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‘Abstract

The computer program described in this report calculates the height
anomaly, gravity anomaly, gravity disturbance, and the two components of
the deflection of the vertical using fully normalized potential coefficients
of a spherical harmonic expansion. The program is designed to calculate
these quantities on a point to point basis although certain calculations
are not repeated if the latitude of the point does not change. The point
input consists of the geodetic latitude, longitude, and height above the
reference ellipsoid. Expansions up to degree 180 have been tested with

the program.

The report first describes the theory to be implemented. The program
is described with a set of results for five sample points computed with
three different potential coefficient fields to degree 180. The computer
time for a single point is 0.45 seconds per point on the Amdahl 470 V/8.
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Introduction

In the past few years the description of the earth's gravity potential
in terms of spherical harmonic coefficients has been extended to degree
180 and 1in special cases to higher degrees (Rapp, 1978, 1981), and Lerch
et al. (1981). These high degree expansions can be used to evaluate quantities
such as geoid undulations, height anomalies, gravity anomalies, gravity
disturbances, deflections of the vertical, etc. To do this efficient com-
puter programs are needed. The purpose of this report is to describe one
Fortran computer program that can be used for these calculations.

Theory--Basic Equations

The gravitational potential, V , in spherical harmonics can be written

as:
kM S ,a.n 2 ,
V=—T 1+ (=)' Y (C._ cosmx)
) nZZ r m=0 M

+S5 sinm)) ﬁnm (sinv)] (1)

where: kM 1is the geocentric gravitational constant;

r is the geocentric radius;
Y is the geocentric latitude;
A is the "geocentric" longitude;
Cnm’gnm are the fully normalized potential coefficients;
a is the scaling factor associated with the coefficients.

The disturbing potential, T , is the difference between the actual potential
(V) at a point and the "normal" potential at the corresponding point. For
our purpose the normal potential will be that associated with an equipoten-
tial reference ellipsoid of defined parameters. We have:

T(Y‘sl‘%)\) = V(Y‘su%)\) = U(Pall),?\) (2)



The potential associated with U can be described by an even degree zonal

harmonic expansion. We can write:

© n
Trya) = LK), KM g ayn g
" "onz2 T om0

(C;m cosmp + S, sinm)) an(sinw) (3)
where kMg is the mass of the reference ellipsoid and C;m are the dif-

ferences between the actual coefficients and those implied by the reference
equipotential ellipsoid. We have:

C§,0= C2,0 - Czso(ref)
CLT’O: Ck 20 - Ch 90(rEf) (4)
C:soz Csso - Cs’o(ref)

In mos* cases we assume kM is equal to kME so that (3) becomes:

©_ kM o n ¥ a z . 5 .

T(ry,1) = &+ n22(7:) mZO (Cx, cosmA + 35 sinmA) Pom(sing) (5)

In classical gravimetric geodesy we discuss geoid undulations, N ,
and geop-spherop separations, N, . If W, is the potential of the geoid
and U, is the potential on the surface of the reference ellipsoid the
geop-spherop separation is (Heiskanen and Moritz, 1967, Section 2-19):

= Tr-(Wo - Uo)

N(r,p,x) RV (T (6)
where vy is normal gravity. In most cases we take Wo=Uo so that (5)
becomes:

N(r,p,2) = %‘%?’—— (7)

The non-classical procedure uses the concept of the disturbance poten-
tial at some surface points and introduces the term height anomaly; ¢ .
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Let W(r,p,A) define the gravity potential and U(r,p,A) the normal gravity
potential at the same point. Then:

T{r,A) = W(r,y,A) = U(r,u,A) (8)

We can introduce the geopotential number, Cp , with respect to a reference
potential, Wo , such that

Cp = W(ryp,1) - Wo | | (9)

The normal height of P , H* , can be computed from CP (Heiskanen and
Moritz, 1967, section 4.5). Letting h be the geometric height of P
above the reference ellipsoid the height anomaly is:

L =h - H* (10)

In terms of the disturbing potential we can write:

t = Y(r,y

This equation is the same as (7) but there will be a conceptual (but small)
difference when comparing normal heights, height anomalies, geoid undulations

(N) and orthometric heights H . Specifically we have (ibid. section 8-12):
h=H+N=H"+¢ (12)

For our purposes we consider the disturbing potential to be given by
equation (5) with the calculation of the height anomaly by (11). For the
calculation of geoid undulations we: would also use equation (11) but with
the evaluation of T on the geoid by the appropriate choice of r . Although
the convergence of the infinite series for T s a formal concern the cal-
culations of Jekeli (1981) with high degree finite series show that there
is no practical concern.



The gravity anomaly is a vector that can be expressed in the classical
and non-classical forms. In either case the general relationship is the
same between the disturbing potential and the anomaly although there is
a conceptual difference. For the anomaly component in the vertical direction
(h) we have (Heiskanen and Moritz, p. 967, p. 84, and 298):

Agh(rswak) == ?TTF + -'Y'];" g'YF' T(Y‘,w,)\) (13)

For the classical anomaly at the geoid, T 1is evaluated there, while for
the surface anomaly T is evaluated at the surface point. We can obtain
the radia] component of the anomaly by writing (13) in the form:

- d
b, (rv,0) =g + 3 gh T(r,00) (14)

With a spherical approximation we have:

Loy o2 : (15)

Agr(r,%l) = - v _g_ T(Y‘ﬂ%)\) ‘ (16)

If we now take equation (5) for T we have:

_ kM T an M
Ag . (ry¥,1) = — nzz(n-;) (=) mZO (Cnm cosm )
+5, sinm2) ﬁnm (siny) (17)

The deflection of the vertical represents the angular difference between
the normals to the actual gravity equipotential surface and the normal équi—
potential surface. For a deflection in an arbitrary direction (s) we can
write (Pick et al., 1973, p. 257):

8 =- = f (18)



where s Ties in the plane tangent to the normal equipotential surface.
Normally the total deflections is expressed in a meridian (&) component

and a prime vertical (n) component. In the meridian we have, with sufficient
accuracy ds = rdy , and in the prime vertical, ds = rcosydAr . Thus the
deflections of the vertical are:

- 1 aT - 1 aT
A (19)

gr T grcosy oA

As pointed out in Pick et als (1973, p. 307) the derivatives —3% and

AN
A
appropriate direction assuming that H and A , and H and ¢ , respectively,
are constant". (H corresponds to height and ¢ latitude.) Thus it is

possible to use (5) for T to obtain the deflections. We then have, letting
gp = Y(Y‘,llf)l

"are the derivatives of the disturbing potential with respect to the

o] - . d_ o
£ = _‘Y:y Z (é})n (C:m cosmi + S sinm}) Pg?fs1nw) (20)
n=2
© n '
kM a \n = . g 5 :
= - (=) m(C* (-sinmA) + S cosmXi) P__(sin 21
R e R CO L AL )+ 5 ) B_(sing) (21)

To obtain the deflections in seconds multiply the above equations by the
radian conversion factor.

The gravity disturbance vector is defined as the difference between
gravity at a point and normal gravity at the same point. We have (Heis-
kanen and Moritz, 1967, p. 84):

3= ﬁb - ¥p = grad T (22)

The radial component of the gravity disturbance can be defined as (ibid,
p. 85)

- oT
T (23)

In some cases (ibid, p. 233) the minus sign is not used but we retain (23)
as our defining equation. Noting that (23) appears in (16) we can avoid

-5-



a direct evaluation of &r by computing it from (16) after Ag and T
(or N(z)) have been computed. We have:

or = Ag, + E— T (24)

The other two components of the gravity disturbance vector are defined as
(ibid, p. 285)

_ 1 T _ 1 aT
6¢ T S = rcosy 9 , (25)

Comparing these quantities to (19) we see
1
n=- 7 6)\ (26)

where we have let g =+vy . Thus once & and n are computed it is a simple
matter to calculate the two disturbance components Sw R GA .

In summary we are given a set of fully normalized potential coefficients.
From these coefficients we remove the values implied by an equipotential
reference ellipsoid. This leaves us with the expression for the disturbing
potential T (equation 5). We then can compute height anomaljes from equation
(11) gravity anomalies from equation (17), the deflections of the vertical
from (20) and (21), and the radial gravity disturbance from equation (24).

Theory--Auxilary Relationships

To implement the equations discussed in the previous section a number
of additional quantities are needed. These are now discussed.

The Reference Potential Coefficients

Given four parameters defining an equipotential reference ellipsoid
all the even degree zonal harmonics are explicitly defined. For our program
it is sufficient to use only the zonal terms to degree six as taken from

Cook (1959). We have given:
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a = equatorial radius

kM = geocentric gravitational constant
= angular velocity

f = flattening.

Then compute m :

= w?a® (1-f)

kM
The zonal coefficients in the J, form are:
Jo = SL[F(1-3F) - m(1- 2 + 2L 7)1
273 2 2 7 49

b = - F(14F) (76(1-3F) - Bm(1- 26))

- £2(6f - 5m)

Je

These coefficients are related to the fully normalized C coefficients
through the following:

Calculation of ¢ , and r

(27)

(28)

(29)

(30)

(31)

Generally the latitude point will be specified as a geodetic latitude.

Formally this latitude should be with respect to an ellipsoid whose center
is at the center of mass of the earth. The geodetic latitude must be converted

to a geocentric latitude and the geocentric radius must be computed. Given

¢, A, and h “the rectangular coordinates of the point are (Rapp, 1981 equation

60).

il

(N+h) cos¢ cosi
(N+h) cos¢ sin)
(N(1-e?)+h) sing

N < X
I



where N is the prime vertical radius of curvature:

N = a (33)
(1-e? sin?g)

(M5

The geocentric radius is then:
1
r= (X2+Y2+7%)2 - (34)
The geocentric latitude is then

Y = tan”! ——Z——_______._— (35)
VX% + Y?

Calculation of ¥

Normal gravity is needed in the evaluation of the height anomaly and
deflections of the vertical. A high degree of accuracy is not needed for
this calculation as the number of digits in the final quantities is usually
only two to four. In our case we choose to evaluate normal gravity for
the point on the ellipsoid and then modify this value in a linear fashion
for the height of the point above the ellipsoid. The normal gravity on
the ellipsoid is:

1+ k'sirto (36)
/1-¢e2%5in%¢

Y =Yg
The value of y at the height h above the ellipsoid is:
Yy =Y - 0.3086 x 107 h (37)

where vy is in meters/s® and h is in meters.

Calculation of P,, and Its Derivative

The generation of the fully normalized associated Legendre functions
and its first derivative is critical to any calculation involving spherical
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harmonic expansions. In choosing an algorithm one must consider the speed
and the stability and accuracy of the procedure. In the past few years a
number of different equation sets have been described in the literature.

For this program we have chosen subroutine LEGFDN that is described
by Colombo (1981, p. 131). Colombo has carried out a number of tests to
investigate the stability of the equations.

The subroutine is written such that the needed functions for a given
order m and all degrees to the highest maximum degree are computed in
one call to the subroutine. The subroutine is repeatedly called for
O0<mg<N where N is the maximum degree being used in the expansion.

For discussion purposes visualize the associated Legendre functions
in a Tower triangular matrix where the rows correspond to degree n and

the columns correspond to order m .

For a given m , the subroutine first calculates for 0 <n<m the
diagonal elements corresponding to the diagonal passing through the n=m

location. We have:

5 . sen+l . o5

an(cose) =/ 5 sing Pn-l,n-l(cose)

ﬁoo(cose) = 1.0 (38)
P.1(cos8) = /3 sind

Then the foliowing element is computed:

P41, (c0s8) = /2n+3 cose Py (cose) (39)

with n=m . Then the following recursive relationship is used to calculate

the remaining values of P for m+2 <n <N .



(2n-1)(2n+1)" =
an (cos 6) J[(n =G cosb Pn-l,m (cosd)
(2n+1) (n+m-1) (n-m-1) 5
_//(Zn-3)(n+m)(n-m) Pn-2,m (cos®)
nz2,(n2)>mz0 (40)
Note that 6 s the po]ar'angle given by
= 90° -y ' (41)

Singh (1982) has pointed out ways to improve the calculation of the
associated Legnedre functions by applying a scaling factor, such as 1x 1072
in the recursive procedure. This procedure was tested in actual calcula-
tions of £ , Ag etc. No difference in numberical values was seen when
the scale factor was and was not applied. Consequently we did not implement
the scaling operation. Doing so might avoid some underflow messages, but
would not changes results when using expanéions to degree 180.

For the & component calculations we need the derivative of P . Colombo
(1981) implemented the following procedure:

dPyp (cos6) _ [2n+1]%(sinedﬁﬂ1ﬁaﬂ‘] + cos6 P

de (COSG)) (42)

n-1,n-1

After these values are computed for a given m up to a given N , then
we have:

dP
T

(sing) *(n an (cose) coso

[(nzzgi2§§n+l) T%'Pn_l’m (cose)) (43)

The starting value is



Due to the occurrenceof (sing)~' this subroutine can not calculate the
derivatives at the poles.

Since we want the derivative of P with respect to y we note that:

&4 =

The calculation of sinmX and cosmX

The generation of sinmA and cosm) is done through the following
recursion relationships:

sinmh = 2cos A sin(m-1) A -=sin(m=-2) A
cosmA = 2cos A cos(m-1) A ~cos(m=2) A (46)

These relationships are useful for point calculations but are inefficient
for use if a set of points at a uniform longitude interval are being used.

Geodetic Constants

For the evaluation of the reference potential coefficients, the geocen-
tric radius vector etc, we need to adopt a set of constants. We used the
values of the Geodetic Reference System 1980. We have:

a = 6378137 meters

kM = 3986005 x 10% m® s ?

w = 7292115 x 107! rad st
e? = 0.006 694 380 022 90

f = 0.003 352 810 681 18
Y, = 9.780 326 7715 ms™2

k' = 0.001 931 851 353

These constants are used in the calculation of the reference potential coef-
ficients (for a flattening that is read into the program), the geocentric
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radius, and normal gravity. These constants can easily be changed in the

program.

It is critical to note that the use of the above constants does not
mean that the geoid undulation (for example) refers to the GRS80 reference
ellipsoid. This is because the zero order term in T has been set to zero.
The real reference ellipsoid is that one which best fits the geoid and this

may or may not be GRS80.

The Program

The program written to implement the equations previously described
is given 1in Appendix A. This Fortran program was run on an Amdahl 470 V-8
machine using double precision computations.

The program is currently designed for.point by point calculation. In
this case the input information is as follows:

1. NMAX, F (I3,F10.4)

NMAX is the highest degree to be used in the expansion, F 1is 1/f which
is the inverse flattening of the reference ellipsoid to which the computed
quantities are to be referred.

2. The fully normalized potential coefficients. are read from tape or disk
file in the form of (n,m,Cnm,§hm). The arrangement of the input is in order
of degree, i.e. from lowest to highest degree. However the storage Tocation
for the coefficients is computed from the given n and m values. In

this program all coefficiecns are stored in double precision. Space can

be saved by storing in single precision. |

3. The coordinates of the points at which ¢ andthe other quantities are
to be computed. Specificially (¢,2, h) where ¢ is the geodetic latitude,
A is the longitude and h is the height above the reference ellipsoid.
The current format is (3F10.1). The last point is signaled by an end of
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file (/*) card. Points having the same Tatitude should be grouped together
as in this case the associated Legendre functions and their derivatives
are not re-computed.

The output 1is printed across the page under column headings: LAT,
LON, HEIGHT, UNDU, ANOM, DIST, XI, ETA. Although the output is given two
decimal digits, actual accuracy is considerably poorer than this because
of the errors in the potential coefficients.

The values computed by this program have been checked against another
program written by Tscherning and Goad (1982, private communication). ATl
values checked agreed to two decimal digits.

The computer time needed for a single point calculation (after the
potential coefficients are input) is 0.46 seconds with an expansion complete
to degree 180 on an Amdahl 470 V/8. A calculation of points on a 12°x12°
grid at 1° intersection took 21.9 seconds. If a Timited grid of undulations
or anomalies are to be generated the program described by Rizos is the most
efficient procedure to date. If a global grid is being generated the program
SSYNTH described in Colombo (1981) is the most efficient.

For checking the results of the program the values of ¢, Ag , 6,
£ , n have been computed at five test points using three different sets
of potential coefficients to degree 180. These values have been computed
with respect to an ellipsoid which has the flattening of GRS80 and are
given in Table 1.
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Sample Computed Values

Table 1

(reference flattening = 1/298.257222)

¢° A°  h(m) c{m) ag(mgals) s(mgals) g n
21°  1° 0 Rapp78 34.46  20.07 30.65 0.68 -0.25
Rapp8l  30.56  7.73 17.11 0.60  0.40
GEMI1OC  28.37  4.12 12.83  -0.10  0.21
21°  45°  Q Rapp78 -11.19 -4.75 -8.19  -5.41 11.12
Rapp8l  -9.58 -5.55 -8.49  -4.24 10.63
GEMIOC  -9.68 -8.46  -11.43  -2.23  8.98
5° 79° 0 Rapp78 -104.42 -84.60 -116.62  -1.43  0.64
Rapp8l -107.48 -91.84 -124.81 0.02  0.65
GEM10C -106.20 -87.66 -120.23  -1.13 -1.04
5°79° 10000 Rapp78 -103.58 -78.90 -110.52 -1.63  0.35
Rapp8l -106.58 -85.49 -118.02  -0.22  0.50
GEM10C -105.35 -80.51 -112.66  -1.12 =-0.93
87° 21° 0 Rapp78  15.43 -1.46 3.32 1.32  2.37
Rapp81  20.23  8.86 15.12 0.81 1.86
GEMIOC  18.38  3.58 9.26 2.59 4.05
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Summary

This report describes a Fortran computer program that can be used
for the calculation of ¢, Ag, &8, &, n which are dependent on
a set of fully normalized potential coefficients. The program has been
set to work to degree 180 and it can be extended higher.

The equations used for the calculations are to some extent spherical
approximations. However literal interpretation of certain quantities would
be formally correct (e.g. the radial component of the gravity disturbance).
Correction terms for spherical harmonic expansions evaluated considering
the ellipticity of the earth are described to some extent, in Jekeli (1981,
section 4).

The input quantities to the program are geodetic Tlatitude, Tongitude
and height above the ellipsoid. In theory these quantities should be given
with respect to a geocentric ellipsoid. In practice the use of non-geocentric
coordinates would cause small but systematic errors in the results.

The computed quantities refer to a geocentric ellipsoid whose flattening
is an input parameter. The size of this ellipsoid is not specifically
defined because the zero degree term in the disturbing potential expansson
has been set to zero. 1In most applications the equatorial radius of the
ellipsoid is the current best estimate.

The computer program of this report has been checked against other
programs with excellent agreement. The stability of the algorithms for
the associated Legendre functions has been checked by Colombo (1981) and
by Singh (1982). For some applications at high latitude underflows may
occur in the computations. These are machine dependent quantities and
can be turned off if desired.

Other procedures have been developed that extend the derivatives
of the potential to the second derivative (Tscherning and Poder, 1981).
In addition, problems at the pole that exist with our current program (for
the derivative of Ppp) are avoided with the Tscherning/Poder application
of the Clenshaw summation.
-15-
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Appendix
The FORTRAN Program
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N={N={N+L1}]/2¥+M+]

HCIN}=C

HS{NJ}=S§

GU T4 0§02

J2=2.0D0/3.0D0%(F*{1,0D0-F/2. OBO3I-FM/2.0D0%1{1.000-2.000/7.0D0%F
*4+11.0D0O%F%F/49.0D0))

J4=-4,0D0/35.000%F*{1,0D0-F/2,0D03%{ 7. 0D0%F%{1.000-F/2.0D0)
¥=5,0D0%FM¥{1.0D0-2-.0D0%F/7.0D013)

JE=4 , kF Rk 2% B ¥F-5,%FM)/21.

HCl{4)=HC{4)+J2/DSORT{5.D0}

HC{l11)=HCI11)}+J4/3.0D0

HC{22)=HC{223+J6/DSURT(13.00)

%ﬁ?URN

SUBROUTINE LEGFDN{MyTHETA RLEGDLEGsNMX,IR,RLNN,IFLAG)

G
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=

Tide 4 4 0

s e

THIS SUBRCOUTINE COMPUTES ALL NORMALIZED LEGENDRE FUNCTIONS

IN ®RLEG" AND THEIR DERIVATIVES IN ®DLEG". ORDER IS ALWAYS
My AND COLATITUDE IS ALWAYS THETA (RADIANS). MAXIMUM DEGF
IS NMX o ALL CALCULATIGNS IN DOUBLE PRECISION.

IR MUST BE SET TO ZERU BEFORE THE FIRST CALL 10 THIS SUB.
THE DIMENSICNS OF ARRAYS RLEGs DLEG, AND RLNN MUST BE

AT LEAST EQUAL TO NMX+1 .

THIS PROGRAM DDES NOT COMPUTE DERIVATIVES AT THE POLES .

iF IFLAG = 1 ; ONLY THE LEGEMNDRE FUNCTIONS ARE
COMPUTED.

AL PROGRAMMER :0SCAR L. COLOMBO, DEPT. OF GEODETIC SCIENCE,
IG STATE UNIVERSITY, AUGUST 1980 ., *skFmdickdddkkkkmnkkk
i REAL%8 {A~-H,0-1)

ON RLEG{1),DLEG{1},RLNNI{1]}

1300) ,DIRT{1300}

NMX+1

12*NMX+1

2

3

Q.1) GO TO 10

N = 1,NMX2P

= DSQRTI{N*1.D0}

= 1.DO/DRTS{N)

= DCOS{THETA)
= DSINI{THETA)

GoNE- 1-ANDTHETA-NE-Q.DO)SITHI = 1.D0/SITHET
COMPUTE THE LEGENDRE FUNCTIGNS .

= 1.DO

= SITHET*DRTS{ 3)

Nl = 3,M1 .

N

3 = DRTSINZ2+1}*DIRTINZ2I*SITHET*RLNN{N1-1]

1) GO T0 20

»0) GO TO 16

= RLNN{2])

O= DRTS({S5I*COTHET*RLEG{ 2)

= 1.D0

= COTHET*DRTSI(3)
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