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ABSTRACT

The application of splines in geodesy was mainly
restricted to the solution of one-dimensional problems
like interpolation, differentiation, approximation,
solution of differential equations, etc. Two-dimen-
sional splines turned out to be an adequate tool for
the representation of smooth surfaces based on grided
data.

The purpose of the present paper is to present
splines on the real line, on the circle, on the sphere,
and on the two-dimensional plane in a common and simple
framework: The Green's Function and the frequency domain
method. Splines of arbitrary degree, no matter what their
domain of definition is, are shown to be recursively related

to each other by convolutions of Green's functions. The
close relation (and little difference, if any) between
spline and collocation solutions is demonstrated.
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1. INTRODUCTION

Various methods have been developed for the determination
and representation of the gravity field (of the earth) and
are more or less well established on the geodetic market.
In particular least squares and/or least norm collocation is
without doubt the market leader - it is the "big blue",
using the present terminology in the microcomputer arena.
Solutions which are not "collocation compatible" are gene-
rally not considered very seriously. Many attempts have been
made to design so-called alternative methods. None of them
has gotten as much attention as collocation did.

In the non-geodetic environment splines and finite elements
are favorite tools and are used since many years. About one
decade ago, splines appeared the first time on the geodetic
horizon; after some people had realized the very pleasant
properties of splines, they were and are frequently used,

in particular for the purposes of graphical representation

of curves and surfaces, for interpolation and differentiation,
and for the numerical evaluation of several integral formulas.
However, particularly in two-dimensional applications, only
splines defined on regular grids have been known and used,
until a few years ago when Freeden (1981) succeeded in con-
structing splines on the sphere by transferring the funda-
mental ideas of Schoenberg (1964) from the circle to the
sphere. Unfortunately Schoenberg's and Freeden's work is
1ittle known by geodesists, probably due to the virtually
inaccessible mathematics required.

In 1980 the author of this paper came across a paper by
Schoenberg (1973) which focused on spline interpolation for
regularly distributed data along the real line. A detailed



study turned finally out to be worthwhile and resulted in a
report which aimed both at a geodetically attractive presen-
tation of splines and at an evaluation of its anticipated
close relationship to least squares (or least norm) collo-
cation (Siinkel, 1981). The natural explanation of some un-
expected polynomial features of the collocation solution was
one of the results of that investigation. About the same
time Lelgemann (1980) independently looked into this problem
on the sphere and obtained results which confirmed my work.
He was probably the first one who has ever used analytical
spline functions for the determination and representation of
a local geoid (West Germany); "collocation-biased" Austria
has used splines only for the representation of its geoid
(Siinkel, 1983). Although much effort has been put into a
sound establishment of spline methods in geodesy in general
and physical geodesy in particular, it seems to be still a
too remote subject for the geodetic community. Spline solu-
tions are "best" in some sense and should therefore naturally
attract the attention of the optimates" (I mean the geo-
desists, who love to optimize - not Cicero's party!). Practi-
cal applications will show if spline solutions are not only
"best", but also "good".

[t is the purpose of the present paper to present splines in
a common simple framework and to provide the reader with a
kind of plain mortal approach. We start with an easy going
comprehensive presentation of splines defined on the real
line (Chapter 2) and make the reader familiar with the funda-
mental concept of Green's functions, its central role they

play on the spline stage and with its outstanding properties.
The other highlights are the frequency domain methods which
will demonstrate a tremendous power, particularly because of

the convolution theorem. Supplementary information to



Chapter 2 can be found in (Siinkel, 1981). In Chapter 3 we
investigate the large family of splines defined on the circle,
and make frequent use of the basic investigation by Schoen-
berg (1964). Chapter 3 serves, so to say, as a jumping board
to better understand Chapter 4, where splines on the sphere
are derived. The key paper for Chapter 4 is (Freeden, 1981).
In Chapter 5 we do a kind of interpreter work and formulate
splines in the two-dimensional plane by analogy reasoning.

A1l our investigations stop as soon as the spline function
has been obtained. The presentation of approximation error
estimates, of minimal properties, though very important,
interesting, demanding and enlightening, had to be postponed
and will be dealt with in a coming report. The mathematics
used here has been reduced to a bare minimum without com-
pletely giving up the mathematical rigor. Since the author
is in favor of the "bottom-up" strategy rather than for
“top-down" (which should be left for the labs), the presen-
tation is entirely inductive.



2. SPLINES ON THE REAL LINE

Let an infinite number of data be given located at all inte-
ger numbers along the real line ..., -1, 0, 1,

and corresponding function values ..., 1o foo o oer s
then we have infinitely many methods to interpolate this data.
Of particular importance are spline interpolations; therefore
we shall investigate these functions in detail.

The simplest possible spline basis function for the space
c-1 is the unit step function G0 or B-spline of degree
zero,

1 for |x| < %
1 1

GO(X) = —2- for IXI = 7 (2 - 1)
0 else

The spectrum of Go(x) will be denoted by gO(K) . It ds
defined in terms of the Fourier transform: The Fourier trans-

form of a function F(x) is given by

[==]

k) = [ F(x) e12TFX gy (2 - 2a)

- 00

and its inverse (the transformation from the frequency domain
back into the space domain) by

F(x) = ? Fle) e'2meX g, (2 - 2b)

- Q0

The Fourier transform of the step function Go(x) is there-
fore given by



1/2 . 1/2 .
go(K) = f Go(x) éqanx dx = e-12ﬂKx dx
-1/2 -1/2

Since G_(x) is symmetric with respect to x =0 ,
GO(—x) = gﬁx), the transform reduces to a simple cosine
transform and is equal to

g (x) = S1DTE (2 - 3)

mK

gO(K) has zeroes at all integers « = +1, +2, ..., and has
the value 1 at the origin «x = 0

Since the space-shifted B-splines of degree zero, {Go(x-j)},
j=...,-1,0,1, ..., are linearly independent, a function
s(x) can be assembled in terms of a linear combination of
these B-splines,

s(x) = z fj GO(

x-J) . (2 - 4)
Note that the support of Go(x) is equal to 1 , that its
integral is equal to 1 , and that the sum of its function
values at all integers (knots) is also equal to 1 . Although
frequently used for numerical integration, it is not quite
that what we understand by an "interpolation" function,
because s(x) defined by (2-4) is not even continuous. For
later reference we mention, that s{x) 1is obviously the
solution of a homogeneous differential equation st(x) =0
on all open intervals (j-1/2 <x <j+1/2), and the "boundary
conditions" s(j) = fj for all j = ..., -1, 0, 1, ... . Note
that the coefficients of the linear combination are just the



function values at the knots.

Convolution is known to have smoothing properties; let us
therefore try a convolution between Go(x) and Go(x) and
denote the result Gl(x)

w
—
—
x
~
1}

G, (x) * G (x) (2 - 5)
= [ G (x-x") G, (x')dx'

It is a piecewise linear and continuous function,

61(x) ={ , (2 - 6)

is therefore an element of c® , has a support of 2 units,
an integral of 1 , and also the sum of all function values
at the knots 1is equal to 1

It is the triangular-shaped roof function and is called
B-spline of degree 1.

According to the convolution theorem, its spectrum is the
square of the spectrum of Go(x) R

g (x) = g (k)2 = (SDIEy (2 - 7)

The space-shifted B-splines of degree one, {Gl(x-j)},

j= ..., =1, 0, 1, ... are linearly independent and there-
fore, a function s(x) can be assembled in terms of a
linear combination of these functions,

s(x) = E fj Gl(x-j) . (2 - 8)
J ==



Note that also here the coefficientsof the linear combi-
nation are just the function values at the knots.

As a matter of fact, we are not limited with one convolution,
actually, we may perform as many as we like and generate in
this simple way B-splines of arbitrary degree n . The
B-spline of degree n is an element of Cn-1 (the space of
continuous and (n-1)-times continuously differentiable
functions), it has a support of n+l wunits, its integral

is equal to 1 (for all degrees n), and the sum of all its
function values at the knots is also equal to 1 (for all
degrees n ). According to the convolution theorem the
spectrum of the B-spline of degree n is equal to the

spectrum of the zero degree B-spline to the power n+l

Gn(x) = Go(x) *\EP(X) * ... % GO({l (2 - 9a)
——
n - times
Gn(x) = Gn-l(x)* Go(x)... recursion (2 - 9b)
+1
g, (k) = g (k)" (2 - 9¢)
spectrum
_ ¢Sinmkyn+l _
9,(x) = (=) (2 - 9d)
G (x) € ¢! ... smoothness (2 - 9e)
supp(Gn(x)) = n+l ... localness (2 - 9f)
I G (x) dx =1 ... normalization (2 - 9g)
) G (J) =1 ... normalization (2 - 9h)
Gn(-x) = Gn(x) ... Symmetry (2 - 91)



The set of all space-shifted B-splines of a certain degree n
{Gn(x-j)} s J = ..., -1, 0, 1, ..., is Tinearly independent
and can therefore be used to assemble a spline function of
degree n ,

s(x) = § c. G _(x-3) . (2 - 10)

J=

Unfortunately, the coefficients Cj of the linear combination
are in general different from the function values at the knots.
Only for degree n =0 and n =1 the coefficients c; are
equal to the function values fj . The determination of the
coefficients {cj} from the data set {fj} requires the solution
of a linear system. If the data are regularly distributed,
even an infinite system can be solved very easily as we shall

see in the sequel.

Let us introduce "cardinal sampling splines" of degree n ,
Pn(x) with the sampling property

) = 85 (2 - 1lla)

and Tet Pn(x) be represented in terms of a linear combina-
tion of space-shifted B-splines Gn(x—j) ,

r(x) = I o 6 (x - k). (2 - 11b)

Then the infinite vector a: = {ak} is determined from the
sampling properties and the function values of the B-spline
at the knots Gn(j) . The determination of the vector «o
requires the solution of a Tinear system

Ao =c¢e (2 - 12a)



with
A= g6 (3 - k) (2 - 12)
uT = [ eees @ s apgs 0ps en] (2 - 12¢c)
el = [ ..., 0, 1,0, ... .] (2 - 12d)

The matrix A has very special properties which are due to
the properties of the basis function Gn(x): it is an infi-
nite symmetric matrix of band structure. A 1is a Toeplitz

matrix and because of its infinite dimension, it is asympto-

tically equivalent to a circulant matrix.

The bandwidth N (= number of non-zero diagonals) depends
only on the support of the basis function Gn(x)

ntl if n is even ,
N={
n

if n 1is odd

E.g., for degree n =0 and n =1, A 1is a strict diagonal
matrix, moreover, it is the unit matrix. Therefore, o = e
and, as a consequence of equation (2-11b), the spline basis
functions (= B-splines) Go(x), Gl(x) are already cardinal
sampling splines ro(x), rl(x)

And now we shall demonstrate how the infinite linear system
(2-12a) is solved for degrees n>1

Denoting a row (or column) of A by a , a: = {ak} » the ele-
ments a, are given by

a, = 6,(k) . (2 - 13)



In order to solve for o , we need to know the inverse of A ,
which can be easily obtained by Fourier transform methods:

denoting the discrete Fourier transform of a by a ,

by z "iku

and by

the unknown coefficients can be found directly by an inverse
Fourier transform,

Ll

T
g a—%'ﬂ cosku du . (2 - 14)

This integral plays a central role within the framework of
splines: if only 1 frequency is present in a(u) apart from
the zero frequency, equation (2-14) admits a closed expression
and the @, can be calculated directly (n < 3); if morethan

1 frequency is present (n > 3), we no longer have this simpli-
city.

With the coefficients o determined, the cardinal sampling



spline can be calculated by (2-11b). In contrast to the basis
spline, the cardinal sampling spline of degree n , rn(x),
has unlimited support for n > 1 3 the higher n , the
weaker is its tendency to approach zero with increasing argu-
ment, and therefore, the weaker is its local behaviour.

The spectrum of all splines has the following common structure:

F (o) = () (Sinmey"™ TofetiZmd (5 L)
ntk </ = fpix TK _L Jj ?

where hn(K) is the characteristic of order n . For n =20
and 1, h (k) =1, for n=2, h_(x) 1is given by

n n

hy (k) = Jreesy—

2 +Cc0s2nk ’
for n =3 , by

_ 3

ha(x) = o3coszme
In general,

hn(K) = 3 oy cos2mkk (2 - 16)

-0

with {ak} denoting the vector of coefficients for the degree
n in consideration. These functions hn(K) have the very inter-
esting property of compensating the damping property of the

function (sinTTK/TTK)n+1 better and better with increasing n.

Let us now put the obvious question: "What kind of function is
the Timit cardinal sampling spline if n goes to infinity 2"



The spline defined by

sw(x) = 1 f; L(x-§) (2 - 17)

should obviously reproduce the data vector {fj}, which is
supposed to be an element of 17, the space of quadratically
summable finite differences of all orders k ,

1 :=Uu 1
k=0

k

The corresponding cardinal spline of infinite degree should

be an element of K%, the space of quadratically integrable

derijvatives of all orders k ,

K*: = u K.
k=0

There is a one-to-one correspondence between the spaces 17
and K”. It can be shown (Schoenberg, 1973), that the function
sinmx/mx is the only element of K  which interpolates the
unit sequence. Therefore, we conclude

. _ sinmx _
Tim rn(x) = o - (2 18)
n->e

The corresponding 1imit interpolation spline is

s (x) = 1 f 512(§S§;J) : (2 - 19)

r_ can be said to be the cardinal sampling spline of highest
possible degree, s_(x) the corresponding interpolating spline.



Its trend to approach zero with increasing argument is rather
poor and, therefore, its behaviour can no longer be called
local.

The spectrum of T_ is a unit step function, since the spec-
trum of the unit step function is exactly sinwx/mk . Since
v(k) = 0 for all |«| > 1/2 (y denotes the Fourier transform
of T'), we conclude that r_ is a low pass filter:

the interpolation function does not contain frequencies higher
than [«| > 1/2 . The relation between Tr_ and v, 1s quite
remarkable and deserves special attention:

The cardinal sampling spline of highest possible degree eqguals

the spectrum of the cardinal spline of the lowest possible

degree and vice versa.

(2 - 20)

The Green's function approach

Let there be given an ordinary homogeneous differential equa-
tion of first order

df
D F(x) = 20 (2 - 21)

as a matter of fact we have the solution
f(x) = const.

If the domain of definition is the interval (a,b), then f
will be constant on that particular interval.



The above differential equation could also be solved by the
Green's function approach, although there is no obvious reason
for it in this simple case:

We look for a solution of the differential equation in terms
of an integral with an integral kernel to be determined; this
integral kernel is called Green's function and will be denoted
as usual by G ,

b
[G(x,x") D
a

f(x") dx' = f(x) . (2 - 22)

If we had simply f(x') 1instead of the derivative, then G
would equal the Dirac & - distribution; however, if we
differentiate our equation with respect to x,

f(x"'") = D f(x) , (2 - 23)

we can take advantage of the reproducing property of the Dirac
function and observe that

DXG(x,x') = §(x,x") . (2 - 24)

This equation represents obviously a linear system (note that
differential operators are linear) with the Green's function
as input and the Dirac's function as output. The solution is
obtained by a simple integration yielding a unit step function
as result.

Let us now investigate a second order differential equation

Dif(x) o dEf(x) 0 ; (2 - 25)

dx?



Using again the concept of Green's function, we may represent
the solution in terms of the integral transformation

b
fG(x,x") Do F(x') dx' = f(x) (2 - 26)
a

with the two boundary conditions f(a) = f(b) = 0. If we dif-
ferentiate equation (2-26) twice with respect to x , we obtain -
taking again into account the reproducing property of the
Dirac function - a Tlinear system in terms of an inhomogeneous
differential equation of second order with the Green's function
as input and the Dirac's function as output. As before, the
solution can be obtained by integrating the Dirac function
twice with respect to x , yielding a roof function. If we
center and normalize that roof function with respect to

a =-1and b =1, we obtain the already familiar spline base
function Gl(x)

It is important to stress that the differential equation (2-25)
can be interpreted as an Euler differential equation corres-
ponding to the variational problem

[0, f(x)]12 dx = min. , (2 - 27)

the minimization of the integral of the squared first deriva-
tive of f(x) over the domain of definition. This semi-norm

is blind with respect to a constant function.

It should be obvious that the procedure described for the first
and second derivative can be applied to higher order deriva-
tives as well. Each differential equation of even order 2n can
be interpreted as an Euler differential equation corresponding
to a variational problem with squared n'th order derivatives.
According to my opinion, it is very important to note that all

Green's functions are related to each other through convo-



lutions and that, therefore, all Green's functions are, if
centered and normalized (symmetric with respect to zero,
integral equal to 1), base splines.

The Green's function method can be illustrated by a nice geo-
detic example: the solution of the Stokes' problem.

The differential operator B ,

. (2 - 28)

is applied to the disturbing potential T at the sphere

S (r=R), yielding the fundamental equation of physical geodesy
BT = Ag, the boundary value problem. T must be harmonic for
r > R and should be represented in terms of an integral with
the Green's function as integral kernel according to Green's
integral theorem,

fG(x,y) B T(y) dS(y) = T(x) - py(x) , (2 - 29)
S

where pl(x) is a harmonic function of first degree (a linear
combination of the 3 solid spherical harmonics of first degree).
Applying the operator B to (2-29) at x and observing that
pl(x) vanishes under B , we obtain

[8,6(x:¥) B,T(y) d5(y) = B,T(x) . (2 - 30)

Obviously BT 1is reproduced by this integral transformation;
therefore, BXG(x,y) must be a Dirac function,

BG = & . (2 - 31)



The Dirac function on S has the series representation

1

v

S(Xx,y) =

1 0~18

(2n+1) Pn(xy) (2 - 32)

n=0

with the Legendre polynomials Pn(xy) and xy: = xTy = cos(x,y).
Representing G also in terms of a series of Legendre poly-

nomials and observing that G must be harmonic both with
respect to x and y ,

1 ¢ Ryn+1
6(x,y) = 7= 1 (2n41) ()" g, Po(xy) syl =R
n=0 (2 - 33)
and applying the operator BX to G on S , we obtain
1 o0
B.G(x:¥) = 737 nZO (n-1)(2n+1) g P (xy) (2 - 34)

and comparing it to (2-32) , we obtain the spectrum of the
Green's function

9 = TH-T (2 - 358)

and with (2-33) the series representation of Green's function
restricted to S (r=R)

?

R

G(x,y) = z- -1 Pp(xy) (2 - 36)

M Ne~18
N
=

1+

n=0
ngl

which is just the familiar Stokes function with zero degree
included,
G(x,y) = So(x,y) . (2 - 37)

Basically the same principle will be repeatedly applied in the
sequel.



3. SPLINES ON THE CIRCLE

Trigonometric splines on the circle will be investigated in
order to find the transition to the spherical splines easier
and because they share practically all properties with spheri-
cal splines. We shall primarily elaborate the ideas of Schoen-
berg (1964) and try to make it a bit more easy going for a
mathematically limited geodesist's mind.

Let us start with an ordinary differential operator of first
order on the unit circle

D f(x) = 4f(x) (3 - 1)

X dx ’

and apply the Green's function method for the solution. Then
we obtain as in (2-22) an integral transformation with a
Green's function G , which we shall here denote by G(0;3;x,y)
for reasons we shall see later,

2T

[ G(05x,y) D Ff(y) dy = f(x) - po(x) (3 - 2)
0

with x and y points on the unit circle and po(x) a trigo-
nometric polynomial of degree zero. Differentiating equation
(3-2) with respect to x yields the inhomogeneous linear
differential equation in terms of a linear system with the
Green's function as input and Dirac's function as output,

DXG(O;x,y) = §(x,y) . (3 - 3)



The solution to (3-3) can readily be obtained by using the
Fourier series representation of the Dirac function (Davis,
1965, p. 323)

S(Xx,y) = %? cosk(x-y) . (3 - 4)

+ 1
T k=1

Ino~18

k

Integration of (3-4) yields, apart from the constant contri-
bution of (3-4) , the Green's function

sink(x-y) (3 - 5)

1
G(O;X,_Y) =? K

k

I e~18

1

It can be verified immediately that equation (3-2) holds
with (3-5) wusing a Fourier series representation of f(x)
For G(O;x,y) we can even find a closed expression

6(0:x) = 7 (1 - %) (3 - 5)

with x : = x=-y. Note that G(O;x) is discontinuous at

x =0 (27, resp.), therefore (3-5)' is only valid in the open
interval 0 < x < 27 . At x =0 G(0;x) has a jump of
1, G(050,) - G(032m) = 1 . G(03x) s an element of Céi,
space of discontinuous functions on the unit circle. This

the

agrees with the situation on the real Tine.

Given J distinct knots on the circumference of the unit
circle, X1s Xps vves Xy o the Green's functions {G(O;x,xj)}
j=1, ..., 0 , are linearly independent and can therefore

be used as base functions for interpolation, yielding a trigo-

nometric spline of degree zero,



- 20 -

J
s(x) = Z c. G(0;x - Xj) + po(x) (3 - 6)

with po(x) a trigonometric polynomial of degree 0 and
{Cj}’ J=1, ..., J , the coefficients of the linear combi-
nation. Disregarding at the moment the discontinuity of
G(0s;x,y) and postulating that s(x) should reproduce the data
{fk}, k = 1,..., J, we obtain a system of J equations for

J + 1 unknowns Ci1s Cos «vns Cys and po,

J
Zl 5 G(O;xk,xj) P (x) = s(x.) = f . (3 -7)

In matrix notation (3-7) <can be represented by

Cc+Ap-=FfF (3 - 7)!
with C: =[ G(05xy5x9) G(O;xl,xz) ce G(O;xl,xJ)
G(O;xz,xl) G(O;xz,xz) e G(O;xz,xd)
(3-7a)'
G(O;xd,xl) G(O;xJ,xz) . G(O;xJ,xJ)
- -

T .
Al: =[1,1, ..., 17, (3-7b)
CT: =[Cys Cps =-vs C3 1 (3-7¢)'
P = Py (3-7d)"
Fle = [ s fpo vens Fy (3-7e)"



- 21 -

Due to the orthogonality between G and Po> the vector of
coefficients ¢ must be orthogonal to A ,

A'C =0, (3 - 8)

or, explicitly, the sum of the coefficients must be equal to
zero,

J
Y ¢c. =0. (3 - 8)

This equation supplements the system (3-7)' to

_‘
It
—
w
1
(Vo]
~

and has the solution

p = (Ac ta)y taTc ¢ (3 - 10)

cTlf - ap)

[}
n

The similarity with the collocation solution with parameters
is striking - we shall discuss its relation to the collocation
solution after we have investigated trigonometric splines of
higher degree.

Let us now introduce another differential operator of second

degree, the oscillation operator D2 +m2 s

D, +m = — +m . (3 - 11)

Then we search for a Green's function, such that



- 22 -

m

O—mrn

G(msx,y) (D2 + m%) fy) dy = f(x) - p_(x), (3 - 12)
y m

where pm(x) denotes a trigonometric function which has only
the frequency m . Let us now apply our differential operator
onto the Green's function G(m;x,y) with respect to «x

2

™
(Di + m2) G(msx,y) (D§ + m

O N

(3 - 13)

Note that pm(x) vanishes under the differential operator

2

DX + m , because the trigonometric functions cosmx and sinmx

are eigenfunctions of that differential operator with the

. 2
eigenvalue m~ ,

(Di + m~) cosmx =0 (3 - 14)
2 .
(Dx + m ) sinmx = 0
Again we observe the reproducing property
2 2 .
(Dy + m7) G(ms;x,y) = 8(x,y) . (3 - 15)

Using the Fourier series representation of the Dirac function

(3-4), we see that the Fourier series of the Green's function

is given by

L ¥ 12 cosk(x-y) , m =20,
k=1 K

Glmsx.y) (3 - 16)

1
k2_m2

G(m;X,y)

% cosk(x-y) , m>0

T
1 -
2mm2

T ne~18

k=1
k#m

(The reader is cordially invited to verify that (3-12) and
(3-16) are indeed compatible.)



- 23 -

Also in this more complicated case closed formulas exist
(Hansen, 1975, p. 239, No. 17.2.8 and p. 243, No. 17.3.11):

G(O;X)=%(1-32(—“)-%,m=0,
. - '
G(msx) = %(1 ~ %) s1;mx _ CZimé .m0 (3 - 16)

It can be shown immediately that G(m;x) 1is continuous for
m=20, 1, ... ; its first derivative, however, is discontinuous
at x = 0 (2m, resp.) with a jump of 1 . This discontinuity

is due to the term 1/2(1 - x/m).

G(0;x) has therefore very much the same properties as the
spline basis function G1 of Chapter 2, which is also con-
tinuous and has a discontinuous first derivative. Remember
that G1 was the result of a convolution between GO and
Gyo G = G * G0 this is also the case for G(0;x)

Gl(O;x) = GO(O;x) * GO(O;x) s (3 - 17)

which can be easily proved as follows:

m

2 1
G.* G = = [ ] T sinkx ][
0

He~18

) % sinl(x-y)] dx ;
k=1 1=1

representing sinl(x-y) 1in terms of its decomposition
sinl(x-y) = sinlx cosly - coslx sinly and observing the ortho-
gonality relations for trigonometric functions, we readily

obtain
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G %6 = -+
il

0 o %2 coskx ,

INe~18

k=1

which is in perfect agreement with (3-16)

Following this procedure, we can generate Green's functions
corresponding to the differential operator D" with arbitrary
positive integer n and obtain recursion formulas, which are

identical to those for the spline basis function on the real
line:

Gn = Gn—l * GO = G0 *\Qo ¥ ... ¥ GQ,' (3 - 18)
n - times

We can write down the Fourier series for Gn immediately:

1 ¢ 1 :
G (03x) = = J ——= sinkx , n even ,
n L] kn+1
(3 - 19)
G (0s;x) = L § _%?T coskx , n odd
f T k=1 &k

Another recursion relation is evident, which expresses
Gn_l(O;x) in terms of the derivative of Gn(O;x) >

Gn_l(O;x) = - DXGn(O;x) . (3 - 20)

And Tast not least, the integral of all Green's functions
Gn(O;x) over the unit circle is equal to zero. (On the real
line the integral of all spline basis functions is equal to

one.) G (0sx) is an element of Cg;l
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From (3-20) we can deduce that Gn(O;x) can be easily ob-
tained from its predecessor Gn_l(O;x) by simple integration
with the integration constant determined from the condition
that the integral of the Green's function has to be zero,

G (05x) = - G _1(05x) dx ,
(3 - 21)
2m
J G (05x) dx =0
0

In this way we can for example easily derive

2 2
GZ(O;x) = 1= (x% = 3mx + 27°)

1 4 2.2 3 4

G3(0;x) 20 (8m" - 60m"x" + 60mx~ - 15x )

Let us put an obvious question: How does Gn(O;x) look like

if n goes to infinity? The simple answer is provided by
(3-19)

- vy = - 1 15 -
Tim Gn(O,x) = ~ COSX (or — sinx) , (3 22)

N->oo

the trigonometric function (s) with the longest possible wave-
length (disregarding a constant function) and therefore, with
the Teast local and most global behaviour. Exactly the same has
been observed for basis splines on the real line: if the
degree of the basis spline increases, the spline looses its
local behaviour and is getting smoother and smoother. The
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spline of infinite degree is the smoothest possible spline,

it is infinitely often continuously differentiable (G_(x) and
G_(03;x) ). And once more we observe the "balance of fright":
the price for smoothness is paid by non-localness and vice
versa, the price for localness is paid by non-smoothness.

I wonder where in between 0 and « the (so-called) optimum
is located. Is it 63 ? In terms of (elastic) energy mini-
mization it is: We have already seen that G1 was the Green's
function corresponding to a variational problem aimed at the
minimization of the integral of a function's squared first
derivative (square of horizontal gradient),

1 It [D,f(x)] Z 4x = min.

Such a variational problem can be assigned to all Green's
functions of odd degree:

2 .
P [ [Dgf(x)] dx = min.

Since n =2 s closely related to elastic energy minimization,
GZn-l = G3 might be a preferable compromise.

Considering only functions on the circle with a vanishing zero
frequency component (mean value zero functions), then the
factor 1/21rm2 can also be dropped from the Green's function
Gl(m;x,y) in (3-16),

1
Gi(m;x,y) D= Gl(m;x,y) A (3 - 23)

It is obvious from the orthogonality relations of trigonometric
functions, that the integral of G;(m;x) over the unit circle
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is also equal to zero.

The many useful relations we had derived for the Green's
function with m =0 are met for m # 0 as well. We can,
for example, perform a convolution between GT(m;x) with
GT(m;x) and obtain G;(m;x) . From the convolution theorem
and the above discussion we know already that a convolution
in the space domain corresponds to a multiplication in the
frequency domain (and vice versa). Therefore, the Fourier

series of Gg (m3yx) must be given by

* 1 3 1
G3(m;x) = - = k§1 ?E??—Ef)z coskx , (3 - 24)
k#m

or, for an arbitrary number of convolutions,

1
(k2 - m2)"

3|

G;n_l(m;x) = - coskx . (3 - 25)

M 1l ~18

k=1
k#m

Closed expressions can be derived

performing, e.g., the convolution between GT and G; with
one GT in the closed expression (3-16)' and the other GT
in the Fourier series representation (3-16), we notice

that, due to the orthogonality of the trigonometric functions,
only the term xsinmx is non-orthogonal to GT , and there-
fore, the convolution reduces to

G3(msx) = G)(msx) = GI(msx)

(_

. *
TR sinmx) = Gl(m;x) g
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or, in general,

G;n+1 (m;x) = Gi(m;x) * Goo g (M5x)

1 .
(- 7o X sinmx) o« G;n-l (myx)
(3 - 26)

for n =1, 2,

The recursion relation (3-20) , which is valid for m = 0 ,

is governed by the differential operator D2 + m2 if m>20
G (myx) = (D2 + m2) Gy (msx) (3 - 27)
2n-1 ? X 2n+1 ? )

If we Tet (as above for m =0 ) n go to infinity, the re-
sulting Green's function, normalized to its lowest frequency
component, becomes

Tim G5

on-1 (myx) = coskminx . (3 - 28)
n-e

Schoenberg (1964) has also considered quite general differen-
tial operators of the form

M
Ay ¢+ = DTT (D2 + m2)
m=1
= p(D% + 1%) (0% + 2% (0% + M%) (3 - 29)
and also its square
2 22 202
A =D (D% + m°)° . (3 - 30)
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Let us first investigate the operator (3-29)

Since (D2 + m2) annihilates cosmx and sinmx , since D
annihilates a constant function, and because of the commutati-
vity of the elements of AM , it follows that Ay annihilates
all trigonometric polynomials up to and including degree M
With other words, a Fourier series under the operator Ay
has vanishing elements from m =0 to m =M, a Fourier

series under AM starts at m = M+1

What is Green's function then for the differential operator
Ay ? We havg seeg befor; tha; to each individual element of
Ay > (D, (D + 1°) , (D" + 2°) , ...) , an individual Green's
function can be derived and that a composite Green's function
is obtained by a convolution of the individual functions. Let
us demonstrate this procedure with a simple example:

2 2

Let M =1, then A, = D(D" + 1%) ; Green's function for the

1
operator D 1is given by equ. (3-5) , the one for the operator
(0% + 1%) by equ. (3-16) with m = 1 . The convolution of
GO(O;x) with Gl(l;x) yields a composite Green's function,

which we shall denote by GAI(X) s

GAl(X) GO(O;x) * Gl(l;x)

2w o0
1 1 . 1 1
= = — 1(x- dx;
é [= kzl ¢ sinkx] (o7 -2 cos1(x-y) ] dx

Ie~18

1
1 212-1

decomposing cosl(x-y) into «coslx cosly + sinlx sinly , and
observing again the orthogonality relations between trigono-
metric functions, we obtain as result

1 T 1 .
G .(x) = -2 37 —1  sinkx, (3 - 31)
sl T K22 k(K2 -12)
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and if we apply this procedure M - times (forallm=1, ..., M)

we obtain Green's function for the differential operator Ay
5 D LTS S S NS |
Gy(x) = Yk TT (k"-m®) ~ sinkx . (3 - 32)
T k=M+1 m=1

It is remarkable that closed expressions exist for (3-32):

Schoenberg (1964) has proved that GAM(X) can be represented
in terms of

6,y(x) = (-1)" 5T 7 (1= 21 - cos)™ + py(x),
(3 - 33)

where pM(x) is a sine polynomial of degree M . (This can
be easily shown by a Fourier analysis of equ. (3-33).)

It can also be verified that GAM(X) is an element of CZM_1

2w
and that its derivative of order 2M is discontinuous at
x =0 (27, resp.) with a jump of 1 ,

2M G

Dx AM(

0,) - G,y(2m) =1 . (3 - 34)

,)
Having analyzed the very principle behind the generation of
Green's functions with respect to differential operators, we
can even go a step further and consider the self-adjoint
operator A of equ. (3-30), which is obviously equal to

=N

2
Ay = Ay A
If GAM is the Green's function corresponding to Ay s then
2 .
GAM with
2 - -
AMGAM = GAM (3 35)



is the Green's function for the operator A; . As a conse~
quence of the convolution theorem, we obtain with (3-32) the
Fourier series representation of GiM by a convolution of

G with G

AM AM

-2 2 2,-2

1 o0
GiM(x) = = Y k -m°) coskx . (3 - 36)

M (k
k=M+1 in
(As an instructive exercise the reader may try to verify that
(3-35) holds.)

It is very remarkable that even for the series (3-36) a closed
expression exists: it has been shown by Schoenberg (1964)
that GiM (x) can be uniquely represented in terms of

63m(X) = x(2 = 2)Cu(x) + (1 - 2)s,(x) + py(x) (3 - 37)

with Cy(x) and py(x) being cosine polynomials, and SM(X)
a sine polynomial of degree M . The proof is very technical
and will not be given here. In the above referenced paper it
has also been proved that GiM is an element of Cgﬂ and

that the usual jump relation exists at x = 0 (2w, resp.) ,

0" e, (0,) - 6, (21 )1 = 1 . (3 - 38)

We could go another step further and derive Green's functions
with respect to a differential operator

u po M u
Ayt = D OTT (D%+mZ) ™y o= § w (3 - 39)
m=1 m=0
with non-negative integers Mgs «++5 Hy - Then the Fourier

series representation of Green's function corresponding to



the operator (3-39) can be derived very quickly,

M -
-u 2__ 2, Mfcoskx
k Ogjl(k m) {sinkx}

(3 - 40)

1 u-u T
By (X) = $(-1)7 o
AM ™ k=M+1

with coskx if My is even and sinkx if uy is odd.

Let us now proceed to the final step, the spline interpolation
on the circle.

As before we assume that J distinct knots are given along
the circumference of the unit circle X1s Xgs cees X AT1
Green's functions {GXM(X’X')} for j =1, ..., J are

linearly independent and ca% therefore be used as basis
functions for an interpolation : The interpolating spline on
the circle, corresponding to the differential operator Aﬁ s
is represented in terms of a linear combination of those

Green's functions,

s{x) =

Ie~-1c

H -
it CjGAM(X’Xj) + pM(x) . (3 41)
The unknown J coefficients {cj} of the linear combination
of the Green's functions (evaluated at xj) and the 2M + 1
unknown coefficients of the trigonometric polynomial of

degree M , pM(x) ,» can be determined by

a) the data reproducing (interpolating) conditions,
providing J Tlinear equations, and

b) the 2M + 1 orthogonality conditions of the vector
cT: =[C1s Cps «us Cq] with respect to all 2M+1

trigonometric functions of pM(x) evaluated at the
data points.



Using the notation (3-7)', we obtain again the system of
equations (3-9) , where we have to replace in the matrix C
. u . _ l
G(O,xi,xj) by GAM(Xi’Xj) ; the scalar p of (3-7d)
becomes in general a (2M+1) - dimensional vector p ,

:
P =[P0s Pis «+-> p2M+1]’ (3 - 42)

and the vector A becomes a matrix of dimension (J,2M+1)

1 COS Xy s1‘nx1 “en s1'nMx1
1 COS Xy s1'nx2 . s1'nMx2

. . . . .. . (3 - 43)
_1 COSX sinxJ ... sinMxJ_

The solution for ¢ and p 1is given by (3-10) and is
formally identical to the collocation solution with parameters;
the matrix C , which in the spline case studied here, is the
Gram matrix derived from the evaluation functionals applied to
the Green's function at all data points, and corresponds to the
covariance matrix and the Green's function to the covariance
function; all the other vectors and matrices involved in the
solution are anyway the same as in the collocation solution.
The interesting point is here that, for all My = 2 , we obtain
a best solution with respect to a very well defined energy
integral.



4.

SPLINES ON THE SPHERE

With the experience we gained from the derivation of splines

on the circle and from studying the outstanding contribution

on spherical spline interpolation and approximation by Freeden

(1981), the spherical approach should go very smoothly. But

nevertheless, Tet us briefly summarize the steps to follow:

Choose differential operator(s) L..

Find the Green's function(s) G, to L., , observing that

L161 is the Dirac impulse, using frequency domain methods.
To any product LiLj of differential operators there
exists also a Green's function Gij » which is the convo-
Tution Gi * Gj . Employ the convolution theorem to obtain
the spectrum of Gij as the product of the spectrum of G,

i

and that of Gj . Find a closed expression for ij.

The interpolating spline function corresponding to the

differential operator LiLj is a Tinear combination of
Gij
depends on the degree of L1Lj

‘s superimposed by a polynomial; the polynomial's degree

The coefficients of the linear combination plus the coef-
ficients of the polynomial are obtained from the data
reproducing and the orthogonality conditions.

Let us now derive spherical splines following closely these

4 steps.

STEP 1: Choose differential operator(s)

In chapter 3 , when we discussed splines on the circle, we

have chosen differential operators of the oscillation type

D§ + mé ; the trigonometric functions are eigenfunctions to

this kind of operators with mé being the eigenvalue.

The differential operator on the (unit) sphere S ,
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corresponding to Di on the circle, is the Laplace - Beltrami
operator A( =Laplace operator restricted to S ),

a2y 3V 1 32y
— + coté = +
392 38 sin2e 9A“

>

(6 ... polar distance, A ... longitude). It is well-known from
the theory of harmonic functions, that the eigenfunctions to

(4-1) are the (Laplace's) surface spherical harmonics S 8,1)

nm(
(or simply spherical harmonics), corresponding to the eigenvalue

(cf., e.g., Heiskanen & Moritz, 1967, p. 19 ff.).

STEP 2: Find Green's function to 24 + A

The solution (integration) of the differential equation
(A +r.) f = ... {is implied by Green's function G(nsx,y)
as integral kernel, where n stands for the eigenvalue xn

L (nixay) (3, +2,) f(y) ds(y) = £(x) - p,(x) ,

(4 - 4)

y

with pn(x) being a Laplace surface harmonic of degree n ,

pn(x) : = mZ—n Sm Snm(x) . (4 - 5)

(Here and in the sequel x, y, z denote unit vectors corres-
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ponding to points on the unit sphere S ; the spherical har-
monics Snm are supposed to be fully normalized as defined in
(Heiskanen & Moritz, 1967, p.31) .)

Applying the operator ZX + A, to (4-4) at x , and obser-
ving that pn(x) is annihilated by this operator according
to (4-3),

(By + 2,) p(x) =0, (4 - 6)

(A + An)f is obviously reproduced by that integral transfor-
mation; therefore,

(ZX + A )6 (nsx,y) = 8(xsy) . (4 - 8)

This differential equation represents a linear system with

the Green's function as input and the Dirac function as output.
We have to find the "inverse" of that system, which is a simple
task following the frequency domain approach:

§(x,y) 1is a homogeneous and isotropic kernel with reproducing
property. According to the Funk-Hecke formula (Miller, 1966),

a harmonic and isotropic integral kernel K(x,y) on S has the
system of spherical harmonics {Skm} as eigenfunctions corres-

ponding to the eigenvalues K
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éK(XsY) Skm(Y) dS(y) = Kk Skm<x) (4 - 9a)

with Ky being the projection of K onto the Legendre poly-
nomial Pk >

xTy = CcOS(X,Y)>
(4 - 9b)

~
=~
It
nN
=)
=
=~
)
o
g
©
)
o
g
o
o+
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—+
§l
x
<
n

and a series representation in terms of Legendre polynomials

1

K(x,y) = e (2k+1) Kk Pk(Xy) . (4 - 9¢)

ne-18

k=0

If K =6, then all eigenvalues must be equal to 1 because
of the reproducing property of the Dirac function. Since 3§
is homogeneous and isotropic, it can only depend on xy and
should therefore have the following series representation

1

S(X,y) = e (2k+1) Pk(xy) . (4 - 10)

Ine-18

k=0
Since the right hand side of equ. (4-8) is homogeneous and
isotropic, the left hand side must be homogeneous and iso-
tropic as well, which requires Green's function to be homo-
geneous and isotropic. Therefore, Gl(n;x,y) can be repre-
sented in terms of

1

Gl(n;x,y) = I (2k+1) 9y Pk(xy) (4 - 11)

Ino~18

k=0

with eigenvalues 9y -
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Due to the decomposition theorem for Legendre polynomials

k

P) = zrr L SknX) Seal¥) (4 - 12)

the differential equation (4-3) s fulfilled by the Legendre
polynomials Pk(xy) as well and we obtain

(8, + Ak)Pk(xy) = (A, + xk)Pk(xy) =0 . (4 - 13)

y

Using the series representations (4-10) and (4-11) in
(4-8), we obtain

kzo (2k+1) g, (B + A )P (xy) = kZO (2k+1)Pk(xy24._ .
Adding zero to (4-13) yields

(B, + A )P (xy) = (B + )P (xy) + (A= A )P (xy),
and due to (4-6)

(B + Ag)P(xy) = (hp = 2P xy) (4 - 13)"

Since {Pk} is a basis, we can compare both sides of (4-14)
by degree and obtain the eigenvalues 9y of Green's function,

k #£n (4 - 15)



and with (4-11) we have the series representation of Green's
function corresponding to the differential operator A + Ay s

1§ 2k+1
G(n3x,y) = = ) T
1 4y k=0 An )\k

Pk(xy) . (4 - 16)
Remember Ay = n(n+l) , compare it to Green's function on
the circle (equ. (3-16)), and notice the identical structure.

While the corresponding G1 on the circle is continuous for
X =y, this is not true on the sphere : <consider (4-16)
with n = 0; then it can be shown (Hansen, 1975, p. 301,

No. 46.2.21) that

- 2k+1 1-xy
- ) P (xy) =1 + log( ) (4 - 17)
k=1 EZk+Ij k 2

and as a consequence, Gl(n;x,y) has a characteristic singu-
larity at x = y; for all other points x £ vy, Gl(n;x,y) is
infinitely often continuously differentiable. How can we get
rid of the singularity?

Very simple, by convolution !

From the discussion of the spline on the real line and on the
circle we know already that convolution has smoothing effects.

STEP 3: Derive composite Green's functions

Following the procedure on the circle, we will now try to
perform a convolution between Gl(n;x,y) and Gl(n;x,y) and
call the result G,(n;x,y)

Gy(nsx,y) = Gy(nsx,y) * Go(nsx,y) . (4 - 18)
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With the series representation (4-16) and the decomposition
formula (4-12) , the composite Green's function is given by

© k
1 1
Go(nsix,y) = = — S, . (x) S, .(z)
2 booftmm Lo v b Sk krl2) ]
k#n
L F L] 5 (y)s, (2)1ds(2)
[ 77 120 *p= Ay g2op s y)1315(2)]
1#n

(4 - 18)'

and due to the orthogonality relations between spherical har-
monics,

= [Ser(2) Sq5(2) ds(z) =67 6 (4 - 19)

(Gij Kronecker symbol) , the composite Green's function
Go(nsx,y) follows,

G,(nsx,y) = . Tj;‘:j;jzpk(XY) . (4 - 18)"
n

It can be shown that Gz(n;x,y) is continuous on S and has

a logarithmic singularity under the operator Ayt Ay - try
to verify it.

We can now proceed as we did with the construction of composite
Green's functions on the circle and perform an arbitrary number
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p of convolutions by recursion

G_(n3x,y) G

P (n3x,y) = Gl(n;X’Y)

p-1

Gl(n;x,y) * Gl(n;x,y) * ... % Gl(n;x,y) ,
-

~ —
p - times (4 - 20)
yielding the series representation
) 1 3 2k+1 ) )
Gp(n,x,y) = I kZO (An - Ak)p Pk(xy) ; (4 21)
k#n

for x £y , Gp(n;x,y) is infinitely often continuously dif-
ferentiable, for x =y Gp(n;x,y) is continuous under the
operator (ZX + An)q for all 0 < g < p-1 and has a logarith-
mic singularity for q = p-1 (try to verify it - it is very
simple).

It should be pointed out, that in complete agreement with the
two cases considered in chapters 2 and 3 (real line, circle),
Gp(n;x,y), with p even, can be considered as the Green's
function corresponding to an Euler differential equation, which
is due to a variational problem based on an energy minimization.
Of particular importance is the case p =2 with n = 0 :

in this case the differential operator is simply A2 = A 2 ,
which is the Euler differential operator for the minimization

of the energy integral
- 2 _ R
[(af)c dS = min. ,
S

closely related to the minimization of the elastic energy.
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As a matter of fact the convolutions of (4-20) are not
restricted to Green's functions with one and the same eigen-
value and degree n , we can of course perform convolutions
between G(n3;x,y) and G(r;x,y) with arbitrary non-negative
integers n and r , and, following the ideas of Schoenberg
(1964) and Freeden (1981), define quite general differential
operators (as we did already in chapter 3) of the form

N

N
=n]];)(l+>\n)un,u:=z . (4 - 22)

]
=2 r
>

observe the convolution theorem, and obtain a series represen-
tation for G-(“),

AN
15 N “n
-\ (xoy) == T (2kel) T (- a ) NP (xy) .
AN Tr Ly TT O™ 2 k
(4 - 23)
Ggéu)(x,Y) is continuous under the operator Zﬁ for

0 <g < p-1 at x y and has a logarithmic singularity

for g =u-1 at x =y . Glé“)(x,y) comprises actually all
possible Green's functions on the sphere discussed here.

This concept looks good; however, it should also be noticed
that it can become very difficult (if not practically impos-
sible) to find a closed expression for GE&“)(x,y) if N
and/or u is large; and moreover, it is not a good practice
to use large N and/or u because with increasing N and/or
u we loose what we actually wanted to achieve: a local be-
haviour of the interpolation function. Therefore, the user is

strongly recommended to consider only moderate values of both
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0 ttc My

STEP 4: Calculate spline function

As in chapter 3 we assume J distinct knots to be given on
the unit sphere S , X1s Xps ves Xgo Then all Green's
functions {Gzéu)(x,xj)} for j =1, ..., d are linearly
independent and can therefore be used as a basis for inter-
polation.

The interpolating spline s(x) on the sphere S , corrres-
ponding to the differential operator Zﬁ , is assembled by a
linear combination of these Green's functions,

J
s(x) = Z C. Gzé“)(x,x.) + pN(x) (4 - 24)

where pN(x) is a polynomial of degree N - a series of
spherical harmonics,

N
py(x) = T L s () (4 - 25)

The unknown coefficients {Cj} of the linear combination of
the Green's functions (evaluated at X5 ) and the (N+1)2 coef-
ficients {snm} s n =0, ..., Ny m=+-n, ..., n, are as usual
determined by

a) the data reproducing (interpolation) requirements,
providing J linear equations, and

b) the (N+1)2
ci=1lcys onn, cJ] with respect to all (N+1)

harmonic functions of pN(x) evaluated at the data
points.

orthogonality conditions of the vector
2
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Using the notation of chapter 3 , we obtain once more the
system of equations (3-9) , where the elements of the matrix
C are to be replaced by GZN(u) (xj5x5) 5 p s here a
(N+1)2 - dimensional vector and A a matrix of dimension
[J,(N+1)2],

=0, ..., N, (4 - 26)

The solution for the vector ¢ and the parameter vector p
is given by (3-10) . The resemblence to the collocation solu-
tion has already been discussed at the end of chapter 3.

So far we have seen no conceptual difference between the spline
and the collocation solution. It should also be mentioned that
Green's functions can be extended to outer space just by inte-
gration of the upward continuation operator r_(n+1),
and in this way we could even use other functionals and data
with |x1| > 1. The only differences I can see between the two
concepts are:

r>1;

a) the singularity of the kernel (Green's function) is circum-
vented in the collocation concept by postulating |Xj| > 1
for all j =1, ..., J, which is implicitly achieved by
choosing the radius of the Bjerhammar sphere slightly smaller
than 1, and

b) the kernel (the covariance function) is usually derived from
real world data. This last property makes, as a matter of
fact (as C.C. Tscherning would argue), collocation by far
superior to any spline solution. But how far depends essentially
on how well the spectrum of the Green's function, for a user-
selected differential operator, matches the spectrum of the
data-derived covariance function (the two solutions could even
coincide). From a conceptual point of view, however, the two
solutions are equivalent!
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5. SPLINES IN THE PLANE

Splines in the plane can be constructed as simple products

of splines along the real line, provided the data are located
on a grid (with not necessarily constant grid spacing).

In this case we could construct bilinear, bicubic, ... spline
functions. For practical applications bilinear and bicubic
turned out to be particularly useful. Detailed investigations
and applications can be found in (Meissl, 1971; Siinkel, 1980;
Siunkel, 1981). But remember, the data have to be regularly
distributed. For an irregular data distribution the spline
product concept is not adequate.

We assume an arbitrary data distribution in E2 , the two-
dimensional Euclidean plane, and translate the spherical
procedure to the plane. For this purpose we shall establish
a kind of dictionary. Our approach will be mathematically
simple - minded and partly heuristic - but it works.

In chapter 4 we have used the Laplace-Beltrami differential

operator Aa(equ. (4-1)). The Laplace operator in the plane
is expressed in cartesian coordinates X1s Xo

A =D, +0D (5 - 1)

or in polar coordinates s, a

s %5 DS - (5 - 1)
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The discrete frequencies n (n ... integer) on the sphere

are replaced by a continuous frequency n ; therefore, the

index n on the sphere will be replaced by an argument n

in the plane, and the operator A + A, = A + n(n+l) by the
operator A + n?

From the considerations in the foregoing chapter we know
that Green's function is the solution of the linear system

(4 + n2)6; =8, (5 - 2)

with the Dirac function & as output of that system. We have
also seen that both & and G1 are homogeneous and isotropic;
therefore, D2 G; = 0 , and (5-2) vreduces to

(D2 + 2 D, + n2)Gy(n3s) = 6(s) . (5 - 2)"

The differential operator on the left hand side is the well-
known Bessel differential operator, and the associated ordi-
nary homogeneous differential equation

(D2 + 3 D + n2)d_(ns) = 0 (5 - 3)

has the Bessel function of order zero Jo(ns) as solution.
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Note that the Bessel differential equation is just the Laplace
differential equation for isotropic functions in E2 and
corresponds to (4-3)

We have noticed before that Green's function can be easily

derived if we use spectral domain techniques. Let us apply
this tool here too.

Since the system (5-2)' s isotropic, we take advantage of
the Fourier transform for isotropic functions, which is known
to be the Hankel transform. Let F(s) be the isotropic
function and f(«x) its Hankel transform, then we have
(Papoulis, 1968, p. 140 ff.)

JO(KS) F(s) sds (5 - 4a)

JO(KS) f(x) «d «. (5 - 4b)

The first transformation is a Hankel transformation into the
spectral domain and could be called Hankel (or Fourier) ana-
lysis, the second transform is the Hankel transformation from
the spectral domain back into the space domain and could be
called Hankel (or Fourier) synthesis. Both equations are
denoted "Hankel transform pairs". Note the accordance with
(4-9b,c). Comparing (5-4b) with e.g. equ. (4-11), we can
establish the following dictionary for homogeneous and iso-
tropic functions:
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sphere plane
k K
Xy st o= [x-y|
2k+1 K

Or~18
[

If we therefore denote Green's function for the plane with
G{(n,s) and its spectrum (Hankel transform) by g(x), we
obtain

G(n,s) = J (ks) g(k) kd « . (5 - 5)

0

O-— 8

The Dirac impulse is known to have a constant spectrum equal
to 1; consequently, it should have formally a representation

§(s) = Z JO(KS) kd k . (5 - 6)

If we use these integral representations of & and G in
equation (5-2), we get

O- 8

(A +n2)JO(KS) g(k) « dk= Z JO(KS) k d « 3 (5 -7)

jts counterpart on the sphere is equ. (4-14). Now we apply
the same simple trick as in (4-13)' , add zero to the dif-
ferential operator A + n? and obtain, observing the Bessel
differential equation (5-3) ,

(A + k2 + n2 - KZ)JO(KS) = (n2 - KZ)JO(KS) (5 - 8)
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(compare equ. (4-13)"). The equation

é JO(KS) (n?2 -k2) g(k) « d k =

o8

JO(KS) k d k

has to be fulfilled for all arguments s ; consequently, the
spectrum of Green's function is given by

g(x) = ——— (5 - 9)

(compare it to (4-15) considering (4-2).)

With g(x) given, Green's function G(njs) 1is obtained by

a Hankel transform (Fourier synthesis) of g(x) , like (4-16)
on the sphere,

Gy(n3s) = (5 - 10)

O 8

A
[«l)
_——
Vs

wn
S
(=N

A

Also Gl(n;s) in the plane has a logarithmic singularity at
s = 0 1in accordance with Gl(n;x,y) on the sphere: with
) =

JO(O 1 we obtain

. _ ‘o K 1 . k2
G(n;0) = (f) ———— dc = -5 Tlim log(l - n—f), n >0

n? - 2 K > o

2 e lk -n| > e >0

The reader is invited to check the validity of this formula.
If s #0, Gy(nss) 1is infinitely often continuously diffe-
rentiable.
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In order to eliminate the singularity of Green's function,
we proceed as in the foregoing chapters and use convolutions
between the Green's functions Gl(nl;s) and Gl(nl;s) with
a fixed n = n; , obtaining G2(n1;s) ,

Gz(nl;S) . = Gl(nl;S) * Gl(ﬂl;s) s

which is according to the convolution theorem (Papoulis, 1968,
p. 143) equal to

Gz(n1§5) = 27 éo T—Z————Tyz JO(KS) de . (5 - 11)

Gz(nlgs) is already continuous at s = 0 and has a logarith-
mic singularity at s = 0 wunder the differential operator
A+ n% . Recall that 62 is Green's function corresponding

to the Euler differential equation, which is derived from the
minimization requirement of the energy integral

2 2 2 ,
f [(DXl + sz)f(xl,xz)] dx;dx, = min.
2

In accordance with the operations on Green's functions on the
real line, on the circle, and on the sphere, we can define a
quite general differential operator of the form

N
AN:=TT(A+nr2])n,u:=Zu. (5 - 12)

Observing again the convolution theorem, the corresponding
Green's function is given by
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(5 - 13)

The reader may show that Ggﬁ)(s) is continuous under the
operator Aﬂ for 0 <q <wu-1 at s =0 and has a logarith-

mic singularity for q = u-1 at s = 0.

Calculation of the spline function

As in the foregoing chapters we will assume J distinct knots
to be given in the Euclidean two-dimensional plane E2 s

1 : (U)
X1 x2f +-+s Xy . Then all Green's functions {GAN (x?xj)
for J =1, ..., J are linearly independent and can therefore
be used as a basis for interpolation (or even data combination,

provided G is sufficiently smooth).

The interpolating spline s(x) 1in E2 (x denotes a point in
EZ)’ corresponding to the differential operator AN s 18
assembled by a linear combination of these Green's functions,

J
s(x) = Y c. G(“)(x,xj) ; (5 - 14)

the unknown coefficients {cj} are determined from the data
reproducing (interpolation) conditions. As in the case of the
real line, there is no polynomial explicitly involved, because
there is simply no discrete frequency; however, the polynomial
behaviour is contained in the Green's function (same as on the
real line). Therefore, there is no matrix A and no parameter



vector p ; the matrix C of equation (3-9) consists
of the elements {Ggﬁ)(xi,xj)}. The solution is provided by

CONCLUSIONS

Spline functions can be considered as solutions of differen-
tial equations under certain boundary conditions. In particu-
lar, if the differential operator is self-adjoint, it can be
considered as an Euler differential operator which is due to

a variational problem, formulated in terms of the minimization
of a certain energy integral.

The solution of the differential equation is implied by a
Green's function. The set of Green's functions, referred to

the data points, is a set of linearly independent functions

and can therefore be used as a basis. Actually, the Green's
functions are basis splines. The data reproducing spline can

be assembled by a linear combination of these basis splines,

in general superimposed by a low degree polynomial. The deter-
mination of the coefficients of the linear combination requires
the solution of a Tinear system with a size equal to the number
of data.

Composite Green's functions can be designed in terms of con-
volutions of simple Green's functions, corresponding to com-
posite differential operators. This leads to simple recursion
relations between Green's functions.
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According to the convolution theorem, the spectrum of a
composite Green's function is the product of the spectra of
the individual Green's functions. This nice property suggests
the extensive use of spectral techniques. In general, the
degree of composition must be Timited for the following
reasons:

a) the number of data must exceed the degree of the differen-
tial operator in order to permit a unique solution;

b) a high degree of composition results in a Green's function
(B-spline) with global rather than local character -
a certainly unwanted property for local applications;

c) a closed expression for the composite Green's function must
be available; to find it can become very tricky for high
degrees, if not practically impossible.

B-splines and covariance (kernel) functions are close rela-
tives: both are characterized by singularities. In collocation
the singularities are surpassed by requiring all possible data
to be located above the (dangerous) singularity level. This is
implicitly achieved by dropping this level to a "save Tevel .
This level defines at the same time the domain of harmonicity
(if we are talking about applications in physical geodesy).

If we do the same with splines, which is certainly legal, then
both methods, spline and least norm collocation, are absolutely
identical.
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