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Abstract

One to one relationships are established between functions harmonic
outside a sphere and density functions (1) with support equal to the sphere and
(2) having the property that the density functions p, multiplied by a positive
function of the distance from the center of the sphere, are harmonie, i.e.,

(¥} A(f(r)*p}=0, f{x)>0 for 0 r<R.

The relationship is established by specifying the relation for each external solid
spherical harmonic V¢, of degree n and order m. The Poisgson equation is first
used to obtain a density function, equal to a distribution with support in the
center of the sphere. This density is then spread out inside the whole sphere,
As spreading operators are used the identity operators on Hilbert spaces of
density functions fulfilling (x).

The derived relations may be used to ass ign a density distribution to
the harmonic part of the potential of the Earth, and a covariance function of a
density anomaly distribution to the covariance function of the anomalous potential
of the Earth. ’
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1. Infroduction

Unfortunately, there is no unique mass-distribution which will produce
the external potential of the Earth, Bul restrictions on the mass distribution
may be prescribed in such a way, thata unique relationship is obtained.

We will illustrate this fact, by regarding a mass distribution p, which
has support equal to a sphere, i.e, it is zero outside the sphere and non-zero
in any open set inside the sphere. It would, for the study of mass distributions
inside the Earth, have been more realistic to regard functions with support inside
an ellipsoid (cf. e.g, Moritz (1973)). But this would result in quite complicated
derivations and not serve the purpose of this presentation.

In this paper we will describe some simple algorithms that will assign
a unique volume distribution to a given potential which is harmonic outside a
sphere. In the main, this new approach uses the reproducing kernels of Hilbert
spaces of density functions, This has been suggested by Dr, W, J. Davis of the
Department of Mathematics, The Ohio State University.

We will regard the potential of a volume distribution p, which has support
equal to a sphere  with radius R and center at the origin. The related total
mass is denoted M.

The potential V, is then

P(Q)
M vk [ p q]| 4%
0

where Q is a point in ©, and k the gravitational constant,

The harmonic part of V can be expanded as a series in solid spherical
harmonics (degree £ and order m)

L -
2) Vﬂn(P)=(r§H>' Sy (0,0, £=0, ..., % ~LSm<4,

where r, 8, X are the spherical coordinates of P and

..

L 22+1 K (cos 8) for m=0
(3) Sg,(8, X)= |
/2(2£+1)M ' PE,ml(ﬁosB)Cost\, m< 0
(£+ |mlyr
PE (cosB)sinm A, m>0,



Py (cos 8) arc the associated Legendre polynomials, The overbar is used to
signify the normalization, i.e. that

1 ¢ = y
(4 Sm ) B8y AN7do=1
a

where o is the surface of the unit sphere.

Hence, for P outside the sphere:
o &
- 3]
(6) V(P)=kM z Z a, Vv, (P)

Fol @Y

TFor the normalized surface harmonics (3), there is a very useful summation
formulae, which will be applied several times (Heiskanen and Moritz, (1962,
eq. (1-82"):

= |

Mb

2, 5,.(8,1))

H

£

where 8 and A are the colatitude and longitude of a point P, 8 and X' the colatitude
and longitude of a point @ and { the spherical distance between the points, i.e,

(T) cosy=cosB*cosd +sin6*sin6 cos (A -\)

(In the following developments, some of the quantities will not carry the cofrect
units, but all the equations are consistent with respect to the units, and the final
result, equation (47) will have proper units of mass divided by (length)®. )



2, The relations between density functions and potentials,

The basic relationship is given in equation (1), The inverse relationship
is given by the Poisson equation:

(8) A(V(P))=-4mek-p,
where A is the Laplace operator,

For the potential V, we will now consider that our knowledge is limited
to the harmonic part of the potential. This means that we can not use equation
(8) to obtain formation about p.

As mentioned above, we will regard density function p with support equal
to & sphere QQwith radius R. The set of harmonicity is then the set outside §2.

Furthermore, we will restrict ourselves to cons idering the potentials,
which are equal to the harmonic functions, e.q. (2). These functions are de-
fined in the whole three-dimensional space R®. Could we use Poisson's equation
on these and obtain a set of density functions 5. ? Unfortunately we have

. 0 in R ®~f{0}
@) (-4nK) AV, (PY)=
a singular quantity at {0}

({0} is the origin),

The idea is now to spread out this singular density function (2 s0 called ''distri-

bution", see e.g. Yosida, (1971, p. 47T)) to the whole sphere §2, so that this

density function will create the external harmonic \{e“ by application of equation
-

(1).



3. Spreading out a singular density function.

We are looking for an operator which can handle the singular densities (9).
But for those density functions, which arc all ready spread out,we will require
that they are not changed by the operator, i.e., the operator is the identity
operator for at least some class of bounded density functions.

Let us regard the functions which are harmonic inside the sphere and
for which the norm

R S
@) o ll" =4 e
Q

is finite. This set of functions forms a Hilbert space with a reproducing kernel,
K(P,Q), i.e.

1y L | @ re,@a0-=

Ay = | (@ K(®,Q d0=p(P)

0

where P and Q both are points in 2, K(P, Q) is symmetric and for either P or Q
fixed, K(P,Q) is a density function, which is harmonic.

An orthogonal set of functions spanning this Hilbert space is the set of
internal solid spherical harmonics:

(12) v, (P)= (-rﬁ)’?’ Sy, (0,0, m=-%, ..., 2

The reproducing kernel is the sum of the products of the normalized solid
spherical barmonics regarded as functions in P and Q respectively.

as) v, I - ﬁ J' ((-12 }P’» S, (9,)\))2 r®ardo
Q

_jR ik
0 R gpe3

The reproducing kernel is then:



[++]
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N e
a4 K@@= ) 2 (TE Y 5ga(8,2)* 5y (84 N)

k=0 w=

and, using (6) the kernel becomes:

(2£+3)(2.6+1)
R®

(15) K(P,Q)=§: ) P, (cos ).

L=0
The identity operator (I) in this space is then:

(16) UH(P)= 4= J I K(P,Q)" (@O = 1P )
Q

where f(P) is a harmonic density function.

We can now apply this operator to the sfngular density function (distri-
bution)(9):

(-1 nn} 1 JK(P Q)——ww L (@an.

17 pnn 1\4 . *k
Q

From Green's identity and the fact that K(P, Q) is harmonic in each variable the
density function p,,, eq. (17) becomes (with w being the surface of Q);

1 e D )
18) = [ 7o) (@ 52 K(P,Q)-K(P, Q)5 Wi (@) de
W

(2£+3)(2£+1) L s 'R 4
(Q)(Z =

(4n) K -: P (cos '“)

w 4=

oo

ﬂ
c o (24+3)(24+1) ; T*R cos )21 .
\ R® ( R® ( ))

'
I~

! Sua (634 )dw
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1 R (zz+3)(zz+1_l 3‘) p(cosw)(-—% S, (00 X)
) (4'”)81{ J f:o R° R ‘R

L2050 .lS) dw
R

Using the expansion formula (6) and the orthogonality of the surface harmonics,
Sy (8, ):

1 (@n#l)(2n+3) IV
Pnn(P) = 1op0 e (R )su(e,x) and

(19) = o, (2n+3)Ent 1) Vou (P)
Example:
kM* Vo (P)= kM is mapped into

k_NE\)= kM* 3 = M
r / 4Rk 4,p3
3

-1
(20) g (
i.e. the mass divided by the volume of the sphere.
Let us now show that the density function p,,(P) (19) really will produce
the potential function V3, (Q) outside the sphere. We will denote the potential as
computed by using p,.in equation (1) by W,.(Q), and we must then show that

vnn Wna *

Denoting ||P- @]} in (1) by L we have

21) L= llp-Qll= /r*+ @)~ 2r+r'*cosy
and then |

o

L
1 _ by
(22) _1-‘“;-; r;f;},,—;. Pl(cos'll')

Substituting p,, in equation (1) and using (22) we get:



1 i
4111{{'1{3 (2n-n-1)(2n+3)f T Vau(P) AR

(23) W, (Q)=

Q
_ (2n43) U rRi (_%ﬂ P(cosw))(2n+1)(35-§nm(9,l)d0'
4“R3 J JO =0 (I"j 2 R
«r%dr

and again using the summation-formula (6) and the orthogonality property of the
surface harmonics;

(24) Wy (Q)

2n+3 PR Ptep® -,
’"—I;"JIO (—;;m-ﬁnsm{e',)t)dr

2n+3 Bu+3 = ‘
= Ra (211-{-;:(1")“4-1 . I{n Snm (BI, A )

R" o 7 ‘
(r’)"‘”’ Sng (875 A)= Via (@),

i.e, we reproduce the external harmonic.

- We will now regard an example of 2 Hilbert space where the identity
operator performs the required smoothing, but in fact, does it too well. ILet
us regard a space of harmonic dens ity functions with the norm:

2. 1 J re p2dQ
@5) lo[lP=—= freo
_ (9}
The norm of the internal solid harmonics becomes:

an+l R _dn+s R*
o (v |- = [I] £oswenian- |

r
oo dr=
0 R 2n+4
and hence, it will have the reproducing kernel;
w ot 4
@) KE,Q=Y (rnl; Y ek 2&“’*‘ 1L P (cos ).

=0



We will thonwzrl};{ﬁ};t].le-_i.rj;ﬁtity operator to the distribution (9) deleting the
constant (4vk):

@) Vi@ =[] v K@, 6ui(P) A=y (P)

and using Green's identity

) [ 9 s
) ou@=] [fae K@ V@R ] @ KE@,Q) 3 Vi (P)
W

~ 2 (KR, QN Vi () .

Now, K(P,Q) is a function in r and a quantity F}L independent of r:

s
(30) K(P.Q)—;or )

First, using the expression for the Laplace operator in spherical coordinates
Heiskanen and Moritz (1967, eq. (1-41)):

]

AT K(P, Q) ==

2 3
[ — - . . B,A- ]
it K(P, Q)+ - (¥ K(P, Q) +1"R(6, A)

where R(8,\) are the terms resulting from the differentiation of K(P, Q) with
respect to © and A. Then, by applying (30) and becuase K(P, Q) is harmonic in
b

A(rK(P,Q))= a_ar (K(P, Q) +T a—ar' K(P, Q)+ T(K(P,Q) +x — K(P, Q+°R(8, A)

or
=2 -a—K P,Q +r~a—aK P’Q +-2~K P,Q +rg -a"K(P Q)+rR(8, A)
ar(!)ar'd(:)r(s)(rar L] ’
3 2 d? 2 d
=2 3K(P, Q45 K(P, Q) + T(37 K(P, Q)+ T 31 K(P, Q+R(S; M)
o 4
=2 ) (4+1)'r 1F£
i=0



(2441)(228-n+3) (rr)) ]
R® R

@) K(P,Q)= ) By (t),

g=e

where m=20 and 2m > n-3

Now, applying the identity operator on A(Vy,) for 2i> n-3;

AV (Q) = | T K(P, Q)AVSy(P)d = p}y(Q) (-4 K),

n
!
W

2
Note that A(rn K(P, Q)=0 (evaluated in P). Using Green's identity we see that

3 >
@) (-4nk0ly(P)= [ [ (" K(P, Q)3 V44(Q) - Viy (@) 5, (K(P, Q)))des
' w

. . - i~ i ri=n—
- EmDEIY 1 ) G g

RS-—n Ri Ra—“ I{

2i-n+3)(2i+1) rf* —

It can easily be shown using equation (1), that p{y (P) really reproduces
V13(Q) for 2i>n-3,

- By requiring the density functions (multiplied by a positive function:of r)
to be harmonic functions, we can proceed as above. As a final example of a
simple relationship, the norm (35) may be used separately for each 2n on each
of the 2n+1 dimensional subspace of degree n. The reproducing kernel becomes:
(38) K(P,Q)= ) (2£+1)3° 3 B (t)~ =,
] & R ﬂ
4=0

and all p,, (P) are independent of r, but we will no longer have a reproducing
kernel Hilbert space.

11



IFinally, it is possible to use density functions which fulfill a c ondition
like

(39) A(fy(r)* p(r,0,A) = 0

with different functions, f(r), for r varying in different intervals between 0 and
R. In this way we may take into consideration the apparently discontinuous
variations in the density of the Earth.

12



4. Implications for the use of least squares collocation in Physical Geodesy.

Supposc that we chose a specific Iilbert space of density functions, with
a reproducing kernel, which can be used to map the distributions (9) into density
functions.

The reproducing kernel can be used as a covariance function of point
density values, and we will then be able to predict unknown dens ity values from
known values. This covariance function can also be used to produce a covariance
function for the external potential (and a cross-covariance function), cf. e.g.

E. Grafarend (1970). (For a.discussion of the relation between covariance
functions and reproducing kernel see e.g. Parzen (1959), Lauritzen (1973) or
Tscherning (1973)).

Let us denote the operator (1) by Ny (N for Newton):

1
“0) Np)= | o] "®4®
a

The covariance between two density values py and py is then covipe, Pg)=K(P, Q).
The covariance befween a potential value in P, outside Qand Py is:

(41) cov(Ve,pg)= Ne K(P, Q)
and between two potential values:

(42) COV(Vpl, Vql) = N'Q1 (Npl (K(P, Q)))-

Example 2, The covariance function (15),

ke £
LT (2443)(24+1) r'r'\_
K(P,Q)= ) e ( R ACE
4=0
1 \E' 4rk r’e
(43) cov(Ve,, Pq)= | — K(P,Q) dQ=" 4 B, (cos¥y)

v I, ﬂjo 2441 r,
Q =

and

) . g‘e
(44) Cov(Ve, Vg,) = ‘[ 1 COV (Vp, pp)d8= (4rrk)dR3? R
L 1 i. N 2
0 f=o (T1'Iy)

1
" (22+1)(22+3) G {0

13



(the distance of P, and @, from the origin is r; and r; respectively).

It is therefore possible to combine values of density anomalies, gravity
anomalies and other gravimetric quantitics in least squares collocation using
the covariance models described here. (For a discussion of least squares col-
localion, see ¢,g. Moritz, 1972). The resulting covariance functions will not
be easy lo handle in actual computations. For example, all the covariance
functions described here approach infinity for r~R.

Covariance functions of the following kind:

_i R™® rer 4 . )
(45) K(P,Q) -£ 2 P ibito ( 2 ) Pg(t), (a,b, c, constants)
=3

would be very useful, thus producing a covariance function

@

46 Ve, Vi —z R (i"rl".z t
(46)  cov(Ve, Qz)‘m L) 2a9 @b Hobrey\ B/

for the potential values outside §2,

14



Evaluation of the volume integral part of (29) gives:

Sy (0,A) =5 1_,_1 rdr

(1) ” f Ar* K(P, Q) Viy(P)d Q= J”R(2‘+2)(21+4) (R )1_ R

‘T

= -(—13-5 (21+2)(2i+4) §U(e‘,)\')
and for the surface integral (using (30)):
(32) "f( Vi (P) T K(P, Q) - T (1 K(P, Q)* Vel (P) Jw
1 a i) }d

- 2 4+l s . 1 — : 2 J . 1 -
_”(Z R F,*(-i-1) i;su(e,l)-z(zﬂ)n F Es“(e.A))dw
W £=o L:O

=~” ((i 'L')E'M \: S.@m(e NS (8, A))S“(e A)(-i-1)

5
o L:o R R m=_£
@ ,\ﬂ- £ _
(), (F) BR4U 3 5 05, 0 S, Bodo
o n=-4

2i+2)(2i+4 \—

= - L—)_aLl (E_ S (e, Ay,
R R/

with ¢ being the surface of the unit Sphere.

Hence, adding both terms ((31) + (32))

P (P)=0

(in fact an effective spreading of the density).




We now have onc simple algorithm which we can use for the assignment
of density distributions to harmonic functions. Thus, the density functions are
harmonic and all but one of the basic density functions p1y(P) are zero at the
origin. Such a2 model may be of interest in some studies, Let us note a few
facts which made the procedure work:

(2) The Laplace operator was shifted from V3 to the other factor
in (18) using Green's equations, and the Laplace operator applied
on this gave zero, because the factor was a harmonic function.

{b) TFor the integration of p,, in (23), the factor (2n+3) disappears
because we ave integrating the function r~(¥9+2),

Thus, we could regard functions expanded as a series in
(33) r"“VE‘m(P),
i.e, functions which are harmonic after a multiplication with r® '

(34) A(r"+f(r,8,A))=0

We will then use a norm, (which would not cause a meaningiul spreading for
harmonic functions for n=1)

3 n
@5 el = [re®an
Q

(This will be a norm, since r® is non-negative),

The functions -j—n Vs (P) will form an orthogonal base for this space.
Computing the normalization factor for these function:

o 470

1 -] 1 2 n ] .
I r—nvﬁ’u | =”j r® '(F \{e‘n(p)) dQ:LfJ iﬁe—r 84, (8 A)*r"drdo
9] Q '
_ R_n+3
28 -n+3

The reproducing kernel is then:

10




5. Applications

Using these simple algorithms for the unique assignment of density
functions pEm to the harmonics me we may assign a density model to a given
approximation to the potential of the Earth (or another celestial body).

Using the representation (9) we get:

o £
< n
(47 p(P)=kM z ) 8. Py (P) 2i<n-3,

£=1 o=~}

. The selection of a PTOPEr one to one relationship must be done based on geo-
physical studies, cf. €.g. Kaula (1968, Chapter 2) or Jeffreys, {1970).

When the relationship has been determined, we may compute a density
funciion, which will reproduce the external potential field as given by a limited
number of potential coeflicients, e, g, of degree < 20. This density function may
be regarded as a density reference function. The data to be dealt with in least
squares collocation will hence be density anomalies with respect to this ref-
erence density function,

The density function will have the total mass M inside a sphere, e, g,
with radius equal to a mean Farth sphere. We may regard this sphere as a
sufficient representation of the reference ellipsoid. But still we need a way
to model the masses external to the reference figures.

Such a modelling can be made in many ways. But a straightforward
procedure would be a representation of the external masses as a density layer
on the reference sphere. The density layer could e.g. bhe proportional to the
height times the mean rock density,

It is not likely that the reference density function will represent the mass
discontinuities inside the sphere, produced by the presence of the oceans. This
discontinuity could be represented by a negative dens ity layer on the sphere, so
that we in this way will have a density function defined on the whole sphere,

The density function will be an element of a Hilbert Space of functions
on the sphere and it can be expanded in surface harmonics,

o 4
(48) ps = z E b,. 5, (8,A).
L=0 n=—4
It will produce an external potential,

15




w b .
. R —
(49) Vs(P)=Np(ps)=§_‘ z —ge1 (2L, kednes, (8,

470 o=-4

We may then (in the same way as explained above for volume density functions)
adopt a covariance function for surface density values. This covariance function
will produce a covariance functions for the external potential field. We should

then be able to introduce topographic information in a least sguare collocation
determination of the exlernal potential field.

Conclusion

The above discussed procedures have not yet been numerically tested,

but the author is convinced that their simplicity will assure that they can be
used in practice. -

Further developments in the field will depend upon a cooperation between
geodesists, geophysists and mathematicians,

16
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