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Abstract

' Gravimetric data, levelling, and precise position fixes using artificial
satellites or the Moon could be combined to estimate the potential difference
between benchmarks situated far apart to an accuracy of a few tenths of kgal
m. This is substantially better than what can be obtained with tide gauges,
which are affected by the stationary sea surface topography. A set of these
benchmarks can link national and continental levelling nets into a unified

World Vertical Network.
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1. Introduction

Since spirit levelling cannot be used ac ross the oceans, comnecting con-
tinental vertical networks has long been a challenge for both oceanographers and
geodesists. Among the former, Cartwright (19 63) calculated a tie between the
British and the European nets across the English channel. Because the oceanog-
raphic method requires a knowledge of currents that is not available for larger
bodies of water, the geodesist Erik Tengstrom (1963) tried using gravimetry and
deflections of the vertical to compute a geoidal profile through the Eastern Medi~
terranean, from Athens to Alexandria. His results suffered from lack of data,
Lelgemann (1976) proposed unifying vertical datums by means of gravimetry,
levelling, and very accurate position determinations, as those expected by the
proponents of lunar laser ranging (Silverber et al., 1976). The late R. §.
Mather (1978) considered the possibilities open for datum unification by constant
improvemenis in gravivy fieid models (notably Goddard's GEM series) and the
large amounts of information provided by the altimeter satellites whose proto-
Lype has been GEOS-3.

Dynamic effects create a ''sea surface topography', or departure of the
mean sea surface from a true equipotential. This topography is not very well
known at present, and has an estimated r.m.s. value of about 1 m. Tide
gauges determine the position of mean sea level at their locations, so the error
made by assuming that their mean sea level marks are on the same equipotential
surface (geoid) is of the order of /2 X (r.m.s. of the stationary sea surface
topography) >~ 1.,5kgal m. Without any additional work, Nature provides a world
"levelling net'" of 1.5 kgal m accuracy.

Would it be possible to obtain better transoceanic links using the various
forms of geodetic data that are available at present, or are likely to become
available in the near future ? Could it he feasible, with such data, to establish
benchmarks for levelling inside continents, rather like inland "tide gauges'’,
whose potential differences are known so well that they can be used to constrain
the adjustment of the net to reduce distortion? If SO, in a more distant future,
similar benchmarks could be used to survey other components of the Solar System,
where only the Earth has any significant amount of fres surfane wata-

In this work the reader will not find more than a passing reference to the geoid,
a notion that appears inseparable from that of vertical he ight and of vertical datum,
Since the geoid has been regarded as the natural universal datum by geodesists, a
few words of explanation are due. The reason for its omission here is that, however
useful otherwise, the geoid is not essential to the setting up of a vertical network,
at least in theory. Such network, ultimately, is a set of potential differences es-
timated among the points that form the net, in particular the primary points or
benchmarks. These potential differences do not convey information on the abhso-
lute potential of the gravity field, so they can be referred to any number of level
surfaces, and not exclusively to one. For the same reason their meaning is not
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dependent on which surface is selec ted, and it remains intact even if no surface
Is selected. The reason why the geoid is so ubiquitous in the literature on
levelling may be the complete reliance that levelling has had on tide gauges,
idealized as points on the geoid. As long as gauges play a basic role, the
concept of reference surface is relevant to levelling,

Here, instead of heights above an equipotential surface, we are going to
consider distances fo the center of mass of the Earth, or to a reference ellipsoidai
centered on this point. Such approach is not unreasonable today, when new po-
Sitioning techniques are being developed that promise accuracies far better than
those available in the past. Methods based on the Global Positioning System
satellites, on Lageos, and on portable interferometric and lunar laser ranging
stations, are expected to achieve near decimeter accuracy in relative position,
over continental distances.

In recent years, the use of artificial satellites has changed many aspects
of geodesy. Space techniques for obtaining position fixes and models of the
gravity field are in constant development, and both the quality and the quantity
of the data provided by spacecraft are inc reasing. This work shall explore
how these advances may affect levelling, Next paragraph, to begin with, intro-
duces a basic idea: a World Vertical Network established without recourse to
any reference surface, or geoid. In a way, such network is the datum.

1.1. Definition of World Vertical Network

The World Vertical Network (WVN) is a set of estimated potential differences
among benchmarks situated in various continents,

A network of potential differences can be translated immediately into a variety
of height systems such as those described by Krakiwsky and Mueller (1965). Po-
tential differences are intrinsic to the set of benchmarks selected, and are indepen-
dent on the choice of "geoid", or on the precise knowledge of the zero harmonic
of the Earth's potential, present estimates of which have an uncertainty of some
3 kgal m. Existing regional networks can be tied to the closest benchmarks to
create a dense, unified global levelling net. Any benchmark potential can be used
to reference all points tied to the net. If so desired, the level surface through
this arbitrary point may be regarded as a "geoid". '

Method of Approach

If we had a perfect model of the gravity field and exact position fixes in
geocentric coordinates at two points on the Earth's surface, then we could use .-
this information to find the potential of each point and, from this, their potential
difference. Repeating this process for all possible pairs of points out of a given
set of benchmarks, the end resuilt would be an exact WVN. Unfortunately, models
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and fixes are never perfect, so the potential differences must have some errors.
To reduce these errors, we could combine the field model, which being finite
cannot contain information above certain spatial frequencies, with additional
data such as gravimetry, rich in high frequencies, particularly from the vic inity
of the benchmarks.

2.1. Formulation of the Problem

If V is the gravitational potential due to the mass of the Earth and external
to its surface, and U is a reference potential defined by a spherical harmonic's

model:

GM - ~ P -
U@, ,r) = =—[1+ ) (a/r)"P,a(sin®) [Coacos mA +5,,sinmA}] (2-1)
where: P,, fully normalized Legendre function of the first kind, degree n and
order m ;

r,®,\ geccentric distance, latitude, and longitude;
G universal gravitational constant;
M  mass of the Earth;
a  mean equatorial radius of the Earth;
Cun»S.a normalized spherical harmonic coeffic jents;
N maximum degree and order for terms present in the model;

then the disturbing potential T ata point P of geocentric coordinates r,8,,\s is

The gravity potential of the Earth is
W(P) = V(P) + ©(P) (2.3)

where ¢ (P) = & w? r:° cos” ®e corresponds to the rotational potential, « being
the angular velocity of the planet about its spin axis. The potential difference be-
tween two points suchas P and Q is, therefore,

AWE,Q =UP) +T@ +¢0(P) - U(Q - T@Q - ¢(@Q (2.4)

With both P and Q@ on the Earth's surface, the uncertainties in the calculated
values of @ (P) or ¢(Q), due to errors in the known positions of P and @, will be
thousands of times smaller than those aris ing in the determination of U (P), U (Q),
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T(P) and T(Q). Consequently, only errors in the computed values in the right
hand side of

AW(P,Q) - [gP) - ?(Q)]

= V(P) - V(Q
=U(PY) + TP - [U(Q) -~ T(@] (2.3

shall be included in the error analysis that constitutes the major part of what

e I
I01I0WS,

2.2. Estimating T by Least Squares Collocation

The use of linear regression for predicting and filtering geodetic data
appears to have been first proposed by Kaula (1959). Further developed by
Moritz and others, this approach has become a familiar technique that has
shown its value in many applications. Least squares collocation, as geodesists
call it, provides a way of combining all relevant data into estimates of unobserved
variables (minimum variance prediction), or into more reliable estimates of
those actually observed (minimum variance filte ring). For further information on
this method, see Moritz (1972).

If T is to be estimated at point P, then the linear, unbiased, minimum
variance estimator of T (P) is '

T(P) = f d = f7(z+n) (2. 6)
where

f = (Cyp + D)-l Crrz (2.7)

is the estimated disturbing potential, a scalar;

is the N; vector of measurements, or data vector;

is the N; vector of signal component in the measurements;

is the N; vector of the noise component in the measurements;
is the 1xN, covariance matrix (a row vector) of T and zZ;
is the N, xN; covariance matrix of the signal z;

is the N; xN; covariance matrix of the noise n.
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The operator M{ ! represents some kind of average. D is supposed to be
diagonal, because the noise is not correlated from measurement {o measurement
(wWhite noise). Furthermore, these assumptions appiy:



M{z}=M{n} = M{d} = 0 (a null vector)
and

M{zn

}, MliTn"} are both null matrices.

More generally, we could be asked to obtain N, estimates é (N; vector of
estimates) from d, using an estimator matrix F such that

A
5 =F"d (2. 6)*
minimizes the mean square values of the components of the error vector
A
g=s-s

(s 1is the N; vector of true values of s). The variance-covariance matrix of
these errors is

.7 T .
E = M[?__E_} = M{(.S_"' FT@(E' F@H = Cys~ F‘C;z—Cst*‘FT(sz"’D)F (2.8)

where C,, = M{s,s'} isa NyxN, matrix, and C,. = M[s z'} is a N,x N
matrix. Since the elements in the main diagonal of E are either positive or
zero, minimizing each one of the mean square errors is the same as minimizing
their sum, the trace of E (tr(E)). Accordingly (see for instance, (Rao, 1973)),

32 ;Z:FE = -C:+(Cu+D)F = @ (a null matrix)
or )
(C2+D) F = Ci, (2.9)
and, finally,
F=(Cyu+ D)—l C:z _ {2, 10)

Replacing (2.10) in (2.8) we get

E = Css - Csz (sz + D)—l C:z (2‘ 11)

In the special case where s is the scalar T, we get (2.7). The equations in the
system (2.9) are known as '"mormal equations'’; some people prefer to call them
"Wiener-Hopf equations' because they bear a formal resemblance to the basic
integral equation of linear, invariant, minimum variance filtering in the time domain.
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In geodetic applications, M{} is an ave rage on rotations of some sort.
If all possible rotations about the origin (center of mass) are included, then the
covariance function c,, of a function h of r,¢ and A

MIh(P) ()} = ¢y (P, Q) (2.12)
depends only on the spherical distance
¥rq = cos™'[sin ¢ singy + cos w» cOS @ cOS (Ap - )]

and on the geocentric distances r» and ry. If both P and Q are on the same
sphere (r; = ry), then Cyy depends on U, alone. For this reason this type of
covariance is known as isotropic, and the operator M/ } is then called the iso-
tropic average operator’. The slements of F depend on those of matrices C,,
and C;;, and these elementsare, in turn, values of the covariance functions

o
j™)

V]

Cu(P,Q) = M{Z(P) 2(Q) .

{
&
U

g
&}
£
£
=]
£

: o
sz{& Y

A choice of M{ } determines those functions, their values, and, ultimately, the
optimal estimator matrix F. Rummel and Schwarz (1977) have discussed different
types of averages and covariance functions. From these considerations it is clear
that the optimal estimator is not unique, but it depends on what average we choose.
The "easiest" choice is the isotropic average, because of the simplicity of the
corresponding covariance function. This function can be expanded as a series of
Legendre polynomials

2 & , :
2n+1) \/r ) 8.0 Py (COS Uag) (2.13)
a’ LR Q7

o]

Cw(P, Q) =

"l\//J i

where 6, isthe nth degree variance of the spherical harmonic coefficients of
u(@,A,r):

n

) (B + 820y (2n s 1) | (2.14)
o]

e

éuu,n -

The covariance between two functions u and v is

There is a small problem with M{E QT}, because the measurements' 'noise" is
not an ordinary function of ¢, )\ and r, but a stochastic process. However, it
can be manipulated as if it were such a function. For this, see the discussion by
Balmino (1978).-



2 n

N
Crn(P,Q = /) (211'*'1)(-1%?;/' O.r,n Pr(cOS Uag) (2.15)
where

- — -1 0 4
S (Cu,m} C"gn3 + S'i,na S"yna) (2n -+ 1) <-—q .!.0>

0

To understand in what sense the estimator is "optimal", imagine some
pattern of measurement points and estimation points. The whole pattern is
subject, in succession, to all possible rotations. " Before each rotation,
measurements are taken and all estimates are made at their respective points,
and the squares of the estimation errors are found, somehow. This is repeated
over and over again, and running averages of the errors squared are kept. In
the limit, these averages will tend to values that satisfy (2.8); if F is optimal,
they will also satisfy (2. 11) and will be smaller (or not worse) than for any
other choice of F. Also, in the limit, ws would havs zoversd the whole Zarth
itk ssiimaies, walch is why such mean squared values and their square roots
(r.m.s. values) are called global, In practice we are always concerned with a
finite, even a small number of estimates at isolated locations, and we are
interested in the actual errors of those estimates, not "some global measure',
The practical meaning of the latter is, therefore, a matter of interpretation. If
signal and noise have near Gaussian distributions, then the errors (which, accor-~
ding to (2.6), (2.6)*, are linear transformations of both) will also be near
Gaussian. In such cases the global values are related to the actual errors by the
usual "one sigma' and "three sigma' rules, giving an indication of their likely
sizes. Rapp (1978a) has shown that a world-wide data set of 38406 1°x 1° mean
gravity anomalies, compiled at The Ohio State Univers ity, has a nearly Gaussian
distribution. Gravity anomalies are the main type of data considered in this
report for predicting T.

The probability distribution of the data does not characterize it enough,
however, because all the large values could be concentrated in a few "rough'
areas, the rest of the world being "smooth", with smaller values. The errors
are likely to repeat this pattern (see Appendix A) so, if estimates are made in 2
"rough'' region, the global r.m. s. may give an over-optimistic indication of the
actual size of the errors. This quality of the data being "evenly behaved", so that
there are no zones that are highly idiosyncratic, is known as stationarity. Itis a
rather elusive quality, but very important to the use of global, isotropic covariances.
How stationary is the Earth? We know that trenches and ridges in the ocean floor
produce strong localized features in the gravity field, set off against comparatively
smooth surrounding areas. Mountainous regions in land also tend to be "rough'’;
however, there are very flat regions, such as the Nullarbor plain in S.W. Australja,
where the field presents strong local anomalies.

1 Not only rotations, but more generally all orthogonal transformations can be in-
cluded (i.e., rotations, reflections and various symmetries), the result being
precisely the same average values as with rotaticns alone.
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Regardless of the significance of the results, getting them can present dif-
ficulties. We have to form and invert a matrix whose dimension is that of the
data vector, so, if many measurements are involved, this two operations become
quite large. Not only the computer time involved, but alsc the accumulation of
rounding errors can escalate dramatically. Paradoxically, the more data are
used, the better the results (in theory), but also the harder to get and the more
unreliable. This is further complicated by the fact that, for close spacings of
data, the normal equations can become very ill-conditioned. A special technique,
presented in Section 4, has been developed by the author to overcome these
problems in the case at hand,

On the positive side we must consider: the possibility of using mixed data
sets, so d may consist of gravity measurements, satellite altimetry, deflections
of the vertical, and even levelling; the ability to provide more than one optimal
estimate at the same time; the simplicity and elegance of the theory. Another
good aspect of collocation is that the covariance finctions needed to set up C,,
and {C,; + D) do nothave to b known with great accuracy. This is borm out
oy the results presenied in Section 5, where the same problem has been solved
using somewhat diffe rent covariances, This is fortunate, as we can never gather
sufficient data to obtain an exact eémpirical covariance, because to know such
function is equivalent to knowing the whole field exactly (thus making estimation
unnecessary),

2.3. Data Arrangement

T LA

HB”
LR
A e \ MB
BMA s
S
‘ s ‘ A, s

s

Figure 2.1. The circles represent spherical caps within which gravity
anomalies with respect to a reference model have been
measured. The wandering lines are levelling traverses.
T is estimated at the center of each cap, The differences
in the geocentric distances of these center points are
known to decimeter accuracy. BMA and BMB are two
benchmarks of the WVN.



Figure 2.1 shows the basic data arrangement to be studied, While for the
simulations of Section 5 all caps are supposed to have the same size, to reduce
computing, this is by no means essential. Other kinds of information (such as
satellite altimetry) could be included among the data (see, for instance, paragraph
5.3), though only the types indicated in Figure 2.1 shall be considered here.
Anomalies are determined at the Earth's surface, somewhat in the manner of
Molodenskii. Details are given in Section 3.

2.4. Adjustment Theory

Consider a cap center P, in zone "A" (Fig. 2.1) and another Q, in zone
"B". The potential difference between benchmarks BMA and BMB is

~

AW (BMA, BMB) = U(Py) + T (P, + AW, (BMA, P+ @(Py - U(Q)
A
- T(Qy - AW, (BMB,Q)-¥(Qy)-Vy, (2.17)

where
Vi = €AW£(BMA,P1) - eAWz(BMB,QJ) + €U(Py) - €U(Qy

+ 5&‘(13*.) - 53?‘(@3)

is the sum of the error in levelling €AWZ , the error in the potential according tAol
the reference model €U, and the error in the estimated disturbing potential ¢ T.
€U is influenced both by errors in the model and errors in the coordinates of the
P:,Q;. Expression (2,17) can be regarded as an observation equation with the
potential difference AW as the only unknown. Fach pair of caps (P,,Q,) pro-
vides an equation of this kind, so a redundant system can be set up

aAW(BMA,BMB) = p + v (2.18)

where p is the vector of "observed" potential differences, v is the vector or
residuals, and a is a vector with all components equal to 1: the design "matrix"
of this particular system. All three vectors have for dimension the number

of equations. This number is restricted by the following considerations: the
centers of the caps, paired in the same way as the caps, should not form a closed
loon, as shown in Figurs 2.2 by a broksn line, Otherwise, because the "observed"
values for the pairs in the loop always add up to zero, i.e., are linearly dependent,
the a priori variance-covariance matrix of the "observed' values must be singular.

————
" As explained in Section 2.1, errors in ©(Py) and ©(Q;) due to errors in the co-

ordinates of P,, Q,, and in the rotation rate w, are considered to be negligible here.
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The inverse of this matrix is needed for the adjustment of AW, so this limits the
choice of pairs of caps to those not forming loops. The number of such pairs is

one less than the number of caps, and this is also the maximum number of equations
In system (2.18).

1'A "

& Qs Qs Q. "B

Figure 2.2. The solid and broken lines. identify caps
that have been '"paired”. The broken line
shows a selection containing a loop (not
permitted). The maximum number of
equations (permitted) = number of caps-1.

The accuracy of AW (BMA,BMB) after the adjustment can be computed from the
following formula

s

-%=<Ne Ne

P (V‘l)u)- (N. = no. of equations (2.19)
LI/

<no., ofecaps - 1)

= T 5=t
UAW(SMAIBMB) = (3_' VvV ©a
where V, the variance-covariance matrix of the data, is

- A
V= Vegu, + Vg * Vet (2. 20)

In this expression,
Vepny is the variance-covariance matrix of the levelling errors;
Veay s the variance-covariance matrix of the errors in U(Py) -UQy;

Veaf is the variance-covariance matrix of the errors in T(P¢)-T(Q)).

The uncertainties in AW, and AU depend on those of the data that give them
origin; €AT depends also on the way T is estimated from the gravity anomalies.
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3. Characteristics of the Data

In this section we shall consider those characteristics of the data that affect
the accuracy of potential differences adjusted according to the method explained in
the previous paragraph, The various types of data involved are: position fixes,
the coefficients of a reference gravity field model, gravity anomalies, and levelling
fraverses,

3.1. DPosition Fixes

To compute the reference potential U at the center of every cap, it is
necessary to know the coordinates of these points. The reference model contains
terms below degree 20 or 30 (in this study) so the smallest detail it can show is
of the order of 1000 km. U is, therefore, a smooth function of latitude and longi-
tude, and cannot be substantially affected by horizontal position errors of the order
of less than 2 m, which is the accuracy that can be obtained at present with satellite
Doppler techniques. The reference potential, on the other hand, is quite sensitive
to vertical (geocentric distance) errors, at the ratio of about 1 kgal m per
meter of error. As we are concerned with finding potential differences,
the most important errors are those in relative vertical _position. To be
precise, the vertical position of interest is the distance to the geocentre. There
is little difference, however, between relative errors in ellipsoidal heights and
relative errors in geocentric distance, and hoth can be regarded as equivalent here.
The absolute vertical error might contain a nearly constant bias, due to the incor-~
rect dimensions of the reference ellipsoid and to other systematic causes related
to the positioning method. This error may be of several meters without any notice-
able effect on the estimated potential differences, because it will nearly cancel-out
when such differences are between points at the Earth's surface. Therefore, an
error in the ellipsoid of the order of 2 m, which is the present level of accuracy,
can be disregarded.

While the relative vertical position error is the one that matters, we still
have to know the absolute geocentric distance to compute U. This can be done,
essentially, in two ways:

-11-



a) find the absolute position of each point separately;

b) find the absolute position of one point, and then obtain the relative
position ef the other points with respect to this one.

In each case, the relative position errors will vary, the choice being always
the alternative that gives the smallest errors.

This study is more concerned with forthcoming developments than with the
present state of affairs: Anderle (1978) has estimated that the Global Positioning
System currently being deployed could provide, when all the satellites are oper-
ational in the mid-Eighties, relative positions with errors of less than 0.1 m.
This accuracy should be possible between stations thousands of kilometers apart,
in all three coordinates, afier less than one day of constant observation of the
satellites. Estimates for absolute position determinations from lunar ranging
stations made by Silverberg et al, (1977), using mobile stations ‘supported by 2
network of a few fixed ones, are also in the decimeter range. In addition to
these two, a variety of new positioning techniques based on satellites in high
orbits that carvy lazex 72%2c%273, mobile radiointerferometry, etc. , being
investigated at bresent, might provide even better accu racies in the coming
decade. Present measurements from Doppler satellites have errors that are
one order of magnitude worse, However, considering the progress made in this
field over the past decade, and the new highly precise methods in the offing, it
is probably not too opiimistic ‘o 233ume in this study relative accuracies as good
as one decimeter in vertical position,

3.2. Reference Model of the Gravity Field

The coefficients C,, »Sun and the constant GM in (2.1) are not exact values,
so the model does not represent to perfection the first N harmonic degrees of
U or T. The effect of an incorrect GM is, at the present level of accuracy,
equivalent to a bias of about +3 m in geocentric distance (Lerch et al., 1978).
This error, being virtually conétant, has a negligible effect on potential differences.
The existence of coefficient errors

@]

am = 9“ (trus) = gnm(ucdel)
S

€
€5 = Sng(true) - (3.1)

[

has to be considered when defining the disturbing potential*

' The 0 degree error €GM/r, being almost constant on the Earth's surface has

no relevance to this work, and has been excluded from these formulas.
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N a
GM (T 7a ¢ _ - -
T®) = V@ -U@ = =) (20 B smoneT, cosmh + e5,u5inm]
Te vgp' T ‘=0
@ A n N
T /aAVT = , = f T a1
+ \ ‘/“‘—\ P..(sinwys C..CCS m)\g + 5 S MAej 2
A \rP/ Z:‘o 2 (8in } [ na na” ]J (3- )
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and the gravity anomaly

N n
AT(P P T(P AN - — -
LB AP =B %/[“‘Z‘ K‘i)(n- 1>Z Pun(Singe)[€C ,co8 mAs +€ S, Sin mAe]
=0

8g(P) =~"37  *+ T3p Y@ 5 Lln
+ 7 (ijl(n-l)z D..(sing) [ Coacosmds + S..sin m)\p]j
e PR L

+1 n =0 (3 3)
The corresponding isotropic covariances, according to expression (2.13) are

N 2 oo} = +3
GME T /oac v, T, 5 /a2t \) p
Cr (P = ‘(2n+ 8¢ P, Poq) (= 1+ (20 + 1)6. P (COS i 3.4
PR =T L TR RO GP(C0s by (- ry L (PR LIPSl 220 f (3.4)
1= REN 41
2,2 N 2 2 2
G'M 2 , a 2 /a
Crsae P, Q) = 52 I {zgzm-l)(n—l) 5€HPn(cospr)(E—I‘j:«-;(?xz-z-l)(n—l) 6nPn(cos¢Jp:)\r——Prq>n} (3. 95)
GAF 5 ‘(az\“ o 5 ; a® }
c = — 2 - —}+ ) (2 - |
26 (P Q) = 13 {) (2R41(R-1 8¢, Pyfcostn) (2] ) Casin1)8,2cosbn) (-} (3.6)
where 2
8¢ =§‘ C.%+ ¢35 2\ /iope1 3.7
n (scnm i é-S\'zm )/(‘-‘n'*) ( * ‘)
a= o
and 0, = Orr,,

In practice, neither 8¢, nor 6n (n> N) are known from direct measurements.
The d¢, can be approximated by the corresponding diagonal elements of the a
posteriori variance-covariance matrix of the adjustment that produced the model.
The On are known to follow a more or less asymptotic decline law such as

10—10
On =~ n&
known as '"Kaula's rule", or such as
2 a+l
GMY o, Ry? RV &z Rz° RS
= 3.8
5, < a > <(2n+1)(n-l)(n+A)<Z§/ * (2n+1)(n—1)(n-2)(n+B)<F> > (3.8)

This last expression, a "two terms law", has been investigated by Jekeli (1978),
using the available information on the power spectrum of gravity anomalies, geoid
undulations, and the horizontal gradient of gravity, to find the parameters A, B,
&, @z, By, R, that give the best fit to such information. This type of formulas
has the advantage that the covariances (3.4), (3.5), and (3. 6) can be computed using

finite recursions. 13



3.3. Propagation of Position Errors through the Computed U

Because of the low degree of the terms in the expansion of U, horizontal
errors in @ and A are of little importance. The vertical errors €., on the other
hand, have a significant effect, If they are small, we can write

€AU(P,Q) = €U(P) -€U(Q) =

bat

W~18

o~

=
LU e - U@, (3.9)

where Un is the nth harmonic of U, Calling

AUn(Py Q) = UH(P) - U’!(Q)
and

we have

leat,| <2(n+ lg:‘:‘,‘_){u} le

Z‘DQ

where r =min (1 »Tg) and 3o (p, 0) is the surface of the sphere o/ r -0y, Since

UO >> a;n{r’o) }r !UnH

for n >0, itfollows that
leatsl >> Jeat,]
for n> 0. Calling
T = %(fp + €&, +‘rq &)

we get

leau| =~ Jeauyl = EM G“ Is, | =5 le, l (3.11)

where ¥ is the mean value of gravity acceleration on the Tarth's suwfacs
(¥ ~0.9798 Kgal). The standard deviation of |¢4 Ji is

o ~ 3o 3.12)
€Au Y € (
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If the coordinates of points P and Q were determined separately, so €r, and
€1y couldbe considered uncorrelated, and if oe Tr = 0€ry = O€, then

T AU >~ V2 ¥y gk, (3.13)

On the other hand, if the difference in vertical position is determined simultaneously
for P and Q, then (3.12) applies. In any case, if all geocentric distances are
computed with uncorrelated errors, except for some constant bias that does not
affect the potential differences, then matrix Veau In (2,20) must be diagonal,

¢ach non-zero term peing )

Vig = O'2€Au1 (3.14)

~where Au, is the potential difference between the centers of the ith pair of caps.

3.4. Gravity Anomalies

The theory used in this werk assumes that the exterior potential of gravi-
tation is harmonic. This is not strictly ¢orrect at the Earth's surface,
because of the atmosphere above it. To aveid systematic errors this
effect should be discounted from the measured gravity values, and put back on
the estimated potential. These atmospheric corrections have been studied in
detail by Christodoulidis (1976). Probably, the variation in gravity due to Earth
tides and ocean loading should be corrected as well, in order to achieve the
degree of accuracy required here. Another source of systematic error is the
gravity net to which the measurements are "tied". As explained later, system-
atics of more than 0.1 mgal rms are undesirable, so the contribution from the net
should be as small as possible. Master stations where absolute gravity is known
to, say, 0.01 mgal would be quite adequate. Of course, a constant bias due to an
error in the nets' datum has no effect on the estimated potential differences, and
can be ignored. :

A further cause of systematic errors in the gravity anomalies are the
distortions in the levelling net to which the stations are tied. The influence of
such distortions on estimates of the disturbing potential have been explained
by Lelgemann (1976). We are going to study here a way of determining the anom-
alies that minimizes this influence,

Besides actual errors in levelling, the main reason for distortions in vertical
nets is the use of tide gauges as benchmarks. Their mean sea level marks are
supposed to be at the same potential, and the net is adjusted with this as a constraint,
In reality, the stationary sea surface topography already mentioned is present,
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and the potential differences among gauges are not quite zero. These discrepancies
propagate as errors throughout the adjusted net. The larger the network, the
larger the distortions can be, and also the longer the distances over which they
are correlated. To shorten this correlation length we shall break the existing
net into smaller pieces, and to eliminate the effect of the sea surface we shall
not use a net that is adjusted with constraints based on tide gauges. To achieve
this we are going to use the center of each cap as the levelling datum for all the
graviily stations inside that can. The potential of each station is going to be
referred, accordingly, to the center point. Since the caps considered here are
small (5° and 10° semi-apertures) the levelling net for each cap will consist
only of short traverses whose measurement errors can be ignored. If necessary,
the net inside each cap can be adjusted, to filter out such errors. To use the
estimated potential of each cap center in our vertical connections, we have to
refer all of them to some common datum. To do this without reverting to the
use of tide gauges for this purpose, we shall take advantage of the accurate
position fixes taken at the cap cente rs, and find the reference potential U at
each one of them. If we take the U (P.) for the true potentials, we make a
mistake quite similar to that of assuming that all tide gauges are on the same
level surface. The errors, however, are proportional to the T (P,), the
quantities to be estimated. As shown below, this leads to equations that can be
solved for these "errors", to obtain the desired T (Py) free from biases. In

a way, it can be said that the centers of the caps are the equivalent of tide gauges
in the adjustment of the Worid Vertical Network.

A gravity anomaly Ag, in terms of the reference model, is
4g(Q) = g(@) - ¥(Q" (3.15)

where g(Q) is the acceleration of gravity measured at a point @ on the Earth's
surface, and ¥(Q") is the model's acceleration at a point Q' such that Ag = At
and ©q = ¢y, while U(@Q" QY= ViQ) +o(Q) = W(Q). The rowation
potentials ©(Q) and ¢(Q') are almost equal, because the difference (= 1gr)
is of the order of 3 m for a reference model up to degree and order 29. TFor the
Same reason, the linearized expression

L 2T@ 2y@ T@Q
Ag(Q) 3r + 3r Y(Q)

can be regarded as almost exact, These approximations hold better for this type
of model than for the simpler, and traditional, ellipsoidal model. The gravity
potential at the gravity station Q.is

-16-



W(Q) = U(P) +T(P) +AW(P,,Q) +4(P))

where AW(P,Q) is the (levelled) potential difference between the cap center
P, and Q. Since T (P;) is not known, we can only measure

W(Q - T(P) = U(P) +AW(P,,Q) +0(Py (3.17)

where U(P;) is obtained from the reference model and the coordinates of P,
(precise fix), Thersfore, instead of Ag we determine

Ag* = g(Q) - Y(@Q" (3,18
Q" is a point with the same ¢ and \ as Q and Q', andwhere

U@ +o@Q" = W(Q - T (Py

The relationships between Q, @', and Q" are illustrated in Figure 3. The
distance Q" Q' is ’

QUQ" = (U@ -U@MNY@™ = T(PYyy (@™

and
Ay —
MY = ¥@) +£@) @)
~7(@) +Z@T @y y@™
. ~Ar
So
28" = £(Q) - (@) > 5@ - @) - LU T2y y(@
or
v -1 2
48" = 48(Q - T T(PYY(Q7T > 4g(Q) + 1 T(Py) (3.19)

The measured Ag* can be used in one of two ways: (a) as a true gravity
anomaly corrupted by a 'bias" Ay T (Py)
ar ¥(Q)
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(b) as a function of the gravity field on its own right, defined by (3.19) as
dependent on both Ag(Q) and T(Py). Only (a) shall be considered here,

[ esssace e .. /Q'\.
7! 1 \3 <
i i Fer \3/’\“ ' . Terrain
77? ; l ¢ e ..
Q@ ;A ' g
- s ]
3 Q"QY : \
L~ i s
1 Q' < U, = (V(Py) = T(Py) -~ AW(Dy, Q)
1 U, = V(Q = V(P -AW(P,,Q)
' U(Py) = V(Py) - T(Py)
' Q@ = T(@Q/MYQ
—3 Q"Y' = T(PY/Y(Q

Figure 3.1. This picture illustrates the way in which the anomalies AE
are defined at the Farth's surface, in terms of the available
measurements, using the center of the cap as levelling datum.

(See paragraph (2.1) for notation).

3.5. Propagation of Position Errors through Gravity Anomalies

To set up the optimal estimator (2. 6) we have to know the correlations among
the measurements and between the estimated variables and the data. For this we
use the various correlation functions that are dependent on the position of the data
and the estimates' points., These functions are usually quite smooth horizontally,
and an error of up to a few seconds of arc in the geocentric angle ¥ is not likely
to have any significant effect on them and, thus, on the estimator. The same
functions are considerable more sensitive to a change in the radial positions of
the points, so errors in r are more important than those in §. If we have the
values of Ag (or A’,‘é) at a point Q of coordinates ¢, A, r, but we assume,
through incorrect position determination, that this point is Q or qg y A r )

then

A dAg A

Ag(:o:a-’r) :'Ag(’.ﬁ,A,r) + S—f(é ’A ’;) E"

A A .
where ¢, = r -r. The correction 3;% €. cannot be computed, as €. is unknown,

50 we are confined to use Ag( Q)Y as if it were Ag(é), thus having a position induced
error 248 € In the gravity anomaly. A constant position error will result in a

r

Q]
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AA
constant bias in all gravity anomalies, as the variation of :;& over the whole range

of r on the Earth's surface (about £30 km) is very small. An error in Ag will,
in turn, propagate into the estimated T's

T =

NasFs

A A .
fbg+elg) = T+] fiesg = T+ow,,, Tt
c 1 DY

i

If the data arrangement is much the same for each cap, then the estimator "weights"
f; are also much the same in any cap, and the resulting error in each T from
abias in Ag is going to be nearly constant, These nearly equal errors in potential
will very likely cancel-out when potential differences ars computed, [for the same
reason, the effect of an erroneous GM on the mean value of the reference model's
gravity will not have any appreciable consequence on the estimated potential differ-
ences. Thus we can have rather large biases in GM and on the set of station
Positions (error in the size of the reference ellipsoid). On the other hand, less
corgﬁl&ted errors.in r are not likely to cancel out. However, t}*e rms value
of =7= atthe Earth's surfacs ‘s moprowimatsl, caly 3 uanls m, From e resuiis
o section 4 it follows that errors up to 0.1 mgal in Ag, which are highly system-
matic inside a cap but vary randomly from cap to cap, can be tolerated. The same
results show that several mgal in errors totally uncorrelated from station to station
have very small effect on the accuracy of T, From all this, it can be concluded
that: a) errors of several meters in r (at gravity stations) constant over the whole
Earth, can bhe tolerated;

b) errors of seversl meters in r, constant inzida annn TRD, TVt unaoon
irom cap to Cap, are acceptable;

¢) errors of several meters in I, uncorrelated from station *c :°2:on have
Smail effect,

[

e =T e

The Global Positioning System, already mentioned, is expected to provide fixes
accurate to 10 m in each coordinate after six seconds of receiving radio signals
from four satellites visible at the same time (Anderle, 1978). After 15 minutes,
this accuracy should improve to 1 m, plus a constant bias of no more than 3 m
due to an error in the adopted ellipsoid. Thus, the contributions from (b) and
(c) above should come to about 1 m, guaranteeing negligible position induced
errors in Ag. By usinga GPS receiver in conjunction with a gravimeter, one
helicopte r crew could collect all necessary information within a 5° cap (about
500 stations) in less than two months, Additional work would be needed to estab-
lish levelling ties between each station and the prediction point at the center,

for which already existing traverses could be used, where available. In fact,
even without GPS fixes, the positions of points like Q' in paragraph (3.4),
which are obtained using levelling and the reference model, can be used as station
positions. The errors are going to be

€ = IV(Q-U@Q"I/Y >~ (T(P) - T(Q)/GMa™>
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Ifa 20,20 model is used, the rms of T will be on the order of 3 kgal m, so
€& =~ /2 x 3 kgal m. Because potential is a smooth function of distance, the
correlation € between T(Q) and T (Py) will reduce the rms of the error

o, =(/OT @ ot (P72 e T ) v

over distances of the order of one cap radius (500 km), so levelling-determined
positions might be sufficient for the gravity stations.*

3.6. Levelling

Levelling is needed to connect cap centers to benchmarks, and cap centers
Lo gravity stations within their respective caps. Existing traverses should be used
wherever possible, but only unadjusted values or values adjusted within relatively
small regions must be used, Otherwise, results could be biased by the distortions
accumulated in large adjusted nets. To keep errors small, the traverses should be
as short as practicable. This goal is easily achieved for the levelling inside caps,
as distances from center to rim range between 500 and 1000 km in the cases con-
sidered; the longer traverses from centers to benchmarks require a careful planning
of the overall system. Caps should be placed, as much as possible, within flat areas
with a smooth field of gravity anomalies, because estimates of T are likely to be
better there than where both field and terrain change wildly, as suggested by the
results in Appendix A, Traverses should be levelled across regions where the
topography is gentle, to reduce their errors.

The simulations reported here have been done assuming that all levelling
traverses run along arcs of maximum circles, that their errors are uncorrelated
unless they overlap, and that the standard deviations of these errors obey the simple
formula

Opu, = 0.1/7 kgal m (3. 20)

where £ is the length of the traverse in thousands of kilometers. This formula
represents a quality of measurement not much better than that of present day first
order levelling (see, for instance, Lelgemann (1976)).

T aAn error €&, Will result in*an error Y€,, kgalmin U( P);Nrof about 0. 3 €,
mgal in the value of each Ag ; and of approx&pately 0.3 €, i%lfl kga} m in
T». However, according to Tables 4. 3 and 4.4 Eafi > 0.3 for 5” and 10° caps,
S0 €T due to €, is 0O(0.1 €,) kgal m and can be neglected here if €, < 0.5 m.
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4. Computing Disturbing Potentials

Paragraph (2.2) explains the choice of least squares collocation as the tech-
nique for predicting T at the cap centers. Several practical problems associated
with this method must be considered before even relatively simple simulations can
be carried out. A description of these problems and their treatment is given in
this section.

4.1. Reducing the Dimension of the Data Covariance Matrix

Assuming that the gravity stations are spaced some 40 km from each other,
then their number in each 5° cap will be close to 500, and to 2000 for a 10° cap.
This means that C., + D is either a 500 x 300 or a 2000 x 2000 matrix, respectively,
Being symmetrical, it will have up to 2000000 different elements for a 10° cap,
each one requiring one calculation of the covariance function Creps (P, Q). This
can be a very costly process in terms of computer time, and inverting C,, + D
can be costly as well. This is particularly true in the context of a study in which
calculations may have to be repeated several times with slightly changed assump-
tions. For these reasons an arrangement of the data was chosen that gives the
C:; +D matrix a strong structure. This, as explained in Colombo (1979), brings
about great savings in both forming and inverting the matrix. To understand how
this is possible in our case, consider the follow ing argument. Imagine that the
gravity measurements are arranged in concentric rows around the center point,
which is also the estimation point, and that all stations are on the same geocentric
sphere as the center. mstead of the individual anomalies, suppose that we use
the row sums

N 1

Awgi = Zl Agiy

as data. The number of A~g 'S is the same as that of the rows, N.. The covariance
function for the Ag's is
Ny N_]
. ~o~ 'y Z
CRege (L)) = Mldgiagy} = L L M{Ag,Aag,) (4.1)

a=12=1

(Ny,N; are the numbers of stations in rows i,j) while that between T(P) and
Ag, is

z
-

Cr fi (P, i) = M{T(P)m

i~

08} = N.M{TAag,} (4.2
1

o
>

- l‘m Ry . o . -
as M{Tag,; is constant for all stations in the same row.

-21-



With these two functions we can seb G Crz oaod Cap, wille die oolse mairix is
= i ,
- {du=0 1#] (4.3)
D d,. = i 2
tdig =2, 0

where Oy, is the standard deviation of the mth measurement on the ith row. C,.
is now only N. x N, : for a 5° with 40 km vetwsen rows, N, =12, This implies a
reduction of more than one order of magnitude in the dimension of the data set and

of several in computing time, because setting up the matrix is proportional to its
(dimension) , while lnverting it requires a time proportional to (dimension)®, More-
over, as shown in the reference given above, if the points are equally Spacgd along
each row, having the same number in each row, then estimating T from Ag or
from Ag gives the same result. In other words: this arrangement largely improves
computing efficiency, without changing the quality of the result.

A distribution of data with the same number of points in every row is not a
good one, because if the maximum separation (in the outer row) is 40 km, then
the stations will be very crowded at the center. If points are eliminated to thin
out the central region, the exact equivalence to collocation using Ag will be lost.
This will bring some deterioration in results, though not a very remarkable one.
The actual accuracy can be found, as usual, using expression (2.11) and the matrices
corresponding to Ag's. The unequal number of points will result in the outer rows'
Covariances being larger than the central ones', and this will probably worsen the con-
dition number of the matrix, To avoid this problem, the row sums can be replaced
by row averages.

Ny
ig = = 1 ag,, (4.4
1\34_ a=1
‘\Ji \‘1‘
—_— 1 ¢ o
CRe & = Mfdg,2g, ) = WIZ;IHZJI M_f_ugmugjn} (4.5)
Ny
el = MIT(P)dg:} = T\%— ZM{T(P)Agm} = M{T(P)Ag ] (4. 6)
{ =l
and LM
dy = N5 L g%, D being diagonal. (4.7)
A=1

The grids used in this study were constructed according to a simple pattern that
keeps average distances between stations at about 40 km. There is one station at
the very center, six in the first row, twelve in the second, twenty-four in the third;
their number doubling from there on every time the diameter of.the row doubles (at
the 3rd, 6th, 12th, row, efc.), and staving constant otherwise. Figure 4.1 shows
this scheme used on a 5° cap. m such a grid, the separation between rows is
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Figure 4.1. Arrangement of Gravity Stations in the 5° Cap,
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always almost 40 km, and the constant scparation of stations la e same row variss,
from row to row, from 30 km to 80 km. Furthermore, the values of the covariance
between any point in row i and all points in row j = i are repeated at all points in
{. This greatly speeds up the creation of C., , @s all terms such as

Ny

NI{Agia Aggn 7

e

n
o

in (4.5) are equal regardless of m. Finally, computing time can be halved by taking
advantage of the fact that if a radial line is drawn through any point in the figure

its covariances with all points to the left of this line are the same as with those on
the right.

It is most unlikely that all gravity stations will actually have the same geo-
centric distances, and there is no fundamental need for this, as collocation can be
implemented with whatever coordinates the stations may have, although less effi-
ciently, as long as they are known with reasonable certainty. However, if the com-
puting savings mentioned above are to be realized, the data must first be reduced to an
ideal grid by collocation on a spherical surface. Measurements in the vic inity of each node
of the ideal grid can be used to interpolate a value on that node. Over a reasonably
gentle terrain, the distance between it and the sphere is not likely to exceed 2 km
within a 5° cap, and some of the nodes are going to be below, and some above the
Earth's surface. Assuming that five gravity stations were used, one on the same
vertical as the node but 2 km above (below) it, and four others forming cross with
the first at the center and 20 km arms, also 2 km above (below) the sphere, the
accuracy of a value collocated on the node is 0.8 mgal if the data has =0.5 mgal
measurements’ white noise. This was found using the same covariance functions
employed in all the other simulations conducted during this study. Since collocation
is a smoothing process, the rms of the estimation error is likely to be due, by and
iarge, to the high Irequecncy components of the data. As shown by the simulations
in the next section, as much as 4 mgal of high f{requency errors will have a neg-
ligible effect on the accuracy of the adjusted vertical connections.

4.2. Estimating T from A% instead of Ag

As already explained, the optimal estimator

depends on the type of data chosen d=z +n. Let Cs: and C,. be cuvariance
matrices for gravity anomalies Ag arranged inside a cap of center P,, but
suppose that the data available consists in values of 4g with the same spatial
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arrangement., According to (3. 19), f T is given in kgal m and Ag in mgal,

8% =4Ag + k T(D,) (4.8)

2 ~
where k> £=x10°>~ 0.3. Calling T the estimate of T(P,) based on ‘g, azd
T the estimate of T(P,) based on Atg, and using overbars to design row averages,
as in the previous paragraph, then

Np
T(P,) + €(Py) = L £ 108 +KT(Py) - k(T(P,))]
Np N

élfi K’g -k T(Py) E f,

3

T (Pa)

So
N ~ N —
T(Pa)[1+k £ £]+ &Py = T fia% (4.9)
Np
and ¥(Py) Z.f0%
A A m i =14t
T(Pa) = T(Pa) + €(Pa) = T(P,) kT - *VL—[l+kiZ"f1] (4.10)
i=1 1=
Consedquently, , N
§(P,) < €(pa) if Yf >0 (4.11-a)
=1
€(Pa) = (P if T £ <0 (4.11-b)
i=1

N .
It 1_;1 f, >0 thereisa reductigg in the estimate's error, according to (4.11-a),
and the opposite happens when izjl f, <0, according to (4.11-b).
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4.3, Accuracies for T(P,) Estimated over 5° and 10° Caps

Tables 4.1 and 4.2 show the accuracy of T estimated under different con-
ditions, using the theory explained in the two preceeding paragraphs. To obtain
the theoretical accuracy, and for the reasons given in the previous paragraph, the
square root of the value calculated according to (2. 11) was corrected by the factor

- .y . i s 2 i
/1 ! Lol 1 Whila gavrving q@limhiley fmnrm A9 =a to page . thig fan*aw ig glaynors
Le TR i) Yhila /3.-];;.‘0‘) SLIZN0lY iTom CaAsg o CAST, ULALS LACLW0IT 18 ALWVAYS
s 1A J

close t0 0.9 for 5° caps, and to 0.8 for 10° caps.

The values of the "weights" f, (i.e. the components of f) do not change
greatly, under varying circumstances, from the "typical® ones listed in Tables
4.3 and 4.4. This is particularly true of the largest "weights", from the center
point to the 10th ring, which remain nearly constant.

In general we can say that, for a 20, 20 model and up to several mgal rms
of white noise in the gravity data, the accuracy of T estimated on a 5° cap is
close to 0.4 kgal m, and for a 10° cap it is near 0.3 kgal m.

The "imperfect model' used for the results consists of the first N degree
~harmonics of a 180, 180 model obtained by Rapp (1978b) as a combination of a world
data set of 1°x 1° gravity anomalies with GEM~-9. The standard deviations of the
coefficients are listed up to degree N =30 in Table 4. 5. The "2L'"and "2H"
covariance models are based on formula (3.8) and have the following coefficients
(Jekeli, 1978):

2L 2H
A=100 @, = 18,3908 mgal® A =140 @, = 14,0908 mgal®
B= 20 @, = 638.6132 mgal® B= 10 ag= 160.6701 mgal®
S = .9943667 s, = .9939083
S; = .9048949 55 = .399753953
where B2 : R
s, = (-:L\, and S, = /—1?—2’

Covariances were computed with these coefficients and the closed expressions

also given in the above reference. To simplify calculations, all measurements

and estimations are supposed o be made on the same sphere of radius a = 8371000
m. To test the resulting accuracies, some numerical experiments were conducted,
as reported in Appendix A.
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Accuracy of Estimated Disturbing Potential (kgal m) for 5°
Covariances (some values obtained us ing "2 H"

Table 4, 1.

Caps and "2 "

are in brackets),

Imperfect Model | Perfect Model | RMS of €A’§ Maximum Degree,
in mgal Order in Model ;
0.81 0.80 2 10 3
(0.37) 0.41 - 4 20 '
(0.36) 0.39 (0.23) 0,27 2 20
0.38 0.27 0 20
0.40 - 4 30
0.37 0.21 2 30

(Values estimarted from 4g's are 1/0.9 of

Table 4,2,

those given here.)

Accuracy of Estimated Disturbing Potential (kgal m) for 10° Caps
‘ ‘ and "2 L" Covariances

Imperfect Model | Perfect Model | RMS of €8% | Maximum Degree,
in mgal Order in Model
0.29 - 4 20
0.27 - 2 20
L 0.24 0.19 0 20

(Values estimated from Ag's are 1/0.8 of those given here.)
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Table 4.3.

Optimal Row ""Weights" f; (kgal m/mgal) for 5° Caps, Maximum Degree and
Order in Model is 20, RMS of ¢ A"é is 2 mgal (all values multiplied by 0. 1).

Row No. Imperfect Model Perfect Model
YT2 LH H2 HH 7?2 LH !12 H”
fix0.1 | f,x0.1 | fx0.1][f x0.1
0 (center) 0.225 | 0.225 0.225 | 0.224
1 0.438 | 0.438 0.436 | 0.435
2 0.408 | 0,409 0.404 | 0.402
3 0.383 | 0.391 0.383 | 0.380
4 0.351 = 0.354 | 0.344 , 0.340
5 0.301 | 0.304 0.292 | 0.287
6 0.301 | 0,807 0.290 | 0.285
7 0.255 | 0.260 0.242 | 0.237
8 0.228 | 0.234 0.214 | 0.208
9 0.198 | 0.204 0.183 | 0.176
10 0.176 | 0.182 0.158 | 0.150
11 0.122 | 0.129 0.109 | 0.104
12 0.234 | 0.243 0.189 | 0.168

€

To = € g

i2

¥ f, = 0.3 €z, kgal m.

Table 4.4,

From these values it is clear that a constant error in gravity €g, (mgal) will
result in an estimation error (bias)

Optimal Row "Weights" f; (kgal m/mgal) for 10° Caps, O‘EAE‘ = 2 mgal, Imperfect
Model to Degree and Order 20, "2L" Covariance Function.

Row No. | f; x0.1 Row No. | fyx0.1 Row No. | f1x0.1

0 0.218
1 0,434 | 9 0.294 | 17 0,152
2 0.419 10 0.276 | 18 0.138
3 0.413 11 0.241 19 0.123
4 0.392 12 0.252 20 0.110
5 0.352 | 13 0.218 21 0.097
6 0.368 j 14 0.204 22 0.085
7 0.331 | 15 0.186 23 0.073
8 0.316 | 16 0.169 24 0.059
i 25 0.110
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Table 4, 5.

Accuracies of the Potential Coefficients in the Imperfect Model, by Degree.

n 6 ¢, n 8¢, n €,
x 1072 x 1073 x 1072
1 - 11 | 4990. 21 | 2899.
2 | 2720. 12 | 4415. 22 | 2761,
3| 63594, | 13 | 4830. 23 | 2635,
4 | 4564, 14 | 4458, 24 | 2522,
5 | 7237 15 | 4140. 25 | 2417,
6 | 5703. 16 | 3864, 26 | 2321,
7 | 6707. 17 | 3623. 27 | 2232,
8 | 5685, 18 | 3410. 28 | 2149,
9 | 5727, 15 | 3220. 29 | 2072,
10 | 5118. 20 | 3051. 30 | 2001,

4.4. Correlation Among Estimation Errors

The elements of matrix V ¢ (expression (2.20)) are of the forml
A A 2 2 A 2 A - A A
Vi = M{(g T(Py) - eTQu)’} =0 €T(Py) +0%€ T(Qui)- 2M{€T(Pm)€T(QJk)}(4. 12)

if the element is on the main diagonal, or

<t

51

@
[}

= M{(€ T(Pid - € T(Q)(€ T(Pra) - € T(Qa) ] (4. 13)

M€ T(Pi,) e T(Pip) } + M{e T(Q,0) € T(Qu)} - M{€ T(Pia) € T(Qum) }-M{€ T(Pyp)€ T(Qun) ]

if it is off-diagonal. To simplify matters, let us assume that all caps are of the
same size and have the same data distribution inside. Then '

GFTA("L) =9

where ¢ is the global rms of the estimation errors, found in accordance to (2,11).
Furthermore,

-~ The subscript k indicates the '"caps pair' or observation equation number.
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/ Ta., T 141
MIeTR e T@0) = MUTID -£12,5 TR0 27 dy))
.
= Crr (P, Q) - 2Cr £+£ Cgq f (4.14)

Where d. = [4g,8g ,...,481,...,4g, ], corresponds to the hth cap, and
Crg = MIT(Ry &
isa 1xN, row vector (N is the number of concentric rows in each cap)
T
Cape = Mididi]

isa N, x N. matrix (dy 1is the data in the hth cap).

The elements of these matrices are:

Co = MIT(B)Agk)) = - MIT(Py) L Sgi(o)]

M{T(P)ag: (k)] , (4.15)

il
=
ixe)

(o]
for Crhgk

(where Ag (k) is the value of Ag at the rth gravity station on the ith
ring centered at P,), and

N

i

Sgik) ) Agu(m)}

Ne
Cy = M{A—gi(k)ggj(h)}z "l““M{ Z

=

-

(4. 16)

for Céh E‘k R

If the total number of caps is N. » there are approximately (1/4) N.? N, ° different
"ring covariances" (the general term in (4.16)), and each requires computing the
covariance function of Ag N, x N, times. This can tax the largest computing
budget; on the other hand Ve AA" is only part of the a priori variance-covariance
matrix used for adjusting the potential difference between benchmarks AW(BMA, BMB).
Usually, a priori covariances are not needed to very great accuracy, because the
adjusted values are not extremely sensitive to them, or should not be if the procedure
has been designed properly. If approximate values are enough,. then a most efficient
way of obtaining them, correct to several significant figures, is to assume that the
covariance of the "ring averages" A—g1 (h) A—gj (k) is
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Y — — r 1 31T 1 217
Midgi(h)agyk)} > M«—— |" Ao, m)de —L Ag(yy, B)d
s mEaol Mg [ sew mde 5=l M g, )08}

2 < N
= G-a}I—[ L (20+1)m-1)% 6 €, Pyt Po(by Purll) +

n<go
N max

+ ) (2n+1)(n-1)° 8, Pogby) Parlhy) Py(thy) ] (4.17)

n =N+ 1

where Y, is the spherical distance between the centers of the caps where rings

i and j are located; . and ¥, are the sizes (semi-apertures) of rings i and
J5 while N, 6¢,, 8, are the same as in expression (3.4). Values computed as
above are accurate to no less than three significant figures foK g > ;OO, Uy,

) < 5% and N,,; > 400. Table 4.6 presents values of M{e T(Py) €T (P} for
different distances between cap centers: this illustrates the considerable indepen-
denci of estimates separated by more than 2000 km. As the dataNglre supposed to
be 4Ag's rather than Ag's, results have been divided by 1 +o.3lz__:l £,> 0.9

Table 4,6,

Correlation Between Disturbing Potential Estimates at Various Distances
(O sA% = 2 mgal, 5° Caps, Imperfect Model up to Degree and Order 20y,

M{eT(P)eT(P)] (kgal m)®Distance D, P,
1!2 HH f !72 LH I{m
]
MLl L 0.154 0
0.032 | 0.033 1150
0.027 = 0,028 1300
0.008 . 0.007 2000
0.002 . 0.002 2300
-0.002 | 0.002 2500
0.001 . 0.002 14000
-0.002 -0.002 17500

5. _The Accuracy of the Adjusted Vertical Connection

This section presents the main results of this study: the theoretical acecuracy
of a World Vertical Network constructed along the lines already discussed. It also
contains the theory of an optimal estimator for potential differences between centers
of pairs of identical caps, and other ideas regarding possible uses of satellite and
terrestrial data for setting up and strengthening levelling nets.
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Two cases have been considered: in the first, five 5° caps were placed
in North America (4 in the U.S. and 1 in Canada) and another four in Australia.
The cap centers have been chosen to avoid overlaps and to ensure that almost
all the area covered by the caps is land. The "benchmarks", two points whose
coordinates are given below, are; BMA in Electra, Texas, and BMB in Wiluna,
Western Australia. Cap centers in the same land mass are supposed to be joined
to the corresponding benchmark by levelling traverses, as in Figure 2.1. To
assign a standard deviation to the error of each traverse, formula (3.20) has
been used, the length of the traverse being that of the maximum circle joining
its endpoints. All data is supposed to have been measured (or reduced) to the
same sphere of radius a = 6371000 m to simplify calculations. Tables 5.1 and
5.2 show the accuracies obtained us ing formula (2. 19) with the "a priori" matrix
V corresponding to varicus combinations of covariance function and reference
model. The following is the list of cap ceaters, including their latitudes (the
benchmarks are also cap centers). The difference between the North America/
Australia and the U.S, /Australia connections is the fact that cap number 9 in
the former has been replaced by cap 9* in the latter.

Cap No. Latitude Longitude T.ocation State

1 (BMB) -27.5° 120.0° WILUNA W. Australia
2 -20.0° 130.0° Tanami N. Territory
3 -22,5° 142,0° Viddleto: Queensland

2 -22,3° 143.5° Cobar N. S, Wales
5 36.0° -85.5° Sparta Tennessee

6 (BMA)  34.5° -99.0° ELECTRA Texas

7 14,5° -95.0° Wessington South Dakota
8 37.0° -112,5° Fradonia Arizoma

& 58.3° -112.¢0° Mc, Murray  Alverm:

9% 65.0°  -150.0° Manley Alaska

Overall, the accuracies listed in Tables 5.1 and 5.2 can be Separated into two
groups: those based on the use of an imperfect reference model, and those
obtained assuming a perfect model. Results within each group are much the
Same: approximately 0.3 kgal m accuracy with an imperfect model, about 0.2
kgal m with a perfect one. Changes of 100 in the accuracies of levelling or
gravity measurements caused less than 10% variation in AW (the effect of lev-
elling accuracy is shown in Table 5. 2); while a change in covariance model had
only a slight effect on AW, as suggested by the components of the respective
pseudoinverse vectors v listed in Table 5.3 (where v'p =AW, see paragraph
(2.4)), and as shown in Table 5. 1,



‘In summary: the accuracy of the reference model is the most important of the
various sources of error included in this study. Improvements in this model
are likely to have a large effect on the quality of the resulting vertical network.

As the error correlations between caps, shown in Table 4.6, are very
small compared to the autocorrelations (cap errors), we can ignore them in
a first approximation, regarding all errors contributing to matrix v as
uncorrelated. The standard deviation of the adjusted AW can then be guessed
using the following formula, instead of the "exact' expression (2, 19):

X
=

s
CAW(BMA, BMB) > (2(0°€T +0.01 Loy + ¥30% A1)/ Ne
(a( )

where Ne is the number of independent equations (paragraph (2.4)), Z£a.. is
the length of the longest traverse (< 5000 km), and o€ Ar is the error in rela-
tive geocentric position between points. Assuming: eight equations, as in the
two examples; GS; = 2 mgal; and the imperfect model, then

1
CAW(BMA, BMB) =~ (0.40 +0.9602¢Ar)%//8  for "2L"
and ‘ .
CAW(BMA, BMB) >~ (0.36+0.960%¢AT)2//8  for "2H"

Assuming, for instance, that ceAr ~ 0.5 m, the corresponding accuracies wit
these simplified expressions would be 0,28 kgal m and 0,27 kgal m, respectively.
Now £0.5 m in relative geocentric position is within the reach of present-day
Doppler satellite techniques. In any case, all the results given here are well
below the =1.5 kgal m theoretical uncertainty for tidal gauges and spirit levelling
alone,

Table 5.1,

Accuracy CAW of the North'Amfrica—Austraiia Vertical Connection (in kgal m)
0€dr=0.15m, 0eclg=2mgal, geAW, =0,1/2 kgal m

Imperfect Model (N = 20) Perfect Model (N = 20)

"oy " H no I, "o H"
1

0.32 0.30 0.21 E 0.18
!
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faoie 5.4,

Accuracy 0AW of the U.S, A, -Australia Vertical Connection (in kgal m)
2L covariance, gedfg=2 mgal, g€ar=0.15m

Imperfect Model (N = 20) Perfect Model (N = 20) O’EAW’E ;
0.32 21 0.1/2
0.32 21 0.0/2

" Table 5.3.

Tar=l_ =1 - . . ‘
Components of v = (27Vv™'ay*a’v™ (Dimensionless)

North America-Australia Connection

cedg=2mgal, 0eAr=0.15m, 0cAW,=0.1/2kgal m

2
"Observation Equations' Imperfect Model (N = 20)| Perfect Model (N = 20)
Potential Difference | 00+ NO- no L ng g nT v
between caps number
1-5 1 .216 | .234 207 | .204
1-86 2 .067 .054 .048 © ,050
2-6 3 . 109 . 130 .204 | 212
2 -7 4 . 147 .128 .098 | .108
3-7 5 .016 | -.059 .104 | 085
3-8 6 .200 | .218 L1370 L1535
4 -8 7 .022 -. 001 072 .044
4-9 8 . 224 . 247 .129 .140

5.2. Optimal Estimator for the Potential Difference Between Two Caps

In addition to the more general configuration studied in the preceeding para-
graphs, we shall consider a "minimal estimator" where only two caps are involved,
each centered at a benchmark. As in paragraph 5.1, we shall restrict the esti-
mator by assuming that the data A’E,r has been converted to ring averages Ag and,
furthermore, that both caps are identical in size and data arrangement. This limits
somewhat the power of the estimator, in particular the use of ring averages makes
it suboptimal by comparison to a "full" estimator based on point data. On the other
hand, these constraints greatly expedite creaticn of the estimator, as in
the case considered before.
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The objective of the estimator

Ne Np
OTI(PLP) = £d - flds = ) fu GB(D - ) £aiEd2) (5.1)
=1 J=2

is to minimize the global mean square of the prediction error;
M{€dT(Py, B,)% ) = M{QAT(P,, By) - (£d; - £Ld.))%) (5.2)

Because both caps are identical, and the average is isotropic (function of spherical
distance and radial distances only) then, if both caps are on the same sphere, the
optimal weights for each are the same: :

fﬂ =f~=f or f =:“12:~ :1,2, ,}Ig-
Accordingly,
Nl‘
A . — - R
EMEAT(PL P Y= EMI(T(PY - T(R) - L fudgul) - fgu2)) )7)

= EM{(T(Py) - T(B) -~ £ (d - d9)(T(Py)~T(Po~(d~da ) }

= ©r1(0) = Crr(¥e 1) +2£ (Clg5-Cly, ) +£7(Cuy e, -Coy 2o+ D)

where C.,:, is the same as Cqpe, in(4.14), and Caxzys D, C\-lg1

Cnazl are as
in(2,7)., Thus,

3 =
%S‘M{Q-AT} = Crliz ‘CTld_1+(Czlzl-C2122iD.).§_ 0 ) (5.3)
or
i-= (Cglzr-czl_z;D)‘l (Crg,=Cra) (5. 4)
since the data consists in values of AT; rather than Ag, a '"correction factor"

should be used, as before

0T ~ £k - x ——
= (88 28I % 140,57 ¢, (5-9)

£%,....0%

yeeesA gy, ]T. Using the type of data grid shown in Figure 4,1,
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extended tc 2 10° cag, 5o fhat the average separation of the stations is 40 km,

assuming the same reference gravity fields and covariance models (2 L and 2 H)
used before, 0,1 m relative® positionaccuracy (cap centers) and 2 mgal accuracy
for the gravity anomalies, the following global rms of the estimation errors were
calculated for various separations ¥, between the caps:

L DRI TR

- ear D G o

RMS of Error of Optimally Estimated Potential Difference Between the Centers of
Two 10° Caps §3° Apart. (Imperfect model to degree and order 20, geAf = 2 mgal,
"2 L" covariance function. )

gEAW Py
(kgal m) (%)
0,38 12°
0.40 20°
0.42 30°

(RMS fluctuates between 0.41 and 0. 42 kgal m for 30° < Yy < 180°,)

If the position errors at each cap center are uncorrelated, and if g €r eis their -
rms, then 0 € AW should be corrected as follows: ¢ € AW' = .f(c:*AW) +2(Cern)” .

It is interesting to compare Table 5. 4 to Table 4.2: forA Wy > 30°, JM{eATE}
listed above clearly approaches /2 M{€ T°} where /M{e’rz} is the "single cap"
accuracy listed in Table 4. 2. This also agrees with the increasing independence of es-
timates of T separated by more than a few thousand kilometers, pointed cut in
paragraph 4.4, Similarly, the values of the optimal "weights' f, converge to

those for a single 10° cap, with increasing ¥,.

5.3. Height Differences Between Inaccessible Points

The technique described in this report, in essence, uses accurate position
fixes and a good gravity field model to obtain an estimate of the potential difference
between points, estimate that is then refined using data from the neighborhood of
each point (gravity anomalies and levelling) to add high frequency information not
contained in the model. So far we have assumed a good local coverage, easily
accessible gravity stations and, generally, a most cooperative disposition from
both Nature and men towards our project. If either, or both, were lacking, we
would be left with the field model, plus some data in the perifery of the region of
interest to refine the former, and perhaps not even a high accuracy relative
position fix at each cap center, Through co!

porated into the adjustment, though not as efficiently as in the scheme discussed

- -

" The relevant error here is that in the measured difference of geocentric distances.
-36-
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in paragraph 4.1. As the data is far from the point of interest, it is Important o
use imformation rich in long wavelengths signal, One possibility, if the inacces-
sible area is not extremely far from the sea, is the mean sea surface derived from
satellite altimetry, regarded as a quasi-geoid with 1.5 m global rms of ™oise"
due to dynamic effects. Altimetry could be used on land as well, to provide fixes
in radial position for the ""cap centers”, The surface of an inland sea or lake
would be ideal as a target; other areas where consistent ellipsoidal heights could
be obtained (i.e,, independent of seasonal effects), such as salt-flats in desert
areas, etc., could be used if systematic errors due to surface reflectivity were
sufficiently understood. With Very accurate gravity field models and continuous
tracking of the altimeter satellite by another craft in a higher orbit it should be
possible, eventually, to obtain computed orbits good to 0.1 m (rms), which, added
to another 0.1 m (rms) error for the altimeter itself, would amount to near 0. 15

m (rms) error in the ellipsoidal height fixes, or about 0.2 m relative geocentric
height accuracy between benchmarks which would propagate as a 0.2 kgal m error
in potential difference, Gravity field models have been improving at a fast rate

in recent years; new and better tracking systems are be ing developed; full
coverage of altimetry data over the oceans is now available from the Geos-3 and
Seasat-I spacecrafts, These are three encouraging signs that, in the coming
decade, there will be enough information to model the field up to degree 180 with

a global residual rms of about 1 kgal m for the disturbing potential. Then, vertical
Zxi+ (0.2)° >~ 1.5 kgal m should become feasible.
This is the same as the theoretica] global accuracy of a system based on tide
gauges: it should be much the same as having "tide gauges' inland.

+3 e oen ~1 N R .
connections SCCL IC at least v

5.4, Some Questions Eegarding Accuracy Estimates

The accuracies listed in the various tables of this section depend, mostly,
on the applicability of the theory of collocation to the rea world, In particular,
there are some aspects of collocation open to criticism that deserve a mention
here. The first one is the unavoidable use of approximate covariance functions, as
the true ones cannot be known’ exactly from finite amounts of data, basically because
the expansion of the "tme" gravity field in harmonic polynomials is infinite, TLaurit-
zen (1973) has established the Impossibility of obtaining the covariance of a random
process on a sphere even from a complete data coverage, but it is not very clear
why the gravity field should be treated as a random process in the first place, BRe
as it may, the available information is always going to be incomplete and [naccurate.
Otherwise, there wouldn't he much peint in using collecation, or any other form of
interpolation and filtering, as there would be little to learn from it. This is why
two different empirical covariance functions were used, "2L'"and "2H", to find
out how sensitive the adjusted potential differences were to the choice of function.
The results, as shown in the various tables, were much the same with both.



Secend, there is the question of how suitable is the spherical harmonic
representation of the gravity field on which a good deal of the theory put forward
here (as much of modern geodesy) rests. From the work of Petroskaya (1977)
and Sjoberg (1978), who have proposed mathematical formulations for the field
both inside and outside the Earth's surface, we learn that such expansions are
not necessarily sums of solid spherical harmonics, On the other hand, it is
well known that the gravity field of a homogeneous ellipsoid can be expressed in
terms of such harmonics down o a Sphere completely buried in the ellipsoid.
The Earth being primarily ellipsoidal, we may expect it to have a field that does
not behave too differently from that of the ellipsoid. However, there is no reason
to expect that the harmonic series that describes the field exactly outside the
bounding sphere does so also inside it and down to the Earth's surface. That it
does not diverge too strongly is shown by the fact that low frequency models de-
rived from satellites provide a fit to surface data that improves as more terms
are used. That the model is not too inadequate follows from the usefulness of

formulas such as Vening Meinesz' and Stokes’, which are oased on the assumption
that the field can be expanded in solid spherical harmonics. But all this supporting

evidence shows is that these ideas "work' enough to provide about one meter ac-
curacy in computed undulations, seconds of arc in"deflections of vertical, a few
milligals in interpolated gravity. No evidence is available to suggest that they

also "work' at the level of accuracy (approximately 0.3 to 0.5 m} expected of them
here. Going back to the homogeneous ellipsoid, it is sufficient to add a most minute
inhomogeneity, in the form of a tiny material sphere at any distance R from the
origin, for the series of the composite body to fail to converge inside the sphere

of radius R. The mass of the Sphere (and therefore the difference between the
pure ellipsoidal and the composite field) can be made as small as desired without
the series ever converging again. This makes clear that, at least in some cases,

a gravity field with a harmonic series that does not converge down to an internal
sphere can be only slightly different (except at some isolated poinis) from one with
2 series that does. Krarup (1969) brought attention to this fact, and enquired
whether this might not be always the case. He concluded that it is, furnishing
preof of what he called a "Runge-type theorem'!, because of similar theorems for
elliptical differential equations. Krarup's thesis is that any harmonic field can be
approximated uniformly, together with all its derivatives, by sequences of series of
Spherical harmonics fhat coaverge o an arpitrarily small sphere centered at the
origin, completely inside a surface (terrain) that separates the region whers th
tield is harmonic from that where it is not. There are a few restrictions on the
nature of this surface, but they are loose enough to ensure an adequate fit to the
real topography. The uniform convergence takes place only down to that surface,
Inside, the various approximations may differ increasingly from each other, and
have no limit function. So, a spherical harmonic approximation to the exterior
field can be quite frregular and "wwilds g nlericr, aad chis migne oe a cause

for some concern here. The global rms, or accuracy obtained from (2. 11), cor-
responds to the average of the square of the errors of all possible predictions made
on the same sphere where the actual estimation point is situated. Such sphere is
always partly inside the 3o If we imagine

lid Zarth, because of the 2quaterial buigs.
the covariance functions tha: we are using as correspondin : c
monic expansion that fits closelv the field ~utside the “errain, they may also cor-
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respond to a function that has a markedly different character oun that part of the
sphere that is buried from that which is out in the open. In other words, the
spherical harmonic approximations may not be sufficiently "stationary' for a
meaningful application of collocation. It may help to understand this problem
having some method to generate the sequences of convergent series Krarup has
spoken of, in order to visualize their behavior., Such method, to this author's
knowledge, has not been proposed yet.

The real question here is whether collocation, and the use of spherical
harmonics theory, may not be a source of bias in the results. In practice there
may be many sources of bias not treated here, such as systematic errors in
gravity measurements, position fixes, etc. The only definitive way of knowing
if such factors can be truly significant is to subject the whole idea to experimen-
tation. If enough determinations of potential differences are carried out using
this technique, at many places around the world, between points already connected
by levelling traverses, then any large systematic discrepancies should become
apparent. If they do not show up, then the experiments will provide supporting
evidence for the use of the idea elsewhere.

This report has dealt with the concept of World Vertical Network: a set of
benchmarks thousands of kilometers apart, the geocentric coordinates of, and the
potential differences between which, are accurately known, so they can be used to
commect separate levelling nets in a world-wide system,

The results of section 5 suggest that, zccording to theory, it might be possible
to set up this network to a significantly better accuracy than that provided by tide
gauges and spirit levelling alone. This could be done by using satellite and terres-
trial datz together, empioying (east squares collocation as the main mathematical
tool for combining them.

Two cautionary notes are in order: first, there may be causes of error not
considered in this study that turn out to be of practical significance: only
actual experience can have the final word on this. Second, the estimates of T,
crucial to the ideas in this work, are assumed made from values of A"?,r measured,
or interpolated, on spherical surfaces. Collecation 2an be used, in principle, on
more general (terrain-like) surfaces, but the accuracy is not exactly the same
as with the spherical arrangement of data points. "Common sense" suggests that,
if the terrain is gentle, departing smoothly from the spherical shape, the accuracy
should be much the same, but no evidence for this is given here. Numerical
studies are far more difficult when the data is not on a simple spherical arrange-
ment, and probably too expensive for an ordinary research project. Furthermore,
whether on the terrain or on a partially turied sphere, the statistical relevance of
the accuracies derived from collocation can be questioned on the grounds given
at the end of paragraph (3.4). 1If this is a real problem, it is in-
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herent to all applications of collocation theory fo estimation of gravitational
field variables inside the Earth's bounding sphere, and not just to the present

- ideas. This matter seems to have received little or no attention from workers
in this area.

Depending primarily on the qual ity of the reference gravity field model, the
accuracy of the vertical connections in the network could be between 0.2 and 0.3
kgal m, using the data arrangsment described in secticns 2 and 5. Such configu-
ration has been chosen, mostly, to simplify this study, and is by no means the
only possible one. With more data, including satellite altimetry, we could expect
even better results, so those given here are to be regarded as upper limits to the
ultimate quality of a global network.

The North America-Australia connection studied in section 5 requires
relatively few data (about 4000 point gravity anomalies to 2 mgal accuracy, 8
accurate position fixes and a number of levelling traverses, plus a reference
model to degree and order 20) and the quality of the measurements are almost
entirely within present day limits. The exception, the position fixes, can be ex-
pected to become feasible within the coming decade. Much of this data can be
obtained and used for other purposes, such as the study of polar motion and Earth
rotation in the case of the accurate point coordinates. In this way, by sharing with
other scientific enterprises, the establishment of the World Vertical Network could
be made both cheaper and an integral part of the creation of a World Geodetic
System for positions and heights,
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Appendix A

Verifying the Correctness of the Accuracies Given in Section 4

The covariance matrix for ring-averaged gravity anomalies is ve ry poorly
conditioned, with the arrangement of Figure 4.1, because of the closenass of tha
Measurements. Evidence of this was observed while trying to use tables with
equispaced entries and linear interpolation, as an inexpensive way of computing
the covariance function values needed to set up the matrix. With spacings as
small as 1 km, the small perturbation due to interpolation errors was enough
to produce a matrix with negative eigenvalues, which the true covariance matrix
can never have., On the light of this expe rience, it appeared reasonable to ques-
tion whether any results dependent on such a ticklish matrix could be regarded as
meaningful, including the accuracy estimates of Tables 5.1 and 5. 2. To clarify
this matter, a very high degree field model (up to n = 1000) cons isting only of
zonal terms was used

0
e

%(6) = M

"

-1000
Y. ¢y Pa(8) (A. 1)
n=2

with the ¢, selected so the disturbing potential T would have the same spectrum/
covariance function as the one assumed for the Earth, Using the appropriate ex-
pansion for the gravity anomaly of this model, Ag was calculated at every point in
the grid of Figure 4.1 » and then the o/gtima%\ "weights' from Table 4,4 were used io
obtain the estimated 7. The error ¢ = T - T was then calculated using once
more the model, and the whole operation was repeated at 5° intervals, from pole
to pole. The mean value of the squared error Is, approximately

N G=m f=TT
L,I{?f} = 2ma Z sin 8, E;(ei )2/(2 -a Z sin 8,) ' (A.2)
&=o B=0

model up to degree and order 20, 2 mgal (rms) error in the gravity anomalies,

the global rms of the prediction error (accuracy), estimated using (A.2) was 0.3
kgal m. This is about 30% below the value given in Table 4.1, but not unreasonably
So: the sampling near the North pole, at 5° intervals, is probably too coarse to
accurately cover the fast changes in the field there, The largest errors also
occur near that pole, so a shorter interval is likely to pick up more of them, in-
creasing the right hand side of (A.2).

Table A. 1 shows :f‘ and the errors er , ?A/}; as functions of latitude
(10° intervals). The largest errors, as already mentioned, coincide with the wild
"spike' in the disturbing potential near the North pole. The error outside a 30°
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polar cap is almost everywhere less than the global rms. This suggests that the
worst predictions can occur where the field has large and fast variations. The
percentage of error in the predicted value, however, is about 10% at the pole, so
the relative goodness of the prediction is not particularly bad there. But we are
interested in the absolute value of the error, so the pole is clearly a bad place,
in this "artificial planet"”, for making estimates. Table A.1 shows that the be-
havior of Ag closely resembles that of T. In this particular case, the predic-
tion of T is bad where that of fg is bad,! and vice versa, and this could he
used as a practical criterion for selecting the locations of estimation points.
Predicting Ag from gravimetry in a "'candidate' region, at points in that region
where Ag is already known from accurate measurements, we could compare
the actual error in these estimates to the theoretical accuracy of expression
(2.11). TIf the actual errors are close to their theoretical rms, the region is
acceptable, and we can proceed to set up a cap like that one in Figure 4.1; if the
errors are consistently larger, the region should be rejected.

Other points to consider when selectin
nificant bedies of free water, because gravity cannot be measured as accurately
on water as on land; smooth topography (with most places easily accessible) to
permit accurate levelling and good coverage with gravity stations.,

H - - T d o i
a place for a cap are: lack of sig-

tern centered ai the prediction




Table A, 1.

Prediction Errors in T and Ag in a Zonal Field. Imperfect Reference

: ) * 2 mgal(T
Field to Degree and Order 20, 5 Cap, oedlg { 5 s mgil gAg))
© € ’f‘ €AAg T Ag
°y | kgal m mgal kgal m mgal
90 | -72.88 | 3195.39 | 697.91 | 26095.57
80 .53 -1.24 ~3.60 -14.36
70 .06 .20 - .50 - 2,14
60 - 17 .20 LT7 4,15
50 -.31 | . .37 -1.26 - 3,20
40 .04 | - .28 .78 2.41
30 -.13 - .07 - .60 - 1.81
20 -.01 - .04 .13 .45
10 -, 02 .08 .01 .60
0 -.06 .14 - .33 - .89
-10 .06 - .12 .41 1.17
-20 -, 02 - .03 - .34 - 1.34
-30 .07 - .07 .31 | .80
-40 .04 .98 - .03 - .15
-50 .05 .10 - .03 - .15
-60 .07 - .09 .36 .97
-70 -.12 - .04 - .58 - 1.85
-80 -.11 - .20 .46 1.92
-90 ~. 69 3.63 -2.25 - .65
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Appendix B

This Appendix contains listings of parts of the software developed for this
project, and sample output, First there is a listing of "RINGS", a program that
obtains the optimal components, or weights, of the estimator vector I (expression
(2

»6)). This program sets 4p 2 grid of the kind shown in Figure 4,1 for a cap of

22 CATCID (o degrzes). The aumper of rings o tae cap is NP, so, with the
origin, there ars NP+1 weights to be found, The listing cleariy shows the various
constanis used. REGPAR is a "regularization'” parameter, chosen here very small.
This number is added to the main diagonal of the normal matrix C,, +D to improve
the stability of the solution. NMOD is the maximum degree and order in the refer-
ence model. To change it into a "perfect’” model, a statement setting all values in
DVAR to zero is added before the statement '"55 CONTINUE". GNOISE is the stan-
dard deviation of A% in mgals. The solution is obtained us ing the conjugate gradi-
ents procedure in subroutine CGRADS. The maximum numbker of iterations allowed,
ITERMX, is the number of unknown (NP + 1) plus ten. However, if the improvement
in the rms of the solution from iteration to iteration is less than one part in a million,
the procedure terminates then, Program RINGS sets up the normal matrix taking
advantage, as far as possible, of the various symmetries in the grid. After the
solutio&_ has been found, it multiplies both rms and weights by the correction factor
1+k Z7f, (paragraph (4.2)), and it also multiplies (C.. + D) f = reconstructed
right hand sides of normals, to compare them with the original rms's, showing
whether the conjugate gradient procedure has, in fact, converged. The listing of
RINGS is complemented by those of the subroutines it calls: CGRADS, MATVEC,
LEGPOL, COVAR, and function ¥,

H . ) - . A A
Finally, subroutine RINCOV, used to determine the covariance M{e T(PHyeT(P,)?

between prediction errors, based on (4,14) and the repeated use of expression (4,17),

s listed as well, The main array and variables are given the same names as in

PUETmenT e e shs ssantion of the optimal weights vector,
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