularly distributed point anomaly data and 30"x30" grid point elevations.
The 30"x30" elevations themselves were also used in the final computations, for
detailed integration of topographic effects in the immediate vicinity of the
computation point. The various operational steps in developing mean anomalies
including data thinning, tailoring of covariance function, use of only the ten
closest data points in the collocation prediction, and data de-trending at high
and low frequencies are discussed in detail in Section 8. The required
resolution and area coverage of mean anomalies for given upward continuation
distances, as well as the effect of data error propagation, can be assessed
based on concepts presented in Sections 4, 5 and 6.

Numerical investigations on upward continuations to test-profiles at 30, 10,
and 5 km are presented in Section 9. The test profiles resulting from the
direct Poisson integration of terrain-uncorrected anomalies are negatively
biased (i.e., too low) by about (0.6, 0.5, 0.7) mgal at elevation (30, 10, 5) km
compared with the profiles resulting from the direct Poisson integration of
terrain-corrected anomalies. This bias between the two direct methods
represents the effect of upward continued terrain corrections (see (9.2.3)).
There is no detectable bias between the terrain-corrected direct method and
the indirect method; this is mainly due to the fact that in the Poisson
integration part, the two methods both use terrain-corrected anomalies (see
(9.2.6) and (9.2.7)). The standard deviation of the differences among all three
upward continuation methods reach the order of (0.5, 0.6, 1.3) mgal at (30, 10,
5) km elevation (see Tables 3, 4, and 5).

In Section 10 we present the details of applying the upward continuation
methods to compute anomalies (and total gravity) at points of the balloon-borne
gravity measuring project of AFGL. It is hoped that such projects would
provide "aerial truth" assessment of the accuracies of upward continuation
models. It is projected in Section 10.6 that values at the balloon points have
been recovered with about 0.9 mgal standard error in gravity anomaly with
data error propagation as dominating error source, and about 0.7 mgal error in
normal gravity with vertical position error as dominating error source.

In another series of tests (Section 9.3) we have shown agreement between
Fast Fourier upward continuation and Poisson integration, on the level of (0.1,
0.3) mgal at (30, 10) km elevation. Fast Fourier techniques are useful for very
fast generation of complete grids of upward continued values.

We conclude that actual gravity measurements at altitude should be used to
validate the various procedures presented in this report. Practical validation
will be most important. First, to ascertain the accuracy of the upward
continued gravity values, and second, to ascertain the improvements gained by
employing the following intended refinements: the use of terrain correction to
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approximate data reduction to a level surface, and the modeling of high
frequency anomaly components as topographic mass effects. Preferably, actual

measurements should be accurate in the milligal level, to validate the small bias
and differences observed in our numerical comparisons.
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Appendix A

DIGITAL FOURIER TRANSFORM FOR UPWARD CONTINUATIGN

// JOB
// REGION=512K,MSGLEVEL={2+0)
/%¥JOBPARM V=S
//PROCLIB DD DISP=SHR,DSN=GECODSCI.PROCLIB
// EXEC VSSUPER
//SOURCE DD =*
o
c
C
C UPWARD CONTINUATION OF DG BY FOURIER TRANSFORM
IMPLICIT REAL*8 (A-H,0-2)
COMPLEX%*16 2{(128,128),CTEMP(128)
DIMENSION TEMP(108)
DIMENSION D1(2,128,128)
EQUIVALENCE (D1(14141)42(1,1))
COMMON CTEMP

[N e

INITIATE CONSTANTS (LINEAR MEASURE IN KM ANGULAR INITIALLY IN DEC DEG)
H=28.5D0
R=637100+1.5D0
AMELEV=1.5D0
PI=4DO%#DATAN(1DO)
ANGRID=500/600D0
FIAVER=32.5D0

ao

LINEAR INCREMENTS IN E-W AND N-S DIRECTIONS
DX=R*DCOS(FIAVER*PI1/180D0)*ANGRID*P1/180D0
DY=R*ANGRID*PI/180D0

[aN e

INPUT THE DATA
NX=128
NY=128
INDX=108
INDY=84

DO 2 I=1,NY
DO 2 J=1,4NX

2 Z11,4)=(0D0,0D0)
DO 5 I=1,INDY
READ(L,700L){(TEMPI(J)4J=1,INDX)
DO 5 J=1,INDX
Z{I,J)=TEMP(J)

5 CONTINUE

7001 FORMAT{10Xo10F7.2/(3X%Xs11F7.2))
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CALL FFT2D{Z,NYyNX,y+1)

C

C

C FREQUENCY INCREMENTS
DFX=1D0/ (NX*DX)
DFY=1D0/(NY*DY)

C

C UPWARD CONTINUATION 2D TRANSFORM { —= SIGN)
CALL FFT2UP(H,DFY DFXsZ ¢NY4NX,-1)

—— o — o — —— o o o T o T — —— . —— A — A T ——— — Y ———— — ———

ouTPUT
DO 11 I=1,INDY
DO 10 J=1,INDX
10 TEMP{J)=Z(1,J)
1l IF{I.EQ.42) WRITE(6,7002)(JyTEMPEJ) yJ=1,INDX)
7002 FORMATI(1X,13,F7.2})
C
STOP
END
SUBROUTINE FFT2D IHyNX,NY,NSIGN)
€ e oo o ol o oo o ool o o o e o s ool o o ok e s ol s o e oo o e e o o o o o e o ook Rk o ok
SUBROUTINE FFT2D COMPUTES THE TwWO DIMENSIONAL FOURIER TRANSFORM
CF A CCMPLEX ARRAY HINX,NY),NX AND NY MUST BE A POWER OF 2.

NSIGN= +1 INVERSE TRANSFCRM

C
C
c
c
C
c NSIGN= -1 FORWARD TRANSFCRM
C
C#*****#*****#*##********************************#** %%k
IMPLICIY REAL*8 (A-H,0-Z)
COMMON CTEMP
COMPLEX*16 H(NXysNY),CTEMP(128)
SIGNI=DFLOAT(NSIGN)
DO 10 IY=1,NY
10 CALL FGRKINX,H(1,4IY),SIGNI)
IFINY.EQ.1) RETURN
00 20 IX=1,NX
DO 30 IY=1,NY
30 CTEMP{IY)=H{IX,IY)
CALL FORK(NY,CTEMP,SIGNI)
DO 40 IV=1,NY
40 HUIX,IY)=CTEMP{IY)
20 CONTINUE
RETURN
END
SUBROUTINE FORKILXsCXySIGNI)
C#**#*##**#####**#*#**#***#***t###**#***##**####*#*#**
c FAST FOURIER TRANSFORM, MODIFIED FROM CLAERBOUT,J.F.
C FUNDAMENTALS OF GECPHYSICAL DATA PROCESING, MCCRAW-HILL,1976.
C LX
C CXIKI=SUMICX{JI*EXP(2%PI®SIGNI*I*(J—~1)%(K-1)/LX))
C J=1
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Rokodok

10
20

30

40

50

60

FOR K=192s00es{LX=2%%INTEGER)

SIGNI= +1 INVERSE TRANSFCRM

SIGNI= -1 FORWARD TRANSFCRM

LX MUST BE A POWER OF 2 [{LX=2%%INTEGER)
NORMALIZATION PERFORMED BY DIVIDING BY
DATA LENGTH UPON THE FORWARD TRANSFORM
s e e e o ok o o o o e ook o e ok oo e e ok o o ok o e e o b o e g o ook e ook kol ok ke
IMPLICIT REAL%*8 (A-H,0-21}

COMPLEX*16 CX(LX)¢CARGsCEXP,CW,CTEMP
PI=4D0*DATAN(1DO)

J=1

SC=1D0/DFLOAT(LX)

DO 30 I=1,LX

IF{l.GE-J) GOTO 10

CTEMP=CX{J)

Cx{J)=Cxd{Ii

CX{1)=CTEMP

M=LX/2

IF{J.LE.M} GOTO 30

J=J-M

M=M/2

IF{M.GE.1l) GOTO 20

J=J+M

L=1

ISTEP=2%_L

DG 50 M=1,L

CARG=(0D0,1DO)*{ PI*SIGNI*DFLOAT(M-1))/DFLOAT(L)
CW=CDEXP({CARG)

DO 50 I=M,LX,ISTEP

CTEMP=CW*CX({1+L)

CX(I+LY=CX{I)-CTEMP

CX{I)=CX{I)+CTEMP

L=ISTEP

IF(L.LT.LX) GOTO 40

IF{SIGNI.GT.0DO) RETURN

DO 60 I=1,LX

CX{I)=CX{1)*SC

RETURN

END

SUBROUTINE FFTY2UP (ELEV.CFXeDFYsHyNXyNYsNSIGN)

(C % o o 3 o e ol ofe e o B o ok o e o ok o oo ok ok ok e e ok o o o e o e g o o ofe ok oo o o o e o ok ek ok

ELE
DFX

c
C
C
C
C
c
C
c
c
C
C

SUBROUTINE FFT2D COMPUTES THE TWO DIMENSIONAL FOURIER TRANSFORM
OF A COMPLEX ARRAY H(NX,AY),NX AND NY MUST BE A POWER OF 2.

V IS THE APWARD CONTINUATION DISTANCE [SAME UNITS AS DX DY)
DFY FREQUENCY INCREMENTS ASSOCIATED WITH INDEXES NX NY RESP

DFX=1/{NX*DX) DFY=1/(NY*DY)
NSIGN= +1 INVERSE TRANSFCRM

NSIGN= -1 FORWARD TRANSFCRM

Feode Ao o ok ol e o e e ok ok bk ook el ool o oo ke ok e ke ke ek ok kol ok ek ok
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IMPLICIT REAL*8 (A-H,0-2)
CCMMON CTEMP

COMPLEX*16 H{NX,NY},CTEMP(128)
P1=4D0*DATAN(1DO)
SIGNI=DFLOAT{NSIGN])

DO 16 IX=14NX
IF{IX-14GT<NX/2)THEN
IPX={IX~1)-NX
ELSE
IPX=1IX-1
ENDIF
DO 15 IY=1.NY
IF{IY-1.GT.NY/2) THEN
IPY={IY-1)-NY
ELSE
IPY=1Y-1
ENDIF
DUMP=DEXP(-ELEV*2DO*PI*DSQRT(DFLOAT{IPX )**2%DFX*#2+DFLOAT(IPY)
$*%2¥DFY%%2))
15 HIIXy IY)=DUMP*H(IX,IY)
16 CONTINUE

DO 10 IY=1,NY
10 CALL FCRKINX yH{l4IY),SIGNI)

IFINY.EQ.1) RETURN

DO 20 IX=1,NX
DO 30 IY=1,NY
30 CTEMP(LIY)=HLIX,1Y)
CALL FORK(NY,CTEMP,SIGNI)
DO 40 1Y=1,NY
40 HUIXsIY)=CTEMP(I1Y)
20 CONTINUE
RETURN
END
/¥
5;GO.FT01F001 DD DISP=SHRyDSN=TS4268.FA5X5B.NEWMEX
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