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ABSTRACT

The report consists of two parts. Part A deals with
the mathematical structure of covariance functions. The
properties of isotropy, harmonicity and positive definiteness
are discussed, and it is suggested that a covariance function
may be characterized by three essential parameters: the
variance, the correlation length and a curvature parameter.
Finally some spatial covariance models (planar and spherical)
are considered.

Part B treats the influence of covariances on the
results of collocation. Formulas are developed for the
standard error of collocation results when using non-optimal
covariance functions, also for the case of stepwise collo-
cation. Finally the behavior of interpolation errors with
and without the additional use of horizontal gradients is
studied by means of power series expansions for covarijance
functions and by means of Gaussian covariance functions. It
is seen that non-optimal covariance functions have relatively
little influence on the interpolated values but a very strong
effect on covariances as calculated using the conventional
formulas.
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INTRODUCTION

Least-squares collocation depends essentially on the
covariance functions used. This is especially true for accu-
racy studies, for which, on the other hand, collocation
provides a powerful mathematical apparatus.

For instance, it is known that some analytical
expressions for covariance functions lead to imaginary
standard errors. What is wrong with such functions? They
are not positive definite.

It is also well known that the covariance functions
are responsible for the precise mathematical structure of the
gravity field through covariance propagation. This implies that
the basic covariance functions must be harmonic.

It appears, therefore, appropriate to elaborate, in
some details, mathematical properties of covariance functions
such as positive definiteness and harmonicity.

Another question is how to characterize a covariance
function sufficiently well by a small number of parameters, in
such a way that two different covariance functions that have
these parameters in common, give approximately the same result.

To find a good analytical covariance function, one tries
to represent it as a linear combination of simpler functions.
It is, therefore, desirable to know the behavior of such
simple models which may serve as building blocks for a global
covariance function. I

A11 these problems will be considered in the first part
pf the report. The second part deals with the following ques-
tion: What happens if the "true" covariance function is un-
known and least-squares collocation is, instead, performed
with a "wrong" (or more precisely, non-optimal) covariance
function?

How does the result change with respect to the optimal
case, and what is the effect on accuracy studies? General




formulas w111‘be developed and applied to simple interpolation
problems. The numerical results so obtained, special as they
are, may nevertheless give some indication as to what can
happen in more general situations. At any rate, the mathematical
apparatus is now available to attack also probiems of greater
complexity.



PART A

ON THE MATHEMATICAL STRUCTURE
OF COVARIANCE FUNCTIONS

1. Isotropy and Harmonicity

A rotationally symmetric spatial covariance function
has the form (Moritz, 1972, sec.7)

o 2 n+l
K(P,Q) = I (rzrg) P (cosy) . (1-1)

n=o

n

where P and Q are two points in space, of radius
vectors rg and rQ , ¥ 1is the angle between r, and
rQ , R = 6370 km is the mean radius of the earth, the
Pl(cosw) are the Legendre polynomials, and k“ are
positive coefficients.

Since the function depends only on V¥ , the spherical
distance between the points P and Q , it is rotationally
symmetric (invariant with respect to the three-dimensional
rotation group), that is, isotropic and homogeneous on
the sphere.

K(P,Q) of this form wi]]Pbe harmonic, that is, will satisfy
Laplace's equation, with respect to both points P and Q .
This is necessary if K(P,Q) is to be the covariance function
of the anomalous gravitational potential T, which 1is
supposed to be harmonic outside the sphere r = R .

Hence K(P,Q) , which is a priori a function of six
variables, namely of the three coordinates of both P
and Q , reduces in view of symmetry and harmonicity to

a function of two essential variables, namely ¢ and the

product rPrQ

The dependence on r and ry “3s such that any




K(P,Q) = F(w,rPrQ) = E knP“(cosw) . (1-2)

n=

It is clear that on the surface of the terrestrial
sphere r = R, that is, for rg = ro = R , the function
(1-1) reduces to a function of ¢ only:

K(P,Q) = ; knP"(cosw) . (1-3)

For local applications it is frequently convenient
to use a planar approximation, replacing the surface of

the terrestrial sphere locally by a plane, which will be
taken as the xy-plane (z=0) of a local cartesian
coordinate system. Then, on this plane, a stationary

and isotropic covariance function will be a function
only of the distance

- - 2 - 2 -
s = |[lxgmxg) 4 (ypmyg) (1-4)
between points P and Q

K(P,Q) = K(s) . (1-5)

On introducing the "Hankel transform" of this
function by

G(n) = %7 TJo(nS)K(s)sds . (1-6

where Jo(x) is the Bessel function of zero order, we
may express K(s) in the form

K(s) = Zn})do(ns)G(n)ndn . (1-7



This is a consequence of homogeneity and isotropy;
cf. (Bartlett, 1960, p.192; Papoulis, 1968, p.142),.

To extend the function K(s) , defined for z
into upper half space 2 20 (corresponding to outer
space), we use the harmonicity of K(P,Q) , considered
as a function of spatial points P and Q . We shall
try an expression of the form

0,

K(P,Q) = Zﬂ?Jo(ns)G(n)¢(Zp.n)¢(ZQ.n)ndn . (1-8)

This expression may be motivated by the analogy
between the spectral representations (1-2) and (1-7).
There correspond:

¢ to s ,

integral to sum,

variable n to index n ,
Jo(ns) to Pn(cosw) .

G (n) to c_ .

Therefore, it is evident to expect that some factor
¢(Zp.n) will correspond to the factor (R/rp)“+1
The functions ¢(zp,n) and ¢(zQ,n) must have the
same form because of symmetry.

In cylindric coordinates S.a:;. Laplace's
equation may be written:

afef +if +ls sf =05 (1-9)

ss S s 2 oo zZ

for rotationally symmetric functions which do not depend
on the azimuth o , this reduces to

f o+ if_ +f =0, (1-10)




Since the spatial function
K(P,Q) = K(s,zl.zz) (1-11)

must satisfy this equation both at P and at Q , we

must have
2 2
L k=0, (1-12)
3s 3z
p
2 2
3°K 1 a3k , 39K
s R 28y Z==0. (1-13)
5g2 893S azé

Using the representation (1-8) with (1-12) gives
the condition

2 2
3°d (ns) 3J _(ns) 3% (z_,n)
o 1 o P _
{""‘T‘ 1250 T la(zgm) # 3gMns) ——5— = %

3s 32

P
(1-14)

Since the Bessel function y = Jo(x) satisfies the

well-known differential equation

yr o+ Ly ey -0, (1-15)

we have

2

3°Jd _(ns) 3d _(ns)
) 1 ) .2
s e " Jolns)

so that (1-14) reduces to

32¢(Zp,ﬂ) 2
—_— - ¢(zpon) = 0 (1-16)

BZP



with solution

-nz
¢(Zp.n) = e

satisfying the required boundary conditions
¢ =1 if z =0, ¢ + 0 if z + = .

Likewise we have

-nz2
6(zgom) = e Q,

so that (1-8) becomes

-n(z +zQ)

K(P,Q) = Zn}odo(ns)G(n)e ndn

Wwe thus have obtained the essential result that the
elevations 2z, and z enter in K(P,Q) only through

their sum z, + zQ , so that we have

K(P,Q) = F(s,zP+zQ)

This form, which is valid for plane symmetry (homogeneity

and isotropy in the xy-plane ) is obviously the analogue

of (1-2), which holds for spherical symmetry.
Consequences for the Covariances of Gradients.-

From the form (1-21) we may derive, in a simple way,

important consequences for the covariances of first-order

gradients Tx. Ty. T .

z

The covariances of these gradients are readily
expressed in terms of K(P,Q) by covariance propagation

(1-17)

(1-18)

(1-19)

(1-20)

(1-21)




(Moritz, 1972, sec.7). We have

Cov(Tx,P’Tx,Q) - aX ;03X

_ 937K
2
_ 37K
Cov(Tz,P’Tz,Q) - azpazQ

Write now (1-21) in the form

K(P,Q) = F(s,Z)

where

axP S axQ
so that
X 2S 3 ’
P
2 .
a2k 1 2F , 12 (12F
2 S 9S S 9S'S 9S8
aX,

In the same way one shows that

32K

2
ayp

) (xg=%p) "

a°k _ 1 aF 13 (1 .
T s 3s *s as(s _E)(yQ yp)

(1-22a)

(1-22b)

(1-22c)

(1-23)

(1-24)

(1-25)

(1-26)

(1-27)



We further have by (1-24)

3K _ oF
e - 9
N EYA
3 2K - 3 °F - 3 2K (1-28)
572 572 azpazQ
P
Thus Laplace's equation
2 2 2
37K L, 37K 37K _ g
ax? ay2 322
P P P
gives immediately
2k _ 2%k, 2%k (1-29)
= 13
azpazQ BxPaxQ aypayQ

which provides an important relation between the covariance
functions of the first-order gradients Tx. Ty, Tz

This relation, which may be used for checking and other
purposes, is all the more remarkable as a similar

relation between the first-order gradients themselves

does not exist. It exists only for second-order gradients:

P

T o= =(T__+T..) . (1-30)

zz XX Yy

The relation (1-29) expresses, essentially, the
covariance function of the gravity anomalies (Ag=Tz)
as the sum of the autocovariance functions of the
components of the deflection of the vertical £, n
(which are proportional to Tx and Ty ). This may be
rather surprising.
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As a matter of fact, the covariance function of
T, » given by (1-22c), has also the structure F(s,Z) ,
being a function only of s and Z . From this we
conclude that, e.g., the covariance function of the
second-order gradient Tzz is the sum of the auto-
covariance functions of the gradients sz and Tyz s
and so on for higher gradients.

It should, however, be mentioned that mixed
covariances, e.g. between Tx and Tz , cannot be
obtained in this way.

By adding (1-26) and (1-27) we get from (1-29)

2’k _ 2 F _ 3 (1 2F,
BZPBZ S 9S 9s 'S S
_ L | o%F

S S ds

In the plane z = 0 we, therefore, have for

K(P,Q) = K(s)

1

R UORE

K'(s) .

This relation expresses the covariance function of the
vertical derivative aT/ax in terms of horizontal

derivatives of the covariance function.

Let us similarly calculate the covariance function
of the horizontal components. If we assume that P
and Q are both situated on the x-axis , then

_yP,-;O’

and (1-26) and (1-27) give

(1-31)

(1-32)
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2°K__ . . 13F _ 3 (L 2F)
< "e e \e ’
axpaxQ B s's 9§
22K 1 9F
ayPByQ s 98
For z =0 and F(s,0) = K(s) this becomes
2
aK == n
BXp3X - K*(s)
2
3°K 1
== - 2 K'(s) .
aypayQ E (s)

These are the longitudinal and transversal covariances;

cf. (Grafarend, 1971) and (Moritz, 1972, pp.109-113).
These expressions relate the autocovariance functions

of gravity anomalies and of vertical deflections; they

may be taken into account for an optimal determination

of the covariance function from different kinds of data.

(1-33)

(1-34)
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2. Positive Definiteness

Consider the signals Sys Sos see s SO at an
arbitrary number m of points; these signals may, for
instance, be the values of the anomalous potential T
at these points. Form their linear combination

m
U= A.S, + A S + ... # A S = ) A.S_ , (2-1)

where the i, are arbitrary constant coefficients. The
variance of the random variable u 1is ( M denotes the
statistical expectation):

yo 1T : T
M{u“} = A A M{s s.) = C..2,A (2-2)
i=19=1 2340 i=19=1 ¥4 13 '
where
Cyy = Mis, s} (2-3)

denotes the signal covariances. Since

>

M{u?} 2 0 , (2-4)

we must have the basic condition

v

m m
] L Cihghy 20, (2-5)

i=14=1

which expresses the fact that covariance matrices must

be positive definitel).

Dpysitive definiteness in the strict sense corresponds
to the > sign in (2-5) only, excluding the equality
sign. Hence it would be more precise to speak of positive
semidefiniteness, but we shall use the shorter name.

T T T T P P P T T T
-  ats
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In the case of a continuous signal field s , the
covariances can be derived from a covariance function
K(P,Q) by

C.. = K(P_,,P
i

i3 j)

This gives a fundamental condition for the covariance
function:

If’fk(P P.) 20
N Ah, = ’
i=14=1 0 34

which it must satisfy for arbitrary points Pi and

arbitrary constants 2, . Functions satisfying (2-7)

are called positive definite.

Positive definite functions can be mathematically
characterized as functionswhich have a spectrum which
is everywhere positive (more precisely, nonnegative).
For the representation (1-1) this means that the
coefficients k" are never negative:

k 20 forall n.
In the planar case (1-20) the spectrum is the Hankel
transform G(n) , so that the corresponding condition
reads

"
o

G(n) 2 0 for all n 2

where G(n) 1is given by (1-6).

A simpler condition is obtained by considering only
points Pi lying on an arbitrary straight line in the
horizontal plane z = 0 ; without loss of generality we

may consider this straight line as the x-axis . Then

(2-6)

(2-7)

(2-8)

(2-9)
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the spectrum is the Fourier transform

i)

-0

S(w) = ?e'iwa(x)dx , (2-10)

so that the condition for positive definiteness becomes
0 . (2-11)

The condition (2-8) is necessary and sufficient
for isotropic covariance functions on the sphere. Since
such functions (1-3) have a unique harmonic extension
(1-1) into outer space, (2-8) is necessary and sufficient
for isotropic and harmonic covariance functions in space.

For similar reasons, (2-9) is necessary and sufficient
for spatial covariance functions homogeneous and isotropic
in the plane z = 0 and harmonic for z 20 (provided
the spectrum is continuous, that is, the integral (1-6)
exists).

A11 isotropic and homogeneous covariance functions in
the plane z = 0 are also homogeneous on the x-axis
only; therefore all covariance functions having positive
Hankel transforms (1-6) will also have positive Fourier
transforms (2-10) (provided both integrals exist). The
author does not know whether the converse is also true,
that is, whether (2-11) is already sufficient to guarantee
positive definiteness in the plane z = 0 and in space
z 20 ; however, if the integral (2-10) exists, the
condition (2-11) is certainly necessary for planar covari-
ance functions.

Analytic Covariance Functions.- Functions that are

harmonic in a certain region, are analytic there. This
justifies the consideration of analytic covariance functions.
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Stationary and isotropic covariance functions
analytic in the plane z = 0 can be expanded as power
series:

K(s) 2 4 6

]
o}
¢
1
(73]
+
1
(73]
L]
o}
wn
+
[}

- T (-1)ka, %% . (2-12)

There are only even powers of s because of symmetry,
and the series converges for sufficiently small s

A necessary condition for positive definiteness
is that the determinant of the covariances in (2-7)
is non-negative. For m = 3 we thus have

K(P,,P,)  K(P,,P)  K(Py,Py)
1 2 1 3 S

K(PI,PZ) K(PZ,PZ) K(P2,P3) =0 . (2-13)
K(PI,P3) K(Pz.P3) K(P3,P3)

If the points Pl, Pz’ P3 lie, in the plane z =0 , on

a straight line such that P1P2 = P2P3 = s , we thus
have (Bartlett, 1960, p.161)

K(0) K(s) K(2s)
K(s) K(0) K(s) =0 .
K(2s) K(s) K(0)

v

By expanding the determinant we obtain

>

[K(O) - K(ZS)][Kz(O) - 2K%(s) + K(0)K(2s)] 2 0
or, since K(0) - K(2s) > 0,

K2(0) - 2k%(s) + K(0)K(2s) 2 0 , (2-14)

e o —
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Inserting the power series (2-12) we obtain

(12a°a - Zaf)s4 + 0(56) 20,

2

or dividing by 2s? and letting s~ 0 ,
2 >
6a a_ - aj = 0 . (2-15)

This is a relation linking the first three coefficients
of the series (2-12). To get relations between the following
coefficients, we note that by (1-33) the function

2

- K"(s) = 2a, - 12a,5° + 30a,s%- + ... (2-16)

is also a covariance function, namely for the horizontal
gradient aT/ax . For this series, the relation corres-
ponding to (2-15) is

6(2a,)(30a,) - (12a,)% 2 0
or

0. (2-17)

In this way we may proceed by successive differentiation
and by writing the condition (2-15) for the series

VIII
(

X) , - KVI(x) s K x) , etc.

This can be done in a general way. For the

on - th derivative K(2™ (s) of the series (2-12) we
have

(_l)nK(Zn)(s) - cf (-1)kb SZk , (2-18)
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where

b, = (2k+1)(2k+2) ...(2k+2n)a

k k+n °

Writing the condition (2-15) for the new series,

nv

6b b, - b

2
o 2 1

gives readily

2
) > (2n+1)(2n+2) Zns+t
n+2 ~ (2n+3)(2n+d) "a =~ -

This is the basic general condition which the coefficients
of the series (2-12) must satisfy. Obviously, (2-15) and
(2-17) are special cases of (2-20) for n =0 and
n =1

Examples.- We shall now illustrate the general
developments by means of some analytical expressions for
covariance functions found in the literature. We shall
write C(s) instead of K(s) , since the functions are
used as covariance functions for gravity anomalies
Ag rather than for the anomalous potential T ; this
notation follows (Moritz, 1972, sec.7).

Let us start with Hirvonen's covaFiance function
(Hirvonen, 1962; Heiskanen and Moritz, 1967, p.255):

CO
C(s) = 5
1 + (s/d)

with empirical constants

c_ = 337 mgal® , d = 40 km .

(2-19)

(2-20)

(2-21)

(2-22)
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" By a suitable choice of units we may put

with series expansion

C(s) =1 - s2 4+ st - s® 4 -

Here all a =1, so that (2-20) becomes

n

1 2 2n+l)(2n+2
- n+ n+ ’

which is clearly satisfied for all n
The Fourier transform (2-10) of (2-23) is

S(w) = ,};_££%°(-§dx - e lul

(Papoulis, 1968, p.66), which is always positive. Thus
Hirvonen's covariance function is, in fact, positive
definite.

Consider next the Gaussian function

C(s) = C‘De—A s,

which has also been frequently suggested as covariance
function. We again simplify by putting

(2-23)

(2-24)

(2-25)

(2-26)
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so that we have

2 s2 S4 S6

C(S) =S 1'-1-!-+-2—!-'-3—!-+'...,

]
(1]
"

and hence a 1/n! . Now (2-20) becomes

n

1 2n+l
2n+3 °

nv

which is also satisfied by all n . The positive defi-
niteness of this function is further confirmed by its
Fourier transform

2
1 -
S(w) = 2t v/

and its Hankel transform (1-6) (Papoulis, 1968, p.145),

© 2 2
G(n) = %? IJo(ns)e's sds = %;e'“ /4,
o)

We finally ask whether there are functions for
which the condition (2-20) is satisfied with an equality
sign. This will obviously constitute some kind of
1imiting case. Thus the condition is

2

a - 2n+l)(2n+2 41
n+2 n+ n+ a

1n

For n =0 this gives

(2-27)

(2-28)

(2-29)

(2-30)
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2 2
a. = L2 %1 2200,
2 3.3 a_ 1T :
if we set a = A, a, = AB . For n =1 we obtain
2
3.4 8 23

and so forth. Generally we find

I )
a = %%%%TA , (2-31)

which is readily seen to satisfy (2-30).
Thus the solution to our problem is the series

C(s) = A[} - Zgﬁz + 122%254 - 1223356 ' -] , (2-32)

the sum of which is

C(s) = Acos s/2B . (2-33)
Putting
A=cC_, V2B=38, (2-34)

we finally obtain
C(s) = CocosBs , (2-35)
which is simply the cosine function with two free parameters

Co and B8 . This is the desired 1imiting case for a positive-
definite covariance function.
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The cosine function isalimiting case also in
the sense that it oscillates between the extrema Co
and - Co , so that there are points s # 0 where
[C(s)]| = Co , that is, where the covariance equals the
variance. This implies the gratest possible degree of
correlation, which is clearly unrealistic; for a realistic
covariance function, there should be always

lc(s)l<C, | (2-36)

for s # 0 .

That the case |C(s)|> C, is excluded, follows
again from positive definiteness: writing for C(s) a
condition analogous to (2-13), but for m = 2 , we have

C(0) C(s)

nv

0, (2-37)
C(s) C(0)

from which (2-36) follows immediately.

There is a fundamental relationship between positive
definiteness and predition error. For instance, consider the
interpolation problem of sec. 7 (Fig. 7-1) when using hg,
and A9, only. Then (7-20), with K = C , together with
(7-19), gives

2 c;u 2C2 a
Mo,1 = Co - — = C(0) - +C(7a
uu
2 2
C(0)+C(2a)
which is positive if and only if (2-14) is satisfied.
For the cosine covariance function (2-35), mi i is

zero. This shows that there are covariance function which
give zero prediction error. Hence, the smaliness of prediction

error is by no means a criterium for a good covariance
function!
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3. Essential Parameters for Covariance Functions

The question arises whether covariance functions can

be satisfactorily characterized by means of a few para-
meters only. We shall give a set of three such essential
parameters: the variance Co , the "correlation length"
(in German: Halbwertsbreite) ¢ , and the “curvature
parameter" x ; again we shall denote the covariance
function by C(s) rather than by K(s)

The geometrical interpretation of these quantities
is simple (Fig. 3-1). The variance Co is the value of
the covariance function C(s) for the argument s = 0

Figure 3-1

(3-1)
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The correlation length £ is the value of the
argument for which C(s) has decreased to half of its
value at s = 0 , that is

C(e) = C, -

The curvature parameter x 1is a dimensionless
quantity related to the curvature « of the covariance
curve at s = 0 by

_ 2
X T K§E /Co .

It can be easily expressed in terms of the coefficient

a, of the series expansion (2-12). The well-known

formula for the curvature «x ,

J ’
(1+y|2)3/2

P
fl

gives for x = s and y = C(s) at s =20

.<=2a1

Here we have changed the sign which is irrelevant since
the sign in (3-4) is conventional. Fig. 3-1 shows the
radius of curvature o related to « by o = 1/«

From (3-3) and (3-5) we get

- 2
X = 2a15 /C, -

It is frequently convenient to norm the covari-
ance function under consideration by putting

C =1 ’ £ = 13

(3-2)

(3-3)

(3-5)

(3-6)

(3-7a)

TREAL
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for this particular case (3-3) gives
X T K (3

which justifies the name, curvature parameter, for
(in the general case C_ # 1, £ #1, x 1is not the
curvature itself but related to it by (3-3)).

As we shall see (Table 3-3), the three parameters
'Co , £, and x characterize very well the behavior of
a covariance function for small and medium distances.
Two different functions having the same numerical values
for C0 , £ and y , will give very nearly the same
interpolation errors. In fact, the variance Co deter-
mines, so to speak, the scale of interpolation errors;
the curvature parameter x characterizes the behavior
for small distances s , and the correlation length £
describes the behavior at medium distances s on the
order of ¢ itself.

Thus the description of C(s) by Co and f only
is not satisfactory since the curvature at the origin
influences essentially the interpolation for small dis-
tances s

The curvature parameter x 1is also essential
with the use of gradients. As we have seen in the pre-
ceding section, the function

- C"(s) = 2a, - 12a252 - (3

denotes the covariance function for the horizontal
gradient, that is, for 23ag/ay if C(s) 1is the co-
variance function of the gravity anomaly. Thus the
variance of oag/dy , denoted by GU , 1s given by

-7b)
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This equation, together with (3-6), gives
- 2 C
X = GOE / o . (3-10)

This basic relation expresses the curvature parameter

in terms of the variances Co, of ag , and Go , of

ang/ax , together with the correlation length of C(s)
As an example, assume

¢, = 1500 mgal® ,
6, = 200 E2 (3-11)
= 50 km .

Since, for Edtvos units E ,
1 E=0.1 mgal/km , (3-12)

the expression (3-10) gives

x = 13 = 3.33333 . (3-13)

Thus the relation (3-10) is of fundamental im-
portance for an empirical determination of x . It
also shows that a bad choice of covariance functions
with respect to x completely falsifies the gradient
variance.

Let us now compute ¢ and x for the simple
covariance models considered in the preceding section.
Hirvonen's covariance function (2-21),

C(s) = —Co— (3-14)
1+(s/d)?

has the correlation length

£ = d (3-15)

o
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and the series expansion

¢ 2
C(s) = C_ - —5s° ... (3-16)
d
Thus (3-6) gives
x = 2 . (3-17)

For the Gaussian function (2-26),

2 2

C(s) = Ce™® (3-18)
we have
¢ = /nz . (3-19)

From the series expansion
_ _ 2.2 _
C(s) = Co COA s¢ ... (3-20)

we get

and hence, from (3-6) and (3-19)

x = 2A7g” = 2In2 = 1.38629 . (3-21)
The cosine function (2-35),

C(s) = CocosBs , (3-22)
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, whence

=
o
w0
™
[l
"
o
o
o
"
wi=2a

1.047208" !

™
"
l 2
]

From

we derive

X = %- = 1.09662 .

Let us now consider a generalization of Hirvonen's
model (3-14), namely the function

C
C 2z —_—
(S) (1+A252)m

where the parameter m 1is allowed to assume
positive real values. The correlation length & is
given by

Lot
g = p(2"-1)?

and from the series expansion
C(s) = C_ - mC _A%s?
o =}

we get

(3-23)

(3-24)

(3-25)

(3-26)

(3-27)

(3-28)

(3-29)

- .
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The following Table 3-1 shows some values of
for different n

Table 3-1

m X m X
0.1 204.6 1.5 1.76220
0.2 12.4 2 1.65685
0.5 3 10 1.43547
1 2 o 1.38629

For m » = , the function (3-26) tends to the
exponential function (3-18) (provided the scale of
s 1is suitably chosen), and (3-29) becomes

1
x = 1im 2m(2™-1) = 21n2 = 1.38629 ,

mr>oo

which is the value (3-21).

The function (3-26) satisfies the condition (2-30)
for positive definiteness for an arbitrary parameter
m>0 . It is able to mode! an empirical covariance
function for arbitrary x > 1.38629 ; however, the use
of (3-26) for general m 1is restricted to covariance
functions defined in the plane only, since spatial
extensions are known only for the values m = 1/2
and m = 3/2 ; see the following section.

Finally we consider a covariance model of a
different kind, which will be discussed further in
sec. 4:

(3-30)
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Co ZEA
C(s) = &1In —
(s) =7 1+ 1+k%s2

with parameters Co (variance), A and k . The
correlation length ¢ 1is determined by

1
£ = k-1[(2eA/2_1)2 _ ﬂ 2 .

and the series expansion of (3-31) starts with

whence
! k2 2 _ 1 [(ZeA/z-l)z _ 1]
X = 7g¢ & F1.)

The following Table 3-2 shows some values of
for different parameters A .

Table 3-2

A X

0.001 1.0008

0.1 1.0780
1 2.1391
5 54,4923

This function is able to model an empirical

covariance function for any curvature parameter
greater than

X

X

(3-31)

(3-32)

(3-33)

(3-34)
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.1 aA/2 2
x, = limgp[(2e*2-1)7 - 1] = 1. (3-35)

Ao

As we shall see in the following section, this
covariance function can very simply be extended into
space. Its series expansion satisfies the condition
(2-20) for positive definiteness, but condition (2-36)
is violated for s > s_ where

1
s = k_l[(ZeZA-l 2)- 1]2; (3-36)

(o]

therefore, the model (3-31) cannot be used for distances
much larger than the correlation length ¢

So far we have considered very different analytical
models for covariance functions. To see whether the three
"essential" parameters Co (variance), £ (correlation
distance) and x (curvature parameter) really characterize
the behavior of a covariance function, let us compare
two very different functions, the Gaussian function (3-18)
and the logarithmic model (3-31). They are normalized
such as to have

These values and x given by (3-21) are in common to
both functions. Table 3-3 gives a table of values for
both functions Cl(s) , which is the Gaussian function
(3-18), and Cz(s) , which is the logarithmic function
(3-31).
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Table 3-3
S Cl(s) Cz(s)

0.0 1.0000 1.0000

0.1 0.9931 0.9931

0.2 0.9727 0.9728

0.3 0.9395 0.9400

0.4 0.8950 0.8963

0.5 0.8409 0.8435

0.6 0.7792 0.7833

0.7 0.7120 0.7175

0.8 0.6417 0.6475

0.9 0.5704 0.5747

1.0 0.5000 0.5000

1.1 0.4323 0.4244 :
1.2 0.3686 0.3484 i
1.3 0.3099 0.2726 :
1.4 0.2570 0.1973 !
1.5 0.2102 0.1229 |
1.6 0.1696 0.0495

1.7 0.1349 -0.0227

1.8 0.1058 -0.0937

1.9 0.0819 -0.1633

2.0 0.0625 -0.2315

The agreement for s < £ = 1 is excellent indeed.
Comparisons between other functions of the same C_ , :
£ , and x give similarly good results.
Conclusions.- We have seen that the three
parameters CO , £ , and y are necessary and

sufficient for a practically satisfactory character-
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ization of a covariance function for local applications,
that ié, for distances not much larger than the corre-
lation length ¢

The chosen analytical covariance model must, there-
fore, be fitted to the empirical values of these para-
meters. With respect to Co and ¢ , such a fit is not
difficult since it corresponds only to a change of
scales. More difficult, but no less essential, is a good
fit with respect to X
It may happen that we do not have a suitable model for
the desired y , but two different possible models
C,(s) and C,(s) with the two curvature parameters
x, and X, » respectively, such that X; S X £ X,
Then a solution is found as follows. Put first CO = 1
and ¢ = 1 for both models. Express the given yx as

a linear combination of x, and X5

X = Axy + (1-2)x,
where
05, =22"*% ¢ 1
X2 T Xy

Then the function

C(s) = ACl(s) + (l-A)C2(S)

will have the desired Curvature parameter y and again
Co =1 and £ =1 . This follows at once by expanding
both covariance functions Cl(s) and C2(s) into
pPower series, the first two terms being sufficient,
and substituting them into (3-39). (That a linear com-

bination (3-39) of two covariance functions with positive

(3-37)

(3-38)

(3-39)
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coefficients A and 1-1 1s again a covariance function,
that is, a positive definite function, is immediately seen #
from the spectra: if the spectra of Cl(s) and Cz(s)
are nonnegative, then the spectrum of C(s) , being a
linear combination of these two spectra with positive
coefficients, will also be nonnegative.)

The curvature parameter represents the curvature
at the origin s = 0 of the covariance curve for fixed
Co =1 and £ =1 . A small value of corresponds to
a well-rounded, rather flat mountain top, a large value
of x to a pronounced peak. Whereas no theoretical upper
limit for x exists (the peak may be arbitrarily sharp),
it is intuitively obvious that the mountain top may not
be arbitrarily flat. The lower limit for X seems to be
on the order of 1; c¢f. (3-25) and (3-35).

An empirical determination of x 1s possible by
(3-10), using the gradient variance.

As a matter of fact, the three parameters Co s £,
and x characterize only the local behavior of a covariance
function for, say, the gravity anomaly aAg . If other co-
variance functions are derived from such a covariance
function by covariance propagation, then additional para-
meters may become important, and more sophisticated spatial
covariance models must be constructed. “"However, even in
these more general circumstances, the three parameters Co ,
£ s and y will retain a basic role.
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4. Spatial Covariance Models

In the present section we shall consider some
simple rotationally symmetric spatial harmonic co-
variance functions and their planar equivalents.

By putting

RB 2n+1
S (4-1)

el

we may transform the basic expression (1-1) into the
form

K(PaQ) = T e, ()" P (cos) . (4-2)

Here RB < R is the radius of some sphere completely

inside the terrestrial sphere of radius R ; the sphere

of radius RB is frequently called "Bjerhammar sphere",
By means of the substitution

g = —35 (4-3)

the covariance function may simply be written as

K(P,Q) =

n

Ne~18

K“o“+1P“(cosw) : (4-4)
o]

We shall now consider some cases in which this series can
be summed in closed form, namely the cases Ko= 1,
K = 2n+l and ko= 1/n

The Reciprocal Distance Covariance Function. - If
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Fa
"
—

n

for all n , then

o"*lP“(cosw)
o]

Ne~18

K(P,Q) =

I

may be summed by means of the well-known expression

for the reciprocal distance, cf. (Heiskanen and Moritz,
1967, p.33). Equation (1-81) in that book gives
immediately

1

K(P,Q) = o(l - 20cosy + o2) ° .

Therefore, this function will be called "reciprocal
distance covariance function", although it is not
simply the reciprocal spatial distance between points
P and Q

In a certain sense, the function (4-7) is the
simplest possible rotationally symmetric harmonic co-
variance function; it is defined outside the Bjerhammar
sphere r = RB , that is, for o < 1 . It has already
been considered by Krarup (1969, p.62).

For applications in limited areass it is possible
and sometimes useful to replace the sphere r = R by
its tangential plane. -

To perform a suitable transition from the sphere
to the plane, we put

l «- o0,

Fal
n

>
i

25inyg

(4-5)

(4-6)

(4-7)

(4-8)

(4-9)

i
E

R T
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and
1

L = (1 - 20cosy + o2)2 |
Since

cosy = 1 - ZSinz% =1 - %Az ,
we have

L2 = (1 - 0)2 + g2
or

L? = ;2 + or’

This expression is still rigorous. We now put

ro = R+ Z, s
rQ = R + zQ .
RB = R - b/2

Then (4-3) gives

(R-b/2)2 ) zP+zQ+b

o = (R¥z,) (R+2,) ~ Lo —p— ...

Neglecting second-order terms we thus get from (4-8)

zP+zQ+b

L = ——p—

To a similar approximation, (4-9) gives

(4-10

(4-11

(4-12

(4-13

(4-14)

(4-15)

(4-16)
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where s denotes horizontal distance as usual. Thus
(4-10) becomes

L. R 2 [1 + O(c)] : (4-17)

2
V; + (zP+zQ+b)

where 0(r) denotes terms of order ¢ or smalier.
Disregarding a relative error of 0(z) and admitting

a constant factor B/R we thus find the planar equivalent
of (4-7):

K(P;Q) = _g' ’ (4-18)

where

2 _ Y Y 2 )
02 = (x,=x,)% + (ygoy,)7 + (z,42,4b)% . (4-19)

This function has been used and discussed at length
in (Moritz, 1974, sec.3). By means of the substitutions

X = Xp = Xa »
Y=y, - ¥, (4-20)
L = Z, * 1, + b -
we have
s? = x4+ y? (4-21)
and
D% = v2 4+ v% 4+ 72 (4-22)

e

e
AT

L Rl
.
r

R
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H
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For z, = zB = const. we have Z = const., so that

(4-18) becomes

B/Z
(1 + s2/2%)1/?

K(s) = s (4-2:

which is of the form (3-26), with

For different elevations 2, = 25 the coQariance
function has the same form (4-23), but with parameters
varying with elevation. For increasing elevation, the
variance decreases and the curve flattens out: the

correlation length ¢ , given by
£ = 113 (4-2:

according to (3-27), is proportional to Z . On the
other hand, the curvature parameter is always

independently of elevation. Therefore, this function
can be directly used only if the empirical value of
happens to be around 3.

The advantage of the function (4-18) is that it
can be easily handled analytically. It can be differ-
entiated in a simple way, as shown in (Moritz, 1974,
sec.3); in this manner it is readily verified that the
function is harmonic. By repeated differentiation with
respect to 2 and z, we may derive new covariance

A
functions (for first and second vertical gradients):




9 90,2 _ 1054
c,,(P:Q) = Ko(Eg =17 + =5-17)

o
o

(ibid., sec.4).
By means of the series expansions given ibid., p.25

and the correlation distances given in Table 4-1 (ibid.,
p.24) we find for CZ(P.Q):

v = 1.5,

and for C z(P.Q)

zZ

x = 1.35

By successive differentiations it is thus possible to
obtain covariance functions with decreasing x

This gives a limited flexibility for fitting spatial
covariance functions to empirical covariance functions,
provided the given x has one of the values 3, 1.5,
1.35, ... For instance, we may use (4-18) for T ,
(4-27) for T _* Ag , and (4-28) for T__ ; or also
(4-18) for T , (4-27) for T , and (4-28) for T :

Z z2z zz2

etc. However, nothing can be done with this model for
x > 3

Since for small s , the spherical and planar
covariance functions agree, the x-values given hold
also for the corresponding spherical functions.

The Poisson Covariance Function.- We now take

Ky = 2n+1

Then (4-4) becomes

(4-27)

(4-28)

(4-29)

(4-30)
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n

K(P,Q) = E (2n+1)o" 1P (cosy) . (4-31)

By differentiating the identity (cf.(4-6),(4-7),(4-10))

% =2 ] o"P (cosy)

=0

with respect to o , multiplying by s? and adding
o/L we get
23,2 v 1
o°5=([) * T = Z (2n+1)c™""P (cosy)

The left-hand side can be computed, so that (4-31)
becomes

_ o 1-6°
K(P.Q) = £33 (4-32)
L
This is the desired closed expression for the sum
of (4-31).
The function (4-32) may be called Poisson co-
variance function, because essentially it represents
the kernel in the well-known Poisson integral
(cf. Heiskanen and Moritz, 1967, p.35). It has also
been given already in (Krarup, 1969, p.43).
The planar approximation is again readily found.
By (4-8) we have
2 2
1-6° = (l40)(l-0) = 2¢ + 0(z°) . (4-33)

Using (4-14), (4-15), (4-17), (4-20) and (4-33) we
get
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2 2
l-0 _ 2ZR
o( Lal - T [1+0(2)]

Neglecting a relative error of ¢ = Z/R and admitting
a constant factor we thus have

_ BZ
K(P’Q) - (Sz+22)3/2

as the planar equivalent of (4-32). Here B 1is a
constant, and Z is given by (4-20).
Writing (4-34) for Z = const. as

2
B/Z
K(s) =
(s) (1 + s272%)3/2

we recognize the form (3-26) with m = 3/2 . The
curvature parameter is, therefore, given by (3-29):

x = 1.76220 .

Again we could derive new spatial harmonic co-
variance models by differentiation, but these derived
models do not seem to present any novel features.

More interesting is the question whether the
functions (4-23), with m = 1/2 , and (4-35), with
m=3/2 , are the only plane covariance functions of
form (3-26) which possess a natural extension into
space. In other terms, are there harmonic spatial co-
variance functions of the form

a
K(P,Q) = —BZ __
(s2+22)P

(4-34)

(4-35)

(4-36)

(4-37)

T T
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other than (4-18) and (4-34)? To find this out, we
must form the Laplacian of (4-37),

32K . 32K . 2%k

A K = + + ,
P ax?  ay? 322
P 'yP P

and similarly a_K . From (4-20) we see that

2 2
sk = b K = AK 2K 2K

P Q Y ) Y

On performing the appropriate differentiations of
(4-37) we find

Zn Zu-2

0K = 28(-2a+28-1) + a(a-1)

(22+52)B+1 (22+52)e ’

This expression will be identically zero for arbitrary
Z and s if and only if the coefficients are zero,
that is, for

a{a-1) = 0 ,

28(-2a+28-1) = 0

The only nontrivial solutions of these two equations
are

=]

n
o
-
Ron)

1}

172

and

0.=1, 8=3/2:

(4-38)

(4-39)

(4-40)

(4-41)

(4-42)

(4-43)
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the first corresponding to (4-18) and the second to
(4-34); there are no other solutions.

This does not mean that spatial extensions of
other plane functions of form (3-26) do not exist; they
only do not have the simple form (4-37) and it does not
eem worthwile to study them in this context.

The Logarithmic Covariance Function.- Finally we

S

take

2 1 2
K“—F (n—l)

Then (4-4) becomes

K(P,Q) = E %o“+1P (cosy)

n
n=1

For this function we have

%(KSP;Q!) = z oll-lpn(cosw) ,
n=1
so that
? K o -
Ua—o'(g) +1= 7 OHP“(COSU)) =T
n=o
or
3

The function

(4-44)

(4-45)

(4-46)

(4-47)




44

K(P,Q) = olnk ,

where
N=14+1L - ocosy ,

is readily seen to satisfy (4-47) and the boundary
condition

K(P,Q) = 0 for o =0

It represents, therefore, the desired sum of (4-45).
Covariance functions of this and similar types
have been employed by Tscherning (1972) and Lauritzen
(1973).
Let us now study the logarithmic covariance function
(4-48) in some detail. By (4-8), (4-9), (4-12) and (4-49)
we have rigorously

N=1¢ + %okz + Vo)\2+;2 ’
where

A= ZSin% ,

t=1-o0,

0 = (2—‘3-)2,
assuming =r. =R in (4-3

r ).
For v = 0 we have A = 0 and therefore, by
(4-51),

(4-48

(4-49

(4-50

(4-52

(4-53

(4-54
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so that (4-48) gives the variance

y = m we have A = 2 and hence by (4-51)

2 - ¢ + V4-4c+c2 ,

taking (4-53) into account. For ¢ = =, (4-48) gives

=
{]

2
Kﬂ = O]n'N';
Hence,
KTT 1n(2/Nn) 1n(N"/2)
X C TA(I7zy T Tne

On expanding (4-57) into a power series for small ¢
we get

N o=4-2¢ ...,
In(N_/2) = 1n2 + 0(z) , —

so that (4-59) becomes approximately

Ky . 1n2
X, * The

which is small for small ¢ . Thus, the function
K(P,Q) is well-behaved even for ¢ = = , that is
for maximum distances along the sphere r =R .

(4-56)

(4-57)

(4-58)

(4-59)

(4-60)

o iy S

e T
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Let us now determine the correlation length

that is, the value of A for which
1
K(&) = -2-K° .

The condition is

—

2 _ 1
]H'N-E— = 2—] nE
or

N, = 2/c .

Using (4-51) this becomes

or

where we have put

ZV’E'Cs

=
n

W= gg?

From (4-64) we get a quadratic equation for

w2 - 4(1+p)w + 4(u2-c?) = 0

£

(@A}

(4-

(4-€
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with solution

W= 214w+ | 142u42?),

Since the plus root would correspond to ¢ > = , which
is impossible, we retain the minus root and expand again
in a series with respect to u and ¢ , obtaining

W= 4z(l - VT) + 0(c?)
Thus, the correlation distance ¢ is obtained from

o£? = 4g(1 - {T) + 0(z?)

Let us now determine the curvature parameter
We expand (4-51) for small A , obtaining

N = 2;[1 + li%oxz ...} i
4z

whence

1nc+l+—gox2 —

]nC 1 - l2'+—c_TOA2 -..] .
47 1ng

In view of (4-48) and (3 -6), this gives rigorously

=
Ny
"

(4-68)

(4-69)

(4-70)

(4-71)

(4-72)

(4-73)
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and by (4-70) we get for small £ , approximately,

_ 2
X = —/———
zing

Let us illustrate these formulas by means of an
example. Assume a correlation length of 63.7 km; in
radians this corresponds to

For this we must select t according to (4-70) such
that

¢ & 762 = 0.000 025 , (

which corresponds to

RB = 0.999 9875 R , (-

Then (4-74) gives
x = 7550 , (¢

which is obviously an unrealistically high value. How-
ever, we might linearly combine a function of type (4-7),
with x = 3 , and a function of type (4-48), with

x = 7550 , to obtain a covariance function with any
desired intermediate X » as explained at the end of
sec.3.

Finally we shall derive the corresponding planar
covariance function, proceeding as we did before. The
rigorous expression (4-51) is transformed by substituting,
as usual,
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4-74)

o
[}
N
.

with the result

N = }{[z + ;;(1-72()  s2(1-3) + 22]
~75) Lz s? 22)[1 + 0(,%)]

Substituting into (4-48), disregarding an error of
0(Z/R) and admitting a constant factor B we obtain

1]

-76) 2R
K(P,Q) = Bln . (4-79)
7+ s%+22
77 This function is a spatial covariance function. By

straightforward differentiation it is not difficult to
verify that it satisfies Laplace's equation. By differ-
entiating it twice with respect to Z , we get the co-
variance function for the first-order vertical gradient,
-78) which will be seen to be identical to (4-34), apart from
a constant factor.

Let us finally write (4-79) in the form

K(PQ) = Bin 2R/2 (4-80)
1 + V1+52/i3

and introduce new constants by

C_ = BIn(R/Z) ,

(=]
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>
u

In(R/Z) , (4-8
1
k = z ’

assuming Z = const. Then (4-80) becomes

K(s) = Coln————§3:=3=— (4-8
A 1+ /1+k 52
which is the form (3-31) used in the preceding section.
Simple generalizations of (4-45) are the functions
@ on+1 . )
Fi = g 7 Pn(cosw) R (4-8:
(o]
where 1 denotes any integer and
n =20 for i>0,
o
(4-8-
n_ = -i+l for i <0
o

These functions have been studied in (Tscherning and
Rapp, 1974, pp.31-38). It is not difficult to show
that all these functions lead to the same plane equi-
valent (4-79). Thus they have the same local behavior
as (4-45), although they differ on a global scale.
Functions such as (4-6), (4-31) and (4-83) may
be considered as building blocks, from which we can
construct covariance functions that have given properties,
such as prescribed degree variances (Tscherning and
Rapp, 1974).
The purpose of the present study has been mainly
to investigate the local behavior of different covariance
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function models. By prescribing the local behavior in

terms of the basic parameters Co , £ and x as
defined in sec. 3, and the global behavior in terms
of degree variances, geoid height variance and other
quantities, it should be possible to construct, from the
building blocks mentioned, suitable covariance functions

that can be used for local as well as for global appli-

cations.
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PART B

ON THE INFLUENCE OF COVARIANCES
ON THE RESULTS OF COLLOCATION

5. Accuracy of Collocation

Using a "Wrong" Covariance Function

What happens if an incorrect covariance function
is used in least-squares collocation? The answer to this
question is obviously of great practical importance, since
the "true" covariance function is never exactly known, so
that it must always be replaced by an analytical approxi-

mation.

Let us introduce the following notation, which will be
consistently used throughout Part B of the present report:

K ... true covariances,
C ... computational covariances.

The "computational covariance function" C(P,Q)

is an

analytical expression approximating the unknown true
covariance function K(P,Q) ; the function C(P,Q) is the
covariance function used in computing the least-squares

collocation estimates:

_ rT=-1
Sp - E.p.g X -

(5-1

This is formula (2-38) of (Moritz, 1972, p.15); systematic

parameters X are supposed to be absent.
Equation (5-1) is explicitly written as
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— —1_
CiaCya oo Ty "J
Sp =[Cp1cp2 Tt an] t21t22 vt th X2 . (5-2)
L-Culth ct tuu_ L xn_

Here s, is the signal to be estimated and the x, are
the measurementss; both s, and x.  may be any quantities
of the anomalous gravity field such as geoidal heights,

deflections of the vertical, gravity anomalies, higher-order

anomalous gradients, etc. The CPi and fik are compu-
tational covariances:
Cpy = cOVspaxy) (5-3)
[P cov(x ,x,) = C,p + Dy (5-4)
The CPi and Cik are signal covariance obtained from

the computational covariance function C(P,Q); the Dik

are covariances of measuring errors. The row vector Ep
is the transpose of the column vector (g formed by the
covariances Cos

We shall now proceed similarly as in (Moritz, 1972,

p.28). The expression (5-1) may be abbreviated as

s, = Lx (5-5)
where
L=cTh. (5-6)

Then the individual error of the estimated signal s
is given by




€, = S, - Sp = S, - Lx, (5-7)

where EP represents the true value of the signal s
The square of (5-7) is

e2 =52 - 2Ls,x + LxxTLT . (5-8)

We now form the mean values M

2, _ _ ok

M{ep} =m, (5-9)

M{$2} = K (5-1C
P o’

M{s x} = LS (5-11

M{xx"} = K (5-1¢

2 . .
Here mg denotes the mean square error of estimation,

Ko denotes the variance of the signal Sp » and the
matrices K, and X correspond to C_  and C as
defined by (5-3) and (5-4), but they are now the true
covariances.

Therefore the mean of (5-8) gives

2 _ T : .-
m, = K, - 2LK, + LRL™ . (5-1:

On substituting (5-6) this becomes finally

2 _ _ opTrE-1 Toe=1p7e-1 Ry
mi o= K - 23T 'k, + CTTRETC, . (5-1

This formula expresses the standard error of
estimation in terms of the true covariances K

SRS
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and the computational covariances C actually used
in the computations.

[t seems appropriate to keep in mind the precise
meaning of the estimation formula (5-1). If the com-
putational covariances differ from the true covariances
K , then the formal solution (5-1) no longer represents
the optimal least-squares collocation estimate in the
strict sense, which would be

(5-15)

The "wide-sense collocation" formula (5-1) is to be
considered as a formal solution which interpolates
the given data and possesses all advantages of the
optimal solution (5-15), such as consistency of the
mathematical model, harmonicity, etc., with the only
exception of optimal accuracy, which is reserved to
the "strict-sense collocation" formula (5-15).

The standard error mp corresponding to (5-15)
is obtained by putting C = K in (5-14):

_2 To-1
i, = Ko - KK Ky (5-16)

This is a well-known formula; cf. (Meritz, 1972, p.33),
putting A = 0 in eq.(3-36).

It is sometimes useful to have an explicit expression
for the difference mi (actual) minus 2 (optimal).

P
From (5-14) and (5-16) we get by suitable rearrangement

2

Vi

md - w2 - (KR! - CFTTHRETK, - TG (5-17) 44

AP ———
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This formula, which can be immediately verified, is
nothing but a special case of eq.(3-52b) of (Moritz,
1972, p.37). It shows that always

s m
P P

m
since the right-hand side of (5-17) is always positive
in view of the positive definiteness of K .

We finally note that, if C and K differ consi-
derably, it would be wrong to calculate mi by the ex-

pression

Tx=1
Co - EPE .Ep

analogous to (5-16): even if the C are used in compu-
tation, a meaningful accuracy estimate must involve the
true covariances K , so that (5-14) has to be used.

(5-1¢

(5-1¢
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6. Application of Stepwise Collocation

It is frequently convenient to split up the esti-
mation by collocation into two steps, just as in
ordinary least-squares adjustment. This may be done
to reduce the size of matrices to be inverted; an-
other application is the use of additional observations
to improve the original estimates.

stepwise collocation has been treated in (Moritz,
1973) with respect to the estimate (5-1) and the simple
standard error formula (5-16). We shall now apply step-
wise collocation to the new expression (5-14) for the

standard error of collocation using a "wrong" covariance

L 4

function.
This formula is

2 =1 1

_ _ 5T Tx-
ma = K, - 20,0 K, + C.C

=1
CC K, KC'C

- Zp °?
K denoting true covariances and C computational co-
variances as usual.

Let us split up this formula, using the method and
the notations of (Moritz, 1973). We divide the obser-
vations x into two parts, the first part making up

the vector Xy o and the second part forming the vector

2

Similarly we split up the covariance matrices:

x, . Thus the observation vector is partitioned as follows:

e — |

(6-1)

(6-2)

PIS NN el B 5

= T

i YRR 7

Tk

—
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i L2 LIPRIRIY!

g_ = ’ K = ’
L2 L22 Ka1 Koo
Lip Kip

p - : Zp T ’
C K
|=2P —=2pP

T _[ T _ .
e _LEPI Epa Kp ={ %51 Epé] ’
for instance, (., and K,, are covariance matrices

for the vector X,

_ AT
€y ° 912 :
_ T
EPi - EiP ’
The inverse matrix

-B—21

with the well-known
§ 14):

_ . -1 -1
522 - (922 g21911912) y
P S .. -1
E12 - 911g12§22 ’ 521 B22921911 ’
P P -1 -1 -1
By ¢ 911 911912521 - g11 + g11912522921911-

It is clear that

- T .
Koy = Kip 0
- T s -
Kes = %5y (i=1,2)
T™! is split up as follows:
B2
By

relations (cf. Faddeeva, 1959,

Using these relations we find:

(6-3)

(6-4)

(6-5)

(6-6)

(6-7)

(6-8)

(6-9)

;mw-~
-v'_w'
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B B

K

Te-1 211 =12 21p
T =[Sy oo
Byy By Ko
= CpiB,Kp * CpiByoKop * CoaBoiKyp + £50ByoKop
_ -1 . -1 . -1
= Cp 8K (s, Ep1£11£12)§22(529 £5:811Kp)
(6-10)
With the abbreviations
-c . -¢ ¢ S -t ]
Epz - Ep2 £P1£11£12 ! EZP E2p E:-21(:11(:119 ! (6-11a) o,
_ ) -1 _ i -1 ) I
Roo = Koo = Kpifyilyn o Kop = K50 CPPIARLIPI (6-11b) | ES
= i -1 ) _ -1 i g
£y " £ E21-C-11-C-12 ’ lz—zz = Ky E21-(:-11512 ’ (6-12) ik
_ - _1 _ _ _1 - . '."3_:
K12 = K 511911912 ! K21 = Ky 921911511 ’ (6-13) | B
eq. (6-10) takes the form 14
Tpe=1, _ -1 1 } i
Col Ky = Lpyliikyp * Coola2kop (6-14) i
The last term in (6-1) is more laborious to trans- ' ;;
form. We first get .
c’TIX - [ ¢Tlk.. o+ T..TIIX c._.CTik ]
Zp= = 12112891 T Zp2z22=21 =P1=11-12 pz 22—22 !
(6-15) i
in complete analogy to (6-14), K, being replaced by ?!
the row vector [:511 512] and K, , being replaced by '“f
[521 522] By means of (6-15) we now have iki;
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Trmlommt,.
£p§ EE Ep =
CTe ot - g . — By Biof| i
= | Cp 8y Ky * Spoloots) CpilyikKyp —pzzzzzzé] :
By Baa|| L2p| §.

K,, and K,, being defined by (6-12) and (6-13). This ]

equation is, in turn, transformed in the same way as (6-10), i
with the result, corresponding to (6-14), F
(c.colk,, + T_.TIIR, )C11C,, + ‘
Zpi=11=11 = =p2=22-21'-=11-=-1P -
+[c ¢k 4+ T TN - (co.cTlk,, + TLTIIR)CT,C Tolt
Zp1211—=12  =P2-22-22 YpiZi1i11 T ozpa=22221/211212) =22=2P
This is finally brought into the form
To—1p=-1 _ -1 -1
G KT Ly = €000 K 8y 8 *
ﬁ
-1 -1 -1
* Engzz(Kzz B K21911912)922229 *
+ 2C.TR . cTie, (6-16)

Zp2-+22=21=11—-1P

By means of (6-14) and (6-16) we now obtain from
(6-1):

2 ) -1 -1 -1 ) )
mP,l " Ko 2£p1£11£1p + £P1£11£11£11£1P ’ (6 17)
2 _p2 - -1 -1 -1
me = Mp 20,805,800, * o O o L
—_1 _1 _1
* EP2£22K21£11(2£1P - £12§22E2P) . (6'18)
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2 ; .
Here m; , 1is the error variance (square of standard
?

error) using the first part of the observations,
which forms the vector x, , and mi is the error
variance using the complete observation vector (6-2).
The barred quantities are defined by equations (6-11)
to (6-13).

For the optimal estimation error, that is, if
the computational covariances C coincide with the
true covariances K , equations (6-17) and (6-18)

become:

-2  _ _ -1 i
figy = Ko = KpiKyiKyp o (6-19)
2 .2 -1 ]

fie = Mz, 1" KeoKyoRop (6-20)

in agreement with eq.(2-14) of (Moritz, 1973, p.11).
Here the barred quantities are defined by equations
(6-11) to (6-13), but with all C's replaced by the
corresponding K's , so that, for instance, K12 and
K,, are now zero.

Equations (6-17) and (6-18) are the basic result

of this section; they will be used in the sequel.
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7. Power Series Expressions for Interpolation Errors

To get a first idea on the influence of the choice
of the covariance function in least-squares collocation,
we consider the simple case of interpolation between
two points with and without the use of gradients.

More precisely, we take the following case

(Fig. 7-1). Let the two given stations P, and P,

Y

Figure 7-1

be at a distance of 2a apart, and let the interpolation
point P be midway between the two stations P1 and P2 .
Let the x-axis pass through these three points.

As data we assume the gravity anomalies 4g and

their horizontal derivatives G 95% aag/ax . (Essentially,
bg = T, and G =T =T ., s0O that this case is basically
the same as the case Tx s sz considered in (Moritz, 1975,

p.53).) Thus the components of the observation vector x

are
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X, = 4g, = ag at P1 ,
X, = bg, = Ag at P2 ,
- (7-1)
= = -.—_g
X3 = 6y = 5= at P,
= = 2849
X, 62 X at P2
We assume errorless data (no noise). &
Let the covariance function of 4Ag be denoted by
C(s) . Then, if A and B designate any two points of ;
the set P1 s P2 » P, we have ;
k.
cov(ag,,ag,) = C(s) , (7-2)
cov(G ,ag.) = 25 = - ¢i(s) (7-3) r
A’" "B IX, :
q
cov(ag,.6.) = 25 = ¢r(s) (7-4) !
9a°°g 3Xy ’ ;
1
2 3¢ J
cov(G_,G_ ) = = - C"(s) , (7-5)
A'"B 3X, X _
3
: §
where Fj
ks GO |
so that l
3s 3s
25 =1, 2S5 - .
38X, IX,

The signal s, to be estimated is AgL that
is, ag at point P . Then the covariances (5-3)
become:



Cpy =

Cpp =

Cp3 =

Cpa
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cov(AgP,Agl) = C(a) ,

cov(ag,,ag,) = C(a) ,
cov(AgP,GI) = cov(Gl,AgP) = - C'(a) »
cov(ag,,6,) = C'(a)

Since we have assumed errorless data, the quantities
in (5-4) are zero, so that

Dik

where

Ciy =

Ciy ®

Cip "

13

Cig ©

C33

C34

Hence (5

AgP =

cov(xi,xk) = Cip

c(0) = C,y >
C(2a) ,

C'(0) = 0=2C,, »
C'(2a) = - C,q »

- C"(2a)

-2) takes the symmetric form

—

Cor Cpy Cp3 - Cp3]

L

111 C,, 0. (:141-1—’(1_l
C,o G Gy 0 X2
0 -Cyy C33 Cag X3
L_C14 0 Ci4 C33_ LX4_

(7-7)

(7-8)

(7-9)

(7-10)

o bl il bR,
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Briefly this may be written as

]
1
X
2
ag. = CTc7?
P —PpP—- X
3

We now perform a trick. We interchange the points

P1 and P2 and invert the direction of the x-axis

Then the new observation vector becomes

but the matrices g: and T do not change at all.

Therefore we have, corresponding to (7-11), also

- _
X2
X
1
Ag_ = cTc™?
P =PT |,
4

on adding (7-11) and (7-13) and dividing by 2 we obtain

(7-11)

(7-12)

(7-13)

(dpie oo s g
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(x1+x2)/21
X, +X,)/2
ag. = crc7? )
PP (x3-x4)/2
L-(x3-x4)/2~

We thus see that 4g, has the form

X *X, X37%,
bgp = A—g— * B

with certain coefficients A and B .

We just have shown that the estimated value 4g,
may be expressed as a linear combination of the
quantities

We may thus consider these quantities u and v as
our new measurements, in terms of which the least-squares
estimation may be written as

C C u

uu uv
AgP = [CPu CPV] C C v

uv vv

In this way we have been able to reduce the number
of observations from 4 to 2, and the covariance matrix to
be inverted is now a 2x2 instead of a 4x4 matrix. It
should be noted that this reduction has been possible
through the use of symmetries; no approximations are

(7-14)

(7-15)

(7-16)

(7-17)

(7-18)
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involved, so that (7-18) is rigorously equivalent to (7-10).
The covariances are readily calculated. For instance,
by (7-7), (7-9), (7-16) and (7-17),

C = cov(AgP,u) =

1 1
= 7cov(Agp,x1) + ECOV(AQP:Xz)
= 1(C +C ) =
FARS SUS ) p1 °
C = cov(u,v) =

= zcov(xl,x3)+ %cov(xz.x3) -

1 1
- Ecov(xl,x4)- zcov(xz,x4) =

1 _ o1
= 7(Cy + 0y - Cyy Cou) = - 7C4,
In this way we obtain: {;
CPu = C(a) , L |
_ 4
C,, = - C'(a) , Li
¢ = ico) + dc(za) (7-19)
uu 2 7 ! : &
I P
C, = - 7C'(22) ,
- 1 1 _1_ n
C,, = - 30" (0) + 5C"(2a)

It would not be difficult now to directly evaluate .
the estimation formula (7-18), using the covariances !
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(7-19), as well as the corresponding expression of the
standard error,(5-14). We shall, however, choose here
and in the following section the approach through step-
wise collocation, because this approach shows particu-
larly well the improvement of accuracy through the
additional use of gradients: In the first step we take
only ag itself, that is, Xy and Xy 5 OF U3 where-
as in the second step we take also gradient observations,
that is, X4 and x, , or Vv

Using u (first step) and v (second step), and
looking at (7-18), we see that the “submatrices" C
Cuv are in this case simply numbers. Therefore, the
matrix equations (6-17) and (6-18) reduce to ordinary

algebraic expressions:

2 -1 2 -2

mP,l - Ko 2CPu uu Pu + CPucuuKuu i
2 _ 2 -1z 2 -2

mP - mP,l 2.C-E’vt-vaPv + tpvtvavv +

-1 -1 -1
£ T, TR eoh(ac, - € ToTL)

vv uv uu Pu uv vv Pv

where, by (6-1la,b), (6-12) and (6-13),

th = CPv - A CPu ’
T = C - AC s
vv vv uv
KPV = KPv - A KPu '
K = K - A K .
uv uv uu
K = K - A K ’

vv vv uv

e R P VST T

(7-20)

(7-21)

(7-22a)

(7-22b)

(7-23a)

(7-23b)

(7-23c)

e - s
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and

c
uv

A=T—

uu

The quantities K » K y K » K , K are

Pu Pv uu uv vV
computed from the "true" covariance function K(s) in
precisely the same way as the corresponding quantities
Cpu s CPV etc. are computed from the "computational"
covariance function C(s), namely by (7-19); there is

K = K(0)

o

Taylor Series Expressions.- We shall now ex-

pand the covariance functions C(s) and K(s) into
power series:

C(s)
K(s) = 1 = xs° + us™ + vs~ ...;

for the time being we assume Co = K =1 . Differenti-
ation gives

C'(s) - 2as + 48s> - 6ys® ... ,

C'"(s) = - 2o + 128s° - 30ys* ...,

and corresponding expressions for K'(s) and K" (s)
Thus (7-19) becomes, disregarding higher-order terms,

Pu

o
(]

by - 2aa + 4Ba ,

(7-28)

(7-25)

(7-26)

(7-27)

(7-28)

(7-29)

——————

R
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C =1 - 202’ + 8Ba’
uu
C = - 202 ¢+ 163a3 .
uv .
_ 2 .
va - 2483 [Y

analogous expressions hold for the K's . We now can
compute the quantities (7-22) and (7-23) and substitute
them into (7-20) and (7-21). The calculations are very
lengthy but straightforward. The terms of zero and second
degree cancel; there remains for (7-20)

mi y c (a2—2aA+6u)a4 + 0(a6) ,
and for (7-21),
mg = mi’l + (-a2+2aA-6u)a4 + 0(a6)

From these two expressions we may draw interesting
conclusions. Their addition gives

2 _ 6
my = 0(a)

Thus, whereas the interpolation error using Ag only
is of the order 0(a4) , the additional use of horizon-
tal gradients reduces it to 0(a6) ; it thus becomes
essentially smaller. This is true also with the use of
a non-optimal covariance function C

Let us now turn to mill , corresponding to
simple interpolation without the use of gradients,
and investigate the effect of a non-optimal covariance
function. In the optimal case, that fis, for C(s) = K(s)
eq. (7-31) reduces to

(7-30)

(7-31)

(7-32)

(7-33)
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-2 2 4 6
My o (-2“+6u)a + 0(a”) (7-34)

since here o« , u =8 . The difference between
(7-32) and (7-34) is, disregarding 0(a6) R

2 =2 _ 2.4 >
mp y = Mp 4 = (r-a)a” = 0, (7-35)
so that
2 > .2
e, 1™ Mp

as it should be, since the use of a "wrong" (non-optimal)
covariance function diminishes the accuracy.

In (7-26) we have for simplicity assumed Co = K, = 1.
At the end of sec. 5 we have already pointed out that the
variance CO does not have any effect on m; . Only
the "true" variance Ko counts. To get expressions for
mi for KO 4 1 , we must simply correct the scale by
multiplying (7-31) and similar expressions by K0 >

obtaining, for instance,

gy Ko(u2-2ax+6u)a4 + 0(a®) . (7-36)

We also recognize the role of positive definite-
ness for the covariance function: the condition (2-15)
reads in the present notation

bu - A

which is necessary to obtain a positive ﬁi y » by

eq. (7-34). If the covariance function were not positive
definite, one might obtain imaginary interpolation errors!
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The preceding expressions show again the basic
role of the coefficients of s in C(s) and K(s)
and hence of the curvature parameter as defined in
sec. 3.

It need hardly be mentioned that these consider-
ations are not restricted to the interpolation of gravity
anomalies 4g ; they hold for arbitrary signals and their
covariance functions.
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8. Interpolation Errors with Gaussian Covariances

We shall again consider the interpolation problem
of sec. 7, but this time evaluating the error of inter-
polation for the case that the covariance functions are
Gaussian functions (2-26):

_a2g2
C(s) =Ce ™% (8-1)
-p2s?
K(s) = K_e (8-2)
We recall the geometrical situation, as illustrated
by Fig. 7-1: there are two stations P1 and P2 at a
distance of 2a apart, and the interpolation point P is
situated halfway between P1 and P2 . The data are given
at both stations P1 and P2 , namely
either only gravity anomalies g, and Ag, , or
both bg, » bg, and horizontal gradients G1 s G2
If the x-axis passes through P1 s P, P2 , then the
horizontal gradient is
6 = 224, (8-3)

89X -

As we have seen in (Moritz, 1975), this gradient (essen-
tially sz ), is by far the most effective component of
the gradient tensor as regards improvement of interpolation;
see especially pp. 52 and 69 of that report. Therefore it is
reasonable to limit ourselves here to the consideration of
this component (8-3).

The formulas (7-1) through (7-25) apply again. The
computational formulas are (7-19) through (7-24). To
evaluate them for the covariance functions (8-1) and (8-2),

L e ~
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we need their derivatives:

2 2
c_e™® S (-2r%s) (8-4)

C'(s)

2

2
C"(s) coe’A s"(-2A% + 4n%s?) (8-5)

and similarly for K'(s) and K"(s) , with Co and A
replaced by Ko and B .
We take

c_= K, = 1000 mgal? , (8-6)

o)

keeping in mind that Co has no influence on the inter-
polation error and that Ko determines the scale of the
prediction error in mgals: if KO is replaced by Ko )
then all prediction errors simply to be multiplied by

[%oxs

More essential are the parameters A and B , which
are related to the correlation length ¢ by (3-19):

Wiz (8-7)

tc

Upal
n

%VTEE H (8-8)

£ and Ex denote, respectively, the correlation lengths
of the functions (8-1) and (8-2).
We shall fix Ex for the "true" covariance function

K(s) to be

£ 50 km (8-9)
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and vary £ for the "computational" covariance function
C(s) , taking successively

£, = 25 km ,
40 km ,
50 km , (8-10)
60 km ,
75 km ,
100 km
This corresponds to the following situation. The
"“true" covariance function is assumed to be a Gaussian
function (8-2), but its parameters K_ and B are not
known. So we perform the interpolation by a formal least-
squares collocation using a "computational" covariance
function (8-1) with assumed parameters Co and A ;

instead of A we may also prescribe in view of the

£
relation (8-7). We now ask in which waycthe use of C(s)
instead of K(s) deteriorates the interpolation accuracy.
The answer to this problem is provided by equations
(7-20) and (7-21), together with (7-22), (7-23) and (7-24).
The resulting standard errors of interpolation are given
in Table 8-1, using &g data only, and Table 8-2 using
g together with horizontal gradients G
A first glance at the two tables shows already that
the use of second-order gradients G, and 62 , 1in
addition to 89, and 89, essentially improves the
interpolation accuracy.
As to the effect of a "wrong" covariance function,
we see that, within a wide range of correlation lengths
Ec » We get practically the same accuracy as with the opti-
mal value Ec = 50 km (the latter gives, of course, the
minimum interpolation error corresponding to C(s) = K(s)).
This is especially true for Lo greater than 50 km, so that,
in case of doubt, it may be better to select a Lo which is

too large than one which is too small.
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Table 8-1

Standard Errors of Interpolation Using Ag, and g,
for Covariance Functions C(s) with
Different Correlation Lengths Eo - Unit : 1 mgal.

a “c | 25 km 40 km 50 km 60 km 75 km 100 km

S
10 km| 2.3 1.3 1.2 1.3 1.3 1.4
20 4.9 5.0 4.9 5.0 5.1 5.2
30 15.2 10.6 10.6 10.6 10.7 10.8
40 25,1 17.6 17.2 17.2 17.2 17.2
50 29.7 23.9 23.0 23.2 23.4 23.4
60 km | 31.2 27.9 27.1 27.5 28.4 28.6

Table 8-2

Standard Errors of Interpolation Using 4G, » Ag., » Gy >
for Covariance Functions C(s) with -
Different Correlation Lengths &, - Unit : 1 mgal.

a c | 25 km 40 km 50 km 60 km 75 km 100 km
10 km| 0.1 0.0 0.0 0.0 0.0 0.0
20 .8 0.4 0.3 0.3 0.4 0.5
30 .8 1.9 1.6 1.7 1.9 2.1
40 18.9 5.2 4.7 4.8 5.2 5.7
50 ,7.0 11.6 10.1 10.3 10.7 11.2
60 km | 30.3 19.5 16.9 17.4 17.9 18.2

Tables 8-1 and 8-2 give, SO to speak, the "true"
standard interpolation errors if a non-optimal covariance
function is used. Thus they express the actual accuracy
obtainable with the use of a non-optimal covariance function
for interpolation. They can, of course, be computed only if
the true covariance function K(s) is known.
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Table 8-3
Apparent Standard Errors of Interpolation Using !
Ag and g for Covariance Functions C(s) with
Ditferent Cofrelation Lengths Ec » Unit : 1 mgal.
tc
a 25 km 40 km 50 km 60 km 75 km 100 km
10 km | 4.9 1.9 1.2 0.9 0.6 0.3
20 17.2 7.6 4.9 3.4 2.2 1.2
30 27.1 15.6 10.6 7.6 4.9 2.8
40 30.7 23.0 17.2 12.8 8.5 4.9
50 31,5 27.8 23.0 18.3 12.8 7.6
60 km | 31.6 30.2 27.1 23.0 17.2 10.6
Table 8-4

Apparent Standard Errors of Interpolation Using

ag, » 09, , G, , G for Covariance Functions C(s)
with Dif?eren{ Corfelation Lengths Ec - Unit : 1 mgal.
e

a 26 km 40 km 50 km 60 km 75 km 100 km

10 km 0.3 0.0 0.0 0.0 0.0 0.0

20 4.7 0.8 0.3 0.2 0.1 0.0

30 16.9 3.7 1.6 0.8 0.3 0.1

40 27.2 10.1 4.7 2.4 1.0 0.3

50 30.8 18.6 10.1 __ 5.4 2.4 0.8

60 km | 31.5 25.4 16.9 10.1 4.7 1.6

If K(s) 1is unknown, then one might try to calculate
some kind of standard interpolation error using (5-16)
with K(s) replaced by C(s) . that is, the expression (5-19).
The results will be called "apparent standard errors"
and given in Tables 8-3 and 8-4. We again assume that
Ec = 50 km is the true value, so that the corresponding
colums are the same as in Tables 8-1 and 8-2, respectively.

- e R —




78

In sharp contrast to the results of the first two tables,
Tables 8-3 and 8-4 give, for £ # 50 km , results that
differ strongly from the true values for . = 50 km

The difference between Tables 8-1 and 8-2 on the one
hand, and Tables 8-3 and 8-4 on the other hand should be
carefully kept in mind. The use of a non-optimal covariance
function for interpolation by eq. (5-1) is perfectly legit-
imate, it only does not give minimum standard error ﬁp . In
this case, the proper way of calculating m, {s by (5-14),
and Tables 8-1 and 8-2 correspond to this case. On the other

hand, the use of (5-19) for accuracy computation, on which
Tables 8-3 and 8-4 are based, 1is mathematically unjustified;
the only reason for using (5-19) is that it involves only
C(s) , but we see that it gives results that can be quite
misleading.

The comparison of Tables 8-1 and 8-2 with Tables 8-3
and 8-4 confirms once more that the use of an incorrect

covariance for interpolation does not greatly change the
interpolated value, but that for calculating accuracies

the very best available covariances should be used.
1f for accuracy studies a good covariance function is
not available, then some possible covariance functions might
be taken into consideration and their effect on the accuracy
studied by means of formulas such as (5-14). In this way
one might hope to obtain, at least, reasonable bounds for the
accuracy of the quantities that are to be computed.
Acknowledgment.- The author is indebted to Dr. K.P. Schwarz
for discussions and for computing Tables 8-1 to 8-4; the
computations were performed on the UNIVAC 494 of the Rechen-
zentrum Graz.
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