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1. Introduction

Recent years have seen a guantur jusp in the continuing
ef forts to improve and expand our knowledge of the earth's
gravity field. It is marked by the transition from
terrestrial measurements, limited essentially to land areas,
to measurements in outer space vhich are used to ascertain
the global gravity field. The foremost instrument advancing
this effort has been the satellite borne altimeter, enabling
a direct measuresent of an eguipotential surface, the geoid,
over amuch of the oceanic surface of the earth. Further
strides will undoubtedly be made by the planned GRAVSAT
mission {see the report by the Rational Research Council,
1979) utilizing the measuresments of satellite-to-satellite
tracking and achieving coverage over the entire globe.
Looking ahead into the not so distant future, satellite
borne gradiometers will provide even greater detail and
accuracy. While the obvious advantage of measuring the
earth®s gravity field at satellite altitudes is global
accessibility within a relatively short period of time, the
fundamental difficulty is the translation or "downwvard
continuation™ of the data to the earth®s surface where they
are most needed. In principle, several procedures to
achieve this translation exist; all rely to some extent on a
simplifying assumption such as a perfectly spherical, or a
flat, earth. On account of the enoraous amocunt of data that
satellite missions provide, the number of methods to
simultanecusly process the entire data set is reduced
considerably. The method of harmoric analysis of the
gravitational potential will come under close examination in
this paper. 1ts feasibility from the computational
standpoint cannot be easily challenged, even for extremely
dense data coverage. However, far from being a panacea, it
is also associated wvith several probleas. Aside from an
instability in the propagation of noise, the most nagging
guestion is one of correct theory. It is the latter which
will be studied here, not by delving into areas of pure
theory, but rather on a numerical basis, which, it is felt,
will provide some valué to the scientist who must eventually
make use of the data. ~



1.7 The Problem and Background

From classical potential theory, we know that the
{Newtonian) potential due to attracting masses is an
harmonic functior in free space. That is, its second
derivatives are continucus and it satisfies Laplace‘®s
equation; moreover, it is regular at infinity (Ginter, 1967,
p-25). Kellogg (1953, p.220) shows that an harmonic
function is also analytic in its region of harmomicity (cf.
Cauchy Riemann equations in the theory of complex
variables). The solution to the exterior Dirichlet boundary
value problem states that given valuwes of the potential
everyshere on a knowr surface enclosing the masses it is
determined uniquely in the space exterior to that surface.
Applied to earth orbiting satellites, the known surface is
the sphere that contains the satellite orbits. Because the
potential is also analytic in the region between the earth’s
surface and the orbital sphere (we remove the atwosphere,
see below), by the uniqueness of analytic continuvation, the
potential function outside the orbital sphere represents the
potential in the entire region above the earthis surface,
i.e. in the largest regicn wherein the ‘actual potential is
analytic. ;o

For amr irregular density distribution such as the
earth®s, a closed form of the potential in space cannot be
found. Instead, it is often represented as a series, in one
form or another; however, any series is associated with a
particular region of convergence and cannot converge to the
true potential in the total space. Since we are dealing
with exterior potentials, the region of convergence is an
exterior region that contains the point of infinity, and it
is separated froa the region of divergence {the interior
region) by the so~called surface of convergence. In
general, the region of convergence may, or may not, contain
the maxiamum region of analyticity of the potential, nor is
the surface of convergence necessarily a sphere. These
facts were convincingly demonstrated by Krarup (1969%) and
Morikz (1978} ; see below. In many cases, it is possible to
dexive a series which converges to the potential in the
region where the ocuter series diverges; we call this the
inner series.

Owing to the near spherical shape of the terrestrial
body, the most tamiliar 'series is the spherical harmonic
series. Kellogg (1953, p.143) showed that the spherical
harmonic series converyes uniformly to the potential outside
any sphere containing all the attracting masses and centered
at the origin of the coordinate system. Strictly, this
theorem finds no application in our physical world since it
guarantees convergence only ouatside the sphere enclosing the
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entire universe. Within our limited scope of terrestrial
and near-earth applications, however, the masses outside our
solar system have negligible gravitational effect.

oreover, we may simply redefine the exterior gravitational
field of the earth with appropriate corrections so as to
exclude the effects of an atmosphere and, say, of the sun
and the moon. The latter and possibly othar
extra-terrestrial bodies are pathematically moved to
infinity (where they have no gravitational influence) by
subtracting the corresponding tidal potential. The
atmosphere is most conveniently embedded (conceptually)
inside the earth such that the center of mass rewmains
undisturbed (doritz, 1374); of course, the resulting change
in the earth®s exterior gravity field must be accounted for
vhen comparing terrestrial data with data Jownward continued
from satellite altitudes. Positioning the origin of our
coordinate system approximately at the earth's center of
mass, we therefore have guaranteed convergence of the
spherical hamonic series of the potential outside the
sphere whose radius equals the farthest distance of the
earth's surface from the earth’s center; this is the top of
the Chimborazo fountain, in central Ecpador (latitude -1°4),
with a radial distance of about 6384403 m (Sjdberg, 1977).

A more denexal result was rigorously proved by Krarup
(1569, chapter 3), namely that the spherical harmchnic
expansion converges everyvhere on and outside the smallest
sphere (called the limit sphere) that contains all
singularities of the poteantial and its anmalytic
continuation. Thus, the proof that the potential series
converges everywhere at the earth's surface would be
complete if the potential could be analytically continued
down to the so-—called Bjerhammar sphere (the sphere that is
entirely enclosed within the earth). Xellogg (13953, p.197)
comments that the potential function representing the
potential of an analytic density distribution bounded by an
analytic surface can be continued analytically across the
surface. Of course, in view of Poisson®s equation, the
actual potential is not represented by this function at
points of nonzero density; indeed, its discontinuous second
derivatives preclude its being analytic on the surface. The
possibility of analytically continuing the geopotential
inside the irregular masses of the earth seems very
doubtful, for as Krarup points out, if it were possible for
some given mass distribution, the mere addition of a mass
point ("grain of sand") above the limit sphere introduces a
singularity in the potential function at this point angd
thereby destroys the analyticity of the continuation.
Therefore, given that the series for the potential converges
with certainty only outside the bounding sphere, the
guestion arises whether there exists any justification for



using the series at or neaxr the surface of the earth.

Claims of both proof and disproof of series convergence
at the earth's surface appear in the geodetic literature;
none is logically sound. The proof by Arnold {1978) of
convergence everyvwhere on the surface is patently flawed, as
is Morrison's (1970) conjecture of divergence everywhere
(see Appendix A). The ®grain of sand" example was used by
Moritz (1980, p.64) to argue on the instability of the
property of convergence, implying that, in the strictest
sense, the size and shape of the surface of convergence, if
it is not the bounding sphere, is not well defined. Any
further theoretical advances on the behavior of spherical
harmonic series near the surface of an attracting body will
cone by studying density distributioms bounded by surfaces,
both of which are mathematically regular by some measure. A
study which approaches this type of analysis is the one by
Kholshevnikovw (1977) ; who finds upper bounds for the decay
rate of spherical barmonics, on the bounding sphere, with
respect to the degyree n Ffor variously structured bodies.
These upper bounds are gemerally proporticnal to (fixed)
negative powers of n, depending on the measure of regularity
of the density and bounding surface. -Such decay rates are
insufficiently strong to yield convergence below the
bounding sphere; yet as they are only upper bounds,
convergence canunot hereby bhe excluded.

While the precise convergence surface for series
corresponding to arbitrary density distributions bounded by
arbitrary surfaces has eluded theorists, several
fundamental, as well as interesting, results have been
established. Rrarup {1969) examined the potential resulting
from a Kelvin transformation of the potential of a uniforn
mass distribution on a straight line. Using this example,
he disproved the intuitive notion that the surface which
separates regions of convergence and divergence is always a
sphere. A general theory regarding the shape of the surface
of convergence for special spherical harmonic series was
developed by Ecker (1972). He proved ithat a sphere is the
surface of convergence for rotationally symmetric potentials
{i.e. series of zonal harmonics only), while a torus defines
the surface of convergence for a series of only tesseral
harmonics (Krarup's example). Othexr surfaces of convergence
lying between these ‘two extremes result for series of only
those sectorials vhose degree n and order m» satisfy the
relation m={n, £ being predefined and 0£4 4¢1. The case

2 =( represents the series of zonals, and Ecker proved the
following result: ,
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Theorew: A series of spherical harwonics (L
. Y ) a P, (cose)

n=0
converges everywhere outside the sphere of radius
p s where ;
_ 1lim n J] |
_ P = 5o SUP a

and ﬂlverges almost everywhere inside thls sphere.

Here, r, 2 are the polar coordinates, radius and colatitude,
and P, denotes the Legendre polynomial of n-th degree. The
qualification “almost everywhere® for divergence is included
to allow convergence on sets of measure zero (regions having
po volume) inside the convergence sphere (e.g. any series of
odd zonals converges for every r> 0 at the equator, since
P1as,{0)=0) . The radius of convergence for the by now
classic example of a homogeneous oblate ellipsoid of
revolution (Junyg, 1956, p.543; Moritz, 1980, p.52) is found,
uzing the above theorem, to be ¢ =E, the focal distance of
the ellipsoid, showving also that the surface of convergence.
ray mot bound the generating masses (i.e., in this case the
potential function can be anaytically continued to the '
sphere of radius E but, of course, does not represent the
potential inside the ellipsoid).

The guestion of convergence or divergence of the
potential at the earth's surface may be circumvented by the
Runge—Krarup theorem (Krarup, 1969; Moritz, 1980, p.67).
Briefly, this theorem, already kpown to Walsh {1929, P.535)
for the inner potential, states that a function harmonic
outside the earth's suorface may be approximated arbitrarily
well in its region of harmonicity by a function vwhich is
harmonic outside a given sphere totally inside the earth.
Obviously, the spherical harmonic series of an harmonic
function converges everyvhere outside any sphere contained
ertirely in its region of harmonicity, in particular on the
earth's surface if this sphere is embedded entirely within
the earth. It should be noted that the Runge-Krarup theorenm
is an existence theorem; it gunarantees only the existence of
an approximating function and does not provide the method to
find it. Furthermore, nothing is said about the closeness
of corresponding individual terms of the two series for the
actual and approximating potentials. The approximation is
arbitrarily accurate only in the limit, i.e. for the total
sum (however, one can expect that, because of the near
sphericity of the earth's surface, the corresponding lower
Jegree terms of the two series do not differ substantially).
He may also note that the theorem holds for any exterior
potential no matter how badly its series diverges below the
boundinyg sphere, =0 that the application of the theorem is
not contingent on the xnbtablllty of the convergence surface,"
of the actual potential series. o



The fact that the Runge—-Krarup theoren says nothing
about the accuracy of individual terms of the potential
series is very restrictive on the possible use of the
theorem to the practicing geodesist. Hence, for example,
$joberg*s (1979) statement that *the ccefficients of the
approximating potential ... can be selected arbitrarily.
close to the coefficients of the extermnal potential ... to
any desired deyree®™ is somewhat misleading if not
inaccurate. Por the closer the coefficients of the
approximating potential are chosen to those of the actual
potential, the further is the postponement of the arbitrary
closeness of the approximating series to the true potential.
However, for the example of a point mass situvated om the
equator of an oblate spheroid (so that the ensuing potentxal
series diverges in the polar regions), Sjonerg shows that in
this case, the postponesment is not unduly exacerbated if the
first 300 or 400 terms of the actual divergent series are
- used for the corresponding terms of the approximating
potential. Horitz's statement (Moritz, 1980, p.66) based on
the Runge-srarup theorem that the earthis potentigl, for
practlcal purposes, can always be considered as a
*convergept potential®™ is similarly misleading. This
statement should not be interpreted as clammlng convergence,
for all practical purposes, of the actual series of the
potential on and outside the earth®s surface. Instead it is
a statement on the practical eguivalence of the potential
and an approximating series that converges on and above the
surtace. Term for term, especially at high degrees, the
approximating series and the actual series must be quite
different since the former converges while the latter
possibly diverges near the earth's surface. Therefore, the
Runge—Krarup theorem can not be invoked to justify the use
of a portion of the series of the actual potential at the
earth's surface.

Until now the discussion has centered on the convergence
of & spherical harmonic series, where the use of spherical
coordinates is motivated by the near spherical shape of the
earth's surface. But to a second approximation, the surface
of the eaxth is an ellipsoid, or more precisely an oblate
spheroid, an ellipsoid whose equatorial axes are equal (i.e.
it is a surface of revolgtion) and whose poles are
flattened. The question arises whether the use of different
coordinates sach as ellipsoidal coordinates has a
significant beaxing on the problem of convergence at the
earth's surface. The ellipsoidal coordinates Ffor which the
general triaxial ellipsoid is a coordinate surface (a
surface defined by the fixed value of one coordinate, in
this Case one of the semi~axes) are rather more difficult to
work with than spherical coordinates, but expansions of the
potential and the gravity anomaly have been formulated in



terss of the orthogoral lamé functions, see (Hobson, 1965,
pp 473-475; Walter, 197C; and Savrov, 1974). Because the
deviations between best fitting triaxial and biaxial
ellipsoids are of the same order of magnitude as geoid
undulations, the triaxial ellipsoid has generally been
abandoned as an approximation to the earth's surface. Thus,
the coordinate systes to be considered is the spheroidal
system (Bobson, 1965, p.421, see also chapter 3) in which
the expansion of the potential is in terms of familiar
lLegendre functions. Though not widely used in practice,
these coordinates have received considerable attention in
geodesy, in particular, by Jung (1956) and Hotine {1969} .
The term "spheroid®™ in the geodetic volcabulary
conventionally denotes an eguipotential surface of some
normal ({reference} potential. On the other hand, the term
Pellipsoid® usually implies oblate spheroid; hence it will
also be used here to mean exclusively an ellipsoid of
revolution flattened at the poles.

Imposing rotational symmetry with respect to one of the
ellipsoidal coordinates, namely the longitude, in this case
yields ellipsoidal harmonic functions whose structure
differs from their spherical counterparts omly in the
dependence on the distance froa the origin. Due to the
correspordinyg similarity to spherical harmonic expansions ve
have theorems, such as, .

1. the ellipsoidal harmonic series of the potential

converyes uniformly everywhere outside the ellipsoid that
bounds the generating masses; and

2. there exists an ellipsoidal harmonic series which
converges uniformly above the "Bjerhammar ellipsoid® and
approximates the potential outside the eartht®s surface
vith arbitrary accuracy.

The proof of the first statement follows immediately from
the uniform convergence of the ellipsoidal series for the
reciprocal distance (equation (3.27): cf. Rellogg, 1953,
p.143, and see also Hobson, 1965, pp.s30-433).  The second
statement is merely a corollary to the Runge—Krarup theorenm
since the Bjerhammar sphere enters only to relate the
theorem to spherical barmonic expansions and cafd easily be
replaced by the Bjerhammar ellipsoid. Other corresponding
theoress with respect to the "limit ellipsoid® or to the
convergence surface of a series of ellipsoidal zonals
undoubtedly exist, but may require more exacting proofs.

Unfortunately, the tramsition to ellipsoidal coordinates
does not solve the problem of series convergence at the
earth's surface since its distance from the bounding
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ellipsoid can still be 6 to 7 xm (for the bounding sphere it
is as much as 25 km). However, we recognize that the
convergence problem is a manifestation of the choice of
coordinate systea, for the ellipsoidal series will converge
to the potential in regions where convergence of the
spherical series is doubtful (e.g. the polar areas). Also,
because the eguatorial radievs of the bounding ellipsoid
could exceed the radius of the bournding sphere, the
spherical series will converge in regions where the
ellipsoidal series may not, see Fig. 1. The dependence of

«~—BOUNDING SPHERE

¥~ BOUNDING ELLIPSOID

FPigure 1: Bounding sphere versus bounding ellipsoid.



the region of convergence on the coordinate system is even
more directly illustrated by simply changing the coordinate
origin, at which the bounding sphere is (always) centered.
Therefore, the smallest bounding sphere is obtained if the
origin of the system of spherical coordinates coincides with
‘the geometrical center of the earth. The feasibility of a
choice of coordinates other than ellipsoidal coordinates
that guarantees convergence of the corresponding series .
significantly closer to the earth's surface seems unlikely
since the next approximation to the surface is a
considerably more complex geometric figqure. This is an
upward continuation of the tellurcid, or some smoothed
version of it. The telluroid {(Heiskanen and Moritz, 1967,
P-292) is the surface of points at which the normal
potential egquals the gravity potential at the corresponding
points on the earth's surface, where correspondence is
established if the telluroid and surface points lie on the
same (normal) piumb line in the normal gravity field. ' The
telluroid imitates the earth's surface quite closely since
their difference, the height anomaly, varies as smoothly as
the geoid undulation with average values of 30 m. However,
the correspoading coordinate system (in which the bounding

telleroid is a coordinate surface) will be too abstruse to
work witha. :

The essence of this paper addresses the question of
vhether the probable divergent character, at the earth's
surface, of the spherical harmonic expansion of the
disturbing potential (and gravity anomaly) eliminates it
from the repertoire of viable methods of downward
continuvation. In light of the foregoing summary of the
theoretical viewpoints on convergence and divergence of the
earth®s potential series, the analysis will be based on the
assumption that the series definitely diverges below the
bounding sphere. Although divergence has not been proved,
this preamise is certainly reasonable, if only as the
vorst—case situation.

The questior of divergence or convergence at the earth's
surface will never impede our computational abilities in
practical situvations. That is, with a fipnite number of
measuremnents of the potential we can determine only a finite
nusber of coefficients of the harmonic series, and any
finite sum of spherical harmonics converges, indeed is
analytic, everyvhere except at the origin of the cocrdinate
system. Yet, if the total infinite series of the potential
does diverge at the earth®'s surface, then the aore
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coefficients we determine the greater will be the effect of
this divergent character on the partial sums. The question
of convergence, however, is then better posed as a gquestion
of representation.

Since the partial sum,; whether in the space above or
below the bounding sphere, is thus only an estimate of the
true potential, the guestion of representation belongs to a
much larger class of problems, namrely the problem of
approximation. As with most areas in physical geodesy, our
limited accessibility to the gravity field, i.e. limited to
discrete and noisy measurements, automatically renders ourx
vroblen ®ill-posed.* An ill-posed problem, according to
Thikonov and Arsenin (1977), is a problem that either has no
solution, has more than omne solution, or its solution is
unstable with respect to the given data. Our inability to
measure the gravity field in space beyond a certain degree
of detail means that there exists an infinite number of
solutions, all Jdiffering in the detail which we were not
able to discern, but all satisfying our measurements.
Therefore, the solution is not unigue. But as easily as
this problem is recognized, it is as guickly eliminated by
requiring a solution for a gravity field concordant in
detail with the measurements. That a solution always exists
is guaranteed by the fact that any finite sum of spherical
harmonics, which in fact satisfy Laplace's equation and are
regular at infinity, represents a potential.

The instability of the solution arises because the
harsonic ecoefficients obtained from the measurements at
satellite altitude are not errorless. This is expertly
shown by Rummel et al. {1979) for the case that the
measuresent noise is white noise. White noise affects all
harmonics of the nmeasured signal equally so that the
infinite sum of the effects is unbounded. Since the
discreteness of the measuresents places a linit on the
susber of harmonic coefficients that can be determined, the
downward continuvation of the error, while not causing
upbounded error in the solution, nevertheless produces an
amplification of the error. The error in the a-th degree
harmonic coefficient is amplified by the approximate ratio
(r/R)" in the process of downward continuation (see section
1.3), vhere R is the radios of the earth and r is the radias
of the satellite orbit. PFor minimal satellite altitudes of
150 kxm, this ratio increases to over 1000 at n=300, which
means that the 300-tkh degree coefficient of the gravity
anomaly at altitude must be known to ugal (10°% m/s%)
accuracy in order to recover mgal (10°F wm/s*) accuracy at
the carth?®s surface. This demonstrates that the problem of

downward continuation belongs to the class of ill~posed
probleas.
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The foremost method to solve the ill-posed problem is to
impose constraints on the desired solution, as for example,
searching for a smoothed version of the true solution.
Another example is the method of collocation which generates
a solution whose norm in the space of solutions is minimum.
While solving the nonunigqueness problem, collocation can
still be ar unstable process, sometimes even requiring the
presence of noise in the data to stabilize, or regularize,
the solution. Xguivalently, one can simply introduce a
regulaxrizing factor which has the same effect as noise in
that it filters the higher fregquencies of the solution
{(Rummel et al. 1979). A seriocus difficulty with the usual
collocation is the sheer volume of the computations,
increasing with the cube of the number of the data.

Hovever, with specially gridded data which are then amerable
to very efficient computational algorithrs, Colombo (1979)
demonstrates the applicability for highly detailed global
solutions of the gravity field.

. Aside from collocation, other frequently discussed, more
deterministic, methods of downward continuation rely in-one
way or another on the inverse of the solution to a
boundary~value problem, either Poisson's integral- (first,
boundary-valme problem) or the Pizzetti-Stokes formula
(third boundary-value problem); both formulated on the
supposition of a spherical earth. When regarded as formulas
relating the sought after sources that produce the observed
data, i.e. as formulas for the inverse problem, they become
Fredholm integral equations of the first kind. Their
solution is usually found by successive approximations, but
because it is unstable, the iterations may not converge.
Assuming a spherical earth, the Stokes “integral equation®
is readily solved, yielding the inverse Stokes equation
(Molodenskii et al., 1962, p.50). Most treatises on
applications of downward continuation were predicated on
airborne measurcments of gravity and made use of the Poisson
integral, but only for local deterainations; see for example
the works by Schwarz {1973) and ¥oritz (1966a}.

Finally, vwe note a method of downward continwation that
is founded on the usuval technique for analytic coatinuation.
Because the potential of the earth (without atmosphere) is
analytic everyvhere above its surface, the dowaward
continuation from the bounding sphere is theoretically
achievable using a Taylor series expansion. That is, given
the potential on the bounding sphere (as a series), we XKnow
also its derivatives. Hence, the Taylor expansion about a
point on the the bounding sphere can be evaluatéed anywhere
vithin the sphere that excludes all singularities of the
potential; i.e. the sphere that is centered at the expansion
point and just touches the earth's surface. This method was
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briefly developed by Hotine ({1969, pp.¥72-173), but its
applicability seems uncertain. Continvations of 3 to 25 kn
.using Taylor series require fairly accurate evaloations of
the {(radial) derivatives of the potential. However, with
only a finite number of harmonic terms in the series, the
derivatives, particulariy of higher (> 1) order, will suffer
considerably from the truncation effect, as well as randoa
errors in the high degree coefficiernts.

1.3 preliminaries and Definitions

There are certainly many additional aspects to the
problem of using satellite derived data for terrestrial
applications. 1In the first place, the potential will not be
observed lirectiy. The neasurements at the satellite
altitude will consist of either satellite to satellite
Doppler tracking data or gradicmetry data. Thé former
provides velocity differences, hence potential differences,
between tvwo satellites (see Hajela, 1978; Rummel, 1980;
Schwarz, 1972), while the latter yields linear coambinatioans
of components of the gravitational gradient tensor (see
Reed, 1973; Rummel, 1979). Secondly, for global coverage,
the satellites must follow near polar orbits thereby
creating a nonuriform data set with heavy concentrations at
the poles. In order to petrform a spherical harmonic
analysis, the data must exist on a sphere (see below), but
the satellite orbits cannot be exactly circular (the
satellite moves in a noncentral force field). Fiamally, the
earth's potential field is not stationary in inertial space.
It completes one full rotation every 24 hours on an axis
that wobbles due to precession and nutation, as well as
polar motion. %Therefore, the raw data must undergo
considerable preprocessing in order to obtain unifora or
specially gridded coverage on a sphere that is fixed in the
earth®s gravitational field. These preparations in the
determination of the final product are beyond the scope of
the following analysis, since they depend primarily on the
type of satellite mission. Furthermore, it is assumed that
the potential is available for downward continuation in the
foram of a (finite) spherical harmsonic series. We note that
the analysis of spherically distributed discrete data is
corrupted by aliasing, the influence of the higher frequency
content of the data on the desired harmonic coefficients.
This effect can be minimized by using optimal estimation
techriques (see Coloabo, 1978).

The downward continuation error in the present context
refers to a deterainistic error, as opposed to a randoa, or
probabalistic error. Given the potential, defined
everyvhere in space, and its series representation in a
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region of convergence, one can define this error precisely
as the difference between the truncated series continued
beyond the region of convergence and the true value of the
potential. This definition has the dlsadvantage in that it
includes a type of truncation, or omission, error, i.e. the
neglect of higher degree information, which has nothing to
do with series divergence. The alterhative definition, as
the difference bhetween trurncated inner and outer series,’
however, seems even less agreeable, since the inner series,
in our case, is not the spectral representation of the
potential. <Consequently, corresponding terms of the two
series are not comparable.

At present we lack the resources (primarily a
sufficiently accurate series of the potential determined in
outer space to high degree) to conduct an analysis of the
downward continuation with actual data. The patural
alternative is to devise an earth model with a complexity
that adequately takes into account the anticipated advances
in deteraining series expansions in space.. Ideally, the
potential of this model should be known exactly on the model
surface and be expandable in a series that diverges below
the bounding sphere. Instead of exact values on the
surface, an inner series may suffice if it can be expanded
te a high degree.

From the mathematical standpoint, the spherical polar
coordinates r, @, A lend themselves most conveniently to
formulations on a global scale. ¥ith respect to the
Cartesian system of coordinates x,y,z, I is the radial
distance from the orlgln, & is the polar angle measured
from the z-axis, and A is the angle (loncxtude) measured
counterclockwise in the xy-plane from the x-axis:

X = rsind cos A

i

y r sin® sin A (i.1)

L

zZ r cosb

In geodesy, the second coordinate is often the latitude, but
then is usually the coordinate in an ellipsoidal system of
coordinates. All derivations in section 2 are performed in
the above spherical coordinate systenm.

The soluotions to lLaplace®s equation (which is satisfied
by the potential in free space) are the solid spherical
harmonic functions of degree n and order m:

" T?nm(e,l) s r-(n+1) v_fnm'(e’}n » 220, -n<m<an (1.2)
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the first when the region of harmonicity contains the
origin, and the second when it contains infinity. The Yo
are known as surface spherical harmonics and are defined by

-5 ycos mA m2 0
EANCITO N P || (c080) { m < 0 (1.3)

sin|m{Ax , i

This departs from the more conventional definition adopted
by sathematicians (see Cushing, 1975, p.158) where the
inconvenience of separate definitions for negative and
nonnegative orders is avoided by using the exponential
function '™ instead of the sinusoids; however, (1.3) is
nore customary ir physical geodesy. The P, are the
associated Legendre functions, normalized such that the
1ntegral of the square of surface harmonmcs over the unit
sphere is 477 . Purthermore, the functions Y,, are
orthugonal, i.e.

1 : - _ 11 n=p and m=gqg '
-Z-’;[G ¥ (8,0 ¥,q(8s20do = {5 I n#p or m#q (1.4)

where do =sind d9 dA and ¢ represents the unit sphere; and
they fora a complete set of basis functions. This means
that any continuous function P{©,x )} defined on the unit
sphere, that is, for 0 £ © £ and 0 &£ A £ 217, can be
aniquely expressed as a uniformly convergent series of
spherical hamorics:

. o  n
F(8,)) = ngo m«-'}«—n fnm nm(e ) (1.5)

' wvhere (by multiplying both sides by I ..+ integrating over
ST and noting (1.4))

o

- _
fom = I Uf F(8,0) ¥ (8,\)do (1.6)

The corditionr that F be continuous can be relaxed to P being
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Lebesgue integrable, but then the series (1.5). does not
always. converge to F. The operatiomn (1.6), resulting in the
coefficients f,,,, is known as the legendre transform and the
coefricients constitute the (Legendre) spectrum of P. 1In
view of (1.2), the extension of an harmonic function into
{the exterior) space is :

ot n

= R yn+1 |
F(r,e,}) ngo mmiun () fom Tom(052) | (1.7)

vhere R defines the radius of the sphere on vhich P has the
spectrun {fgg} (see equation (1.6)). If the spectrum of P
is determined in space, then "downward continuation™ simply
means a decrease in the variable r. Also, the spectra of F
on two different spheres, of radii R, and R,, are related by

fg;) 2)’”’1 (2) (1.8)

provided that the series converges on each sphere. It is
cbvious from (1.6) that the definition of Legendre spectrua
is not restricted to functions defined on a sphere. The
surface can assume any shape as long as to each coordinate
pair (@, A) there corresponds a unique point of the
surface, and vice versa. Of course, if a function is
defined in three dimensions, then its spectra with respect
to a sphere and some other (ronspherical) surface are not
comparable.

This introduction to spherical barmonics concludes with
a statement of a very useful formula, the addition theoren
for Legendre polynomials:

1 T 3
pn(COSll)) == m mnz_n Ynm(e,k) Ynm(e',l') {1.9)

wvhere ¥ is the central angle between points (6 ,A) and
(6'4A') on the unit sphere, and where the P, are the
familiaxr Legendre polynoaials.

We follow Hobson (1965, pp.89~90) in the definition of
the associated Legendre functions. For any complex o not
on the real line segment [-1,1], '
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m o im 4™
PG = (u>1) v P () (1.10)
m _ im d™

Q (1) = (W?-1)*" —— Q)

al™

where the QF, ¢, are the Legendre functions of the second
kinrd. - The Legendre functions with real arguments Mm=cos 8 ¢
[-1,1] are then defined by

pﬁccose) = (xi)" Pﬁ(cose +0 1)
(1.11)
= (£0)™ 1im PM(cosgtyi)
y+o B

The right side of (1.11)_is'the limit through the complex
plane onto the line segment [ri,{] and is found to be

m
sin®s f_EgmmE;pn(cose) (1.12)
d(cos 8)

- Plcostx 04) = (21)®

and similarly for Q, so that

_ . m
Pi(cose) = (-1)m sinme -—wgw——— P (cos9)
m “n
, d(cos 8)
o dm {1.13)
Qn(cose) = (-1)"™ sin™g

Q. {(cost)
d(cosefn n .

Lefinjtions (1.7) and (1.13) hold for any n,m, but we
consider only those functions for which #,2 are nonnegative
integers with 0<£wm %£p. Finally, we apply the required
normalization:

(2n+1) (n-m)!
'-em(n+m)!

= - . . .
Pomw) = (-1) P () , for all u
| C1.14)

= N m {(2n+1)(n-m)! .m :
Qnm(u) = (-~1) ﬂv[ c_(atm)! Qn(u) » for all u
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(1.15)



2. The Downward Contingatior of Spherical Harmonic Series

Although the problem of convergence and divergence has
generally been recognized, more attention has been paid to
the theoretical concerns than to a numerical analysis of the
sitwation in pratice. 1 passing, conjectural, comment by
Cook {1967) suggests that the effect of dlvergence on the
n-th degree coetfxcxent is on the order of 37 for the
potential and J, for the gravity anomaly, where d, is the
n—th degree zonal harmonic coefficient. The notable works
in this area are those of Levallois (1972) and Sjdéberg
(1977) . Theéir numerical results derive from the postulated
effect, on the series expansion, of the masses between the
bounding sphere and the sphere of computation. With several
approximations, Levallois estimated these effects over much
of the earth's surface for expansions of the geoid
undulation uwp to deyree 200. Fe obtained errors of a few
tens of centimeters with the exceptional meter in egquatorial
regions, even for low degree expansions; several meters in
the mldlatitudes, generally for all degrees of truncation;
and up to 16 m in polar regions for the high degree

.expansiona Sjoberg s analysis is restricted to expansxons

up to degree 16 and 24, but enlarged to include the errors
in gravity apomalies. His results show errors as large as
0.5 to 5 m depending on the complexity of the earth model,
as well as the point of computation. Downward continuation
errors in gravity anomalies were found to be extraordinarily
large, in some instances on the order of the anomalies
themselves (up to 30 mgal).

These results for the gravity anomaly are unacceptable
as we have only to compare the GEN9 harmornic coefficients
{derived solely from observations of satellite orbit
perturbations, Lerch et al., 1977} and coefficients derived
fros terrestrial data. BRapp (1978) fourd an RMS (root mean
square) difference in the two expansxons {ap to degree 20)
of 7.0 mgal. He also coaputed an RHS difference of 9.1 m in

" the expansions of the geoid undulation, rather high, but

more likely due to measurement errors than the divergence of
the series.

Ar appraisal of this method of estimating the downward

continuwatior error, given in section 2.2.4, suggests that it
is an unbuxtable nethod on account of the simplistic density

18



19

hypothesis of the intervening masses. 2Also an attempt is
made to explair the irreconcilable downward continmation
errors of the gravity anomaly, mentioned above. In section
2.3 we embark on a similar course to ascertain the effects
of series divergence, but now with a firmer control on the
generation of the earth's disturbing potential. Results
from a subsequent numerical analysis agree generally with
expectations based on the discussions of the following
section.

2.1 simple Mass Pistributions

| A study of potential series corresponding to simple mass =
distributions will illuminate some of the broader aspects of

the harmonic series behavior of the earth's potential. 1In
order to drawvw definite conclusions on the partial sums of

‘the series, the mass distribution should be sufficiently

elementary so that 1). the surface separating regions of
convergence ang &1vergence is well defined, 2) the series
for either region is calculable to arbitrarily high degree,
and 3) although it is not essentxal, a closed formula of the
potential is available to check the numerical computations.

The following "experimental mass distributions®™ are not
designed to simulate the earth'®s distribution of nmass;
hence, any of the specific quantitative results obviously do
not hold for the earth. Infinite series will be developed
for both the potential and the gravity anomaly since they
are associated with different rates of convergence.

In the usuwal spherical coordinate system (1.1}, coasider
an infinitesimally thin layer of uniform density distributed
in the fore of a circular disk on the equatorial plane
® =90° and centered at the origin (see Fig. 2). The
constant density is X and the radius is denoted a. For any
point P, the potematial due to the attracting mass is

a 2m +
v =V - rdaAdr
D (r p* 80 ) K)(r£0 g;o ——T {2.1)

vhere K is the constant of gravitation, and

- . T . '! - . _ .
2 er T erp cosy 3 cosy s1nep cos(} Ap) (2.2)

Because of rotational symmetry, we may choose A =0. The



FPigure 2: Equatorial disk density distribution.
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integration with respect to r is easily performed:

2n : '
- ' : Latka~rncosy
V_=x L wr 4+ D
p X fo [tg -3 p~ ’p cosvin Tp-Tp, COS ‘5_]& (2.3)
where
i e 2 2 - '
a vaz+ rp 2arp cosy (2.4)

as reference, we choose the potential of the entire mass
concentrated at the coordinate origin:

p = . (2.5)

{2.6)

. . _

_ : - Lo+a~-Tp cosy - kma?
= - + 2 D -

2¢ ¥ fo (2, T, T, cospin F T, cosy }d)\ .....1.:.....2&

5 -

vhere because oi symmetry, the integrals over -the 1ntenvals
(0,7r) and {(m,.27) are identical.

The series expansions of V are obtained by substituting
into the integral (2.1) the uniformly convergent series for
the reciprocal distance:

o3 n
2 n£0 ;+1 n(COSW) ’ rp > r (2.7)

for the outer series, and

s n+1P (cosp) , Ty < T (2.8)
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for the inner series. We find for > a
= Ip +2.
V, =KX 20 —B, (---)“ J7" , (cosp)an (2.9)

Now the addition theorem (1.9) provides the integrals of P :

2n T 1 T 5 2“ o
_jo P (cosyidr = 2n+1m=z-n Y m (85 0) jo Y n(3m,20dn
Y p' =
= gy n, (cosep) Pno(O) ‘ {2.10)
siﬁce
Vi _ ‘ o
fo Ynm(%ﬂsk)dl =0, m#0 (2-:-11)
Now
P (0) = 0 s D 1s odd )
n N (-1)%“13 5. . . (n-1) (2.12)

n is even
2*" (B, ’

and the series expansion for Vv beconmes

v o y a 20t :
= KX a (=) U P, (cos . .
P nso  Tp n Popf ep) (2-13)
wvhere
o= 1 P, (0) : UH_ _ _n+3 u > . _ 4
n 2n+2 2n ) n+1 = THEL TN y I O up=% {(2.14)

The disturbing potential is sinply



23

o
T = 2rky a (2.$o+l | p 6 2.15
P X n§1 rp)z ~ ¥a Pan(e0sfy) .y 22 (2-1)

. For poxnts jinside the boundxng sphere, ve decompose the
integral (2.1 into the two parts for which the series (2.7)
and (2.8) respectively converge:

3“ s % r n+l
Vp - KX Iu {fo n£0 (-I—‘-l;'—fl Pn(COSF’))dr -+
a
+ f )jo (-l?)n P (cosy)drldA
r n= )
p (2.16)
@ 2% - o '
merp n-“z-O J’o [—f}:ﬁ— ﬁ—?-_—f ((_E,Q)U 1-—1)] Pn(_coslP)ld?\.-l-
n#l :
2r

KX 1 2
+RX T, [ B+ rp] cos¥ dA

The ‘last term vanishes; and with (2.10) and (2.12) we obtain

S . ; _
V, = 27 XTI } rdn+l 2n+2_ (Tp,2n-1,

n=0 [211-1 ." 2n-1 ‘a . d¥g PZn(cosei_})(.’Z.ﬂ)

The disturbing potential, with respect to the reference
potential (2.5), is
o
; 4n+1  2n+2 ,rpn.2n-1
= it 9.2 -
Tp 2% KXY rp ;Z { 213. 1 n-1 ( Py ) }un Pn(COS Gp)
n=0 (2-18)

2
Kra’ X , r.<a
I‘p P

That this series conver?es for ro <« a is obvious once we
recognize that W,=0 (n’¥?) since Pz,n(cose)d.o(n"h}_

For the present purposes, we may adopt the following

definition of the gravity anomaly (Heiskanen and Moritz,
1967, p.8Y): '
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kpplyan (2.19) to (2.6) and omitting the tedious
derlvatlons, the closed form for the anomaly is found to be

2 o ‘ :
Ao = B TKkxa’ _ - e atla-rpcosy
g, wKY + ”ﬁﬁfm 2Ky & [3cosPin I'p~Yp COS U N

4+ 3rp+24 -5rpa cosy In‘rpcosw--(aﬂhﬂa)cos?"\p]dA (2.20)
a

rpla a+£a-rp cos Y

Because surface layers generate potentials whose derivatives
are discontinuous as they eross the surface, expressiocn
(2.20) is valid anyuhere except on the disk.

The definition (2.19) applied to the series for the
dlsturnlng potentlal, (2.15) and (2.18), yields the outer
and inner serleb for the gravity anomaly:

i

Ag.

) |
; a.2n+2 ‘
p = 2mex I (el (B ey (cose) x> s (2.2

n=1

m W
, - + 2n-
n:.'.

(2.22)

+ wxx(ﬁ%—f » Ty < A

The term by term differentiation of the series (2.15) and
(2 16) is permitted since the series of radial derivatives
is uriformly convergent with respect to. Ly

Another simple mass distribution, which approaches that
of the earth, is a hoaogeneocus ellipsoid. In order to
evaluate the coefficients of the series expansions exactly
and, more importantly, so that the bounding sphere is the
surface of convergence, the ellipsoidal surface is broken
into latitudinal bands of constant curvature, each 5° wide,
giving it a serrated appearance (see Pig., 3). The potential
at a point P due to the smooth e1119801d is given by



Figure 3: Serrated homogeneous ellipsoid density
distribution.
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. Ts o1, )
Vp = KX fc] fo. 4 r? dr do (2.23)

where ¢ denotes the unrit spheére, do =sin® 39 dA , and where
Ts =, {©) is the radial distance to the 91119501d surface.
with the lntroductlon of the serratlons,

: 2N-1 27 ai+1 Taq 2
Vo=xx 3 [ [

P i=0 4] ei ] 2

sinededx  (2.24)

where 6;=140, i=0,...,2N-1, §=90/46 , and rs; =7, (6;). Only
the inner 1nt9gral can be evaluated in closed form, thus

‘precluding the computation of exact values of the potential

and gravity anomaly. The derivations of the series are
completely analogous to those of the egquatorial disk and are
relegated to Appendix B. The final results are given by
equations (B.7),(B.8) for the potential and (B.9), {B.10) for
the gravity anomaly.

For the numericul tests, the eguatorial disk was given a
radies of a=637810 mn and a uvniform density of X =3x10%
g/cw*. Similariy, a=6378140 m was chosen as the equatorial
radius of the homogeneous ellipsoid. The centers of the
latitudinal bands, each a® =5° wide, lie on an ellipsoid
with a flattening of £f=1/298.257; and therefore, the
corxesponding radii of these bands are computed according to

— a
r . =

S1  Tariag g : 2.25
n 1+e'? cos 63541 | ( )

where i=1, ..., 17, and e’ "1/{1~i) ~1. The homogeneous
density of the ellipsoid was equated with the average
density of the earth, X =5.5 g/cm®; and K =66.7x107?
cm/{g.s*) was adopted as the counstant of gravitation.

The differences between the resulting partial sums of
the series (2.15), (2.21), (B.7Ty, and (B.9}, as functions of
the truncation degree, and the corresgondlng true values are
shown in Pig. 4 for r,=6377200 m, 6, =772 5 (near the
equator) and in Fig. 5 for r,=6357200 m, ©, =725 (near the
peie) . Both points of evaluation (r,,8,) nere selected
below the sphere of convergence, so that each of the series
aust diverge in the limit. (Using Ecker's theorem (see
section 1.3, it is possible to prove that the bounding
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sphere of the ecnatorial disk is also the surface of
convergence. & simple proof of the divergence inside the
houndlng sphere of the serrated elllpsomd was not found, but
it is verified by Figures # and 5.) The partial suas, belng
in any case discrete functions, were evaluated in steps of.
20 (Fig. 4) and 300 (FPig. 5) degrees and connected by
straight lines for clarity, bat thereby also smoothing their
strong oscillatory behavior. The true values (not shown) of
the potential and gravity anomaly were provided by formulas
{(2.6) and (2.20) for the eguatorial disk and by the inner
series (B.8) and (B.1) for the homogeneous ellipsoid
(truncated at n=i=30000). In the figures, the value
immediately above each zero, related only to it, indicates
roughly the range of the oscillations over the given domain
of truncation dedrees.

A study of these graphs reveals several interesting
aspects of harmonic series divergence. The most obvious
conclusion is that the more distant the point of evaluation
is from the sphere of convergence, the more severe is the
divergence of the series. The series near the pole shows
definite signs of divergence around n=1200 to 1800, while
the series near the equator had to be summed to h » 15000,
~and higher for the potential, in order to detect a
significant divergence pattern. Also, for low T, the
deviations from the true values actually decrease with
increasing truncation degree before they start their
eventual, unbounded, increase. This is particularly the
case for the potential, even in the worse situation at the
pole. The distinction between truncation error and downward
continuvation error {(due to divergence, see section 1.3)
thereby becomes exceedingly nebulous for the lower degree
sums. Whether a coaparison of these partial sums with those
of the inner series gives a better indication of the
downward continuation error is questiocpable for lower degree
expansions, since this type of comparison is associated with
.other irnterpretive problems, as discussed in section 2.2.2.
The difference betwveen inner and outer partial sums, shown
in Figures 6 and 7 for the same two points as above, does
indicate that some of the trurcation effect is common to
both. This is particularly the case for the equatorial
disk, less so for the ill behaved series of the ellipsoigd.
Connected with the overall delay in divergence is the
difference in behavior between the potential and anomaly
series. Since most of the power of the potential is
concentrated in the 1ouer degree harmonics, the divergent
character of the series is apparent somevwhat later than for
the anoaaly, its power being spread more to the higher
degree terms (i.e. it is essentially the derivative of the
potential). These conclusions hold equally for both density
distributions, but are clearly more vividly depicted for the
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eguatorial disk. The spikes in the graphs corresponding to
the homogeneous ellipsoid are undoubtedly due to the
salience of the bounding surface. '

The comspicuous oscillatory character of the partial
sums is evidently attributable to the syametry and
homogeneity of the density distributions. However, some
type of irreqular oscillation of a full spherical harmonic
series should not be excluded. Figure 8 shows the partial
sums of a gravity anomaly series derived from the {180,180)
harmonic coefficient solution of the earth's gravity field
(Rapp, 1978) and randozr higher~degree coefficients that were
scaled to decay according to the Tscherning/Rapp degree
variance model (for more details, see section 243.2). The
sums were evaluated (using an egquation such as (2.50}) up to
degree 1500 at a colatitude of 10° (mear the pole) for

various radial distances. Unfortunately, because of
~ inevitable constraints inp computer storage, and also time,
such computations are feasible only for polar latitudes
vhere the (normalized) Legendre functions of high order are
virtually zero and can be safely neglected. On the other
‘hand, since the true value of the anomaly below the
- convergence sphere cannot be known, this graph is almost
useless for quantitative assessments of the downward
continvation error. The intent of Pig. 8 is to illustrate
the tendency for oscillation of a divergent series, as well
as the very amoderate effect of divergence for degrees of
truncation less than 300.

2.2 The Volumetric Density Hodel

—— —— A, -

2.2.1 The Derivation of ¢ Error Series

At

The masses of the earth gemerate a potential whose
gradient is the attractive force field postulated by Newton.
It can be shown that this Newtonian potential at a point P
is the sum of all attracting rasses, each divided by its
distance from the attracted point P. Pormulated for a
nondiscrete mass distribution, the potential V, is

V=« Is!zf% an (2.26)

K is Rewton's gravitational constant, O is the (three -
- dimensional) volume containing the mass distribution; u is
the density function; 4dQ is an element of volume, so that
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the elemental mass is wd{l; and L is the distance between
the attracted point P and the attracting mass x d{l. The
only restriction on the density ., foxmulated in the
context of modern potential theory, is that it be Lebesque
integrable (Wermer, 1974); hence discontinuity of w« on a-
set of measure zero is permitted, but the total mass must be
finite. Without significant loss of generality we will
adhere to the classic requirement of piecewise contlnulty
- and boundedness. The integral expression above for V is
valid anywhere in space (i.e. it can be shown that it
converges to the potential everywhere, even where the
integrand is singular ({ =0), see (Kellogy, 1953, p.151)).
Gur interest lies only on and outside the suxface that
bounds all generating masses, viz. the earth's surface.

The expansion of V into a series of spherical harmonic
functions can be founded directly on its being a solution of
Laplace®s eguation. Alterpatively, to give a physxcal
meaning to the ensuying coefficients of the series, the
potential 1/f ({generated by a point of mass 1/x ) is first
expanded as a spherical harmonic series (equation (2.7)).
Upon the substitution of (2.7) into (2.26), the integration
may be performed term by term to yleld

K
v = SR,
P Yp on

fe~18

féf u(r,8,0) ()" p_(coshan (2.27)

0 p

The validity of this expression is guaranteed only for
points outside the bounding sphere S, (see Pig. 9). In
{2.27) r is the radius to the volume element
dQ2=r*sin® d8 dX dr, and cosy is now

cos¥ = cosd cosep + sind sinep cos(l—lp) (2.28)

The gotential at a surface point P below the bounding sphere
can also be represented as a convergent series by
conaxderlng separately those regions for which the series
{2 7} and (2.8) are respectively comnvergent:

o rg .
v, = {}. YO If [f u(-) r? dr + [_ U(%P)n+1 r? drj.
p n=0 a r ‘ (2.29)

~Pn(cos¢0dc



Figure 9: Sphere of computatior versus bounding sphere,

35



e i g L e T e o

36

where c‘ denotes the unit sphere, do =s5in® d6 dA , r, is the
radial distance to the earth's surface, and rmmln(rs,r,).‘
Note that rg is a function of (®,A ), as is T which denotes

~the radius either to the sphere of computation or to the

earthts surface, whlchever is less.

HSJng the addition theorem for the Legendre polynomials
(1-.9); the potentlal Vo, for points above the bounding
sphere, can be expanded as follows:

v - _i% nzo i1 B L mj-n I ARCIROIEL R ARCHR NS
) nzo mjin (Ef%}n+luvnm i-.{l'llll(ap’kp) | (2.30)
where
Vom m!f{ u(--»-—) (8,1) do (2.31)

and where R is the radius of the bounding sphere S,.
similarly, the expansion of the potential at P imside s, is

w0 n ‘
Vv = 3 Yoov (x ) ¥ (8, ,) ) (2.32)
p n=0 m=-n =" P nm® pr P -
where
T n+2 n+1
_ K T
v m(rp) = m jcf [J’o M o dr + j_ u *—T dr)
P {2.33)

Ynm(e,k) do

The "coefficients® ¥V, are functions of r,; note that for
r >R
P

n+1
(r ) =« p) Vom (2.34)
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Hence, the expression {2-32) is valid in all of the exterior
space. We note also that the series (2 32) for r,<R is not
a series of solid spherical harmonics, nor is it an analytic
representation of V everywhere above the sphere of radius r,
because the potential has discontinuous second derivatives
on and inside the earth's surface.

In current practice the expression (2.30) for V¥,
(truncated at n=n) is used anywhere above the earth®s
surface (even inside S,). The difference between the
computed potential (equation (2 30) with oo replaced by 1)
and the true potential (Z. 34) is the total error of
computation:

Vy=v -
e ( p) Vp Vp
n n
- R \n+1 =
1 mg_n[(rp) nn™ Vam(Tp)1 Tpp(8,.20)
3 T o= | (2.35)
) n2%+1 mgin‘vnm(r ‘ Ynm p'tp) |

(? } here is called the downward contlnudtlon error. Nost
anthors identify only the first term as the downward
contingation erxror, imn which case the second tern,
representing the neglect of more detailed information, can
be called the truncation error. However, for reasons to be
elucidated below, the first definition is tc be preferred
and will be adkered to in all snbsequent discussions. HNow,
the coefficients of the error series (2.35) for G2£n¢n are
given explicitly by

w ¢ R \D+L -
anm(rp) = (;;9 vnmwvnm(rp)
n+2 r _n+2 '
= K s I T
Cor_(2n+1) {4 {Ig H= dr«-fo | dr (2.36)
B o] r T
p P
Ty rn+1 _
- I; “;L"n-l dr] ¥,,.(8,%) do

The first and second terms differ by an integral of the
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density in the shaded portion of Pigure 9; therefore

o yat+e _ (T n-1
2am{¥p? = o ” f p - (P dr .57
Y m(B‘,}\) dg

A simjilar derivation can be found in {Sjoberq, 1977 Coock,
1967)

in the strictest sense, the computatlon of the
coefficients a, m (Ep) s 0‘»n‘-n, requires a knowledge of the
density of the ‘asses between the computation sphexe S, and
the earth®s surface; to assess the truncatlon error, ve need
estimates of the coefficient functions ¥, - {Fg)  {or the
density function of the whole earth).

Because the earth is nearly ellipsoidal in shape and its
internal density, on a large scale, exhibits approximately
ellipsoidal symmetry, the earth®s gravity potential, as a
matter of convenience, is described with respect to the
potential of a rotating equipotential reference ellipsoid,
which accounts for the coarse features of the gravity field.
How this reference potential, designated U, is chosen is
irrelevant for the problem at hand provided it can be
calculated precisely either in closed form or as a
.convergent series anywhere on and above the earth®s surface.
To simplify subsequent definitions, we alsc stipulate that
the potential on the ellipsoid eguals the geoidal potential.
U includes the centrifugal potential arising from the
earth®s rotation, which therefore does not contribute to the
disturbing potential. An expression for_U is found in
{(H{eiskanen and Moritz, 1967, p.67}). If U denotes the
gravitational potential of the rotating ellipsoid (i.e.
githout the explicit centrifugal part), then the disturbing
potential is given by

T =V -0 (2.38)

since the centrifugal potential has been omitted in V. By

expanding the normal potent1a1 in a series, we have froa
{2.30)

R R \n+1 %
T = £ ) o;;) tom Ynm<ep Ap) (2.39)
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vhere t,,, is the difference between vhm and the
corresponding coefficients of B. since UF is supposed to be
known everyvhere, the error in downward continuing a
truncated spherical harmonic series of T is

e(Tp) = 8(Vp) _ .. (2.40)

where C(Y } is given by (2. 35).

The most uhlqultous quantlty in physical geodesy is the
gravity anomaly, simply because the force of gravity is most
readily observed. 1t is defined (when there is no mass
external to the geoid) by

Ae = glgeota = Ylerripsoia o (2.41)

where g is. the :agnltude of the earth's gravity vector on
the geoid and y 1is the magnltnde of the gradient of 0 on
the reference ellipsoid (see ibid. p. 83). This definition
is easily generalized to gravity anomalies in the external
space of the earth, where geoid and ellipsoid are replaced
by geopotential'and spheropotential surface, the potential
of both surfaces, in their ‘respective fields, being
identical. Approximating y by the gravity of a homogeneous
ball and the normal gradients by radial derivatives then

yvields
I
r

2.7
D Ty

(2.42)

Por a quantitative analysis of these approx1aat10ns, see
section 4.

The corresponding spherical harmonic series of Ag may
be found as follows. Substituting the radial derivative of
the reciprocal distance 1™ (see (2.2))

o -1 _ ~=rptrcosy
-g%—_ﬂ = e : (2.43)

into (2.26) yields
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_ T'p-T cos ¥
- - xfff wiEeste 2-44)

Thus, combining (2.26), (2.38), and (2.82), the gravity
anomaly for any point P becoaes

o .
= K fff u[—2 rcosw o7 -1d + %gw-_-; Up (2.45)

Differeniiating {(2.7) with respect to T, results in

r%I'coﬁf”'Tn) =~ 5§ (n+1) (ﬁl)n+2 P,(cosyp) , r

L n=0 o p

> T (2.46)

51mxlar1y for r < r, differentiation of (2.8) with respect
to r, gives

2 o oo T .
rp(?nlsrcoaw - E n(??0n+1 Pn(co&p) ’Ib < r (2-.47)
2' t—4

Substituting the above series, as well as (2.7) and (2. 8}
1nto {2.45):

0

Mg, = “52 {fff u(n-1) —— n+2 P (cosy)da +
P

3 (2.48)
- jjf p(n+2) ~B— s Pn(co§¢9 g ] - G

where

2 = {(r,e,l)ﬁ/rp >r} , @, = {(r,8,}) /rp < r} (2.49)

and where G, =- dﬁ/”arp 2ﬂ/rp. We note that for points P
ahova the boundzng sphere, the set (), is eapty and (), =Q1:
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then with the addition formula (1.9) we obtaxn the famlllar
series expansion

L

I} t~18

Ap = (Byn
gp rp vnm nm(ep’kp> p

n=0

. .
R yn+2 ¥ (2.50)
jin (Tp) €am’ Tom(Ops2p)

i
He—18

n=0 m

by absorbing the expansion of GP' so that

n--it
R “nm (2.5%)

Pt
=

gnm

The error in using a truncated version of this series
for points on the earth®s surface (i.e. below the bounding
sphere) is therefore the difference between equation (2.50)
{ o replaced by ©) and the true expansion (2.48):

n+2

e(Ag.) = x {fﬁ [(n-1) stuol—'-) dr
p n=0 ¢ r T

p

ry R
+ (n+2) ]__S u(I-.-g—)n":L dr] P_(cosy) do
T

@ T
-x 3 teen [ouE"2 ar
n=u+1 ¢ * Tp

(2.52)
Fs  rp.on-1
- (o+2) [_© u(5®) dr] P, (cosy) do
r
Then with the addition theores,
-y Y3 6_,A.)
s(Agp) = n£0 miln dnm(rp) Ynm( PP
& n

(8_,A ) , (2.53)

+ Z 2 nm(rp) Ynm p’'’p
n
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vhere

2+ (nk2) Ry ey

(Z.54)
Ynm(e,l) da

a_ <r>-‘~3;1-fff [@-1) (&)’
, p

and

- R n+2 n-1
nm(rp) (-1;;) B Vom * dnm(rp) (2.55)

{(2.55) can also be verfied by adding anﬁ subtracting the
densxtg integyral over the regxon £, ¥e note that for
r,> Rk, ,m(r )} =0 and the remaining error is simply one of
txuncatxon. -

Similarly, the geoid undulation (or more generally, the
height anomaly, i.e. the separation between geopotentlal and
spheropotential surfaces at the same potential) is given by
Eruns?* formula (Helakanen and Moritz, 1967, p.85):

tp =T
Q

{2.56)

wvhere ¥¢ is the normal gravity at the point Q, being the
normal projection of P onto the spheropotential surface.

¥ 1is conventionally approximated by its average value on
the reference ellipsoid. Here, we use a common alternative,
namely the gravity, at P, associated with an homogeneous
ball: Yo =uM/xry (4 = the total mass of the earth); see
section 4. We then have

r27
tp * e : (2.57)

and for points P above the bounding sphere

1 R nwl S
u;n §; “nm Ynm(ep,lp) (2.38)
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where

. R
“nm KM Tom: ‘2'59)

Osing only the terms up to degree n to represent the helght
anomaly at the earth's surface results in an error given by

2

= S(T,) (2-60)

€(gp) =
where 5(§P) is giveﬁ by (2.40).

2.2.2 The ;ntergretation of the ggror'Series

The proper understandlng of any numerlcal computations
-of errors such as (2.35) or {(2.53) conmes only with the
correct interpretation of the true series expan51on, such as
(2.32) or (2.48). Coansider, for example, the potential
series (2.32); the same arguments obviously hold for the

- gravity anomaly. Recalling that R is the radius of the
boundlng sphere S, the potential in the space exterior to
S, is given by the uniformly convergent series (2.30). The
coefficients v,, have either of the following
interpretations. Pirst, they are density integrals, as
given by (2.31). Secondly, they constitute the spectrua of
V or the bounding sphere S5, (cf. (1.6}):

Voo = é% ff vr,8,0) ¥__(8,2)do - (2.61)
o)

The expansion of the potemtjial in spherical harmonics at
points below the bounding sphere is achiéved by considering
separately the two domains in which the inner and outer
series of solid harmonics converge. The resulting
vcoefficients® vmh(r ) are more correctly functions of r,
and in the first place are density integrals (equation
(2.33)). The ¥, d0 not describe the specttum of the
potential on the earth's surface. That is, the potential

- spectrum of constant coefficients obtained from surface
‘values, as suggested by (1.6}, and the functions V.. (E,) are
clearly pot identical. Instead, because the series (2 32)
converges everywhere to the potential V, even inside the
earth's body (Kellogy, 1953, p.151), the functions ¥,, (K,)
for constant r,=R, represent the spectrum of the potentlal
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on the sphere of radius R,, whether inside or outside the
ea;th's body; that is,

.y , _
m By ) = i éfV(Rp,B,A) Ynm(e,l)dc_ (2.62)

The term by term evaluation of the downward coantinuation
error; as given by equation (2.37), therefore does not
produce negative corrections to the spectrum of the
potential on the surface. We are forced to identify the
downward continuation error with the entire suam of error
components and on a point by point basis.

Obviously, evaluations of the infinite sum are beyond
our computational ability. HNoreover, the finiteness of the
number of harmonic coefficients of the potential determined
in space necessarily lisits our efforts to estimating mean
values of the pntent1al or gravity anomaly, and not point
values. This requires a modification in the formulation of
the downward continuation error. Consider first functions
defined on a sphere and define an (isotropic) averaging
operator by

,AY = [ B(yp) F(8,N)do (2.63)
C : ’
C

F(B

vhere P denotes the average of a function F over the
circular cap o = {{6,X}/0 ¢ =V¥,] and weighted by the
kernel B{v) . yrls the angle between the center of the cap
({8,3X) and the point of the integration (8,A ). Heissl
{1971, 9.46) shows that if the kernel's (one dlmeﬂsxonal)
spectrun is {/2n+1 B,/4%] and the spectrum of P is {f..},
then , .

nm = Bn Tym - - (2.64)

are the sgectral components of the average of P, that is, P.
In the terminology of spectral theory, the coefficients B.

are also known as the frequency response of the averag;ng
operaton (2.63) -

Applying thxs result in the present context, let ¥
denote ‘a truncated version of the general serles {(2.32),
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valid anywhere on or outside the earth's surface:

n ' -
gin Vam(Tp) Ynm(ep,xp)  (2.65)

For coastant T, =Ry, this may be interpreted as a weighted
average of ¥ over the sphere of radius R,, where the
frequency respopse is unity for 0 £n< i ard zero for higher
degrees. It is impossible to devise such a perfect response
for the usual average that is limited to values within a
cap. We consider instead the average

n
L By Vopl(ry) Ynm 8,03, (2.66)

where the weights have been chosen so that the fteguency
response is

By 50, n>n - C (2.67)

a value to which it tapers smoothly from a value of 1 at
n=0. As an average on the sphere of radiuvs r,, it is clear
that values of V¥ coincide with values of the potential
averaged over an area of the earth®s surface only if that
area coincides with the spherical cap. This is never the
case exactly, but it is a reasonable approximation if the
cap is small. The size of the cap for the average (2.66) is
essentially determined by the desired ™cut-off frequency™ 1.
Therefore, if the potential as determined outside the
bounding sphere is first averaged over a spherical cap, or
equivalently, its spectrum iz smultiplied by a particular
frequency response function, and the truncated series is
evaluated at the earth®s surface:

n
R \n+l .
=§ (;;) Bn Vom Tnm‘Gprip) (2.68)

then the Jownward continuation error of the average
potential V is (cf. (2.35) and (2.36))
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By anm(rp) Ynm(ap,xp)' (2.69)

1331

A 1
e(V.) = -
b n=0 mgin

A siailar result holds for mean gravity anomalies, as well
as mean height apomalies: : : .

n

A n
Ag.) = 3§ ) - Y, .7
£(Ag) n_i__o 'ma-z-n Bn dnm(Tp) Ypp(e,52,) (2.70)
= 2 ri n oo | - _
S Elgy) = ano Ty aan(ry) Tpplepany) (2.7

Uhétef&;ﬁ{:,} is given by (2.58) and in each case the
frequency response 3, is assumed to vanish for n> %
{(equation (2.67)).

An opeérator which filters higher degree harmonics nearly
perfectly is the Gaussian filter, its name deriving fromr the
shape of the weighting function ¥, (y), defined by

B.(p) = —2G ¥ O 2.72)
N PR | )
iy )ce
where

- 2 :
2 e day » for small gy

If ve define wé(\p)mo for ¥ > v, , then the fregquency
response is given by (see Jekeli, 1981)

B - 1_yoe—a(1"Y0) _ .};
Gl 1_6“3(1""570 ) a
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and

2n+1 | o2 (1-y,)
= - + + . ,
BGn+1 a BGn BGn__l lne...a(l_yﬁ . | {2 .7“)

* [Pn_l(YB) - Pn+1(YQ )} , > O

where y,=cos¥;. The paraseter %a"™ specifies the aaount of

smoothing. If we desire f3z=f, (e.g. £,=0.05 implies that

only 5% of the I-th degree harmonic coefficient contributes
to the average), then an approximate formula for *a% is

ﬁ2

IS YGVESD) | (2.75)

2.2.3 The Description of the Earth HModel

To evaluate the density integrals of the downward
continuation error regquires a sisplification of the earth's
surface, as well as the volumetric density. In the
simplifying scheme adopted here, the volume between the
sphere of computation and the earth's surface is partitioned
into (three~dimensional) blocks that are delimited on the
sides by O=constant, A =constant and on the top and bottonm
faces by r,=constant, r,=constant. Within each block the
density is assumed to vary only as a step function in the
radial direction and be otherwvise constant. The required
iithospheric (crustal and upper mantle) densities, as well
as the corresponding depths are taken from (Bomford, 1971,
p.457) and illustrated in Pig. 10. ¥With these assumptioans,
" the coefficients 4d,..(r,) of the Jownward continvation error
of the gravity anoraly (2.54) reduce to

- K 5 .
dnm(rp) = m z -Gn(rp,ei,l\i) I{E‘; ?nm(e,l)dﬂ {2.76)

i
where
I?Si[(n“i)(éé)ﬂ + (n+2)(%?)n+11nrzdr ,
Gn(rp,ei,ki) = i ‘ roi > r '
o , r.<r (2.77)
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Pigure 10: The volumetric density model" (density values are
in wnits of g/ca?).
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Defining for r > r_

b T \n ~\,T
Fn(ra,rb) = | [(nwl)(Eg) + (n+2)(3P)

Ty

B+lir2dy , n 2 0 |

(2- 78}-

= 3[<r‘°>“+3 - GRMI - R G
i n'7_>,_‘0_.,n'$2
e [(rb>5 " <»—a>5 Jtari iR, nez

a,

the funct:s,ons G, are given by ‘the. follmlng llnear
combinations (see Fig. 10)

Hi 20, rp<r1: Gn-—-u,,Fn(rp,rl) + uaFn(rl,rz} + uan(rz,rSi)-
H, 20, g rp<rz.=_Gn= uan(rp,nH HaF (2, ;)
HiEO, ras rp<rSi: Gn'_': uan(Ii)’rSJ>
(2.79)
H; <0, TSTs an-u;,‘Fn(rp,rs) +L’3.Fn(r'3’m_> tuF o (rysrgy)
H, <0, ngirﬁnu:an : paFn(rp,ru)?iian __(I‘z,,rsi}
3i<0, r’*<r;§:r51 G = uan (rp,rsi)

If p denotes the geocentric distance to the surface of a
reference ellipsoid, then the radii are computed as follows

91+N1+H1’H>0

i
pi+Ni :HiSO

b o
s
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2.80
r, = rgy - Hl - 40 km ¢ )
r, = I + 207 km
rs = r . - 11 km
si I Hi <0
ry = I'S‘i + Hi
where N; is the geoid undulation angd
p; = 2 '
Yo /1ve” cos’8 - (2.8%)

a is the semimajor axis of the ellipscid and e® is the
second eccentxlc1ty, related to the f£lattening £ by

*=1/(1~£)* ~1. The surface of the earth was divided into
latltudlnal bands each 5° wide, and each band was further
subdivided into blocks having approximately the area of a
5°x5° block at the equator (Hajela, 1975). The elevation:
data that Sjoberg (1977} used provided values of H; {on land
or sea, see Fig. 10) at the center points (0;, A;) of these
blocks. Finally, the undulation N; was computed from the
GEM10B harmonic coefficients (complete to degree and order
36, Lerch et al., 1978): :

. 36 n
N, =R n£2 mgin Zim Yam(ys Ai} (2.82)

wvhere R is the mean radius of the earth (E=6371 km).

The modeling of the density as above does not conform to
any established theory of isostasy. Since gravimetric
evidence indicates that the mass excesses and deficiencies
near the earth®s surface are to some extent isostatically
comspensated deeper within, a model which incorporates this
idea may be more authentic. Adopting the BRiry-Heiskanen
theory of isostasy (Heiskanen and Moritz, 1967, pp.135-6)
with an assumed crustal thickness of D=30 xa changes the
density model only in the way the radii T, yeeesl, are
computed (changzng also m, to 3.27 g/ca’):

ry =Ty =7r,; ~-D- 5,45 H; , H, >0
= - D - ' 2.83
rs | re; - P - 2.73 Hy g <o ( )
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2.2.4 The Numerical Analysis

We consider only evaluations of the downward
continuation error in gravity anomalies ‘because they support
most vividly the subsequent conclusions. The dependence of
the error (2.53) on the radial distance X, nhecessitates a

point by point evaluation. A dense grid of computed values
- over the entire earth is prohibited by the excessive
copputer time that would be reguired. Therefore, in order
to estimate the Jownwvard continuation error, we must
restrict ourselves to a judicious selection of points, which
should be governed by our objective to detect the influence,
not only of the earth's ellipticity, but also its
topograpky. For example, consider a 51ng1e proflle in
longitude across southern Africa (8, =10225, -20 T5¢A,¢7925).
Figure 11 shovs the earth®s shape in this profile as defined
by the 5° mean elevations and the GEM10B geoid. For each of
six points along the profile the first term in (2.53) was
calculated with 0=16, 36, and 180. Pig. 11 shows that, as a
supposed downvard continuation error, its values for low
truncation degrees are inordinately, in fact unbelzevably,,
large (see the introduction to chapter 2). As 1 increases,
this %error" generally decreases but not monotonically as
- shown in the Pig. 12 of partial sums. The summation to
degree 180 is pnot strictly legitimate for an earth that is
sampled on a 5° equal area grid of a total of 1654 values.
That is, 1654 bits of information on the gravity field
determine a maximum number of 1654 = (39+1)* coefficients in
its spectral harmonic representation {see also Shebalin,
1980). Therefore, the computed terms for degrees greater
than 39 in no wvay reflect the earth's true gravity field,
but the error terms to degree 180 are included to illustrate
their general trend. Of course, in the evalvation of the
errox according to equation (2.53), we have totally
neglected the higher degree contribution from n+1 to
infinity because it is upknown for this nmodel.

From the few numerical results presented in Figures 11
and 12 and on the basis of the experiments described in
section 2.1, as well as the discussion in section 2.2.2, the
following inescepable conclusion is asserted. The errors
depicted here, instead of showing the divergent character of
the series, may rather be a reflection of the implicit
choice of model for the earth's gravity field at the earth's
surface. In the first place, Pigures 4 and 5 of section 2.1
strongly suggest that the divergence 1s not manifest for low
valoes of the truncation degree, especially near the
equator. If we accept this, then the first part of equation
{(2.53) , i.e. that being evaluated here, must be the
difference between two entirely incompatible partial sums.
In fact, the downward coantinued sum represents what could be
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r, -6377800 [a]

1400 4 2 _ :
o | “*]—-1-m » )
‘ _ ‘ mzal
1200 L. 60.
topograpny
1600 4 with b 20,
respect to
zeocenter
800— - 40,
600 4 L. 30
400 - - 20
200 4 L. 10
] .5,
- 2.5

Plgure 11 Topographlcal profile of southern Africa
(9,=10205, ~12254 2,£90%0) and values of partial
sums of downward contmuatlon €rror in gravity
anomaly {volumetric dens;.ty model): H=16,36,180.
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called a "free air®™ spectrum of the gravity anomaly, while
the ®"true® partial sum represents the spectrum of a field on
a sphere that is partially embedded inside the earth. These
arqguuents and the supporting numerical analysis reinforce
the statement made in section 2.2.2 that the imdividual
teres of equation (2.53), or in the strictest sense, any
finte aggregate of terms, do not yield corrections to
correspondxng downward continued terms. This is
reeaphasized here because just soch a procedure is
occasionally implied in the literature (Cook, 1967;
Morrison, 1970} .

It nmay be noted that the kernel of the error integral
{(2.58) can be expanded as a series in h~1—r/r Then the
infinite series of the constant and linear terms in b of the
downward continuation error sum to zero (see section 2.3.3).
Without these terms the numerical values of Figure 11 woeuld
decrease by 1, 2, or more orders of magnitude. However,
this does not alter the essential conclusion drawn above.

If T~ 00, then the "true®™ partial sum converges to the
actual surface value of the gravity anomaly, approaching the
downward continued series before it diverges. Some
indication of this is given by Fig. 12 vhich shows an
overall decrease in nagnltnde of the error with increasing
.- Thus, the next step in the analysis would be a
densification of the grid on which the elevations and
densities are assigned, thereby allowing expansions of the
error to higher degrees. However, the medeling of the
disturbing potential to a high degree by volumetric density
distributions, or (what is almost equivalent) point masses,
o a global scale is generally associated with a
considerable computational effort {(Needham, 1970}, as a
distribution of masses is sought which fits, in a least
squares sense, our knowledge of the exterior gravity field
{see also Balmino, 31974} . 1In our case, no information on
the earth’s gravity field, except postulated =mean densities,
vas used to define the distribution.  One should therefore
not expect this type of model to produce a close resemblance
of the earth?s potential. Even the use of the isostatic
model of Airy and Heiskanen (equation (2.82)), instead of
the model depicted in Pigure 10, does not produce
significant changes in the numerical results. This model is
therefore not further used in the analysis of the downward
continuation error. In the following section the earth
model is also determined by a density distribution, which
although not optimal, is entirely adequate to produce a
realistic potential.
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2.3.1 The Derivation of the Error Series

Other than volumetric masses, Newtonian potentials are
generated as well by simple layer and double layer density
distributions. The formulation of the potential of a simple
layer is completely analogous to (2.26), except that the
integration is over a surface instead of a volume, and, of
course, the mass is distributed as an infinitesimally thin
layer on a surface. This leads directly to the Molodenskii
boundary-value prohlem where the density of the layer, as an
unknown guantity, is related to the boundary values of the
resulting gravity field through an integral equatlon. This
integral equation can be solved readily if the surface is a
sphere and by successive approximations for more conpllcated
surfaces such as the earth'®s surface. For the present
purposes, the chkoice of formulation of the disturbing

potential is dictated by our objective not only to find a
" reasonable soletion to the density, but also to expand the
potential in spherical harmonic series above and below the
boundinyg sphere. The solution for the density will be
determined approximately by our knowledge of the gravity
field, thkat is, the bounding values; hence the disturbing
potential generated by this density layer should more
faithfully represent the actual exterior potential of the
earth. Note that in the following, no attempt is made to
find the optimal density that fits our knowledge of the
gravity field.

This method of formulating the downward continuation
error originates with Petrovskaya (1979y. It is here
derived in more detail and from a slightly different angle
of approach.

let us then consider the following foraulation of the
disturbing potential (vith respect to a suitable reference
potential), according to Brovar (1964),

. 2
= = [[ v, B do (2.84)

where, as before, R is the radius of the bounding sphere; Vv
is a generalized density wvhich contains also ‘the inclination
term that transforms the integration over the earth®s
surface to an integration over the unit sphere; and the
kernel E is a function of 8, A, vy, &,, 1}, and is defined
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by

T N ' -Te '
E = - "&5 _ sCOS8 ¥ n o + 2'-.2,::‘8 cos Y (2.85)
s  Tp P :

where r.=r, (®,A) describes the radial distance to the
earth's surface. In general, the definiton of the kxernel is
contingent only on the requlrement that the function T be a
potential, i.e. harmonic in free space and regular at
infinity, otherwise it is arbitrary. In order for T to be
harmonic, E as a function of the point P must satisfy
Laplace's equation and be regular at infinity. This vas
shown by Brovar (1964) to be the case for the above
definition; an fFact, the dlfference between E and the
general;zed Stokes function S is easily recognized to be
cielskanen and ﬁorltz, 1967, p.93)

‘ ‘ 2 '
SE-§ = 208y _ -4 (2.86)
rp P

Stokes' function and the teras on the rlght side of (2.86)
all are harmonic functions. Unlike the usual density
integral in which 1/% is the kernel, the expréssion (2.84)
has continuous derivatives when crossing the surface and is
thereforée characteristic of the potential of a volumetric

density a;str;butlon {see Brovar, 1964, and Horitz, 1966D,
p-55).

The radial derivative of T is

%1‘__ -4-ff v(8,1) ﬁgvdv {2.87)
p

where

E . 28 rscosv 1, 2rgeosy g, Ipt A -Tscosh (p gg,
ary B r3 - 2Ty

This combined with 2E/r, results in the simple expression
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JE .2 1 1 T's cos :
R G @

For points P on the earth's surface, we have the boundary

condition (with the sphencal approxzmatlon as: described for
(2.42)) . |

Agmwmmwfz.—'_[‘
b

(2.90)
B 3rp

Y

so that, because the derivatives of the right slide" of (2.8%)
are continvous at the surface,

R2 | o :
Agp = 4’;{.; Icrf vig ,A'.)(-%- - ~§;§C)—Sw) (6Xs {2.91)

and the reason for the choice of E is now apparent. The
expression {(2.91) is a Fredholm integral egquation of the
first kind ard if the earth's surface_is approximated by a
sphere with radius R (r, =const=R, r, =R} on-which ag is a
known function, the solution for the density is found by
expanding 1/2 and ag in series of spherical harmonics
(Petrovskaya, 1979; see also equation (2.7)):

n

=]
= A =
nEO m}»n gnm nm(e ’Ap) gp

{2.92)

:xd

Y n

- 1 <

= M EO gn 55T jc,r v(8,2) ¥,,(8,2)do ¥, (6,2 0)
n#l

This holds for arbitrary points P on the sphere, hence

1 R? G |
m Wm?fcf V(8,2 ¥, ,(6,20da ' (2.93)

[0
=}

Therefore, the spectrua of the density in spherical
approximation is (Z2n+1) ghm
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n | -
v(o,)) = (~?n§_0 m#)j;n (2n+1) - nm(e Ay Co(z9M)

Because the gravity anomaly has no first degree. term in- its
series representation (equation (2 ST} ), this term for the
ﬁensxty, hence for the potentlal T, mist be obtained from
other data.

The series expansion of ag follows directly from (2.91)
if the boundary condition (2. 90) is used as the definition
of the gravity anomaly in all of space. Using {(2.7) and
{2.8), we obtain for. X,> R _ :

1 .
; n+2 .
ﬁE_, (-;) gnm nm(ep’lp) {2.95)

where

<
-
o

f
=

-1

] f Ve, T (8,0)do , n#1

and for rP< R

© n
A =
g, éo m=):_n am(Tp) Tpp(e ,0) (2.97)
where
(3 R? T g . =
| T vy éjz’ v(8,1) [(;ﬁ)zﬂ 1"""';3 ¥,.(6,2)do ,
CCum(T) = ‘ B =1
| -;;:;'1- £ [!I v{8, A)(-5> am(8sA)do + (2.98)

\ + [ v(e, A)(-—Jﬁ?)n+1 m€®>s J\)do] , n#1
Ta .
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where o, = {( 6, A)/rs(e A)Lr,} and |
o, = {{9 AY/T {6, A ) > rp} . The downward continuation
error is the ditference between the truncated series (2.95)
evaluated at the earth’s surface and the true series
expansion (2.97):

n n
e(Ag) = § yood (r ) Y (8,2 )
n=0 m=-n ® P nm- p- P
-] n ) '
+ ) yood! (r ) ¥ (6 _,X ) (2.99)
n=fi+1l m=-n nm-p nm-oprop
where
- n+2 i
: dnm(rp) B <——} _nm - cnm(rp)
R2 | yn+1
4—,% zn+1 ” v(8,r) [(—§->n s ) (2.100)
-Ynm(e,k}dc s, n20
and
, R .n+2
BmTp) = ~Cpp(ry) = 4 (rp) - (5 ) €nm (2.101)

The expansion into series of the disturbing potential is
more involved and requires the expansion of the kernel E
into series which are valid below, as well as above, the
bounding sphere. Anticipating the result, let us consider
the inteqral (Gradshteyn and kyzshik, 1980, p.83)

. T , _
j —R-?drp = % +7r cos} in 2(rp+£-r'scos‘b) + a(rg) (2.102)

where a(rg) is the constant of integration. Substituting
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the unlformly convergent series (2.7) into the integral
yields

E f,tég)drppn(cosw)

n=0

it

. p s .
[ FBarp
(2.103)
-« 1 rﬂ . wz yﬁ-
B EG n-1 on-1 P (cos?¥) +r cos n o +b(x)
n#l p

iH

where r > r;. Hence

3 X : (T + L T ¢
) ~L1 _S_ P (cos® = ~%- r_cosy in 2(Tp + s cos¥)

-1 n™ s r
P (2.104)

+ b(rs) - a(rs)

This holds for any r,> Iy, in particular as r -, S0 that

P

llm(?, r, Y+ 0 = —rscoslb ind +b(rg )—a(r ) {2.105)

rp-boc
kewriting [f-r, as
/14,% T
PR - (2.106)
. P
l'Hopitalfs rele gives
Yim (2 - r Y = -r_cosy . {2.107)

8
r
p"‘m

Therefore the total constant of integration is given by
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b(r,) - a'g'rs)_ = Ty cos'i_{{‘(ﬁ,x.l 4= 1) - .l:-.“ | . (2.108)

Putting (2.108) into (2.104) finally yields

n _
[
1 Ts -
n_ZO n-1 _n-1 Pn(cosw)
P ‘
n#l (2.109)
ot L - rgeosy
D s _
- & - r cosy &n N : rg COS Y

p

Similarly, the uniformly convergent series (2.8) -
substituted into the integral of egumation (2.102) results in

r S Ty ntl
'{ __2‘?2 drp = nzo f (;E_) drp Pn(cos 1]
n+2
=Y A TB b o(cos + alrl)
nZo BF2 ¥l “n cosy + elxg (2.110)
s

wvhere c(r,) is the integration conrstant, and r_ < r,. With

(2.102) this becomes i
n+2
® 1 r .
Y D P (cos{) = L+rg cosqbﬁ.n?.(rp-&- %~ r_cosp

n+2 n+l
s (2.111)

+ a(rs) - c(rs)

n=0

This also holds for r,=r, if ¥ % 0, since then
P {cosy)/(n+2) = O(n~¥*) and the series converges. Hence

fie~18

Ts

o —ﬁ%-_-zpn(cos W= s + T4 cOSY Enz(rs+ L™ ry cosy)

+a(ry) -elry) (2.112)
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where fs =IgV 2=2COos ¥ . But the first two teras on the right
side of (2.112)} can be expressed as a series according to
{(2.109) with I, =T (v + _0) » Thus

. ’ o
_ 1 o
a(ry) -c(ry) = rg ngo s7r P (cosy)
o | (2.113)
+r_ § L_p (cos P +r_ cosy~r_ cosyindr
ST n-1 “n s s “p T8
n#l

Putting this into (2.111) and combining the series, ve
obtain

o 4 1 1 Ln+2
n?;__ rsGFe Y5730~ o9 r2+1 1 Pp(eosy) =
n#l S
= - 4~ 1r cosy in To +291',; Tscosy _ (%rs - % —i—‘%-) cos P (2.114)
, r
+ r_cosy in ;2«

Recalling the definition (2.85) of the kernel E and using
(2.109) and (2.1M), we finally arrive at the desired series
representation: ‘

(e n \ |
i r s cosy
T - S =R
n§= n-1 . n+l P, (cos¥) + r} » Tp g
n#1l P '
E = _
| S . Ts. 1 1 1 rg (2. 115)
. S -
n§-= ['fﬁ (n+2 s i n+2 rn+1} Pn(coslb) +.
ln%l s
s cosy 4 b S o T
+ Sr; [5 3(;;1-)3+2n—2], T, Ty s
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The kernel E, as a function of the point P, is harmonic
everyvhere except on the line segment I, & T, ¥ =0 where it
is not defined and where 1n any case we will have no need to
evaluate it.

Substituting the series (2.115) into the formula for the
disturbing potential (2.8%),

o

n
T = Bty 3 6, > 2.116
p n£0 mlin ( Tp ) tom nm( p’ p?" s R )

where

1 ®,A -
" ShE I l%:i—l @%?P Y o(EsA)do, n # 1

B
. N 4w g ]
nm o) p g - (2.117)
. s s _
T 7 [Jve) T 60, 0=
and for points below the bounding sphere:
T, = X' 2 b (r Yy ¥ (8., , r <R (2.118)
P n=0 m=-n nm""p’'p’ * p
vhere
RZ 1 s
_ R* 1 .1 =
bnm(rp) 4n 2n+l [n-l [ n+1l T (8,42do
1' 1,1 ; P
B -
¥ IJ 2 Gt 577 - 555 ) Tamf.A0do],
Tp T
n# 1
{2.119)
_ R* 1 Te o
PinlTp) = g7 T viF Ty, 0)do
. 0’1 p
r 4 1 ,r r
U R G e 2 Tt e,
2 . .

n %‘1
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With the sphexlcal approximations as defined for {2.56) the
expansxons of the height anowaly follou 1mmedlately from
(2.]16) and (2 118): for o B,

=) o
b n
= u B .np-1 v ‘ B ,
; &= —) h 8 A -'-........
P C ngo mgin (rp) Znm Ynmg p?‘p) y ! & Ty (2-120)
4 § % r2
= L Y, (r ) ¥ A o
P =g p=in B0 o p p) ynm(rp) wﬁ-bnm(rp)(2.121)

The above series and the corresponrding series (2.97) for the
gravmty anomaly, although formulated specxflcally for points
below the bounded sphere, may be regarded as convergent
series for the hexght, or graviiy, anomaly anywhere in the
exterior space, since they revert to (2.120) anad {2.95) for
r > H that is,
R \n+2
(r)‘(-»——-) s o (r )=(=) "g 3 :
nm D p 14 ! p rp : Pm (2.122)
> R
p
?lnally, the downward continuation error of the height
anomaly is obtained by subtracting (2.127%) from the series
{(2.120) truncated at n:

o |
€2 ) = ) ?e alTp) Ton(®o2 ) +

P n=0 m=-n hm nm" p’p
@ n {2.323)
* nﬂé;l m"' enm(Tp) Ynm(ep,xp>
where
2
gnmgrp) F'ggi)n - :h tnm - ;g% bnm(rp) = (2.124)
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Rt 3 ff v[n+2 Tg L rp rp$&2+n—1)]
T TdreM Sn+i ‘ ?nm(e,k)do , n# 1
and fcf VE%—C%V-%-;E +§§- ln'%] ¥3,(0,2)do ,
n=1
' _ o - e iye S (2.125)
e nm(rp)~-— N bnm(rp) enm(rp) ( p) tom

2.3.2 The Description of the Model

As with the volumetric density model certain
simplifications of the earth's surface are reguired in order
to evaluate the integrations; however, this model places
alsost no limits on the complexity of the density function
v {(B,A), given by (2.94). The necessity of a highly
complex model, when aiming for expansions of the potential
and gravity anomaly to degree and ordexr, say 300, is
prescribed essentially by the Nygquist law. Although this
lav holds only for expansions of functioms in Cartesian
space, for the present purposes it serves as a sufficient
guide. The Nyguist law (applied to a great circle) states
that the Fourler spectral coapoments of a function whose
values are known at a uniform interval of 180°%/% can de
resolved to a degree no higher than 0 (Bath, 1974, p.146).
Hence, for 1=300, we should specify values of the model on a
026 grid. Instead of equal area blocks, as for the
volumetric density model, equiangular blocks delimited by
coordinate lines will be used here so as to take advantage
of the Past Fourier Transform of data along bands of
constant latitude (see below) and thereby to make the
computations manageadble. However, the convergence of the
meridians toward the poles is accompanied by an increase in
the concentration of the data. This nonuniformity of the
data implies a somewhat larger fregquency content.

Unfortunately, data sets at a resolution of 0:6%~67 kn
do not exist, especially for the gravity field. With the
(180,180) solution of harmonic coefficients (derived by Rapp
froz 1°x1° mean gravity anomalies obtained in (Rapp,1978))
as a base, the coefficients from degree 181 to 300 could be
generated from random numbers which decay according to a
specified degree variance model for the gravity anomaly.
Such a model was obtained by Tscherning and Rapp (1974) and,
in fact, it has not been significantly vitiated in light of
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the more recent (180,180) solution (Rapp, 1979). However,
it vas decided to use the more complex “tw0wcomponent“ nodel
(ibid.), since its parameters were determined, in essence,
by this kigh degree solution. On the other hand, to obtain
a smootha transition from the actual degree variances to the
model; the (180,180) solntlon was used only up to degree
100:

ék(coefficients of the (180, 180) solution),
n ‘ o

(2.126)

=

=]
B

oo
s

=]

It

[y

=]

e

where ﬁn is the (approximate) fregquency response for the
operator which averages a function over 1°x1° blocks
(Pellinen, 1966; ¥, =02564 in equation (2.63)), the u,, are
uniformly ﬁlstrxbuted random values in the interval
(-0.5,0.5], b, is their degree variance,

n : .
’ — 2 . ;
bn_“ jln Uhm : (2.127

and the gravity asomaly degree variance c, is modeled in
mgal® according to (see Rapp, 1979)

. = 3.405(n-1) n+2 140.03(n~1) n+2
Cn Bti (0. 998006) (n~2)(n+2) (0.914232)
' n>3 (2.128)

‘The division of the (180,180) coeffzcxents, being spectral
coaponents of the 1° mean anomaly, by 3, trassforms them to
spectral components of the pomt anosaly (see egqguation
{2.6“}}.

We pnote that the coefficients (2.126) define only the
density distribution, as given by (2.94), and not the
gravity field of the model. The expansion (2.94) for the
density, being the solution to the integral equation (2.91)
if the earth is a sphere, obv1onsly does not correspond to
reality. But since the earth is, in fact, nearly spherical
and a lack of knowledge necessitates a certain amount of
. - simulation of the data, a density model based on (2.94},

' thongh not optimal, is with these arguments also not
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indetensible. (Petrovskaya (1979) gives a formula by which
the integral equation could be solved iteratively, given the
shape of the earth's surface; however, it is not necessary
to implement this procedure for the present purposes.) The
zero and first degree terms in the expansion of the density
have been omitted on the usval assumption asscciated with
the spherical approximation that the average and first
moments of the density with respect to the origin of the
coordinate system are zero. However, vhen the density is
weighted by the surface radius as in (2.117), the first
aoments do not wvanish and the potential of the earth model
does contain a first degree term. (Also, a zero degree term
is present because the discrete grid values of the density
do not average exactly to zero.) -

The earth's surface can be modeled in the first place on
the basis of 1°x1° mean elevations, available as a global
data set (provided by DMAAC, 1979} and describing the
surface with respect to sea level with a resolution of
approximately 110 ka (higher towvards the poles). The
additional finer detail from degree 181 to 300 again must be
fabricated by a random number generator. This is
facilitated and improves the verity of the model if, instead
of ascertaining an independent degree variance model for
elevations, we invoke the probable correlation between high-
degree potential coefficients and short wavelength
topography (lambeck, 1979, p.590). This correlation can be
derived by assuning that the high degree components of the
@isturbing potential are generated by the masses of the
topographic features, including isostatic compensations,
condensed onto a mean earth sphere. In order to account for
the lower density, u,=1.03 gs/cm®, of the oceans relative to
the crust, "equivalent rock topography®™ has been introduced
(Baimino et al., 1973) wvhereby the oceans have been
replaced, or the ocean floor, by an eguivalent rock layer of
crustal density ., and thickmess &, d/x,, where d@ is the
depth of the ocean (d > 0). The equivalent rock topography,
H,, is measured with respect to the geoid and is therefore
negative in ocean areas: .

H(S,2) , for land areas
H (8,}) = " | (2.129)
~(1-ﬁw)d , for ocean areas
c

Lambeck (ibid., p.592) gives the following relationship
between the (disturbing) potential harmonic coefficients t,,
and the corresponding coefficients of the eguivalent rock
topography h, =
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B- D n

t = 47RK v, [1-(==)"] m {2.130)

Tnm

where M. is assumed comnstant (2.6? g/cu | R is the mean
earth radlns (o371 km}), and D is the depth of compensation
in the alry-ﬂexskanen isostasy model (a value of D=50 km was
found to give better agreement between the (180,180)
solution and the 1°x1° elevations than D=30 knm (Rapp,
prxvate communication)) .

The coefficients h,, were determined to degree 180 from
the 1°x1 mean elevation data set (which includes negative
depths -d in ocean areas) and the definition of H, (2.129)
and hence constitute its spectrum for (< n ¢ 180. The
spectrun from degree 181 to 300, assumed to be related to
. the potentxal spectrum according to (2.130), is directly
obtalned from the randor coefficients (2 126).

. L
zﬁ;{f Ho(6,%) F,,(8,00d0 , 0 < 0 5 180

Bom = _— (2.131)

2o+l Ynm _ ‘,Zga. » 181 < n < 300
P g 11- &P O |

Having thas obtained its spectrum to degree 300, the
equivalent rock topography is evaluated on a 03 6 by 0%6
global grid using the expansum

300 n o
Hr(e?ﬁ) = néo mgin Bom Y920 (2.132)

and the actual topographic surface of the model (with
respect to the geoid) is then

Hp(0,X) ,  if Hp(6,1) 2 O

H(O,A) = { | (2.133)
0 , if Hp(8,)) < O

.

The deqgree variances of hhh are shown in Flg\\13. Although
the coefflclents Bew » 04 02 180 refer to mean topography, no
unsaoothlng of this portion of the spectrua was perforued,
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as with the potential spectrum (see (2.126)), since it would
have destroyed the essentially continuous transition to the .
modeled high degree part of the spectrusm. These types of
manipulations, while perhaps not strictly acceptable fronm
the theoretical viewpoint, are designed to produce a model
which renders as faithfully a representation of the earth as
possible including the requirement that the spectra of
gravity and topography decay with ro major fjump
discontinuities.

The coefficients §,. (eguation (2.126)}) £find further
utility in the definition of the geoid height K(& ,A)

ga 300 n
N(es)\ mmm— I . 1
n=2 mw-n

Hiage
pod

=2 Y, (8,0 (2.134)

This, of course, is not the true undulation of the earth
model, since the set of coefficients §.,.. is not the gravity
anomaly spectrum of the model; but (2.134) serves well *
enough for the present purposes. . Flnally, the geocentric
distance to the model surface is given by

r (8,3) = p(8) + N(8,7) + H(6,X) {2.135)

vhere p is the geocentric distance to the reference
ellipsoid (equation (2.8%).

A typical profile of the resulting model surface is
depicted in Pig. 14, and contrasted with the 5° and 1° mean
values of rg . The farthest distance of the modeled surface
from the origin of coordinates is r¢ (max)=63&1989.115 m, at
a latitude of -923. The radius of the bounrding sphere was
rounded to R=6382000 m. The ENMS deviations cof the surface
from this bounding sphere range from 3760 & at the equator
to 25100 m near the north pole.

2.3.3 The E “guations for the Numerical Anmalysi i

The integration of the density mntegrals is tractable
only if r, and ¥ are assumed constast within each 076x0076
equiangular compartment. The resulting salient surface does
not satisfy lLiapunov®s condition of continuous curvature
(ciinter, 1967 and the convergence of the potential and its
first derxivatives to their respective values on the surface
is not guaranteed. Hovever, the need for evaluations
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Pigure 14: Comparison of Topographical profiles qaazzis,
0°< A € 90°, based on 5°, 1°, and 076 mean
elevations and geoid undulations (0.6 mean
elevations/undulations include random harmonics
for 1W1£ns<300).
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exactly oh the surface will generally not arise in these
nuaerlcal Stddies. We then have,; for example; from equation
{2z 117

. NXI 21§“1 o8, A,y (8C0itE, Agrdon
e 5 ¥ i g
nm 4w 2n+1lo 420 1+§ J+3 R
8, 'y .
ikL F Loem A ,
P - S ¥ ‘4 ‘ - by :
lo, Paim|Ccos®) s:medeij (oinlm]228 (2.136)
1 : . .

wheére ;ﬁ,ﬂ1/(n*1); n30, n#1, and =, =1; and where

b, = iA6, i=0,1, . . ., N -1 |

i ) » ’ - . 180° . .
s . . s N = =g (2.137)
}\j = jAA’ 3 = 0, 1, ., 0. . 3 2N*" 1

whéte A6 =0%=AA ' N =300 . Note that ©; amd v are

evaluated at (8;,., $+{ ), i.e. at the center of each
compartment.

The computation of all (N+1)" coefficients tnm is
v1rtually impossible for large ¥, such as K= 300, without the
aid of the Past Fourier Transform (FFPT). This is an
extremely efficient routine for computing the Fourier
spectrum of a function. In our case, the FPT is applied N
times, once for each of the latitudinal bands ©; =constant
in which ry and v are functions of longltnde only. #ost of
the following derivations are found also in a more
generalxzad fors in (Colombo, 981), but are included here
for the sake of completeness. Denote by X ,..;the integrals
of the Legendre functions:

%41
Xmi = Jg  Pyp(cos®) siné de (2.138)
i

Theése can be. computed using the recursive algorlthm of Paul
(1978) and by notlng that

. cae . ¥ . - "m . . B
’ia-,x'_n,Nmi-'-l CGOP oy, i=0,1, . . ., BN-1 (2-139)

It has beer found that Paul's recursives are sufficiently
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accurate (for the tests conducted here) up to degree 300 for

all latitude intervals (Colombo, personnal communication).
- Now let

r +3 , A+
Fnij = \)<ei+%’- kj _}w%} [ S@in‘% s g é_)...]n (2.1“0)
then we have
t _Rn A -1 AJ.;*-:L'(:osrn)f |
m = T30 o Xnlm 1 jzo Fnijflj (Sin|m|a)ar (2.1
And if we let
'lj+1 :
Bny = COSmAj , aps = IAj cosm AdA
A
Y iz - J+1 .
bmj = 81nm?\j ’ Bm,} = f)\j sinm AdA (2.142)

then using (2.137) and the angle sum formula for sinusoids,
we find

mj m mj m “mJ
Bms = Ay B + By by (2.143)
where
=(l-~am) , m>0 b, m
A, = ; B ={B D (2.144)
m
0 s m =20 AN , m=0

Now let



T4
{pnmi}'= 2N-1 F .. {cgsnxlj} (2.145)
Ami i50 nij 51nu1Aj

then with (2.142) and (2.143), (2.141) becomes

" Ry N-1 - '
tom © IW 2n+1) 120 Xnmi [Bm Pami ~ ®m qnmi]’ m20

(2.146)
1:n,nm = A¢(2n+1) izo Xnmi'[Am Pnmi + Bm qnmi]’ m >0

The Pourier spectra (2.745) are computed simultaneously by
the FFT; but only relatively minor savings in time are
achieved with respect to the standard midpoint numerical
integrations, because, as eqguations (2.145) stand, the FPT
must be applied once for each i and n, i.e. a total of N*
times. A substantial reduction in the computational time
results by introducing the binomial expansion of the

functions F,;; . Letting

h(g,a) =1 - -§~5-—g—’l‘-)- (2.187)
ve have the usual binomial series

Tg

-~ n ~
(=5H%= 1-1)" = %y (-1)¥ BF 2.148
R kko ( ’

A
Since 0 < h << 1, it is not necessary to take more than a few
teras, say K+1, in order to achieve sufficient accuracy.
The Pourier traunsforms p,_ ., q,..3 then beconme

T K . 2N-1 .

; k ,n cosmaA
{ nml} = -1)" ) F, .. - J} 3.149
qnmi‘ kio k jio ‘ kij {81n1nlj_ ¢ )

where
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Fo.. = v(8

~ k )
kij ivd ? ;\j_*_%) [h(ei.;.% ’ }\J.*,%)} {2.150)

requiring a total of (K+1)¥ applications of the FPT.

The density lntegrals correspoadlng to the downward
continuation error in the gravity anomaly and height anomaly
are treated similarly. The factor depending on the powvers
of the surface radius in the case of gravity anomalies
feguation {2.100)) is expanded as follows, where

- r
B(e,2) = 1 - w57y (2.151)

Then
r r I -
(fﬁan'”(Fg)n+1 = (1-~B) n (1_“h)n+1 -
P ‘
{2.152)
= 23+1){h—ﬁg%gill(h34-Eﬁ-+n(n+1y%g+n+18) BS + ...}

Por the height anomaly, we have (see equation (2.124)) for
n1

1 Ty n+lTs 1 Tg.n by _
s le) i e G -5 -
. : ‘ (2.153)
_ 2n+l Tg .o n(n+1) 4 5 n(n+1)(112+n+18)
= ;“fhz +'“TT"—(5E +4h)-+ 255 hé+ ...]
Since
r - ' -
gnfg-m h + 2h? + h? e L, (2.154)

¥e note that the series (2.153) represents also the flrst
degree term in (2.124).

If ve substitute the series in h (2.152) into the error
coefficients 4, (r,) (egquation {2.100)), then
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(r ) = En—g-éf v(e,1) B Tp(8,Mdo + 8 () (2.155)
2

whereanm(rﬁ) represents the part of the error coefficient

containing to the third and higher powers:
= _ R? : n{n+l) ™3 4y
dnm - W ff \)(G)A) {——6—'—"—‘ (h + E )"l" ..-] L]
P 02 ‘ {2.156)
¥ .{8,2)do
The total downward continuation error (2.99%) bhecoames
(£g) Rz?f L o fvea B Y (8,0)ds T (0 A )
e(dg) = v h Y N c Y s
rd 150 men T oy nm”"p’'p
n n
+ - (6_,x )+
n£0 _QL nm Tp? ¥ ¢ prrp)
(2.157)

vhere a;m(r,)=d“m(rp)~(3/rrr”z Jum » The value of the first
term above is zero if the point P lies on or above the
earth's surface. To show this, let r, be fixed (thus lelng
the set ¢,} and consxder the function

v(8,\)R , (8,)) ¢ o,
D(B,\) = {2.158)
‘ 0 , (B,A) & oy

{recall that h= T rp/T; (8,2 )). The function D is

- continuous and is therefore expandable as a series of

spherical harmonics. WHith a change of notation, we can

write : '
no o ,

DCe ,2 ) = ‘§ =[] v,y B ¥ (8,0)de.

0 m=-n (¢ 10}
(2.159)
nm(ep p)

jte~—1 8

n
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where (GP,AP) is any point onm the sphere of radius r, , and
vhere the uoeff1c1ents of this series are determined by
suhstltutlng (2.158) into (1.6). But since the error series
is to be evaluated only for POlntS in o0, , the series
(2.159), hence the first term in (2.157), vanishes. ' ¥When
 formulating the downward continuation error for the mean
anomaly, the same arguments apply. In this case, we
consider the average of the function D over. a spherical cap
on the sphere of radius r, (the set o, thereby decreases in
neasure} .

A similar reasoning clearly leads to a downward
continuation error in the height anomaly, where the
guadratic term h* is absent:

-+ n_
ez, ) = o6 (r )T (8 ,3)
P nzo m=-n nm " p nmp’’p
f ? 2.180
+ (r,) ¥ (6 ) (2.160)
n=n+1 m=-n nm P nm""p’ p

vhere

2 o
enm{Fp) = g%g%JII v(8,)) ;ﬁ-[Eé%ié)(Sh“4-4h§+u..]-
72 (2.161)

and

Samiry) = 5, n(Tg) - ——-<um)n -1 t (2.162)

Egquations (2.156) and (2.161)'a:e essentially equivalent to
those of Petrovskaya (1979) - if wve asume r~r =R, then

©om{Tp?] - dazl) g €am{Tp? | (2.163)
P iequation(ﬁi-iﬁl) (n+4 ) Petrovskaya
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‘ Since the function D, defined by (2.158), has
dlSCORtanOGS derivatives at the. curve separating the -
surfaces o; and o,, the series (2.159) converges very slowly
to zero for points near the earth?s surface (a case of the
well known Gibbhst phenoaenon). This seemss to be the reason
for the increase by one, two, or more orders of magnitude in
the sum of the first § error coefficients (2.100) {or -

(2. 123)) when the linear (or guadratic) tera in the h-series
is retained.

Hlth the assumed constancy of r and v over the 0. o6 by
006 compartments, equations (2.156) turn into

m Pomi ~ 2m

(2.164)

where the Fouorier transforms are given by

5 X 2N-1
Pos . - ‘ cosml
" = g Xk 2 By Freig {81nxnk i

{2.165)
Smi k=3 j=0 :

and where

~ i . k
Frig = V0444 Miag) 188, 0 3\3,,,1,)3

{2.166)
X . = x . = BLo¥) n(n+1)(n +0+18)
n3 né 6 b4 ns 120 ‘ § e+

and finally, wvhere

1 7, if rp < rg (8343, Xj+3)

A, . =
. . 167
1] 0 . Vl:‘f rp > rs (ei+%, 5\3-1-&) {(2.167)
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The factor A;; in (2.165) ensures that only points on the
surface above the sphere of computation (radius r,) :
contribute to the erxror, and only those latitudinal bands in
which at least ome such point exists are included in the
suss (2.164) . The coefficients of the downward continuation
error in height anomalies, equation (2.161), then also '
becone

-

n,m  8SukM izo Xnmi (B Pami ~ An qnmi]‘, m %iQ?]

e

- R2T N-1 - . | o
®n,-m T 8wk izo Xnmi 12m Pami * By qnmi]’ In >.0_ (2.168)
where
E:)nmi 2N-1 cosmk:}
anmi} = i Yk j; Aij Fkij {Slnnlkj} o (2.169)
and where
¥ =1 re(8, As ) F ..
kij =~ rp T8 i+d’ Tj+37 Tkij
_ n(n+i) _ n(n+ly o7 n(n+1)(n +n+18}
Yna =712 * Yns T T 15 0 Yne’ T T 860 s

Z2.3.4 The Numerical Results of the Error Analxsiéﬁ

As in the case of the volumetric density model, the
radial dependence of the error "coefficients" (2. 100) and
(2.128) precludes the mapping of the error on a global
scale. On the other hand, because the earth'®s surface is
more or less rotationally symmetric, a reasonably thorough
analysis lies within feasibility if we limit the latitudinal
extent of our investigation to a few representative degrees.
Table 1 lists the regions to be considered, as well as
several representative radii for each range of latitudes,

(2. 17o;f“1*
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Table 1: The Reyion of the surface model in which the
' aounuard coptinuation errors are computed.

"Region, Represen— Longltndlnal No. of points on all
defined by tat%ye ranges of A spheres of radius R, RP,
latitudinal |[radii, R, such that 0sr,-r.<t
range of ¢; (] :
300 @
t ={ 100 m
50 =
- 0m
North Lat.|South Lat.
, . 11938 11781
6374550 [0%3,359%7] 4112 4326
6374850 2275 2505
1 6375150 394 667
6375450 . . 683 714
6375750 (6923, 89:7] 234 273
6376050 87 161
1203 £]g1€2823]6376350 17 0
6376650 ) ] 714 461
6376950 | 29021,30929] 273 176
6377250 104 92
1 21
North Lat.iSouth Lat.
3 ) , 6800 6783
6 363350 f0l3,35927)] 2111 1827
6363750 1003 811
11 6364 150 196 189
6364550 . ) 361 511
6364950 | [60%3, 8021 116 123
16365350 - 62 70
5721¢ ]gl€5723]6365750 10 29
6366 150 i o 83 586
6366550 | [26011,28523) 147 114
: 78 71
22 29
o Rorth Lat.|South lat.
o L, 8914 6329
6357250 [0%3,35927] 2924 2092
1I1 6357550 1609 959
6357850 7
L e o
7523 ¢ lgl<8u23] 6358450 | [17021,260°1] . 861 572
| | 537 171
258 19
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see also Fig. 15. W®e note that for each constant r »=Rp , the
coefficients (2.100), or (2.124), correspond to the error at
any point which lies on the sphere of radius R, and above
the earth*s surrface. Therefore, instead of evaluating the
error series at a few isalated points on the surface, a more
characteristic, although less realistic, assessment is
obtained if the series is evalnated om the given spheres at
all those points which are removed froam the surface by no
wore than, say, 100 e (see Plg. 17). Table T also shows the
numper of points on a 026x026 grid that lie on the spheres
having radii Ry and within a tolerance of 300 m», 100 m, 50
m, or 10 m above the modeled surface.

The. amount of calculations can be further reduced by
requiring no more than two~ or three-digit accuracy in the
error estimates; any atteapt at greater computational
accuracy is unavailing and therefore unjustified. Hence, we
may_ accordingly restrict the number of terms of the series
in h, (2.152) and (2.153). Table 2 correlates the accuracy
of the series with the nuaber of included terms for the
wvorst cases in each of the regions of Table 1. The worst
case occurs when n=300 and h=max (h;) . Similarly, the series
in h (2-148) may be limited to several terms (see Table 2).
Numerical tests confirmed that the relative accaracy
guaranteed for the truncated series in h was not degraded in
the process of deteraining the error coefficients.

Equation (2.146), with the approximate transforas
(2.149) substituvted, was used to determine the spectrum of
the gravity field model on the bounding sphere {(radius
R=6382000 ®). The series in h was developed to R=10 thus
ensuring six~digit accuracy. The corresponding degree
variances are shown in Fig. 16. The series (2.95) and
{(2.120) for the gravity and height anomalies above the
bounding sphere them provide, in conjunction with the error
series, the corresponding inmer series, which converge below
the bounding sphere, namely (2.97) and (2.121}. All series
were truncated at degree 300.

Once again, it aust be remembered that individuwal teras
of the error series do not indicate errors in the harmonic
constituents of the potential {(or gravity anomaly), since
the inner series is not a spectral representation of the
field on the surface. In the strictest sense, the :
difference between truncated inner and outer series is just
as meaningless, since it 1mplles a coaparison of %bands" of
freqnenc1es. The comparison is valid only if the inner
series has converged with sufficient accuracy to the true
vaiune being estimated. Otherwise, when limiting the
evalunation of the downward contlnuatlon error series to
teras of degree no greater than I, we must be aware of the



Tabie 2: Accuracy of series (2.152)
ternm) , series (2 153)
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{wvithout the linear

(vithout the quadratic
term) , and series (2.148) versus the nuamber
of included teras.

(aeters) Series (2.152)|Series (2.153)
Region|h=aax (h;) | K, No. of No. of
if the highest | accurate accurate
power of h digits digits
3 1 -
I tp =637T4550 4 2 2
r, =R 5 4-5 2=3
6 5 4
3 1 -
I1 T, =6363350 4 1 1
T, =R 5 2-3 1
6 3 3
7 4 4-5
3 1 -
Iizx r,=6357250 4 1 1
r, =R 5 2 1-2
6 2 3
7 3 3
Series {2.148)
%—max(h ) | K, No. of
if the highest | accurate
power of h digits
2 0
Ip =R L 7
r, =6356000 6 2
8 Iy
10 6
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effect of truncation, whichk is, of course, not known. With
the present density model, it appears likely that the usual
degree variance models of the earth's gravity field will
provide estimates of the neglect of higher degree ternms,
although this is not evident from eguation (2.101) or
(2.125). If 11=300, then the RMS (root mean square) values
of the truncation erxor, based on the model (2.128) and a
spherical earth, are about 36 cm for the height anomaly and
a considerably more significant 30 mgal forxr the gravity
anomaly. The root mean squares of the evaluations of the
error series truncated at 1=300 over each of the regions of
Table 1 are shown in Table 3 for the gravity anomaly and in
Table 4 for the height anomaly. Also shown for comparison
are the RMS valames of the truncated series of the respective
anomalies themselves. Some maxiaum absolute values of the
error are also shown parenthetically. XNote that the units
in the error columns are Mgal= =10~* m/s? (Table 3) and
}LkaO m {Table 4).

: A perusal of these tables indicates that the errors are
generally insensitive to the distance t of the evaluation
point £rom the model surface, if it is 300 & or less. The
"RMS values of the anomalies, on the other hand, show a
(lisconcertingly strong and unexplained) decrease as the
point of evaluation approaches the surface. There is, of
course, the expected increase in error with increasing
latitude; and within each latitudinal range, the RMS errors
show a significant increase {(not shown) with each decrease
in radial distance Res. Some correlation between the error
and large—-scale topographic features can be detected. For
example, the error over central South America is generally
twice as large as in the topographically lower Caribbean
Sea. Here, in turn, the errors are almost double those over
both the Indiar Ocean and subcontinent (just south of the
Himilayan massif), showing that the correlation is somewhat
inscrutable. No definite correlations with topography are
discernible (by visual inspection) from the values listed
for the subregions in the midlatitudes and polar areas.

Table 5 shows how the errors accumrulate in steps of 30.
degrees. The accunulation is generally monotonic for
B £ 270, but a noticeable downvard trend occurs at 1I=3060. 'In
view of Pigures 6 aud 7 this is not an unexpected feature.

To eliminate the difficulty of interpreting these
results, ve could consider a smoothed gravity field, where
the resolution, by definition, is limited to the first 300
barmonic constituents. In order to make the meaning of
limited resolution for the inner and oater series
comparable, we identify the cutting off, or filtering, of
higher frequencies with a weighted averaging process as
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Table 3: RNMS downward continuation error of spherical
harmonic series of gravity anomaly and BMS gravity
anomaly evaluated (first 300 teras) at the points
of Table 1 and at the indicated subregions.
Maximum absolute values for each region and sub-
region are given parenthetically.

300

Regibn RES £{ag) m) |[R¥MS ag 300 m
(max £{aqg)) t = 100 o t =100 n
0<£n 300 50 2l 0£n £30Q 50 m
[mgal] 10 =/ {[mgal] 10 =
N A 023~ 6929- 29051~ . 023~ 69.9~|29021~
I 35937 8927 30979 3%9.7] 8927| 30929
.28 .26 41 26.80 [31.23] 43.38
¥ <33 (2.0)].26 (1.0)].50 (1.8) |26.90 [29.85| u4.38
.35 .29 43 25.84 [27.99| 32.10
«33 (2.0)1.33 (.73) .30 (.30} 124.25 |26.11]102.98
J46 .27 1.1 25.23 123.30| 27.27
S S48 (6-1)1.33 (1.1 (1.1 (s.4) {28.89 |22.35| 28.59
-51 .31 1.2 25.00 |[22.27| 26.73
47 (4.1y| - 1.7 (8.7  |24.36 28.18
A ota-  , je0l3- | |260%1- ,  l023-  |60%3-|26021-
I 35907 8021 28523 [35927 | 80I1| 28503
22. 21. 18. 28.4  |20.4 | 33.4
N 22. (T.y22. (57.)|16. (81.) |28.6 |18.3 | 31.6
Z1. 22. 16. 29.2 |18.9 | 35.5
20. (62.)]29. (57.)[16. (33.) |27.8 9.7 | 37.2
23. 18. 19. . j23.4 0 {31.3 | 19.4
s 22e (97)117. (48.) 121, (6.) 123.3 {33.9 | 19.7
21 16. 21. 23.5 {34.6 | 21.5
2Z. (97.)(16. (34.)[23. (86.) 126.2 |37.0 | 19.4
ol 023 - 359%7  [170%1 - 26021 023-359%7[17021-260%1
86. 85. 22.08 25.17
N 82. {(290) 81. (240) 22.24 24 .36
81. 77. 22.16 25.67
82. {290) 82. (240) 20.78 23.60
88. 88. 25.03 28.39
5 86. (260) 86. (260) 24.10 28.86
- 84, a7. | 22.48 27.81
85. (210) 88. (190) 21.05 16 .85
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" Table U: RH¥S downward continuation error of spherical
harmonic series of height ancmaly and RMS height
anomaly evaluated (first 300 terms) at the points
of Table 1 and at the indicated subregions.
Baximum absolute values for each region and sub-
region are given parenthetically.

BES £(X)

300

Hegion Bi|RH5 ¢ 300 m
o lmax £(3)) t = ;100 = t =)0 =m
0gn< 300 50 »}|0 <0< 300 5 =
[m ] 10 a/)|[m] 10 =
A lo%3- 16929~ _ |290%1- _  |023- [6929-[290%3-
ps 359.7 59.7 309.9 35927} 8977 | 309°9
-26 .23 .43 33.52 |68.12] 84,36
N e32 (2.1)].26 (.93) [.53 (1.8) [33.64 [67.446 | 45.01
.33 .28 S Y 31.73 {65.73 ] 82.35
.30 {1.5)|.36 (.B8) |.28 (.28) [25.19 |62.39| 57.12
.51 .24 1.1 28.98 |44.89 | 18.23
S 253 (7.7)1.30 (1.3) [1.2 (5.0) |27.38 {u40.77 | 18.25
1.58 .27 1.3 26.57 {#0.12] 16.18
.52 (5.0)] ~ 1.4 (4.6) (20.96 | -~ | 11.63
X lo23- 6023~ _ 26021~ |0I3- |6013~|26021-
11 359.7 80.1 285.3 |359.7 | 8021} 28533
170, 67. 57. 30.27 {27.27 | 37.81
N 69. (250) |69. (180) {49. (180) [32.17 |26.34 | 36.81
66. 68. 49, 30.27 |27.23| 37.65
64. (190)[89. (170) |5Z. (120) [26.94 [25.83 | 39.13
73. 57. 62. 23.41 134.87] 5.12
s 68. (360)]52. (150) [64. (140) |26.43 [35.94 | 4. 41
63. 47. 62. . 24,27 |35.79 ] 4.12
71. (360)|46. (95.) |66. (1M0) [29.32 |36.86| 3.42
A L3 o o L) o e & e
1I% 033 ~ 359.7 170.1 - 260.1 0.3-359.7{170.1-260.1
410 410 14.82 5.75
N 500 (1400) 390 (1300) 14.06 4.38
390 370 10 .64 4.20
390 {1400) 400 {1300) 8.17 3.65
420 420 30.43 41.85
S 810 (1300) 410 (13C0) 29.92° | 83.08 | o
400 420 R 25.39 37.62 - e
400 (1060) 430 (3000) 25.17 | 39.30




Table 5: BES downward continuation error of grav1ty anonaly

¢t o Vb e o i e L S L B e

and height anomaly spherlcal harmonic series in
steps of 30 degrees: hi=30 60,...,300, based on
those 901nts of Table 1 for which t= 100 a.

Region | T RMS £(ag) Aqal RHS £(¥) mm
S Al 023 ~ 3593 A 023 - 3597
¥ S N S
30 .0028 .0079 .0036 .011
60 .015 034 .018 .0U6
90 041 092 ~0U6 .12
120 -061 .14 068 .17
150 091 .15 .090 .18
o § 180 T .19 - 14 W22
210 .22 .28 .21 .32
240 .26 -840 .26 43
270 - 40 .50 .39 .55
300 .33 A8 .32 .53
30 .077 066 .26 .20
60 57 .58 1.8 1.9
90 2.1 1.6 6.6 5.5
120 3.4 3.0 11. 9.5
150 5.6 6.0 18. 19.
11 180 9.2 8.5 29, 26.
210 15. 3. 47, 41.
280 " 18. 16. 57. 55.
270 23. 24, 4. 75.
300 22. 22. 69. . 68.
30 .22 w23 1.0 1.1
60 1.9 1.6 8.9 8.2
90 6.3 4.7 30. 24,
120 12. 12. 57. 57.
150 21. 20. 100 93.
111 180 31. 32. 00 150
210 u6 . 46. 220 220
240 59. 69. 280 320
270 81, $1. 390 420
300 82. 86. 400 %10
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wathematically detailed in section 2.2.2. However, the
filter then cannot perfectly eliginate the effect of
truncation. Because thé Gaussian filter is relatively
efficient in this respect, it is chosen here, with
parameters a=15021, v, =1U. The average is thus taken over
a spherical cap of radius v, with values at the edge of the
cap weighted by 0.01. The frequency response ({(2.74) admits
only 5% of the barmonic coefficilents of degree 300 and
thereafter decreases rapidly to zero. The difference
between the smoothed downward continued series and the
smoothed inner series is then the downward continuation
error with relatively little trusncation effect. The RHES
truncation error, based on model (2.128) and a spherical
earth, is .3 mgal for the smoothed gravity anomaly and .7 ca
for the smoothed height anomaly. The downward continvation
errors are shown in Tables 6 and 7 and follow the same basic
pattern as in Tables 3 and 4, but are about one order of
magnitude smaller (an obvions consequence of smoothing,
since the higher degree harmonics, which are most affected
by the series divergence, are decreased in magnitude). Also
included are the RMS values of the smoothed anomalies.

. Finally, we note that the relative downward continuation

* error of the gravity anomaly is approximately three orders

of wagnitude greater than the relative error of the height
anomaly.
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Table 6: RMS downward continuvation error of spherical
harmonic series of mean gravity anomaly and RMS
nmean gravity anomaly evaluated (first 300 ternms)
at the points of Table 1 and at the indicated

subregions,

g0

Baxigum absolute values for each

region and subregion are given parenthetically.

Region |[EBS £(a0) 300 m ) [RMS Ag 300 m
{max £{AG)) t ={100 m t = J100 &
0 ¢n <300 50 m|0%n <300 S0 @
[mgal] 10 =) {[mgal] . 10 =
Alo3- o 1e9%9- 129001 | 0I3-  [6979-|29001-
X 35927 89.7 ©309.9  359.7| 8927 309°9
~O1i .012 .019 20.17 [25.11] 37.98
W <017 (.35)| .012(-048)].026(.084)] 20.36 |28.01| 39.04
.018 .04 .021 18.92 |22.24| 27.51
<018 (. 17)| 016 (-038) | .014(.018)] 17.28 |17.17| 95.83
.039 -013 .061 18.16 | 15.61| 20.98
s <042 (1.3)] .616(-052) | .070 (.43)] 17.81 | W.23| 22.93
-039 015 .030 17.28 | W.11] 20.26
.026 (.34)| - 051 (.17) 16.75 | =~ | 20.62
A 03— | 6623- | 126001- | 093~ |60.3-/26021-
11 35927 8021 28523  35927| 8021 28523
1.1 1.0 .88 21.41 | 12.54| 27.66
§ 1.0 (3.5) | 1.0 (2.8} |.75 (1.9) | 21.58 |11.90| 25.42
1.0 1.0 W4 22.00 |12.77| 28.56
<97 (3.0) | 1.4 (2.7) .78 (1.7} | 20.25 | 8.11| 28.82
1.1 .85 .92 15.42 [25.93] 9.41
S 1.0 (H.6) | .82 {2.3) | 1.0 (2.2) | 15.79 [28.29| 9.33
1.0 .76 .98 15.99 [28.17] 10.34
1.0 (#.6) | .78 {1.6) |1.1 (2.2) | 19.01 |27.65| 7.68
11T 2 10%3 — 35977 17051 - 26051 023-359%7[170%1-260%1
4.1 6.1 12.25 .80
N 3.9 (14.) 3.8 (11.) $2.15 13.31
3.9 3.7 11.71 14,58
3.9 (14.) 3.9 (12.) 10.27 12.44
4.2 4.2 17.56 22.09
s 4.1 (12.) 4.1 (12.) 17.02 22.19
4.0 4.2 15.40 20.90
G.1 (10.) 4,2 {9.4) 14,17 17.61
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Table ‘?' R4S downward continuation error of spherical

harmonic series of mean bheight anomaly and RMS
mean height anomaly evaluated
at the points of Table 1 and at the indicated

subregions.

{(first 30

0 terms)

Maximum absolute values for each

region and subregion are given parenthetically.

Region [RMS g£( €) 300 m) RS € 300 n
(max ¢{(Z%)) t = 100 n : t = /100 m
0%ns300 50 m| 0€n &300 50 m
[,u.n] 10 m ) |[m] 10 =

Al023- 6929~ , |29021- | 0%3- |69.9-|29071-

I 35927 89,7 ' 30929 359°.7] 897 309.8

013 .01 .020 33.49 [68.10) 44.28

¥ 016 (.24)] .011({.087) |.025(.085) 33.60 [67.47] 44.90
016 010 022 31.72 |65.83| 42.45

<015 (-12)] .018(.047) | .012(.012)] 25.20 |62.51| 56.27

.039 012 .057 28.96 |44.87| 18.26

s 088 (1.8) ] L015(.059) |.064 (.29)] 27.37 |40.12] 16.22
040 .013 .057 26.56 [ 480.12| 16.22

028 (.30)] - 063 (.20)] 20.93 | - 11.53
Alof3- . j60%3- 26021~ | 003~ |6073-/260.1-

i1 359.7 3 802 1 285, 3 359.7! 80.1| 285%3

3.3 3.2 2.7 30.23 |27.28| 37.74
X 3.3 (12.) [ 3.3 (8.5) 2.3 (6.5 32.13 |26.38] 36.78
3.1 3.3 2.3 30.20 |27.24] 37.53
3.0 (9.2) 4.2 (B.1) (2.5 5.7 26.82 |25.84| 38.99
3.5 2.7 3.0 23.39 |3u.81| 5.09
S 3.2 (17.) | 2.5 (7.0) |3.1 (6.8) 2440 [35.90] 4.42
3.0 2.2 2.9 ' 28.24 |35.75] 4.12
3.4 (17.) 2.2 (8.5) (3.1 (6.8) | 29.33 ]36.87] 3.50
1z A 0%3 - 359.7 17621 -~ 26021 023-359%.7 [17021-260%1
20. 20. 14.81 5.60
N 19. (66.) 19. (60.) 14.05 4.28
18. 18. 10.64 4.07
19. (66.) 19. (60.) 8.19 3.61
20. 20. 36.38 | 41.81
s 19. (66.) 20. (62.) 29.88 43.04
19. 20. ‘ 25.36 37.58
20. (50.) 21. (48.) 25.16 35.42




3. The Ellipsoidal Harmonic Series

There éxist two systems of so-called ellipsoidal
coordinates in geodesy; they differ in the definition of the
latitude. The system with the geodetic latitude (ﬁeflnlng
thé direction of the normal to the referencé ellipsoid) is
post commonly used. However, its three dimensional
generallzatlon, obtained by including ‘the height above the
ellipsoid as coordinate, while foxnzng a triply orthogonal
system {Jolodenskii et al., 1962, p.9), does not vield a
fors of Laplace's equation that is solvable by separation of
varlables., In order to have any hopé of solving Laplace's
eqnatlon with this standard method, the coordinate systenm
- Bist be orthogonal ~ choices of the third coordlnate, such
as the semiminor axis, render the system nonorthogonal.

The spher016al coordinates u,S . A form a trlply
orthogonal systen (Hohson, 1965, pa. 421) in which the second
coordinate, inh geodetic terainology, is the complement of
the reduced latitude; we may call it the reduced colatitude
(in fact, § ¢ O ). Rlthoudgh, strictly stated, u, § ,2 are
oblate spheroidal coordinates, we may use the. less precise
nomeficlature ®ellipsoidal coordinates"™ as no other systen
 will comé under cons;deratlon.A Their definition in terams of
 Cartesian coordinates is (see Pigure 18)

X :_¢u2+ EZ2 siné cos)

y = /u?+ E? sin§ sind (3.1
z 2‘&6036

uhere E is a parameter of the system. Proas the consequent
relatlonshlp

2 2

%4y Z :
+ =1
o (3.2)

x
u% g°

it noted that the coordinate surface u=constant is an
e1119301d of revolution with linear eccentricity E (the
distance from the origin to either of the focal points), and

92
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Fiqure 17: Schematic illustration of the points contributing
to the computed RMS downward continuation error.

"l

a w\/u." + E

Figure 18: Ellipsoidal coordinates (u, §,A) versus ‘
spherical coordinates (r, 8, A ) of the point P,
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semiminor axis u. Hence the set of coordinate surfaces
u=fonstant is a set of confocal ellipsoids. The sguares of
the first and second eccentricities are given by

‘2 2
2 _ E z . K
T Fhur? ¢ = = (3.3)

showing that as u->ce the ellipsoid approaches a sPhere.
Substltutlng (3.3) into (2.81) and notxng that a*=u'+E' (see
- Pig. 18), we f£ind

u Yu+E*

p = LYUHE' (3.4)
‘/uz’f'ELOS 8
or conversely,
2 = 3(r®-BY» + 3[r*+E% 2r2E2(1--:zc:os‘ze)]é : {3.5)

Since the ratio Vx*+y*/z is the tangent of 'the
spherical colatitude 6, equations (3.1 yield

tand = —~———e— tand ' (3.6)

Bgquations (3.5) and {3.6) provide the transformation from
spherical to ellipsoidal coordinates. The reverse
transformation is, froa (3.1) and (3.6),

r = yul+ E?sin9

Yul+ B2

tans = LEE gang (3.7

The choice of the linear eccentricity was based on its
relation to the semimajor axis "a” and flattening £ of any
of the confocal ellipsoidss
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E = a/2f - £2 | | - (3.8)
For exasple, we may choose

6378140 m -
1/298.257

)
it

{3.9)

]
i

giving E=521854.4492 =.

A dJetailed solution of Laplace's eguation in ellipsoidal
coordinates may be found in (Heiskanen and Moritz, 1967,
ppd1-43) . The solutions for regions containinq the origin
are Pwﬂ(lu/E)Yhm(S 2), and for regions containing
infinity, they are ﬁ“_(zu/E)!“m( §+2). Being interested
primarily in the 1atter region, we find the general solution
to Laplace's equation in the form

@ n

S. = ‘— i By g -
F(u,8,)) nEO mgin - U3 F) Ty (850 (3.10)

wvhere the constant ellipsoidal harmonic coefficients @...
are npecessarily complex numbers if ¥ is to be a real
function. They are determined uniguely if the boundary
values of F are known on_an ellipseoid, say u=b. Multiplying
both sides of (3.10) by ¥, (§,)) and integrating over the

domain o ={( §, A)/Odktz'rr, 0 «§ <7}, we obtain by the
orthogonality of Y.

1
bm = ———— = [[ F,5,0) ¥ ap(8sA) do (3.11)
nm % )

where do =sind 4§ dA . In this way, wve can defipe the
ellipsoidal spectrum of F with respect to the Legendre
transform. However, the integral in (3.11) is pot a surface
integral over the ellipsoid u=b, instead it is an integral
over the unit sphere onto vhich the points of the ellipsoid

vith coordinates { é,A ) are mapped according to the one-to-
one correspondence



96
{3.12)

3.1 The Transformation fyrom Spherical to Ellipsoidal
‘ Harmonic Coefficients

A brief account of the transformation between
ellipsoidal and spherical harmonic coefficients has been
given by Hotine {1969, pploli-5). However, the formulas are
not directly amenable to practical coaputations beause of a
Jack of stabilizing normalizations in the formulas and the
inconvenience {(from the geodetic point of view) of working
with complex coefficients. 1A complete derivation of the
- transformation will be presented below, which by introducing
a different ™normalization® of Q,, becomes feasible, as well
as accurate, for high degree expansions.

The relationship between spherical and ellipsoidal solid
harmonic functions is established by using a more general
form of the addition theorem for Legendre polynomials
(Hobson, 1965, p.364)

P (vv' - Yvi-1 Vyt?.1 cosuw) =
on (3.13)
1 ; ms= ,..=s ., :
2o+l m—i-'o('“l) .an(v) Pamiv') cosmo

where v,v* € € ~[~1,3 . If one or both of the variables v,v*
belongs to the real interval [-1,1], then it must be
approached in the limit through the complex plane, as in
(1.11) . The formulas (1.33) for Legendre functions with
real arguments are then applicable. With v=iu/E,

vi=cos § +i0, eguation (3.13) becomes with (1.117)

i = ETCA -
P (i cosé+ Y1 + oz siné cos w)
‘ n (3.14)
1 M o N i
Bnii mlol. P (i) P, (cosd) cosmuw

Substituting w =A~-t, this becomes with (3.1)
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P (E(i% + xcost + ysint)) = (3-15)
13 |

ﬁﬁii’mzo

If we multiply both sides by cosm't or sinm*t ‘and integrate
with respect to t over the interval [-77,T], then, since

;™ f’nm(i‘—%—)ﬁnm(cos & cosm (A-t)

i}

cosm't _ cosm'A
f—-w cosm (A-t) (S:an't)dt = 2m me (sinm'A) ‘ (3.16)
we obtain with g=(iz+xcost+ysint)/E
1 7 cosmt _ imem - U\ \
D j*‘ﬁ’ Prl@) (ginmy) 9 = 331 Pomd E}Ppm(cosﬁ)
. - (3.17)
.(cosm A)
sinm A
Next, consider the relationship (Hobson, 1965, p.98)
—"1%' fﬂ (icos 8+ sing cos t)n cosmt dt = ‘
o (3.18)

n! if-M /Je'o

' 2 (coée)
[(2n+1)(n+m):(n_m){}é nm

We note that the integrand above is an even function and
periodic with period 27 . Hence -

i A
- |
27 4=mwtA

1

(icosé6 & sine cos t)n cosmt dt

, n~m 3.19
nt 32 YEm = ¢ )

" P__tcos@g)
[(Zn-‘rl)(n-f-m)!(n_m)!]% m

n

for arbitrary A. HKow
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1 - cos mi -
-z I-;;-M (1 cos 8 + sind cos t)P cosm t(slnm}\)dt (3.20)

1 .o n,cosm{i-t)
'"2"1}' L#r-i-l (icos6+ sind COSt) (s:mm(k-’t)

f’ﬂ'

‘The seuond integral on the r1ght side is again per;odlc, but
an odd function; the integral is therefore zero. Consider
the same point (x,y7,2Z) as above, but now in spherical
coordlnates-

ydt

sin mi

. . n .
(icosf+ sin® cost) sinmt dt (eos m’

- +A

X = rsing cosA
y = rsing sinA (3.21)
Z = rcosh

Then icos6 +sinb cos (A -t)=Eq/r. Row maultiply (3.19) by
cosm?\ ‘or 'sinomd and substitete (3.20), thus arrivimng at

1 I“ necosmty g (_E__ in=B /oo nt :
21 T sinmt ; SR .
{(2n+1)(n m)!{(n+m)!] (3.22)
cosm
an(cose) (suxm )\)

Note that by the orthoqonallty of the sinusoidal functions,
the mtegral in (3.22) is zero for m>n. P, (q) is simply a
polynomial in q:

' 1 ¥ (-1)% (2n - 2:)1 n-2k :_ .n,
Ppl@) = ) ! vzl (3.23
. 2" %20 k!(n-k)I(n-2k)! ’ 27 (323

while g" can likewise be expressed as a finite sum of
Legendre polynomials (Hobson, 1965, p.ut):

a=2K 1 131 (2n-dk+1) . (o>
k1(3n - 2k + 131 ‘n-g2k'9’ >

v
¢ =nt } v=[2] (3.20)

where [x] demotes the largest integer less than or egual to
X.
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Substituting (3 23) into (3.17) and.using {3.22), wve
find the transforaation from spherical harmonics to
ellipsoidal harmonics:

ew s _-1)™® § (2n-2x)!
a3t Ppm G ¥ (aA)-uzg—-k&)mexﬁ
(Xyn-2k ¥n-2k (8,1 )
E

I (3.25)
[(2n-4k+1){n-2k-m) ! (n-2k+m) ! ] _

-n,<m<n, s==EE%%E~]

And substituting (3.24) into (3.22), making use of (3.17),
we -obtain the reverse transformation, from ellipsoidal to
spherical harmonics:

m

(EIom g a0 = &R

[(20+1) € (a+m)!(n-m)1]%
1

g 2n-2k(p-k)! =

. 11 - :
(Lo (EO-ZE+1)T kI Phook,|m| (3 E) Ynook,m(8:3)

-n<m<n, s= gﬁéﬁﬁh

(3.26)

It is important to realize that equations (3.25) and (3.26)
represent transformations between (inner) solid harmonic
functions, i.e. they hold for points in three-dimensional
space. Therefore it would be fallacious to deduce the
relationship beiween spherical and ellipsoidal haramonic
coefficients simply by inserting (3.25) or (3.26) into the
respective harmonic series. We recall that, according to
onte interpretation, the harmonic coefficients constitute the
spectrua of a function restricted to a coordinate surface,
either a sphere or an ellipsoid. But since neither r nor u
is constant, respectively, on the ellipsoid or sphere,
{(3.25), (3.26) do not provide the relationship between

surface barmonic functions on corresponding coordinate
surfaces.
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To derive the transformation between the harmonic
coefficients of the tvo series, we resort to their
alternative interpretation, namely as density integrals.
The realization of ellipsoidal harmonic coefficients as
density integrals is immediate once a series expansion is

found for the reciprocal distance. We have for u,> u

3 = A bt E: (“l)mﬁm = u
E nEO mgin 2n+l inm’(l ) P [ml(l £
{3.27)
Ynm( p,l ) Y (G,R)

For u,< u, the roles of a, and u are obviously interchanged.
Equatlon {3.27) was derived by Neumann (1848) and a much
sore thorough derivation, though unfortunately replete with
typographical erTors, can be found in (Hobson, 1965,

. ppua28-430)y. The series (3.27) converges uniformly for u,> u
... and ‘can therefore be dintegrated term by tera when 1nserted

S inte” the 1ntegral for: the potentlal-“

Vp = - B g0 =
Vp T Vlup, 8ps Ap) = Klsfz.f L ag
| - _
nXO mz n nlm!(l ) Yum Ynm(ap Ap) (3.28)
where
ik(-1)%

. _ _ Cu. - :
Yam = E<2'n'"""‘“m“+1) féf ulu,8,2) —Pnlml(l'ﬁ“”nm“’“ de  (3.29)

Lhanglnq to spherical coordinates under the integral sign
and u51ng (3.25) yxelds '

g f (2n-2k) ! (B yn-2k -,
nm k=0 kT(n<kK)yT ‘F7 .

iR ?1144.1#+1>=—(n.—2k~m> I (n-2k+m) ! ]-*’3'?!‘!31 T )

"Vnogk,m¢ ) d@
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Recalling the density integral interpretation for the
spherical harmonic coefficients (2.31), this results in

.+l s
i Ye y (2n-2k) ! 2n—-4k+1 .
v PN had  + B 2 D FE N —ag : — .
nm o k=0 ki{n k){ (n-2k-m)!{n—-2k+m)! (3.31)
R .n-2k+1
c(g) Vn-2k,m

Both the lLegendre functions 0,, and the coefficients of
the above sum are difficult to calculate for large n with
computers using finite digit arithmetic. With the goal of
more tractable computations in mind, consider the definition

§ (o) = 0§+1 ip+1 {(2n+1) ! €m .
nm" P 2int (Co+1) (n-m) T {(n+m) 1 °
. {3.32)
*Qum(30p)
where ¢, =u,/E, ©,=B/E. Thern the ellipsoidal series
expansion of ¥ ({equation (3.28))‘chang§5'to;
o n .
V, = 8 Op) U ¥ (8,4 : .
P n£0 mgin' n]m]( p’ nm nm¢%p? P). {3-33)
where now, by combining (3.31) and (3.32), we have
- - n-|mj,
Vpm = L Anmk Vn-gk,m 0 S=F3) - 3-38
k=0
with
y = f2n-2K)in! ((2n-gk+d)(n-m)t(nm)! 43 1
nmk (2n)tki(n-k)! '(2n+1)(n~2k-m) ! (n-2k+m)! c?k'
n >0, -ngms<n, O0sksgs 3-3%)
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The calculation of A,,.. #6sing the above expression is yet
unmdnageable on account of the factorials, but now a stable
recursive formula is available:

A e = [(2n-4k+1) (n-2k-m+1) (n-2k-m+2) (n-2k+m+1) (n- 2k+m+2)ﬁ
" 2k(2nm2k+1)[2n-4k+5}%

""1‘”" *nm s k-1

1<EKE<s, -ngm<n, n>0

with

Aimo = 1 ’ for all n , m (3.37)

The above recursion is easily obtained froa (3.35) by
expanding the factorials.

Formulas (3.34), {(3.35), and (3.37) show that the
ellipsoidal harmonic coefficient %,,, equals the spherical
coefficient of the same degree and order plus a linear
coabination of spherical coefficients of lower degree (and
same order). The ratio R/E for the earth is approximately
=12, hence from equation (3.35), the coefficients A me »
k>0 in this combination are generally much less than 1 for
low values of n. Hovever, increasing values of n compensate
the rapid decrease of 1/c¢2* thus also slowing the rate of
decrease of )“mk with k; and ln fact, they are generally
not monotonic, since for nd Lo +2, A,e > 1. Therefore, the
larger degree ellipsoidal harmonics may have consgiderably
more, or less, powexr than their spherical counterparts,
depending on how the spherical coefficients combine to form
the ellipsoidal coefficients. EBquation (3.34) also shows
that a finite number of sPherical‘coefficients generates an
1nf1n1ty of e111p501&a1 coefficients; thus, if the function
is band liamited in spherical coordinates, its ellipsoidal
spectrum is infinite. Bowever, in this case all ellipsoidal
harmonics of degree higher than the highest spherical degree
are linearly dependent on the lower degree harmonics.,
 Because the equatorial and rotational symmetries are
retained when transforming to ellipsoidal coordinates, a
spherical series of even and/or odd zonal harmonics .
transforms into an ellipsoidal series of even and/or odd
zonals, respectively; this is also obvious from equation
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(3-34).
The transformation froa_ellipsoidal-to:spherical

harmonic coefficients is derived similarly. Substituting
{3.26) into the density integral (2.31);

_ K E.n (-1)" ‘ 3
Vnm = m (-R—) : j_n [(2n+1) Em(u-l—m)!(n-m)!] N

s
2n-2k(n-k) 1 _ o a
.k20(2n~2k+1)!k! féj WCEE) B o g

’ Yn*?‘k’m(ﬁ ’l) dQ (3‘38)

vhich, with (3.29), becomes

(ntm)t(n-m)! (E.\n+1 5 (~1)(n-k)1(2n-dkr1yt

Vom © 2n+1 ‘x’ kio, k!(n-2k)!(2n-2k+1)!
Zn-4k+1 1 {-)
) (n-zk-m)z(nw2k+m)!,‘§§k n-2k,m |
s _ - | (3.39)
D R e
KZo nm n~-2K,m

where ‘
(~1)%(n-k) 1 (2n-dk+1)! {(2n-dk+1) (nm) L(ntm) L3
Limk = “ETho8K) 1 (3n-0k+iJ) 1 on+i3(n-2k-m) ! (n-2k+m)y? |
' : ‘ 1 . C {3.40)
l"""(';'%k
or, recursively,
L =1, for all n,m

nmno



104

= (2n-2k+3) . :
Lomk = 2K(2n-4%+3) (2n—4K+5) : - B-41
. ({20=4k+1) (n-2k-m+1) (n-2k-m+2) (ri-2ctma1) (n- 2k+m+2x§
« ~ Zn-4k+5
. 1 I.

00 nm, k-1

i kgs, =-n

IA

m<n, n320

Comparlng this with the transformation from spherical to
ellipsoidal coefficients, the general comments made for the
latter obviously apply here as well. It is egually obvious
that each transformation is the inverse of the other since

the set of harmonic coefficients is unique for a g:wen
function.

With the renormalization of Q... as in (3.32), these
functions become computational tractable. From (Hobson,
1965, p.108) and with the usual normalization (1.18),

im 1
2. e *
znin T Y TRamert (3.2)

= S s (Cn+1)(n-m)! .3 2%n t (n+m) |

n+m+2  ndmtl 3. 1
« F( 3 » 5 3 n+‘§" "3:!“““2)

where u is any complex number with [u] > 1; and P denoctes
the hypergeometric series. Using the expllclt expansion of

F (abromowitz and Stegqun, 1970, p. 556),1M-—ld}, and equation
(3.32), we find for the function S

Symlop?) = (1 + i%.)mn gﬂ&)n+1[1 . (min+l) (min+2)

oD Op 2 11(2n+3)
'E%"+ {(m+n+1) (m+n+2) (m+n+3 ) (m+n+4) }h“ . . .1(3.43)

P 2% 21(2n+3)(2n+5) Sp

We note that as E-0 (ellipscidal coordinate systeas

degenerates into the spherical coordinate system), U, Iy

Oy oo, F-21, o/o,=R/u, > R/r, and hence
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(o) = (R/x,)""" . Also A,.— 0 for k>0, so that

Vnew = V... aDd the ellipsoidal series (3.33) reverts to the

spherical series (2.30), as iilnust for E#OQ

For later use, the functions P are similarly
renormalized. Let

' n
R (o) = (—l)m YE _(Zn+1ly(n-m)i(n+m)7 —=2 0! (10)(3.44)
mos m oy i"(2n+1y M

. then the reciptoCal distance, in terms of S,, and R,,., is

I(G ) nlm‘(c) Ynm( b Ap)

1 _ 1
T F® ) ) on+i n]m
nm(a’k)

{3.45)

With (Hobson, 1965, p.95}, we find

_ i | (Rem) (n-m-1) 1
an(c) = (1+ ) 5,"'0‘ {1+ 2(2n~1) g’ﬁ' + o...] {3.46)

which is a finite sum, the last term being 0(c""""™). Using
the recursion formula for the Legendre functions:

P m(ig) = o %n-1,m Pn—l,m(ig)""8n~2,m pn-—2,m(ic)’
nz2, 0<m<gn -~ 2
Pn,n—i(lo) = ig/2n¥1 Pn_l’nwl(lq)‘; n 21 (3.87)

. "—““-““"“'.Iﬁn+i = -
P n(iﬂ) = -1/1**'02 “-“2-5— Pn—l,n—l(lg) , N « B 2

where
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=~ 2n-13(2n+1) - f2n+1)(n+m—1)(n-m~1)(3.n8)
“n-1,m = Vammymm) 3 Po-2,m TV @R-8) aim) (am) :

we obtaxn a stahle and accurate recursion for the R, :
o = (a+m-1) (n-m-1) 1. 8
0 = 75 Fag,n(®) * D 57 Faez,0()

nx22, 0sms<n-2

?

- 0‘.....'
Bnn-109) = 57 Fpg pgf0d, n 21 (3.49)

= .. _ f[iveT .
39,Q5?? - Y g? '39‘1»n~1(q) » n2zl

%
Rn:g‘Q) =1
3.2 Th E1112501da1 Serles of th GraV1 y and Height

A malleS‘"‘“

The above formulas establish the transformation from
spherxcal to e111p501dal harnonmc series (and vice versa)
for an albxtrary {¥ewtonian) potential in the regions where

the series converge uniformly. Utilizing the powerful
theorem that ‘harmonic functions and Newtonian potentials are
equlvalent {Kellogyg, 1953, p.218), the transformation of
serieés coefficients of the gravity anomaly and height .
anonaly follow 1mmed1ately if we retain their definitions
based on the spherzca) approx;matlon (equatlons (2.42) and
(2 S?}). Because

T 1 : 1
= .y 20D _ =2

are both harmonic functions in the exterior space,
appllcatlon of equatlons {3. 33) and {3.34) to egquations
(2 50) an& (2.58) yields S '

R =1
Ag(u ,ap,x ) = ";' 2 ]mg Snlml( Y Ynm(ﬁp,hp) (3.51)
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with
Yom ~ kio ‘amk En-gk,m » S = [Tz - (3-52)
and
S2 o ,
“p Rznzolmj nlm[(o ) Enm. nm: 6p’AP) (3.53)
vhere
s ‘
— ‘ n-m
Enm'= kio >‘nmk n-2k,m °’ s = ["5"4 (3.54)

and where S, (o) and A,.x are given by (3.43) and (3.35).

The coefficients Frnm ¢ O Ehm » 30 not represent the
elllpSOLdal spectrux (as defined by (3.11)) of the gravxty
anomaly or height anomaly since the above sums are
premultiplied by r,, which is a function of uw,,$, and hence
not comnstant on any ellipsoid. ¥Finally wve note that ¥im =0
for w»=-1,0,1, since 4,.,=0; also if g, =0 and z, =0, then the
corresponding zero degree ellipsoidal coefficients vanish as
well.

Using the formulation of the disturbing potential as an
integral of a generalized density layer, the downward
continuvation error of the ellipsoidal harmonic series is
similarly derived for the gravity anoealy. Attempting a
corresponding development for the potential requires the
expansion of the kernel E, above and belox the bounding -
ellipsoid, into ellipsoidal harmonics. A starting point for
such a derivation aight be the spherical series (2.115), but
this may prove to be a formidable task. It is not pursued
here because the series divergence has the greater relative
effect on the series for the gravity anomaly.
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Thas con51der the equation -

T, = ..E_ [/ ) x aw  (3.55)
o

where dw=siné d§ @\ (ellipsoidal coordinates) and K (the
potation is modified to avoid the conflict with the linear
eccéntricity) is the sane kernel as before (eqnatlon _
(2.85)),; but in ellipsoidal coordinates; that is, only v
has changed to inc¢lude the Jacobian of the spherical to
ellipsoidal coordinate transformation. Using the same
,definition of the gravity anomaly (equatlon (2. az)), ve get,
as before (sée (2 91)),

AEy [ 2) (5 - —8528kyq, (3.56)
w p

By thé addition theorem (1.9)

Ts cos 1 T T \ - o ,
—S‘;ﬁ - = S IRCTALE SR FCAE Y (3.57)

since Y,,, (8, Ap)/c5 satisfies laplacet!s equatxon and is
regular at infinity, it is a potential i therefore, the
transformation equatlons (3.33), (3.38) from spherical to
éllipsoidal harnonlc seriss apply.

1
T2 im0 5’2 ) =

© n. _ |
5 N ow
"p w-Z=o t':i.;n nltl("p) Tt Tne(8p Ap) (3-58)

Whete

ﬁnt = 3 A

k20 *ntx 9n-2k,t (3.59)

and the g,, are the cortesponding spherical harsonic
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coefficients:

0 if n # 1
4pt 5 - ' .60
at " 3L yr n=1 and t=-1, 0,1 (3.6%)
a _
Inserting (3.60) and (3.59) into (3.58), we find
L%, 6 a0y =3 B YR T (8 M) (3.61
ﬁ im* 'p’p nk1 njm| (6) Nyp Ynm p''p (3.61}

110dd

Pinally, by substltutlng (3.61) into (3.57) and consxderxng
the transformation between inner harmonic functions,
equation (3.26), ve obtain the formula

Tscosy _ 1 P s = \ B F .
ST " BR L L Yn By jn] () Sppmi Ty, m (600
P n=0 m=-n E (3.62)
« ¥ (8 _,A)

nm"p’"p’

where the explicit expressicn for u,, is not difficult to
find, but of nc consequence in the present derivation; it is
noted, however, that u,.=1, for all m. Combining (3.62)
with the ellipsoidal series expansion for the reciprocal
distance, equation (3.46), and inserting this into (3.56)
results in

o

= 8 Gldt
Agp EF?;-nio mgL nlml(c ) ffv(ﬁ lz oy (: )dw
8. A

nm PP

{3.63)

~where the point P is 1ocated above the bounding ellipsoid
(uP:» b) amnd
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'"R"{2n+1 niml(C) ? (6 A) ?unm 1 [ml(g)c (3.64)

(Note that u,W.zo ) If the earth's surface is an elllpsold
(vith semiminor axis Db, e.g. h*6356755.288 ] for the mean

'y

. earth e1119501d) on. uhxch the gravlty anomaly is a known
._ffunctlon, 3 ‘ ‘ L o

g

“Ep T“E; “2 'z; 'Snfmf§3?) Yiim -nmcsp’lp) - (3:63)

f:then in thls case the 1ntegral equatlon {(3.63) can be
‘,solved, 31nce a comparlson with (3 65) 5?0?5 that

T .~

Yom = 4n j[ v(§,1) ey (u,8, l)dm

i

1 _
rf_f v{§,A) [*‘m nlml(?)') (5 l)w?unleJmi (o)
(6 l)}dw (3.66)

) T 5y 5. .GyD -Ru g =y
* 2071 Pnjnf® 5ol ) Do~ 3% R, (w90 Din
vhere & =b/E and

',_,,‘-":,\3"(5,6,'1;) = e}? IEJ

D=0 m=-n Sn)m} €97 P Ypp(8,2) (3-67)

Since u"“*1 and ywﬂ—o D cannot be determlned from
equatxon (3.66) ; ve may assume D,, =D, =0. Then

D - ='2n+1 . 1
nm - R I l(g) 8

Yom (3.68)

n|m| @

For points helou the bounding elllpsoxd, consider the
regions -
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1= {(6,2) /uy > b}, w2 = {(8,0) [ ouy < b}  (3.69)

If (§,,2) & w,, the reciprocal distance is éxpanded as

e n]ml(o) njm I(c ) Y (6 A) -

3.70
nm(ap Ap) : ( )

Sabstituting this and the series for r,cosvf/r (3.62) into
(3.56) ylelds

o

S ' §,h ¥ (8,2 |
bg, nzo m;_n n[ml(cp) ({){ v(8,%) o du Im(. ) +

L]

- ‘ )
§,A
* éﬂrpnie mgin £{ v ) [2n+1 nlml(gp) S
nm(S,k) +

(o)
nim| (3.71)

u = R - : - '
- —-%m- Snlmi(cp?-'Rliiml(G) YimCG:A))]d(ﬂ Ynmfﬁp,lp)

Note that O =u/E is a fuanction of (6, A}, since u is the
coordinate of a point on the eartht's surface.

The downwardé continuation error of the ellipsoidal -
harmonic series for Ag is then the difference between
(3.63), truncated at n=8, and the true series (3.71). After
several simplifications, in which (3.64) is duly considered,
this error can be expressed as

n
c(dg,) = £ mjind m(9p) Ynmcsp,xp) +

(3.72)

+
maa

L m_i dnm(cp) Ynm(dp p)

where
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<nm(r ) = 4§rp SnFi ff v(8,3) [Sn!ml(c ) Rnlml(c) (3.73)
- ﬁh’lmid )Sn!ml(c)]Y (6, Adde
and
nm(rp) = dpp(ry) - & Salml ©p) Yam (3.74)

p

P being the elllpsoz.dal coeffld:.ents of the outer series
of I, 893~ In vwiew of (3.43) and (3 46) the kerhnel of
(3.‘?3) ¢an be expanded as a seriés in

W= - %g - (3.75)

By nsztng the serxes express:mns for S,,,,.(o-) and B,,,,,(a—) ’
namely equations (3.43) aid (3.46), and collecting like
povers of ‘¥ and o, it is found (through a léngthy and
tedious der:.vat:xon) that

(U)R (0)- (O)R (0}w
| —(2n+1) 2§ (14 Tias, +Taay + 05 )+
+ w*( ' '1'2.1.*—-5 +Tzz—;— + 0(—' )}+ _
| - % % . 9p - (3.76)
+ §3G30+T31§%'-+T3z3@ + 0(“}))'F
- % % °p
— 1 1
+. W (Tyot +Tyr—p + O()) +
| o o,
P p
» + 0(#)]
wheré
Tii =<1, T2 =1, T3 =1, T = -2
Tss = Tuo = 32?+1)5 .Téi#_ m%(2n+1)(n+1)

6 (3.77)

#

T2 2 + 3 (n+n+m?» y Tuz = 1=~132
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As with the total downward continuation error in spherical
harmonic serles, the linear, as vell as quadratic, terms
terus in ¥ sm to zero for points on or above the earth's
surface. The expression (3.76) provides two— to three-digit
accuracy for n=300, ==0, 150,300 and o,=12.180886,

o =12.193239 which represest the worst situvations; that is,
when the point of cowputation, P, and the point of
integration are farthest apart in terms of the coordinate u
(then the ratio ¢,/0 is least and ¥ is largest).

3.4 The Results of the Numerical Analysis

Since the infinite ellipsoidal harmonic series of the
gravity {or potential) converges with certainty only outside
the bounding ellipsoid, the evaluation of the truncated
series at the earth's surface is associated with a downward
continuation error. However, we should expect the error to
be smaller than for the spherical series since the
penetration into the region of (probahle) divergence is
generally not as deeyp, especially in the polar areas.
Although this is almost obvious, it can be verified by
examining the divergence of the zonal series corresponding
to the simple density distributions of section 2.1. Por
example, Pigure 19 shows the differences between the partial
suns of the ellipsoidal series and the true value of the
gravity anomaly evaluated at the point (r,=6357200 a,
8,=725). The eccentricity of the coordinate systes was
taken as E=450000 m so that the evaluation point lies below
the bourding ellipsoid: 5300 m for the equatorial disk and
~3500 m for the serrated ellipsoid. The ellipscidal
harmonic coefficients were determined by applying the
transformation (3.52). Clearly, in contrast to Pig. 5, the
effect of divergence is more subdued, becoming noticeable
only when n > 1800.

The above expectations are not realized when comparing
the truncated ellipsoidal series of the gravity field
generated by the density layer of section 2.3 against the
corresponding truncated inner gpherical series. The
differences between the partial sums for £=300 car be orders
of magnitude largyer than the values listed in Tables 3 and
4. The only admissible comclusion, that this is a
coeparison of incompatible spectra and is therefore
meaningless, reemphasizes the inherent danger in the

comrparison of partial sums of different series representing
the same function.
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Pigure 19: Partial sums of ellipsoidal harmonic series of
' 4 g tor equatorial disk and serrated ellipsoid
density distributions (Figqures 2 and 3) minus
corresponding true values evaluated at
£, =6357200 m, 6,=725.
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Por the numerical study.of the downward continvation
error, Wwe can specify the density model by (3.68) in
conjunction with the coeff1c19nts {2.126) . The quantities

,mﬂ(«) ¥om /R were set egual to §,.., recogunizing that a
different graV1ty model ensues and that the correlation to
the topography is no longer given by (2.131). This choice
of ¥am i85 eguivalent to the assumption that the function
I, 4 g, {approximately on an ellipsoid) was analyzed in the
ellxgsox&al coordinate system (§,) ) to yleld RJnme (The
degree variances 0f Dnw {3.68) and of (2n+1)9,.., equation
{(2.94), differed only in the third digit.) Moreover, to
avoid unnecessary complications, the same surface model was
adopted, but the grid coordinates were identified as
ellipsoidal coordinates: é;=iad , where a§=0J6. Hence

- 2 i '
ugs W-V}Si - E? 51ﬁ6i+§ | (3.78)

The semiminor axis of the bounding ellipsoid (with
E=521854.4492 m, see (3.9)) was found to be u, =6363096. 071
. The surface deviates from this ellipsoid hy an RMS value
of 6114 m; the deviation is around 6000 m whether at the
pole or equator. Other choices of the linear eccentricity E
say produce a closer overall fit to the surface; for
exasple, with E=523836.8873 » (a=6378140 =, £f=1/296), the
bounding ellipsoid is closer to the surface at the poles,

but more distant at the equator, with a total RMS deviation
of 6085 m.

The evaluation of the coefficients 4d,,, of the downvard
continuation errxor of ellipsoidal series is almost
identically perforaed as for the spherical series. The
expaunsion {(3.76) minus the limear and quadratic terms in W
is substituted into (3.73), which, in torn, is discretized
according to the assumption that the surface model consists
of ellipsoidal compartments delineated by the coordinate
lines & =constant, A=constant, arnd that v is a step
function constant within each compartment.

In contrast to the determination of the error im the
spherical harmonic series, one value of u, (u,=6356800 m)
sufficed to vield an ellipsoid with an adequate supply of
points within 100 m above the surface model, in all regions.
The RNS values of the downwvard continuation error series,
truncated at =300, at these points are shown in Table 8 for
the regions of Table 1 (where the latitudinal ranges now
refer to the reduced latitude). Also showh are the numbers
of total points on which the RMS values are based, as well
as the maximum absolute value in each group.
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Tible 8 Rﬁh d ounward contlnuatlon erxror of elllpsoxdal
harmonic series of gravity anomaly in regions of
Table 1 (latitude ranges refer to reduced latitude)
at points on the ellipsoid 8,=6356800 =m

(E=521854 41492 m) and abové the surface model no

Rnore

than 100 m.

Maxikum absolute values for each

région are given parenthetically.

kegic’»}i kﬁs ;'_V(Aq) (maX £(a9)) , mgal, 0 2n £ 300
At 023 ~ 35927
No. of N No. of S
points |points
I 7410 {1.9x107" (3.2x107) | 8355 [2.7%x107™ (4:1x10°%)
ba i 5003 [1.7x107* (1.1x10°%) | 9328 |.94x10°" (.45x10°%)
111 '728; 1.1x10°" (.96x10°%) | 2071 1.3x107™" (.63x10°%)
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. The pumerical results are limited to the demonstration
that the effect of divergence {(=300) of ellipsoidal
harmonic series near the earth's surface is considerably
less propounced than in the case of series of spherical
harzonics. Note also the essential nnlfo:::uty of the errors
over all the 1at1tud1nal ranges. : ‘



4. Corrections to the Spherical Approximations

The ellipsoidal correction expounded by Lelgemann (1970)
and. Moritz (1980) amend the spherical approximation by
accounting for the general ellipticity of the earth's shape.
The spherical approximation of the relevant geodetic
quantities, ag, ¥ , defined by (2.42) and {(2.57), however,
do not conform precisely to HMoritz*s defimitions. To
achieve the spatial spherical harmonic expansion of the
height anomaly (equation (2. 56)), as well as the
corresponding e1119501da1 expansion, the normal gravity was
equated with the gravity produced by a homogeneous ball of
mass M, instead of the conventional average value of ¥ over
the spheropotentlal surface (the latter being assumed by
Horitz). PFPurthermore, the spherical approximation of the
gravity anomaly, according to Moritz (ibid., p.425), is
defined by

T, = g "joj Ag® S(y) do (4.1

whlch represents the solution to the (third) boundary value
problem if the pounding surface is a spheze' S{v}) is
Stokes' function. In equation (8.1 T is the actual
disturbing potential with nc spherical approximation, and
both T and Ag® are functions on the ellipsoid that
approximates the earth*s surface, with semiminor axis, say
b. Using coordinates for which the ellipsoid is a
coordinate surface, .for example, ellipsoidal coordinates
(u, €, A) {(Moritz uses geodetic coordinates), the angle v
loses its usual geometric meaning since it is defined by

cosp = cos s éos§p + 'gind sinGp cos(h - lp} (4.2)

where (&8, ) and (§,,);) are points on the e1119§01d. v
may be 1nterpreted as the central angle between the
projections of ellipsoidal points onto the unit sphere
according to the correspondence (3.12). Expressing T and S
in terms of harmonic functions,

118
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@ n
T(b,§_,x ) = A Y (8. : : : ‘ 4.3)
p’p n§-o m_i n bm nm(ﬁp’*p_) S (-3
- ow n 1 _ : ' ‘
Y el : ¥ : 4.5
S(8 358 pshps) = ngg mm_z“n == Ynm“s”‘),Ynm(.‘sp”‘p) o (En)
directly yields
: = D n-1
Ag°(P,8,4) = } L g Apm Tam(SsM) (4.5)
n=2 m=-n -

_Equatlon {4.5) obviously differs from (3.51) because of the
latter's dependence on r. Hence the elllpSOLQal corrections
of Moritz (1980, pp.318 327) to ¥ and "'Ag are not '
appllcahle here.

When abandoning the spherical approxlmations (2. 42) and
{2.57), the simple spectral relationship between the
potential and gravity, or height, anomaly is lost.
Nevertheless, to the approxxuat;on developed below and
knowing their relationship in the space domain, the latter
are still representable as series involving the spherical
harmonic functions.

In the following, we will build on the premise that the
disturbing potential is known to any desired accuracy, for
- example, as a series of spherical or ellipsoidal harmonics.
The corrections to the spherical approximation of the height
anomaly and gravity anomaly will be derived to an accuracy
determined by the negiect of terms involving the fourth
pover of the first eccentricity. Furthernmore, derivatives
along spheropotential surface normals and along ellipsoidal
norsals are not distinguished (they are identical on the
reference ellipsoid, if it is an eguipotential surface in
the normal gravity field). Thus the height anomaly is

Y 2 32U
2 A 3}:2 lq el (-6

where 7/%h is the directional derivative along the
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ellipsoid nomdl.. The vert:.cal grad::.ent of .the norual
. gravity, dy/ b= “8‘U/ ?h*, is on the order of
2 3/r~3x‘10 $gir, so t.hat., with B < ‘100 m, its omission
SooCauses at most, anierror of 3 pm. In order to achieve 0.5 c¢m
‘iaccuracy dn-the helght anomaly; the nomal gravity -must be
;accnrate to about 50.mgal, so that in viewv of the above
-gradlent of about 0.3 mgal/m, ¥ may be substituted for ya
in (Be6) . Smllarly, the gravity- anomaly in its most
- rigorous fors is

, W )
_Agp'_ BH ”"ah * ahIQ p+§'§?’§p+' . (B.7)

where W is the earth's gravity potential, U is the normal
potential, and 7?/2H is the derivative along the plumb line,
i.e. the gx:adlent. Terms of second and higher order can be
neglecteﬁ, causing an errxor Of at most 1.5x10° -3 mgal, since
g/ 30 E 6 kM/R > 1.5x10™"" B s5°* . Furthermore, as this
also gives the chandge in the vertical gradlent of y with
height, the value of Ag changes by no more than 1. 5110”3
mqal :Lf ’bg/’ah is evaluated at P instead of Q.

Fig. 20 shows the dlrectlon of the plusb line with
respect .to the orthoqonal directions of dh, %Zd¢ , Ncosg d)
at a- pomnt P; 2 is the meridional radius of curvature of the
ell;.psoa.&, N is the radius of curvature in the pr:me
vertical, and ¢ is the geodetic latitude. If ® is the
total ﬂeflectxon of the vertical (angle between dh and dH)

. with components §¥ and n . then, since these are small
- angles, the direction cosines of dH with respect to the
nornal directions are cos®, 13 ana M . Hence

U YO S T \
aH _cose—é'ﬁ*gﬁdﬁ'nbicosé:al _ (4.8}

Cons:.dern.ng E‘:Lg. 21, the dlrectlonal derivative along
the e€llipseid normal is

3 _ 3 ; 3 |
“é‘E = COSsy -*a*;- -~ Siny --—-rae (4.9)
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cos™'m

Zdg

Ncosg dA

Figure 20: The deflection of the vertical.

Pigure 21: The norwal directional derivative.
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where ¥ is the angle between dh and dr. The ellipsoid
notmal 1ntersects the eguator at a distance s from the
center* we have

. ae¥l-é& siné . . aYi-e’
8 = i = (4.10)
Y1 -e’ gin®h Y1l - e?sin®0

Using the law of sines on the triangle 0BQ, we obtain

r : .

— 3 e

S coty cosb sin (4.11)
‘Hence with (4.10)

2 .
tan ¢ = e s:;nGcosB .12)

1 - e%sin?e

Pythagoras' theorem then easily furnishes the expressions

siny = e?sind cos 6- %e*(e?- 2) sin®0 cosd + 0(e®) {4.13)
| Y 2.2 29 [ . b g . R
cosp = 1-%e*sin?e + =~ e sin'® + 0(e”) {4.14)

Hénce, neglecting terms of O(e“).

3

=5 =...3§£_.. - e?sind cosh {4.15)

i.sl
L% X b
[2+]

Note thadt e* depends on the coordinate surface u=b under
cons:xderata.on, but to the accuracies involved here, it can
be treated as a constant for points near the earth's
surface.

The normal potential, U, is given as a series of
spherical harmonics by Heiskanen and Moritz (1967,p.73):
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[1- )j Ty (232 P, (cos0)] + Hrisifs  (4.16)

‘where J-,_,‘"O(e"""‘} and i ise the rotatlonal speed of the -
earth: w* = 5x1077 . The normal gravity, being the -
gradient of U, m_therefore ‘

aU 1Y 1Y

v = - .;é_...mﬁ.é..l.:_+ e s:m@c:os@rae
- f._l‘g..' 5. kM J,(2)2 P,(cosd) - w?r sints(l - co
T Ir ) . : '

(& .17)

+ 0(e®)

We note that w*rx0.03m/s™*x0.003y =~ O(e’), so that the
ternas with w®*re* can also be ‘negqlected. From (4.17), the
normal derivative of- Y is fo_und to be ‘

Ay By _ ar
R~ 3T 23ing cosel{,ae
M (4. 18)
= - --[y 3 KL .3’2(-—)2P2(cose)+-2-m r sin?6] +0(e"*)
Hence
1l 3y 2 6k ¥ a \2 _ : uyy I°
....;.(__53111 =- F ()R Bussie + 0(e™) =
(1-3J2(5)%P, ~w?r sin%+ 0(e*))”
{4.19)

— 2 a 2 _§_ﬂm2r3 . 2 y
= - =11 -3J,(—)?Py(cos 8) + = sin 8] +0Ce*)

Substituting (4.17) into (%4.6), the height anonaly'becomes
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THT : & 2 | ' w%s . Y
Ly = Y [1+:-zJaci«;;)’Pz(ccsap)+~~~~EKM sin% ] + .O(e ) (4.20)

The correction above reaches a maximua value (0.33%) at the
poles, 6,=0°,180%.

Taking note of (4.15) and (4. 8}, the gravity anomaly
(4.7), upon substituting (4.19), becomes

o - _ 3Ty d
A8, = 5% e snx&)pcoseprpaa Yp‘alﬁ T +e: +0(e*)

_3Tp 2 L 2ad _8Tp 4.21
Brp rpr e 81nﬁpcos% rpaep + { )

+ (632§%-P2(cosep) j¥§3?51n 8 ) Tp-+ep-f0(e )
P

where T, =¥ -U, is the disturbing potential and

aW W ' W
g, = {1~cos@ ) S oA « N D
P p’ 3 P Zndd P Np CcOsS¢pdA
P P 'p P P (4.22)
_ W 3T 3 T 3y
p "ahpI p T30y ~ 'p Npcosg,ax, Epzpa(p

in which we used the fact that the normal potential does not
vary in longitude. The derivatives of T in (4.22) are the
components of the deflection of the vertical multiplied by
the normal gravity, and the ﬁerlvatxve of U is

‘g._......a:-..-—:m .23
750" " Fee - RZ T (#.23)

Pinally,

W .
] (4.24)

it

-
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so that an apprmimate upper bound for the magnitude ‘of £p
is

lepl £ 1% gyl + 55 71+ Ing 1yl

3:«: M (4.25)

!F,' (5= J, + w?R) sind coso|

Using g~ Yy =~ 9.8 m/s* and 53 =m =~ 10", ve find lép| < 0.34
ngal the dominant term is the last one, hence this bound
varies linearly with the magnitude of .- 1In view of its
relation to the deflection of the vertlcal, the horizontal
derivative of T has typical values of y$ =50 mgal, with an
upper bound (% < 1") of 300 mgal. Therefore the third term
in (4.21) has a value of about 0.2 mgal (at most 1 mgal),
vhile the last two teras in (4.21) rarely amount to more
than 0.7 mgal. The formulas (4.20) and (4.21) are valid
anyvhere on the earth's surface or above with an accuracy of
about e*f{ <5 mm and e*ag < 1xW"* mgal, respectively.
Equation (4.21) generalizes the correction derived by
Molodenskii et al. (1962, p.212) for anomalies on the
reference ellipsoid and is guite unlike the correction of
poritz because of the different definition of spherical
approximation.

The equations (4.20) and (4.21) were developed in order
to provide the means for the prec1se evaluation of the
gravity and height apomalies using the spherical (or
ellipsoidal) harmonic series, whose formulation depends on
the adopted spherical approximation, namely (2.42) and
(2.57) «



S. Summary, Conclusion, Recommendation

, The expansion of the earth's gravitational potential
into a series of spherical harmonic functions has long been
used to describe it om a global basis. The question of the
validity of such an expansion at the earth's surface, though
propounded from the outset, has been addressed firmly only
recently and then primarily from a purely theoretical
standpoint {e.g. the Runge-Krarup theorem). While these
represent important advances, a definitive answver has yet to
be, or may never be, found. In the practical situation, the
infinite series is necessarily truncated at some degree h.
what effect the {possible, or even probable} divergence of
the infinite series at the earth's surface has on its
partial sums has received only a *first-generation®™
analysis. With the present study, we have taken a second
look at this effect, but the subsequent conclusions must be.
carefully phrased and are necessarily lacking in numerical
specificity.

The downward continuation error, being defined here in
-connection with the effect of series divergence, is a
‘deterministic, or systematic, error; it has no stochastic
properties (one could argque this point if the convergence
surface is itself a stochastic process). Therefore, its
assessaent is forthcoming if the true value of the field
which the series represents is known, such as in the case of
the siample density distributions of section 2.1. These
distributions were not designed to simulate the earthts
density, but their dimensions and the numerical
investigations vere selected with the terrestrial situation
in mind. It was foumd that the partial sums of the
spherical harmonic series for the potential {(and gravity
anomaly) , evaluated below the surface of convergence, do not
show signs of divergence until the truncation degree is
relatively large. Also, Pigure 8 suggests that the
divergence problem may affect the geopotential series only
if the truncation degree is 300 or greater. PFor the eartk,
the requirement of hnoulng the true value of the potential
field at the surface is difficult to meet, even if, for the
purpose of an ad hoc analysis, models are 1ntrodnced to
represent the earth's surface and gravity field.

126
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Early works were based on modeling the earth's
litbhosphere by a volumetric density distribution of
essentially constant value. TIn this and the present use of
a surface layer density distribution, the true values of the
modeled field can only be estismated, again, by a truncated
(inner) series expansion. It was found that low degree
comparisons of inner and outer series of the volumetric
density model give unrealistically large values of the
error. This reselt is attributable principally to the
inadeguacy of the choice of the model. FPurthermore, since
this model itself depends only warginally (through a crustal
density of 2.67 g/cw?, etc.) on the actual characteristics
of the earth?®s potential field, it was abandoned for a
surface density layer model which could be defined (although
not optimally) so as to yield a reasonable representation of
the true potential field. This smodel does not represent
exactly the earth's field at resolutions greater than 200
ks, since raniom harmonic coefficients were generated to
£fill in the detail to a resolution of 67 kan. However, the
coefficients were forced to decay, vwith degree n, according
to a degree variance model characteristic of the true
gravity field. The main disadvantage of this density model
is the inability to compute the true values of the potential
on the surface to any desired accuracy. A model for which
this is no problem consists of a sufficiently large number
of point masses distributed globally just belcw the earth's
surface (to ensure the divergence of the series), as wvell as
deeper within (to generate long wavelength pover). The
difficulty with this model would be the numerical

determination of the masses for a representative potential
fieléd. '

The downward continvation errors depicted in Tables 3
through 7 are completely insignificant with respect to
anticipated measuresment accuracies of 1 mgal and 10 cm in
the gravity anomaly and geoid undulationm, respectively. For
the anomaly the suz of the harmonics of the error up to
degree 300 was found to be 0.3 - 0.5 ugal (1 mgal =
10°* mgal) near the equator, about 20 smgal in the
midlatitudes, and 80. - %0. mgal in the polar regions.
Similar mincte values were obtained for the first 300
degrees of the error in the height anomalies: 0.3 - 0.5 umn
(1t xa = 10°° ®) in the low latitudes, about 70 mm in the
midlatitudes, and approximately 800 . ® near the poles. Of
course, these numbers do not give the entire error since
they exclude the contribution form degrees 301 to oo,
representing a truncation effect, i.e., the neglect of teras
of degree greater than § of the jnner series. We can expect
the usuval degree variance models to provide a fair estimate
of this effect. This expectation is rather inptunitive, based
on the near sphericity of the earth's surface, the results
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of section 2.1, and on the smallness of the values of Tables
"3 and 4, but not founded on deductive reasoning; the same
expectation may prove to be erroneous for the volametric

- density model. Using the model (2.%28), the RMS truncation
erroxr. (n“300) has values {(for point estirates) of about 30
sgal and 36 cm, respectively. PFor the Gaussian ‘smoothed
fields (95% of the 300-th degree harmonic is filtered), the
flrst 300 degrees of the gravity anomaly error approximately
sum to 0.02 ngal (eguatorial region), 1.0 ugal
{midlatitudes), and 4.0 ugal {near the poles), with
respective values of 0.02 um, 3.0 um, and 20 um for the
height anomaly. The RHS truncation effect is approximately
0.3 mgal and 0.7 cm, respectively. Therefore, the
estimation of point or sean gravlty anomalies and geoxd
undolations (height anomalies) using the outer series
expansion to degree 300 anywhere on the earth's surface is

practlcally unaffected by the divergence of the total
series.

Throughout this exposition emphasxs has heen on the
dissimilarity of partial sums of inner and outer series.
For a constant radius r, =R, greater than the bounding sphere
radius R, the coefflclents of the partial sum of the outer
spherlcal harmonic series for the potential represent a
portion of its spectrum on the sphere of radius R,. Since
the spheres of radius rp,< R pass through the earth’s ‘
interior, the coefficients of the inner series {constant )
cannot represent the spectrua of the exterior potential.
Indeed, for the density layer model it is difficult to give
an 1nterpretatlon to these coefficients, which in any case
vary as the point P moves on the earth's surface. By
acceptlng the conclasion that the truncated outer sseries
(& £ 300) can be used without concernr for divergence anyvhere
on the earih's surface, we also cannot identify the ocuter
harmonic components as spectral constituents of the
potential {or gravity anomaly) on the surface. (Note that
the harmonics should be evaluvated on the actual surface of
the earth, anrd not on some mean earth sphere.) Therefore,
any evaluatlon of the outer series must be accompanied by an
anambiguous statement regarding the guantity being
estimated. For example, by introducing the Gaussian
average, we atteapt to ellalnate. or filter, the high~degree
information, so that the inner and outer series truncated at
300 are nore nearly comparable.

A major part of this report was devoted to the
development of ellipsoidal harmonic series, in particular,
the transformation between ellipsoidal and spherical
harmonic coefficients. Although the downward continuation
error in elllpsoxdal series is generally less than in
spherical series, especially in the polar regions, there
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seens to be no need in practice (< 300) to make the
conversion for simple evaluations. On the other hangd,
because the spectral cosponents of the potential on the
earth's surface bear a closer resemblance to ellipsoidal
harmonics than to spherical harmonics, the analysis of
terrestrial data (including altimetry) is more correctly
compared to (or combined with) the ellipsoidal spectrum.
For example, the analysis of a global set of geoid
undulations (in the ellipsoidal coordinate system (&, ))
yields harmonic coefficients which should be transtorned
according to (3.34), (3.35) before comparing thes to
potential coefficients derived from satellite data.

The expansions of the simunlated surface and gravity
field were restricted to terms of degree no greater than 300
because of limited computer storage capabilities, rather
than a concern about excessive computer time. Obviously,
for higher expansions of the potential, the error analysis
mast be redone since extrapolations on the basis of Table 5
are risky. In any new study of the downward continuation
error one should endeavor to devise a density distribuation
{such as point masses) for which the potential function can
be evaluated to any accuracy, thus allowing a more
definitive assessment of the series divergence. Should the
error ever prove to be relatively significant, it is
recommended that corrections pot be applied to spherical
harmonic coefficients ‘if the conversion to ellipsoidal
harmonics elimipates the significance of the error.

The investigations in sections 2 and 3 have relied on
approximate formulas for the gravity anomaly and geoid
undulation (or height anomaly) ir order to simplify their
fuactional relatinship to the disturbing potential. 1In
section 4, corrections to these approximations were
developed with the premise that the disturbing potential is
a xnown quantity (e.g. in series form) and with a relative
accuracy on the order of the square of the earth's
flattening. fThese corrections should be applied to ag, ¥
whether they are evaluated using the spherical series
(2-.50), (2.58) or the ellipsoidal series (3.51), (3.53)
(taking due account of the coordinate systems involved).
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APPENDIXES

.A. Convergence and Divergence Con-ectures

The "“proof of convergence® by Arnold (1978) can be
outlined as follows. Tt is well known that any reasonably
well behaved function (not necessarlly continuous) on a
surface is expandable as a series of surface spherical
harmonxc functions. Instead, however, one may ask whether
the set of solid spherical harmonics -

I SR
Zom = AT Tpp(852) (2. 1)

considered as surface functions of two variables €,A (i.e.
r=r{ 6 ,\)) is also a complete set for functions deflned on
the surface. In this case, the series for the surface
potential : '

<«

n -.
V(A .__\i_r;m_? 8, .
(8,\) = Zo mjn e MRS (A.2)

vould be a uniformly convergent series everywhere on the
surface. Consider now the monotonically decreasing sequence
c*tiypent!, 85 p, whichk is, moreover, bounded. Hence
Abel®s convergence criterion can be applied to claim the
convergence of

o n
V(r:,0,1) = Vnm 8,2 .
. ngo mgin el ?nm( sA) (A.3)

for every r*> r. Since the function V(c®, 6, ) thus
defined i1s harmonic and satisfies the bounda:y values, by
the uniqueness of the boundary-value probles, V must be
earth®s potential. Purthernore, by the unxqueness of the
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spherical harmonic expansion of the potential, the above
series coincides with the series that would be deterained on
the bounding sphere. Thus, to prove convergence of the
spherical harmonic series everyvhere on and above the
earth's surface, indeed everywhere above the Bjerhammar
sphere, it is enough to prove the completeness of the
fenctions (A.1) . Arnold failed here as his ®proofs®™ of
completeness rely on the assumed truth of the conjecture.

In a more recent paper {Arnold, 1980), the completeness of
the functions (A.1) is supposed to be proved by showing that
there exists no function P such that

[l p2ac >0 (3.4)
le]
and such‘that

j .
But this is a necessary and sufficient condition for
completeness of orthogonal functions; the %, are clearly
not orthogonal and the proof fails again.

A "proof of divergence® of the potential series at the
earth®s surface was presented by Morrison (1970) under the
assumption that the zonal coefficients do not decay, in
magnitude, faster than some fixed negative power of the
degree n. However, the "proof® also relies on the erroneous
statement that the spherical harmonic series diverges if its
subseries of 2orals diverges (the latter was shown for the
assumed coefficient decay). The fallacy of this argument is
easily demonstrated by the example of the alternating series

§ (“1)n+1

, om (2.6)

n

wvhich converges (to the value lnzi, but the subseries of
even terms only, or odd teres only, by itself diverges.
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B. Series Efpansions for the Serrated Eilipsoia

For POlntS P below the bounding sphere, the serrated,
honogeneous ellxpsox& is decomposed into reglons for which
Lp> Eg and xr, < Ty » Substituting the series (2.7 and
(2 8) into (2 2“), the potential is then’ expressmble as a

convergent series:
|

® gN-1 2T em 042
V= kxr, L i L {o Lf =) ar +
P 7 Pp=pg;i=0 ° Tp
L (B.1)
T r , .
+ | Sl(%?)nfl dr] Pn(cosibdd

r.

1

vhere rt*nln(r,,rs }; if r,> 1,;, then the second integral
with respect to r vanlshes.- Equation (B.1) readily converts
to :

o«

. o r
V. = 2xxr. } [ % f ei+1 f 81 L y0*24rp (cosm)do

P P n=0 i=0 rp
n even
N—l 2'{]‘ 3- ko T (3‘2)
; i+l si -
RIS p(}-)“*‘zdr+1’ " Lary-
i=j+1 0 p A rp

-Pn(cosw)dc]

 where the eguatorlal syauetry has been invoked (only even
zonals appear in the serles) and Lsy 4Ty < Tgp, 3 if r, > x;
for all i, then 3—H~1 Perfornlng the 1ntegrat10ns with
fespect to r and using

2w 8., n or 8
Sivd _ 1 itlg
fo ‘[31 | P (cospldo = BT m..-.-g...n f Ie . (3 sA )do .
N o3
e1 1

= Op P (cose ) je P (cosb) sin® 48
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we obtain

T 01 1
= 4'}1’[{ 2 s er——— %
v, X ) {1=

. Tei n+3 ) .
T ToET (55 (2: 1P, (cosf ) +

n=0 =0
n even
- ' ) © N-1 - r
1 ' . 2n4+1 1 n-2
+ 4dmweyr? orexdl ( - == () y @3
p n£0 ‘2n+1‘ i=§+1 (n+3)(n-2). n-2'rgj ni
n even - Pn(cosep) +
N-1
1 1 Tsi
+ dwexr? = (= + &n ) @ : Pz(cos8 )
PS5 im§+1 S Fp ' TR P

where (using equation (2.59) of (Hobsonmn, 1965, p.33))

e
Q.= <2n+1)fei P, (cost)sindds

Phryp(cost;) -~ P ,(cosf) ~ P, yq(cos ei+1)‘+ (B.5)

= | +P _q(cosd 4) , n

v

1

P;{(cos Bi) - Pi(cos 6i+1) y I =0

As reference potential, we may use the zero and second
degree teras: ‘

[=
"
ii
et

- drryr2 -—és»——l-—i (Nfl (z84)™3 @.9p (cosd ) (B.6)
n=0,2 P n 2n+ 1=0 rp nLn B

Then the disturbing potential becomes for points P outside
the bounding sphere:

T

|
<

!
o]

p p p
© N-1 '
2 1. 1 Tgi n+3 ‘
4m<xrp .;-ZA 773 Tnid (iz-ﬂ (-1‘—;) 6),.\;_ ) Pn(cosep) {B.T)
n even ‘
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and for points P below the bounding sphere:
o

R \ 11 f roi \n+3 -
Tp 4m<xrp( E T3 TnEl (i=0 (—-FI-;') G"ni)?n(cosep) +

n=4
n even
- cf 1 [ Nzl ( 21‘141 1 n 2)6)
n=0 2n+1 i=53+1 (n+3)(n-2) ~ n-2 rs_.,_
- n#2 '
n even -Pn(cossp) + (B.8)
N-1 N-1 :
Tgig 1 - 1 Tgji 1  Tgoj
- (=83iy¥p . + = [= +an=Sd . = (_81ysy,
i=3+1 rp” ~ 01 55.—-1,));-1»1 5 rp °o'r ]

-®; P (cosep))

'Using the definition of the gravity anomaly (2.42) , the
corresponding series are reaﬁz.ly found to be

o
. i.,n+3
be, = 4mexr, 1 maycamD| T FH™E R
p P n=4 i=0 p (B.9)
n even :
-Pn(cosep) » T >R
and for I, <R '
Ag. = dmkyr °§ n-1 {g (Iﬁ_i_)n-i-.?@}P( 63 +
P X p'(naé @3 (2o Lty nidFpteosY,
n even . :
T 1 N-1 neg n-2  4(2n+1)
= . Ip 2n
L 2n+;1fl2 57 Ty (n+3)(nw2)) Pt 1-
n#2 ' _
. (B.10)
n even _ Pn(cosﬁp) + :
CN-1 N-1 |
1 - F ol » 1 Tes: 1 T
Yl (FERyrE 1 (g-am S 2B
31m3+1 T, oi ‘giwy—l_ 5 T, 5 T1p

. Qth(cose ))



