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1. Introduction

Spherical harmonics are closely associated with the basic theory of
gravitational and magnetic fields, such as those of the Earth and planets;
for this reason they are important both in geodesy and in Earth and planetary
physics.

The present work considers the numerical aspects of the reduction of global
data sets to spherical harmonic coefficients, so the emphasis has been laid on the
algorithms for this purpose. The procedures for harmonic analysis (and synthesis)
given here are general enough to be used in the study of magnetic or electric fields,
but most conclusions regarding their accuracy are restricted to the gravity field
of our planet and to fields with the same power spectrum. The accuracy of these
methods cannot be separated from the type of signal being used.

Modern instrumentation has provided scientists and engineers with vast
amounts of information, and modern computers have made the processing of it
possible, and even routine, thanks to constant improvements in both hardware
and software. In the mid sixties, those branches of applied mathematics, physics,
and engineering concerned with the sifting of data, or with the study of very large
regular structures, were greatly affected by the advent of the Fast Fourier Trans-
form (FFT). In spite of the fact that spherical harmonics are members of the
family of Fourier transforms, clos€ly related to two dimensional Fourier series,
geodesy has lagged behind in the development of techniques similar to the FFT,
partly because of the rather wicked nature of the sphere on which data are usually
given, partly because there have not been enough data to make the development of
powerful techniques a general concern. The topological differences between the
Euclidean plane and the surface of the sphere may very well prevent the finding
of algorithms as efficient as the FFT for the latter (certainly none seems to have
been reported to date) but such algorithms should be regarded, nonetheless, as
the desideratum for all those who wish to put their time and work into developing
good numerical methods for spherical harmonic analysis.

The increasing use of artificial satellites for surveying the gravity field,
particularly by radar altimetry and by the projected tracking of one satellite by
another, are making the use of very efficient and accurate techniques for handling
the resulting data imprescindible; even a casual review of the literature of the
last few years will show that serious efforts to provide such techniques are getting
under way. The days of scarce, scattered, unreliable data are just about over.

The remainder of this section defines the basic problem and the associated
notation, shows the relationships between spherical harmonics and 2D-Fourier
series, presents some of the similitudes and differences between both, and ex-
plains some efficient algorithms for harmonic analysis and synthesis that are
common to a number of different problems. Section 2 begins by defining a
quadratic measure for the accuracy of the estimated harmonic coefficients based
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on the covariance functions of the signal and the noise; a discussion on the
optimization of this measure follows, leading to the application of least squares
collocation to harmonic analysis. The use and implementation of least squares
adjustment follows, and then a discussion of the connection between least squares
and least squares collocation ,. shown as alternative and efficient techniques
for solving the same problem. The section closes with an algorithm for the case
when data are irregularlydistributed. Section 3 illustrates with several
numerical examples some of the methods presented earlier. Section 4
introduces an efficient formula for computing the covariances between block
averages when analyzing meanvalues by collocation. This formula is much

more efficient than others based on the numerical quadratures of the '"point"
covariance function.

1.1. Spherical Harmonic Analysis and Synthesis: Definitions

A square integrable, analytical function f(6,X) defined on the unit sphere
0<86=<mand 0 <X < 27 can be expanded in a series of surface spherical
harmonics

£(6,1) = HZO ljlgcﬁm(cose) [ Cpy cOSMA + S, Sinm ] (1.1)

where: PB,, are the associated Legendre functions of the first kind, fully
2
normalized so -—1—[ Pon (coss)2(098> mX do =1 (heref do
4mdg sin o

__ indicates integration on the unit sphere);
CunsSny are the fully normalized spherical harmonic coefficients.

For the sake of brevity, the following alternative notation shall be used when possible:

-« _ [Dyp(cosB)ycosmr if a=0
Yas (9,2) = iT’nm(Cose) sinmA if =1
and :
0 Ceum if & =0
* See if =1

The purpose of spherical harmonic analysis is to estimate the coefficients Cnf‘
from measurements of the signal f(6,X). These measurements, which may be
corrupted by some noise or error signal "n", and which are assumed in what
follows to be finite in number, constitute the data. The individual samples are
called z,y, so z; = f(8;, A;) +nyy. The subscripts i and j are used only to
designate the position of the sample in a two-dimensional array, or grid, covering
in some more or less regular way the sphere: i corresponds always to (co)latitude,
and j to longitude. While, as in the last paragraph of section 3, some places in
the grid may be empty, the grid itself is defined by a set of complete parallels

and meridians. Unless otherwise specified, the separation between the lines of
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latitude can be variable, but that between meridians is always constant and
equal to AX = n/N, where N is an integer. The grid most often consi-
dered in this work is the equal angular grid, also called the regular grid;
in this case A8 is also constant and equal to A).

For equal angular grids i and j take values 0 < i < N-1 and 0<j<2N-1,
i increasing from North to South, and j from West to East. Formulas where the
i,j subscripts appear are in the form appropriate to the regular grid, though most
of them can be extended in a very simple way to other partitions.

Data may consist of values determined at the intersections of the grid, in
which case they are referred to as "point data”, or they may be averages over
the blocks defined by the lines of the grid, and then they are called "area means"
or "block means". In the equal angular grid the northernmost and southernmost
blocks reach to the respective poles; there are N rows of blocks (i,e. blocks be-
tween the same parallels), there are 2N blocks per row, and i,j identify
blocks according to the row and column they are in, Grids for equal angular
point data may be "center point" grids, data being measured at the center of
each block, so i=0 corresponds to §=A8&2 = AN/2.

No blocks stride the equator, so regular grids are symmetrical with respect
to it; in other words: N is always even (extension to N odd is trivial).

Area means are identified here by overbars; they can be expanded in series
simply by integrating (1.1) term by term, which can be done because the spherical
harmonic series is always uniformly convergent for 0 < 6<m and 0 <)\ < 217 .

@ n 1

f,=-L17 T Zocnf‘fc Tea(6,)) do
i)

It

Ai,] n=20 m='O o=

1
1 =) “. ei +AG_ ) . XJ + A)\
YN Pon 8 6 a6 Cun r m
Aij ngo m;O az::o fei : (COS )Sln [ JAJ cosmp
+ S rkﬁMsmm}\ dk] (1.2)
uAJ

Here ?” is the area mean of £(6,)) on the block 0, whose area is
Ay = AX(cos 6; - cos(B; +AB)).

A basic property of spherical harmonics is their orthogonality:

1 if =8, m=p and n=k

17 <o T .

in Jo Yo (8,%) %r(6,4) do = 0 otherwise (1.3)
as a consequence of which

— 1 -

el = 7= 2.0 18,0 do (1.4



Expression (1.4) is the inverse of (1.1); both constitute the basis of spherical
harmonic analysis. In general, (1.4) cannot be calculated analytically, because
what is available is not the function £ (6,)), buta finite set of noisy measure~
ments in the form of point values z; or their area means Z;;. Discretizing
(1.4) on an equal angular grid results, for instance, in the following numerical
quadratures formula;

A o N~1 2N-1

Cpz = Y 1 Ynm(91:>\3) £(6:,X) Ayy (1.5)

4:TT 1=0 3=0

where elﬂoi indicates the estimate of —é,ﬁf, as this type of formula is usually only
an approximation. Formulas resembling (1.5) can be called "point values-type
quadrature formulas'] and can be handled by algorithms that are all identical from
a structural point of view and whose prototype is that of paragraph 1.5.

If the data are block averages, several simple approximations have been
proposed that take the form
A O N—-1 <N-1

Cha = Ua 1§O J;O -f—ij Ioi ?g(e, A) do

where the p, are scale factors. This kind of formula shall be studied further
in section 2, Writing the above expression in full
NZlaN-l 8, +AD TAA

sy cos)
Crg = “M;’oj;of“fei Pﬂm(cose)smadej‘

SmJ mA dA (1. 6)

This belongs to the general type

Aoy _ [A (m) (Bm) . .
Ci = KiZOXi Zf”[L (m IcostM\+ A( )}smmjak] (1.7)
Ad-1 if 49 sinm AX if i
vhe B(m) = {(cosm )/m ifm:0§A( ) :{( mAX /milffmz‘g

Formulas resembling (1.6) or (1.7) appear several times in this work, and are
called here area means-type quadrature formulas.

If all Ef‘m with 0 <n £ N are known, they can be used to compute
2 . max
the (N, + 1)7 terms in

|
Npax =n {

—_0 O
f(Q’K)NmaX = Z Z Z Can Ynm (6,)\.) (1' 8)

n=0 mn=0 (X =0
which can be regarded as an approximation to £(6,)) at the point (8,1).
Expression (1.8), fogether with the truncation at Np,5¢ of (1.2) (area means),
defines the object of spherical harmonic synthesis: given the coefficients,
estimate the function. As shown later, analysis and synthesis are related by
a simple duality, so they require about the same number of operations when
performed on a certain grid and with a given number of coefficients.
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The set of all degree variances

n
02 = L Tl + 5o (1.9)

constitutes the power spectrum of f(6,A). If all coefficients of degree n> Npyax
are zero, so are the corresponding 0, ; insuchcase the function f(8,A) is said
to be band limited.

-

Closely associated with the power spectrum is the isotropic covariance
function

I~

cov(f(P),f(Q)) = 0,° P,(cos Peq) (1.10)

n=0

Here P and Q are two points on the sphere, g = cos_l[ cos Bpcos By + sin 65
x 8infy cos{ X - Ag) ] is the geocentric angle or spherical distance between both,
and Py(cos¥) is the unnormalized Legendre polynomial of degree n. The power
spectrum and the covariance of a function on the sphere , like those of func-
tions defined on the real line, on the plane,and on Euclidean spaces of higher
dimensions, can be used to obtain estimators related to discrete Wiener

filters and predictors, i.e., satisfying a minimum variance condition. The
spherical version of such technique is known as leagt squares collocation (Moritz,
1972). The inverse of expression (1.10) is

i
o7 = (2n+1) Jqo P, (cos Ypq) cov(£(P),£(Q) ) sin {rq di, (1.11)

Equations (1.10) and (1.11) show that, as usual, power spectrum and covariance
function are linear transforms of each other. A formula such as (1.11) is some-
times called a Legendre transform.

In addition to the autocovariance (1.10), one can define, more generally,

oo

cov(u(P),v(Q)) = Z c,” P, (cos ¥rq) (1.10%)

n=0
as the covariance of two functions u(8s, Ap) and v(8;, Aq) on the sphere, where
the n
v

¢’ = ) ClACTh +5:88m, n=0,1,... (1.9%
n=0
constitute the ""power crosspectrum'.

A relationship similar to (1.11) applies to the ¢’ and to cov(u(P),v(Q)).

A very important property of spherical harmonics is Parseval's theorem:

1 fos)
Z‘n‘jo £(8,0)° do = ngocf (1.12)



The orthogonality of spherical harmonics, and the fact that they form a
complete orthogonal set of functions on the sphere, are among the reasons why
they are used so widely in theory and in practice, but there is more to them than
orthogonality.

The solid spherical harmonics

E%T_Y_ﬁ(e’k) and r“?ﬁ(e,x)

where r is the distance to the origin of coordinates, are all solutions of Laplace's
equation,which in Cartesian coordinates is
3°w | 3°w | 3w
+ + = 0 1.13
dx° dy° d2° ( )
This makes them appropriate for the study of harmonic functions, such as the

gravitational potential, in spherical coordinates. Another property they have,
unique among functions that are orthogonal on the sphere, is the relationship

vVEW =

= =) n 1
ﬁj‘cf(P) L. @n+ly ks By (dp)do= ) T ), L% TYQ (119

1 =0 n=0n=0¢ =0
which corresponds to the Convolution Theorem for ordinary Fourier series and is
the basis of such fundamental formulas as Stokes' in gravimetric geodesy.

1.2. Relationship Between Spherical Harmonics and 2-D Fourier Series

As indicated in the previous paragraph, spherical harmonics share important
properties with ordinary (trigonometric) Fourier series in one or more dimensions.
There is also a very immediate relationship with ordinary two-dimensional (2-D)
series that will be explained here. From Hobson (1931, Ch. III, formula (7)) we
know that

Pﬂm(cos 6) = Msinme {COSn—me- (n_m)(n—m_l) COSH—M—E 6+

2°nl (n~m)! 2(2n-1)
(n-m)...m~-m-3) —
T2 4. (2n-1)(2n- 3) ©°8 § - } (1.15
so the normalized Legendre function is
, L(n m)
= _ _(-1) (2n}) f2@Cn+D(n-m)! . = a-n =2k
P, (cos B) S nl @om)l v ()] sin 8 1;::@ a(n, m)cos 8

where .
[ (n-m)/2 if n-m is even

L(n,m) = i(n_m_].)/z if n-m is odd

while a, (n,m) = (-1)¥ (m-m)(n-m-1)...(a-m-2k+1)[2* 4...2k(2n - 1)... (211—2k+1)]"1
for k >0
—6-



In the interval -m < 6 < 7 sin" 8 is even when m'( is )even, and odd when
. . R ta,n -
m is odd. In the interval -m < 0§ < 1 the sum S a, (@, m) cos ™™ ake
k=0

is always even (it is a sum of even powers of cos ), so the parity of
P, (cos @) is the same as that of m if -mw < § < m. An even function can
be expanded into a sum of cosines, and an odd function into a sum of sines,
The highest frequency term will correspond to the highest frequency in the
expansion of gin® g cos 19, so this term will be of the form a. cosne or
ba sinng. Therefore, the Legendre function satisfies one of the following
equations in - £ ¢ < 1

- - ma

Pan (cos g) = Z C: coste () if m is even;

£ =0

- & an
Pon (cos @) = Z S, sints (b) if m is odd
t=0

-0
A spherical harmonic Y. (8, A) can have one of four possible forms:

for m even: 2 an
—u tz:o C; costs cosm) for =0
Y. (8,0 =( | (1.162)
)3 Cy eoste sinm) for a=1
\t=0
for m odd:
o Z Cm: sints cos mA for =0
-~ t=0
Yas (6,0)= ¢ . (1.16Db)
Z Cznsinte sinm\ for =1
\t=0

A sum of spherical harmonics such as (1. 8) is equivalent to a sum of terms
o;;;che form C’!tf‘l sintg cosm), C{"sints sinm), C;"costd cosm\ and

Cy costd sinmA, which are alsothe basic functions of 2-D Fourier series.
The highest m and n in the spherical harmonic expansion

Nmax g I —
£, 0= T 1 7 CiaYau (5%
a=0mn=0 /=0

are equal t0 Ny, x, S0 the highest degree and order (or spatial frequencies)
in the Fourier series are also equal to Np,,. In conclusion: every surface
spherical harmonic expansion where the highest degree is Ny ax 18 identical
to a 2-D Fourier series (Where the highest m and n are also Ny ,,),
in the domain - < g £ 7T, 0 < X < 2. The converse is not true, be-
cause continuous functions ona sphere, such as the Y,,, must satisfy certain
conditions at the poles that ordinary functions onthe -mn < g <, 0 < ) < 2T
domain do not have to. Spherical harmonics correspond to a subclass
(linear subspace) of 2-D Fourier series.



For example: (Heiskanen and Moritz, Chaptér I, 1967)
Py, (cosg) =3 sing
-1531 (cose) =/30 sing cosg=%/30 sin26
So _ _
Y,$ =/3sing cosX, Y, =/3 sing sin)
Yo =%/30 sin26 cos2X, Yz =1/30 sin26 sin2\

Calling the 2 -D Fourier coefficients "af," where
a{,’m correspond to terms of the form cos pbé cosmA

a;.m 1" 1" 1" 1" 1" cos pb sinmM\

a> " 1" AN LA L sinpd cos mx
n

a‘?m 1 1 1" TR 1 sinpf8 sinmX

these can be related to the respective Efi by expressions of the form

) 4

agtm - T 2(2n+1) (n—m) ! Z Il:,p afﬁ n=m, m+1, m+2,..,.
(n+m) ! P=0 (X.17)

where B=¢ if m is even, and 8 =a+2 if m is odd. The I, , are
defined as

T

I“;,p=f cOoS PO Pny (cOsB) sing do if m iseven
[¢]

n i

In,p =f Sinp8 Ra(cos8) sing db if m is odd.
0

and can be computed recursively using the formula

a 2n -1 m . " n+tm-1 _»
e = o —m) {M’p“ H“”"l} T Taom DA (L83

with the following starting values

o if (m + p) is odd (1.18b)

I“;’p = 2(m+ 1) (2m) ! if m is
2" [(m+ 1) -p?][(m - 1) - p°]. . 3 -p°][1® -p®] even, p even,

2(m+ 1) (2m) ! if m is odd,

2 (m+ 1)° -F][(m-1°-p*]. . .[2 -p°][-p] p odd.

The I, are zero for alternate values of both p and m. These equations
were reported by Ricardi and Burrows (1972), and show how to obtain the
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Efi once the a@ = have been computed from the data by means of the 2-D
discrete Fourier transform. Normally this would be impossible, because
the data only exists in the upper half of the -m < ¢ < @, 0 < X < 2n
interval, and the 2-D algorithm requires information onall of it. However,
the fact that the P,, (cos @) are sums of sines only or cosines only makes
the calculation possible,

While the maximum degree and order in a 2-D Fourier series do not
reach the Nyquist frequency (m,n <N = ————) in an equal angular grid,
all the coefficients can be recovered exactly by solving (2N)® equations
such as

NN a
£(8g, \t) = ‘1:@ ; g af, ‘:‘lf} ei{g‘l’i} ma, (1.19)
When n or m exceed Ny.x, the matrix of the system of e quations
becomes singular, and the discrete Fourier transform consists
of coefficients that ""fit"" the data, but differ from the true coefficients. The
estimated coefficients are said to have been aliased with those that exceed
the Nyquist frequency. In the case of spherical harmonics, which are a
special case of 2-D Fourier series, a similar situation must arise: the har-
monics in the data with n > N are going to be aliased with those of lower
degree, so the information available is not enough to recover all coefficients
because the sampling is too coarse.

The aliasing of spherical harmonics sampled on regular grids is a
consequence of the aliasing of the respective 2-D Fourier series, so it
makes sense to talk of a "Nyquist frequency" in the case of those functions.
Having established the connection between aliasing in both types of series,
it is time to point out also some important differences.

1.3 Sampling Errors

Expressions (1.16a-b) shows that spherical harmonics are finite
sums of 2-D Fourier harmonics, which is not the same as being each a
Fourier harmonic. From this simple fact follow some important dis-
tinctions.

To understand them better, let us begin by stating some basic pro-
perties of Fourier series in one dimension, which carry over to higher
dimensions but are easier to explain in one dimension.

If sampled at a constant interval A) = , the following is always true

il
£ si . N
of sines and of cosines:

INamed after the Nyquist Theorem: the Fourier coefficients of a function
of period 2NA\ can be recovered only if Ny,x < N.



BN-1

kgo cos mkA)X cospkA) =0 if m#p <N
aN-1

) sinmkAX sinpkAA=0 if m#p <N (1. 20-a)
k=0
3 N=1

E cos mkAX sinpkAX =0 for all m and all p.
k=0

These expressions are discrete counterparts of

am 2
f cosmA cospAdA =f sinmA sinpAdA =0

o © when m #p

3T (1.20-Db)
fo cosm) sinPA di=0 for all m and p.

and show that the orthogonal properties of sines and cosines are maintained
when these are sampled regularly, provided the Nyquist frequency is not
exceeded. From this follows that

BNw 1

2l =m ¥V (S?ﬁ’) mk Akf(kAX)=hf:W<g(i)§> m () dA (1.21)
x=0

1 .
— 27T lf m=20
otherwise and h L otherwise

where H=-

A& if m=0 )
3 s So the "Fourier"

counterpart of (1.5), (i.e. (1.21)) is an exact "numerical quadratures'
formula for Fourier series, When the Nyquist frequency is exceeded, the
trigonometric relationships
cos mkAX= cos (2N ¥ m)kA A
I sinmkA A =sin (2N * m) kAX

imply that (1.21) will give, not the true coefficients, but the aliased estimates

K
K
A ;
o] - al o] o)
ay = 8y o+ Z Bpwgn T Z 22N n
h=0 h=1 (1.22)
‘ K K
Al ol 1 - 1
dy =am * Z 8 zangm Z 2" ZhN.n
h=0 h=l

with K such that 2KN is below, and 2(K+1)N is above the highest frequency present in
f(\). Expression (1. 20 a-b), (1..21), and (1.22) are the foundations of discrete
Fourier analysis (also known as the computation of the discrete Fourier

transform, or D, F.T.), and so well known that they are almost second nature

to many engineers and scientists. Unfortunately, none of these discrete

formulas has exact counterparts in spherical harmonic analysis, and this

fact has been the cause of considerable confusion. The most common
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misunderstandings seem to occur in the following areas:

(2) Number of equations and number of unknowns:
At each point in the grid it is possible to write an equation such as

Npax n I _ 0 —q
f(esdy) = L L L Tas Yau (84 X) (1.23)
1=0 B=O0 (=0
similar to (1.19). The maximum number of coefficients that can be reco—
vered without exceeding the Nyquist frequency (i.e., those with n < N)
is N®. Coefficients of degree or order equal or higher than N shall not
be, in general, free from aliasing., Since there are 2N points in an
equiangular grid, it follows that the maximum number of fully recoverable
coefficients is also half the number of points (equations) in the grid. By con-
trast, in 2-D Fourier analysis the number of coefficients equals the number
of points in the grid (in the interval -m < § <m, 0 < X £ 21), One could
have a grid with only N® points, as proposed by Giacaglia and Lundquist
(1972), but such a grid would not be equal angular on the sphere.

The author had discussed this problem elsewhere (Colombo,
1979a, paragraph (5.2) ), showing that the system of equations (1.23)
becomes singular when all coefficients of degree and order 0 <(n, my < M
are included among the unknowns, and M = N, In other words: it is not
possible to solve for a complete set of coefficients to degree and order M > N.
The relevant part of that argument can be summarized as follows: the
columns of A, the matrix of the system of equations (1.23) consist insucces-
sions  of values Y,,(8;, A,) of the harmonics corresponding to the un-
knowns C%_ at the points (64, A,) inthe grid. The scalar product of two

onm
such columns is,

N';BN—; o =p N _ _
Yoa Yy = 2: Ppa(c086y) Ppq (cosdy)
=0 =0 1=0
=1 (cos) . fcos) | 0 af B
x } {sin mJMfsin}_CHA?\: 0if m #q
§=0 #0 otherwise

according to (1.20-a). Therefore, if two columns correspond to unknowns
of different orders m andq, they mustbe orthogonal and, thus, indepen-
dent. For the whole matrix not to be singular, all columns of the same order
m must form sub-matrices A(m) that have full rank. Otherwise, there
will be columns in those A(m), and consequently in A, that are linearly
dependent, so A cannot be inverted. Consider A(0), corresponding to all
unknowns of order (. This is a 2N% (M + 1) matrix, and the elements of
the columns of A(0) have the same values as P,,(cos6;), 0 <n < M,

0 < i < N-1. The B,, are functions of @, only, and there are N par-
allels in the gfid, so there are nc more than N independent rows in A(0).
Because the P, (cos®) are polynomials of degree n in cosg, these
rows form a sub-matrix S(0) of A(0) that has M + 1 independent columns,
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aslongas M +1 <N or M <N.If M >N the extra columns will turn S(0)
into a rectangular matrix with more columns than rows; in other words:

there will be no square submatrix in A0) ofrank M + 1 if M > N, so

A(0) shall be rank defficient, and from this follows that A must be singular.

Emphasis must be placed on the word c omplete when referring to the
set of "solvable' coefficients: it is possible, by removing some coefficients
with n < N from the unknowns, to introduce others in their stead with
n > N, but then the solution will not be a complete set of coefficients.

(b) 100% aliasing:

Ifa term in & Fourier series has a frequency n > N , then it
will be aliased with lower frequency terms and become impossible to dis-
criminate from them. For most functions of practical interest, the higher
the frequency, the smaller the term, so the coefficient estimated using the sum in
(1. 21) will be dominated by the lower frequency terms: the estimation error
is thus likely to exeeed 100%. Estimates above the Nyquist frequency are
usually regarded as meaningless and the closer a term is to that fre-
quency with increasing n , the less reliance is placedon its estimate.

In the case of__ s&)herical harmonics, expressions (1.16a-b) show clearly
that the harmonic Y,, consists of several Fourier terms of frequencies
ranging from 0 to n. When n > N | only that part of the Fourier ex-
pansion of 'Ynag above the Nyquist frequency will become scrambled beyond
recovery; part of the harmonic is left intact: the low frequency "tail",
which means that the effect of aliasing on the recovered coefficients does
not necessarily reach 100% (or even 70%) at the Nyquist frequency, as shown
in the examples of section 3.

(c) Orthogonality

From (1.20a) follows that the matrix of equations (1. 19) for the
Fourier series is orthogonal, so the coefficients estimated according to
(1. 21) are independent from each other.

In the case of the ?n‘;f orthogonality does not carry over to all the
sampled harmonics, unless special "quadratures' weights'® are introduced
in (1.5) or (1.6). This lack of orthogonality affects, for instance, the for-
mulas for mean values discussed in section 2. The method of Gaussian
quadratures is an example of "quadratures with weights" that gives exact
coefficients when the Nyquist frequency is not exceeded, though it requires
a special grid where the parallels are situated at the same latitudes as the
zeroes of Py, (cos 6). The use of this method is possible because the product
[P, . (cos ) I_;p,, (cos )] is a polynomial in cos & of degree n + p < 2N
the grid, however, is an unusual one. Details of the application of Gaussian
quadratures to spherical harmonic analysis are given in a report by Payne
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(1971). Other examples of methods that recover the coefficients exactly
when the data is noisless and N,,, < N are: least squares collocation,
least squares adjustment, and the algorithm developed by Rice and Burrows
from expressions (1.17) and (1.18 a-b).

In general, not all the discretised harmonics retain the orthogonality
property, and the estimated coefficients are affected by the values of many
of the other C’n », In addition to those whose degrees exceed the Nyquist
frequency. More about this will be said in section 2, when discussing least
squares collocation and adjustment,

Summarising: there are enough differences between the aliasing of
Fourier series and that of spherical harmonics, in spite of their being so
closely related, to require a great deal of caution before using the intuition
gained from one type of analysis when attempting the other. For this rea-
son, the expression "aliasing error' will be replaced by the just as appro-
priate ''sampling error", which is perhaps less charged with misleading
connotations because it has not been applied almost exclusively to Fourier
series.

It should be noticed here that Gaposchkin (1980) has published formulas
for the sampling error on a type of equal area grid (i.e., all blocks have the
same area as the equatorial ones). His formulas are the equivalent, for such
a grid, of expression (1.22) for Fourier analysis, but much more complicated;
they are made tractable numerically by the use of certain recursive expressions
that he provides, thus showing an interesting new approach to the study of
the problem.

1.4 Number of Operations in Analysis and in Synthesis

Expressions (1.17) and (1.18 a-b) can be used to calculate the CO‘
once the 2-D Fourier coefficients of f( 84, Ay), OF a‘3 , have been esti-
mated by means of the 2-D Discrete Fourier Transform (DFT) Using the
Fast Fourier Transform (FFT) algorithm (Cooley and Tuckey, 1965), the
number of operations requlred is proportional to the number of data points,
which is the order of N°, or O(N® for short. The FFT is discussed further
in paragraph 1.9.

Having gbtained the a‘f,m » calculation of (1.17) requires N oper-
ations per C,, or NxN° =N°® for all of them. Finding the coefficients

N_ll Most of these calculations have the form of scalar products

p=) a,b, , sothebasic operation of finding p* = ayb, + p** (1’ =0, p = p)

k=0
consists of one sum and one product.
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15, by means of the recursives (1.18 a-b) adds another O(N®) operations
that can be obviated by computing the 1%, once, and then storing them on
magnetic tape or disk. One way or the other, O(Ng) + O(N®) operations
are needed altogether, or O(N®) when N is large (say, N = 180).

As already mentioned, this prodedure was first described by Ricardi
and Burrows in 1972; more recently (1977) Goldstein developed a very sim-
ilar idea and formulated a similar algorithm for synthesis. Goldstein's
method uses recursive formulas for the I; , different from (1.18 a-b). The
synthesis algorithm also requires O(N®) operations.

As explained in paragraphs 1.5 through 1.7, the procedures presented
there also require O(N®) operations for analysis, and as many for synthesis,
though they are formally different from Ricardi and Burrows'. In paragraph
1.8 it will be shown that synthesis requires as many operations as analysis,
because one is the dual of the other.

The fact that two rather different approaches (Ricardi and Burrows'
and the one described in this report) require essentially the same number of
operations suggests that "O(N®)" might be a property of all analysis and
synthesis algorithms on regular spherical grids due, somehow, to the nature
of the sphere itself. This is speculation, of course, but if not, are there other
ways of partitioning the sphere for which faster methods exist? The author
has discussed this possibility before (Colombo, 1979, paragraph 4. 6). It
is interesting to notice that inall these procedures the O(N®) operations are
those associated with 6,, or "column operations'; '‘row operations" are
only O(N®). In the case of the Euclidean plane, the 2-D Fourier transform
requires the same number of operations per row than per column, o),
thus the total is only o(Nz), or O(N) times faster than its spherical "counter-
part)!

While not as efficient as the 2-D FFT, the algorithms for the sphere
considered here can be much faster than the straightforward implementation
of expressions (1.5), (1.6), (1.2), or (1.8). The latter has been the ap-
proach of many scientists who have developed their own software, but whose
main interest has generally been far removed from the study of numerical
techniques. In 1976, while working at the University of New South Wales
(Australja), the author developed the two algorithms of paragraphs 1.5 and
1.6, and C. Rizos programmed them. Subsequently they were used at
Goddard Space Flight Center, in Maryland. To everybody's surprise, Rizo's
programs turned out to be more than 100 times faster than those in use at the
time, when run under the same conditions. More recently, this author has
written the subroutines HARMIN and SSYNTH described in appendix B.
SSYNTH has been used, after the fashion of the numerical experiments des-
cribed in Section 2, to generate 64000 1° x 1° mean values (simulated aver-
aged gravity anomalies), each the sum of the 90000 terms of an expansion
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complete to degree and order 300. This took less than 50 central processor
unit seconds in the AMDHAL 470 V/6-1I owned by The Ohio State University
(OSU). All calculations were in double precision (32 bits words), using
FORTRAN H EXTENDED. Precomputed values of the Legendre functions
(or their integrals) were readfromtape, and all operations involving trigo-
nometric functions were carried outbya Fast Fourier Transform subroutine,
These two characteristics, plus a generally tighter coding, are the reasons
for the greater speed of this program, compared to the older versions men-
tioned before.

In all these methods all operations along a given row or parallel (con-
stant 6,) are independent from those for any other row, S0 a parallel processing
computerwith N processors (arithmetic and control units) could analyse or
synthesize a full grid of N rows as fast as an ordinary computer with one
central processor can do a single row. This N-fold increase in speed can be
obtained with the same type of basic hardware (gates, registers) that is
currently used in conventional '"general purpose' main-frame machines. The
full power of the algorithms presented in this work will be realized when
computers of parallel structure become more widely available for scientific
applications than they are today.

1.5 Algorithm for the Analysis of Point Values

Expression (1.5) written in full becomes

Aoy N-1oanl cos} )
Cop = 4-];—7 z Z P, (cosBy) {Sin mjAr £ 9, Ag) Ayy
1=0 =0

which corresponds to the general type
N—1 2n-1 SN-1

, cos .
¢, = )3 YD) {sin}mJAA £( 655 Ay) Ay (1. 24)
Q

{i=0 j=0 =
where 1" could be 1 P,y (cos8y) 4;, as above, or P,y (COS 8y w, in
the case of quadrature with weights w,, etec.

To simplify the discussion, the grid is supposed to be equal angular
and N,,,=N-1, This and the algorithms that follow can be easily adapted
for the equal area grids current today. Subroutines HARMIN AND SSYNTH
(Appendix B) can handle the cases N, ,<N-1 and N,,, >N-1 as well as
Npax™ N-1.

The equal angular grid is symmetrical with respect to the Equator,
and assuming that (the same as P, (cos8;) or B,, (cosh,) sinf,)

2m _ . nao . . o . .
X1 = Xt~y U D-m iseven, and x}® = -Xyq.i if n-m is odd, one
can write
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Ay %:N—l aN=1 ( aog )
Cupn = Z Xi" |: {sin } mjAx £( 8y, Aj)jl +

- BNl cos (1.25)
(-1) Xy [ )3 {sin } mjANE (Byagog M)] >
§=0
This formula suggests the following procedure in two nested loops:
. ra(o)
START: set i = -1, C,, = 0 forall 0 <n, m < N;
Quter loop:
(a) increment i by 1 unless i =3N - 1, in which case STOP
Inner loop:
(b) compute all
gl 2=l (cos
Wl T L {sin mjAx £(64,Xy)
n J=0
N-1—-1 —
a'; aN-1 {cgs} '
bN—l . :J;O sin mJAA. f(e,\,_l_i N XJ)
. =
(c) find all A gt N~1~1
) o ’\O( i"'l\ n B n
Cnm(i> = Cnm( / + K{ bim + ("1) le;l"i{JX?m
(1.26)
for 0 <n, m < N (where "(-1)"™" { }” merely indicates that ”{ " is to

be added or substracted according to the parity of (n-m) ); GO BACK TO (a).

1
- o
At the end of the outer loop, 6‘” 1) é

nn nn ¢

The a) and b in (1.26) can be computed by taking the Fourier
transform along row i and row N-1-i of the values of f(6, )). This in-
volves O(N) operations. There aré half as many x{® as C% i), there-
fore it takes 2(N + 1)° products, and just as many sums, to form the
Cg‘mi) for the pair of rows i and N-1-i. Consequently, there are O(N) +
O(N?) operations per pair of rows or O(Ng) + O(NS) for the grid as a whole.
This is the same as with the Ricardi and Burrows' algorithm, quickly ap-
proaching O(N°) as N increases.

Subroutine HARMIN (Appendix B) implements this technique.
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1.6 Algorithms for the Synthesis of Point Values

Expression (1.8) is of the general form
N~-1 n
£(8, ,A) = L L X" [Cucosmly+ 8, sinm,] (1.27)
n—=0 B=0
where ¥%," can be, for instance, K B,, (cos8y), etc., with K being a proportionality
constant. Rearranging terms and considering the parity of x}® leads to

£(8,5 Ay = v l: A X% C ] cosmiAl +
3f(9““1‘i > Ay) g_—:@ ngm G St )
N-1 nm -
[ Z Xin.»m ni S nm:l Sin mjAA (1‘ 28)
n=n (.—1) X b /

which suggests a procedure in two nested loops:

START: set i = -1

Outer loop:
(a) increment i by 1, unless i= £N - 1, in which case STOP

Inner loop:
(b) compute all
1 N-1 o
[0 4% _ g nn C nm
X1 =
B; @;m S nn
)aN~}-i N=-1 . (—3—
Nlmt | = X" (-1) =
B: ¥ nz—_—m Snm

for 0= m < N;

(c) find all \ 1
(852 § =K ) % cosmjA X +
$f( eN—l—i H A-j mgbo ap;-l * ]
gt (1.29)

]
N-1=~1
Bu

for 0 <j < 2N -1 (where (-1)™ " {_“} means the same as in the previous
paragraph); GO BACK TO (a) .

sinmjAA>

At the end of the outer loop all f(6,, A;) in the grid are known.
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Expression (1.29) is computed by applying the FFT to the 2N ozi, B:; (per row)
and the 2N oe';:'H, ,32:1_1, taking O(N) oNgerations. The first part of the inner
loop (forming the ok, 8. and o', Bs ') involves O(N°) operations;
for all N pairs of rows the total is O(N®) + O(N%), and this tends to O(N®)
as N increases.

Subroutine SSYNTH (Appendix B) implements this technique.

1.7 Algorithms for the Analysis and Synthesis of Area Means

(1) Analysis

Rearranging (1.7)

- IN-T
Al By~ A(m
Con = ) X3° [ ()

1=0

B(m)
A(m)

<b1m+ (—1)”—mbN;l—1)J
- (1. 30)
were a,, b, are the same as in paragraph (1.5). A procedure similar to
that for the analysis of point values can be obtained directly by replacing the
bracket in (1.26) with that in (1.30), and then proceeding as in the algorithm

for point values. The total number of operations is, once more, O(N®) + O(N®),
or O(N®) for large N. Subroutine HARMIN also implements this algorithm.

(II) Synthesis
gi1+A0

Truncating the series in equation (1.2), replacing f 5 P,, (cos B) sinBd 6
i

with %1% rearranging terms,considering the parity of x3*, and using oz: , Ba
as defined in paragraph (1.6), leads to the expression

Iij ; N=1
fna-1 ) = Z
[¢]

!ai
l:, N-1—1
am

1 1
&,
aN-‘l—ig A(m) -

7 Rt
n n

8

B(m) } cosmjAx +

(1.31)
B(m) +

B il
Br%:-msA(m) sinmjAX

Thealgorithm for the synthesis of the T,, is a direct extension of that for
point values. The number of operations, once more, is O(N°) + O(N®) for
large N . Subroutine SSYNTH implements this algorithm as well,

1.8 Duality between Analysis and Synthesis

Pairs of direct and inverse linear transforms, such as Fourier trans-
forms, possess dual characteristics: certain words and mathematical
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expressions can be arranged in pairs (a,b) such that, if every "a' is replaced -
by its "b' in any statement or equation valid for a function f, then the mod-
ified statement is valid for the transform F o £, and viceversa.

Analysis and synthesis of spherical harmonics are reciprocal linear
transformations of data into coefficients and of coefficients into "data" closely
akin to Fourier transforms, so they can be expected to exhibit some dual prop-
erties. Comparing the formulas and algorithms in paragraphs (1.5), (1.6)
and (1.7) shows many similarities, among them the number of operations.

This can be understood as being a consequency of duality. To make this point
clear, consider the following pairs:

— A —
£(9: 5 A4 )i Coun C £(05, A y) (and similarlywith | f15 |);
f(ew_i—i Ay (Sam)) gnﬂ_! T E(Onamts Ay) N-1~-1
(x1* (-1, sinmjsr); (Lm); (G,m); (X2, cosmidk)

(L INE LT )

5=0 3=0 o0 B=n

i

Ay

11
aN-

i

84 o
o

From these we can derive the following pairs:
i
B N3 -1

( )i (e e s o e (e

(ai,, , A(m)); (bi,ﬂ , B(m)); <a§'1"i ,-B(m)) §(bb:1_i , A(m)); ete. ,

i
oy

N =1
ot

b b3
] bl\il— 1

H H

B

and, in conclusion:
("ANALYSIS", "SYNTHESIS™)

Each one of the analysis algorithms becomes its synthesis counter—
part by a simple replacement of terms. Once an algorithm for analysis
(synthesis) is defined, the corresponding algorithm for s ynthesis (analysis)
follows. For instance, one can easily apply the principle of duality to the
Ricardi and Burrows' method of paragraph (1.4) to obtain a synthesis technique.

1.9 Usefulness of the Fast Fourier Transform Method

The excellent book by Brigham (1974) gives a thorough presentation
of the 1-D discrete Fourier transform and its applications, and explains
in detail the method known as FFT for computing such transform. The
Fourier transform in 2 and higher dimensions can be found simply as follows:
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first, get the 1-D transform of each row, then that of each column of the mod-
ified array . . . , etc., until all dimensions have been exhausted in this way.
Understanding the workings of the 1-D transform is enough to understand

those of the N-dimensional transform as well. The FFT requires O(number of
points) operations for each row along the nth dimension, so the number for

all points in a regular, euclidean array is always of the order of the total
number of points in that array.

Before the mid-sixties _ when the FFT came along _ the best techniques
available for the analysis of data on regular arrays required O(number of
points)2 operations. The increase in speed of o(number of points) brought about
a true revolution in data processing: work that had been long regarded as
impossible became feasible overnight, the field of industrial and scientific
applications for numerical Fourier transforms expanded tremendously;
the impa ct in areas as diverse as cristalography and communications engi-
neering was remarkable.

Having mentioned the positive side of the FFT, which is used in the al-
gorithms described so far (at least in principle) and in the programs HARMIN
and SSYNTH, it is only proper to say something about its alternatives.

The FFT calculates all 2N Fourier coefficients a,, b, very efficiently,

but takes just about as many operations to get only a few coefficients as it

takes to get all: for N,,, small compared to N there may be a real dis-
advantage in using the FFT. The FFT is most efficient when the grid is

such that N is an integer power of 2, The grids used in geodesy are usually based
on the division of the circle in 360°, and many on the sexagesimal division

of 1° as well. In all of these N contains factors other than 2, so a less ef-
ficient version of the FFT, known as the mix-radix FFT (Singleton's algorithm)
must be used.

Finally, the mix-radix algorithm is rather convoluted, so it is best
to take ready available subroutines from software libraries (as it is done in
HARMIN and SSYNTH) rather than to incorporate the FFT "on line" in the
program one is writing. This means that the program is going to be less
self-contained. '

The "pre-FFT" methods can be more efficient than the FFT when
Nya.x<¥ Nj they are also very easy to program. For the sake of completeness,
the outline of a method this author has used quite often will be given here,
Consider the trigonometric relationships

cos(af) = 2cosB cos(a-1) B-cos(a-2)R (1.32)

sin(aB) = 2cos B sin(a-1) B-sin(x-2) 8 (1.33)
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with o, B real. If all the Values of the trigonometric functions could be
obtained Wlth one operation each; the number of operations involved in

2 N-1 2
finding :Ef miAN (X g) £ 91 ’ AJ) would be 2(2N), or 4N° for

b J-——'o
all 0 <m =< N, Inother words: O(Ng), as expected. This is precisely what
can be done using (1. 32),(1.83) as recursive expressions for cos m(jAX) and
sihm(jA A) with m integer and 0 < j < 2N - 1. The values of

cosm(-A)) = cosmA) and sinm(-A)) = -sinmA )\ ,are needed to start the
recursion; they can be calculated with standard trigonometric subroutines.
The use of such subroutines increases the number of operations slightly over
4N®, but if N is large enough, this is negligible.

o

With all calculations carried out in double precision, this method
gives values of cosine and sine that coincide to better than 5 significant
figures with those provided by the standard FORTRAN functions, when
N is as large as 1800 (0.1° x 0.1° grid). By taking advantage of half-wave
symmetries in the sine and cosine, and by ingenuous programming, the num-
ber of operations can be reduced by a factor of 4 or more rather easily.

1.10 Functions Harmonic in Space and their Gradients

If £(8, )\, r) satisfies Laplace's equation v°f = 0 in the space outside
a sphere of radius a , then it can be represented, in that space, by the
solid spherical harmonic expansion

1

£(8,A, 1) = ZOZ_:_ )3 i:ﬁ c%, ioi (&N (1.34)

o U=0 r

—

If we consider, at a point P = (6, A, r) in space, the local triad ;, ﬁ, t
oriented downwards to the origin, West to East along the tangent to the local
parallel, and North-South along the local meridian, the components of the
gradient of £(6, A,r) along this three axes are

CO

B Y

g_g (8,%,r) = n_o L g %a (0 +1) Cow Tor (6, (1.35)

of (8, 0,r) = ) Ifi,:;g P,, (cosB) cosec (6) [mS§,, cosm -

EH n=0 =0

m C,, sinm)] (1.36)

ar  dP,a (cosb [C,y cOsmA+ Sy, sinmQA]

@%(G,A,r) - Z Z r*® dp eos® (1.37)

n=0 2=0

"Here one'operation] as mentioned in paragraph (1.4), consists of one
sum and one product,
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Expressions (1.34), (1.35), (1.36), and (1.37) appear often in the discussion
of geodetic problems, and their calculation from a set of coefficients is an
important problem. If all the values of any of them(with r constant,and

on a regular grid) are required, the methods discussed so far can be used
after a few minor additions.

The synthesis algorithms can be thought of, for the purpose of this
discussion, as "black boxes' with the coefficients C,,s the Legendre func-
tions, N..., and N as inputs, and all the 2N° values of £(8, N on the
corresponding regular grid as outputs. To compute the expressions given
above, only the part of the input consisting in the coefficients and/or the
Legendre functions has to be modified before they enter the '"box', which
remains untouched. of OF instance: to compute (1.34) one should replace
'C,a'" with %—?ﬁg C.»" inthe "input"; the others are equally obvious and
will not be explained further. The following recursive formulas can be used
to obtain the derivatives of the Legendre functions:

(0°-m?®) (2n+1)

— - L
aP,, = (sin6)” {n P,s(osf) cosd - [EIERID | 75 p | ycos o)
de ( ) (1.382)
3
= 2n + 1)1 % . =
_g_gnn = [ﬁ_&—ﬁ)—)j] {Slne a%_Pn—l n-1 + cos¥f Pn—‘l n-—l} (1' 38b)

with the starting value

%_gsoo

These recursives follow from the unnormalized formula

=0

(cos® 8- 1) ?(:[1'212?)’%(90)08 8) =n cosf P,,(cosB) - (n+m) Pypyu (cos H)

(N.N. Lebedev, "Special Functions", Dover, 1972, Ch. 7, equation 7.12.16), and from
1

P, = [M] ®  sinb Pry goq (see paragraph (4. 4))
(2n - 1)
and
-1
2

fzm=[ (n+m)! ]

2(2n + 1) (n - m) ! Pra 5 Pp = v2n+1 B,

The complete recursive expressions for the B, , are given in paragraph (4. 4).

The expansion for the area means defined by (1.2) can be differentiated
term by term because it converges uniformly. The expressions for area
means gradients, equivalent to those given here for point values, are immed-
iate. They can be computed after simple modifications to the Em and/or
the x"ig, and using the same programs for computing the area means.

Subroutine "LEGFDN", listed on Appendix B, can compute both the nor-
malized P,, (cos6) and their derivatives S_PM (cos 8).
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2. Error Measure and Optimal Quadrature Formulas

This section introduces a criterion for quantifying the errors of num-
erical quadratures formulas that is based on the statistical properties
of the data. Three qualities are highly desirable in an error measure: ()
it should be easy to determine; (b) it should be mathematically tractable;
(c) it should provide a good idea of the likely size of the actual errors. Point
(a) is taken into account by choosing a quadratic measure, because the numerical
formulas are linear estimators of the Canm ,and the linear, quadratic esti-
mation problem is fairly simple, with its mathematical side very well under-
stood and developed today, which takes care also of (b). Regarding (c), the
reader will have to wait till section three, where certain evidence, obtained
from numercal experiments, supports the assertion that, though statistical
in nature, the error measure adopted represents the actual errors very
closely.

Having defined the error measure, the notion of optimal or best formula
according to such measure is investigated, leading to the application of least
squares collocation and least squares adjustment to spherical harmonic analysis.

2.1 The Isotropic Covariance

The isotropic covariance (expression (1.10)) between two functions u(8,)),
V(e ,A) on the unit sphere, both expandible in spherical harmonic series

© n | .
W =K. T ¥ ) oY 38N

n=0 n=p (=0

® i ! v —
(8N =K}y Y T Enfl Ynf(e,x)

1=0 n=p O=0

can be formally defined as follows
cov (u(P), v(@) = M{u(P) (@) (2.1)

where M { } is the isotropic averaging operatorand P and Q are two points

on the sphere separated by the spherical distance Ypq - The operator M{ }
symbolizes the average of its argument (in the present case the product

u(P)v(@)) over all rotations of the sphere. This can be visualized if one

thinks of the points P and Q as given in a fixed system of coordintes, while

the sphere, on which u and v are defined,rotates in all possible ways. After all the
(infinitely many) possible rotations, the average product u®P) v(Q) will be iden-
tical to cov(u(P), v(Q)). This kind of covariance, though purely geometrical,
resembles closely that of stochastic processes such as time series.
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The importance of the isotropic operator and the isotropic covariance
function in spherical harmonic analysis stems from the fact that the latter can
be described as the estimation of certain parameters of a function f(8, )),
the E?fm , from data sampled on a sphere, From paragraph (2.7) on, this
report deals with optimal estimators for the C,, based on the theory of least
squares collocation, Such optimal estimators minimize a quadratic measure of
the error that is defined in terms of the operator M { } , this measure
being introduced in paragraph (2. 4).

The idea of least squares collocation is related to the basic principles
of such linear, minimum variance estimators for time series as the Wiener
and Kalman filters, which have found wide application in the physical sciences
and in engineering over the last thirty years, and have been generalized
to deal with both continuous and discrete time processes, and also "processes"
in more than one dimension, such as are found in pattern recognition and in
digital image enhancement. Two-dimensional Wiener filtering, of which the
reader can find several fine descriptions in the special issue of the Pro-
ceedings of the IEEE, Vol 65, No. 6, 1977, is also applicable to "flat-Earth"
geodetic calculations; least squares collocation can be regarded as the ex-
tension of this type of filtering to calculations on the sphere. Isotropic av-
erage operators are not the only ones that cauld be used in the "statistical"
approach, though they are probably the easiest to work with and, perhaps, the
best for the sort of application considered here. For a description of other
likely operators, the reader is referred to the paper by Rummel and Schwarz
(1978). Probably the most didatic introduction to the method of collocation
remains Heiskanen and Moritz, (Ch. 7, 1967).

Reasoning as in Heiskanen and Moritz (ibid), one can show that

o) v
cov(u(p), v(@)) = L % Pa(cosdeq)
n=
which is, in fact, expression (1.10%) - the definitionof the isotropic covariance
given in section 1 without any reference to M { } . Similarly,

cov(u(P), W(@)= ) OF P,(cosdpq)
3=0

usually known as "the covariance of u ' (expression 1.10), while (1.10%)
represents the '"covariance between u and v ", or "the crosscovariance
of u and v ". The one-to-one relationship between covariance and power
spectrum (or crosscovariance and crosspectrum) should be clear

from these expressions.

—O
To apply the notions introduced above to the Ca,, it iSnecessary to

think of them as functions rather than fixed values. This is possible if one
considers changes in the coordinates 6, A\ brought about by rotation. Each
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such change results in different coefficients, though the function they describe
is the same, only rotated with respect to the old system. The new system
can be related to the first by three angles: the coordinates 6, A of the shifted
north pole, and the azimuth A of the zero meridian. Therefore, the E?fm
are functions of 6, A, A and this is enough to define the average over all
rotations of the product of each 'C_Jon‘m by itself or by another function, in a
meaningful way. Two important properties of spherical harmonics are:

(A) 2 _ .
M| ) Cus + Sp,

B =0

= of (2. 2)

i.e., the power spectrum is invariant with respect to rotations. This
follows from the plain fact that the integral f £? (6, \)do is invariant
_ : o

over rotations, and from Parseval's identity (1.12); (2.2) implies that the
isotropic covariance function (1.10) is likewise invariant.

(B) # B8

o _ a
M { Yn.(») Yqu(Q) = 0 if {n#p forall P and Q (2.3)
m.# q

i.e., the orthogonality properties of spherical harmonics with respect to
integration on the sphere are also true with respect to averaging over ro-
tations.

As a consequence of (2. 2) and (2.3) above, the following relationships
are also true:

= — = _ g
M{ T, ®l= M{5,, % = Sh 1 (2. 4-2)
a # B
M {T2, ch =0 if |n #p (2.4-b)
m # q
M{T% } = 0if n #0 (2.5)
s _ 0.2 _o
M%C” £(6, A)} é}ﬁT Yon (6, ) (2. 6)
=% 7 0% - —o
M{Cnmfid}= (W‘/;id Ynm(eak)dc (2.7)
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For the derivation of (2. 6) the reader can see (Rummel, 1976), and (Sjoberg,
1978) for (2.7). As for (2.4a-b) and (2.5), the proof is given now,

According to (1.4):

167 M{(C3°}=M MY“ (&) KON dof T (832) 195X ao'} =

vl [ [ T @ EE N . 18, X) T (67,1) do do' =
v & ! ' t 1 R
fcﬁ, Yoo (B:0) Y., (8, Q") M{f(e, A £(6%, A )}_‘ dodo
—a el 1 1
‘/;' V/\O'Y Yiu (Bs 1) Yan (6'51") cov (f(p), f(Q)doda’

where P=(0,\) and Q= (0", \'). According to (1.10):

1677 M{(Eff,)g} j;, ’Yﬁ(e, Ndo [gr ?no: (8", \") E;O 02 P,(cosiy,)do' =

2 2

- — o)
=4WL Ynam (6, A.) Ynam (6 ,K) i;lgﬁT do = ﬁi—l- 16172 because 0f(l.14)
Similarly,
a#B
=0 _B o 1 _ o8 — A
M{Cnm Coaf = mmsT * in fo You (6,0 Yoo (6, ) do =0 if ?nipq

Finally, recalling that Y3,(8, \) = Pgo(cos8 = 1 forall -w <6 < n andall X,

M {(’32&,} = 4% . T{f‘m(e,)\) M{f(e,k)} dc=41\%{f(e,>\)} j;?fi(e,k) do

[ 1
= ALM—U(G’MJ f Y0, Yo, (6,0 do = 0 ifn#o0,
w o
which completes the proof.

2.2 Some Additional Notation

So far, data points on the sphere have been identified by the subscripts
i and j. Alternatively, they could be arranged according to a sigle subscript
k = 2Ni+j (where N is the number of parallels in a grid and 2N the num-
ber of meridians), so the points in the "0" row, ordered by increasing j, are
followed by those in the 1" row, in the same order, etc., the last element in
the "N - 1" row closing the sequence. Based on this convention, the set of all
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values of £(84,)\;) (or f,,) can be arranged in N, - vector form according to k:

T
2 = [ZgZqee o Zye o« Bypal

(2.8)
where , = £(6,,),) or z, =T with k = 2Ni +]j '

and where N, is the number of da_‘E%l points, or 2N° for equal angular grids.
In a similar way, the coefficients C,, can be ordered according to a single
subscript p =n°+on + m + 1 (with the understanding that the meaningless
S.o are not included ) defining the following N, - vector:

€ = [CoC1..oCpuw.Cy_1] (2.9)
O 2
Cp = Cyn p=n“+on +m+1

where N, = (N,,;ax + 1)®. Using this notation, expression (1.27) for point
data quadratures can be written

A 0y T

c% =tz (2.10)

o
where the estimator vector f,, , of dimension N, , has elements of the form

a

COoS .
fnm = X?m {Sin} mJAA

under the convention given above relating k , i and j..

ACL
Grouping all the estimates C,, \ in a vector 9A_ ordered in the same way
as ¢, the relationship between the Cﬁ and z can be written, in matrix
form,

¢ = Fz (2.11)

where F is the estimator matrix implied by(2.10). I isa N,x N, matrix
(where N, is the number of data points in the grid), each row beig%(formed by
the coefficients of the quadrature formula for the corresponding C,,. Such
row is also the transpose ofthe estimatorvector of this 63 , designated f.,

in (2.10).

In the same way as the covariance function between scalars, the cov-
iance between vector functions can be defined in terms of M«'U\

M"ing_T} = C .. (2.12)

where C,, is the covariance matrix of % ,of dimension N, x N, , This
matrix if a function of the relative positions of the points in the grid on which
z has been determined, in the same way as the scalar covariance depends only
on the distance between two points. The elements of C,, are
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Che = M 12; zs} = M{f(Pr) f(Ps)},

i.e., the values of the scalar covariance corresponding to pairs ef points
in the grid.i - R

In the same way
M{ggT} = C (2.13)

isa N, x N, diagonal matrix according to (2.4a-b). C is the covariance
matrix of the coefficients. Similarly, the covariance between ¢ and z is

M{P_ET}=CH = [M{EET}#C’“ (2.14)
where C,, isa Ngx N, matrix, the elements of which are

¢ty = M{cp zx} = M{Eﬁ f(ei,x,’)}
where the right hand side is given by (2. 6).

Finally, when estimating the C S‘m, not from samples of £(8,)), but
from measurements corrupted by noise

m(@;,Xy) = £(8;,1y) +ny, ’ (2.15)
the measurement errors can be grouped in a N, - vector n with the same

ordering as 2z, and the sum of both will be, then, the N, - vector of ob-
served values

m=z+n (2-16)

The measurement errors are values that occur in time, as successive
observations ‘are carried out: they constitute a time series. The average
opﬁ:r:ttor appropriate to them is the usual statistical expectation gperator
E { ;. The measurements are suppossed to be unbiased, so E ner= 0
for all k. The coyariance implied by this operator is theusual statistical
covariance: E nij’ = G » and E {n, nr} = 0% . This canbe
generalized for the noise vector n :

E{nn'} =D (2.17)
where D isa N, x N, matrix of elements
' ' 2
dkf' = E{nknr} = Qxr (2.18)

Both C,, and D have in common a very important property:
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2 §20} if _>§T§_740, X any N, vector,

z
xz0

i.e., they are always positive matrices, moreover, in all the cases considered
here, at least -D. is positive definite:

§_TD x >0 forall x

Positiveness can be inferred readily from the definitions of C,, and D:

| %

r 1 \
i.e., D x = §_TEiggT}§ = E{XT}}_P_T [o= E{hz} =0

X
N
(Where h=§T n), and similarly for §TC”§(with Mﬂr f> .

2.3 Estimation Errors, Sampling Errors, and Propagated Noise

A linear estimator is of the general form
s =Fm

where m is the vector of measurements defined by (2.16), and s is the vector
of estimates, made up in our case of the énm . According to (2.11) and (2. 16)

s =& = F(z+n)

In general, the estimates will not be exactly equal to that which is estimated,
the difference being the estimation error. In matrix notation

e =c-C= (c-Fz) - (Fn) (2.19)

e being the estimation error vector. The two terms in the expression above
can be defined as the components of this error:

€ = ¢c-Fz
which is the estimation error in the case of noisless (perfect) data; and
en = Fn

which is the error due to the noise, or propagated noise.

The error e,, may be due to a number of reasons. If it is zero for

1Using the relationship p =n®+ omn +m +1 of paragraph (2.2), e;p Stands
for the sampling error in ¢% and e ne for the propagated noise.

nm 3
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some estimator, then its presence in other estimators could be blamed on
them being somewhat inadequate. For instance, if the estimator was chosen
by taking the elements of F from a set of random numbers, then the estima-—
tion error is likely to be always high, as the estimator has nothing to do with
the actual problem. In particular, the addition of extra measurements to

the vector m is not going to bring any general improvement on the estimates.
On the other hand, if attention is paid to the nature of the problem when selecting
F, one would expect the error to decrease as more data is introduced. If,
as the number N, of samples in m tends to infinity, e,, tends to zero,
one could say that the error-is due to the incomplete sampling of the signal
f(8,A), and-call it the ‘sampling error. “This is precisely the case with
any of the quadrature formulas to be studied here, all of which can be written
formally as linear estimators according to (2.11), and for all of which the
error e, vanishes as the number of samples tends to infinity, because the
sums become identical with the integrals defined by (1.4). In this sense it is
quite suitable to call e,, the sampling error, as in paragraph (1. 3).

2.4 The Quadratic Error Measure

The overall error measure will be defined here as the sum of two quad-
ratic terms: onefor the propagated noise, the other for the sampling error.

(a) Propagated Noise Measure

This measure is the same as in least squares adjustment, i.e., the
variance of the error defined in terms of the usual statistical expectation
operator

oim = E{¢n 0} (2.20)

accordmg to (2.10). This variance represents the scatter in the value of
Cm,l due to the uncertainty in the values of the data. In matrix form

En=E{g n} E{an F} E<nn1F FDFT(2.21)

where Eq isa N, x N, matrix, while D was already presented in paragraph
(2. 2).

In the special case where the measurement errors are uncorrelated,
D is diagonal, and (2.20) becomes

o D ot o
o%p = E{fnm nn'f, f =f.,, Dfn, =
N=1 3N—1 fcos \ (2.22)
lzo (X?“)“?J:ZO lsin? }mJM\ELnuJ

which is the usual formula for propagating the covariance of the noise.
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(b) Sampling Error Measure

This measure is defined in terms of the isotropic averaging operator of
paragraph (2.1)

- )
62%= M{(c,-1% 2y} = m{@%-1%2)%] (2.23)
or, in matrix form‘
E; = M{gsgl} =M {(2 -Foe - F?_)T} (2.24)

=C-2C,; FT+ FC,, F’

where E; 1sa N, x N, martrix, and C, Cg4, , C,, were introduced in
paragraph (2. 2).

(c) Total Error Measure

. The total measure is the sum of (a) and (b)

" |
0 = O + OOE (2. 25)

or, in matrix form,

Er = Es+Ep=C-2C,,F +FC,,F +FDF' =

( 2.26)
C-2C,, F' + F(C,y + D) F'
where E; is the N, x N, error matrix associated with F and with the
covariances that define C, C., and (C,, + D). Expression (2.26) is a
special case of the formula for "E,," in least squares collocation (for instance,
Moritz (1978), Ch. 3, eqn, (3.20)); moreover, it belongs to a family of
formulas also found in the minimum variance estimation and filtering of time
series and of processes sampled on the euclidean plane.

The total measure has been chosen simply as the sum of cfngl + 0% f‘m
by making the basic assumption that the sampling error and the propagated
noise are due to completely independent causes. The first depends on the values
f(O1,X ), while the second depends on the measurement errors of instruments
that, at least ideally, operate with accuracies unaffected by the quantities
measured, or in such way that any interactions can be eliminated by simple

corrections.

The columns of F are defined by the quadrature formula used, and
such formulas either satisfy, or tend to satisfy, orthogonality conditions (para-
graph (1,3 (c)). For this reason, provided that C,; and D belong to the type
to be described in paragraph (2.9), matrices En, Es, and, thus, Er, are either
diagonal or diagonal dominant, and in the latter case tend to become diagonal as
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the sampling intervals decrease, or NPV-A» @, For this reason the correlations
among the errors for individual coefficients are, or "tend to be', very small.

The diagonal elements of the error matrices Eg, E, and E; are the

variances of the errors in the respective coefficients, as de?ined by (2. 20),
(2.23), and (2. 25), respectively.

2.5 The Meaning of the Error Measure

The treatment of the propagated noise is the same as in least squares

adjustment, so this part of the error measure. should be easily under-
stood. The sampling error measure, on the other hand, is a geomet-

rical measure: M belongs, as a concept, in the field of integral geometry,
or the study of '"geometric probabilities', This is a branch of mathematics
closely related to integration and to measure theory, and also to statistical
mechanics. In geodesy, this type of idea is relatively new (Kaula, 1959),
Moritz (1965), but it has been used already extensively enough to show its
considerable worth.

From expressions (1.10) and (1.11), the covariance and the power spec-
trum are functions of each other. Since either of them, and the sampling
grid, define matrices C, C,, and C,, in expression (2.24), it follows that
a statement on ofnm is, somehow, also a statement on the performance of F
for all the functions that have the same power spectrum that determines the
diagonal elements of C . To put this more precisely, consider a function f; (8, )
having the given power spectrum, . . If 5,% were estimated for f, and
also, at least ideally, for all its rotations, then the mean square of the sampl-
ing error e,, in C for all this functions would be, by definition of M 14
the measure o;,, . If a second function fg (perhaps not a rotation of f,) and
all its rotations were then analysed in the same way, the average of efp for
all these functions would be, once more, cfno,f, » as long as f; has the same
spectrum as f, . Moreover, the average of efp for f,, fz, and their ro-
tations put together, would also be o7 ,,. Infact, if we had a finite set of
functions £, , fa, . . . f,, with arbitrary n, all with the same power spec-
trum (or covariance), then efp would average O‘?no; for all the fi; and their
rotations.

It appears, from the preceeding discussion, that one could take a simple
step and say '"g2 & is the mean of the sampling error squared of the estima-
tor dncfn =1 g‘ » Z , over all possible functions with the given power spectrum, "
Unfortunately, as mentioned in the Introduction, the sphere is a rather
wicked surface. There is a theorem by Lauritzen (1973) that states the im-
possibility of having the same average cfn . for all functions as for every
function, when the distribution of the ensemblehappens to be gaussian. Moritz
(1978) has endeavoured to show that this is no problem if the ensemble of functions
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is not gaussian, but using his conclusions here would force the introduction
of a rather strange requirement of "non-gaussness' on the ensemble of the
signals analysed that is best left out, if possible.

Perhaps there is a way out in going back to the idea of a finite set of func-
tions f, , wher the problem does not exist, by saying:

""the error measure cfnn?‘, for a certain estimator and a certain type of

signal power spectrum, is the average of the squarezof the ‘sar’npﬁné; error!in
.é.,, ¢ forzaliifunctions with the given'powet spectrini:EVER.TOBE ANALYSED
with thatestimator,: and:for all-their rotations!'.

After all, accuracy is what geodesists are always interested in, not
perfection, '

2.6 Simple Formulas for Area Means

The numerical studies of section 3 concentrate in area mean type for-
mulas, because area means are preferred for collating information,
particularly on a global basis, at present. The formulas to be studied here
and in that section can be divided into "simple' and "optimal’. The name
""'simple'" is given here to expressions of the type

N=1 ZN™1

Cow = Ha L L T fc“ Y. (8)) do (2.27)

1=0 =0

where p, in a scale factor affecting the nth harmonic as a whole. Ex-
pressions of this type have been developed more or less intutitively, along
the lines of the following reasoning:

If the signal were constant on each block, it will equal its mean value
there, and the coefficients of such a fucntion would be precisely

N—=1 2N

c%- L} 1 -ff 7% (6, do (2.29
13

nm
4T 41Zo s=o

according to (1.4). In general, most signals are not equal to their mean value
over whole blocks, so the expression would not be exact. In most cases,

the signal would have fluctations in each block, and it would be less smooth

than a function that is constant over each block, so using the formula above

with T 43 as data may result in the CZ of a smoothed function. As a refinement,
one could try to desmooth the 'C—)f.f . If the blocks were circular, the relation-
ship between "true' and "smooth" T would be
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G = E Con (2.29)
where B, is known as the Pellinen smoothing factor of degree n
The relationship between B, and the radius of the circular blocks is given in
paragraph (4.3). For small blocks, experience shows that there is little
difference between the area meansofgeodetic data on circular or on square
blocks, so the error is small if one assumes that they are the same; in
such case the modified expression

Nl 2N
A = = O
¢ =-L 7 7T fi.:/v Tan(B:)) d0 = CTpq (2. 30)
Oy

4TTBn =0 j§=o

could be used;.: in practice, this is only an approximation,though a good one,
as showed by Katsambalos (1979), who tested this expression extensively.

In addition to (2.28) and (2. 30), Lowes (1978) has proposed using

N1 3N—l__ _ .
&gtm = _L Z Z fijf Ynoz‘n (6,}\) dG’ (2.31)

to estimate the harmonic coefficients. All these expressions have the prop-
erty that, because ‘BlT: »1,and ¥ ‘ii'f“j;“ Ynf‘(e,m do _)fou £(6,)) 5-(-05(9’ N do
as Ay~ 0 (or N, — ), it is true that the error ey = ng - CA,Sf = 0 with

Np = «@; in other words: e,, is properly called a sampling error .in the sense
given to this term in paragraph (2. 3).

Comparing (2. 28), (2.30), and (2. 31) it is easy to see that they all belong
to a clasls of expressionsofthe form (2.27), with p, = 4-%— s Ko = zmp0 o and

Hno = Img2 > respectively.

The scaling factor p, can also be regarded as a de-smoothing factor, if one
wishes to retain the intuitive meaning of these formulas. In the notation of para-
graph (2.2), these expressions can be written, according to (2.27), as

o o7
Coo = Halhay) 2 (2. 32)
with ungfi =LS:.

Replacing (2.32) in the definition of the sampling error measure, (2. 23),
and adding with respect to m and « to obtain the total error in the nth harmonic:

|
ag-'.Om

ll_Mn

! n
=] . : T o
a s O'ng_‘zzz Z Enma’z .}lnm:] Un T
0

0 O("—“O n=

T g

l .
[} atenss] e
=0 n=0
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(where cly,. is a row of C.,. This is the sum of certain diagonal ele-
ments of E, , according to (2.24), when the estimator has the form (2. 27).
Clearly, (2.33) is a quadratic function of the scalar p, , and as such it can
have either 2 maximum or a minimum. I C,, is positive definite, it must be a
a minimum. Finding the corresponding value of p, is the same as finding

the formula of type (2.27) that has the smallest sampling error per harmonic

for signals with the covariance (power spectrum) specified by C,, . In ad-
dition to the sampling error, the measure of the propagated noise can be added
to obtain

i n 1 n .
[ Z 20‘—_ f"z Zngant,,z b_glm:] Ha +
=0 =0 =0

| n (2. 34)
T « 2
[[ [ (B Cz + D) gnm} 2
Q=0 m=0

This is also quadratic and has a minimum, and finding the optimum g, is
the subject of the next paragraph.

2.7 Optimum de-Smoothing Factors

The coeificients of y,i and u, in (2.33) and (2.34) are both real
scalars, and so is the independent term an . The expressions represent
parabolas, and because both C,, and D are positive, if the further (and
likely) assumption is made that they are also definite, then d° 2?: )3 o2l nn

Bun
and the parabola has a minimum where p, satisfies the condition

7aun§ Z Bnm: _g ggzmayz _b_gi +

l:z Z (ES‘B)T C,, }_ﬁ‘ } Ky for the sampling error (2. 33)
o n
. o
i.e., atA g Z;Efma’z ho
Ha = (2.35)

L L@ e, s,

X XCT o, ha
f, = & “‘“:Tz"n’“ o (2. 36)
J, L5 (Cez+ D) b

or at

for the total error (2. 34).

Expressions (2.28), (2.30), (2.31), and (2.36) will be studied further,
by means of computed examples, in section 3.
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2.8 Least Squares Collocation

In the notation of Paragraph (2.2), optimizing u, is the same as ob-
taining the optimal vectors f no; of the form

o o
foe = Hpbhyy

for the estimator

A

¢ = Fm
where m =z + n , and the (_% are the rows of ¥ . If no restriction is
placed on the form the rows of F can take, then a reasoning similar to

that in the apreceedmg paragraph leads to the best possible linear estimator
for the C .

Considering the total measure of error for 0 <n <N :

N1 I N n
Z Z Z O.QO‘_ZO. 2[ Z Zggmazfnam’*'
n= = =0 =0
Q=01=01=0 Q=0 n=0 (2.37)
! N-1 n
L LI dwcarnia

it is not difficult to see that, because all O'fm are non-negative, finding the
F that minimizes their sum is the same as finding the F that minimizes
them individually. The sum of the mean squared errors of all coefficients is
the trace of the error matrix E; of (2.26):

oe = f ,2,_0 = tr[ ]

OL__o p=0 1=0 .
To obtain the condition for a minimum, one must differentiate (2. 37) so,
according to (2.26),

L1 A E] = ¢, + (Cp, + D) FT (2. 38)
2 OF o

as found using well-known matrix analysis formulas,
From this follows that

F = Cgo (Cyy +DY7F (2.39)

is the F that minimizes (2.37), provided that (C,, + D) is positive definite.
As already explained, both matrices are always positive and their sum is
usually definite. The expression for the optimal estimator for C,?f, is

*
C: =(fa0'm = clos (Cu+ DI m (2.40)
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Where (_fnm) is the row of the optimal estimator matrix F corresponding to
&3,

The use of expression (2.40) is, in brief, least squares collocation
applied to spherical harmonic analysis.

When the optimal F is used, the error matrix becomes, according
to (2. 26) and (2. 39),

Er = C-Cez(Cy + DM CL, _ (2. 41)

and the total error measure is the trace of this matrix: by definition, the
smallest for all poss ible F.

Clearly, whether one is interested in estimating coefficients or in
determining the likely accuracy of such estimates, usmg expressions (2.40)
or (2.41) require a knowledge of either (C,, + D) (mversmn) or, at least,
of Cg,(C,, +D)* (solution). Because the matrix (C,, + D) has dimension

N, x N, 2 obtaining either requires, by usual linear algebra methods, O(N3\
for O(N )),operatlons In the case of a 1°x1° grid, N, = 64800, so, at some
200000 products and sums (double precision) per second a modern computer
like the one at OSU would need about one century to obtain all é,?‘m to degree
and order 180 from data on such a grid. Fortunately, as explained in para-
graph (2.9), if the covariance functions of signal and noise both satisfy certain
condit jons, and if AX is constant for the whole grid, then both C,, and D
(consequently their sum) canbe inverted in much fewer operations than by con-
ventional methods, because they possess a particularly strong structure. More-
over, the optimal estimator C (f ) m turns out to be of the form (1. 24)

or (1.7), depending on the l&md of data m, so, under rather general conditions,
the optimal estimator of C_, is also the best quadratures type formula for

point data or for area means, as the case may be.

The conditions mentioned above are satisfied, for instance, when both
the geome{cmcal covariance cov(f(P),{(Q)) and the stochastic covariance
E 111“11“ r (P =(Bg,Ay) » Q=(6,),;) are isotropic, i.e., functions only of
the separatlon between the points P and @ . By definition of M }, the
geometrical covariance obtained using this operator is isotropic, so C,, has
the desired structure, A common assumption regarding good instruments
is that the n;; are uncorrelated, so D is diagonal. If the errors are sta-
tionary, so their variances are constant, or at least constant along parallels,
then matrix D has the required structure, and inverting C,, + D can be
greatly expedited. In practice, however, this is not likely to be the case,
as the number and quality of measurements will vary from region to region,
resulting in different of ; both globally and along parallels. As a result, the
best linear estimator in terms of the chosen error measure will not have the
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quadratures form, and it will be very difficult to compute whenthe number of
data values is very large. Nevertheless, as shown in section 3, quadrature
formulas can give reasonable estimates of the (_Jnoé with noisy data sets where
the noise is uneven, so it would be interesting to get the best quadrature for-
mula for a particular combination of signal and noise, provided that such a
formula can be obtained without undue effort.

2.9 The Best Quadrature Formula for non-Uniform, Uncorrelated Noise

If the variance of the noise fluctuates along parallels, matrix D , though
diagonal, is such that the minimization of the error measure (2.37)

o = tr [C-2C, F + F(Cy+D) F'] = 2(D) (2.42)

(see also (2.26))
can be very difficult with large N, , and the optimal estimator is not of the

quadrature type. Introducing a "modified noise matrix" L., also diagonal
and where the diagonal elements are

2N=1

e = ZN }: 0% (with k =2Ni+j) (2. 43)
the following modlfled error measure &(L) can be defined:
§(L) =tr [C - 2Ce, F' + F(Cy + L) F'] (2. 44)

The optimal estimator for this measure is easy to obtain, and is of the
quadratures type.

The parts of 2(D) and &(L) that measure the sampling errors are
identical, so any difference between the overall measures must come from
the "noise propagation" parts tr [FDF'] and tr [FL FT] . If the estimator
(not necessarily optimal) happens to be of the quadratures type, i.e., for
point data:
N=1 &N-q COS
% =7 ¥ xv {Sif} mjAX [f (B, Ny) + 1y ] (2. 45)

1=0 }=0
then the propagated noise is, assumming the n 13 to be uncorrelated,
02% _”fa""l 2 {cos} { }
Opan = Lo L sip? J ™IsA Eqn%y,
S0
an-1

Z i Z (X?m) Z Ufg

0 n_cm" n=0B8=0 I=0  (2,46)

..1 ﬂ

8p(D) =tr [FDF'] —ag

‘The "modified noise}' on the other hand, is, according to (2.43) and (2.44):
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N=1 n N-d aN~1
8,(L) =tr [FLF] =7 | 12 x1")® ¥ (cos®mjA) + sin®mjA))-
n=08=0 1i=0 iI=0

2N-1 Ned -1V (2. 4:7)
Eli\? Lo =1 )E: Nf x®)? L of
j=o n=0p=0 =0 =0

Comparing the expressions for [FL FT] and for [FD FT] , it follows
that they are identical, and since the ""sampling" parts are also identical in
(2.42) and (2.44), then

tr[C - 2Co,F + F(C,, + L) F'] = tr[C - 2C,,F + F (C,; +D)F ]

(2.48)
This means that the actual and the modified error measures must
coincide if the estimator is of the quadratures type.

Replacing D with L in equation (2., 38) and solving for the estimator
matrix, one gets

FL = Cop(C,,+L)™* (2. 49)

where F, is the estimator matrix that minimizes the modified error measure
(2.44). Because of the way L has been defined, this estimator is of the

quadratures type, so the modified and the actual error measures coincide, as
just shown,

Assume that there is an estimator, different from § = F.m but also
of the quadratures type, the estimator matrix of which is F, and such that:

tr [C - 2Cq, FT + F(C,, + D)FT] <tr [C - 2C,, F! + FL(C,, + D) F/' ]
Then, according to (2.48),

tr [C - 2Ce, F'+ F (Cor + L) F' ] <tr [C - 2Cq; F + FL (Cpz + L) F1 ]
(2. 50)
which contradicts the fact that 'F, minimizes the modified error measure.
Therefore, (2.50) cannot be true, and F, must be the matrix of the optimal
quadratures type estimator that minimizes the actual error measure 0? .

The optimal quadratures type estimator, as the name indicates, is the
best of a certain kind, not the absolute best. The best estimator, when no
conditions as to its form are imposed, will not be(in general) of the quadra-
tures type, unless D happens to have the "right form" specified before,
i.e., unless D =1.

When D =L, the optimal estimator and the best quadrature formula
coincide. Regardless of this, the quadrature formula obtained from (2. 49)
is the best, so its error measure is a lower bound for those of all other
quadratures formulas with the given signal and noise.
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When D # L, while minimizing the sum of all error variances o0°%, i.e.,
tr (Er), the optimal quadrature formula does not minimize each individual
variance onzm . 'To show this, consider the propagated noise measure for
C,?Zm when the n;; are uncorrelated (to simplify the argument):

0f% = ): ) 2%19,111} mj M of Z(x“’)z[ oB+%Z{C }ijAxo%}

The mod1f1ed error measure, minimized by the formula, is

SNl aN-1

Nl
L (x5 X{Sm }m]AAZN [ oy = Z xi)? 1[ of)

1=0 1=0
Clearly, both are not the same, unless

2N—
oS
JZQ{ SM}zijUz =0

which is not likely to be fulfilled for arbitrary 0'1? . However, looking at the
reasoning which leads to (2.47), one can see that the sums of the modified and

the actual error measures for pairs (C,, , S,;), and also for the individual T ,
are already identical. From this follows that the variance of the error per degree

i 029 = g2, (2.51)

a Omn=0

and per average coefficient per degree:

68, = &
s T e (2.52)
are also identical to the modified measure. So, while nothing can be

predicated of individual coefficients, the error for each harmonic as a whole

and that for the "average coefficient" in it are going to be minimum. By Parseval's
identity (1.12), if the coefficients were used to calculate, say, geoidal undula-
tions, the mean squared error of the computed geoid, globally, would be tlke same
as the sum of the error squared of the normalized coefficients, so individual
coefficient variances are of little interest in this and similar applications, while

the 0%, are very important. This shows that the optimal quadratures formula
when D # L can be just as useful as when D = L.

The discussion in this paragraph has been centered on point value type

formulas; the conclusions apply equally well to area mean type formulas, the
extension of the reasoning being quite straightforward.

2.10 The Structure of the Covariance Matrix and its Consequences

The following discussion summarizes some results presented by this
author in a previous report (Colombo, 1979a). In order to be able to calculate
the variance of the error o, ®% with expressions such as (2. 26), and also to be
able to obtain the optimal estimator according to collocation theory, it is neces-
sary to create and invert the N, x N, matrix (C,, + D), which can be very
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large if the number of data N p Is large. In the case of regularly sampled data
this two problems can be greatly simplified if the covariances and the grid

has certain symmetries, The most important of these are: (a)the sampling

in longitude must be at constant intervals and along parallels (or parallel bands,
i.e., rows of blocks); (b) for given i and p the covariances cov (w(B;, Ay),
v(6p 5 )q)) (or cov(Uyy, Vpq)) and Einﬁ, N, f, mustdepend
only on |j-q| . 1t is also very advantageous, though not essential, that the
grid be symmetrical with respect to the Equator.

In what follows N, is the number of parallels and Nl the number of meridians
(N: =N, NI = 2N when the grid is equal angular).

Under this set of conditions, if the data vector m is ordered according
to (2.8) and is subdivided into partitions m,, where

= 7
my = [Mgomyy. .. myg ]

includes all data values in the same parallel or row of blocks, then the
matrix (C,, + D) can be partitioned into N> blocks C'?, each of dimension
Nl x N1, containing the covariances between the data along rows i and p.

Each block C'® has a Toeplitz circulant structure, because its elements
satisfy the relationships

ip _ ip ip _  ip s
10 T Cprerr 3 Cyo T Cp1onpd when j >0

which follow from the fact that parallels are circular, and that the covariance
betweenpoints in parallels i and p is a function of |j-g| . Moreover,
the elements in the first row or column (the C!'? are symmetrical) also
satisfy '

ip ip
Cog = CoONpq When g >0

Therefore, the first row can be represented exactly as a sum of NI +1
cosines:

-
E

ip

.Coq =

e~

afmp cosm%&r— q (2. 53)

o]

=

The a'® form the discrete Fourier transform of the sequence

40 iy ip
COO, COa 3 v e @ CONI—]_
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rl? = Hay (2. 54)
where H = Nl f m=0
N1 if m#0
7

If R(m) is the matrix where each rip'element equals r'? , then (as
explained by Colombo, (op. cit.)) inverting (C,, + D) is equivalent to in-
verting the Nr x Nr matrices R(m) for m=0, 1, . . . NI

Isotropic covariances satisfy the '"{j - g/ condition' mentioned above, so,
for fixed AX , the covariance matrix always has this regular structure.

Let
o _ cos cos} A {cos} ~ T
< = {29 moax, {0} man, . 4 9%} mavi) AN
A vector of the type

a _ or ot ot 47
V' = [VoChn 5> V1Ch 5 o o o« VWra Cp ] (2. 55)

shall be called, for convenience, a vector "of frequency m'.

Under the conditions described before all the eigenvectors of (C,, + D)
are vectors of frequency m, with m=0, 1, . . . 5Nl. Moreover, if
Aew (P=1, 2, . . . Nr) is one of the Nr eigenvalues of R(m), and if

tn

_g_tm = [So

is the corresponding eigenvector of R(m), then A, is also an eigenvalue of
(C,, + D), and the pair

tm
. . SNr-—]_]

T
t O(T tn ar
- Cha e« » o SNp=1 Cy ]

S = [}
the two corresponding eigenvectors of (C,, + D). Therefore, to decompose the
1arge covariance matmx in eigenvectors and eigenvalues is equivalent to
decomposing the & NI + 1 matrices R(m) , and this is why the latter are rele-
vant to the inversion of (C,, + D): the eigenvalues of the inverse are the
reciprocal of the A, , while its eigenvectors are the same as the s,, . Further,
this implies that (C,, +D)” " has the same structure as the covariance matrix,
i.e., it consists of Toeplitz-circulant blocks.

Since (C,, + D)~ has eigenvectors of frequency m , then, if h is
a linear combination of vectors of a given frequency, z =(C,, + D)™t h is
also a linear combination of vectors of that frequency. In the case of point
data, from expression (2.6) follows that the cross-covariances vector in
(2.40) is
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2
oF = ar - ar
el = g5 [Pm(coso)cy .« . . By (cosOyy) Cp |
T
S[k3cn ... ki ¥
Define -
ul
kK™ = [ko + « o Kyea]
and '
X = IS X ]

o
Then _fnm = (C,p + D)"lc_n,,,oz,z must be of the form

o a7 nm QT
fnm = [Xo €y +« « XNr-1 Cgq ]

where, according to Colombo (ibid),

n

an - R(m)— 1 l{_n

Similarly, for area means,

0_2 91+A9
= = L .. P, (cos sin6d6<
(2n+ 1)Ai.1 ﬁi ( 6)

L

A gtAA

0,2 61+A9_
Cragpz = - [« .. P,,(cosB) sinBdo
(2n + 1)A,, 8, Ay

(m)} o, [Bm)
(m)

A(m}

(2. 56)

(2.57)

(2.58)

: (2. 59)
ci‘) . .]T

(where A, is supposed to be independent of j) according to expressions (1.7)

“and (2.7), so

i:lm = [... x?’”({A(m)l S, + {B(m)l

B(m)[ =" A(mX

1
Cn

T T
>...]

In conclusion, the optimal estimator for point values has the form

ACY *or 7 NE=1 N]"Zl - {COS

Can < @.nm) m = Z X1 sin

=0 jJ =0
while that for area means is of the type
Nr—-1 N1

br=d'm=1 1«1 A(m§ cosmjAX + {BA

1=08=0 (m)

} mjA)\mU

(m)
{(m

!

(2. 60)

SmmJ A)\] my;
(2.61)

. so they are both of the quadratures kind, as anticipated in the preceeding para-

graph.

2.11 Setting up and Inverting the Covariance Matrix

Each block C¥ of (C,, + D) is wholly determined by the 1st &Nl + 1
elements in its first row; if the number of operations required to compute any
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element of C” is k , then only (3Nl + 1) k operations are needed per block,
instead of Nl‘?k as would be the case if C® did not have the Toeplitz structure
described prev1ous1y This is a reduction of the number of operations by a
factor of 2Nl , and clearly applies not only to C® but to the whole covariance
matrix as well. So (C,, + D) can be set up about 2Nl times faster than an
ordinary matrix of the same size.

The total.. number of elements to be computed is 3Nl x Nrg; or N® in the
case of equal angular grids. If the grid is a fine one, this can still be a very
large number of covariances. This is particularly serious in the case of area
means, because the area mean covariances are given by expressions of the form

COV (Ug g, Upg) = {fudcfudc = f f M {u(e,k) u(ev,x)} dodo'
o7 g o
P 13 ™ (2.62)
=[ j cov(u (8, ), u(e',X)) do do’
13 Opq

involving double area integrals of the covariance function. Numerical quad-
ratures methods, such as the one described in paragraph (4. 3), have been
used in the past to obtain cov(i,, u,,) (see, for example, Rapp (1977)).
These methods take so much time in the case of fine equal angular grids
for instance, that it may be practically impossible to use them to set up the
covariance matrix of a global data set, in spite of the reduction by 2Nl in’
the number of operations. Fortunately, the coefficients aip in the Fourier
expansion of the elements

ip _ _—
Cyq = COV(Ugylp) + E {nijnpq}

(expression (2.53)) can be obtained by means of a series expansion (truncated

to a conveniently high degree Ny, ) according to expression (4.14) in paragraph
(4.1). These coefficients are

1 i f K Nnax
p —
[ nsa\'h‘kni n!aNh+ ,p + Z Z In: 2N h— m,i In; ZNh—In,p ] F( Ij)

R=0on=mn R=1l n=n
where GrﬁAe 1
| =L P, (cosb) smede\fz_n"_jrl EX (005 6, - cos (8,2 0) (2.63)
AN if m=0
Fm) = { (2 m_z) (1 - cos mA)\) and (2h+ 1) N =Npax

-A similar reasoning to that for area means leads to an analogous formula for
point values:

Nmax

Npmax
2 [ Z L (Paznsea (cOSBy) Pnzmrrm (cos &)) + T (Pyann-a (cOS 8y) .

=0 p=n 02 h:on.—.m (2.64)
‘Buana (088)]
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The importance of (2. 63) and (2. 64) is that, if the signal and noise are such
that the number of terms in the summations is not too large (N,=x isa
"manageable' number), they allow the direct determination of the elements
of the R(m) matrices according to (2.54). In this way, the R(m) can be
created without first having to set up the whole covariance matrix and then to
obtain the discrete Fourier transform of the first row of each C® . This
advantage further increases in the case when the grid is symmetrical with
respect to the e'quator, a situation that applies to all equal angular grids.
Then each R(m) is persymmetrical, i.e., symmetrical with respect both
to the main diagonal and the main antidiagonal, provided D is also persym-
metrlcal (for instance, uniform noise). This means that only approximately
—4~N elements in each R(m) are different and have to be calculated indi=
vidually .

Having set up the R(m) without first creating the covariance matrix,
the mverse of (C, . + D) can be found by the equivalent operation of obtaining
all R(m) . The number of operations in a matrix inversion is usually
O(dimension®), or O(N®) for a covariance matrix of an equal angular data
set. The number of operations per R(m) is OQ%), or O(N®) for the equal
angular grid. In fact, as explained in (Colombo, 1979a), the inversion of a
persymmetrical R(m) is equivalent to that of two matrices of half its dimen-
sion, one related to vectors of frequency m of the cosine type, and the other
to vectors of the same frequency of the sine type. This further reduces calcu-
lation by a factor of 1}— With O(N) R(m) matrices to be inverted,
the total comes to O(N*) operations, or O(Né) times less than for the in-
version of (C,, + D) by ordinary techniques (Choleskii factorization, Gauss-
Jordan elimination, etc.). O(N®) is also the order of the number of data
points in the grid, so in the case of a 1°x 1° equal angular grid with 64800
elements the reduction in computing time is 0(64800).

The numerical examples in section 3 all involve 5°x 5° data sets with
2592 elements, so (C,, + D) is of dimension 2592. Setting up and inverting
such a matrix is a large exercise, even with a modern digital computer such
as the AMDHAL 470 at Ohio State, unless the matrix has a strong structure
that can be exploited to simplify the work. As such is indeed the case here,
the subroutine NORMAL described in Appendix B has been able to do the whole
setting up and inversion in only 20 seconds.

The inversion of (C,, + D) requires O(dimension®) operations (O(N*))
instead of O(dimension®) because of the Toeplitz circulant structure of the
C® blocks. This "O(dimension®)" property is common to other algorithms
for inverting Toeplitz-type matrices, such as the famous Trench algorithm
(Trench, 1965), and the Justice algorithm (Justice, 1977), the first for data
sampled on the real line and the second for data sampled on the plane, So,
in spite of its "rather wicked' nature, the sphere allows this very convenient
property of regular grids to apply also on its surface. In fact, not only on the
sphere, but also on any body of revolution (cone, oblate and prolate spheroid,
hyperboloids and paraboloids of revolution, etc.,) regular sampling and
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covariances that satisfy the ' |j-q| condition" will result in covariance matrices
of the type described here, and this is also true of other matrices based on
symmetrical kernels, such as the normal matrices of point mass models,
waen the points belong to a regular grid, etc. Finally, the optimal estimator
Cin = an m for this type of covariance matrix is, as shown in the previous
paragraph, of the quadratures type, so the optimal é:,m can be obtained using
the same efficient algorithms described in paragraphs (1.5)-(1.7). Altogether,
the powerful structure of the covariance matrix for regular global data sets

is most remarkable. One of its many advantageous features is that, because
the creation and invertion of each R(m) can be done quite independently from
those of the others, the algorithms developed for this type of matrices are
eminently suited for implementation in parallel processing computers.

The separation of the algorithm according to orders also means that,
although setting up and inverting all the R(m) may require a large number of
operations, only a fraction of those actually correspond to therecovery of the
C,, ofany given m, so the numerical errors due to rounding or truncation
are not likely to accumulate to any great extent in the results.

2.12 Optimal Formulas for non-Uniform, Correlated Noise

Irregular noise, already discussed in paragraph (2.9), may be due not
only to the varying quality of the measurements, but also to the way the data
is "grided", i.e., the way the value attributed to a node (or block) ij is
obtained by interpolation from actual measurements nearby, as usually data is
not sampled regularly on a global basis. As the number, disposition, and
quality of the measurements used will vary from point to point in the grid, so
will the accuracy of the interpolated values. Furthermore, even if the measure-
ments themselves are not correlated, the grided values may be correlated
because some of the data may be used for more than one interpolated value.
This brings about the question of what can be done When D is neitherdiagonal,
nor are the D** blocks in D s corresponding to the c* blocks in C,,, all
Toeplitz circulant, The answer is a simple extension of the results already
obtained for the uncorrelated case.

When the noise is both non-stationary and correlated, replacing the co~
variances E {n“ n,s} with

=1} -

g 24“11?1 r:z: E {nyng } + E{nyn) )} » Where h=j-s,

will result in a modified "moise matrix' L where the L (corresponding to
the D” and the c¥ ) will be all Toeplitz circulant, because the "covariance"
oIt satisfies the condition that, for a given i and r, it is a function of |j- -s|
alone. The optimal estimator for the modified measure

§(L)=tr{C - 2C¢, F + F(C,, + L) Fl

—46-



must be of the quadratures type, because of the structure of .. To show
that is is also the best estimator of this kind in terms of the original norm

ST
§(D)=tr[C - 2Ce, F + F(C,, + D) F,
the proof will proceed much as in the case of paragraph (2.9).

ACL .
The propagated error measure for C,, is
N=1 AN-1

520 mm [COS "T OO cos AX

'n,nn = E Z Z A1 sin mJAknij Z Z Ar ms Dpy
i=0 j=0 §=0

N-l 2N-l N-l1 3n~1

Z ) ): R X {:iﬁ} mjA}\{ }msA)\ E n”n,s}

=0 §=0r=o0 =0
so, for ém and énm combined,
N U St S e _ '
Z Oppnz = )3 Z )3 Z X1 % cosm(j-s)AX E {n“ nrs}
o=0 1=0 =0 r=08=0
thus Nl n Nl Nl aN-1 an-1
¢nd) = tr [FDF'] =nZ mzo 1[ Z X3 X Zocosm(J s)AX E{n“nrs}
N.l B N1 N-D =9 _f I=g1T

=7 Z X Z Z cosmhAAZ (E{n“ nfm}+ E{nunu_n})

Replacing both E {nij nﬂﬁl} and E {n“ nq.j_h} in the last expression with

TP is the same as replacing D with L, so
N-L N —
8 (L) = tr FLF] —Z i Z Z i Z cosmhA) iz ir [nj
n—O m—o t=0 r= I=o0
n N-L Nl irln

Tyt hA )\ 4NG
Om—o 12: ZO Z cosm

n N-'l N~-1 an—-1
n~o n=0 gzo,.z Xi X Z cosmhal ZO(E{nnnrm}-F E{n“nrh})

because of the definition of Tkl Comparing the expressions for &, (L)
and for & (D) it is clear that they are identical. From this follows that the
modified error measure % (L) coincides with ®(D) when the estimator is the
optimal estimator of the quadratures type for &(L), and that this must be the
optimal estimator of the quadratures type for 3(D) as well. The other con-
clusjons arrived at in paragraph (2.9) for the uncorrelated case apply equally
well here,

2.13 Least Squares Adjustment, and Least Squares Collocation

(2) Band-Limited Signal

If there is a degree N,,, above which the degree variances ¢2 are all
negligible or zero, then thé signal can be said to be band limited, and the data
will satisfy equations of the type
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Ty o see%e 2. 65)
mia = Z Z Z Cnm Yxm ( i’AJ) + nij ( .
n=0 n=0=0
(the treatment here is for point values; the extension to area means is trivial)
With one equation such as (2.65) per point in the grid, the result is a system of
equations ’

m+v = Ac (Y= -R) (2. 66)
where A isa N, x N, matrix (N, is the number of points in the grid,
N. the number of coefficients). The columns of A consist of elements of the

type

ayy = Tam (Bus)y) ‘ (2. 67)

According to the discussion in paragraph (1.3), 21f the grid is equal
angular, A has full rank when Np,, < N. N, = N and
the upper limit in the summations is N - 1 in what follows.

Least squares adjustment is a method for solving for the (Tgé while mini-
mizing the propagated noise defined in paragraph (2.4). The least squares
solution is

T
¢ = @ DA AD m
' ; (2. 68)
= GAD? m
where
G = A'TDTA (2. 69)

is the Nc x Nc normal matrix; while D = E{g_ _rf} is the same noise matrix
considered before. Clearly, the least squares estimator matrix is

Fge = (ATD?A) A'D?

When the noise has zero mean (E {_g} = 0), the estimator of (2, 68)is the best
linear unbiased estimator, because it minimizes

. T
tr (E{Fan' F}1 = tr [FDF]

and g {F (z + _t_l)} = ¢ . If, in addition to all this, the probability distribution

of the noise is Gaussian, then (2.68) corresponds to the maximum 1ikelihood

estimator as well. In many scientific applications the noise has approxinately

zero mean and near-Gaussian distribution, while D is known reasonably well;
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for this reason, methods based on expression (2. 68) are used quite often. The
linearity of the resulting estimators is helpful, because this avoids the use of
methods based on non-linear formulas that are usually difficult both from a
theoretical and from a practical point of view. The variances of the estimates
are given by the corresponding diagonal elements of the a posteriori variance-
covariance matrix

E = (A'D*AV = g*
Ls

Therefore, to obtain both the estimates and their variances it is necessary to
know G . Sometimes, because of the nature of A and D, G can be seriously
ill-conditiored, the inversion suffering from strong numerical instabilities. To
reduce this problem, a simple device known as regularization is often used (see,
for instance, Tikhonov and Arsenin, 1977). Generally speaking, regularization
is the introduction of a slight change in a problem, so the solution virtually
remains the same, but the modified problem has better numerical properties.
In least squares methods regularization usually implies adding a small positive
definite-matrix K(diagonal, as a rule) to G before attempting to invert it.
The regularized optimal estimator would be

T
¢ = A'D*A +K) A D m (2.70)

The inverse of the covariance matrix of the harmonic coefficients C is a pos-
itive, diagonal matrix which could be used to regularize the normal matrix.

&= (ADMA +Cc AT D m (2.71)

It is easy to see that this expression minimizes the gquadratic form

Q = ¢'cc + v Dly (2.72)
subject to the constraint
m = Ac + vV - ' (2.73)

Moreover, (2.72) is the equivalent of the least squares collocation error measure
when then signal is band-limited (Moritz, (1980)). This idea has been used, among
others, by Schwarz (1975) for the determination of low degree zonal coefficients
of the geopotential, and by Lerch et al.(1979), who employed it to estabilize the
adjustment of the GEM-9 gravity field model with remarkable suecess. The
equivalence of (2. 71) to the collocation estimator is true only for band-limited
signals; in the "real world" the gravity field has infinite bandwith, so (2.71)

is no more than an approximation. The band-limited assumption is a reasonable
one, however, as the o, eventually become negligible for large n.. This is
particularly true at satellite altitudes; in any case, geodesy is a science of

wise approximations. Moritz (1980) has provided a very clear and concise
explanation of the use of collocation in general, and expression (2.71) in parti-

cular, in spherical harmonic analysis.
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An alternative derivation of (2.71) follows from the matrix equation

cA"(AcA” + Dy = (@ATDA + ¢y ATD? (2.74)
(see, for instance, Uotila (1978), equation (29)), which is valid for symmet-
rical matrices, provided the inverses or pseudoinverses of D, C, and
(AC AT+ D) do exist. According to the definitions in paragraph (2. 2):

[ ,
Cop = M gg’} = Micc' A’} = M{gg_T}AT = CA' (2.75)
Cp = M{_Z_ET} = M{AggTA’} = AM{g_c_’} A" = AcA' (2.76)

Replacing C,, and C,, in the expression of the collocation estimator matrix
(2. 39) with their equivalents given by (2.75) and (2. 76):

T "
F = Co (C,p + D)Y =CA"(ACA + Dy? (2.77)
= (ATDMA + ¢yt ATDE

according to equation (2.74). This shows that the "regularized" estimator matrix
(ATD™' A + C"*y*ATD™? is indeed the same as the collocation estimator
matrix, so(2.71) represents an alternative form of collocation when the data

is band-limited.

(b) Infinite Bandwith

In this case the''observation equations'' are

R n { _ —
my, =7 ) T ChTLB,0) +ny,

® 1 | o o
Wy, T Z Z Cun Yun (61 s Ag) (2.78a)
=Nt T=0 y=0
and
W= W . W .. Wl (k= 2Ni+]) (2. 78b)
then N on ' _a _a
my =) ) ) Cum Yo (Bi,Ay) + wyy g (2.79)

and, regarding this expre ssioT as a modified observation equation, and
replacing D with D+ M{ww r in (2.71), the linear estimator that mini-
mizes the quadratic form

~

Q=ccle+y(m+ M{\z‘z’} Y (2. 80)

I8 A T T 4 T
c = (AD+ M{vzvy.’} yTA+CT)T A (D4 Mi\zv_v_} )" m (2.81)

It is easy to show, either following the lines of Moritz (1972), or going
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back once more to the matrix identify(2. 74), that expression (2.81) is identical
with the estimator of least squares collocation. Rigorously speaking, expres-
sion (2.81) should be used whenever 05 #0 for n > N, even if o° =0 for
0> Nyax , for some finite Nox >N .

2.14 Ridge Regression and Least Squares Collocation

Consider once more the estimator
& = Fpom =@ D ATATD
If there is nonoise, so m=z = Ac,andif n < N, then
&= a'prat A'pYAc = ¢

According to the definition given in paragraph (2.4), the sampling error of
this estimator is zero, so the measure of this error must be also zero. It
the noise has zero mean, it follows that

E{é} = E{Fzs I_I_l} = Fy, E{A_c_:_ + p_} = FysAc + E{E} =c

or, as it is usually said, the estimator is unbiased. Moreover, by a simple
extension of the Gauss-Markov theorem to the case of a general symmetrical
positive matrix D (see, for instance, Bibby and Toutenberg, 1977), F gs M,
of 31l linear unbiased, estimatoxs, has the least propagated error measure
tri}?zs D FT';? = tr {(AT D™TA) ¢, as mentioned previously.

The estimator of expression (2.77) does not, in general, give perfect
estimates of ¢ in the absence of noise: it is a biased estimgtor, and the
measure of the bias istr {C - 2Cq, F' + FC,,F" » (this tern?l can no longer
be regarded as the measure of the sampling errdr, as it is the presence of
C™' inside the parenthesis in (2.71) and not the sampling that brings about
this error). According to (2.39), F is the estimator that minimizes the
total error measure, so

T
tr {c -2C., F + F(Cpu+D) FT}

2
O¢

A

tr {C - 2C,, F}s + F,Q,S (C;z + D) F},s}

tr {F 4sD F}’s}

If the covariance matrix is positive definite (which only requires that all
O‘i #0 for 0 <n < N) then the last expression applies with strict inequality

il

tr {c -2C,, F + F(C,, +D) FT} <tr{F£8 DF}&B}

=tr{ (ATD™ Ay
-51-
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Some may find this result rather surprising: the best estimator with zero bias
is-in fact* worse than the biased estimator of (2.71)! The difficulty is only
apparent: F,, is the best estimator with no bias; once the "no bias' con-
dition is removed, the expression above merely indicates that there is an
estimator in the larger class of the estimators that have a bias (including
those with zero bias) such that the sum of the bias and the propagated noise

is smaller. From this, it is clear that

tr {FDFT} < tr {(AT,D"1~A.)} (as tr {C - 2C,, F + FCu F}z0)

which is indeed possible when the condition C - 2 Co, F' + F C,F =0
is-removed. - In fact, there is nothing very new about all this: the use of
biased estimators to obtain estimates with small variances is a reasonably
well-established practice in applied statistics. In particular, the technique
known as ridge regression consists in using the biased estimator

¢ = o{x+K)rx m

with a suitable choice of K (Bibby, 1972). Clearly, this expression is the
same as (2.71) when x =A, D=, and K=C~'. With some obvious modifi-
cations suggested by (2.81), this argument can be extended to the estima-
tion of ¢ when n = N, so it can be said that within the scope of spherical
harmonic analysis least squares collocation is a form of ridge regression.

This brings up the question of just how realistic the error measure
is; after all the best of all possible estimators in terms of a given norm
could be a very had one for some specific problem where that norm is not
suitable. To ancwer this question, one must start by defining the meaning of
"realistic'. If one is interested in minimizing the actual error variance of
the coefficients per degree, i.e., the expression

| 1
62 =3 ) @S -T% 2 en+1y?
0=0np=o0
which may be of interest because this corresponds to, say, the global LJnean
_s_%tuax;e of the error ofﬁrepreserpting the ngonti’nudus fanction (8,\)= éo ng
Con Ynn (8,2 with £(6 ,A)=m§;0‘—oz.__d Caa Yo (852), according B
to Parseval's identity (exp. (1.12)), then one could say that a realistic
measure is one that gives close estimates of the actual errorvariances.
The "actual error” measure 0% corresponds to one of infinitely many
'events' over which the collocation measure is an average. The proof of a
pudding being in the eating, the reader can judge just low realistic the collo-
cation measure is by looking at the numerical results in section 3, where the
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value of the measure turns out to differ only by a small percentage from the
actual variance in eachone of a number of simulated "events™, i.e,, the
recovery of the C$ from''simulated data] where the —(fn% are known random num-
bers scaled to have the desired power spectrum.

2.15 Structure of the Normal Matrix

The elements of the normal matrix G (in the case of point data) are
of the form
N=l 3N-1
g(f,;,gq = Z Z Ynm (151 y) Yﬁ (61,Xy) 07°
ok an-1 (2 82)
Z 'an(cosei)Tg,q(cosei) X 1COS AX [Cm}QJAK

where of = 0, forall 0 <j < 2N (i.e., "regular" noise as defined in
paragraph 2.8). If n, m < N, then the following equations apply:
N~ (84 7£ B
{Cos}m Ax{ }q Ax=0 if{ or (2. 83)
sin
m #q

Moreover, if the grid is symmetmcal with respect to the Equator (as equal
angular grids are), and if cri UN—I—i (for instance, if o is indepen-
dent also of i) the relationships

07 By (cosBy) = B, (cosby) (-1)  oi,

0'{2 Em (cos 8y) =f>pm (cos 6;) (-1)1}_(1 gN:f_i

t

ei = 77'-91

must apply, aceording to par. (1.2), and from these follows

No1
;> P, (cosB,) B,,(cosB8;) =0 if n-p is odd. (2. 84)

1=0
In brief: if n, m <N, and the grid is regularly spaced in longitude, and
symmetrical with respect to the equator, then

w8 _|e#Bim #g
Zampqg = 0 if or (2. 85)
n-~p is odd

If neither of the condmons 11sted above apply, then gnmgq may or may not

be zero. I the coefficients . C are ordered in ¢ so that a]l those of the
same M - are grouped together, and for a given m all C are separated
from all C“ , and further more all Cnm with n - m even are separated from
all those:with n - m . odd, then the normal matrix becomes 2 arranged in sucha
way that all potentially non-zero elements (i, e., not satisfying (2. 86)) are also

grouped together forming a series of diagonal blocks .Gg" ", where & signals
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the parity of n-p, Each one of these diagonal blocks is made

exclusively of one of the following types of elements

gi’;fpm n-p even (8=0)
atpw | Dm-D odd (3=1)

5Oand , OT

d=1

(.(the rid IZ not zymme{&mal)wfch T Spe t to the equator, groups of type

zero blocks, as there are more non- zero elements in that case.

here the discussion will cover only the symnetrical case.

0,0

The largest blocks are Go’~ , and their dimension is N3
the smallest blocks have dimension 1 x 1, for example G%:°.

and » become included into larger non-
However,

The inverse of any block-diagonal matrix such as G is another block-

diagonal matrix made up of the mgerse of tte blocks of G. There are
4N - 2 diagonal blocks G in G, and as many in G*

The eigenvalues of G are those of the diagonal blocks, and the

eigenvectors of G, those of the same blocks "expanded' with zeroes at both

ends, so as to reach the dimension N, of G.

The estimates' vector

T _
Dl m

= GTA

o>

)
can be partitioned in the same way as ¢ , each partition ca
coefficients' estimates of the same m, ¢, and parity 6 of n - m ;

&0 = @@ A% o m

where A:l'é isa(N -m) x N, matrix with rows that are N,

of the type

od — ' coSsH )
Lapn T [... an (COS@i) {sm}’ miAx. .. 1]

o,0
(n-m even if §=0, odd if 6=1 ) So the rows of (@,

including all

(2. 86)

- vectors

(2.87)

linear combinations of vectors of the same frequency m and, therefore, also

vectors of the same frequency:
o cos .
.I}.nm = [’ A 4 X?m {sjn } mJ AA. ° o ]

Consequently, the estimate of a given Ea is
N=L BN-L

&% = 2% pm = | L (S0 }mian of my

1=0 =0
and this is a quadratures type estimator.
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Setting-up and inverting the Gg’é blocks is tantamount to setting up
and invertingthe whole matrix G . Since all operations related to one of the
blocks are independent from those for the others, the inversion of G is
ideally suited for parallel-processing computi ng On average, each G,’
requires O(N ) operations to invert, or O(N ) altogether. Inverting G
by ordinary techniques would involve O{((N ), )"3 = Q(N°), so there is an
increase in efficiency of O(N?) .

Finally, it is quite simple to show that these = properties carry over both
to the case of area means, and to problems where the surface being studied is
not a sphere, but a surface of revolution symmetrical about a plane perpendi-
cular to the axis of rotation, provided that the longitude increments be constant
and the grid symmetrical with respect to the "equator'. In this lattercase,
tle expansion of the signa.l in solid spherical harmonics is

N=1 3N-1 6
z Y
1} 1Zo J_zo azo Er an (Y15 J)
and the factors ;f'n-‘l-'l‘ are symmetrical about the equator, from which all the
properties already mentioned for G follow,

Clearly, the structure of G possesses many properties similar or
identical to those of (C,, + D) when the data is regularly sampled on a sur-
face of revolution. These similitudes underline the intimate relationship
between least squares adjustment and least squares collocation shown in the
preceeding paragraph. In fact, as least squares, regularized least squares,
and collocation differ only in the diagonal matrix (K, or C'l) being added
to G in expressions (2.68), (2.70), and (2. 77), all the properties mentioned
here for G apply to the normal matrices in each of the three methods equally
well. The one important consideration, in the case of collocation, is that

data be band-limited. Otherwise, expression (2.81) indicates that (C + M })
and not C must be added to .G . . Matrix C + M{ww'} has the same

Toeplitz-type structure of (C,, + D) discussed in paragraph (2:10). Therefore,
creatin anq inverting the normal matrix requires: (a) creatin and inverting
C+Miww b, and (b) creating and inverting AT D™ A + (Mﬁ wwh+C)?,
which can bé shown to have the same block diagonal structure iscussed here.
This is twice the work needed to set up and invert (C,, + D) using the approach
of paragraph (2.11), so, in the case of infinite bandwith, that approach is more
economical in computing and, therefore, more practical.

There may be one important point in favor of using formula (2.77y,
or (2. 81) rather than formula (2.39) for obtaining the optimal estimator
matrix F atleast in the band-limited case: as the density of the grid in-
creases, matrix (G, + D) becomes increasingly more ill-conditioned, because
the closer distance between data points results in covariances that have much
the same values in consecutive rows or columns. On the other hand, the non-zero
diagonal blocks in G are likely to become more and more diagonal-dominant
as A6, AX- 0. This will depend on D : for instance, if the variances of the
noise were of the form
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o = sino,

then : *
ogé Ne & SN— I, — Y .
Lin _A_.___e AM ampn = Litn X nm(eisk") Yplm(ei’ >‘3) sin 6, ’A_Q_AA
Ae, A>\ 4:'” AQ,AA.j.:o =0 4:'”
0 if n#p
- [ ey T =
- & Yau(8A) g (8,0 do 1ifn=p

because of the orthogonality relationships. In general, the variances of the
noise are not going to follow a sinusoidal law, but one may reasonably expect
(at least with more or less homogeneous noise) that the stability of the normal
equations will not deteriorate with Ag,AX~-0 .

2.16 Global Adjustment and Collocation with Scattered Data

The efficient set up and inversion of the covariance matrix (C,, + D),
or of the normal matrix G , depend on the regular nature of the grid, If
not all nodes or blocks in the grid have data associated with them, the data is
said to be scattered. The blanks or "holes' in the grid destroy the orderly
structure of the matrices, making the application of the techniques previously
discussed impossible. Yet so strong is this structure that, even in fragments,
still it can be dealt with more efficiently than in the case of ordinary matrices
of the same size.

(a) Full Region Bound by Lines of Latitude and Longitude

In the case when there is data at every point or block inside a "square"
region limited by parallels and meridians, the partitioning of the data vector
along the arcs or parallekinside the zone reveals a strong structure in the
(C,, + D) matrix, if all the other assumptions made in paragraph (2.10) still
apply.

If N. is the number of rows and N, the number of meridians that
cross the region, then the covariance matrix will consist of N blocks C'? of
dimension N, , both persymmetrical and Toeplitz, though not circulant
(i.e., the relationship c? = cjg-19,+l is fulfilled, but not CO’f1 = C,\fiq_l);
moreover the first row in each block does not have the property that
cépq =coﬁc-q . Clearly, though weaker than in the case of a global grid,
there is a definite structure here that can be exploited to make both setting
up and inverting the matrix more efficient.

Because each block C® is Toeplitz, only the N. elements in its
first row have to be computed, or about 3N. N.° for the matrix as a
whole, instead of N °N,”; this amounts to a reduction in operations by
a factor of N, .
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The solution of the equation *E,f: = (Cp + D)™ clug,, » for the optimal
estimator vector f & for %, canbe obtained by a technique such as
conjugate gradients, or similar, in which a finite number K of matrix-
vector multiplications (C,, + D)v, (Where Vo, Vi, « . « Vi y + o . v, are
K intermediate N, - vectors created during the solution) constitute the bulk
of the computing effort. There is no need to go into the details of any specific
technique, as the reader will find excellent descriptions in the literature
(Householder, 1964, Luenberger, 1969). A discussion of the matrix-vector
operation is sufficient here.

Let m' be the N,- vector partition of the N, N,data vector m,
containing the measurements along the ith parallel in the region, and let Vi
be the corresponding partition in any of the vy vectors. The product (C,, + D)V:
= p; -is, under such partition,
NT T

pr = [ ...p 1

with NPl (2.90)

.P.’ﬂi — Cip ti

p=0

S0 the whole matrix-vector multiplication can be broken up into NZ products
C®v = b . Because C® is a Toeplitz matrix, the N, components of
11_,: ® can be obtained by "weighted running averages' or discrete convolution
of the elements of y_ﬂp with those in the first row of C'®, Such convolution
can be calculated efficiently using the Fast Fourier Transform algorithm (seg
for instance, Brigham, 1974, Ch. 13). Therefore, all N2 products involve
O(N, N7) operations, and since there are K matrix-vector multiplicatjons
in the whole procedure, the total number of operations needed to obtain _f_f,f
amounts to O(KN, N,?). For conjugate gradients, K does not exceed (in
theory) N, =N, N, , so there should be O(NZ N2) operations altogether.,
If (C,, + D) were handled by conventional techniques, disregarding its well
defined structure, the number would be O(N& Nf‘) s So the increase in ef-
ficiency is O(N,) , the same as for the setting up.

(b) Arbitrarily Scattered Data

It is common in geodesy and in geophysics to have a set of measurements
scattered throughout the globe, without the data being on the nodes of a reg-
ular grid or without all ¢% ; being equal along parallels (nonhomogenous noise)
If the set is dense enough, however, it is possible to interpolate the data quite
reliably on the closest nodes of a conveniently chosen grid. Assuming that this
is done, and that the accuracies of the interpolated values are known well
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enough, then the problem can be dealt with by conventional least squares or
by collocation. In general, there willbeblanks or "holes' irregularly dis-
tributed over the sphere, the actual data points falling among them in no
precise pattern. This problem will be considered here as a least squares
adjustment problem. If the data has little or no power above the Nyquist
frequency of the grid on which it has been interpolated, then the extension of
the ideas that follow to collocation is quite simple, according to paragraph
(2.13).

Consider the element gﬁﬁ of the matrix G =A"D A

O cos . cos .
gnméq Z Pun (COS &) Pyq (cOS By) }: {sin} mjAX {sin} PjAAW,, Gt
1=0 (2.91)
where Wyy=0 if the point ij is blank, otherwise Wy, = ; 0%, is the var-

iance of the noise n,; . In general cri y is a function both of i and of K
Clearly, matrix D is taken to be diagonal (i.e., uncorrelated noise).

From the relationships

cosmjAX cospjAX = F[cos(m +p)jAX+cos(m - p)jAr]
cosmjAX sinpjAX = E[sin(m+p)jA X -sin(m -p jAX]
sinmjAX sinpjAX = —%[cos(m+p)jAk—COS(m-p)jA Al

and calling
Ci°= %Z cosTjAN Oy Wiy
_ | L (2.92)
__Z smrJAAO'u 11

to
r

where -N <r <2N, follows
" o6l , -8
Z 65 Wy {star miax {Sintpiak = [Clag) + (-1?*Pol gy 1 (2.93)
CY ()
Moreover, because
cos (1) jAX=cosTjAX

sin(-r)jA A= -sinrjA A
cosrjAl = cos(@N -r1)jA A

Sinrjh A= -sim(@2N - 7)jax  CNAA=E
follows

¥ = ;% -

Catr = Cr¥ (-1)
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where the last one is of special interest when r = N. So only the C: o
with 0 < r < N are needed. Finally, calling

10,8 t o-|

Zampqg = 13:13(005 81) Ppq (cOS 83) [Cy aq + (-1) 206+P C(m}a -y 1 (2.94)

(where |a- B| is the absolute value of o~ )
it is

N=1
t
g% nm,pq Z gnm%? (2.95)

Assume that out of N rows the grid has only 1 with any data in them, so
at least one Wy, # 0 in each. Once the corresponding C,. & have been ob-
tained by computing the discrete Fourier transform of o7 s ® W, y along each
rov- with data O(Ne) operamons for the whole grid), what remains is to get
the 1 non—zero terms gnm B that form each element gm,fq of G. As there
are about 3N* such elements that are different; and I is O(N) (except for
very sparse data sets), the total number of operations needed to create G
is O(N® + O(N®), or virtually O(N® . If the g%P. were computed according
to (2.91) as it is written, instead of according to its reduced version. (2.95),
the number of operations would be O(2N? (N) ) s or O(N®), so the gain in
efficiency allowed by this approach is O(N) , which is the same as in the case
studied in the first part of this paragraph, where the data completely filled

a ""square" sector of the sphere. This count does not include the time needed
to obtain the P,, (cos6;), as these can be pre-computed once and kept on
disk or tape for repeated use,

The number of operations can be reduced further, almost by half, by
ég advantage of the fact that P,,(cos8;) is a common factor in all
gz1 mpq With the same n and the same m . Furthermore, if there are pairs
of rows i and N+ -1 (i.e., symmetrical with respect to the Equator) where
both rows contain some data, then

giuugl;i g:-mi-};lf.la o = DPyp (COs 8) Pyq(cos @ 1)
[(Ci_l I+( 1)n-9d\l—ﬁja -g| + (- 1)za+[%d\s:;:la |+( 1) chl ¢ o8| N

(2.96)

which leads to further savings in computing at the cost of additional program-
ming complexity. These economies are important, but they will not bring the
number of operations much below O(N ) unless the grid is so sparse that
I is much smaller than N .

Notice that the normal matrix G = A’ D' A is created here without
actually forming the observation equations matrix A . This means consid-
erable savings in computing and in storage requirements., As for the right
hand side of thenormals AT D™ m=b , the elements of b are given by the
formula
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N=1 &N-1

by =1Z jz P n (cos 8y) Ism} mjlAx c)-ij Wiy my (2.97)
=0 =0

where k=n°+on+m+1 and W,,=0 if there is no data at the point ij ,

as before. Such expression is of the quadratures type, and can be computed ef-
ficiently by the corresponding algorithm of section 1, also without first creating
A . Finally, the residuals vector v=m - Ac , usually of interest, can be
obtained as the difference between the data m and the values of

Z (81, J)—Z ): X &% B, (cose, ){gfxf} mjAx
=0n=0 m=q

computed by means of the appropriate synthesis procedure given in section 1.
Thus v can be found without knowing A explicitly.

The normal equations can be solved by means of conjugate gradients
or a similar method involving M matrix-vector products Xy = Gh; , where
h, is part of a sequence of intermediate vectors heyhi, o oo hyy o oo by

Introducing the notation
0(

_nmt th
where k =n°+on +m+1, and calling G*' to the matrix of all gi,,fffq ,
N1 1 " N=L I Ne 1
so G=13 G and§t=2(}gt=zggt (2.98)
i=0 {=0 1 =g

then each element xgmit of the product vector g_ti is of the form

-1 _ .
nmt = Z Z % giﬁ‘,bpq hgey = P, (COS 6y) Z' [CngB )goﬁBCn&q ~B|
P a0 B0 Pq 2.99
. B,q (cos ;) hl, (2.99)

Every hﬁt above multiplies always the same P, (cos8,); calling

dpjﬁ qu (cos 8y) hpqt

expression (2.99) becomes
tlo-8l a
XHO::: = an (COSG,_) Z [Cm+q + (‘_']-)206“3 | Bl] qu
raff
All quantities inside the square brackets are constant if o, 8, m , and q
are the same. Grouping equal factors together

- _al
xﬁi = 1—5“ (cos 6y) i i [Cioé 3'_,_ (_1)2054-8 |& BI] Z

) (2. 100)
= an (cos 8;) Z Z [Cila 3l+( 1)201-1-8 C IO( 13‘ Dq
4 =n =O

where D;B pZ dpﬁ
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There are (N°) products needed to form all d,:g ; (N3 sums to compute the
2N. DB, and (N)® further multiplications by the P,, (cos 6y to form all
x.nogi,é. As there are I non-zero G'-, there are, per matrix-vector product,
IxO(N 2) operations, or O(Na) if the data is not too sparse. M , the number of
matrix-vector products in the solution, is O(N?) , so the total comes to O(NE) .
Inverting G by the usual methods and without having regard for its structure

involves O(N® operations. The gain in efficiency is, again, O(N) .

Besides providing a convenient way of demonstrating how the properties
of G can be exploited to make its inversion more efficient (or the solution
of the normal equations, both approaches are equivalent), conjugate gradients
is interesting on its own right. Sparse data sets with a poor distribution will
result in ill-conditioned normals, so the inversion of G may be numerically
impossible. So-called .iterative methods, .such as conjugate gradients, usually
improve the jnitial guess (represented by ho) of the correct values of the un-
knowns, at least for the first few iterations. Improvement here means a reduc-
tion in the quadratic form being minimized, such as the mean square value of
the residuals. If the initial guess is a good one, and present day spherical
harmonic coefficients of the gravity field are reasonable good for degrees up to
30 or so, then a few iterations are likely to improve this guess,and to produce
reasonable estimates of those coefficients that,being wholly unknown, are
taken to be zero at the start. If a "few!" iterations are much less than the max-
jmum N?, then a reduction in computing time of O(N®) takes place. This
might allow scientists to "extend" existing models to much higher degree and
order than at present, simply by obtaining approximate solutions of this type.

Clearly, all that has been said here regarding G and least squares
adjustment applies equally well to (G + C™*) and least squares collocation.
Though the formulas have been developed on the basis of a point values'
formulation, their extension to area means is not difficult.
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While the descriptions of the methods for estimating the C,@l n
dlscussed here have been confined to the case where all the data are of one
kind (i.e., gravity anomalies only, or magnetic anomalies only, or geopo-
tential numbers , etc.) their extension to mixed data sets is immediate,
provided that all values are gldally distributed according to grids of the same
AX, although the latitudes need not be the same as well,

Note on the Accuracies of the ég‘m when Using Conjugate Gradients:

Besides the estimates of the coefficients, one usually wants to know the
accuracies of those estimates. When a few iterations of conjugate gradients
are used to update some initial estimates in the efficient way described above,
what are the accuracies of the improved coefficients? In the course of the
conjugate gradlents procedure (see references), the’ conjugate directions - Yk
of G = (A Dt A+Ct Q50 ) are generated (Q3'. is the variance covariance
matrixof the initial estlmates as explained in paragraph (2. 18) part (b))
together with the scalars vk G vk = o, . The conjugate directions have the
property

ViGvy, =0
for k #p . The estimator implied by R iterations of this procedure is
ol T — — ~ — ~~ -—
¢=GA DPm +Qles) =GA DT @+ +E Q5 (e +Acy)
where ¢, is the vector of initial estimates, Ac; the errors in this vector, and
R
= Z a;l zk y_;
k=1
The variance-covariance matrix of @rhe updated errors, for ordinary least
squares, is (assuming that E{n Acet =0)
~ T - ~ — Y o o~ - T ~ — — ~
E {(G A'D'n)@A D g)’ﬁ E{(@QslA_C_s)(GQslAgs) }= GA'D'DDlA &

—lN

+GQ' QR QEIG =G @A D A+Q§1)é =GGG

R ~1 T =1 R -1 T
=Zakz_k0‘ky_kak‘ = X Uy ViV =G
k=1
Therefore, the variances of the errors in the éfﬁ, are equal to the correspon-
ding diagonal elements of G

-nnm = Z ak Vk,nma

where vy .. is the element of v corresponding to énam in ¢ (v and §
have the same dimension). The same result applies to least squares col-
location, All that is needed to obtain the c;?ﬁf, , according to the formula
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above, is knowledge of the o, and of the v, which can be saved as they are
created, during the kth iteration of the procedure. For the efficient algorithm
to be applicable, Q"s1 must have a suitable structure. One case is when

Q7 is diagonal, or can be satisfactorily approximated by a diagonal matrix.

2,17 The Error Matrix in the Band-Limited Case

Ffom (2.41) and (2.77) results
Et=C-Co; (Cos +D)  Cla = C-FCh=C-(A DlAa+ch)? ATDAC
=[I-(A'DrAa+cty T AT DTAIC = (AT DR A + O HAT DA +C™H-A'DTAIC
=@A' DA+ (2.101)

In the case of the best unbiased estimator C™ is not present in the normal
matrix, so (2.101) becomes

Er = (ATD" AT =G (2.102)

which is the well known expression of the error matrix for ordinary least
squares.

Because of the block-diagonal structure of the variance-covariance matrixﬁl)
the estimates of G of different orders are uncorrelated. The diagonal
elements of the variance-covariance matrix are the variances of the estimated
coefficients total errors (i.e., sampling plus propagated noise), in (2.101).

Obtaining the variances of the f)noj in band-limited collocation is formally

identical to getting the variances of the estimates in ordinary least squares,
according to (2.101) and to (2.102)

2.18 The Use of a priori Information on the Coefficients

Assume that all coefficients up to some degree and order M are
approximately known, and that Q, is the variance-covariance matrix of their
errors. This could be the case where a model of the gravity field has been
obtained from data gathered using artificial satellites, complete to degree M,
and terrestrial data is to be used to improve the existing coefficients and obtain
new ones beyond degree M .

Three possible approaches to this question will be discussed here, using
a 'point values" formulation in the first two cases for simplicity,

When the data set is not sparse.
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(2) Simple weighted averages:

The terrestrial data can be used separately to obtain a model to degree
and order M; > M, together with the variance-covariance matrix @Q; of
the coefficients' errors. To combine the satellite and the terrestrial coef-
ficients one can set up the following observation equations

ce] 87 L] ¢
L
erl Lt I |

where ¢ is the vector potential coefficients and I, is the (M + 1)®x (M + 1)°
unit matrxx augmented with zeroes on the right, and I; isthe (My +1)°x

(Mr + 1)° unit matrix, while cg s the vector of''satellite'coefficients and

cr the vector of'terrestrial'coefficients; s and t are the corresponding
veetors of residuals.  The best linear unbiased estimator for the combined
system of observations is

AT - - 's ’
c= (I Ir] g QT][ ] L [gsl 5;1][0,]

(2.104)
= (@ + Q)7 (Qites +Qiter)

If Q: and Q; are the inverses of ordinary least squares normal ma-
trices G; and Gr, then the error matrix of the combined solution

-1, =1

= (@F + Q7)™ = (G, + Gr) ™

corresponds fo the propagated noise only. If they are "collocation

matrices of the type (AT Db A+ C'ﬁ"l(see expression (2, 77)), then the error
matrix includes the effect of the sampling error as well. Most satellite models are,
to date ,; 'least squares-type" and it would be incongrous to combine them

with "collocation-type' models, terrestrial or otherwise. The problem need

not be a serious one, because geodetic spacecrafts so far have orbited at
altitudes of 800km or more, where the field is much smoother than at the
surface, so the sampling errors are bound to be small compared to the pro-
pagated data errors reflected by Q; .

In the case where the terrestrial model has been derived from a reg-
ularly sampled data set using the 'band-limited approach! of previous para-
graphs, Qr is block-diagonal, and those blocks corresponding to orders
m >M are identical fo the corresponding blocks in (Q;*+ Q)™ . From
this it is not difficult to conclude that the coefficients in the combined model
up to order M will be somewhat different (and presumably better) than those
in either the satellite or the terrestrial sets, while those above M will be
identical to the corresponding terrestrial coefficients.
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(b) A priori values included as data in the adjustment:

Consider the system of observation equations

LILL)

which is the system (2. 66) augmented with equations of the type
o . =0
&nm(s) - egi(s) = Cup

where enof,(s) is the error in the "satellite model" coefficient 63,, ) *
The normal matrix of collocation is

= (A 1] Pé‘l o_l‘\[A +Ccly (2. 106)

and the optimal estimator of the band-limited type is

= (ATDT A+QF+CTY T (ATDT m+ Q7 ) (2.107)

Once more, if the data in m has been sampled regularly on the sphere,

the estimated coefficients will be affected by the existence of a priori values
only if their order is no higher than M . Naturally, this is a desirable sit-
uation. Also it is important that the error measures corresponding to E;
and Qs be congruous, though this is probably not very important in the case
of satellite models obtained with high-orbiting spacecraft. Notice that (&)
and (b) are equivalent when Qr = (AT p*? Ay' and when C™ is excluded
from (2.106)~(2,107). In other words: these first two approaches are equiv-
alent for ordinary least squares,

(c) The method of Kaula and Rapp:

W. Kaula (1966) proposed a technique for simultaneously filtering er-
rors out of a terrestrial data set and improving the coefficients of a satellite
model. This method was later developed by R. Rapp (1968), who more recently
(1978) used it to improve-a global data set of mean 1° x 1° anomalies by com-
bining it with the potential coefficients of the GEM-9 model. This adjusted
data set was used by the author of this report to create the 5° x 5° mean anom-
alies analysed in one of the numerical experiments of section 3.

The idea is to satisfy condition equations of the type
N"‘l 2N=1

o —
Cls) + dyn = @my@ -1 B, S VT T [ Ve (8,0d0Fgyy +vig) =0
1=0I=040,, (2. 108)
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while minimizing the quadratic form
T - -
gd,y) =d Q3'd+y Dy ©(2.109)

where v is the vector of corrections v;, to the mean gravity anomalies
Agij, and d is the vector of corrections d,ﬂf to the satellite potential coef-
ficients ﬁn n(3) 3 B. is the nth degree Pellinen factor discussed in paragraph
(4. 3), v is the mean value of equatorial gravity, and S is the ratio between
the radius of the Earth's largest inner geocentric sphere and the mean Earth
radius. In matrix form, the condition equations (2.108) are

Cs+d -

1B

g-ATvy=0 (2.110)
where A is a 2N®x (M +1)°® matrix having columns al, of the form

= (4n(n - 1) yS™ Y | i?w,»dc-.:[ 72 @6, ndol’
Ooo ON-1 3N

so, except for the factor (4m(n - 1))/8’“‘a B.)"', A is the "area means version"
of the matrix of system (2. 66), and has the same properties as the "A'" mat-
rices considered so far.

The optimal estimates are given by the expre ssions

E=c, +d (2.111-a)
A =45 + v (2,111-b)
where . ]
= -((A DA™ + QYT AT DA (c. - A Bg) (2.112)
and
Z=DAQ5.C1 (2.113)

If the data set is both complete and of uniform quality, the matrix Al DA

has the block stmcture first discussed in paragraph (2.15). The presence of
D instead of D™ makes no difference to the calculations needed to set up
and invert the matrix: the procedures are those already explained. Ter-
restrial data, however, is usually both scattered and of varying quality

(i.e., different noise variances). For this type of data, therefore, the meth-
ods for scattered measurements given in paragraph (2.16) could be used.

2,19 Optimal Estimation over a Band of Spatial Frequencies

Assume that the signal is of the type

m=Ac+n
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where A and c may now be infinite (i.e., all degrees from 0 to ®

may be present)., If c' isa sub—vector of ¢ comprising, say, the first

N° - coefficients, “and if s is a vector of estimates of a function s at

a given set of points on the sphere, such that the values of s depend only on those
of ¢' according to the relationship

s =B (2.114)

where B is some matrix of approprlate size, not necessarily of the same type
as A, then the optimal estimator for s is, according to (2.39), (2.75),

§ = Cey(Cy, +D)°
= Mis zk(sz+D)"l m=M{Bc'c"A' (sz+D)"l}
= B (sz+D) (where C'—M{c c! })

= B Cy z(sz+D)

or R
Be! (2.115)

jn>
It

according to (2. 40).

Expression {2.115) indicates that the optimal estimates of a band-
limited function s from data m are identical to the values of s obtained
from the optimal estimates of the . coefficients ¢' by means of the rela-
tionship é =B é‘
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3. Numerical Examples

This section presents several computed examples to illustrate some
of the ideas and methods discussed earlier on. The question posed here is,
basically, that of the accuracy. of the various procedures, and is answered -
by means of error analysis carried out with the formulas for error variance
developed in section 2, and also by analysing simulated data and comparing
the recovered coefficients to the original ones in order to find the actual
errors. A comparison of the rms of these errors with the theoretical rms
(i.e., the square root of the variance) provides both a check on each set of
results and, more important, shows just how adequate an error: measure
the theoretical rms can be:. Besides error analysis and simulations, this
section shows, in the last paragraph, the results of the harmonic analysis
of a real data set: a 5° x 5° equal angular set of mean gravity anomalies
covering the whole Earth, from which the coefficients of the disturbing
potential have been recovered to degree and order 36 by means of least squares
collocation, using the "Toeplitz matrix' approach of paragraphs (2.10) and
(2.11).

3.1 Generation and Analysis of Simulated Data

As explained in the preceeding section, the variance of the error in
the estimate of C% depends on the power spectrum (or covariance function)
of the signal, and on the variance-covariance matrix of the noise. The pro-
pagation of the noise is quite straightforward, and anybody who has had any
practical experience with adjustments of geodetic networks and the like al-
ready has enough "feeling' for this part of the error measure, and is eap-
able of understanding its significance when its value is given to him. The
part corresponding to the sampling error is somewhat different; it involves
a rather unusual geometric average over rotations, and this type of error
measure, while not exactly new (collocation, based on this measure, has
been around since the mid-sixties) is not so familiar to geodesists yet, and
its use,in harmonic analysis in particular, far from common practice. For
this reason, it is probably fair to the readers to provide some illustration of
how "close' this part of the error measure is to the actual sampling error
that occurs when data of the assumed power spectrum is analyzed in any of
the ways discussed so far to recover spherical harmonic coefficients. By
"close' one means that the actual numbers measuring the theoretical and the
actual variances (or rms) should differ from each other by a small percentage,
or some equally clear-cut criterion.

The theoretical variance considered here is the variance of the esti-

mation errors per degree o‘gsn, defined in terms of the error measure of
section 2 as follows (see paragraph (2. 8))
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a: n

i
Pﬂu

: o T o
Z - zg_gma,z inm + (f_n%) (sz + D)_fm)
°a=0° 1) (3.1)

IIM;:

The rms of the error is the square root of this variance, and the ratio of
this rms to the rms per coefficient;
O¢n 3
5 = (1- ) Z (2Cma,2hs = ) Cu +D)fn))”  (3.2)

m-oa o

multiplied by 100 , or the percentage rms error per degree, is the theo-
retical quantity to be compared to the "actual' percentage rms error per
degree derived from the analysis of simulated data with the same statistical
charactemstlcs (i.e., 62'y, C,,, and D) in formula (3. 2).

The csn were computed with subroutine NORMAX (Appendix B).

To obtain the actual percentage rms error per degree, sets of simulated
data were created on full regular grids as follows! the artificial data con-
sisted of area means computed globally, using the algorithm outlined in para-
graph (1.7) and subroutine SSYNTH (Appendix B), on the basis of expression
(1.2). The T2, canplete to degree and order Ny, > N = K‘H—’ came from
sequences of random numbers. The random numbers, obtained using the IMSL
subroutine "GGNOR" with generating''seeds''of the order of 10*, were scaled
to give them the desired degree variances ong . For each simulation, a se-
quence of (N, x + 1)g numbers was obtained, the first corresponding to Cqo ,
the second, third, and fourthto C,4, Cy1 , and §,; , respectively, and so
forth. If r,, , rf‘l s o 0 e ra were the (2n + 1) numbers correspondmg to
degree n , then the scaling that resulted in the corresponding C,“,1 was

T = o [ 2 } | (3. 3)

VoL oL

The harmonic coefficients C nn Obtained in this way were the "actual' coef-
ficients to which the Cﬁ, recovered by some of the procedures described
in section 2,were then compared to obtain the actual percentage rms errors
per degree

n 1 %
=17 T ¢%-thy1® ot x 100 (3.4)
n=0 =0

The analysis of the simulated data was done with subroutine HARMIN (appendix
B). This type of numerical experiment was carried out three or more times
in each case, varying only the seed used to generate the random numbers,much
as a Montecarlo-type of analysis is conducted. The seeds were chosen widely
apart, to ensure that the correlation between "trials' would be virtually nil.
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The maximum degree and order in the set of artificial coefficients,
Nuax , Was chosen so that the power in the mean values above degree Ny, x
2000 -
Pypax = z ﬁf 0.° : (3. 5)
n=Nmx+l :
were less than 1% of the power between degrees 0 and 2000. The Ba
are the Pellinen coefficientssdiscussed in paragraph (4.3), corresponding
to 5° x 5° area means. The values used for the degree variances o, had been
empirically obtained from terrestrial data in the manner described below.
The data were supposed to be noise-free, as only the sampling part of the
error was studied in this way, for the reasons given at the beginning of this
paragraph. The estimators being linear, the propagated noise and the sampling
error merely add arithmetically to each other, and can therefore be studied
separately, if so desired. Summing up, it can be said that the simulated
data consisted in global data sets of artificial gravity anomalies, averaged
over equal angular grids.

The empirical degree variances were obtained as follows: up to degree
100 they were those implied by a set of coefficients, complete to degree 180,
obtained by R. Rapp and associates at 0.8.U, from a global data set of
1° x 1° mean anomalies. Above degree 100, the 0';9‘, (Ag) were obtained from
a model of the form

o1 Sma ) Sgﬂ
@m+A) " T @+B @-2

0,°(Ag) = (n - 1) ( ) [mgal®] (3.6)
(Moritz, 1976), where the parameters Oy s ¥, S;, Se, A and B have
been adjusted to fit existing gravimetric data, satellite altimetry, satellite
field models, and other geophysical data. The parameters used in most
examples were

0, = 3.4050 S5, = 0.998006 A =1,
oz = 140,03 Sa 0.914232 B = 2.

i
il

corresponding to the best model of this type given in a report by R. Rapp

(1979) who, in the same work, discusses also the empirical degree variances
obtained from his 180, 180 field model. The degree variances implied by (3-6)
with the parameters listed above are also very similar to those.obtained by quite
different means by Wagner and Colombo (1979), who analyzed the (Fourier) power
spectrum of short arcs of GEOS-3 altimetry, and converted their average to

a spherical harmonics spectrum using formulas that follow from the

relationship between spherical harmonics and Fourier series. The empir-

ical - variances for n < 100 are included in the listing of subroutine NVAR,

in Appendix B,

In order to understand how critical the choise of empirical degree variances
is to the theoretical and actual errors, a different two~term model obtained
by C. Jekeli (1978) was used as well, This model has the following parameter
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values

o, = 18.3906 Sl = (0,9943667 A = 140.
®z = 658, 6132 So = 0.9048949. - B = 10.

i
1l

All the examples considered in this section refer to complete equal angular
sets of mean values with the same statistical properties of terrestrial gravity
anomalies (as far as such properties are known). The analysis of actual
mean gravity anomalies is shown in the last paragraph. Besides being im-
portant in geodetic studies, gravity anomalies constitute a type of geophysical
data with reasonably well known statistical properties, and their study here

is meant to give the reader some idea of how effective are the ideas presented
earlier when it comes to handling ''real data" ( or something resembling it).

3.2 Agreement between the Actual and the Theoretical Measures of the
Sampling Errors

Table (3.1) lists side by side the theoretical precentage rms per degree
of the sampling error according to(3.2) and the actual value of this percen-
tage for two different sets of coefficients (i.e., from random sequences with
different seeds). The coefficients were recovered using the quadratures for-
mula

Ay 1 N=1 &aN-1 f o
nn 4‘”1811 i;o J;o 811 01y 2= (954)

This type of formulas has been discussed in paragraph (2.6). The simulated
data consisted in full sets of 5° x 5° mean anomalies obtained from harmonic
coefficients complete to degree and order N,., = 140 . The power above
degree 140 in 5° x 5° anomalies is negligible, according to the empirical
power spectrum model that was used. The results shown here are fairly
typical of similar tests conducted with other quadrature formulas, sothe
conclusions that can be drawn are likely to be valid for the analysis of area
means by numerical quadratures in general. There is clear agreement
between the theoretical and the actual rms of the errors, and not just the
average rms of actual errors, but the actual rms of each trial as well. The
agreement is close, and the reader will probably agree that to use a theoretical
error measure that can predict the actual error so well is a meaningful way
of quantifying the error,

3.3 Accuracies of Various Quadratures Formulas

Five quadratures formulas for area means have been studied: the first
four of the type

Nel 23N-1

A - -
Cﬁ = HUa Z ): f Ynn (e9>\)d0' Agid
1=0 g=o0 GIJ
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Table 3.1

Comparison of actual versus theoretical percentage rms
error per degree. N
5° x 5° mean anomalies, N,., = 140, 0. mgal rms noise.

n Actual, No 1 Actual, No 2 Average Theoretical (expres-
(seed=53218) (seed=31765) 1and 2 sion (3.2)x100)

2 "~ 0.50 0, 62 . 0.56 0.51
5 1.06 1.10 1.08 1,23
10 4,99 5.81 5.40 4,89
15 13.06 11.03 12.05 12.175
20 23,48 25.97 24,72 24,77
25 23.04 30.82 26,93 30.03
30 45, 84 46.26 46,05 43,28
*36(N)| 55.33 61.10 58.22 60. 35
40 70. 61 75. 82 73.22 75.14
45 85.91 86.41 86,16 87.03
50 101, 51 101.43 101.47 101, 47

differ only in u, :
(a) W, = ﬁn the optimal de-smoothing factor given by expression.(2.36) in para-
graph (2.7):

1

(b) U= inge
© o= g
(@ pa= 7=

(¢) The optimal quadratures - type formula, in the least

squares collocation sense (i.e., minimum combined error measure) for

the given grid; signal and noise (paragraph (2.8)). The grid was equal
angular in all five cases. Table (3.2) compares the percentage rms of the
errors per degree for a 30° x 30° grid; table (3. 3) corresponds to a 10° x 10°
grid; and table (3.4) to a 5° x 5° grid, N,,x was 100 for the first two tables,
and 140 for the last. All these values are theoretical, computed in accordance
to the formulas in paragraph (3.1). In all three cases noise is not present,

so these errors are purely sampling errors,

Table (3.5) corresponds to a 5° x 5° grid and an uniform noise of
5mgal rms. Here the effect of the noise has been included in the results.
Table (3.6) compare the degree correlation coefficients for the various methods,
for a noise of 0mgal. The correlation coefficient for the nth degree is defined as

* (N): "Nyquist frequency' of the grid,
-T2~



[ L iﬁf‘ b () Z o2y ([ [63‘5)“1 (3.7

n=0 a=0 n=0 (=0 n=0g=0
and it is also equal fo

R1=

fc Ag, Ms, do } (3.8)

l:fc Ag? dcf0 A

This coefficient can be regarded either & a measure of the agreement between
the actual and the recovered coefficients of the nth harmonic, or of between

the nth harmonic Ag, in the signal and the harmonic Aé‘n that can be computed
from the recovered coefficients, If the T, could be seen as random variables
with gaussian distribution, - the interpretation of g, would move along well-worn
paths; however, as it was mentioned in paragraph (2. 5), there are some unex-
pected problems when extending the idea of a gaussian random process to the
sphere, so is better to chose another approach. One could regard the coef-
ficients of the nth harmonic as the coordinates of a vector in (2n + 1)-dimen-
sional euclidean space. The actual coefficients will define thus one vector,

and the recovered coefficients another, Expression (3.7) then merely defines
p. as the scalar product of this two vectors. Likewise, expression (3.8) is

_ that of the scalar product of two elements of a function space. The angle
formed by these vectors is 0° when correlation is (maximum), and 90° for

0 correlation; a minimum correlation of -1 corresponds to the case when

the vectors are equal but of opposite sense. The scalar product is independent
of any scale factors that may multiply the vectors: it depends only on their
mutual orientation. For this reason, the correlation coefficients are the same
for the four quadratures formulas of the type

o Nl 8N~1 Of' ’

Can = pa ¥ [ Aguf an (6,2)d0
1—-0 1=0

because the difference between the errors for the same harmomc, predlcted with

two different formulas of this kind, consists in a scale factor [.Lnl)/u

Clearly, as the rms of the error increases with n , P, decreases from almost

1 where the error is smallest (very low degrees),to below 0.5 where the

error exceeds 90% (highest degrees analyzed).

Observing the percentual rms of the errors in the first four tables, it
is easy to see that they by no means reach 100% as soon as the Nyquist
frequency is reached (n = N), but that they remain substantially smaller than
100% even at degrees considerably higher than N ; this is in line with the
conclusions in paragraph (1.3). The optimal estimator itself cannot have an
error larger than 100% , be it due to sampling, noise, or both. Otherwise,
a null estimator (one that predicts only zeroes) would be better than the op-
timal, which is not possible,

Table (3.7), compares the theoretical errors with zero noise (i.e.,
the sampling errors) of the collocation estimator obtained, first according to
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o2 implied by R. Rapp's model (used in all the other tables), and then ac-
cording to the "2L" model of C. Jeleky, both described in paragraph (3. 1).

This table is included here to give the reader an idea of how sensitive the theo-
retical error variances are to the empirical degree variances used to compute
them. The "2L" model has considerably more power than Rapp's at high degrees,
and this may be reflected in the somewhat larger errors in the corresponding

column of the table.

Table 3.2
Theoretical percentage rms error per degree.
30° x 30° mean anomalies, N,,, = 100, 0. mgal rms noise,

Optimal N 1 1 1

n Estimator -
| Ka in B, in inf
2 12,51 18.17 13.95 15,86 13.57
4 25.09 25,60 26,91 36.12 28.72
6 (N) 58,77 65.13 68,03 67,18 101.41
10 92, 82 96,01 194,08 97.13 882,98
12 98.44 99.27 915,49 105.44 |17835.58

Table 3,3
Theoretical percentage rms error per degree.
10° x 10° mean anomalies, N,,, = 100 , 0. mgal rms noise

Optimal 1 o 1

n Estim. Ha i B, ppu m
2 1.52 1.63 1.71 2,04 1.65
4 2.24 2,46 3.00 4,76 2,56
6 4,27 4,68 5.83 9.51 4.94
8 8.74 9.60 10.99 16,39 10.16
10 13.19 14.02 | 15.89 23.68 15.19
12 31.60 33.03 33.10 37.84 37.43
14 40,43 41.41 41.41 46,45 49,91
16 41,41 42,18 42,36 51.41 53.12
18 (N) 56.81 59,94 61.26 63,41 88,17
20 76.50 78.99 94,69 79.07 158.26
22 76,02 78.54 89.75 79.05 | 167.49
24 84.96 87.40 116.57 "87.59 258.09
26 90,40 94,03 164,50 97.85 | 443.76
28 92.21 95.98 193.17 | 100.35 646.88
30 93.31 97.30 232,24 | 101.88 | 1010.13
32 95,80 98. 30 303. 89 103,49 | 1828.98
34 94.95 97.40 281.73 97.77 | 2619.98
36 96.87 98.08 485.72 98.45 | 8694.11
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Table 3.4
Theoretical percentage rms error per degree
5° x 5° mean anomalies, Np,, = 140 , 0. mgal rms noise,

Optimal ‘ . 1 1
. Estim. Ha an B, 4 4n B3
2 0. 417 0.49 0.51 0.59 0.50
6 1.36 1.44 1.71 2,61 1.48
12 9.74 | 10.11 10,40 12,27 10.37
18 15,14 15,55 16.35 21.20 16.46
24 30.58 31,06 31.21 36. 30 34.89
30 42, 88 43,28 43,28 49,04 53, 32
36 (N) 57.62 59.15 60. 34 62, 67 85,90
42 72,16 73.51 80.25 74,72 | 137.19
48 82.15 83.62 | 101.19 83.82 | 216.98

Table 3.5
Theoretical percentage rms per degree
5° x 5° mean anomalies, Ny, = 140 , 5. mgal rms noise.

» Optimal « . 1 1
n Estim. I in B, g 4”13%1
2 8.74 8.81 8.84 8.83 8.85
6 9.33 9.34 9.34 9.43 9.41

12 32,80 32.88 33.79 33.02 35.28
18 35.94 36.04 36.54 36.25 39.86
24 53.32 53.47 56,73 53.49 66.99
30 61.97 62.14 67.15 62.15 87.22
36 (N) 71.98 72.62 82.81 72.63 | 122.67
42 81,55 82.17 | 102.91 82.54 | 181.19
48 88.00 88.72 | 124.09 89.54 | 271.87

Table 3.6
Correlation factor per degree,
5° x 5° mean anomalies, N, =140, 0. mgal noise.

n Optimal Estim, Simple quadratures
2 | 1.00 1.00 ]
6 1 100 "1.00 B

12 1.00 1.00

18 0.99 0.99

24 0.96 '0.96

30 0.90 0.89

36 (N) 0.81 0.81

42 0, 72 0.71

48 0.59 0.57
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Table 3.7
Comparison between the theoretical errors(optimal esti-
matorywhen different covariance functions are assumed.

Npax = 140 , 5° x 5° mean anomalies, 0. mgal noise.

n R.Rapp's variances 121" model

2 0.47 0.64

6 1.36 1.79
12 9,74 7.84
18 15.14 18,10
24 30.58 31.41
30 42,88 46.28
36 (N) 57.62 59,84
42 72.16 72.19
48 82.15 81.80

The results in the tables show that the optimal estimator errors are the
smallest, as expected, and that the quadratures formula with the optimal de-
smoothing factors is the best of the four simple quadratures formulas compared here,
though it is not quite as good as the optimal estimator, also as expected. In
the case of zero noise each of the three non-optimal quadratures formulas
has errors that, in some region of the spectrum, are smaller than those for
the other two; concretely, the de-smoothing factor u, = -——2 works better
for low degree harmonics (or n < %—N), i.e., the percentagg Yms of the
error is less than for the other two formulas there, the factor p, = éfr'r_lB_
is best for middle harmonics (approximately 1/3N<n < N), and 2
Uy = -1 is best above the Nyquist frequency N . It is possible, therefore,
to obtiin a simple "composite' quadratures formula that combines the good
properties of all three formulas, by defining its de-smoothing factor as follows:

L B2 if 0 <n <1/3N
Fa = Tom where 7, = {B, if 1/3N <n <N (3.9)
1. ifn>N

This composite formula has been implemented in tke version of subroutine
HARMIN listed in Appendix B, through the subroutine can be easily changed
to compute other quadrature formulas.

It is clear from the fables that, while better than all the others, the
optimal formula is only marginally so: from a practical point of view, the
simple "composite! formula (3.9) above is virtually as good, but it is much
easier to implement and compute. Therefore, when analysing data of the type
considered here (resembling mean anomalies with uniform noise on an equal
angular grid), the quadratures formulas discussed the composite:in- *
particular, are about as good as any linear technique for estimating the coef-
ficients, and also very easy to program and very efficient,
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There may be cases, however, when this is not true., If the data set
were very noisy and/or incomplete, or if the coefficients to be recovered were
not those of the signal, but those of some complicated transformation of it
(2s in the case of satellite-to-satellite tracking data. where the signal depends
on a combination of differences or raaial and horizontal derivatives of the grav-
itational potential) so no simple integral formula like (1.4) exists that can be
readily discretized into summations like (1.5) or (1.6), thensimple quadrature
formulas like those in section 1 would be of no real use, and the optimal es-
timator could provide the only practical way of obtaining the coefficients, Both
collocation and least squares adjustment are very similar, as shown in section
2, and both can be implemented with reasonable efficiency if nothing simpler
is available., More important, the optimal formulas provide a theoretical
background on which one can build a coherent and comprehensive understanding
of the other linear techniques for spherical harmonic analysis. It is, after all,
because of the theory developed in the previous section that it has been possible
to obtain the results shown in the preceeding tables, results that constitute the
factual basis for these considerations.

The techniques for setting up and inverting the variance-covariance
matrix of the data are of interest in a number of estimation and filtering
problems, besides harmonic analysis. The author hopes that the examples
provided in this section will encourage the wider use of least squares col-
location for the processing of large, global sets of data, both point values
and area means, Creating the simulated mean anomalies with subroutine
SSYNTH, obtaining the "weights" %% of the optimal quadratures formula with
NORMAL (Appendix B), and recovering the éff‘m for comparison with the or-
iginal C,, up to degree and order 72 (same 5000 coefficients) on a 5° x 5° degree
grid (about 2600 "data' values) took less than 20 seconds, central processor
unit time, in the AMDHAL computer at Ohio State. To recover the harmonic
coeff1c1em“s up to degree and order 180 from a complete  equal angular set of
1° x 1° mean values would require less than two hours, using the same machine.
Most of this time would be dedicated to creating and inverting (C,, + D).

But in the optimal estimation and filtering of geoidal undulations, deflections
of the vertical, and any other function of the gravity field estimable from (say)
gravity anomalies, the fact that (C,, + D) can be set up and inverted efficiently
transcends harmonic analysis. A major implication is that such extremely
large global adjustments require a computational effort that is already within
the reach of most researchers.

As mentioned already in section 2, matrix (C,, + D) may become poorer
conditioned, i.e., its numerical inversion less stable, as the data distribution
becomes denser. This tendency towards instability was noticed: when there was
no noise (D = 0) the R(m) matrices had to be regularized by adding a small
positive constant k to each diagonal term (Colombo, 1979, par. (4.5))before
they could be inverted successfully. This constant, which in most cases was
much smaller than the diagonal elements it was teing added to, was 10™° for
30° x 30° and 10° x 10°, but had to be increased to 10~ in the case of a
5° x 5° grid. When noise was present, the nonzero diagonal elements in D
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were sufficient to provide stability, and no regularization was needed. Be-
cause of this tendency to instability, the '"band-limited" approach of paragraphs
(2.13) to (2.17) may be preferable, whenever it can be properly applied.

As shown in Table (3.1), the theoretical and the actual sampling errors
are almost the same in most cases. The propagated noise measure is very
easy to compute in the case of uncorrelated noise, and can be added to the
actual sampling error (variance) to get an estimate of the total error, both
actual and theoretical. This estimate, where the sampling part is the result of
a Montecarlo-like approach, is much easier to obtain than the theoretical one
that involves setting up matrix (C,, + D), or at least the R(m) matrices. In the
case of equal angular data sets like those considered here, this empirical es-
timate is likely to be just as accurate, when it comes to judge the performance
of any given type of harmonic analysis. Such estimate has been used to evaluate
the likely errors in the potential coefﬁicients obtaNi_neac;iq_flrom 1° x 1° mean anom-
alies using the quadratures formula C% = 4—1——1_21 > Jo T2 (8,0)d0 Agyy .
The Montecarlo method described in paragra?) ’t:?'.ol)J Was implemented with the
help of subroutines SSYNTH and HARMIN, the error variance being equated
to its average over three '"trials" (three sets of coefficients created from dif-
ferent random sequences), C. Jeleli, also at O.S.U., who undertook this work
as part of his own research,fitted a quartic to the percentage rms per degree
thus obtained. When this was expressed as a function of the "normalized de-
gree' n/N , the quartic fitted equally well the theoretical results for 30° x 30° ,
10° x 10° , and 5° x 5° presented in this section. Jekeli's quartic expression
for the truncation error is (private communication):

Ocyq
I3

n
x 100 = [(-16.19570 (g5) + 30.34506) (—?\I—) + 40.29588 ] (_nN)z

: (3.10)
It is quite remarkable that such a complex phenomenon can be described satis-
factorily by such a simple law.

n

The expansion of the simulated 1° x 1° mean anomalies was complete
up to degree and order N,,, = 300 . Creating (or analysing) area mean values
up to degree and order N,,, = 300 required about 50 seconds c.p.u. time
using double precision arithmetic in the AMDHAL computer at O,S, U,

Table 3.8 shows the actual percentage rms sampling error per degree
as computed in one of the trials, and the percentage rms propagated noise
(theoretical) corresponding to a 1 mgal rms noise in the data. Clearly, the
errors are much smaller than for any of the cases considered previously:
this improvement is due to the finer sampling (the sampling error tends to
zero as the area of the blocks tends to zero). The data, however, tends to
be noisier when averaged on smaller blocks, so the propagated noise may in-
crease. For a given rms error in the data, multiply the number in the "pro-
pagated noise" column by this rms (in mgals) to obtain the corresponding per-
centage. These numbers are only valid for the estimator where pu, = 1 .
Repeated trials with different random coefficients resulted in much 4 fBa
the same percentages for the sampling errors, so these values are probably fairly
typical. - -78- '




Table 3.8

Percentage rms errors per degree fora 1° x 1°

equal angular grid. u,= o 13 » Nyax = 300,
€ Ag = 1 mgal . n
actual propagated
n ‘Sampling 1 7 “error (theor, )|

2 0.01 0.47
10 0.10 0.72
20 0.46 1.39
30 0.98 1.72
40 1.55 1.93
50 2.68 2.07
60 4,71 2.20
70 6.94 2,34
80 9.43 2,47
90 13.51 2.62
100 14,79 2. 77
110 17.98 2.96
120 25.06 3.08
130 25.33 3. 26
140 30.87 3.43
150 37.02 3,62
160 44,17 3.81
170 44.43 4.03
180 (N) 53.07 4,924
190 61.87 4.47
200 65.90 4,73

A possible way of bringing the sampling error down is to use weighted
area means of the form

Nij
Mgy = _Z 5“) Wi

Where Ag ) is the kth measurement inside the block 0y, , and where the

Wy are functions of the distance of Ag‘i} to the center of the block. If the
Wy decay gently towards the border of the area element, the resulting
weighted means W111 be smoother than the ordinary area means considered so
far (all W, = 3 ) and - their harmonic content above the Nyquist frequency
will be atenuated. Consequently, the harmonics below N can be recovered
with less sampling error. This idea certainly deserves further study. Ob-

vi \;sly, it is applicable only in those cases wke re the original measurements
Agyy are available,
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3.4 The Analysis of a Global Data Set of 5° x 5° Mean Anomalies

As a final demonstration of the use of optimal estimators, this paragraph
presents some results obtained by analysing a real data set, consisting of 5° x 5°
mean gravity anomalies. These anomalies were obtained from a gld al set
of 1° x 1° mean values created by R. Rapp and associates (Rapp, 1978) from
the combination of land and gravity measurements, satellite altimetry over
the oceans, and the GEM-9 satellite model (Lerch et al., 1979).

The 5° x 5° values, A g(s°) » were obtained from the 1° x 1° values,
A'é(lo), using the formula

- . ~
Agw) = % 125 8g(py1s

where : represents summation over all 1° x 1° blocks inside a 5° x 5%°block.
The variances of the Ag (53 were obtained from the formula
2 — _ —

c Ag(s")— (4‘225) 125 0 Ag(lo)id
where the assumption has been made that the errors in the 1° x 1° values
were uncorrelated, which is not quite true, as the values used wer e the pro-
duct of an adjustment. The variances 0° Ag (é‘ " ~were different from 5° block
to 5° block, but they were " homogeneized' a8 described in paragraph
(2.9), in order to obtain a (C,, + D) matrix that was easily invertible and re-
sulted in a quadratures-type estimator inexpensive to implement.

Figure (3.1) shows a comparison between the collocation solution, com-
plete to degree and order 36 , and the same coefficients obtained by R. Rapp
by numerical quadratures from the original 1° x 1° values. The figure shows
the rms per degree ( y‘onz/(2n+1)) for potential coefficients (g,°(T) =
05 (88) ¥° (n-1)", y = 979800 mgal). The circles correspond to Rapp's re-
sults, and the triangles to those obtained using collocation as already explained,
Because the grid used by Rapp is much finer, the corresponding results are
likely to be less affected by sampling errors, at least up to degree 36 , than
those obtained from the 5° x 5° anomalies; for this reason Rapp's rms values
are regarded here as the "true' ones. The solid line corresponds to C. Jeleki's
"2L" model for the o3, used here to obtain the optimal estimator. It is inter-
esting to notice that the triangles follow the circles (or '"true'' values) rather
than the line. A common concern among those using this type of estimators is
to what extent the "a priori" power spectrum or covariance function used to set
up the estimator may 'bias' the results by forcing the spectrum of the output
to resemble the "a priori' spectrum. Here there is little evidence of such a
"Hias',

In addition to Rapp's coefficients, those of GEM-10B (Lerch, 1980)
were also used for comparison. The '"collocation" values follow them very closely
too (the three sets of results agree, in fact, very well with each other). The
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GEM values are not shown in the figure, to have a cleaner picture. In any
event, the "collocation' values compare very well withthe other two, and in the
higher degrees (31 to 36) where the divergence between Rapp's model and col-
location is largest, GEM-10B fits right in between them. The results shown
here were presented in a previous paper by the author (Colombo, 1979-b).

Figure 3.1
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4, Covariances Between Area Means

In what follows, the expression "point' covariance refers to
& u.wv
cov (W(P), v(P") = Zo Co Pa(e) = M{u®@),v(P"} “. 1)
n=
The covariance between the area means of two functions u and v is related

to the "point'' covariance function by the following integral relationship (Sjoberg,
1978): ‘

— = 1
COV (Uiy, Vi) = f do f cov (u(P), v(P"))do’ “. 2)
Asyhey Joy, Oy

where P belongs to the area block 0,4, and P' to 0y, while

Uy, S u(P) do (4.3)
Ayy Yoy

is the average of u over the block oy of area

Ay = OX (cos (8y) - cos(Bi+48))) (4.4)
A8, AX are the colatitude and longitude spans of the blocks in the "row' between
colatitudes 6; and 6; +AB,. To simplify the discussion, A8, = A0 is assumed

constant; extension tothe more general case where A6, varies from row to row
is straightforward.

4.1. Derivation of an Approximate Formula for the Covariance’ .

Expression (4. 2) can be computed by numerical quadratures (Rapp, 1977).
Because of the double integral, this is a very laborious process, and it is not
practical if many covariance values have to be found, as in the case of large data
sets. A more efficient alternative is needed.

Replacing the covariance function in the integrand of (4.2) with its Legendre
expans ion

- 1 S S B
oV (Us Via) = Auﬂmfcu do ‘JGM nEo ©x" Pal et . (4.9)

Here Yopr = cos™ (cos B cosB' +sinf sinB' cos (X - \")) is the spherical dis-
tance between points P =(68,1), and P'=(0',)") in the unit sphere, while

n
uyv v

2’ = ). CmCra + 5o Saa
n=0
is the nth degree variance of the cross-spectrum of u and v. As shown in the
Appendix, the order of summation and integration canbe reversed.

' In this section, expression P, () is shorthand notation for Po(cos Peet).
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- = 1 SN :
cov(uyy, Vi) = Cn j do j. Pn(‘pPp’) do' 4. 6)
Agsbyy 2= 04y Oy,

Let Py, (cosB) be the fully normalized associate Legendre function of the first
kind of degree n and order m. Applying the Summation Theorem for such
functions, the Pn(il)ppr) can be replaced in the integrand as shown below.

@® U4y 1
CoV (Tyy, Vyy) = 1 ). on j dO‘f ) Po(cos 6) By(cos 8"y cos m(A - A" do'
AijAkl n=0 2n+1 cij . okl =0

4.7

The sum in the general term of the series above has a finite number of terms
(n+1), so it is valid to exchange summation and integration once more:

T ) = i Ly ek Lol 21,
COV (Uyg, Vi) = Biibm n--O 2n+1 HE_:O o do Pn,(cos B) Pua(cos 8" cos m(A -1y do!
(4. 8)
Writing out the area integrals as colatitude and longitude integrals;
— 1 O1+A0; _
cov (tyy, V) = AuAm ngo 2n+1 Z f Pia(cosB) sinb o - (4. 9)

Ox+A0x XsTAX A AN
oo Pax(cos 6" sin 8 de'j : dkf ' cosm(A-A") d\’
ek >\3 >\1

Calling A; =A;y, as all blocks in the same "row' have the same area, we
introduce two functions,

[ A® ifm=0
F(m) -{(z/mz)(l—cosmA/\) otherwise, (4.10-2)
and
o' NF 1 [6:+A8y
In,i = (%—+I> &7 Jy,  Ba(cos9) sin a8 (4. 10-b)

Then expression (4.9) can be written, after integrating and reordering terms, as
follows:

11[_\18

COV (Uyy, Vi) =
u

_F(m) Z Ing,t Luaye COS (A= Ay) (4.11-2)
ni=n

This regrouping of the series is valid because, as shown in the Appendix, the series

is absolutely convergent. The integrals in the definition of La,1 (expression (4,10-b))

can be calculated very accurately and efficiently with recursive formulae obtained by

M. K. Paul (1979). Regarding j as being fixed, the last expressmn is also that of the

Fourier series of cosines of cov(uyy,vy,), with amplitudes

i,k
a, = F(m) Z Toa,t Tangk (4.11-b)
n=n

and phases ¢, =-m},.
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While (4. 11-a,b) are valid for all values of X, in the interval 0 < A <
this expression has to be calculated only for A ;=0,AA, 2A),...,jAN. According
to the sampling theorem for ordinary Fourier Series, at such regularly spaced A
expression (4, 11-a) takes precisely the same values as the finite sum

N

COV(-IIM ,—‘;-kl) = Z g-;k COS m( )\j - >\1) (4' 12)
n=0 .

where N = 7w/A\

©

1k 1k
= aznn +n T Z QaNh - (4.13)
h=0 h=1

Atk
ag

To calculate the covariances, (4.11-a,b) and (4.13) have to be truncated, excluding
all harmonics above some degree _ Nmax; (4 12) becomes:

&x
COV (Ugy, Vi) = COV(Tlij’Vkl)N [ Z i (In,zNh+m,i)(In,2Nh-,-m,k)
Nmax
+hzl L (In,gwh_,,n(In,gNh-m,kﬂ F(m) cosm(\; - \) (4.14)
== n=H —

where (2K +1)N < Np...

4,2. Choosing Npax

To calculate the values of covariances between equal angular mean anomalies, Eg )
the value of Ny, could be chosen so that the percentage error

v = coV(A_g“,A__gkl.)_Q__" Cf—V(A_giJaEg-'k_l)Nmax % 100
cov (Agiy,Agk g

(cov(Agiy,Ag)q being computed by numerical quadratures) does not exceed a pre-
scribed upper bound € . The smallest Noax that meets this condition increases
towards the poles, because the decrease in area of equal angular blocks with latitude
means that the averages have a high frequency content that increases accordingly.
On the other hand, the absolute values of the integrals of the P,,, and therefore

the Fourier coefficients a, in (4.12), decrease quite fast with increasing order m
near the poles, so their contribution soon becomes insignificant. This is fortunate,
because the need for lengthier calculations for each Fourier coefficient nearer to
the poles can be offset by the existence of fewer coefflclents there. In fact, because
of the finite arithmetic of digital computers, all am for blocks less than 30° from
the poles are rounded off to zero for m considerably less than N in the cases
presented here. Because of this, calculations near the poles can be‘less laborious
than close to the equator, in spite of the larger N, To take advantage of this

in the programming of (4, 14), the a coefficients were not computed above the first
m for which the following condition was met:
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A2
a2 _ and a
5:%‘7\3536 Zéz 6’

1, o K 4=0
where 6 < 1072, This ensured no change in the first six significant figures of
the result when compared to the case where no coefficients were ignored, but
there were great savings in computing.

4.3. Numerical Examples

To verify the accuracy of the truncated series in expression (4.14), mean
gravity anomaly covariances were computed both with this formula and by numeri-
cal quadratures. All calculations were carried out in double precision (32 bytes),
some of those for expression (4.14) being repeated in extended precision (64 bytes).
The agreement between both sets of results was better than 6 significant figures,
suggesting that both expression (4.14) and Paul's recursives (used to obtain the
I,1) are quite stable numerically. at all latitudes.

The covariances computed were between a mean anomaly in a fixed block
and all the anomalijes in the same row of blocks (i.e., all blocks bounded by the
same parallels), calculations being done for several rows, at close intervals from
equator to pole. Results for only a few of those will be shown here, because they
are typical of the rest. Botha 5° and a 1° grid (equal angular) were studied. The
results were compared to those obtained by numerical quadratures, and by the
approximate formula

Nmax Ae, Ae
L

COV(A_EH’A_gkI) Bn ¢ Bn k Cn P (Yyy?) (4. 15)

where Y and Y' are the center points of 0;; and 0y,, while

= 1 —
B, T ool 2n+1 [ Poy (cOS ¥o) ~ Puuy (COS Y]

is the nth degree Pellinen smoothing factor (the formula is Meissl's), and
Yo. = cos'l[% (cos(8;+ 1) - cos 8;) + 1]

This formula gives the covariances of averages on circular blocks of the same
area as that of the equal angular blocks in the row between colatitudes 8; and 6, .
These covariances are used sometimes as approximations to the equal angular co-
variances between mean values.

The numerical quadratures technique consists in the following: (a) sub-
dividing each block with a grid of k equally spaced latitude and k equally spaced
longitude lines; (b) computing the covamances between point gravity anomalies

at the nodes of each subdivision (there are k* different pairs of nodes to be consi-
dered); (c) obtaining the approximate value of the covariance between mean
anomalies as ’
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COV(A-—giJ’A—gkl)‘ = Z Z Z Z Cov(AgQ,Agkl) (4.16)

n=0 n=0 r= 0 8=

where m, n, r, and s are indexes that identify the elements of each pair of nodes
in the subdlvmlons of 0y; and 0Oy;. The covariances between point anomalies such
as A g1 y and A gkl were obtained using a two term model for the degree variances
of the anomalies:

L% s, 39064——)- 0.9943667"2 + 658. 6132 (—ég—)—(le) 0.9048949" *2

This is the "2L'" model of C. Jekeli (1978), and has the advantage that the value of
the point covariance function can be computed using finite recursion formulas
(Moritz, 1977). The same degree variances were used in (4. 14) and (4.15). The
number of point covariances being very large (k‘*), a table with entries spaced

at AY =0.05° intervals was created first, the required values be ing obtained by
linear interpolation from this table. Numerical tests showed that k = 10 was
large enough for both 5° and 1° blocks, because doubling this number resulted in
a change of less than 0.2% in the values given by (4.16). Reducing the interval

Alb from 0.05° to 0.005° had a negligible effect also, therefore the values obtained
with (4.16) are probably accurate enough to test those given by (4.14). The only
exception was the "polar' row, where the equal angular blocks are, in fact, tri-
angles with a common vertex at the pole. Both with 5° and 1° blocks the dis-
crepancies between (4.14) and (4.16) were large (more than 30%), regardless

of how large a k, how small a Ay, or how big a Nipax Were chosen. The
probable explanation is that the pole is given undue weight in (4.16) because it is
treated as a whole row, instead of as a single point. For this reason, the
numerical examples presented here stop at the row immediately below the pole.

The first two tables show the covariances between 5° mean anomalies in the
row between latitudes 0° and 5° (just above the equator) and in the row between
latitudes 80° and 85° (one below the pole). The error -is at most 8%, though much
less in most cases, and Npyax = 180 in each table. Under "Pellinen' one finds
the values obtained using (4. 15) with due regard for the change in block areas with
latitude. While there is very good agreement near the equator, there is no resem-
blance at all close to the pole to the other values listed.
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Table 4.1. Comparison between covariances of 5° mean anomalies A_g

computed with expressions (4.14), (4.16) and (4. 15),

respectively. Niax™= 180. Row between 0° and 5°.
Expression (4.14) Numerical Pellinen Block No.
250.53 253. 77 251.78 1
148.80 149. 46 151.03 2
193.93 93.95 93.90 3
57.16 57.15 57.10 4
31.80 31.76 31.67 5
13.94 13.93 13.86 6
-18.09 -18.09 -18.08 12
9.12 9.12 9.11 24
-13.68 -13.68 -13.65 36

Table 4, 2.

Comparison between covariances of 5° mean anomalies Ag

computed with expressions (4.14), (4.16) and (4. 15),
respectively. Npyax=180. Row between 80° and 85°.

Expression (4. 14) Numerical Pellinen Block No.
418.60 437,23 835.53 1
329,03 318.27 800.09 2
220.91 229.17 709.03 3
191.75 196. 40 592.19 4
179.79 179.70 5
165.58 168.46 6
120. 60 123.173 12

69.89 73.27 24
54.66 58.01 149,40 36

The next three tables show results for 1° blocks.

Here the numerical

method was conducted with the same A and k as in the case of the 5° grid.
Results for rows between latitudes 0° and 1°, 45° and 46°, and 88° and 89°

are shown,

In tables 4.3 and 4.4 the discrepancies between (4. 14) and (4. 16)

stay below 1%; this increases to about 5% near the pole (table 4. 5). Npmax is
300 for the equatorial row, and rises to 400 from 45° on. As with 5°-blocks,
the "Pellinen' values are quite close to these of (4. 14) and (4.16) near the
equator, but become very different near the pole.
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Table 4.3. Comparison between covariances of 1° mean gravity
anomalies computed with (4.14) and (4.16). N
Row between 0° and 1°.

max= 300.

Expression (4.14) Numerical Block No.
849.68 855.16 1
411.32 410.30 2
220.35 219.63 3
181.84 181. 50 4
163. 33 163.21 5
149.11 149,15 6

1,07 1.08 31
-16.79 -16.79 61
1.99 - 1.99 91
8.54 8.53 121
-4.79 -4.79 151
-14.39 -14.38 181

Table 4.4, Comparison between covariances of 1° mean gravity
anomalies computed with (4.14) and (4. 16). Npyax= 400.
Row between 45° and 46°,

Expression (4. 14) Numerical Block No.
952.25 959,17 1
531.15 531.97 2
275.55 274.65 3
210.81 210.46 4
185.36 185.57 5
170.82 171.08 6

27.79 _ 27.179 31
~14.37 -14.37 61
-18.01 -17.01 91

~-8.27 -8.28 121

-1.01 -2.92 151

1.39 1.39 181
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Table 4.5. Comparison between covariances of 1° mean gravity
anomalies computed with (4.14), (4.16), and (4.15),
respectively. Npax=400. Row between 88° and 89°,

Expression (4.14) Numerical Pellinen Block No.
1137.97 1187.94 1795. 88 1
1135.79 1184.15 1795.02 2
1129.28 1177.99 1792.45 3
1118.55 1155.08 1788.18 4
1103.76 1131.34 1782.25 5
1085.15 1102.85 1774. 68 6

408. 59 443.12 31
248. 27 257, 88 61
207.19 210. 64 91
189.65 192.55 121
181.93 184.53 151
179.65 179.86 368. 60 181

Calculations were carried out in the Ohio State University's AMDHATL
470 V/6-1I computer, using the FORTRAN H EXTENDED compiler, and double
precision. The computing times for obtaining all 37 different covariances
between the elements of a row of 5° mean anomalies, and all 181 covariances
in a row of 1° mean anomalies, using (4. 14) and (4. 16) are listed in table 4. 6
for comparison. The integrals of the Legendre functions required by (4.14),
and the table of point anomalies covariances needed in (4. 16), were precomputed
and stored in core memory arrays, so the times given here do not include the
determination of those auxiliary values. In most ordinary applications of these
formulas, those quantities can be read from disk or tape whenever needed,
because they are the same for a whole variety of problems. Clearly, using
(4.14) can be orders of magnitude more efficient than using (4. 16), while the
accuracy is much the same. In fact, accuracy is probably better at the polar
rows with (4.14) than with (4. 16), because the latter seems to have problems
handling triangular blocks. Finally, not all of the time-saving properties of
(4.14) were exploited in the computer program used to calculate it, so there is
scope for some improvement in efficiency beyond that shown in the table. Notice
the time saved in the 88°-89° row thanks to the neglect of terms in (4, 14) that
become too small near the poles, as explained in paragraph (4,2).
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Table 4.6. Comparative efficiencies of algorithms based on expressions
(4.14) and (4. 16).

Block Size | Row Nmax | Expression (4.14) | Numerical Quadratures
5° 0°- 5° | 180 0.1 sec. 23.3 sec.
5° 80°-85° | 180 0.1 sec. 23.3 sec.
1° 0°- 1° | 300 0.35 sec. 113. 3 sec.
1° 45°-46° | 400 0.43 sec, 113.3 sec,
1° 88°-89° | 400 0.06 sec. 113. 3 sec.

4,4. Covariances Between Mean Values and Point Values

The prediction by least squares collocation of mean values from point
values, or vice versa, requires finding the corresponding '"mixed" covariances.
In such case, formula (4.2) becomes

cov (Tyy, v(8,A)) =T11_JJ‘O' cov(u(P", v(P)) do (4.17)
1]

where P'= (8", €0y, P=(6,)), v(P) is the "point" value of v, and oy
is the average over the i,j block of the grid, as before. Following a similar
reasoning, one arrives at a formula that corresponds to (4.14), except that only
one area integral has to be considered. The new expression is:

N K  Nmax

1 et \B
—_— n —_—
cov(u”,v( 0 ’k) - Ai.‘) B!Z—‘::O [h:o n=mn <2n+1 (In,zNh+m,i Pn,eNh +m(COS e) )

K Nmax uyv %‘ ’

+ Z Z <’—C‘°"‘>(In,gwh—m,1 5n,zl\m-m(COS 9)] }:(A(m) cosm(X;-X)

R=1n=n \20n+1
+ B(m) Sinm(XJ—X)] (4. 18)
where
B Al Lf m=20 _ 0 ifm=0
A ~'{(CosmA>\—1)/m otterwise P = {(smman)/m otherwise

and the I, the ¢,” , andthe N, K, and Ny, are as in (4.14). Expression
(4.18) assumes that the area means belong to a grid with constant A)\. If the point
values are also on a grid, and if this grid is congruent with that of the mean anom-
alies, implementation of (4. 18) is quite efficient. T fact, the speed of a good
algorithm for doing this should be much the same as that of one for implementing
(4.14). On the other hand, computing the same covariances by numerical quadra-
tures is k° times faster in this "mixed" case than it was i the previous one, be-
cause there is only one area integration involved. Assuming k = 10, as in the
previous examples, then expression (4.18) should be only 2-3 times faster than
numerical quadratures for 5° mean values, and from 4 to 15 times faster in the

case of 1° averages.
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Both the normalized Legendre function and their integrals are needed for
(4.18) . They can be precomputed and stored ondisk or tape until needed. n
this study the following recursive relationships were used to generate their
values:

- r(2n-1)(2n-3)

Pre1pa(cos 6) = (n -m)(n+m - 2)

= _
:] - (cos B P,_5 »,(coS 8)

Wl

Cn-D(n+m-3)(n-m-1"1°_
"L @n-5)@m+m-2)n-m) )] P, _s,u-1(cos8), m # n (4.19a)

i} 1
= 2n-1= -
Py, p-a(cos ) = (22_ 2)] ' Sin@ P,z ,-2(cosB) (4.19b)
O2_ 1IF@n-1)2n-3) 1% . _ Oa
Jel Pi-1,s-2(Cos B) sin6 d6 = __ﬂ{:(n-m)(n+m—2) sin®8P,_, ,a-1(cos 9) +

1

m-3)Hr@n-Hm+m-3)(n-m-1)
+ A [(

1
20 i
2n-5)(n+m-2)(n - m) ] fel Bi-ge-1(Cos 8) sin 6 d6 (4. 20a)

’ 1
O2— 17 (2n-1) 72 _ 62
an_l,n_l(cos f)sin6 db = on m] sin°6 Pi-zn-g(cos 6) +
6 5
4
lrm-1)@En-1)(2n-3) Z0r0o_ .
T 2l (n-2) Jel Pi-gn-s(cos B) sinb a6 (4.20D)

if 8 is not very small, or

Sz 2n-1)(2n-3)...372
Byo1,n-1(cos ) sinB df = _[i )(2n-3). .. Cmelg L
S ) (2n—2)(2n—4)...4:I sin”"" 6
0
L1, 1sin% L L3 sin®® L 1:3-5 sin®6 -‘ ¢
n+l 2 n+3 24 n+5 246 n+7 v . (4.20c)
1

if 8 is very small. Here y(8) lg‘? = y(63) - y(6,). The recursive formulas for
the integrals of the Legendre functions were derived by M.K. Paul (1978); the
author has been fortunate enough to have available a FORTRAN subroutine pro-
grammed by Paul, and kindly sent by him to Professor R.H. Rapp of the Depart-
ment of Geodetic Science at O.S.U. The results reported here have been made
possible by, and bear witness to, the great numerical stability of Paul's for-
mulas,
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5, Conclusions

The relationships between spherical harmonic series and Fourier series,
coupled to the symmetries of spherical grids, permit the development of ef-
ficient algorithms for numerical analysis of data regularly sampled on the sphere.

The algorithms presented in section 1 for implementing numerical quad-
ratures are efficient enough to allow the analysis of 64800 1° x 1° mean values
through degree 180 in less then 20 seconds, and the summation of the 90000
terms of a harmonic series complete through degree 300, on a full 1° x 1°
equal angular grid, in less than 1 minute. The analysis of large global data
sets to a very high resolution is a relatively trivial operation with modem
digital computers.

The principles and ideas behind the optimal estimators of section 2 pro-
vide a rational basis for the study of linear techniques for spherical harmonic
analysis, both optimal and non-optimal. The error measure introduced in this
section is shown to be a very reasonable way of evaluating the estimation error,
as illustrated by the results listed in table (3.1).

The optimal estimators themselves are reasonably easy to compute and
use, particularly when they are of the quadratures type, which happens under
the fairly general conditions discussed in section 2. Even when such conditions
are not present, as in the case of scattered data, the problem still has a
structure strong enough to allow efficient algorithms for creating and inverting
the normal matrix.

The separation of the problem of estimating the coefficients (by least
squares collocation or by least squares adjustment) according to the order m of
the coefficients, allows both for efficiency and for numerical stability. Even
if the total number of unknown coefficients is very large, the largest matrix
to be inverted is of dimension N, instead of O(Ne), as it would be if the prob -
lem could not be separated in this way.

All the algorithms presented here, when the grid is complete and regular,
are well suited to parallel processing.

In the case of full grids of mean values with even noise, the results of
section 3 suggest that the optimal "collocation' estimator can be approximated
very closely by a much simpler quadratures-type formula, the '"composite for—
mula™ (3.9). The search for simple, near-optimal estimators is just as impor-
tant, from a practical point of view, as the search for efficient algorithms for
obtaining the optimal estimators themselves. This is a topic that certainly
deserves further research.

The methods for creating and inverting the normal matrix, that make
possible to find optimal estimators for large data sets, have application outside
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spherical harmonic analysis, in all areas of estimation, filtering and prediction
on the sphere. This has been the subject of a previous report (Colombo, 1979),
1t must be added = that the principles presented here can be generalized to bodies
of revolution other than the sphere; to the case where the data are not homo-
geneous (i.e., a mixture of, say, gravity anomalies, satellite altimetry, etc.);
to the case where the coefficients to be estimated are not those of the signal as
given, but of some more or less complex linear transformation of this signal,
satellite-satellite tracking data being a good example. In fact, the author is

at present considering the error analysis of the determination, by least squares
collocation, of the potential coefficients from satellite~satellite tracking, fol-
lowing some of the principles of section 2. This will be the subject of another
report.

The method developed in section 4 to calculate the covariance between
two area means without employing cumbersome numerical integrations is of
interest, not only in spherical harmonic analysis, but more generally in fil-
tering, prediction and estimation from mean values on the sphere.

The computer programs described and listed in Appendix B should help
the interested reader to implement some of the techniques discussed in this
report. The author sincerely hopes thatthis will be done by workers concerned
with improving and further developing such methods.

Above all, the author hopes that he has conveyed to those who had read
this far, the idea that the detailed analysis of very large sets of global, reg-
ularly sampled data can be done within the computing resources available today
to most scientists who work at universities and research institutions every-
where. . The processing, be it by numerical quadratures, or by simultaneous
adjustment, of "all the data in the world" is not a fanciful thought, but a practical
possibility.
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Appendix A. Term by Term Integration of Formula (4.5), and Rearrangement
of Terms in Formula (4. 9) to Arrive at Formulas (4.11-a) and (4.14)

The area integrals in expression (4. 5) can be split into integrals in 8 and
A, and the summation theorem for fully normalized spherical harmonics can be
used to replace P,(¥pp') with an equivalent expression in the general term of the
series: :

0:+A8 Bc+A8 AgHOA L *AX
COV(T1y,Tiy) = —2 f " sin6dd | " sing d@'f d)\f dx’
Ayyhx Yo 0y X X,

* ). Puu(cosB) Py (cosB') cosm(A - X') (2n+1)"" (A.1)
n=0

Starting with (A.1), the proof proceeds in four steps, each justifying in turn
the taking of one of the four integrals inside the summation symbols. Each time,
three theorems are invoked:

The first is the "M-Test'" theorem, due to Weiertrass (see, for instance, Carslaw,

(1950)): 2

The series f(x) = nZ.Ou(x)n will converge uniformly in a<x<b

if there is a convergent series of positive constants My, Myyueey My sy ..
such that, for all x in a<x<b, [u(x)n IS M, for every positive
integer n.

The second theorem is (also according to Carslaw):

If the general term u(x), of the series nZ u(x), is continuous,
and if the series converges uniformly to some function f(x) in
the interval a<x<b, then

[rmax = [7 Pucoaax = T [P,

n=0 Ya

This is a sufficient condition for term by term integration. The third theorem
is the mean value theorem for integrals

b
If f(x) is analytic in a<x<b then Lf(x)dx = (b-a)f(c)

for some ¢ suchthat a<c<bh.

Proof: The series in the left hand side of (A.1), if all variables but \' are kept
fixed, is uniformly convergent in the interval X, < \'< AL+ AX  because

(2n+1)"1cf’v mgoﬁm(aose) P ( cOS 8') cos m(X-X) = ¢, P, (¥

and |c" B, (o) | < ¢ because qulaax | P.(¥)] = 1 (the argument of B, is real) for
oy
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all n, while Z e” = cov(u(P),v(P)) is always finite (equals the value
of the "point" covarlance when ¥t =0 ). The "M-Test'" condition is satisfied
so the series converges uniformly; therefore, term by term integration with
respect to A" is valid-

1 JAOﬁAS Gfek+Ae IK‘*A)&

COV(Uyy, Vi) = sin 6 46’ dr e
( 13 kl) AiJAkl AJ

. .7 Y - — A +AK . -
) Z Ca’ Z Pun(cos 8) By (cos 6" f}\ ' cos m(A- Ay di (2n+1)
n=0 n=0 ) 1 '

Applying the mean value theorem to the last expression:

VY RN Xy +AX
j sinBdo sin 6" de'j a
8 0y A,

cov(Usy, Vi) = e
158x1

n

. Z c: Z AX Pag(cos 6) Pyy(cos 8y cos m(X- Ag) (2n+1)""
a=0 m"

where A; <Ay < A;+AX. Removing the common factor AX from the summation:
AN 8,+A8 6 tAB Ay TAX
cov(UyyVy,) = I sin6dé sin 6' d@'j dx -
A15biavg, 6y X
n

'HZO ey’ mZ__:oT)“’“(COS B) P,a(cos B') cos m(X- X)(2n+1)"" (A.2)

The general term in the partially integrated series is
(2n+ 1) cn Z a(COSB) Pyy(cosB') cos m( X~ X) = ¢ P,(¥ry)

where Q = (68',Xq); now [ci P,(¥sq)| < ¢ forall n, andforall X in the
interval A;< X< X;+AX, so the "M-Test" is satisfied again and the series is
uniformly convergent, and thus integrable, with respect to X . Therefore

0 tA6 B +AB

2
cov(tUy;, Vi) = AA?:AM jei smedej sin6' dé nZO
. Z P (cos B) Pyry(cos B cos m(Az - Ag) (2n+1)"" (A.3)

where Ay < Az < X;+AX. Once more the general term of the twice integrated
series satisfies the "M-Test", because

|(2n+1)’10:’v Z Pon(cos 8) Py (cos 8 cos m(Ar-Ag) | = fc:’an({bgq)] < c:’
n=0

(where R = (6, Az)) forall n and, inparticular, for 8' in the interval
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6, < 6' < 6,+4A6. In consequence

0,+40

cov(Tyy, Vi) = M\Aiuzzs A6 f sin 6 d6 Z

Heis

Py (cos 0) Py, (cos 85) cos m(de— Ag) @n+1) " (A.4)

n=0

Finally,
len+1) ey’ Z Dpa(cos 6) By (cos Bs) cosm(Ar-Xq)| < |ea” B (¥ax) | < ca”

(where X = (95 »Aq)) for all n and, in particular, for 6 in the interval
0, <6 < 6,+ A0 so the last integral can be put inside of the summations, and the
proof of the term by term integration of (4.5) is complete:

<

cov(Uyy, Vyy) = h}_:o el }z:o“p‘nm (cos B1) Pu(cos Bs) cos m( Az - Aq) (A.5)

where 6, < 67 < 9,+A8 and h = AN’sin6;40sin6 AB/A, Ay,
J

The general term in (A.5) satisfies the "M-Test":

V

lz.]=|n+1y e, Z Bro(COS B1) Bua(cos Bs) cos m(As=Aq)| S cp

<
Since the series nvo cn converges, any series of positive terms |z | satisfying
]z ]< ¢, must converge also: the "M-Test'" condition implies the absolute con-
vergence of Z z, . Absolutely convergent series can have the order of their
terms changed arbltrarlly, without changing the value of their limit sums. This
justifies the reordering of (4.9) that leads to expression (4. 11-a),
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Appendix B: Computer Programs (Descriptions and Listings)

This Appendix contains the description and listing of each of the major
subroutines developed in the course of this research, together withtheir own
auxiliary routines. The listings of the main subroutines contain explanatory
comments that the author hopes will be of help to those who may use them.
The description accompanying each main program defines arguments, gives
the dimensions of the memory arrays required, mentions the relevant for-
mulas from preceeding sections, and gives a brief explanation of the various
segments of the program.

B.1 General Programming Considerations

Only one-dimensional arrays are used in the software described here.
The language used for all of them is FORTRAN IV ; some subroutines from
the International Mathematical and Statistical Libraries Inc. (IMSL) are called
by the main subroutines. Implicit DO loops in READ or WRITE statements have
been avoided as much as possible, because their execution may be rather slow,
depending on the compiler; instead, subroutines FREAD, FWRITE and REWIND
are used for all imput/output operations involving large files on tape or disk,
in some of the subroutines, All operations involving real arithmetic have been co-
ded in double precision ( 8 bytes, or 32 bits), which is equivalent to retaining
the first 7 significant figures in all arithmetic operations.

The arrays containing the associated Legendre functions or their integrals,
as the case may be, are arranged first bg( degree, and then by order ; 00, 10,
11, 20, 21, 22, . . .(Npax » Nyax).The Care arranged accordingly, always in
two separated arrays: one for the G, and another for the Caa - Inorder to
get the value of the element "nml' from one of this arrays, the following formula
is used:

k = %n(n+1) +m+ 1
where k is the position of this element in the one-dimensional array. When

the elements are recovered sequentially from the beginning (00), the following
type of DO loop is used:

KOUNT =1
Do XX N1 =1, Ny,
DO XX M1 = N1, Npax

LEGEND (KOUNT) = ARRAY (KOUNT) **2

XX KOUNT = KOUNT + 1

where, in this particular example, the nm (n=N1-1, m=M1-1) element in array L
LEGEND is equated to the square of the nm element in ARRAY. Avoidance of two-
dimensional memory arrays results in considerable improvements in efficiency.
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B.2 Subroutine SSYNTH

This subroutine computes the sum of a spherical .
barmonic series complete to  degree and order NMAX at each one of the 2NZ
points or blocks in an equal angular grid. The subroutine can calculate point
values (IFLAG = 0) or area means (IFLAG = 1) . The number of rows or paral-
lels N (Nyquist frequency) must be even. Subroutines FFTP from the IMSL Double
Precision Library is used to calculate the sum of the series along rows by means
of the Mix Radix Fast Fourier Transform algorithm.

The procedure used is that described in paragraphs (1.6) and (1.7). The
symmetry of the grid with respect to the equator, and the corresponding even-
odd symmetry of the values of the Legendre functions or their integrals, (i.e.,
the xi" of section 1) are exploited. The values of those functions, or of their
integrals, are read from mass storage (disk or tape) into array ROW , in the
order described in the previous paragraph. All the values for one latitude, or
'tow}' are read at once, so the dimension of ROW is ‘f(N ax T 1) (Ngax+ 2). All the coef-
ficients C'O‘m are also stored in core, the correspondmg RCNM and RSNM ar-
rays (for C,, and §,, respectively) have the same dimension (the S, 015 are
included, though they are all zero). The output consists of 2N? values in ar-
ray DATA . This array is organized in rows, from North Pole to South Pole.
The rows, of 2N points or blocks each, have their values written consecutively.
The following is the list of arrays, and their dimensions:

NAME DIMENSION TYPE
ROW RD=5(Naax + 1) (Npa 5 + 2) REAL *8
RCNM RD , "

RSNM RD "

X RD INTEGER *2
DATA 2N? (N = 180/BLOCK) REAL *8
CR1 N+1 "

CR2 N+ 1 r

SR1 N + 1 "

SR2 N +1 "

AM N +1 "

BM N+ 1 _ "

F AUX1 4N "

F AUX2 3 "

F IWK see IMSL Handbook INTEGER *4

F LL U " LOGICAL *4

F A tooon " REAL *8
v N +1 "

"("F'" designates those arrays required by the IMSI, subroutine FFTP). In ad-
dition, the size (in degrees) of the blocks is defined by BLOCK; NPP = £(Ny,, * 1)
(Nuax+ 2); IU is the number of the unit (disk, tape) from which the Legendre
functions or their integrals are to be read.

Array X contains information on whether a given ¥i® is even or odd;
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arrays CR1, SR1,and CR2, SR2, respectively, contain the Fourier coef-
ficients «f (al) and Bl(bl) of rows i and N-i-1; arrays AM and BM
contain the valuesof A(m) and B(m), as defmed in expression (1.7); t

auxiliary array IV contains the numbers 2n(n + 1) needed to locate 1nd1v1dual
elements within arrays ROW , RCNM , and RSNM , when they are not addressed
sequentially.

The comments in the listing are probably enough to understand most of it
on close inspection; one point however may be worth explaining further: the
"aliasing' of the Fourier coefficients has been incorporated to take care of the
case when N,,, > N-1. Insuch situation the «; (al) and B (b%) become
aliased, as Fourier coefficients must, and it is thelr aliased values that the FFT
subroutine requires to compute the values of the spherical harmonic expansion
along parallels. The formulas for the aliased coéfficients are

KM

(A)tfj1 = Ot + Z (Otm.m +O£KN~1,) (B1l-a)

B: = [ (B = Boe-a) (B 2-b)
where KM is a large enough integer. - A similar expression applies to a,
and to b,

The arrangement of the output in latitude correspends, in the case of area means,
to the-intervals on which the B, , are integrated; for point values, it is de-
fined bythe latitudes 8, at which the P,, (cos8,;) have been precomputed. As
regards longitude, the grid starts from the zero meridian used for defining
the coefficients. In the case of point values it is usual to compute all values at
the center of each block. To do this, the P,, must be precomputed at the lati-
tudes of the center points, while the longitudes are taken care by modifying the
coefficients as follows

Cda = Chacosm 5 + 8, sinm 3= AK (B 2-a)
S,k =8, cosm Azk - Cypsinm A2A (B 2-by)

This is equivalent to rotating the grid eastwards from the zero meridian by éz& .

B.3 Subroutine HARMIN

This subroutine implements either the algorithm of paragraph (1. 5)
for the harmonic analysis of area means, or that of paragraph (1.7) for the
analysis of point values.

The subroutine calls IMSL's FFCSIN to calculate the a} bi or the
¢, ,B: by means of the Fast Fourier Transform (Mix Radlx) alcrorxthm It
also calls subroutine QUADFS , that returns in array A the de-smoothing
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factors U, . QUADFS calls LEGPOL , a subroutine that computes the Legendre
polynomials up to degree NN +1 needed for the £ in [y . e

The data is arranged as in SSYNTH , in array DATA , before the subroutine .
is called. Afterwards, the contents of DATA are destroyed, as the al, b} -
or the i, B} are formed in place of them, row by row, by FFCSIN . The -
resulting coefficients' estimates are put into arrays RCNM and RSNM , in the ber
same order as for HARMIN . The other arrays, with the exception of A, are
as in SSYNTH . The same is true of the scalars, with the exception of NN .

NN is the highest degree and order to be estimated. NDD is the total number
of Legendre functions,or their integrals, to be read from unitTU , per 8; .

This number is (NN+1) +(NN+2)/2. A is a REAL*8 array of dimension NN+ 1.
The dimension in QUADFS allows fora maximum NN = 300; for larger solutions,
the dimensions there and in LEGPOL must be increased accordingly.

In the case of point data, the estimated coefficients are computed using a
center point formula that assumes that the dataare situated at the centers of the
blocks; the resulting coefficients are refer red, nonetheless, to a grid starting
at the zero meridian (the '"rotation' of the coefficients takes place between
statements 0071 and 0073, when IFLAG =0 . When IFLAG=l , the area means
formula (1.30) is computed; the X7 = ,unL 2z {8) sine6de , and'the p, are
those produced by QUADFS, as already mentioned. The integrals of the Legendre
functions are read from unit "TU", as in SSYNTH (same format), and the size
of the blocks is specified by BLOCK (in degrees). The version of QUADFS
listed here implements the "composite" estimator of paragraph (3.3). If
another is desired, this can be achieved simply by replacing lines 0021 through
0024 in QUADFS.

B.4 Subroutine NORMAL

This subroutine creates the optimal estimators for the C-'_i, based on the -
formation and inversion of the R(m) matrices described in paragraph (2.10)
The algorithm exploits the fact that (C,, + D) is a block matrix of Toeplitz
circulant sub-matrices, This subroutine is meant only for mean values. -

The grid is as in SSYNTH and HARMIN, The symmetry with respect to the
the equator is only partly exploited: matrix D  may not be persym-
metric, so the total matrix (C,, + D) may not be so either. C,, however, is -
always persymmetric, and this is taken into account to save computing and stor-
age. A general diagonal matrix D corresponds to a rather broad class of
actual problems,such as the analysis of the 5° x 5° real gravity anomalies
described in paragraph (3. 4).

This subroutine requires four input/output units: 8 (read only) contains
the values of the integrals of the Legendre functions, row by row, arranged as in
SSYNTH or HARMIN; 10 contains the right hand sides of the "reduced normals"
k,, = R(m) x™* (expression (2.58)); 15 contains the R(m) matrices, ordered by
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increasing m , stored in vector array form column by column; 30 stores the
Xim of the optimal quadratures-type estimator. The x3}* are stored from N.
Pole to S. Pole, and according to nm , as the Legendre integrals and the coef-
ficients. In some circumstances the grid may be geocentric rather than geodetic
and a change of coordinates might be desirable: this can be achieved by setting
the parameter IGEO to 2 . The flattening assumed for this transformation is

F =1/298.257.

After the R(m) matrices have been created, they are inverted by IMSL
subroutine LUDECP , that performs a Choleskii factorization. IMSL sub-
routine LUELMP solves the equations resulting in the x3}*; if during the in-
version LUDECP detects an ill-conditioned (or a singular) matrix, the solution
part is avoided, and a set of null x’im is stored for that particular m . As
an additional check for the stability of the solution, the relative residuals.

N—1
v 12 T
r = (=o where v =1{vy, Vi, . .. vy is
nm,2 (B 3)
Eo(ki) v = lgnm -~ R(m) x™® (computed)

are computed and printed. In all the cases studied here these residuals indicated an
agreement of at least 9 significant figures. To improve the stability of the

solution, a regularizing constant REGUL is added to the diagonal elements of

the R(m) (Paragraph (3. 3)).

Arrays PN, SS, and FC contain the propagated noise, sampling, and
total error measure (variance) per degree. W contains the averaged row
variances (expression (2.43)) arranged from North to South.

The scalar arguments, NMAX , NN, DGRID , IGEO , REGUL , NRUN , and
NC 2, are described in the comments inserted between statements 0006 and 0010,
The arrays are as follows:

NAME DIMENSION TYPE
ROWP 3 (NMAX +1)(NMAX + 2) REAL*8
ROWQ " "
RHS NN (NN + 1) N (N = Nyquist freq.) ”

S (NN + 1) N i
A (N - 1)+N "
UL " "
W . N "
DVAR NMAX + 1 i
FC NN +1 1
PN " 1
Ss . t 1

Arrays ANMPQ, FF, XO, B, X, BT, FINMP ( 2ll REAL*8), and IDD (REAL *4),
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all dimensioned 200 or 400 in the subraitine itself, are large enough for
problems where N < 200 . For finer grids, the size of these arrays should be
increased in the same proportion as that of N .

The R(m) matrices are forrmed according to expression (2.63) . Subroutine
FUR computes the "aliased" Fourier coefficients of the covariance functions
that are, in fact, the elements of the R(m) , scaled by N or 2N, depending on
m. Common MM and array MT are part of a logic set up to ensure that the
Fourier coefficients are not computed more than once each.

Subroutine ANALYS uses the x;® stored in unit 30 to analyze the data
in array DATA . The o, /Sni are formed in place, as in HARMIN , so the
original values in DATA are destroyed. Arrays CR, SR, CAA, CBB, SAA,
and SBB have all the same description as CR1, SR1, etc., in HARMIN ,
IMSL subroutine FFCSIN (double precision) is used to obtain the @, , BS. The
reason why ANALYS is used instead of HARMIN , is the arrangement of the
x{® "columnwise', or by increasing latitudes, rather than "rowise' (i.e., all
the xi * for the same 1 stored together) as HARMIN would require.

The listings of FUR, ANALYS, and those of the fast input/output sub-
routines FREAD , FWRITE , REWIND , are given after that of NORMATL .
The input/output subroutines have dummy arguments, because originally NORMAL
was written to work with certain subroutines available at 0.8, U, that may not
be in the software libraries of other institutions.

B.5 Subroutine NORMAX

A modified version of NORMAL , this subroutine was created to compute
the variance of the estimation errors in ordinary quadratures formulas according
to the theory in section 2 . Essentially, it computes

i

n n |
02, =32y T chugifm +) )
n=0 =0 n=0 U=
by forming and using the R(m) . Since no inversion or solution of the normal
equations is required, the corresponding segments have been removed from
NORMAL , and a new final segment added for the computation of the various
accuracies,

o T o
(_f_nm) (sz+D)__f_nm
e}

The theory behind tte calculation of the 0‘23 using the R(m) matrices is
as follows:

In the case of ordinary formulas of the type (see expression (1. 7))
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(AJnm - @rm) m
N-1 3N-=

B2y T

1
1=0 3= Ty

T2 (8,2 d0 my,

N-1

T [x

i=90

ay=1
’;‘”i {A(m) cosmjAX + {B(m) } sinmjAK} my

=0 B(m) A(m)
the estimator vector is a combination of a '"sine' and a '"cosine' vector of
"frequency' m (ferminology introduced in paragraph (2.10)). The product of
such vector by (C,, + D) is, because of the structure of this matrix, another
combination of a ''sine' and a ''cosine' vector of the same "frequency'". From
the properties of the normal matrix follows that
2N if m=0

(Caz +D)_.]§g£m = or m=N . {_gﬁi;} cosmjAX+
N if m#0 B
(m) T
A(m)r sinmjAx .. :l
where,calling . : :
VR=[UE% vl ... ial = Rm) [, xT . .- xRl
and 3 {ZNAXQ if m=06 or m=N
Fm) = 4N (1-cosmay if m#0, m#N
is o1 ' éﬂ o na
@nm) (C;;, +D) _f_nm = F(m) [ Xiﬁvim (B4—a)
1 =0

‘ o
Regarding the scalar product 29_:._‘01,2 f.n, it is easy to show that

T 144 o? Nt -3 :
2¢aeys fas = 25755 L 00 Fom) (B 4-b)

Expressions (B 4-a) and (B4-b) are implemented by NORMAX to obtain the
error variances, This subroutine also uses FUR . Subroutine QUADRS is
also called, to obtain the de-smoothing factors. In the case listed here, this
factoris u, = T:TL . Array QUADS has been added to the list of arguments,
and it contains the® u, after the-call to QUADFS .

B.6 Subroutine LEGFDN

This subroutine computes the normalized Legendre functions and, if so
desired, their derivatives at a given 8; . All values correspond to the same
order M ; if more than one order at a time is needed, 2 DO loop, where the
subroutine is called once for each order, can be set up. The subroutine is
based on formulas (4.19 a-b) and (1.38 a-b). The use of this subroutine is
explained by the comments inserted in the listing. The stability of the recursive
formulas was tested by computing B,, (cos 8) ard (dP:,/d8)(cos8) for m = 350
and 350 <n <400, 2.5° <§<90° at 5° intervals. Calculations were done
first in double precision (8 byte words) and then repeated in extended precision
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(16 byte words). Both sets of results agreed with each other to better than
6 significant figures.

B. 7 Subroutine NVAR

This subroutine computes the degree variances of the gravity anomalies
(point values),up to degree 100, according to the coefficients obtained by
R. Rapp from a complete, equal angular set of mean 1° x 1° anomalies, as mentioned
in par. (3.1). Above n =100, the subroutine uses a two-term malel to calcu-
late the 02(Ag) . The resulting degree variances are stored in array DVAR .
The first element in DVAR is 0% (Ag) .
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B. 8 SUBROUTINE COVBLK

Subroutine COVBLK calculates covariances between area means according to expres-
sion (4.14). This subroutine is listed in the following pages, The arguments are
explained in the comments at the beginning of the listing. In addition, the
following things have to be born in mind: the dimension of the array DVAR

is Nmax; the dimension of both RINS and RINN is %(Nmax“" 1)(Nmax+2); the
dimension of COVS is 360/BLOCK. The values returned in DVAR are the
original degree variances c:’v , each divided by 2n+1, If LB is less than
360/BLOCK, the LB+1, LB+2, ... ,(360/BLOCK - LB -1) elements in COVS
are returned as zeroes, the remainder contain the first (and last) I.B covari-
ances. The dimension of F is 180/BLOCK (Nyquist frequency). To use this
subroutine with Nmax > 400, the arrays FF and IDD (whose dimension should
be no less than Nmax), should be redimensioned.

The subroutine does not take advantage of the "aliasing' of Fourier coeffi-
cients built into expression (4.14). Implementing this aspect should lead to.
some additional improvement in efficiency. The Fourier series is computed,
once the coefficients have been determined, by multiplying each coefficient by
the corresponding cosine of mA; - and adding the products together. The values
of cos mA; are computed using the following recursive formula:

COS mA; = 2 CcoSAycos(m-1)A; - cos(m-2)A,

which avoids repeated calculation of the FORTRAN COS function (only cos Ay is
required to start the recursion). Actual calculation of the Fourier series requires
about 0.04 seconds in the most time consuming case: the grid of 1° blocks. The
greater part of the time taken by this subroutine goes into finding the Fourier
coefficients of the mean value covariances. For this reason, there is not much
difference between computing all covariances in a certain row, or just a few of
them, using this procedure.
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