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ABSTRACT

The general principles of the use of known density anomalies for gravity
field modelling are reviewed with special emphasis on local applications and utiliza-
tion of high degree and order spherical harmonic reference fields. The natural
extension to include also unknown density anomalies will be studied within the
framework of geophysical inversion methods, and the prospects for "hybrid" gravity
field modelling/inversion methods will be outlined. A very simple case of such
methods is the determination of representative topographic densities through collo-
cation with parameters. '

The topography, being the dominant density anomaly, together with the isostatic
compensation, may be taken into account by various types of terrain reductions.
Special attention is given to residual terrain reductions, i.e. using spherical
harmonic expansions of the topography as a reference. The auxillary quantity
“the terrain correction" is investigated in detail, and possibilities for approxi-
mations {so called "linear approximation") in terrain effect computations are
evaluated through models and actual data. Frequency domain methods using the
Fast Fourier Transform are studied on a theoretical base, and used for error studies
to investigate the resolution of topographic data versus the attainable accuracies
of computed terrain effects.

Actual topography and gravity field data is analyzed by FFT for many different
areas of USA and two areas of the Pacific, yielding power spectra, degree-variances
and covariance functions for the topography and the gravity field. Results show
topographic covariance functions to be of exponential type, and that use of terrain
reductions as expected produce a gravity field of less variance, longer correlation
Tength and higher degree of isotropy.
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i. Introduction

With the term "gravity field modelling” we usually, in the geodetié community

mean methods for.representing the external potential of the earth, in order to
be ab1é to estimate quantities related to the-gravity field from é given set of
- "observed" quantifies. Such methods include spherical harmonic expansions, integral
formulas such as Stokes' and VeninQ-Meinesz' formulas and "spatial" approximation
methods such as collocation and genera]ized'point mass mode?1ing (e.g. Bjerhammar‘s
methods). Common for all of these methods is that they are'approximation methods
fér harmonic functions, all rely on the assumption that the anomé1ous potential
T fulfills Lapiéce's equation ¢ 2T = 0 at 1éast outside.the surface of the earth.
No assumption is made regarding the density distribution actually generating the
gravity field. | | | | |

| In éontrast the term "gravity field modelling” as used in geophysics stands
for the process of determining internal dehsity distributions of fhe earth, consis-
.~ tent with the observed outer field. This inversion is non-unique, and to get
reasonable answers the geobhysicist must introduce constréints, tﬁrough selection
of a finite dimensional representation of the structures (density values, depth
parameters, etc.), through "fixing" some of these parameters based on independent
geophysical inforﬁation (well data, séismic interpretatfdﬁs) and through susjectivé
choices of the most "realistic” models in terms of geology. At the Sasis of the
geophysical gravity field modelling is the "direct problem” of potential field
theory: to calculate the gravity potential and its derivatives in space due to
given density distributions.

~ When the prime interest is in "external" gravity field modelling, any geophysical

density model, realistic or not, may iﬁ principle be used to represent a part

of the external field through a direct computation of the effects of the assumed
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density distribution. If the dens1ty distribution is rea11st1c we would expect

the remaining field to be more smooth, in some cases the fit would be ‘s c]ose

that we would have no use for any external gravity field mode113ng at aT] Usua]ly,
however, our knowledge of density anomalies is confined to more shallow structures

of crustal and upper mantle origin, thus mainly contributing to the shorter wavelengths
of the variation of the gravity field. Longer wavelength parts of the signal are

more conveniently treated using “external“ modelling, such as high degree and

order spherical harmonic expansions of the geopotentxa? | |

The “"external" and "internal® mode]31ng may conven1ently be done s%mu]taneous1y
in some cases, using e.g. combined versions of collocation and geophysical inversion
procedures. Thus we will at the same time estimate both the externa] grav1ty
field and density values inside the earth. This approach has the advantage that‘
it allows fairly easy use of independent geologic/geophysical information as data
for the construction of external gravity field models. Due to the difficult chojce
of geologically “reasonable" density parameters it will, however, hardly evér
be a "hands-off" aufbmatic method 1ike standard collocation.

Combined co]locat1on/1nvers1on will probab]y prove itself useful for 1nver510n
of future “muitTSensor gravity data, as e.g. gravity vector measurements by
inertial survey systems and gravity gradiometer measurements. In conventional
geophysical inversjon we have an inherent arbitrary choice Qf_tﬁe "regional" féeid,_
representing the effects of all other sources than the density structures of‘interest.
This regional/residual - separation is done using more or ?éss crude forms of |
filtering and trend fitting. When we héve several different types of gravity
field data containing information about the same mass body, it is essential that.
the fi]tering is consistent between the various gravity field data types, such
that the filter output still represent quantities related to the same harmon1c
function. This will be assured using combined collocation/inversion and similar

methods.
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In this report the utilization of density anomalies for genereralized gravity
field modelling will be treated in the first chapters in a rather broad way.
" The bulk of the report will, however, be concerned about the most important and

also best known density anomalies on the earth, namely density anomalies associated

with the topography.

The density anomaliés relating to the topography includé the direct gravita-
tional effects of the visual topography on the continents, the ocean bathymetry,
ice cap effects and the isostatic compensation. These effects together represent
a hajor part‘of the variation of the earth's gravity field, especially at_shorfer
wavelengths (Tess than, say, a few hundred kilometers), where thé direct computed
topographic effects only to a Tow degrée are counteracted by the isostatic compensa-
_ tion effects. In mountainous areas the topographic effects completely dominate
the local variation of the gravity field, and some.kind of terrain reductionis
indisbensable when attempting gravity field modelling in such areas. The most
well-known terrain reduction is the Bouguer reduction, which is well-suited for
geophysical work and prediction of mean free-air anomalies (for use e.g. in tradi-
tional geodetic gravity field modelling), but is not applicable for reduction
of geofd'unduiatidns.' Isostatic reduétions provide the shcothest possible reéidual
. fields on a gTob#] basis, and are easily applicabie to all the various types of
gravity field data available. The computation.of topographic/isostatic effects
is facilitated by high-degree spherical harmonic expansions of the isostatic reduc-
tion potential (Rapp, 1982), but for local applications the computations are still
relatively laborious. Since the usual Airy-type isostasy does not operate on
a local scale (the short wavelength topography is supported;by the finite strength
of the earth's crust) we might not like to introduce the somewhat arbitrary isosta-
tic reduction mass anomalies at the crust/mantle boundary. Instead we might just

simply try to take only the short wavelength variations of the tqpography inio
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account, introducing an arbitrary smooth mean elevation surface ("model® earth)
as a "reference" topography, the gravitational influence of which is not directly
taken into account in the gravity field mode]?ing. For gravity énoma]ies suchE
a residual terrain correction corresponds c}ose]y tc the formation of regional
mean free-air anomalies, and by choice of a proper reference elevataon surface,
such as defined through a spherical harmonlc expansion of the earth s topography
. to degree and order 180, we end up with a reduction which would be expected to
give somewhat similar results as conventional {sostétic redﬂctions.
For local modeTT1ng of the grav1ty field - on which the main emphasis 1s
put in this report - the ava1]ab1i1ty of h1gh degree and order spherical harmon1c
expansions of the geopotential (Lerch et a].; 1981; Rapp, 1982) has proven itself
.'to be a major break—through of big practical value. For a region like Scandinavia
with reliable 1°x 1° mean gravity data, the r.m.s. variation of the gfavity anom-
alies is roughly reduced to half the original value, and géoid undulations may
be computed with an accuracy around 1 m using such spherical harmonic expansions
* (Tscherning, 1983). Thus by using long-wavelength information from such expansions
and combining with short and medium wave1ength topographic effects computed us1ng
a residual terrain model with respect to a correspond1ng spher1ca1 harmonic expan-
" sion of the topography itself, the “remaining" signal will be smooth, its variance
low and its degree of anisotropy usually less. This will be demonstrated later -
in this report, through investigations of local empirica] covariance functions
and power spectra of the gravity field in areas with different types of topography.
The computation of terrain effects, using digital terrain models, is basically
a problem of numerical integration. However, it is by no means a simple problem.
The integration kernels are usually singular at the evaluation points, and the
influence of the "inner zone" - the topography in the immediate vicinity of :the

~evaluation point - is very critical for quantities like gravity anomalies and second
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order derivatives. A FORTRAN program for computing terrain effects on geoid undulations,
deflections of the vertical and gravity anomalies, based on the rectangular prism
as integration element, will be given in the appendix.

For gravity anomalies a type of topographic effect - the conventional gravi-

. metric terrain correction - is of special interest. The terrain correction is

‘basically not a terrain reduction, used in conjunction with a general gravity

field modelling procedure it represents no unique density anomaly dfstribution

. to be removed from the observations. ‘Rather the terrain correction should be

viewed as a'mathematiéa] convenience, representing the - usually small - nonlinear
part of the total terrain effect. Unfortunately terrain corrections have from

time to time been confused with terrain reductions proper. The application of
‘terrain corrections alone does usually not improve results of the gravity field
model1ing in mountainous areas significantly, since the bulk of the topographic
density anoma1y‘distr1butibn, causing shorf wave?ength "noise" in the gravity
field, is not removed. The application of terrain corrected free;air anomalies
does, however, make good ‘sense for integral formula appiicafions, since the abpli;a—
~ tion of the terrain correction to free-air anomalies represents a first (and rather
¢rude) approximation to the problem of downward continuation of gravity observatioﬁs
from'the‘surface‘of the topography to the geoid, the terrain correction being

“an approximation to MoTodensky's G, -term, see e.g. Heiskanen and Moritz (1967)

and Moritz (1966). The role of the terrain correction will be given attention

Jater in this report, and some examples of its wagnitude will be given.

To summarize, the emphasis in this report will be on the utilization of density
anomalies <in local gravity field mbde11ing - especially collocation and related
‘methods. ~ The first part will réview bfinciples for the utilization of known and
unknowri density ‘anomalies, then the practical computation of such effects -

especially topographic effects - will be outlined, and finally the influence of
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the topography will be studied through. investigations of empirical covariance functions
for various tést areas in the United States. No major examples of actual'appTications
of the methods for gravity field modelling will present1y be given. For eariier
results of gravity field modeTing by collocation‘using soﬁe of the terrain reduction
concepts presented, the reader is referred to e.g. Forsberg and ngherning (1981),

Forsberg and Madsen (1981}, and Tscherning and Forsberg (1983).

2. The Anomalous Gravity Field and Density Anomalies
The gravity field of the earth is traditionally described using the anomalous

potential T
T=W=-U | (2.1)

representing the difference between the actual geopotential W and a normal poten-
tial U, corresponding to chosen reference ellipsoid parameters. In U is also

included the centrifugal, tidal and atmospheric potentials, and thus T is a

harmonic function.
72T = 0 o (2.2)

outside the surface of the earth, and may be ekpanded in spherical harmonics

oo £ g
- GM R Vv
T{r, ¢, 2) = a g,zﬂZ m;_. y,a m (}T) ng (5 2) (2-_3)

P (sin ¢) cos my {m> d)
Ynm (¢ 1) = { o N
. sz (sin o) sinmy {(m < 0)

Here G 1is the gravitational constant, M the mass of the earth and R the radius

of a reference earth sphere (Bjerhammar sphere).
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The observable gravity field quantities may in:the usual spherical approx-
imation be expressed as linear functionals L(T), the most important quantities

being point and area mean values of

= g- Height anomalies/geoid undulations (2.4)
11
£ ry o¢
Deflections of the vertical (2.5)
:"'____H_..._...._.........._I" _a.l
N7 vy cos ¢ oA
. oeT 2. S ' | ‘
hg = o - 4 T _ Free-air anomaly (2.6)
59 = ~-%} . Gravity disturbance ‘ (2.7)

where vy 1is normal gravity.
.Similarly, density anomalies Ap may be defined as the difference between

the actual density distribution p inside the earth and a normal density distri-

bution Py generating U:

b= 0 o (2.8)
W= 2dv_+ 4, r=ir] (2.9)
y "o @
I |
U=, S dVg e (2.10)

Figure 1.

vhere ¢ 1is the centrifugal potential, V the interior of the earth and E the

reference ellipsoid. We thus have



TP =, v - . (2.11)

In other words, Ap is a density distribution generating the anomalous gravity

fiald.

Due to the fundamental ambiguity of potential field theory, an fnfinite variety
of density distributiohs satisfying (2.10) exists. If a spherical.normal potential
U is chosen, indeed any radial symmetric density distribution, having the correct
GM«Va]ue, generates U.' It is therefore clear that thé observed graviiy field
is of no use in determining a reaTistiq normal dens?ty_pe. InStead we muSt get
information on £y from other geophysicaTrsources: seismic body-wave travel
times, surface wave dispersion curves, eigen periods of the earth's free o§ci¥1a~
tions and the moment of inertia. Examples of current earth models, applicable
for "defining" Py is the HB-1 (Haddon & BuI]en,71969) modé] and the PEM-models
(Dziewonski et al., 1976).

To account for the non-spherica1 part of o, » We may resbrt t§ ﬁerturbing
the interior density distribution by small amounts, given by the hydrostat1c equili-
br1um theory. The flattening of the interior dens1ty d15cont1nu1t1es will thus be
decreasing downwards, from 1/298 at the surface to 1/390 at the core/mantie bound~
ary. Alternatively we may resort to a stringent analytic representatioﬁ of the
normal density distributioné using ellipsoidal coordinates (where the flattening
increase with depth), and more or less arbitrary mathematical constra1nts to secure
.a unaque so]utton (Moritz, 1968, Tschern1ng$:$unke1 1980)}. In any way, however,
the non- spher1ca1 perturbatfons are very sma?1 much less than the errors in the
geophysaca] earth mode]s, and we may thus for a]% pract1ca] purposes simply dasre«

gard these.



We are thus free to choose "convenient" reference density distributions when
working in inen régions: a typical continental choice would be e.g. a density
starting at 2.67 g/cm* at sea level, increasing to 2.9 at the base of the crust,

: jumpiﬁg to 3.3 across the moho at 32 km depth and 1ncreasfng through the mantle
with major.”diécontinuities" at the phase transition zones at ~420 km (olivine-spinel)
and at ~700 km. At the base of the mantle the PEM-model gives a density of 5.4,

and for the earth's: core values from 9.9 to 13.0 at the‘center, the density of

the inner cdre being still very'uncértain. For an oceanic area we might change

this model above the Tow ve]oc1ty zone, e.g. choosing a reference model with 4 km

of water (density 1.03), a th1n, dense crust (2.9) extendTHg to 12-18 km depth

and an "undép]eted“, oceanic upper mantle at 3.4g/cm3.

3. On the Use of Spherical Harmonic Expansions

When we use a spherical harmonic expansion as a first step in gravity field

~

modelling, the "wanted” approximation T to T 1is split into

T ?1 T (3.1)
with %1' given by the expansion
max &
GM o Ryt , 3
L r g a) = 5£2 miz ayr () Y0 (s 2) (3.2)

~ The currently available high degree-and-order models (%pmax = 180) provides the
bulk of T. Fhey suffer, however, of a minor problem relating to the continental
topography: 1nformat1on on the h1gher degree coefficients stem from analysis

of 1°x 1° KE (used d1rect1y in the Rapp models (Rapp, 1981) and through Stokes'

"7 formula in. GEMIOC (Lerch et al R 1981)) treated as data on a gher . neglectrng

 ”¢lthat the cont1nenta1 anoma11es are actua11y anomaT?es at a1t1tude This fact

"'g1ves rTSe to a sma]] correct1on, comp]etely correspondTng to Molodensky S

"i:G “term, but in the frequency domain.
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Let the standard surface harmonic expansion of the mean anomalies be

e ) =y ) el al, TG n) (3.3)
s :

m m sam

To first order these anomalies correspond to elevation h(g, 1), defined through
a similar expansion of the continental topography (0 at oceans). Using the correct

spatial expansion (3.2) we get

— GM ' Ry : ; |
S D L QR Y, (3.9
- GM . R | o [ |
Rz (o2g) 1L (2-1) @y (- 2) T (3.5)
2 B - MR T T D) ay, Voo (3.6)
' g m

where Ag* is the gravity anomalies harmonically downward continued to the
Bjerhammar sphere. Since a, *© a;m, the second term in (3.6) may be evaluated
with sufficient aCcuraéy from existing soTutfons, fepresenting essentié11y
h - T"z’ Expanding this correction term in. surface spherical harmonics bgm, we

7 . . . . ¥

obtain

e — GM — . : : ‘. ‘
= rgkx - A
A9 = A9 R3 é % bgm ng | : o (3.7)

which by (3.3) and expansion of Ag* gives

= a4t ' ‘
Tom T em * 2-1 P i | - (3.8

The correction term has for gravity anomalies a maximﬁm'va1ue of c. 19 mgal (Rapp,
1983). For local gravity field modelling the above has the practical application
that elevations of the individual (ground) obsérVatfon’points should be used

properly when evaluating (2.3}, otherwise elevations should rather be set to zero.
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~Corresponding to (3.1) also the density anomé?y may be split in a spherical

harmonic reference part and a residual
bp = Bp, *+ o, | (3.9)

The reference density distribution Ap, pOses some problems, especially for high
"degree-and-order fields (gmax > 180), since many of the major crustal - upper-
mantTe structures (trenches, rifts, etc.) will indeed have a significant part

~ of their gravitational signal in the reference part = 2o When working with

z
residuals ("Tz“) only, the response from assumed Ap-models must thus be split,
either by introducing a ”forma?”. Ap, s OF by high-pass filtering the response.
In this case we wilﬁ, however, lose important information about the structure.
‘For more local gravity field modelling, we may totally neglect the density
split (3.9). Many of the typical intracrustal density anomalies would have only

small long-wavelength effects. By removing such density anomalies computationally,

the remaining part of the residual potential Té would in princip?e'be “cbn—
taminated" with these Tong wave1ength errors, but they will usually not bé very
signifiéént compared to e.g. the errors in the reference field fl.

For .the topography, the natural choice of Bp would be a model corresponding

to an analogous expansion in spherical harmonics of the topographic elevations:

Lmax 2

§oh, Y (6, 2) (3.10)

F(¢: ?\) =
1 me= g &Zmoom

3| s
He— 3

b

 The reference density model in this case would have density ~ 2.67 g/cm® below
the mean elevation surface h{¢, a) on the continents. More on this (i.e., the
residual terrain correction) later.

"ffu‘Forma1'ihtroductioh.of spherical harmonic reference density anomalies

may be done using simple analytical inversion methods. Consider e.g. a two-layer
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earth model with a interface at depth D (Figure 2). The effect of undulations
hig » ») of this interface may be approximated by a mass coating of density

P p])h. We thus have:

2

«(Q) |
5.0 ds(Q) (3.11)

where o, is the interface sphere.

Figure 2

(3.11) represents a spherical convolution, and we have the simple well-known ex-
pression in the frequency domain for the dimensionless coefficients (3.2) of the

generated potential

. AnR?Z I D¢ ' ‘
%am T M 2wl (1 "'ﬁ) “gm | (3.12)

- see e.g. (Sunkel, 1981b). Just a single interface thus provides a unique inversion.
For real applications, however, several layers will be'needed in order that the
derived interface undulations be reasonable and the corresponding stress levels
within accepted 1imits. Typically the ‘lower harmonics céé?d bé modé11ed as -
“topography" on the mantie/core inferféce and the deeper mantle phase.transition
zones, the higher harmonics on discontinuities in the ubper mantle and the moho.
‘Such a model makes reasonable physical §ense, it has e.g. been hypothesized that
major global features of the geoid corresponds to thermally induced shifts in

the olivine-spinel transition zone.
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Alternatively, unique “spatiaT“ density anomaly models may be obtained by
imposing “analytic" constraints on the poséible density distributions. If e.g..

the density distribution fulfills the condition
v2(r") = 0 | (3.13)

where . n is an arbitrary integer constant, the density solution is found by an

expansion in internal spherical harmonics as

: _ . -n r ,
'with
_ (28 - n+3)(22 + 1) .
Lm 4 GR3-N dom (3.15)

for 20 > n - 3 (Tscherning, 1974). The drawback of this method is that the con-

dition (3.13) is completely arbitrary without any physical meaning. The resultant
densfty distribution will have its extremesat'the'surface of the sﬁhere; and the

actual density variations will be very low - e.g. order-of-magnitude 0.004 g/cm?

for GEM10B (Rméx = 36) (Tscherning'& Sunkel, 1980); Aftempts‘to find other constraints

1ike (3.13) corresponding to some simple physical minimum principle have been

fruitiess (Tscherning; personal communication) - it is obvidusly not possible

to find "state equations” for the earth's interior relating only to the density

distribution.
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4. utilization of Known Density Anomalies

In external gravity field‘model1ing known (or assumed) density anomalies
may be taken into account by a simple rempge-restore technique:: the influence
of the anomalous masses is subtracted from the given data ("observations®), then
‘the gravity field modelling tech-

nique is applied on these terrain

reduced data, and the Fina] results
“"{'1—+++ ?.',;J__ : :

o $§3 ‘ ‘t'tt--\ : . (“predictions“) are obtained by
[ I RTEa .
i) 4FY
“*‘“\Ag. A%y add1ng back the terrain effects
3 .
to the pred1cted anoma11es
TN T T T T T T TR - e
__u,’ 3//'2,/’,//l ,Ah;f’/ ), L Let V be the volume enclosing
-. Fi 7
~ Ly i, A o . 14
: ‘h*ii /s // ; /,7& the given density anomalies.
Figure 3. ~L Then in a point E
(p) = Sp. C =¥ - F | |
Tm(P) G | - dvq, r =] rq, rP{ _ - ‘(4.1)

v

~is the terrain effect potential, and for a gravity field quantity L(T) we have

the "terrain" effect (including "geologic” effects)
LTn) =6 ] 20 L) av | (4.2)

e.g. for the grévity disturbance vector

" = | I o ....1... = | ....Z.‘...... - - _..E_ |
60 = “VTp = -6 [, 8e7(3) dV = G o T3 dV ® ; 6 oy fv rdv (43)
i
For practical computations “building blocks" of constant density are traditionally
used, as expressed by the last term of (4.3). |

The remove-restore technique may schematically be written as:
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OBSERVATIONS: LiObS(T)

terrain l
reduction _

obs,.Cy _ | ODS,py
Li (1) = Li‘ (1) Li(Tm)

modelling l

technigue
Ljpred(?c)
"inverse"
terrain l
“reduction _ ,
PREDICTIONS: L P = P Ly

‘Irrespectively of the gravity field modelling technique actually used (Integral
formulas, Collocation etc.), T¢ must be a harmonic‘funétion. This is secured if
merepreSEnts the gravitétiona] effects of a given, fixed mass méde], e;g.‘the ”
density anomalies within a given geographical area. The same mass model must
naturally be used for both the observed and predicted quantities. For tobograph%é/
isostatic effects and - especially - "residual" topographic effects, a global
‘mass. mode] is often appropriate: forma]]y'we thus have to éxtend fhe integral
(4.2) aIT,aroﬁnd the eérth, but fn pract{ce it is sufficient to integraté dut
..to a-certain-distance frbm the computation point - depending on the type of gravity ;

fier'ddHntity and thus the "sharpness" of the integral kernel L(%J - the effect
" of the distant topography being either négiigib1e or obtainable from e.g. spherical
harmonic expansions. “ B
B Wheﬁégsing'a'remove-restore tethhique like outlined here, it is importént
*to 'know that the assumed density andma1ies need not be realistic - any density
. distribution.may be used-as :long as Tm and,thus T¢ is harmonic outside the tobbgraphy.
—ocButsnaturally the most smooth T¢ ié expected when the most‘reaii§tic”mass model

is-applied.: :For "geologic" density anomalies - e.g. salt domes, intrusions, faults
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etc. - even the simplest mode]s (spheres, cy11nders, step funct1ons) may often
be applied successfully, to g1ve a more stat10nary and isotropic residual field,

well-suited for 1nterpo}at1on and approximation.

5. Unknown Densitieé - Geophysical Inversion

Most frequently we do not have a good knowledge of ”géologic“'density'
anomalies, and it would therefore be natural to try to estimate paraméters des-
cribing such density anomalies - preferably sfmu]taneous?y'with'the external
gravity field modelling process. In addition to the obvious fmportance of know-
-Tedge of the surface density distribution, we will by this method also have a
STmple way of 1ntroduc1ng non- grav1ty cbservation data (magnet1c, seismic etc. )
in the external gravity field mode111ng. S]mp?@ but very essential geodet1c
applications includes determination of optimum tbpographic re&uction densities
(generallzed Nettleton method) and e. Q détermination of ocean bathymetry in un-
surveyed areas from sate?late a]tametry

The general principles of geophysical inversion may be out]1ned as follows:
based on geologic intuition (or practical ease), a (finite) number of parameters

X..

i i = 1,...n is chosen to represent the structures in a given area (Fig. 4).

A gravity field quantity observed in a point P may then formally be expressed

—— T yomfrpmmgnes
q L |
e 1IN R 2'5
772 O A
G il ot
Fr e “ te
’/ /"/ ,’;; > rifV 7
/ s el shs 5/’5 %
Figure 4 .

as

Lp(T) = Fplx > weos X)) - o (5.1)
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where the function fp is generally non-linear and must be Tinearized

(L) - 18y = I 2| ax,  (5.2)
p p o |, .

by assuming an injtial mode] x?. Since geophysical inversion problems are often
high?ylnonTihear, a large number of iterations (5.2) are often necessary. - The

model parameters X; may be generally classified in two types:

1) geometric parameters (interface depths etc.)
2) density value parameters

The main émphasis in traditional geophysical-modei?ing has been in térms
of structural geométric,parameters (see e.g. Burkhard & Jackson, 1976; Pedersen,
1979), to directly represent iﬁterfaces such as the top basement in sedimentary
basins or the moho, exemplified in Figure 4 (left). The advantage of the geo-
metrfc.parameters is that they directiy refiect simp1ified_geo?ogic quels, and
additional data such as well control is easily including by e.g. fixing one or
more parameters. The drawback of choosing "structural" parametérs is the inherent
un]inearities. | | |
Obposed.to this, models with density‘va1ue parameters only (Figure 4, right)
are perfectly linear, but the computational advantage of the ]1near1ty is usually
counterweighted by the greater number of parameters needed tq‘represent a wanted
" geologic scenario. Also it is less simple to include the non-gravity constraints.
The commonly applied point mass modelling in geodesy may.be viewed as a special
case of such geophysical inversion, using the simplest pqssfb}e finite element .
| represéntation (delta spikes) of the subsurface density disﬁriputionf. However,
this simplest possible case of inversion‘gives resu?ts‘that arelaﬁazjngly close

~to results obtained using improved (spatial) density representations (Figure 5).
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Assuming a set of observations Y; = Lf(T), i =1,...,n the (Tinearized)
inversion geophysical problem may be written as
y = Ax , ‘ ‘ {5.3)

where . A is the response matrix. This problem is genera]]y ill-conditioned or
improperly posed, and generalized inversion must not be used.

One popular technique is the use of the singular value decomposition:

- ' b 0 ‘
A= unvT, po= )00, (5.4)
0 A
p
with the U and V being orthonormal matrices defined through
ATAV.‘* A2V, Vo= (v.}
J J 1 : J
_ , (5.5)
ATU - a2u. U= {ug)

j oI J

~ See e.g. Pedersen (1979) or Rummel et al. (1979). p is the number of non-zero
eigen values, i.e. the number of degrees of freedom of the prob1em A solution

X to (5 3) is given by the Lanczos inverse,
VRSN a
% = va"tyly (5.6)

minimizing as well y'y as x'x. To prevent the eigen values of i11-conditioned
probiems to induce large changes in the parameters x, the eigen value spectrum
Ay may be truncated by removing eigen values smaller than a suitable thresho]d,
giving the traditional trade-off between resolution and variance.

Alternatively to the explicit use of the singular vaTue‘decomposition, es-

© - sentially ‘the same solution may be obtained using Tikhonov regU]arﬁzation. In

this case we seek to minimize a combination.
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Jly - Ax[]2 + a|[x||z, >0 (5.7)

Assuming a noise covariance matrix D for the observations and an a priori covariance
matrix C for the "signal® x (both matrices usually assumed to be diagonal), we

‘obtain the solution by solving the normal equations.

T.-1

T D'y (5.8)

(A'D7'A + ac”H)X% = A

{Rumme1 ét al., 1979), The constant’?é is arbftrary and may be chosen to qbtajn
: ‘a desired smoothness of thé parémetergg again Qith the‘price to be §aid being
a degraded fit of the mode];_ | |

Independent geologic information may be taken into account using linear.con-.

straints of the form .

Bx=C - : (5.9)

il

where B and C are constant. Suchrponstrajnts can_be_used ;offix‘certain

parameters {e.g. representing known depths to an jnterface), to. fix differences

in density values (e.g. forcing parameters.of type "2" to represent layers, faults, .

etc.) and to introduce specia14geometricAconsttaintq‘onuthe‘qnomafqusfmass body

- based onwgeologic.experfenée‘(e.g, assuming a .dike to have parallel-sides). ..

The constraint (5.9) is taken into account in the minimization problem (5.8) using
Lagrange multip?iers,_obtaining:somewhat.more;;omp}jgaﬁeq;normal;equations.
Detai]s.may'be found e.g. fn-Burkhards&TJacksoh (1976). .

The methods outlined above represent conventional geophysical inversion tech-

. niques. They are usually applied only for one type.of gravity field quantity .. ... . .

(gravity anomalies or - at times - altimeter geoid undulations), but there is . ..
of course no restriction in the model. formulation to utilize heterogeneous data .
(e.q. simu?tanedus gravity and geoid information) as.we are commonly used to in .

geodesy. The problem with the heterogeneous data lies in the reQionaT/residua]

separation: the gravity field contains information about density anomalies at
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all depths, but the model parameters x are typically restricted to describe
simpiified rather shallow structures ~ a filtering is therefore done to remove

the unwanted parts of the signal. This filtering is often very crude (e.g. graph-
jcal determination of a "regional") and not applicable for heterogeneous data,

for such data we must make sure that the filtering of the different data types
are consistent »lthe "regional" must be a harmonic function.

In some cases high degree and order spherical harmonic expansions might be
valuable as "regionals" - e.g. when try}ng to model total crustal density distri-
butions-but we should then also have a well-defined spherical harmonic reference
density distribution (c.f. Section 3). Alternatively we can utilize "general"
gravity field modelling techniques to represent the regional, e.g. by introducing
arbitrary (deep) model point-masses or by doing the inversion within the framework

of least squares collocation with parameters.

In this case we have the following observation equations for an observation

Y. with associated Tinear functional Li and noise nye

y; = xk + L(T) + 0, (5.10) .

o

for which we get the well-known collocation solution (see e.g. Moritz, 1980)

T(Q) = LK(-»Q) | ¢
x = (alc7ta)yt aTety (5.11)
C =

{LiLjK(-,-) + Dij}

where D again is the noise covariance matrix, K(P, Q) the potential covariance

function of the gravity field. Note that this covariance function should not

be the observed, empirical covariance function but rather the covariance function
of the field after the model influence have been subtracted - i.e. the covariance
function of the "regional". We would efpect this field to have less variance

and greater correlation length than the original field. Since the model results
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depend on the covariance parameters, these must ultimately be determined through
trials or through considerations of the wanted characteristics of the regional/
residual filter.

Least squares collocation with parameters will be especially well-suited

for the determination of optimum topographic reduction densities in mountainous

areas. In this case our model parameters x will just be a single value (or
a few, if the geology is changing), and the observation equation (5.10) will look

like

Y.

- 1
;= {G fv Li(r)dv} Ap + Lj(T) +ny (5.12)

where the term in the bracket represents the terrain effect of a topography with
unit density, cf. (4.2). This problem is well-conditioned for sufficiently
varying topography, and represents a straight forward generalization of
Nettletans density profiling method to heterogeneous data. More reliable density
estimates are obtained with (5.12) than with the more traditional approaches such
as regression analysis of the variation of free-air anomalies with elevation,
as pointed out by Sunkel (198la). Application of (5.12) will probably be even
better than using real measurements of sample rock densities: everybody who has
tried this knows how difficult it is to estimate average formation densities from
samples of individual rock formations, especially for sedimentary rocks with their
varying porosity énd water saturation. |

When estimating more complex structural models of the density anomalies,
stabilization of the parameters X in {5.11)} will be needed, and we will have
to make a combined collocation/generalized inverse approach. Collocation by itself
may be viewed as an inversion problem (Moritz, 1976): the simple collocation
approximation T is built up from the kernel function K(P, Q) in the observation

points:
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T(Q) = 1 aLk(-,Q) (5.13)
N

where the coefficient a; is the solution fo the "normal equations" corresponding

to (5.11). Expressing (5.6) in terms of these coefficients we have:

<
1

Ax + 7 LiLjK {-,*) « a, + n.,
J
(5.14)

3]

X

which clearly shows our problem as a "double" generalized inverse problem with
unknowns X; (geophysical parameters) and 3 (kernel coefficients). The solution

is obtained by minimizing a combination:
Hxil# + o I 71 (5.15)

where o 1is a positive constant and || ”H the Hilbert space norm associated with

the chosen covariance function K. The constant « s arbitrary, and must be

chosen based on empirical investigations. The constant determines how much vari-
ation is put "into" the structure and how much is retained in thé outer, residual
field, and acts 1ike the "trade-off" parameter in (5.7). By combining the well-known
methods of collocation and geophysical generalized inversion like outlined here,

we have in fact obtained a discrete version of the so-called "mixed collocation”,
suggested by Sanso and Tscherning (1982).

The practical applicability of hybrid gravity field modelling/geophysical
inversion methods remains to be seen. For geodesy and external gravity field
‘modeT1ing the obvious application would lie in the determination of only a few
key parameters: topographic densities, density contrasts across major known discon-
tinuities (e.g. for moho at continental margins) and density anomalies of well-known
geologic bodies (e.g. salt domes), avoiding unlinear structural parameters requiring

iteration. The computational burden would not be significantly increased using
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such a limited set of parameters, and by choosing "good" geologically reasonable
parameters, one could hope in many cases to get significant improvements in the
characteristics of the "background" field: Tless power, more stationarity and

a higher degree of isotropy.

Probably the geophysical exploration would benefit more from the hybrid col-
location/inversion scheme. With the technological advances heterogeneous gravity
field data will be more common ~- through the development of high-precision inertial
survey systems measuring the complete gravity vector, through airborne gradiometry
and through geoid undulations from GPS and satellite altimetry in addition to
terrestrial or airborne gravity. To perform quantitative interpretations with
error analysis etc. for such data, some kind of "hybrid" inversion method will
be necessary, to stringently handle model oversimplifications, regional/residual
separations etc. |

With these remarks the general discussion of density anomalies and inversion
techniques will be concluded. In the next section formulas for actual computations
wif] be given,and then the main density anomaly - the topography - will be treated

in detail.

6. Density Modelling Using Rectangular Prisms

6.1 Space Domain

For the practical evaluation of gravitational effects of density anomaiies,

integrals of the type:
(T ) =6 aoL()av (6.1)
Vv r

must be computed numerically. This computation is most naturally done using the
simplest form of finite element representation of the density distribution: assuming

the density anomaly Ap to be constant in subblocks, each such finite element
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(subblock) being a rectangular prism. For terrain reductions using digital models,
these subblocks e.g. naturally correspond to the subdivision defined by the eleva-
tion data grid. The evaluation of integrals (6.1) over each finite element is
synonymous with the formulas for the gravitational effects of the rectanqular

prism of constant density.

A/

Y,

To integrate spherical symmetric function like %~ over an interval with
Cartesian symmetry is doomed to give some very complicated integrals, this being
indeed the case for the rectangular prism formuias. Let the coordinate system
used have axes parallel to the prism sides and origin in the computation point
P, as indicated in Figure 6. 1In the sequel r = {x, y, z) is the coordinate of

the integration point Q in this system. We have in P for various gravimetric

quantities: |
X, ¥y z
1 2vz 2 1 :
T=6Gap[ =dV=6Gae] [ | = dxdydz, r = /XeFyZ¥72 (6.2)
v.r iz T
8g = -Gap) —2(2)dV = Gap] —— (L)dV = -Gap[ Z dV (6.3)
I v 3zp'r pvaer SV :
- - - . D (Ey - . r?-3z2
T,, = 37 (5g) GApfv 574 (r3) Gapfv s dv (6.4)
= ""..._...a......... = .....3..?.(.....2_..
Tvz = T3k (6g) va 55 dV | (6.5)

Since differentiations occur under the integrals for the higher order derivatives,

these will give the simplest formulas. Let the formulas (6.2) - (6.5) be evaluated
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as undefinite integrals to keep the notation simple. We have then for the second

order derivatives

T, ..GAp{q{ 5 dxdy GApzfy 77z pdy = B zarctan (——er)_ (6'6,).
T Goo [ [ L dxdy = Gho | S dy = GAo log (y+r) (6.7)
AZ r y r

For the first order derivative a non-trivial integration of (6.7) with respect
to x is obtained (Jung, 1961):

8q: -6dp £ -% xdy = Gap j log (y+r)dx =

GAp (x log {y+r) + y log (x+r} - z arctan (g%)) (6.8)

Finally the formula for geoid undulations (height anomalies) are obtained by inte-

grating (6.8) with respect to z (MacMillan, 1958):

T: GaplLxy Tog (z+r) + xz log (y+r) + yz Tog (x+r)
(6.9)

2 2
- 55_,“ arctan %:—i— - y? arctan % - 22 arctan %]
The final formulas for the rectangular prisms are obtained by summing the

expreSSTOns (6.6) - (6.9) over the corners of the prisms with alternating signs,

2 2
e.g. T = E D N 1)1+3+kT k,where T ik is (6.9) evaluated at (x s Yy Zk)

i=1 j=1 k=1 1J

The formulas for the remaining derivatives (deflections of the vertical, other
second order gradients) are simply obtained by coordinate permutations, see Forsberg
and Tscherning (1981).

Although some simplifications of the final formulas are possib]e using addition

theorems for logarithms and arctan {arctana + arctanb = arctan 1 ab ), the formulas
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are still very complex and time consuming. In the terrain effect computation
program (see appendix) an approximative formula, where the mass of the prism is
condensed as a mass layer on the xy-plane through the center of the prism, is

used for geoid undulations instead of (6.9). In this case we get an integral

similar to (6.8):

- 1
T = Gro(z, - 2p) = dxdy
RSN
m
(6.10)
X
= GAp(zo-2,) ||x log (y+r) + y Tog (x+r) - z arctan =L |72 ¥z ’
" Int o Ixg Ty

+
- 21722 . r 3‘\’x2+‘y2+zi’;

Zm 2

For terrain effect computations, this formula has negligible error (typically
corresponding to millimeters in ).

In Targer distances from the prism, the formulas (6.6) - (6.9) may be sub-
stituted by much simpler series expressions of the gravity field, obtained using
a spherical harmonic expansion of the prism field. Since the spherical harmonics
expressed in cartesian coordinates are simple homogeneous polynomials in x, y, and

z, the resulting series expansions are simple. 1In a prism-centered coordinate

system we have for the potential

T = GAp AXAYAZ %-+ Eﬁ%g~[(2Axauay2-Azz)x2 + (-ax?+2ny2-nz2)y?
1 {6.11)
+ (-AxZ-py2+2022)22%] + ?§§F§'[a1xq + azy“ + ...]F ool g
AX = X =X 5 AY=Y,-Y s AZ=Z,-Z,

(MacMillan, 1958), from which gravity, second order derivatives etc. are easily
found by differentation. The first term in (6.11) is simply the point mass
approximation. The second term takes into account the different dimensions of

the prism - it is zero for a cube.
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In the terrain effect computation programme given in the appendix, a sub-
routine “PRISM" forms the nucleus of the calculations. This subroutine uses the
exact prism formulas when the computation point P is near the prism, in an inter-
mediate zone the MacMillan formula (6.11) is used, and finally in very large dis-
tances the point mass approximation is used. The shift between the formulas is
automatic, determined by accuracy levels wanted by the user. (cf. Figure 7).

It is through the additional use of the approximate formulas that the prism method
becomes feasible for "routine" gravity field modelling in mountainous areas, other-
wise evaluation of the complex exact pfism formulas would often become prohibitive

in terms of computer time. Furthermore, in large distances the formulas (6.6)-(6.10)
become numerically unstable, requiring extended precision due to the differenﬁing

of the evaluated "corner" - functions entering the formulas.

6.2 Frequency Domain

While the prism formulas are complicated in the space domain, they are
surprisingly simple in the frequency domain. Since the basics of Fourier analysis
of potential fields is not genéra%ly well known in geodesy, a short
outline will be given first.

The Fourier spectral analysis is applied in the flat-earth approximation.

Let 7 be the reference plane (e.g. sea level) with coordinates (x, y), and =
the associated spectral plane with spatial frequencies (u, v). Then the Fourier

transformation is given by (""" denotes transformed quantities):

T(u, v) = [ T(x, y)e Tyl (6.12)
T
06, ¥) = g0 | T(u, v)et (W) quay (6.13)
7

Upward continuation of the field to elevation z is obtained by a filtering

T(u, v, z) = T(u, v)e™¥% , o=/uZ+y? (6.14)



~Pg-

POINT MASS

\/”‘

5%

h

MAC MILLAN | GRAVITY
. — r
5%
64 6
1%
4- 2% 41
5%
2 \\% 2 -
o T T ¥ i h 0
5 1 2
VERT DEFLECTIONS
~ r
5%
2,
& 1% 67
4 4
2 \ /\22 27
0 T T ' : h 9
s 1 2
GEOID
R =R r
J 5% 6
< 1% 4
i // * :
M o
e s 1 ! 2

-~

¥
2

Figure 7 Approximate maximal approximation error between the prism formulas ((6.8),
(6.10)) and the simpler MacMillan and point mass formulas {6.11).
in percent as a function of normalized distance to prism (r) and height (h) for a
square sector, i.e. graphs show errors in computed terrain effects from a rec-
tangular mountain, with unit side lengths and height h in distance r from the

center.

Errors given

For a cube (h=1) the MacMillan and point mass formulas are identical.

Note

that for the geoid the comparison is against the "mass plane" formula (6.10). The
graphs are intended as a guide for deciding the accuracy of the terrain effect
computation program (appendix), which essentially uses the value of r to discrim-
if topography is given on a 1000 m
grid with elevatons up to 2000 m (h=2), a maximal 1% error requires r~b, i.e.
the MacMillan formula can be used for topography more than 5 km away from the

inate between the various formulas.

computation point).

(Example:
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and similarly for the gravity field functionals (2.5)-(2.7) simple linear filters

transform the quantities in the spectral domain:

Bu, v) = L T(u, v) (6.15)
a(u, v) = 1;{“— T(us v) (6.16)
aglu, v) = (-w --%) T(u, v) = ~oT(u, v) (6.17)

where R 1in (6.17) is the radius of the earth.
For radial symmetric functions, f(x, y) = flr'), r'=/x%+yZ, the Fourier

transform (6.12) becomes a Hankel transform (Papoulis, 1968):

Flu, v) = 2nflw) w = /57177;' (6.18)
where the Hankel transform pair (transform denoted by a bar) is given by:

flw) = f: rtf(rt) g for') dr' (6.19)

f(r') = ﬂj o Flw) 3, (wr') du (6.20)

Here JG(') js the Bessel function of order zero. Of special importance is- the

Hankel transform of the inverse distance:

1 Hankel 1 -wz
fr'i"z""‘?_,_z e —~e.

1
i (6.21)

(Papoulis, 1968, p. 145).

Now, for a rectangular prism (Figure 6), situated below the x-y plane, we have:

T(x, ¥, 0) = Gop [ +dx'dy'dz’, (6.22)
v

r=v{x-x")*+ (y-y' ) +z°¢
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giving the transform

i

T(u, v) = Gap | j%e-i(uxwy) dx'dy'dz'dxdy
Ty

ZTTGAQ jv_(%_ e"‘wzl e-'i(UX +Vy )dxldyldzt

[H]

2nGAp fgwjv (e”9Z2.¢"021) He-i(uxwy) l;‘f wf (6.23)

Results for gravity and deflections may be obtained from (6.23) using (6.15)-(6.17)
and using (6.18) and (6.21) by interchanging the order of integration. Formulas
like (6.23) have been used for a number of years in geophysical exploration, especia11$
for the magnetic field (Bhattacharyya, 1964).

The advantage of the formula (6.23) is that it allows the use of the fast
fourier transform (FFT) when computing the gravity effects from a regular grid of
prisms, e.g.'defined through a digital terrain model. If we have a set of nxm
prisms, the corners of the prisms, projected on the x-y plane, will form a
(n+1)x(m+1) grid mesh. By rearranging the sum (6.23) as sums over this grid, the
general expression for the total effect of all prisms will have the form

T v =TT s g, ye () (6.24)

j=1 k=1 ,

where f contains sums and differences of e™% for the prisms adjoining the grid
point (xj, yk). Sums like (6.24) is exactly what is obtained by the FFT algorithm -
had it not been for the dependence of f with w. This‘dependence is due to the
basic fact that the prism integral {6.22) is fundamentally unlinear, not being a
convolution. We are thus forced to evaluate (6.24) on a frequency-by-frequency
basis by FFT, for each value of w a separate spectrum T is obtained and the
final spectrum must then be “constructed" by carefuly selection and interpolation
in this set of spectra. The thus obtained final spectrum may then be transformed

back into the space domain by an inverse FFT.
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It is important to stress, that (6.24) is exact. Therefore the spectral
values obtained using (6.24) are not influenced by window effects etc., the ob-
tained spectrum represents the spectrum of a transient signal, this signal decreasing
quickly to zero outside the area covered by the prisms. The only "errors" occurring
in this FFT technique is in the w-interpolation scheme to obtain the final spectrum,
and in the final synthesis of the frequencies, since FFT only gives the sums (6.24)
for a finite, discrete number of frequencies, the highest frequencies being the
Nyquist frequencies for the prism grid. This secures, however, a nice smoothness
of the computed field, since e.g. a representation of the topography with flat- |
topped prisms is anyway a rather poor representation, causing unwanted high frequency
spectral “ripple” effects from the edges.

To estimate the gain in computing speed, consider as an example a nxm grid
of prisms (with varying top and base levels), and assume we want to compute the
gravitational effects in the same grid at a fixed altitude. Then the operations
will be {orders of magnitude):

SPACE DOMAIN: n2xn? calls of “PRISM" subroutine (no computation-
saving grid symmetries exists for exact" formulas)

FREQUENCY DOMAIN: n/2 spectra (6.24) of n? coefficients f,
FFT speed - n2logN, spectral selection, inverse FFT.
Combined order of magnitude: n3logN

The gain is thus moderate, a consequence of the unlinearity of (6.22).

A real significant gain in computation speed is obtained if the basic volume
integral (6.1) is approximated with surface convolution integrals. This. is
e.gvpossible for "thin® prism layers at near constant depth, and to some degree
also for terrain effects (so-called "linear topographic approximation"), involving
integrals of the topographic elevations and their squares (more details in next

section). In the case of a "thin layer" at average depth D, we obtain
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il

T(x, ¥, 0) G IV %‘{l‘ dx'dy'dz’

e (x's ¥") g
* L )ty e (029

it

where « =4p (22“21) is the surface density. The transform is obtained simply

by utilizing (6.21) again, giving

T(u, v) = 2r6d e™ & (u, v) (6.26)

In this case the order-of-magnitude computation speed of the previous example

will Se only n?logn if FFT is utilized, but opposed to the "exact” spectral formu-

lation "window effects" due to finite data lengths must now be given full attention.
The frequency domain methods have as common restrictions that data and compu-

tation points must be in a grid, the computation points being in a plane (im-

portant exception: gravimetric terrain corrections, cf. next section). Obvious

applications could be e.g. for geoid computations at sea level (especially for

satellite altimetry) and upward continuation studies (airborne gravimetry and

gradiometry). The importance of spectral methods in geophysical inversion may

be inferred from (6.26): if a particular spectrum (e.g. white noise) is expected

for the source «, then the depth D to the soufce may be found directly from

the observed gravity field spectrum. This is the base of the widespread "statis-

tical inversion techniques”, dominating in the analysis of aeromagnetic data.

7. Terrain Reductions

For the remainder of this report, emphasis will now concentrate on topo-
graphic and isostatic reductions - a synonym for computational elimination of
the effects of the two most dominant and best known density anomalies of the earth:
the visible topography and its associated compensation at depth. For such gravity

field effects the general term "terrain effects" will be used in the present context.
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The commonly applied term "terrain corrections" will be reserved for the narrow

meaning, i.e. a correction to the Bouguer reduction, to give the true (untinear)
effect of the topography on gravity anomalies (and deflections of the vertical
as well).

7.1 Terrain Effects and Associated Density Anomalies

The various terrain reductions in use is illustrated in Figure 8. To use
terrain reduced data in a "remove-restore" technique for gravity field modelling
(Section 4), it should be remembered that the density models indicated by Figure
8 should either cover a given, fixed geographical area, or - or at least in prin-

ciple - be global.

The topographic reduction or complete Bouguer reduction consists of removing

the visible topography. Conventionally a density of 2.67 g/cm® is used. This
density, which represents a typical density of granite and many Paleozoic and
Pre-Cambrian sediments, is fairly good in mountainous areas. However, one should
not hesitate to use other density values, since the density may range from below
2.0 g/cm® in moraine hills to 3.0 g/cm® in volcanics. Average density values
could be chosen from geological considerations or using the inversion techniques
of the last section. At the oceans the topographic density anomalies are formally
negativé, the standard density 2.67 corresponding to 1.03-2.67=-1.64 g/cm®, 1.03
being the density of sea water.

The topographic reduction may formally be split into a Bouguer term, the
effect of an infinite plate, plus the terrain correction, which takes into account

the topographic irregularities. For gravity disturbances we have

Sgopo = 216N - tC (7.1)

where Zﬂﬁphp is the gravity due to a (plane) Bouguer plate of thickness hP
(if the computation point P 1is situated above the topography, hP is the topo-

graphic elevation at the surface point below P), and tc is the terrain correction.
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Figure 8. Density anomalies associated with various terrain reductions (con-
tinental area). A: topographic effect, i.e. the "complete" Bouguer reduction
(consisting of the effects of a Bouguer plate minus the terrain correction "B"),
C: conventional Airy-isostatic model, D: Residual terrain model! (RTM), the
mean elevation surface e.g. given by a 180 x 180 spherical harmonic expansion.
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The terrain correction is always positive (in the plane approximation) due to
the conventional minus sign in (7.1).

For deflections of the vertical the terrain correction and the topographic
effect are identical (except the signs), since the Bouguer plate effect is zero.
For height anomalies, however, the infinite Bouguer plane can not be used, the
effect being infinite. Instead one could think of using a spherical Bouguer plate:
the effects typically computed, will however, still be very large and often much’
larger than the observed geoid undulations themselves {on a global basis). Topo-
graphic reductions are therefore not very applicable to general gravity field
mode11ing:. the large model geoid effects and biased Bouguer anomalies at oceans
and mountainous areas necessitates some kind of negative density anomalies being
infroduced, e.g through an isostatic compensation hypothesis. Needless to say,
the topographic reduction is naturally very well suited for problems such as gravity

interpolation and geophysical inversion.

Isostatic reduction formalizes the prevailing tendency of the earths topo-

graphy o be compensated at depth. The standard Airy scheme assumes 1ocallq0mpen-

sation through a root system (Figure 8D), the thickness of the root being
= P >
t = Apl}— 6.7 h (7.2}

where o is the density of the topography (-2.67 g/cm®} and ap the density
contrast between the crust and the mantle (~0.4 g/cm®). The normal density model
has a crust of thickness D (~ 32 km).

Natur&]ly the earth does not fully follow this simple principle. Although
(7.2) approximates the overall isostatic compensation fairly good, many exceptions
occur: first of all the strength of the earth's crust supports short-wavelength
topographic features, isostasy being primarily a regional phenomena. Second ,

many regions are either uncompensated or compensated at deeper levels (through
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anomalous dehsity values in the upper mantle),most noticeably the deep-sea trenches
and mid-oceanic ridges. However, since the computed isostatic‘effects are very
insensitive to the actual isostatic formulation and parameters used, even the
simplest formulations (e.g. (7-2)) gives excellent results, the results being "good"
when the remaining field after isostatic reduction is smooth and with tow variance.
Global isostatic reductions attain maximal Qa]ues for the geoid in the range 10-20 m.
It is therefore necessary to compute isostatic effects also on spherical harmonic
coefficients for the geopotential, e.g. using the simple formula (3.12).

A drawback of the isostatic reduction is that it primarily should be global.
If only a fixed, Tocalized area is taken into account, the computed isostatic
gravity field effects will be influenced by "edge effects": the computed isostatic
gravity and deflections of vertical would change rapidly near the boundary for
non-zero elevations. For the geoid an overall bias, dependent on the chosen size
of the reduction area, will result if the area mean elevation is different from
zero (see e.g. Forsberg & Tscherning, 1981, Figure 1).

Since the main problem in external gravity field modelling in mountainous
areas is short-wavelength topographic "gravity field noise", a terrain reduction
method avoiding the "global" computations of isostatic reductions, but capable

of approximating isostatic conditions, would be ideal:

For a residual terrain model (RTM) reduction only the short wavelength

of the topography is taken into account. This is done by choosing a smooth mean
elevation surface, and computationally remove masses above this surface and fill
up valleys below (Figure 8D). The mean elevation surface could be any smooth
surface, representing mean elevations of the area, e.g. an interpolation in 30'x30'
mean heights or - especially - defined through a high-order spherical harmonic
expansion of the topography of the earth. In this case the RTM density anomalies
correspond to a normal density distribution {(normal earth) with smooth topography

and bathymetry defined through the spherical harmonic expansion, and thus
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corresponds to the residual gravity field after removal of a similar spherical

harmonic expansion of the geopotential.

The'advantages of the RTM-reduction are many: since the density anomalies
have oscillating positive and negative values, the integrations for gravity field
effects need only be done out to some suitable distance from the computation point,
the influence of distant topography cancelling out. Also, terrain effects on
height anomalies will be small (often negligible if a short-wavelength reference
elevation surface is chosen), and especially for e.g. 180 x 180 height expansions
the reduction gives results close to isostatic reductions.

The similarity between RTM and isostatic reductions are analogous to the
similarity between mean free-air gravity anomalies and isostatic anoma1ies.‘
Indeed, by a special choice of mean elevation surface nearly complete correspon-
dence may be obtained: If we define the mean elevations through the low-pass

filter (plane approximation)

h (P = o fﬁThn&]Lf’ drg » v = dist (P, Q) (7.3)

then Moritz has shown that the associated RTM-reduction corresponds to an
isostatic reduction with a (surface layer) compensation depth D (Moritz, 1968a).
Note that (7.3) is nothing but the well-known Poisson integral for upward con-
tinuation of harmonic functions. | |

The RTM-reduction may be viewed as a difference between two Bouguer reduétions:
first the visible topography is removed, and then the smoothed topography is added

back (Figure 9):

LM gy = LM 1gpg = LM ger-Toro (7.4)

Each term in (7.4) may formally be split in a Bouguer plate effect and a terrain
correction. Table 1 shows sample terrain corrections for a 180 x 180 spherical

harmonic reference surface in two 4°x 4° fixed areas in the Rocky Mountains.
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Figure 9. Residual reduction expressed as a difference between the effects of
the topography and the reference topography.

Area Soper.1c(m2)) | Egep.1cl”) nrer.7c(") trer.1c(™
Colorado 0.6 1.0 3.5 5.7 7.1 9.9 5.7 10.3
New Mexico 0.3 0.6 4.9 7.2 4.2 8.2 3.5 5.2

Table 1. R.M.S. and absolute maximal terrain corrections for a 180 x 180 spherical
harmonic reference topography (4°x4° fixed area, 9 sample points).

From the table it is seen that the gravity reference terrain corrections are

very small - below 1 mgal*. We may therefore for gravity anomalies simply state

A9pTM1g0 * - tc (7.5)

i.e., when using a RTM reduction with 180 x 180 reference heights (RTM180) the
terrain effect is simply a terrain corrected (tc) Bouguer reduction to the Tevel

h This has the important practical advantage that available, terrain-corrected

ref”
Bouguer anomalies (being still the bulk of the available local gravity field data)

*Additional verification on actual data: see Section 7.4.
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may be applied directly for RTM-reduction using (7.5). For deflections of

the vertical, however, the time-consuming “prism"-integrations can not be avoided,
the deflection terrain effects due to the changing reference level being much

too large.

When performing the RTM-reduction ndirectly” (e.g. using rectangular prism
integration), stations above the reference level are Ieff "hanging in the air",
while observations below this level are reduced to their values inside the mass
(Figure 9). However, for external gravity field modelling, we need not the value
inside the mass, but the harmonically downward continued value, corresponding
to the outer, "reduced" field. In other words, what would the reduced observation
be at the point P, in Figure 9, if we treated the mean topography as non-existent?

An approximate answer to this question is simple: if the density above
a plane through P, 1is condensed in a mass plane layer immediately below P,
deflections of the vertical and geoid undulations would remain nearly unchanged
due to the smooth, low-slope reference surface. For gravity anomalies, however,

we would see a change

C C

A9harmonic ~ A9in mass ArGpah (7.6)

corresponding to a "double" Bouguer reduction with plate thickness'ah = href - hP.
This "harmonic correction" must be applied for all gravity stations below the
reference level when “direct" prism integration of RTM density anomalies (Figure
8D) is performed. If instead (7.5) is used, the correction is taken into account

“implicitly".

7.2 Practical Terrain Reductions in Gravity Field Modelling

A FORTRAN 77 program for computation of any of the four types of terrain

effects (and corrections) mentioned (Figure 8) are listed in the appendix.
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The program uses rectangular prisms for a direct integration of geoid undulations,
deflections of the vertical or gravity anomalies from digital terrain models given
on a geographic grid.

Special precautions have been taken to evaluate the inner zone effect, i.e.
the influence of the topography adjacent (say, within 1 km) to the computation
point. These inner zone effects may be very large, especially for gravity terrain
corrections. To represent the inner zone, a bicubic spline interpolation of the
topography is utilized. However, since gravity topographic effects to first order
depends Tinearly on the gravity station elevation, it is clear that the station
eTevaiion itself should be utilized in the inner zone interpolation. An option
in the program allows the height interpolation procedure to give the'corfect eleva-
tion at a station,through a smooth "adjustment" of the digitial terrain model
elevations in the inner zone. For deflections and height anomalies, where the
station height dependence is weak, use of this option is not necessary.

Actual examples of use of the various terrain reductions in connection with
gravity field modelling by collocation can be found in e.g. Forsberg and Tscherning
(1981). Here gravity and deflections were modelled with an accuracy around 4mgal
‘and 1" respectively, in a mountainous area (New Mexico)}, using gravity data spaced
¢. 6' apart and a 0.5'x0.5"' digital terrain model. When applied properly, nearly
the same results were obtained for all types of terrain reductions.

As an outline example, let us consider upward continuation of gravity data

in a mountainous area. Using a "spatial” modelling technique like collocation
or point mass modelling theapplication of the remove-restore technique for
a RTM180-reduction (and a 180 x 180 reference ffeid) is simple:

Compute terrain corrections for local gravity stations if net already given.

2. Obtain terrain-reduced residual gravity values by subtracting the
reference Bouguer anomalies AgRrpf - 2nGohpgf from the local, terrain-
corrected Bouguer ancomalies.

3. Apply upward continuation method,
. Add back RTM-effects computed at altitude (prism integration),
5. Add back 180 x 180 gravity computed at altitude.
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For already gridded gravity data (e.g. 5'x5' mean free-air anomalies) this
remove-restore technique may be used with some caution. For a mean block we would

need the mean terrain correction, as we have from (7.5)

Such mean terrain corrections tc are difficult to estimate. They are,
however, very important since they play an essential role in the harmonic down-
wdrd continuation of gravity data from the surface of the topography to the geoid,
a necessary prerequisite for the application of e.g. the classical integral methods.
Apart from direct computation of tc by averaging, its magnitude may be estimated

from the coyariance function of the topography

—— 0’2
tc = 3nGp —‘}1

where oﬁ is the terrain variance and d the correlation length, as pointed

out by Sunkel {1981a).

7.3 The Linear Approximation for Topographic Effects

Approximate formulas for RTM-effects, especially applicable fbr error studies
and frequency domain methods, may be obtained using functional expansions of the
topographic volume integral kernels 0% ,-ﬁ% etc.). In the sequel-a "long wave-
length" reference elevation surface e.g. 180 x 180 spherical harmonic expansion
is assumed to be used.

In the plane approximation we have for the RTM potential effect when a con-

‘stant topographic density is used:

h
T =6 A2 qy = Gp [ = dzdn (7.8)
z

where
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V is the volume of non-zero {positive or negative) density anomalies Ap, shown

hatched in Figure 10. A series expansion for Tm is obtained by expanding {7.9)

L ; : seo lavel

Figure 10

with respect to the inclination g, which is always small except for the inner

zone in rugged topography (and geoid innerzone effects are very small). Thus,

1 . 1 1 (z - 2
T ';,“.""2"———59)-"’” (7.10}

0 "o

and by inserting (7.10) in (7.8) and integrating with respect to z

h - h (h = hy)3 - (hyef - hy)3
=g gLl Pl rel Z 0 dr o+ ... (7.11)
T Y'O T Y‘D

The first term in (7.11) has been called the linear approximation by Moritz (1968a).

It is seen that this term represents nothing but the potential of a mass coating
k = p(h - hpag) = pah. Within the accuracy of the linear approximation we may

view this mass coating as a surface density layer at the height reference surface.

The higher order terms in (7.11) may similarly be viewed as successive coatings

of dipoles, quadf0p01es, etc.
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For deflections of the vertical we have

NY—— oo
W

%%' g% [ . {cos a} N 12)

=href 5in o

which by expansion r=% = rg3 - 3 rg> (z - hp)? + ... and integration analogous

to the potential case gives

£ h-h CosS o - _ cos
"..& : ref) grt L 8o p (hohp)® - (href-hp)® | g
Nm Y T 0 sina o rh sina
0
(7.13)

Again, the first term (the linear approximation) may be interpreted as the effect
of a mdss coating.

The RTM gravity anomalies are given by

h
by, = 6o [ Zhp dzdv -2 T (7.14)
z=hpef

The last term in (7.14) - the indirect effect - will usually be below 1 mgal
for a 180 x 180 reference surface and may be neglected. For gravity anomalies

it is advantageous to use (7.5)
ag, = 216y (h = hpef) - tc (7.15)

and then only expand the terrain correction

| . _
tc =6 [ | Em?g-*‘«n dzdn (7.16)
B

(7.17)
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In (7.15) the Bouguer term is on the average one order of magnitude larger than
the terrain corrections themselves. In some cases -e.g. error studies - it would
therefore be sufficient only to use this simple term. For gravity field modelling
with heterogenéous data it is, however, very dangerous not to include the best
possible terrain corrections: since tc 1is always positive, a systematic bias
will be introduced in Agp, a bias which often would seriously affect computed
geoid undulations.

For frequency domain formulas we note, that the linear approximations in

(7.11) and (7.13) are convolutions, i.e. expressions of the form
L(Tm)P = kwph = i k(xp~xq, yp~yQ) Ah (xQ, yQ)dwQ (7.18)

and thus in principle for the Fourier transform using the well-known convolution

theorem
L(T.) = k ah (7.19)

The function k s traditionally called the impulse response, K the transfer
function. Ah = h-hpes will be termed the residual height hereafter.

For the potential we have from (6.26)

1

?m(u, v) = 2nGp = ah (u, v) , w =/u?y (7.20)
and since (also) in the Tinear approximation En = —-%-%%? we have
M (u, v) = - 2y o] £ 80w, 0) (7.21)
nm Y u w

and by (7.15)

Aém(u, v) = 26o ah (u,‘v) - tc (u, v) (7.22)
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Note, that (7.20) and (7.21) may be derived from the Bouguer term of (7.22),
exc]uding the terrain correction. However, we might expect the linear approximatfon
for potential and deflections to be "better" than the Bouguer aproximation for
gravity: intuitively the condensation of the "rod" of Figure 10 to a point_at
the mean elevation surface would have a large effect on gravity but nearly none
on potential and deflections. More formally, from the expansions of the impulse

responses in terms of the inclination g :

potential and deflections: k}e + k333 + ...

Sty 2 gl
gravity: ko + k28 + kqg + ..

it s séen that the “condensation“ interpretation (Bouguer term for gravity) cor-
responds to a first order expansion in g. By including the terrain correction

for gravity anomalies, a second order expansion in g is obtained. It is this
expansion which Moritz (1968a) has termed the “linear" approximation, in order

to have the same accuracy level as in the we?l—known linearized Molodensky approach

to the geodetic boundary value problem.

7.4 Accuracy of the Linear Approximation

If the finear approximation is sufficiently accurate, much faster techniques
for the eva]uafion of terrain effects in grids are available (FFT and space doméin
filtering methods).

As a simple analytical example, consider the terrain correction at the summit

of a cone shaped mountain.

— 5 —

Figure 11
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The exact terrain correction at P is:

N g 1
te = Gp f f Eh dzdm = Gp | (_Y‘— - ) dn (7.23)
7T H w o Y‘0+h
s | 2 (el ydr +0 [ 2er (b L) gr
P ¢ ', r /l+tan?e o F S 0 Y, Jrief? 0
0 0 . 0
= 2ngoH sing (7.24)
while the linear approximation gives
tc = f —ﬁ—ﬁl—
2
= fmmJﬂﬂw%rw +%%{ 3 2rr dr = 2n6pH tans (7.25)
"o "o

The relative error for some slope values 6 are:

9 . te Agpy (total topographic effect)
15° 3.5% 1.2%
30° 15% 15%
45° 41% 100%

For common slopes the linear approximation thus seems somewhat reasonable, since

- the cone mountain is a "worst-case" model.

For a practical evaluation of the linear approximation {and the error associated
with the "Bouguer-split" (7.5) fbr gravity anomalies), an alpine 1°x1° block in
Colorado has been chosenl(Figure 12}. Comparisons have been performed in 36
stations, located in a 12'x12' grid at the surface of the topography. As eleva-
tion data 0.5'x0.§’ heights were used, covering totally a 4°x4° area surrounding

the comparison area. To get the linear approximation results, the “prism" sub-
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Figure 12. Rocky Mountain test area used for evaluation of the "linear approx-
imation". The 111 x 86 km? area topography shown with a contour interval of 100 m
contoured from 1'x 1' mean heights. The highest point is Mt. Elbert, 4399 m.
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routine of the terrain effect computation program (cf. appendix) was changed to

give instead only mass Qléne results (for formulas see Forsberg & Tscherning,

1981). For the Tlinear approximétion to the terrain correction, we have for

a prism element at position x; to x,, y; to ¥, relative to the computation point:

&
g

' 2 Y2 (h-h )2 —
te é j { w»w?gww-dxdy s T =/ xF+y? (7.26)
S .y
171
which by simple integration gives
X2 . y2
te=16 (hn)?| [ L ¥ ax ]
p r :
X Yy
y (7.27)
X .
1 . r 2 2
= - 16 (h-h)? |
2 p Xy
X
The following results were obtained:
Table 3. Comparison “"exact” RTM- reduction versus linear approximation, ,
Colorado/Mt. Evans area:
Exact | Linear Approximation Difference
Std. Std. Std. Abs.
Quantity Mean Dev. - Mean Dev. Mean Max.
gm(meter) 0.82 0.65 0.82 0.65 0.00 0.01 0.04
gm(arcsec) 0.68 6.85 0.60 6.59 0.09 0.69 -1.47
nm(arcsec) -0.21 7.06 -0.34 6.78 0.13 0.72 2.79
Agm(mgai) . =7.45 43.61 -7.74 43.49 0.29 0.60 3.24
tc (mga1)  6.01 4.41 6.33 4.94 -0.29 0.60 ~3.24

g, in Table 3 are computed using (7.5). A comparison between a rigorous RTM

prism computation of AGy, and (7.5) gave as a result an r.m.s.

difference of

only 0.3 mgal (maximal value 0.7 mgal), thus suppofting the simple "Bouguer" -

formula (7.5).
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%rom Table 3 it is seen that the linear approximation errors are insignificaﬁt
for geoad undulations and also rather small on the average for gravity, but w1th
a poss1b111ty for rather ]arge.out]1ers. For deflections the error might not
always be acceptable, and higher order expansions might be necessary.' Considering
thé extreme ruggedness of the test area, other "milder" areas will be expected
to give better results, and certainly the linear approximation will always be

very useful since it allows the use of FFT methods for terrain effect computations.

7.5 The Terrain Correction as Convolution Integrals

From (7.17) we have in the linear approximation

. _ ..2
tc = 46 | iﬂ-;grl)— dr (7.28)

g h? hZ Z2hh
tc = 46p[ [ —¢ dv +I ~B dy - f L dr ] (7.29)
A - N I -

since hp is constant with respect to the integrétioh,7we obtain:'

te = 4G [(h?«f) + h2 [ f dr - Zho (hxf)] (.0
o . ‘
where f = ———=——— . Now, the function f does not have a fourier spectrum,
(x2ty?) 7 | — .
_t * . ' n : ; . . 3 = o .
but it may be regularized very simply: Instead of f consider f (x2+y2+a2)3@

where a is a small constant. Using f' instead of f as kernel in (7.28), this
corresponds to a computational upward continuation to a distance a, and when
a s chosen sufficiently small the error will be insignificant and only affect

an innerzqne”rdughly of radiué a. MWe thus have:
te = 6o [ [(heaf') + Bpe - o (hef')] (7.31)

where the center integral of (7.30) has been evaluated analytically (the integral

is nothing but the well-known Bouguer-p]ate integral).
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The two convolutions in (7.31) may with advantage be evaluated using fre-

quency domain methods, we have e.g.

-

transform of (h2xf') = hz f =-%? e ™ p2 (7.32)

see Papoulis (1968), p. 145. With the split of the terrain correction (7.31)
it %s clear, that for practical applications there will be a lower Timit for "a",
since the terrain correcfion is expressed as a (small) difference betweenlfwo
large numbers, and thus unétab]e numérica]?y

STHCE "a" can not be chosen arb1trar1fy sma]T, a sma11 error Atc is made,
by us1ng 1ntegra? kernel f’ 1nstead of f, represent1ng the ! suppressed“ effect
of the local 1nnerzone Just around the computation po1nt If the regu?arvzat1on
distance "a" 1schosen somewhat smaller than the finest resolution of the given
elevation data, a quantitative estimate 6f this "regd?ar%zatioﬁ‘érror“ ate may

be obtained as follows: The error is

hg)?  (hohp)? S -
S e AL 7:3)

ste = o | (A

: i
Since this érror is dominated by a very Tocal innerzone effect, a Taylor expansion
of the topography is adequate, keeping only the first terms to represent a sloping

plane. Then by'assuming the cdmputatidn point to be at origo we have

(h-hp)z = r2tan2s cosZq | _ (7.34)
where 6 is the slope of the plane and o the azimuth from the direction of
maximal slope. Insertion of (7.34) into (7.33)'gives

. . o - Z’rrr'o Y' taﬂ B r“0 tan
= L i -
‘ AFC . ..259..5 ] ( rg [ 2+a2]3/2) dY‘

2

i

mGe tanZe [ (1 -
c

r
—_
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2

This integral may be tackled by substitution of ry o givihg

2
+952
Atc = LmGp tan2e | r - rotza®

O Vr24a2 1

0

It

G tanZea | - - (7.36)

This is exactly the (linear approximation)} terrain corvection of a sioping innerzone

of radiu$ 2a (it is evident from {7.34) that this terrain cbrrection must be half

the corresponding cone terrain correction.(7.25)). A numerical éxathé:H if a = 100 m
and €= 30°, the regularization error will be 1.8 mgal. This illustrates fhe

cr1t1ca1 1mportance of the very 1oca1 station surroundings for gravity terra1nA_}
'correct1ons and the fact that * a" can not be chosen too 1arge - reasonab?e va1ues'

must be chosen based on emp1r1ca1 investigations.

7.6 The Use of FFT for Terrain Effect Computations

In the previous sections fréquency-domain formulas for terrain effects on
height anomalies, deflections of the vertical and gravfty anomalies have been
qiscussed. These exgressions are very usefu] since digita];térrain models are
naturally given in grids, suitable for direct use of the Fast Fourier:Trgnsform
(FFT). The spéed of FFT (~nlog,n if the nuqber of points -n _1s;a power.of 2,
otherwise somewhat slower depending on the prime factorization of n) certainly
makes the application of frequency dohain methods éttractive especially when large
volumes of dgtaaneed to be terrain reduced. However, before applying the
method, it is essential to rea?ize the Iimitations inherent when using FFT.~

FFT is basically a fast algorithm to determxne the dascrete transform of
gef1od1 data. The twowd1menswona1 d1screte Four1er transform pa1r may be expressed as

n- 1 m-1 qk )
m

" (Pd gk
h(pau, gav) = wﬁéx Z { h (jax, kay) 4“1(n ‘+ . (7.37)
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P n-1m-1 ‘ pd L gk
~h{jax, kay) = 1 Y hipau, QAv)ezﬁ(n * m)

(7.38)
AXAY 20 =0

where ax and Ay are gridspacing in the g1ven elevation grid of n XHIDOTntS,
&
and the norma11zat1on factors have been chosen to be in. accordance with the con-

tinuous transform (6.12-6.13). The frequency spacings are given by

en = 21
AU = m ,‘. AV = | (7.39)

The spectrum h as well as the original data h must be viewed as infinitely
periodically extended in space. Since the Nyqdjst fiequehcfes |
z"_"'].Aux._T.r._ .v =....IB.AV‘:....'].TM | | - (740)

2757 ax? N 27 S - M

represent the highest frequencies obtainable from the gridded data, frequencies
above (uy, vy} in (7.37) will correspond to negative frequencies. For more details
on; FFT see e.g. Kanasewich (1975).

When applying FFT for convelutions of the form (7.18) or (7.31), the periodic
extension means that for a data bojnt near an edge, the convolution will actué]iy
"use" data from around the opprjte edge as well. The convolution kernel will
in effect’be'tfhnbated (and periodically extended) when applying the analytical
terrain effect filtérs'at'the'decrete‘freduehcies‘of the FFT (Figure 13), and
this means in common words that the terrain effects computed using the FFT method

will be terrain effects from a "running area" of size (nax, may), centered at the

computation pointf' At the center point'of the grid the computed effect will
exactly be the effect of the given area - at a corner point the result will be
compietely erroneous, since 3 of the 4 quadrants around the corner will be integrated

"Qith‘thé ”noz_ra--ein’sA’cerﬁ:“"l periodfca11y extended heights.

&
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TN e

eievahons integral kernel rer-m:n effecfs .

Figure 13

For terrain reductions in conneétion with general gravity field modelling,
it has earlier been stressed that to preserve con51stency and harmon1c1ty either a
f1xed mass model must in pr1nc1p1e be taken into account, or - expec1a]ly for
re51dua1 terrain reductions - the terrain effect 1ntegrattons must be carried

out to a sufficient distance from the computat1on p01nts, s0 that the 1nf1uence

of the remote zones will be negligible for all quant1t1tes (gravity, def]ect1ons,
h91ght‘anomai1es etc.). The FFT methods W11] in principle only be applicable
for general terrain reductions when either sufficiently large areas of elevation
data Surrounding the target area is transformed, or the given elevation grid is
extended with a “"border" of zero-values on all sides (of "width" %nax and hmy
_respective]y) toobtaina "true" fixed afea reduction at the prTCe of .a quadrupling
of the e]evat1on data In both cases computer 11m1tat1ons in storage m1ght be
' proh1b1t1ve, Consader e.g. RTM-reductxon wath a 180x180 spher1ca1 harmonic
reference sufface._ If (as is very common) 1km x 1km elevation data is available,
an area of dimension 300-400 km must be taken 1nto account for comp?eté reduc-
tion of deflections and height anomalies in a 1°x1° block necessatat1ng a complex
-array of size "region" 1440 k-2560 k in double precision 18M FORTRAN. Furthermore,

_ when the interest is concentrated in a rather small area, like the 1°x 1° area,

it seems somewhat unnecessary to take into account every tiny topographic 1rregu1ar-

ity at 1arge dastances, which is in principle done in the simple FFT approach
These drawbacks may be overcome by using a "hierarchial® set of FFT terrain

reductions, utilizing more and more coarse mean elevation grids. In effecf, the

terrain computations are split into various "wavelength bands". This split may
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be done either in the space domain or the frequency domain. Consider the simple |
case of two elevation grids, a detailed DTM (e.g 1x1 gm) covering the target
area with a rather small margin,‘and a coérse DTM (e.g. 10 x 10 km mean heights)
covering a much larger area.. |

In the space domain the terrain effect convolution kernel f may be split in

two parts, @ near-zone and a far-zone effect, symbolically
terrain effect ~ fxah = (f) + f)) x ah = f x ah + f_ « ah (7.41)

fl being the integral from zero té a certain distance‘d, fz the {h%egra1‘from
d to infinity (Figure 14). (Fof gravity ferrain corrections two convolutions

of h and h?  are needed, as discussed in the last section). 'By'chooéing a suitable
d, ”f may be computed by sufficient accuracy from the coarse elevation grid and
1nterpolated to the points of the detailed elevation grid, where the innzer zone
contributions are evaluated from f;. The drawback of the space domain split is

'i_that the "truncated" transfer functions %z and %2 do  not have simple analytical

‘expressions, and a numerical transform must be made to obtain f; and f,.

¢
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tnner zone effect outer zZone effect

""" Figure 14

_ATternatfve1y a frequency domain split may be attempted as follows:

terrain effect ~ fxah = fx(ah; + ahy) = faah;, + fxahy ' (7.42}



-56-

where the elevation Ah is split into a smooth mean elevation surface phy, e.g.
obtained by interpolation in the coarse elevation grid, and a residual hefght
Ahi-— analogous to the RTM-reduction. In other words, the terrain effect is split
into a long-wavelength part from the mean elevations and a short-wavelength part
from the detailed elevations. Ideally, the ah,-surface should be a Tow-pass f11tered
version of Ah, so that ah; contains only frequencies above the Nyquist frequencies
for the coarse grid, and ah, only frequencies below. Otherwise errors due to
aliasing will occur. This may be illustrated as follows: |

et Ah, be defined through a running average:

1 XA X, y+/Ay

ahy (X, y) = Ah(x . Y ) dx'dy' , (7.43)

BX2bY2 xsnx,  y-Y,

where (Ax,, AYy,) are the grid spacings of the coarse grid. Then 4ah, may be

expressed as

, L i {1 Ix] < Baxy, |¥] < By, ( ')
Ahg = gxsh, g = _ ‘ 7.44
AXahY2 ‘ 0 otherwise :
which can have energy at all frequencies since
T T | -
' i usu i v/V ' ;
g(u, v) = _%_- S'”'l (2u / N) sin (zv / N) (7-45)

where (uN, VN) are the Nyquist frequenc1es (7 40) for the coarse grid. (See e;g.
Papoulis, 1968). Now, if FFT is directly applied on the coarse (averaged) heights,
the non~zero spectrum of Ah2 above (uN, VN) will by (7.44) and (7.45) result .
in ‘a non-zero spectrum of ah, above this intefva}, which "folds" erroneously

into the low frequencies (fé]fasing“) by FFT, to givé long-wavelength errors iﬁ

the coarse terrain effect. In addition, minor errors occur whén interpolating

from points in the coarse grid to the dense, detailed elevation points.. The aliasing

error may be estimated from the spectrum above (uN, vN)_for the detailed grid -
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but only at the subset of fﬁe “coarse“‘frequencies. For practical applications it
would therefore prébab]y be more valuable simply to_test various interpolation pro-
cedures {e.g. spline functions) for ah,-construction and thé sﬁbsequent'intérpolation
of tﬁe computed far-zone effects, and choose the method with least hfghwfrequéncy
Teakage. Such an "optimum" interpolation method is neﬁéssary anyway in order to B

interpolate results from the FFT computation grids to actual station Tocations.

Time has not allowed actual implementation of the FFT methods fér terrain
effect computations within the present pkoject. However, fecent resu1ts_obtaihed
by Sideris (1984) seem very promising: in a small test area of phe Rocky Mouniains
.(tc range 4-22 mgal), gravity terrafn corrections computed with FFT showed sub-mgéj
accuracies when compared to a.spaée-domain prism fntegratidn,‘ﬁsiné a lkm x lkm

elevation grid.

7.7 The Linear Approximation and Error Studies

In addition to allowing the use of FFT for the evaluation of general terrain
effects, thé Tinear approximation also cdmes in very handy in the study of-errof
propagation, e.q. used for answering questions of the type: gfven a certain
statistical behavior of the gravity field and the topqgraphy, to what extent will
ii be beneficial to take the toﬁography into account? and how detailed wi?T the

height information be needed? etc.

In this report emphasis is on residual terrain reductions - with reépect
to a 180 x 180 spherical harmonic expansion. It is therefore natural to work with
planar (flat earth approximation) error analysis, briefly outlined in the sequel
as ii is not too’Familiar to maﬁy geodesists. The basic desériptor of the.statis-
tical properties of the variations of thé gra#ity field (and the eTevétions) is

the covariance function, e.g. for gravity anomalies at a reference level.

) = E{Aé(x‘, y') sg(x' +x, ¥ + y)} . (7.46)
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where E 1is the ensemble expectation operator. Within the area of interest -

approximated by an infinite plane - the signal {ag) is assumed to be stationary.

Fourier transformation of C yields the power: spectrum (or, rather, power spectral
density)"

%ag, Ag(u v) = {lé(u, V)IZ] f &t (W) gyqy (7.47)

il

For an isotropic process, C(x, y) = C(r), r = /x%#y%, (7.47) will as earlier men-
tioned be a Hankel transform . | | L
¢Ag Ag( o - 2“ Cr) = 2“-f®‘fC(r)Jg(@r)dr o (1.e8)

of Spec1al 1mportance for error studies is Parseva]s formuia for Hankel transforms

(Papoulis, 1968):
j: r|f{r)|2dr = jz o Fle)]2de (7.49)
.Thus, given a pdwer spéctrqm‘"¢(w); the variance of ihe signal mayﬁe.pbtained as:
g2=C(0) = é%—jz(ng(m) dm) ' : - (7.50)
_sEat%al exieHSian:afedbtainedby upwafd éontinuéffbn (S.}é);'e.g.,for:tbg poﬁential
e )

-CTT(“’ 2,5 2,) = [Toeple)e® Bt o @rdr . (7.52)

See e.g. {Nash and Jordéﬁ, 1978). The last formula - which is Simp]y the iﬁverse
transform of (7 48) - 1s ana]ogous to the we]] known spher1ca1 covariance function

expanston in Legendre poTynom1a1s

RZ ]ﬁ+1 Pg(cosw) | (7.53)

o [

C s Ty Y | 7
TT(w 1 2) o 8 TT,

2

HI~1 §
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where a, is the degree variances ("spherical power spectrum")}, R the radius
of the earth reference sphere etc. The degree-variances and power spectrum are .
closely related, and a unique asymptotic correspondence exists (Dorman and Léwis,

1970)
. iy L
o, * morr (L) ) - (7.54)

More details will be given in a subsequent OSU report.
Power spectra and covariance functions for other quantities are easily derived

by using the expressions of the quantities in frequency domain,'e.g. from (6.15)-(6.17):

: B 24
Sagiag T OTOTT | (7.55)

¢ = ) T by ) orp | - (1.s6)

Ag,Ag
equation gives the-important corollary that

For an isotropic field (that is ¢ isotropic) these equations and Parsevals *

2 = 2(s2 ¢ o2} = 2v2g2 | - .
(}’Ag Y (OE gn) 2y o ‘. (7 57)

In other words, the gravity variance is double the variance of each of the de-

flection éomponents.' Thus :cE=‘cn‘= 1" corresponds to g 6.7 mgal,

To describe the covariance functioﬁ in a given areé, siﬁp1e.aﬁaiytica1 expres-
sions are traditionally used. The F;Poissan." and “inversé distance" covariance
functions of Moritz(1980)are‘especia]]y imporfant for gravity, since they have simple
" analytical spatial extensions. For'tobogrﬁﬁhy; however, empirical investigatibn§
of'U.S. data (cf. next section)'ihdicates thét better overall ffts'are obtained
using exponential covariance functions (so-called fifét-order Markov models).

The basics of these three simple models may be outlined as (See Moritz (1980).
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S .y : L Correlation
Name : C(r) ¢{w) Length
' WDA S o ", : — o? - ", 2[)2 -wh =0.77. D
1) "Poisson [1+(r/D2)1% . Zng e %,=0.77
. _e* oD
2) “Rec. distance” [1+(r/D)2 1% 2ra?D x%=1.73 D
| | - 1
3) "Markov" o7 &P 21g2D? E;;“““;j@% - %,=0.69 D

These5fuhc;ions are shown in Figure 15.tpgéthék with an attua1-t6p¢graphic data

‘eXampie;'

7.8 Error Studies of DTM Resolution ReQUi?ements

- To give an examp]e of error anaiys1s in terra1n reduct1ons, the representation

_error for terrain effects on gravity and deflect1ons at altitude will first be

studied. In other words, the resolution requirements for a digital terrain model
tb give terrain effects of a certain accuracy will be studied.

Assume topograph1c mean e1evat1ons to be gaven on a gr1d of spacing . (aAx,AY).
If the grid elements are reasonab]y square s then the mean may be approx1mated
with.a mean over-a circle. This is advantageous, as 1sotropy then will be “conserved".
Then to f1rst order the terraln effect computed from the mean e1evat1ons (neglect1ng
'knownlstat1on elevations) may be expressed_as.-: |

= 2060 —7 [ h(x', y') dx'dy’, a F0.56/BxAy  (7.51)
c

Ag' = ZﬂGpAhmean

where Ah = h"href is the res1dual e1evat1on and C & c1rc1e of rad1us a, centered
at.the:cqmputation-poant (7 51) is- aga1n a convoiutaon |
1 r<a

Ag' = é%%L (f*Ah), fr) = { A (7.52)
| 0 otherwise , ‘

with transfer function (Papoulis, 1968)
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Figure 15 Empirical power spectrum and covariance function for elevations ah

in:a 110x110 km area in the Smoky Mountains,
two parameter covariance models,
nential (Markov model).

eastern USA, and fit with 3 simple

An excellent fit is obtained with the expo-
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Ha) = 2nfla) = e . (7.53)

J, is the Bessell functiqﬂ of order 1. The shape of the function f is shown

in Figure 16.

0.5+ X

o~

0.0 4———1 i B
20 40—e0 8.0 10.07

Figure 16

By Upward continuation to elevation H the spectrum then becomes
igt(us v) = G 20l o, ) (7.54)
" By bompa}i;on to the “exact" terrain effect

Ag{u, v) = 2n6p e"uHAQ(u;'Q) L (7.55)

‘the représentation error €= Ag' - Ag is seen to be

Su, v) = 20 (1 -2 88y b v (7.56)
and thus
o o ' 2 :

o (o) = (2n6)? (1 - 2 Bl & ) (7.57)

For deflections of the vertical essentially the same formula holds. From formula
(7.21)=ft'ié-Seen'thaﬁfihe'ﬁef1ection]error“é;préésfons_coffespondihg to (7.56)

will be simply

~ ( , . » -' f
ig S G {V}-i ey, v) . (7.58)
e, (us v) K -
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_ For an isotropic field, ¢gg2 ¢nn’ we get directly using the'statistica] indepen-

dence of £ and n;

. o _ . - 1 . ‘
LR (M) ) ¢€n€n(w) ) %E{le’ilz i [sh]‘?} % ¢€s(u’ v) (7.59)

3 v
Tﬁus, results obtained for gravity anomalies in the error analysis may be directly
applied to deflections of the vertical as well, when the previously mentioned
"conversion factor" of 6.7 mgal/arc sec is used.
To get error estimates an exponential ("Markov") model CAhAh(r) = oﬁhe'r/D
will bé assumed for the topography covariance function. vBy (7.50) and (7‘57)
the error vafiance Will be

2 oo g
Uﬁ: B IG w d}Ea(m) dw

Cfoeva 2 (™ (1 o dilaw) y2 -2wH D2
(2602 oy [ru (1 - 2 BELT e ey (7.60)

It is convenient to normalize the parameters with respect to D, introducing a
dimensionless aﬁéraging pafameﬁer-a‘ ;_%. and elevation H' =-%. Then by shift

of variable t = uD:

GS* (2nGp )2 cgh F2{a', H'} T (7.61)
F2(a', H') = 7 (1 - p9L(@lt)y2 -2t t 7.62
( ) IO ( Iy ) RTGEa | (. )

fhis integral has no simple anaiytipa1 exﬁressiqh} It has been integrated numerically,
usinglgistandgrq adaptive numerical inyegration‘sgbroutine and using polynomial ex-
pansions for J;(t) giyeh by Abramowitz and Stegun (1965). The result (i.e. the
function F, square root of 7.62) is shown in Figure 17. )

The r.m.s. combufation efror‘ o at elevation H should ordinarily be

compared to the "actual” r.m.s. terrain effect JG&Q(H) at elevation H. The
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relative r.m.s. effect at altitude will be given simply by the integral (7.62)
without the Bessel function term, i.e. as the limit of F for large a' ,

additionally shown on Figure 17.

- Fla,HY)

0.5+

0.0 +—=== —
0.0 1.0 2.0 3.0 4.0

Gl

Figure 17 R.m.s. error integral (7.62) for terrain reduction of gravity and deflec~
tions. The graphs show the ratio between the r.m.s. computation error o, and
2nGp o,p as a function of normalized averaging radius for various normalized ele-
vations. Asymptotic values shown at left. : ' -

To'nge an exémp]e of application of the érror.curves, consider the Smoky
Modntafns area, a typical "mild" mountainous area. From the tqpogfaphy-covariance
function {Figure 15) we have Tph = 305 m, correlation length X, -~ 7.6 km and

2 .

thus D = 11.0 km. First consider stations at the level of the topography, H' = 0.
The r,m.s{ variation of the residual terrain effect will be 34 mgal and 5.2" for
gravity and déf}ections=réépéctively.-=To compute terrain effects with a 6.6mga1/1"
r.m.s. error (F - 0.19), Figure 16 gives a' - 0.008 and by (7.51) ax = ay ~ 1.6 km.
Hencé, a digital terrain model with a grid spacing around 1.6 km will be needed f_

to give 1" - deflections. At altitude, say H = 10 km, the r.m.s. terrain effect

is seen to be only ~13 mgal. To get e.g. a 1 mgal error (i.e. F~ 1[34); the
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figure indicates a'~ 0.7 and thus the resolution of the digital terrain model

~ needs to be only 13-14 km.

For geoid undulations similar error curves may be computed. In the Tinear

approximation height anomaly residual terrajn effects at the surface of the topo-

grabhy will be’

o= fﬁfﬂ-i-aﬁ (7.63)

Analogously to gravity and deflections the following expressions for the height

anomaly variance and error variance are obtained

' 21 Gp 2 Cem 1. ' '
2 = (&2 P 2 S d 7.
oF ( " )" oz, D fﬁjw[1+w2D2]%@ w “ (7.64)
V . . : . 2 R & ‘ |
2 2 (2160y2 5 pp g o J1(aw) 1 : v
% _ ( Y ) “ah D J"{) { _ 2 aw ) w‘[1+m2D2]3/2 des (7.65) .

4

The variance cg computed by (7.64) is infjnite (opposed‘to the finite cé').

This is a phenomena analogous to the infinite potential effect of the Bogguek
p]éte: very long wavelengths in the topography results in very large geoid effects.
Hdwever, although the simpfe Markov covariance model used has energy at Iong wave-
. Tengths, this will not be the case for "real" residual terrain reduction with |
respect to a 180 x 180 reference surfacé.' Ideally, no power should remain below
the "reference" frequency v, = l%gu Thus, a better, less conservative estimate

of the "local” height anomaly variation is obtained by integrating from w, rather

than 0 in (7.64) and (7.65)

2 = (Z1B0y2 5 o oo ; . '
‘Gsc ( Y )" o2, D2 G2 (D, a') | (7.66)
o« ! 2
& (D, a') = [~ (1-23{at) L 4t (7.67)
w D

a't t[1+t2]7

0

where the substitution t =wD, a' = a/D, has been used again. The function
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G, is shown in Figure 18. Note that the error variance is nearly insensitive

to the omission of the low frequencies.

G';(D'G')
2.0- '

signai(a‘:\&ﬂ

1.0
a'=4
- a'=2
a'=1

4.0 8.0 - 12.0 16.0 20,0 . 24.0° " {KMI]

Figure 18 R.m.s. error integral {7.67) for height anomaly residual terrawn effects
with respect to a 180 x 180 spherical harmonic reference surface.

For isostatic reductions the “Fy11" height anomaly variance will be well
_défiﬁed Af the aCcuracy 1eveIs of the linear approximation,‘the isostatic reduc-
_tion may be v1ewed as a. mass p1ane compensat?on at depth T Then the’isastaﬁic

: reduct1on transfer funct1on w111 be s1mp1y ‘_} ;_{

E' ;ﬂ31§&~i'(1 - wa) heoo s (7.68)

YW
where it is now the e]evat1on h and not the reéidua] elevation ah which is

used, The 1sostat1c error var1ance 1ntegra1 then becomes

06, T

Ah
| _ (7.69)
6 (@' T =7 (- 2 dfathe (g e-”')zmdt
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The dimensionless function

e

again through the substitution t = wD, T' = %3 a

62 is shown in Figure 19.

Figure 19 R.m.s. error integral for isostatic height anomaly reductions. Asymptotic
values for large a' (i.e., the variance integral) shown in brackets at right.

For a RTM;redugtiqn example, considef‘again the Smoky Mountains area, D = 11 km,
Oap = 305 m. FromiFigure'ISIand (7.66) the r.m.s. vériation of the RTM height
anomalies i1s seen to be only ~ 38 cm, which verifies the earlier claimed advantage
of the RTM reduction: terrain effects on the geoid are very small. Now, say if an
accuracy of 10 cm is wanted'for‘the_geoid.terrain effects, Figure 18 shows that
a'~2 will be sufficient, corresponding to a ﬁecesSary gridspacing of

AX = Ay 0;%6 11 km~ 40 km, again demonstrating the insensitivity of QEOTd terrain

effects to the very Tocal topography

To give an exampie of app!ication of the error analysis in oceanic areas,

an empirical bathymetric covariance function for a 10°x 10° trench area in the

Pacific is shown in Figure 20. In this area the mean depth 1is 3.2 km, Ip = 1553m
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ngﬁre 20 Power spectrum and covariance function for bathymetry in a 10° x 10°

area around the Tonga trench. No reference elevations have been subtracted.

Again the exponential Markov model is seen to give the best fit of the simple
covariance models. (power spectrum has been plotted for p = 2.67. To get

p = 1.64 results, simply subtract 2 dB from given values). '

and Xy~ 107 km, giving D ~155 km. For a trench area the isostatic compensation

is known to be partly based on density anomalies in the upper mantie, and thefefore
a fairly deep isostatic compensation level T must be chosen. Assume e.g. T=40km.
Then T'~0.26 and from Figure 19 and (7.69) with p = ~1.64 the variance of the

isostatic geoid effect is seen to be o, 3.4 m (a diréct computation of the
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isostatic effects have yielded o, = 3.1 m, thus validating the error analysis
approach, cf. next chapfer). To compute the isostatic‘geoid effect with an ac-
curacy cbmparab?e to SEASAT satellite altimetry, say GEC~ 10 cm, then we must

have G, ~ 0.006 and hence a'~ 0.09, giving necessary grid spacing AX~ 25 km.

An "inverse" example may also be given: recenf¥y a global 5'x5' mean
bathymetry data set (SYNBAPS) was released, covering most of the earths oceans
between 75° N and 75° S. In the "rough" Tonga trench area, the SYNBAPS data cor-
responds to a'~ 0.033, giving an r.m.s. isostatic computatioﬁ error UEZ"3 cm.
However, it should be remembered that this number corresponds to the 11near:ap—'
proximation and mass plane condensation,and assumes the mean elevations to be:
error free. Therefore SYNBAPS derived isostatic geoids might be significantly -
more in error, naturally especially in areas of poor bathymetric data coverage.

8. Spectral Character1st1cs and Covar1ance Functlons for Local Topography and
Terrain Effects

In the present section key parameters describing the statistical behavior
of the locai topography will be investigated for a number of different sample
areas, representing various types of topography, from nearly flat to alpine areas
in the United States.

Power spectrum and covariance functions have been estimated from available
0.5'x0.5' elevations, supplied by the National Geodetic Survey, using a simple
FFT approach.

With this approach, the residual topography power spectrum (power spectral

density) is obtained from the discrete fourier transform (7.37) of Ah by

h(u, v)|2 (8.1)

nm
JYICALE Exby

where Ax, Ay are grid spacing of the nxm given elevation grid. The power

spectrum LT will be defined in a frequency square between the Nyquist fre-
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quencies (7.40) tuy, #vy. It will be symmetrié with respect to the zero-frequency:
o(u, v) = ¢(-u, -v). By the inverse fourier transform (7.38) the 2-dimensional

covariance function is obtained:

Copanl6 ) = R Bt v . (8.2)

This function will be defined within the square *E-Ax, tg 4y, and will again exhibit

symmetry with respect to (0, 0)

In the sequel ¢ and C will be 1nvest1gated in a number of cases for both
topography, terrazn correct1ons and observed gravxty and geoid. Since we are
mainly concerned wf;h isotropac processes? the results will be averagéd along
circles, to ine the "isotropic” covarianée function C(f) .and power spectrum
¢(w). However, to get an idea.of the'anisotropy, a contour plot of the 2—diménf
51ona] covariance function will be g1ven as well. For gravity a1sohdegree—vari—
ances will be g1ven, based on formula (7.54). .'

The power estimate (8. 1) may be improved by tak!ng the finite extent of the
.given data into account through the use of window filters. For tests, a two-

» dimensional Hanning window has been applied in the frequéncy domain (see e.q.
Enge}is, 1983) the main effect being a 1ess noisy" @(ﬂ, v). The d15crete Hanning
window in the frequency domain is neth1ng but a s1mple smooth1ng, w1th a filtered
frequency value g1ven as a we1ghted mean of the value itself and the adjacent
frequencies. Since this smoothing a?ready. to some degree_is‘performéd by the
radial smoothing_(and thé prime interest is in the overall shgpe<o%,the curves)
I have found no practical need for windowing, and thus:the"spécfré? estimates
represent "raw“, unfi]tgred FFTfresuits, |

| Examp1es of results have a]ready.béen shown in Figures 15'and 20. The power
spectra will be given in units of mgal?degree? (1 degree~ 111 km), where elevations

have been converted to gravity USing the simple Bougaer'factor for o= 2.67 g/cm®.
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g, = 2wGpah ~ 0.1119 [mgal/m] - ah {8.2)
and results are shown 10garithm1c in dB
» [dB] = 10 Tog, (¢ [mgal?degree?]) . | (8.3)

as a function of the frequency: v =-§% in units Cycles/degreé}

i

The anisotropy will be indicated through a sma??,conmbur'plot?dﬁlihe normalized
“2-dimensional covariance.functfon.at.1evels C(r) = 1.0, 0.8, 0.6, ... (Figure 21).
To get a quantative measure of the anisotfﬁpy; an:anisotfopy iﬁ&§3fwi11 be defined as

_maximal X

anisotropy index = E?ﬁ?ﬁﬁThfgf (8.4) )

where X, s the correlation length in a certain direétion,'i.e. the distance

3
%

from origo for which the covariance is half its zero-value CG. An isotropic

field will have an anisotropy index of 1.

The second-order gradient variance Go will be used in the sequel as a measure

of highwfrequehcy content. As shown by Moritz (1980}, GO- will be given as the
curvature of the (gravity) covariance function at origo. It will be estimated
difectly from thé‘empirica} covariance function, using a symmetrical spline inter-
polation procedure. The result must be used with some caution, especially for

the topography where the applied Bouguer-approximation is very crude for second-~order
gradients.- Since the spline curvature determination will be directly dependent

on the data grid spacing, G, will merely represent a lower 1imit of the gradient
‘variance, giving the gradient variance of some smooth; fi1tered veréion of the

actual gﬁadieht ?iéid} ;Théfgradfeﬁ% variances will be giVen'iniEzg. _ *

1E = 10952 = 0.1 mgal/km.
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Figure 21 Empirical residual elevation covariance function for the Colorado
Rocky Mountain test area of Figure 12 (1°x1° block, latitude 39° to 40° N,
Tongitude 107° to 106° W).

TOP: 2-dimensional covariance function from FFT, : '

" RIGHT: . same, but shown with 0.2 C, contour interval (and only to 15 arcmin),
BOTTOM: - radially averaged covariance function. Poisson and reciprocal distance
covariance models also shown (again an exponential model would give a better
fit, cf. Figure 15) - :
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8.1 Topographic Covariance Functions for U.S. Sample Areas

A number of 1°x 1.2° nearly square biocks (each containing 120x144 elevation
points) have been analyzed using 0.5'x0.5' (~1 km) elevations from the NGS data
base. Fach analysis, with FFT, plotting etc., used ¢.5 sec CPU-time on The Ohio
‘State University's Amdahl computer.

The areas are shown in Figure 22, and represent various-types of'tpbdgraphy:
alﬁine {Colorado, Sierra'NeVaaa), alpine-mountainous with volcanoes (Nésﬁington),
mountainous plains (Néw‘México), older mountains (Smoky Mountains) and flat to
hilly -‘lowland (Ohio). Thé'two 1° New Mexico blocks cémprise most of the "White
Sands" New Mex1£\\test area for comparison of grav1ty f1e1d mod3111ng techn1ques,
see e.g. (Tschern1ng and Forsberg, 1983) '

A1l elevations ana]yzed are-res¥dua] elevations Ah = h - h__ ., where the

ref
180x180 spherical harmonic expans%bn oflfhe earth's topography of Rapp (1982)

has beén used as reference elevation. The Bouguer ~derived topograph1c gravity

is thus to first order the RTM 180 terrain effect.

Results are shown in Figures 23, 24, and Table 4. Despite the different
types of topography, the results are amazingly similar, with the prime variation
being in the r.m.s. variation of Co’ less in the shape of the curves and the
cdrre1ation Tength. The correlation length varies in the range 6.5-12.2 km, while
‘the r.m.s. residual elevations varies from 45 m to 785 m. . For. the eight test . ..
areas, max1m31 and minimal roughness of RTM terrain effect field is obtained in
" the Sierra Nevada and Ohio blocks respectively: for gravity the r.m.s. térrain
effect will be 88 and 5 mgal resbective]y, for deflections 13" and .8" and for
height anomalies 96 cm and 5 cm, using the resuits of section 7.8. The degree
of anisoﬁropy fs seen in some caseé to belni], in other cases rather severe.

Since the observed gravity field will be dominated by the topographic effects
in mountainous blocks, the same degree of anisotropy will be expected in the

gravity covariance function, thus stressing the need for utilization of terrain

~reduction methods.
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rectangles) in the United States.
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8. 2 Magn1tude of the Gravimetric Terra1n Correction - Co]orado Area

o In the prev1ous sections emphasis has been on the dominant terra1n effect
on gravity anomalies - the "Bougaer“ term ~2ﬁﬁpAh To get the complete terra1n
effect, the add1t1onal terraxn correction is needed. However, it will usua11y
be one order of magnitude smaller than the Bouguer term - in thé present séction ‘

the actual magnitudes will be investigatédffor the Colorado areas.

60
mgail
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Figure 25 Terrain correct1ons (top) and free-air anoma11es( bottom) for grav1ty
- stations in a %°x%° Colorado area (1at. 38. 5~39° ]on 106 5- 106° W) Note
the dszerent sca1e used in the p]ots.‘.[ - e B R
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Figure 25 shows an example of actual gravity data and terrain corrections
for a small (%°x%°) block (NGS data). The terrain corrections are seen to be
in the range of 0-40 mgal, opposed to a Bouguer RTM-effect range of roughly -120
.fo 120 mgal. For such a rather small area; the free-air anomalies correlate well
with elevation, the slope being essentia?!y a measure of the topographic density.
'However,‘since the terrain corrections have a tendency to be large for the higher
stations, the free~-air slope will ine too low density values: 1in the case of
Figure 25 p~ 2.1, which is unrealistic. Thérefore, while terrain corrections
might be neglected in connection with e.g. error studies, omission in other cases
'impliés $erioés\systematic errors, especially when used for denSity determination
‘as outlined in s;étion 5. |

To study further the terrain correction; computation of terrain corrections
was done in a 2'x 3' grid for the two 1%xi° Colorado blocks of the 1astlsection
{and oh‘a 2'x 2" grid for the %°x%° area of Figure 25), using the prism integration
programme of the appendix. The choice of the rather coarse computation grid size
was necesséfy'to avoid excessive computafion times (on the GSU‘Amdaﬁ1 system
CPU-time requirements were c. 0.2 sec/station). Figure 26 shows the result for
the northeastern block. By comparing to the topographic map (Figure 12) it is
clear that some degree of undersampling is done by only computing on‘a,z‘x 3 grid,
SO some aliasfng might be expected in the power spectra of the terrain correction
signals, shown in Figure 27.

At the 2' resolution level, the terrain correction covariance functions (Figure
27) might be described as a "white noise” signé¥ with very short correlation length
plus alsmaTief long wavelength signal (remote zone effects). Compared'to the
main “Bouguer” terrain effect, the terrain corrections are indeéd seen to be smé]]er,‘
as éhown fn Table 5.- however, large outliers and non-normal error distribution |
makes it important to use the best possible terrain corrections fof gravity field
modelling, using even more detailed elevation data than the presently used 0.5"%0.5"

heights.
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39

" Figure 26 Terraiﬁ corrections -in mgal for ‘“Colorado I" 1°x 1° block, computed

on a 2'x 3' grid. . A topographic map of the same area is shown in Figure 12.
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RTM Bouguer term
| {mgal) | Terrain corrections {mgal)
Area r.m.s. x% mean std. dev. max X%
I (39-40° N, 107-106° N) | - 47.7 3.5 6.4 4.4 55 1.8'
IT (38-39° N, 108-107° N) 48.5 6.1' 4.8 - 3.7 29- 2.4°
IIT (38.5-39° N, 106.5-106° W) 51.9 4.6 6.4 4.4 27 2.4’

Table 5 Gravity terrain corrections, Colorado areas.

The obta]ned mean terra1n correctTOns may be used to test Sunkel's approx-

1mate formula (Cf-x39¢t70n,7_2)

N

‘mean terrain correction f‘3ﬂGp (8.5)

.><|c|- o
,\3_\"‘ ¥ 2 R .

For the threefarees, values of 4.7 mga], 2.8 mgal and 4.2 MQal are obtained.

The mean terrain corkections obtained by (8.5) are thus seen'to‘be somewhat too

Tow (this deficiency is pfimari]yra consequence of the tendency of the tqpogcaphic.
coVariénce funciions'to be exponential: for such covarfance function the jncegrai

' formﬁ]é‘under]yfng (8.5) is undefined, cf. Sinkel, 198la, p. 62),

8.3 RTM Geoid Effects - Colorado Area

When u51ng a res1dua1 terrain reduction w1th respect to a 180x180 spher1ca1
-harmon1c e?evat1on reference surface the study of sectxon 7 8 showed the terra1n
geo1d effects to be fa1r1y smal] In th?S section, an example of actua] magn1tudes
encountered in an extreme case F the mountainous part of Colorado - w111 be g1ven
The 4°x49‘block of Figure 22 - comprising. essent1al¥y all of Colorado west of
Denver - will be studied based on 4'x5' mean elevations.

Figure 28 shows the résidUaT topography covariance function for the 4'x§'
e]evationS" RTM g901d undulations were computed from th1s grid in a “fixed- area"
reductaon tek1ng on]y Into account the 4°x 4° square Thergeo1d effects var1ed

from 1 to -3 m with a mean of -80 cm and an r.m.s. variation of 87 cm with respect
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Figure 28 Covariance functions for residual topography (lTower) and computed RTM-180
geoid effects (upper) for the mountainous part of Colorado. The 180x180 reference
elevation surface is seen to give a good fit in Colorado, the height covariances
being near zero for y> 1°.

to the mean (Figure 29), corresponding to indirect effects on gravity anomalies
below 1 mgal. For comparison, using the statistical study of Section 7.8, the ele-
vation covariance‘parameters (Oah = 369 m, X, = 8.4") yfe1ds an r.m.s. geoid

var1at1on of 66 cm, the s11ght]y too low va]ue being pr1mar11y due to the remaining

smali. long wavelength geoid effects, ev1dent from Flgure 28
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9. Terrain Reductions: Spectral Characteristics and Covariance Functions for
Local Gravity '

* By using known density anomalies in graviﬁy field modelling, the purpose
i$ to obtain a more smooth fié!d, more suitabié for interpdlétion.and prediction.
In this section the actual smoothing obtained using the residual terrain reduction
will be studied for a number of U.S. sample areas, shown in Figure 22, each repré-

senting various types of topography and geologic setting: the 2°x2° Sierra Nevada

block contains the highest part of the Sierra Nevada mountains‘plus a part of
the California Valley, and is characterized by'a-large horizontal gravity"gradfént,
relating to changes in crustal and upper mantle structqres. The 4°249 Colorado
bIockhashighmé&ﬁt@ins'alllthrough,ahd51thick crust giVing rise to véry16wledguer
~ anomalies. The‘4°x49 New Mexico b]ock has both mountainsAand p]ateau‘type topd—
graphy, and maJor density anomalies assoc1ated with the Rio Grande rift system
Fwnally, the 4°x 4° 0h10 area represents Towlands and an area geo!ogy of pPTmarwly
th1ck paleozoic sed1ments |

- The 4 areas have a reasonabfelcoverage of terrestrial gravity anomalies in
the NGS data base. To obtain covariance functions and power spectra of the data,
the terrain-corrected Bouguer anomalies were gridded in a 4'x5' (ca. 7.5x7.5 km)
grid, using a truncated collocation gridding algorithm (Cruz, 1983) where the ._
value at a point is obtained from the 5 closest ne{ghborihg'points (used sébsequént
to an initial thin-out screening, where only one data point per 1'x1' “p1xe1"
was retalned) An example of the obtained Bouguer anomaly grid is shown in Figure 30.

To obtain RTM-gravity anomal1es, relating to a 180x180 spher1ca1 harmon1c

expans1on, use is made of (7.5):

“RTM anomaly ag® = Ag - AGpTMi80 = Ag - 2nGo (h - href) + te (9.1)

-
For local gravity field modelling, a 180x180 spherical harmonic gravity reference
field corresponds as earlier mentioned to the RTM reduction. Thus, by (9.1) the
terrain-reduced gravity anomalies, referred to a 180x180 reference gravity field,

A
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Figure 30 Bouguer anomalies in‘the Colorado block, shown with 5 mgal contours.
Gravity station locations shown with dots.
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is simply obtained by

Agresidua] = (g “'Agref) _ AgC = AgBouguer _ Aggggguer - (9.2)

i.e. as the difference between the usual terrain-corrected Bouguer anomalies and

Bouguer

the reference field Bouguer anomaly Agref

= Ag,..¢ = 2nGoh o, cf. Figure 31.

- From the gridded, residual gravity anomalies, gridded free-air anomalies have
been reconstructed by a simpie "inverse" Bouguer reduction, neglecting the terrain
cdrrection, which - as demonstrated in section 8.2 - is small compareq.to the
‘main® terrain effect. | |

The data.hayg been spectral analyzed using FFT, to obtain power spectra and
60vafiance fanctiogh, as described .in section 8. The power spectra have additionally
" been converted to nqrma?ized degree-variances, using the formula (7.54). This |
a!}éws a coﬁparison of the variability of the gravity field to global spherical
harmohic degfeé—variance models, e.g.

Kaula's rule: o, - 0.7 - 10-10 E&Ei . (9.3)
2 : o

2+1

Tscherning-Rapp's model: o, ~ 4.47 - 10710 &_1)&22)%24) (0.999617) (9.4)
see e.g. Moritz'(1980). These models may be viewed as “average" earth models,
and for. a particular area they may be used as indications of the smoothness of the
grévity-fie}d, compared to the global behavior.

An example of the obtained two-dimensional covariance fdnction is shown in
Figure 32, resu1£s are shown for Colorado in Figure 33 and for the other aréas
in Figure 34. Table 6 outlines the main sfatisticai pérameters, analogous tb
Table 4. o

.The results are seen fo confirm what intuit1Ve1y should be expected: 1in

‘mountainous areas the use of terrain reductions significantly reduces the variance

of the gravity field, especially for the shorter wavelengths, where the decrease
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Figure 32"Two-dimensional covariance function for the Colorado block for terrain-
reduced, residual gravity anomalies {argument interval: -2° to 2° in latitude
and longitude). o

in pbwer'in.the‘preseﬁt test areas is around 12 dB, corresponding to a factor

of ¢.16 in powép or 4 in r.m.s. variation. After reduction.the spectra are fairly
Simi}af to the lowland gravity spectruﬁ of Ohio, although they still contain some-
what more éﬁergy (this should not be too surprising, since mountainous areas naturally

are areas of tectonic activity and thus large geologic density anomalies).

Also, the correlation length is seen to increase and the anisotrqu seems
to. decrease significant?y for terrain-reduced data, quite as expected. A typical
correlation length for the RTM-reduced data seems to be around 15°,

Comparing to.the global degree-variance models (which in principle also con-
tains the effect of an “average” topbgraphy) the reduced gravity data lies sig-
nificantly below in power for the higher wavelengths. This illustrates the general

‘need for'a¥ways "adapting” covariance functions to particular gravity field\mode]iing
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reduced and unreduced gravity data in Colorado (180x180 reference field subtracted).
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area: the global eovariance models must generally be modified to have 1es$'power
at higher freqoenoies. For the free-air gravity data, only the New Mexico block
is seen to be oflfair]y typical "global" type. This block is thus.a good repre~
sentative test area for gravify field'modeliing experiments. o

| The general conclusions of this section supports the results Of‘the extensive
study of North American gravity oovarfante_functions by Lachapé]]e, MajnviT?e
and Schwarz (1983). That study, based on 5'x5' grarity deta and usiog a completely
different approach than here, shows parameters in good agreement wife ré]évant:
'parts of Table 6., e.g. for “bfock 11" of .that study. cover1ng most of Co1orado 2
free-air Co -va]ue of 2071mga121s given, opposed to the 2061 mgal? obta1ned here
For the grav1ty gradient variance G » the average for "block 11" is c. 1750.E2
.. compared to 4620 E? of Table 6 for unreduced data, and c. 400 E? rersus 324 EZ

'for "terra1n—reduced“ data. | |

| These Go-va]ues are probably much too.}ow, the'spacing of the data being :
simply too large. An example: for the 2°x 2° Co1orado area 38 40° N, 167-105° N
(which has a dense gravrty coverage), a computat1on of G based on 2'x2.5' data
have yielded G -va]ues of 14100 and 1006 E2 for unreduced and reduced data respec-
..tlvely - and by ut111z1ng the topography resuTts of Tab]e 4 a 0 5 xO 5 data
gr1d wou]d be predicted to y1e1d G ~va1ues around 60000 E? for free azr anoma]1es’l
This shows, that the & —quant1ty is near1y mean1ng1ess in mounta1nous areas -
only combined w1th a su1tab1e f11ter1ng through wel] def1ned mean vaTue Operators

or upward_goptlnyet1oo,doee the second order;grad1ents have wel?ﬂbehaved statlstica!

parameters....= . ..
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10. Isostatic Reductions of Satellite Alfimetry Data in Two Areas of the Pacific

Many 6f the features of the ocean bathymetry are of such dimenéions, that
use of a kind of "residual" terrain effect with respect to a 180x180 reference
sufface would simply miss the bulk of the geoid effects associated with these
features. In this section, emphasis will theréfore be on isostatic reductions
and their relationship to geoid heights determined by satellite altimetry.

A reéenf]y released global bathymetric data set - SYNBAPS - covéring nearly
all of the earth's oceans ffom 75° N to 75° S with 5'x5' mean depths, provides
a very convenient data set for the computétions of ocean isostatic geoid effects.
As investigated in éectiqn 7.8, the resolutiqn of the SYNBAPS datala?lows ocean
"terfaih reductions" to be computed with r.m.s. errors at the cm-leyef. An example

of the SYNBAPS data is. shown in Figure 35.
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| Figure 35 SYNBAPS 5'x5' Bathymetry in the 10°xlO°_Tonga Block
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The bathymetric data was used to compute isostatic geoid undulations by the
"tc'-programme system for two 10°x 10° areds of the Pacific:

fTONGA“: a trench area of extreme bathymetry, shown in Figures 35 and 36.

"TAHITI": a mid-plate island area to the NE of Tahiti, shown in nguré 37.

For both these types of areas traditional Airy isostasy is expetted to have

limited applicability - especially for the trenches, where isostatic compensation

is partially absent, and the existing compensating density anomalies occur at

rather deep levels, associated with downgoing slabs etc. The failure of "traditional"

isttasy ét.trénthés is evident from a simple numerical consideration: for |

a normal crust thickness T = 30-kﬁ'£hd dénéfty contrast of 0.6 g/cm3, commoniy-

applied éontinenta1'va1ugs, thé isostatic mantle “aqti-roots“ will end above the

océan‘bdttom at depths gréater than 8000 m! Also, the implied average oceanic

crustaTlthiCkness of 13%14-km is too thick by a factor of ﬁea{1y'2,r.
ISostatic'reductions are, however; very useful as an empirical mathematical

tool, irrespective ' of whether or not the physical reality may be described by

- simple models. In the sequel, three simp1e types of isostatic compensation will

be tested:
A) conventiona]-Airy isostasy, T = 30 km, ap = 0.6 {With average oceanic
depths around 4000 m, this corresponds to some degree to a mass plane
condensation T~ 12 km}.

B) a compensation in the upper mantle in depth ranges 20-60 km, described
as a mass plane compensation at depth T = 40 km.

C) compensation in deeper parts of the upper mantle and lithosphere, ap-
proximated by a mass plane compensation at depth T = 70 km.

For ga;h of the-areas;”bayhymetry_will_be takgn into account for a fixed area
extending 2° outside the 10°xl10° area, i.e. for a 14°x 14° area. By using such

a fixedFafea isostatic redacfion, the_cbmputed effects will have a varying (arbi-
trary) bias. It is théreforé_0n1y'tﬁé variation with respect to the mean which

is indicative of the "fit" of the disostatic models.
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Figure 36 15'x15'5bathymetry in the Tonga bIock.‘-Cdntour interval: 500 m.

Geoid undu?atioﬁs for tﬁe two areas were derived ffom-thé ;dmbihéd SEASAT—GEOS-3
satellite altimeter data base, available at The Ohio State Univgksity (Liang,
1983). ‘Sea surface heights-with respect to GRS80 were'ideh{ifiéd with'geoid
undulations, and were gridded ina 15'x 15" grid using fhe truncated collocation

procedure (5 closest points), analagous to the gravity gridding of section 9.
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‘Figure 37 . 15° X 15" bathymetry in the Tahiti block (Tahiti is in iower left and

-the Tuamotu Islands are in -the center) Contour interval: 500 m.

The obtained a]timeter.geoids are shown Tn‘Figures 38 and 39. The correlation
to. the bathymetry is obvious in both cases, the Tonga Trench having e.g. an impres-
STVe asymmetric negative geoid anomaly of nearly 20 m, whereas the islands have

associated positive geoid anomalies of some meters. Degree variances, power spectra
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Figure 38 15'x15' combined SEASAT/GEQS-3 sate11it§ altimetry geoid in the Tonga
area, referred to GRS80. 'Contour interval 0.5 m. Altimeter sea surface height

"‘pojnts used in prediction of griddéd”va1ueé”shOWﬁgwith qbts;‘, ‘

and covariance function for the geoids are shown later in Figure 47.

Topographic/isostatic effects computed'frdm the ﬁshé11bw“"Airy isostasy (A),

‘the intermediate depth compensation (B) and deep coﬁhénsatfdh (€) for the Tonga

_aréaar%eShOWh'iquiguFés_4Q~42. From these fiéﬁ?é§'if fé*seénithatlthé frén¢h "
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| Figure 39 SEASAT/GE0S-3 altimeter geoid in the Tahiti block

itself is partially uncompensated, i.e. a very deep compensation level is needed
to reproduce the large geoid anomaly across the trench. This is also shown in
Figure 43. On the other hand, some féatures (e.g. most of the islands) seem to
be compensated at much more shallow levels. There s therefore no simpie general

isostatic principle which is applicable in this area.
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Figure 40 Isostatic geoid "A" in the Tonga area, conventional Airy isostasy (power
spectra and degree variances shown in Figure 47)

For the Tahiti block, an example of an isostatic geoid, derived from the bathymetry
is shown in Figure 44. By comparing to the satellite geoid (Figure 39), it is

seen that the central Tuamoto Islands area is well represented by the conventional
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Figure 41 Isostatic geoid "B" in the Tonga area (mass plane compensation in depth
40 km)

Airy isostasy, while the smaller Tahiti islands apparently are compensated at
deeper levels (Figure 45), or - rather - is partially uncompensated. By subtracting

the computed isostatic geoidé from the altimetry geoids, smoother “terrain-reduced”
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Figure 42 Isostatic geoid "C" in the Tonga area (mass plane compensation in depth

70 km)

Figure 43 Interpolated observed
sea surface heights and computed
isostatic geoid profiles across the
Tonga trench in a W-E profile at
18° S (arbitrary bias).
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Figure 44 Airy isostatic geoid ("A") in the Tahiti block. (Power spectrum and
degree variances shown in figure 47).

Figure 45 Satellite altimetry geoid
unduiation in an N-S profile across
Tahiti (Tower left of area) at Tongi-
tude 210.5° , and computed isostatic
geoids.
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Figure 45 Isostatically reduced altimetry geoid in the Tahiti area. Airy iso-
stasy ("A").

geoids are obtained (Figure 45). Statistics of these residuals are shown in Table
7. Since the geoid itself is dominated by long wavelength trends, uncorrelated
. to the bathymetry and probably originating in the deeper mantle, the comparison
has also been done against a "high-pass” filtered geoid, obtained by subtracting
the GEM9 spherical harmonic expansion {complete to degree and order 20) from the

altimeter geoids.
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Table 7 Geoid undulation variation for various isostatic reductions.
(A: T~12 km, B: T =40 km, C: T =70 km, massplane comp.)

Isostatic Geoid Reduced Geoid
Geoid Variation std. dev. std. dev.

Area Geoid mean std. dev, A B C A B C

Altimetry 37.61 9.34 7.93 6.59 4.84
TONGA 1.61 3.12 5.17

Alt.-GEM9 -0.18 3.60 2.91 2.97 4,21

Altimetry | -2.80  3.15 | 3.41  4.00  4.82
TAHITI 1.18 2.16 3.49

Alt.~-GEMS -0.19 1.69 . 1.04 1.23 2.28 |

By inspecting the numbers of the table it is seen that the “smoothing" effect
of the terrain reduction is not very marked, and it is apparent?y‘mainly related
to the shorter wavelengths (alt.-GEM3). However, by inspecting the isostatic
geoids and comparing them to the “"actual" geoid, it is clear that many features
of the ocean geoid are essentially nothing but bathymetric/isostatic effects, but they
do not show up very well in the statistics because the geoid signal is dominated
by effects from deeper sources (cf. Figure 47). Also, error sources such as orbit
erroré, sea surface topography and errors in SYNBAPS might play some role.

From the statistics there seems to be a slight favorization of the conventional
Airy isostasy, in spite of the obvious deficiencies for the trench (this would
be a good case for utilizing a "geologic" density anomaly model, e.g. a dipping
slab). For global studies, the geoid anomalies observed over trenches carry a
very high weight due to their magnitude, and when solving for “optimal" compen-
satjon depths somewhat too deep levels might be obtained.. A recent
globa1 study by Rapp {1982) suggests for the "best" Airy-isostasy a compensation

depth of 50 km rather than the conventional 30 km, a probable effect of the trenches.

The primary purpose of this section of the report has been to demonstrate

the practical use of the SYNBAPS-bathymetry data for ocean geoid studies. The
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primitive approach taken here should be improved for future studies, and of par-
ticular interest would be to utilize the global coverage of the data to make a
comprehensive analysis of global oceanic isostasy, e.g. through the use of empirical
bathymetry (geoid transfer functions), classifying different tectonic ocean areas.
Results of such an analysis could then be used for the important "inverse" problem -

to determine bathymetry from satellite altimetry in unsurveyed areas.

11. Summary and Conclusions

In the present report, many different topics have been treated. In spite
of thé somewhat diverse composition, I hope that the reader still has felt some
kind of continuity in the contents - the idea was to provide the general background
of gravity field modelling using topographic/geologic information, stress the
similarities to and possible uses of geophysicdl inversion methods, stress the
practical benefits of using spherical harmonic reference fields and then finally
go into details on terrain reductions and provide the theoretical backgrouné for

the FORTRAN programme published with this report.

In the first part of the report (sections 2-5), the necessary theoretical

background was outlined, including the concept of density anomalies. Opposed

to physical densities, density anomalies attain both positive and negative values.
In spite of the basic ambiguity of potential field theory, it is still very meaning-
ful to work with density anomalies, even without having defined the "normal® density
distribution explicitly: it may simply be taken as an average "expected” geo-
physical model. |

Known density anomalies - topography, isostasy, geology eic. - may be taken
into account by a "remove-restore” technique. Then values of anomalous density
etc. are assumed to be known. For unknown densities, geophysical inversion

methods may be used to provide better models of geologic structures or to provide
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"optimal" density anomaly values, e.g. fiﬁding a best density for terrain reduc-
tions. Furthermore, it was outlined how the "ultimate” combination of generalized
inversion and gravity field modelling by co]location.iﬁ principle could be done,
to allow incorporatién of e.g. "non-gravity" geophysical information in gravity
field modelling. In the second part of the report (sections 6-7), emphasis was

on terrain reductions. Formulas for the gravity field around the rectangular
prism - the natural "building stone" when elevations are given as digital terrain
models - were given and evaluated. The basic "types" of terrain reductions were
then reviewed:

- Bouguer reduction, removal of the visual topography

- Isostatic reductions, removal of the visual topography and the isostatic
compensation

- Resijdual reductions, removal only of the short-wavelength, "noisy" topo?
graphy

The terrain correction, frequently treated in the 1iteréture, should not be
viewed as a terrain reduction, but rather just as an important mathematical
auxillary quantity. The programme "TC" - given in the appendix - may be used
to cohpute any of ‘these types of reductions for gravity, deflections and height
anomalies. The development and imp}ementation-of "TCf'represents the bulk of
"practical” work associated with this report.

For error studies and FFT-methods, an approximative terrain reduction for-
mulation - the “"linear approximation" - plays a key role. The accuracy of the
approximation was invesfigated both for a theoretical model and for actual data,
with the conclusion that the approximation is usually acceptable. However, care
should be exercised in alpine areas, especially for deflections of thelvertical.

Assuming the va}idify of the linear approximation, effective FFT-methods
for terrain effect computations were outlined, and finally a key topic - DM
resolution requirements - were studied. Curves were given to compute r.m.s.
errors for terrain effects for gravity, deflections and height anomalies, based

on spacing of the given elevations and on topography covariance'functions.
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Finally in the report, empirical data were investigated, to give actual
empirical information on

- topography covariance functions for various types of areas (they turned out
to be generally exponential)

- magnitudes of terrain corrections

- magnitudes of RTM geoid effects (they are actually so small that the
indirect effect on gravity anomalies may be neglected)

- degree of smoothing obtained using terrain reductions for actua] gravity
data (as expected variance decreased, correlation length increased and
anisotropy was diminished)

- relationship of altimetry derived ocean geoids to geoids computed solely
from bathymetric data (including bathymetry covariance functions}).

The main empirical results - covariance functions for topography and gravity -

are contained in Figures 23-24, 33-34 and Tables 4 and 6.

Unfortunately the duration of the author's stay at The Dhio State University
was too short to allow the implementation and practical evaluation of some key
topics of the report. Therefore, natural extensions of the present study would
be |

- implementation of hybrid geophysical inversion/collocation, with test in

an area of well-known geology with large density anomalies, e.g. a salt-
dome province, shelf area, etc.

- implementation of a "hierarchial" FFT terrain effect computation system,
with comparison to results e.g. obtained by "TC" in a suitable test area.

Other directions for future research could be the extension of the analysis of
the covariance functions for topography and gravity, to include more regions of
different types. Ideally, a classification of "covariance provinces", based e.g.

on existing geographical landscape classification systems, could be attempted.

The availability of the global detailed bathymetric data set SYNBAPS opens
as just mentioned possibilities for extensive studies of the relationship between
the ocean geoid and the bathymetry. Ocean isostasy could be studied for many
types of areas through (FFT) cross-covariance analysis. With the res&1ts it

could then e.g. be possible to design optimum filters to derive the bathymetry
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from satellite altimetry in poorly surveyed areas. Another application would
be to "enhance" geoid variations not associated directly with bathymetry, such

isostatic geoid anomalies being obviously of great interest for geophysicists.
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APPENDIX

TC ~ A Program for General Terrain Effect Computations

The terrain effect computations mentioned in the present report have been
done using the Fortran Program "TC", outlined in the sequel. This program - which
is written in structured Fortran (FORTRAN 77) - has been developed and implemented -
at the Amdahl system at The Ohio State University, and has been'tested against
"synthetic" topography (cones, cylinder segments) and results from an older, some-
what different ALGOL program at the Danish Geodetic Institute.

The program uses a set of digital terrain models (DTM‘Q) to calculate gravity,
deflections of the vertical or height anomalies at specific points, using the
formutas of the recténgu1ar prism, outlined in section 6.1. Four different mass
model types may be specified: topography, topography and isostatic compensation,
terrain corrections or residual terrain effects. The computations may éither
be done out to a certain distance R, or a specified fixed area may be taken into
account. A fixed density of 2.67 for the topography (h>0} and 1.64 for the bathy-
metry (h<0) is used presently, but it may be changed easily in the start of the
program. For the isostatic compensation, an Airy isostasy with Moho density con-
trast 0.4 g/cm® and normal crust thickness 32 km is used, in accordance with accepted
"best" continental values.

The curvature of the earth is taken into account to the second order, through

the use of the "super elevation'.

2
SUPELY = & —2

Rearth

which gives the z-shift of a prism in distance s below the tangential plane at
the computation station S. This approximation is valid for distances up to several
thousand kilometers. The superelevation is also utilized for terrain corrections,

so for very large computation radii terrain corrections must be combined with
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Figure 48 The use of the two DTM's in "TC" terrain effect computations. Elevations
from the detailed inner grid is used in the outlined rectangle covering the circle
of radius R,, centered at the computation point S, the coarse grid being utilized
outside this rectangle. In the inner-most 3x3 grid elements (the "inner-zone")
the digital terrain model may be densified using a bicubic spline interpolation.

the spherical Bouguer plate formulas rather than just the plane formula (2rGoh)

to give the complete topographic effects.

Two digital terrain models are ordinarily used for the terrain effect computa-
tions in “TC" (althdugh both are not necessary). A detailed gfid (say 1kmx1km
point elevations ) is used out to a computation distance R;, and then a coarse
grid (say 10 x 10 km mean elevations) is used for the remaining "remote zones",
see Figure 48. A distance specification R, of the order of magnitude twice
the outer grid spacing is usually sufficient. In addition to the "detajled” and
"coarse" DT, an additional reference DTM must be specified for residual terrain

reductions. This DTM is used together with a parabolic hyperboloid (bilinear)

interpolation scheme to define the mean elevation surface.
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Each DTM must be stored in a separate file, for which a simple standard format

is used. A DTM file is initiated by a

Label: ¢35 ¢ps Ars Aps Ags 8A (REAL*4)
defining the coverage and grid spacing of the DTM, followed by the
Elevations: hy, hy, hgs hys ... {INTEGER*2)

scanned in west to east stripes, starting from the north. Each "stripe" is one
record. The first elevation in the sequence is thus the Nw-pdint, the last the
SE-poiﬁt. The 1imits of the DTM {4y, 6,» A;» Ap) is specified by geographical
coordinates of the outer limits of the rectangular grid “compartments” (viewed
as mean elevations), see Figure 47. Thus for point elevations, half the grid
spacing must be added/subtracted from the limits to get the correct 1imits for the
label.

For the inner grid, an alternative NGS format may be used. This format,
used for data obtained from the National Geodetic Survey, consists of 0.5'x0.5'
point elevations, partifioned in 7.5'x1° blocks each containing 1800 elevations,

the blocks stored sequentially as

6, A (REAL*4), h;, hys ...y Byggg (INTEGER*2)

where (¢, o) specifies the SE-point of the block.

The program”demands the inner and outer grids to be consistent, that is,
the outer grid spacings must be multipla of the inner grid spacings, and the gridlines
of the outer grid must be grid Tines also in the inner grid (ideally the outer
grid should be simple averages of the inner grid). If this is not the case the
program will terminate with an error message. This will also happen if too small
arrays are available for storing elevations. (The program only stores elevations
for the smallest possible area internally, but the dynamic storage is done common

for all stations to save time and I/0 transfers. It will therefore be advantageous
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to "block® the computations, reducing widely separated station groups in different
runs); |

Each grid “"compartment" and its elevation defines a rectangular prism, the
effect of which fs summed up to give the complete terrain effect. The shift between
exact and approximative prism formulas is automatic, defined through the ratio
distance to prism/grid spacing, cf. Figure 7. The speed of the program may be
increased by reducing this ratio ("R2EXAC", "RZMACM" in subroutine "PRISM1"), however
at a price of degraded computation accuracy. The values used in the program repre-

sent a reasonable trade-off, determined from Figure 7 and practical experiments.

Figure 49 Spline interpolation of elevations
in an inner zone and possible modification

to give the "correct" elevation at computation
point s.

L 1 LXY L

| INNER ZONE 1

The "innermost" topography, surrounding the computation point, is of critical
importance for both gravity-and deflections. Through an input variable "IZCODE"
it is possible to govern how the inner zone (3x3 elements, cf. Figure 48) is taken
into account. For stations at altitude no special actions will usually be needed
(1ZCODE 3), otherwise the elevations are interpolated using a bicubic spline inter-
polation to dense, non-equidistant inner-zone grid, used for summing up inner-zone
effects. When a station is known to be on the earth's surface and has a given
elevation, a discrepancy between the "model"” elevation and actual elevation at
S is unavoidable. For deflections and undulations this discrepancy is unimportant,
and the terrain efféct should be computed at the "model” elevation (1ZCODE O or

2). For gravity, however, the topographic or RTM-effects are correlated directly
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with the model elevation, so in this case the terrain model should be modified

to reproduce the elevation of $ {IZCODE 1). This modification is done smoothly
within the inner-zone (Figure 49), assuming the discrepancy to be due to erroneous
(biased) DTM elevations. Since the physical mass model is changed independently
for each individual station, some care should be exercised when using this option,

especially for large values of the DTM grid spacings.

In the sequel the programme is listed, more detailed information may be found
in the introductionary or "en-route" comments. The programme is modular constructed,
with subroutines "TC" giving effect in one station, "DTC" effect for one grid
compartment and "PRISM 1" giving prism formulas. Station input/output should be
modified {in the beginning of the program) to satisfy the particular needs of
the user. Typical computation times at the OSU Amdahl system is around 4-5 points/

second. An input example is given at the end of the program listing.
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