A FORIRAN IV PROGRAM FOR TIE DEIERMNATION OF THE ANOMALOUS POTENTAL USING STEPWISE LEAST SQUARES COLOCATION

by

C. C. Tscherning

The Ohio State University
Department of Geodetic Science 1958 Neil Avenue
Columbus, Ohio 43210
July, 1974

Reports of the Department of Geodetic Science
Report No. 212

A FORTRAN IV PROGRAM FOR THE DETERMINATION O F THE ANOMALOUS POTENTIAL USING STEPWISE LEAST SQUARES COLLOCATION
by
C. C. Tscherning

The Ohio State University
Department of Geodetic Science
1958 Neil Avenue
Columbus, Ohio 43210
July, 1974

Abstract

The theory of sequential least squares collocation, as applied to the determination of an approximation \widetilde{T} to the anomalous potential of the Earth T, and to the prediction and filtering of quantities related in a linear manner to T , is developed.

The practical implementation of the theory in the form of a FORTRAN IV program is presented, and detailed instructions for the use of this program are given.

The program requires the specification of (1)a covariance function of the gravity anomalies and (2) a set of observed quantities (with known standard deviations).

The covariance function is required to be isotropic. It is specified by a set of empirical anomaly degree-variances all of degree less than or equal to an integer I and by selecting the anomaly degree-variances of degree greater than I according to one of three possible degree-variance models. The observations may be potential coefficients, mean or point gravity anomalies, height anomalies or deflections of the vertical. A filtering of the observations will take place simultaneously with the determination of \widetilde{T}.

The program may be used for the prediction of height anomalies, gravity anomalies and deflections of the vertical. Estimates of the standard error of the predicted quantities may be obtained as well.

The observations may be given in a local geodetic reference system. In this case parameters for a datum shift to a geocentric reference system must be specified. The predictions will be given in both the local and the geocentric reference system. \widetilde{T} may be computed stepwise, i.e. the observations may be divided in up to three groups. (The limit of three is only attained when potential coefficients are observed, in which case these quantities will form the first set of observations.) Each set of observations will determine a harmonic function and \widetilde{T} will be equal to the sum of these functions.

The function \tilde{T} determined by the program will be a (global or local) solution to the problem of Bjerhammar, i.e., it will be harmonic outside a sphere enclosed in the Earth, and it will agree with the filtered observations.

This report was prepared by C.C. Tscherning, Research Associate, Department of Geodetic Science, and the Danish Geodetic Institute. This work was sponsored, in part, by the Danish Geodetic Institute, and in part by the Air Force Cambridge Research Laboratories, Bedford, Massachusetts, under Air Force Contract No. F19628-72-C-0120, The Ohio State University Research Foundation Project No. 3368B1, Project Supervisor, Richard H. Rapp. The Air Force Contract Monitor is Mr. Bela Szabo and Dr. Donald H. Eckhardt is Project Scientist.

Funds for the support of certain computations and program developments described in this study were made available through the Northern European University Computer Center, Lyngby, Denmark and through the Instruction and Research Computer Center of The Ohio State University.

A travel grant was supplied by the NATO Senior Fellowship Scheme.
The reproduction and distribution of this report was carried out through funds supplied by the Department of Geodetic Science. This report was also distributed by the Air Force Cambridge Research Laboratories as document AFCRL-TR-74-0391 (Scientific Report No. 17 under contract no. F19628-72-c-0120).

The writer wishes to thank Dr. R. H. Rapp for valuable suggestions and criticism and Jannie Nielsen for relieving me of most of my household responsibilities in the period when this report was being prepared.

Table of Contents
Page1. Introduction1
2. The Basic Equations 3
2.1 Least Squares Collocation 3
2.2 Equations for the Covariance of and Between Gravity 8
Anomalies, Deflections of the Vertical, Height Anom- alis and Potential Coefficients.
2.3 Stepwise Collocation 17
3. Data Requirements 27
3.1 Observed Quantities 27
3.2 The Reference Systems 29
3.3 The Covariance Function 30
4. Main lines of function of the FORTRAN IV Program. 32
5. The Storage of the Normal Equations and the Function of the 38 Sub-Programs.
5.1 The Storage of the Normal Equations 38
5.2 Solution of the Normal Equations and Computation of the 41Estimate of the Error of Prediction, Subroutine NES.
5.3 Transformation Between Reference Systems, Subroutine 43 ITRAN.
5.4 Computation of the Normal Gravity, the Normal Potential 43 and the Contributions from the Potential Coefficients. Sub- routines GRAVC and IGPOT.
5. 5 Computation of Euclidian Coordinates, Convers ion of 45 Angles to Radians, Subroutines EUCLID and RAD.
5.6 Subroutines for Output Management and Prediction Statis- 45 tics, HEAD, OUT, COMPA.
5.7 Subroutines for the Computation of Covariances, PRED 46 and SUMK.
6. Input Spec ifieations 48
7. Output and Output Options 57
8. Recommendations and Conclusions. 59
References 60
Appendix 62
A. The FORTRAN program. 63
B. An input example. 116
C. An output example. 120

1. Introduction.

The theory of least squares collocation has been discussed extensively by Krarup (1969), Moritz (1972, 1973), Lauritzen (1973), Grafarend (1973) and Tscherning (1973). Collocation was originally introduced by Krarup (1969) as a method for the determination of the anomalous potential using different kinds of observations. Primarily Moritz (1972) has extended the theory to a wider field. This report will only consider the use of least squares collocation for the determination of the anomalous potential, T and the estimation of quantities dependent on T .

We will regard the problem of the determination of T as being equivalent to the solution of the Bjerhammar-problem, i.e. the determination of a function, harmonic outside a sphere totally enclosed in the Earth and regular at infinity, which agrees with observed values of e.g. gravity anomalies and deflections of the vertical.

It is not required, that the observations and the solution agree exactly. The observations will contain a certain amount of "noise", the magnitude of which is specified by an estimated standard error.

Least squares collocation will filter out some of this noise, and the solution will agree exactly with the filtered observations.

Having determined a solution, \widetilde{T}, to the Bjerhammar problem, this function can naturally he used to compute geoid heights (or more correctly, height anomalies), gravity anomalies or deflections of the vertical in points in the set of harmonicity. Hence, by solving the Bjerhammar problem, we have implicitly also solved e.g. the problems of interpolation or extrapolation (prediction) of gravity anomalies or deflections and the problem of astrogeodetic or astrogravimetric geoid computation.

An Algol-program, which used this approach was published in Tscherning (1972). The program could only handle a very limited amount of observations. In the FORTRAN IV program presented in this report, we have taken advantage of the availability of a computer (IBM System 370), which has large core storage and fast peripherial units (disks), so that very large amounts of data can be treated. Thus, the use of FORTRAN IV, which does not have variable dimensioning of arrays, has required that certain (arbitrary) limits have been put on e.g. the number of observations, which the program can handle.

In section 2 we will present the basic equations of least squares collocation as applied to the Bjerhammar problem. We will also discuss the method of stepwise collocation, which differs somewhat from the p ocedure described by Moritz (1973). All the observed quantities must be in the same reference system. This requirement is discussed in section 3. The main lines of function of the FORTRAN IV program is described in section 4. The most important details are given in the following section, which especially discusses the subprograms used. Input and output options are described in sections G and 7 respectively, and the final section 8 contains some recommendations and conclusions. The FORTRAN program, an input and an output example are contained in an appendix.

r

References are given by author name and year, with one exception: Heiskanen and Moritz, Physical Geodesy, will be referenced only by PG, because references to this book occur frequently.

2. The Basic Equations

There are two ways of approach to least squares collocation. A mathematical (functional analytic) and a statistical. The mathematical approach is the most well founded and without dark spots. But its appreciation requires a mathmatical background, which not yet is common among geodesists. The statistical approach is with a first glance less difficult and gives a sufficient insight. This means, that a geodesist, well educated in the theory and application of least squares adjustment, will be able to use the method.

We will, without hereby having questioned the intellectual ability of the reader, use the statistical approach in the following presentation of the basic equations of least squares collocation.

2.1 Least sauares collocation.

Let us suppose, that T is an element of a sample space H of functions harmonic outside a sphere totally enclosed in the Earth. We will denote the probability measure of H by Φ. Let the random variables Y_{P} be the mappings, which relate a function in H to the value of the function in the point P , i.e. $Y_{P}(T)=T(P)$. The variables Y_{p} will then form a stochastic process with the set of harmonicity as index set (provided P fulfills some basic requirements see e.g. Grafarend (1973)). The covariance between two random variables Y_{P}, Y_{Q} will be denoted $\operatorname{cov}\left(T_{P}, T_{Q}\right)$, because $Y_{P}(T)=T(P)$ and $Y_{Q}(T)=T(Q)$. It is equal to:

$$
\begin{equation*}
\operatorname{cov}\left(T_{P}, T_{Q}\right)=\int_{H} Y_{P}(T) \cdot Y_{Q}(T) d \Phi \tag{1}
\end{equation*}
$$

We will require, that the variance $\operatorname{cov}\left(T_{P}, T_{Q}\right)$ is finite.
Example. Following Meissl (1971), the probability measure Φ may be defined by specifying the distribution of the random variables, $Y_{l_{m}}$, which maps T into its coefficient $v_{\ell_{n}}$ in a development of T as a series in solid spherical harmonics. Let us suppose that this random variable has a Gaussian distribution with mean value zero and variance $\sigma_{\ell}(T, T) / \sqrt{2 \ell+1}$, only depending of the degree ℓ, we will then have

$$
\operatorname{cov}\left(\mathrm{T}_{\mathrm{P}}, \mathrm{~T}_{Q}\right)=\sum_{\ell=0}^{\infty} \sigma_{\ell}(\mathrm{T}, \mathrm{~T}) \cdot\left(\frac{\mathrm{R}^{2}}{\mathrm{r} \cdot \mathrm{r}^{\prime}}\right)^{\ell+1} \mathrm{P}_{\ell}(\cos \psi)
$$

where ψ is the spherical distance between P and Q, r and r^{\prime} the distance of P and Q from the origin, R the radius of the (Bjerhammar)-sphere bounding the set of harmonicity and $P_{\ell}(\cos \psi)$ the Legendre polynomial of degree ℓ.

The constants $\sigma_{\ell}(T, T)$ are called the (potential) degree variances. The covariance function will be isotropic, i. e. invariant with respect to rotations of the pair of points P and Q around the origin*

From the random variables Y_{p} we may form a second order stochastic field. This field consists of all random variables, which are linear combinations or limits of linear combinations of a finite number of these random variables and which have finite variance, (cf. e.g. Parzen (1967), page 260).

Their covariances can all be derived from the covariance (1). Let us regard

$$
Y=a_{1} Y_{P_{1}}+a_{g} Y_{P_{2}}, \quad Y(T)=a_{1} T\left(P_{1}\right)+a_{2} T\left(P_{2}\right)
$$

Then

$$
\begin{aligned}
& \operatorname{cov}\left(\mathrm{Y}(\mathrm{~T}), \mathrm{T}_{Q}\right)=\int_{H} \mathrm{Y}(\mathrm{~T}) \cdot \mathrm{Y}_{Q}(\mathrm{~T}) \mathrm{d} \Phi=\mathrm{a}_{1} \int_{H} \mathrm{Y}_{P_{1}}(\mathrm{~T}) \cdot \mathrm{Y}_{Q}(\mathrm{~T}) \mathrm{d} \Phi^{\Phi} \\
& \quad+\mathrm{a}_{2} \int_{H} \mathrm{Y}_{P_{2}}(\mathrm{Y}) \cdot \mathrm{Y}_{Q}(\mathrm{~T}) \mathrm{d} \Phi=\mathrm{a}_{1} \operatorname{cov}\left(\mathrm{~T}_{P_{1}}, \mathrm{~T}_{Q}\right)+\mathrm{a}_{2} \operatorname{cov}\left(\mathrm{~T}_{P_{2}}, \mathrm{~T}_{Q}\right) .
\end{aligned}
$$

And generally for quantities s_{1} and s_{j}, where
(2) $s_{1}=Y_{1}(T), \quad s_{j}=Y_{j}(T)$
we have
(3) $\operatorname{cov}\left(\mathrm{S}_{1}, \mathrm{~s}_{\mathrm{j}}\right)=\mathrm{Y}_{1}\left(\operatorname{cov}\left(\mathrm{~T}_{\mathrm{P}}, \mathrm{S}_{\mathrm{j}}\right)\right)=\mathrm{Y}_{1}\left(\mathrm{Y}_{\mathrm{g}}\left(\operatorname{cov}\left(\mathrm{T}_{\mathrm{P}}, \mathrm{T}_{\mathrm{q}}\right)\right)\right)$.
(We have here implicitly presupposed, that $\operatorname{cov}\left(\mathrm{T}_{\mathrm{p}}, \mathrm{S}_{\mathrm{f}}\right)$ regarded as a function of P and $Y_{j}\left(\operatorname{cov}\left(T_{P}, T_{Q}\right)\right)$ regarded as a function of Q, are elements of the sample space H , i.e. that they are harmonic. This will be proved below).

The equation (3) is the so called law of propagation of covariances, Moritz (1972, page 97).

We will denote
(4) $c_{19}=\operatorname{cov}\left(s_{1}, s_{j}\right), \quad C=\left\{c_{19}\right\}$ a qxq matrix,
(5) $\mathrm{c}_{\mathrm{P}_{1}}=\operatorname{cov}\left(\mathrm{T}_{\mathrm{P}}, \mathrm{s}_{1}\right), \quad \mathrm{C}_{\mathrm{P}}=\left\{\mathrm{c}_{\mathrm{P}_{1}}\right\}$ a q-vector and
(6) $c_{s_{1}}=\operatorname{cov}\left(s, s_{1}\right), \quad C_{s}=\left\{c_{s_{1}}\right\}$ a q-vector.
(We will below use subscripted quantities in brackets, \{\} to denote vectors or matrices. In case the limit(s) of the subscript(s) are not obvious, the upper limit(s) will be indicated by subscripts, i, e. $\left.C=\left\{c_{11}\right\}_{a \times a}\right)$.

We will have to regard one more kind of random quantities (independent of the above discussed), namely the random noise, n. A random variable will be associated with each of the random variables Y_{s}. They are all supposed to be Gaussian distributed with mean value zero, known variance (denoted σ_{s}^{2}) and uncorrelated. The covariance matrix, which hence is a diagonal matrix, will be denoted $D=\left\{d_{11}\right\}, d_{11}=\sigma_{s}^{2}$

Following Moritz (1972), the basic equation of "observation" is
(7) $\mathrm{x}=\mathrm{AX}+\mathrm{s}^{\prime}+\mathrm{n}$,
where x is the measurement or observation, s^{\prime} the corresponding "signal" and n is the noise. $\mathrm{x}, \mathrm{s}^{\prime}$ and n are $\mathrm{q}-\mathrm{vectors}$,where q is the number of observations. The n -vector X comprises n parameters, and A is a known $\mathrm{q} x \mathrm{~m}$ matrix.

Let us now assume, that we want to estimate the outcome s of a stochastic variable Y_{s}, given a set of observed quantities x , Denoting $\overline{\mathrm{C}}=\mathrm{C}+\mathrm{D}$ we obtain from Moritz (1972, eq. (2-38) and (2-35))
(8) $\tilde{\mathrm{s}}=\mathrm{C}_{\mathrm{s}}^{\top} \overline{\mathrm{C}}^{-1}(\mathrm{x}-\mathrm{AX})$
(9) $\widetilde{\mathrm{X}}=\left(\mathrm{A}^{\top} \overline{\mathrm{C}}^{-1} \mathrm{~A}\right)^{-1} \mathrm{~A}^{\top} \overline{\mathrm{C}}^{-1} \mathrm{x}$
where the superscript T means transposition.
The corresponding estimate of the error of estimation $\mathrm{m}_{\mathrm{s}}^{2}(o f s)$ and E_{xx} (of X) are, cf. Moritz (1972, eq. (3-38) and (3-33))
(10) $\mathrm{m}_{\mathrm{s}}^{2}=\mathrm{C}_{\mathrm{ss}}-\mathrm{C}_{\mathrm{s}}^{\top} \overline{\mathrm{C}}^{-1} \mathrm{C}_{\mathrm{s}}+\mathrm{h}_{\mathrm{g}}^{\top} \mathrm{AE} \mathrm{E}_{\mathrm{xx}} \mathrm{A}^{\top} \mathrm{h}_{\mathrm{s}}$,
(11) $E_{x x}=\left(A^{\top} \bar{C}^{-1} A\right)^{-1}$
with $h_{8}=C_{8}^{\top} \bar{C}^{1}$ and $C_{s s}$ is the variance of s.
The program presented in this report can only handle the non-parametric (i.e. $X=0$) case. But the general equations are presented here, so that we later on can point out the main changes, which will have to be made in order to incorporate the parameters X .

The special case we will consider here can then be described by the following equations:
(12) $\tilde{\mathrm{s}}=C^{\top} \cdot \overline{\mathrm{C}}^{-1} \mathrm{X}$ and
(13) $\mathrm{m}_{\mathrm{s}}^{2}=\mathrm{C}_{88}-\mathrm{C}_{8}^{\top} \overline{\mathrm{C}}^{-1} \mathrm{C}_{5}$

The filtered observations \widetilde{s}^{\prime} are obtained from (12) by substituting C^{\top} for C_{s}^{\top}.

The equations (12) and (13) differ from the equations given by $\mathrm{PG}(\mathrm{eq}$. (7-63) and (7-64)) only in that $\overline{\mathrm{C}}$ has been substituted for C and that we are not restricted to consider only gravity anomalies.

The quantities we want to consider here are potential coefficients, gravity anomalies, deflections of the vertical and height anomalies. They are all (at least in spherical approximation) expressible as either linear combinations or limits of linear combinations of values of the anomalous potential. We will presuppose, that the variances of the corresponding stochastic variables all are finite. Equation (3) is hence valid for these kinds of quantities.

The value of the Laplace operator A, applied on T and evaluated in a point P in the set of harmonicity,

$$
\Delta T_{P}=0
$$

is related to a stochastic variable, $Y_{\Delta T_{P}}$. This variable will also belong to the stochastic field (variance zero) and we will have for an arbitrary stochastic variable Y_{s} :
(14) $\operatorname{cov}\left(\mathrm{s}, \Delta \mathrm{T}_{\mathrm{P}}\right)=\Delta\left(\operatorname{cov}\left(\mathrm{s}, \mathrm{T}_{\mathrm{P}}\right)\right)=0$.

Hence, the covariance between a quantity s and the value of the anomalous potential in P is a harmonic function (regarded as a function of P).

Let us now assume, that we want to estimat the value of T in a point P from a set of observations $x=\left\{x_{1}\right\}, i=1, \ldots, q$. We then have from (12),
(15) $\widetilde{\mathrm{T}}(\mathrm{P})=\mathrm{C}_{\mathrm{p}}^{\top} \overline{\mathrm{C}}^{-1} \mathrm{x}=\left\{\operatorname{cov}\left(\mathrm{T}_{\mathrm{P}}, \mathrm{s}_{1}\right)\right\}^{\top}\left\{\operatorname{cov}\left(\mathrm{s}_{1}, \mathrm{~s}_{\mathrm{j}}\right)+\mathrm{d}_{1 \mathrm{j}}\right\}^{-1}\left\{\mathrm{x}_{\mathrm{j}}\right\}$.

Introducting the solution vector
(16) $\mathrm{b}=\left\{\mathrm{b}_{1}\right\}=\overline{\mathrm{C}}^{-1} \mathrm{x}$
we have
(17) $\tilde{T}(P)=C_{P}^{\top} b=\left\{\operatorname{cov}\left(T_{P}, s_{1}\right)\right\}^{\top}\left\{b_{1}\right\}=\sum_{1=1}^{Q} \operatorname{cov}\left(\mathrm{~T}_{\mathrm{P}}, \mathrm{s}_{1}\right) \mathrm{b}_{1}$

Using (11)we see that

$$
\begin{equation*}
\Delta_{p} \tilde{T}=\sum_{1=1}^{q} \Delta_{p}\left(\operatorname{cov}\left(T_{p}, s_{1}\right)\right) \cdot b_{1}=0 \tag{18}
\end{equation*}
$$

i. e. $\widetilde{\mathrm{T}}(\mathrm{P})$ is a harmonic function.

By also requiring, that the functions in the sample space H are regular at infinity, it can be shown, that $\widetilde{\mathrm{T}}(\mathrm{P})$ is regular at infinity as well.

We have then obtained a solution to the problem of Bjerhammar, if we can prove, that the $\widetilde{s_{1}}=s_{1}=x_{1}$ for $\sigma_{s_{1}}^{2}\left(\right.$ or $\left.d_{11}\right)=0$. But this is easily seen, because
(19)

$$
\begin{aligned}
\tilde{S}_{1}= & Y_{s_{1}}(\tilde{T}(P))=\sum_{j=1}^{a} Y_{G_{1}}\left(\operatorname{cov}\left(T_{p}, s_{j}\right)\right) \cdot b_{j} \\
= & \left\{\operatorname{cov}\left(s_{1}, s_{j}\right)\right\}^{\top}\left\{\operatorname{cov}\left(s_{j}, s_{k}\right)\right\}^{-1}\left\{x_{k}\right\}=\{0, \ldots, 0,1, \ldots, 0\}^{\top}\left\{x_{k}\right\}=s_{1} . \\
& \text { (1 at i'th positions) }
\end{aligned}
$$

This fact makes available an easy test of a collocation program. The used observations are predicted and it is checked, that the predictions agree with the observed values (and that the estimates of the error of prediction are zero).
2.2 Equations for the covariances of and between gravity anomalies, deflections of the vertical, height anomalies and potential coefficients.

The relation (3) between the signal and the anomalous potential has been given in Tscherning and Rapp (1974), eq. (30)-(33))in spherical approximation for gravity anomalies, height anomalies and deflections of the vertical. We have for the height anomaly in P
(20) $5=T(P) / \gamma$,
the latitude component of the deflection of the vertical
(21) $\xi=-D_{\varphi} \mathrm{T}(P) /(\gamma \cdot \mathrm{r})$,
the longitude component of the deflection of the vertical
(22) $\eta=-\mathrm{D}_{\lambda} \mathrm{T}(\mathrm{P}) /(\gamma \cdot \mathrm{r} \cdot \cos \varphi)$,
the point (free-air) gravity anomaly
(23) $\Delta g=-D_{r} T(P)-\frac{2}{r} T(P)$
and the mean (free-air) gravity anomaly
(24) $\overline{\Delta g}=\frac{1}{A} \int \Delta g d A$,
where r is the distance from the origin, φ the latitude, X the longitude, y the reference gravity and \mathbf{A} the area over which the mean gravity value is computed.

We may, as explained in Tscherning and Rapp (1974, section 10) represent mean gravity anomalies by point anomalies in a certain height above the center of the area A. For this reason we will not in the following distinguish between mean and point gravity anomalies. The program is able to use all the quantities (20)-(24)as observed quantities for the computation of \widetilde{T}. The same kind of quantities may also be predicted by the program.

One more kind of quantities, potential coefficients, can be used, though only as observed quantities. The given coefficients will generally be the coefficients of the potential of the Earth, W, expanded in spherical harmonics and not the coefficients of the anomabus potential. Denoting the normal potential by U we have

$$
T(P)=W(P)-U(P)
$$

and for W and U expanded in fully normalized spherical harmonics
(25) $W(P)=\frac{k M}{r}\left(1+\sum_{\ell=1}^{\infty}\left(\frac{a}{r}\right)^{\ell} \sum_{m=0}^{\ell} \overline{\mathrm{P}}_{l m}(\cos \theta)\left(\overline{\mathrm{S}}_{l m} \cdot \sin m \lambda+{\overline{C_{l m}}}_{l \cdot \cos m} \cdot \cos \right)\right)$

$$
+\frac{\omega^{2}}{2}(r \cdot \sin \theta)^{2} \quad \text { and }
$$

$$
\begin{equation*}
\mathrm{U}(\mathrm{P})=\frac{\mathrm{kM}}{\mathrm{r}}\left(1-\sum_{\ell=1}^{\infty}\left(\frac{a}{r}\right)^{2 \ell} \cdot \frac{\mathrm{~J}_{2 \ell}}{\sqrt{4 \ell+1}} \bar{P}_{2 \ell}(\cos \theta)\right)+\frac{\omega^{2}}{2}(r \sin \theta)^{2} \tag{26}
\end{equation*}
$$

where ω is the speed of rotation of the Earth, $6=90^{\circ}-\varphi, \mathrm{kM}$ the product of the gravitational constant and the total mass of the Earth, the coefficients $\bar{S}_{l m}$ and $\overline{\mathrm{C}}_{\ell_{\Phi}}$ the potential coefficients, and $\overline{\mathrm{P}}_{\ell_{\pi}}(\cos \theta)$ an associated Legendre polynomial, normalized so that
(27) $\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-\pi / 2}^{\pi / 2}\left(\overline{\mathrm{P}}_{\ell_{m}}(\cos \theta)\left\{\begin{array}{l}\cos m \lambda \\ \sin m \lambda\end{array}\right\}\right)^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \lambda=1$.

The coefficients $\mathrm{J}_{\mathrm{G} \ell}$ in (26) are given in PG, (eq. (2-92)).

For the potential coefficients we then have the following equation
(28)

$$
\left.\begin{array}{l}
\mathrm{a} \cdot \mathrm{kM} \cdot \overline{\mathrm{~S}}_{l \mathrm{~m}} \\
\mathrm{a} \cdot \mathrm{kM} \cdot \overline{\mathrm{C}}_{l \mathrm{~m}}
\end{array}\right\}=\frac{1}{4 \pi} \iint_{\omega}(\mathrm{T}+\mathrm{U}) \cdot \overline{\mathrm{P}}_{\mathrm{lm}}(\cos \theta)\left\{\begin{array}{c}
\sin \mathrm{m} \lambda \\
\cos \mathrm{~m} \lambda
\end{array}\right\} \mathrm{d} \omega
$$

where ω is the surface of the sphere with radius equal to the semi major axis a and with center in the origin. (We are now denoting two quantities by $\boldsymbol{\omega}$, but since they are used in a different context, we hope, that no confusion is caused).

In the program it is possible to use one of three different kinds of (isotropic) covariance functions, which we below will distinguish by a subscript k, $\mathrm{k}=1,2$ or 3 . They are all specified by a so called anomaly degree-variance model, i.e. by the coefficients $\sigma_{k, \ell}(\mathrm{Ag}, \mathrm{Ag})$ of degree ℓ greater than a constant I of the covariance function of the gravity anomalies developed in a Legendre series:
(29) $\operatorname{cov}_{k}\left(\Delta \mathrm{~g}_{\mathrm{P}}, \Delta \mathrm{g}_{\mathrm{q}}\right)=\sum_{\ell=0}^{1} \hat{\sigma}_{\ell}(\Delta \mathrm{g}, \Delta \mathrm{g})\left(\frac{\mathrm{R}^{2}}{\mathrm{r} \cdot \mathrm{r}^{\prime}}\right)^{\ell+\mathrm{a}} \mathrm{P}_{\ell}(\cos \psi)+\sum_{l=1+1}^{\infty} \sigma_{k}, \ell(\Delta \mathrm{~g}, \Delta \mathrm{~g})$
$\underset{(\text { cont'd })}{(29)} \cdot\left(\frac{\mathrm{R}^{2}}{\mathrm{r} \cdot \mathrm{r}^{\prime}}\right)^{\ell+2} \mathrm{P}_{\ell}(\cos \psi)$,
where r^{\prime} is the distance of Q from the origin, R the radius of the Bjerhammar sphere, $\psi=$ the spherical distance between P and Q and $\stackrel{\sigma}{l}_{\ell}^{A}(A g, A g)$ are empirically determined coefficients.

The three different kinds of covariance functions correspond to three of the five anomaly degree-variance models discussed in Tscherning and Rapp (1974, section 8). The models are for $\mathrm{k}=1,2$ and 3:
(30) $\sigma_{1}, \ell(\Delta \mathrm{~g}, \Delta \mathrm{~g})=\frac{\mathrm{A}_{1}(\ell-1)}{\ell}, \ell>\mathrm{I} \geq 1$,
(31) $\sigma_{2, \ell}(\Delta \mathrm{~g}, \Delta \mathrm{~g})=\frac{\mathrm{A}_{2}(\ell-1)}{\ell-2}, \ell>\mathrm{I} \geq 2$ and

$$
\begin{equation*}
\sigma_{3,} \ell(\Delta \mathrm{~g}, \Delta \mathrm{~g})=\frac{\mathrm{A}_{3}(\ell-1)}{(\ell-2)(\ell+\mathrm{B})}, \ell>\mathrm{I} \geq 2 \tag{32}
\end{equation*}
$$

where $\mathbf{A}, \mathrm{k}=1,2$ and $\mathbf{3}$ are constants of dimension mgal ${ }^{2}$ and B is a positive integer (denoted \mathbb{K} in the program).

A part of the specification of the degree-variance model is the value of the radius of the Bjerhammar sphere. In the program this quantity is specified through the ratio R / R_{e}, where R, is a mean Earth radius, (equal to 6371.0 km in the program).

The covariance function of the anomalous potential may be expanded in a similar way in a Legendre series, cf. Tscherning and Rapp (1973, eq. (144)),
(33) $\operatorname{cov}_{\mathrm{k}}\left(\mathrm{T}_{\mathrm{P}}, \mathrm{T}_{\mathrm{Q}}\right)=\sum_{\ell=0}^{1} \hat{\sigma}_{\ell}(\mathrm{T}, \mathrm{T}) \mathrm{s}^{\ell+1} \mathrm{P}_{\ell}(\mathrm{t})+\sum_{\ell=1+1}^{\infty} \sigma_{\mathrm{k}, \ell}(\mathrm{T}, \mathrm{T}) \mathrm{s}^{\ell+1} \mathrm{P}_{\ell}(\mathrm{t})$
where $t=\cos \psi, s=\frac{R^{2}}{r \cdot r^{T}}$ and

$$
\text { (34) } \begin{cases}\hat{\sigma}_{l}(\mathrm{~T}, \mathrm{~T})=\frac{\mathrm{R}^{2}}{(\ell-1)^{2}} \hat{\sigma}_{l}(\Delta \mathrm{~g}, \Delta \mathrm{~g}), & \ell \leq \mathrm{I}, \quad \ell>1 \\ \sigma_{\mathrm{k}, \ell(\mathrm{~T}, \mathrm{~T})=\frac{\mathrm{R}^{2}}{(\ell-1)^{2}} \sigma_{\ell, \mathrm{x}}(\Delta \mathrm{~g}, \Delta \mathrm{~g}),} \quad \ell>\mathrm{I} .\end{cases}
$$

(Degree-variances of degree zero and one will always be equal to zero.)

We rearrange (33):

$$
\begin{align*}
\operatorname{cov}_{k}\left(\mathrm{~T}_{P}, \mathrm{~T}_{Q}\right)= & \sum_{\ell=0}^{1}\left(\hat{\sigma}_{\ell}(\mathrm{T}, \mathrm{~T})-\sigma_{\mathrm{k}, \ell}(\mathrm{~T}, \mathrm{~T})\right) \mathrm{s}^{\ell+1} \mathrm{P}_{\ell}(\mathrm{t}) \tag{35}\\
& +\sum_{\ell=0}^{\infty} \sigma_{\mathrm{k}}, \ell(\mathrm{~T}, \mathrm{~T}) \mathrm{s}^{\ell+1} \mathrm{P}_{\ell}(\mathrm{t})
\end{align*}
$$

Denoting

$$
\begin{align*}
& \epsilon_{\mathrm{k}, \ell}(\mathrm{~T}, \mathrm{~T})=\hat{\sigma}_{\ell}(\mathrm{T}, \mathrm{~T})-\sigma_{\mathrm{k}}, \ell(\mathrm{~T}, \mathrm{~T}), \ell \leq \mathrm{I}, \tag{36}\\
& \operatorname{cov}_{k}^{1}\left(\mathrm{~T}_{P}, T_{Q}\right)=\sum_{\ell=0}^{1} \epsilon_{\mathrm{k}, \ell}(\mathrm{~T}, \mathrm{~T}) \mathrm{s}^{\ell+1} \mathrm{P}_{\ell}(\mathrm{t}) \text { and } \\
& \operatorname{cov}_{k}^{0}\left(\mathrm{~T}_{P}, T_{Q}\right)=\sum_{\ell=0}^{\infty} \sigma_{\mathrm{K}, \ell}(\mathrm{~T}, \mathrm{~T}) \mathrm{s}^{\ell+1} P_{\ell}(\mathrm{t}) \tag{38}
\end{align*}
$$

we will have
(39) $\operatorname{cov}_{k}\left(T_{P}, T_{Q}\right)=\operatorname{cov}_{k}^{1}\left(T_{P}, T_{Q}\right)+\operatorname{cov}_{k}^{\circ}\left(T_{P}, T_{q}\right)$.

From this covariance function all the other covariance functions can be derived using the "law of propagation of covariances", eq. (3) and the equations (20)(24) and (28) relating the observed quantities to the anomalous potential.

Due to the linear relationship (39) we generally have for two arbitrary random variables Y_{1} and Y_{1}
(40) $\operatorname{cov}_{k}\left(s_{1}, s_{j}\right)=\operatorname{cov}_{k}^{\prime}\left(s_{1}, s_{j}\right)+\operatorname{cov}_{k}^{0}\left(s_{1}, s_{j}\right)$
where $s_{1}=Y_{i}(T)$ and $s_{j}=Y_{\mathfrak{l}}(T)$.
For either $s_{\mathcal{1}}$ equal to Δg_{p} or ζ_{p} and $s_{\mathcal{j}}$ equal to Δg_{Q} or ζ_{Q} can the quantity $\operatorname{cov}_{k}^{u}\left(s_{k}, s_{s}\right)$ be represented by a closed expression, cf. Tscherning and Rapp (1974, equations (105)-(107), (115)-(117) and (130)-(132)).

For the other part, $\operatorname{cov}_{\mathrm{k}}^{!}\left(\mathrm{s}_{1}, \mathrm{~s}_{\mathrm{g}}\right)$ we have (from Tscherning and Rapp 11974 equations (145)-(150) and (50)))
(41) $\operatorname{cov}_{k}^{\prime}\left(\zeta_{p}, \zeta_{Q}\right)=\sum_{\ell=0}^{1} \epsilon_{k, \ell}(T, T) \frac{1}{\gamma \cdot \gamma^{\prime}} \cdot s^{\ell+1} P_{\ell}(t)$
(42) $\operatorname{cov}_{k}^{\prime}\left(\zeta_{p}, \Delta \mathrm{~g}_{\mathrm{q}}\right)=\sum_{\ell=0}^{1} \epsilon_{\mathrm{k}, \ell}(\mathrm{T}, \Delta \mathrm{g}) \mathrm{s}^{\ell+1} \mathrm{P}_{\ell}(\mathrm{t}) \cdot \frac{\mathrm{R}}{\mathrm{r}^{\prime} \cdot \gamma} \quad$ and
(43) $\operatorname{cov}_{\mathrm{k}}^{\prime}\left(\Delta \mathrm{g}_{\mathrm{p}}, \Delta \mathrm{g}_{\mathrm{Q}}\right)=\sum_{\ell=0}^{1} \epsilon_{\mathrm{k}, \ell}(\Delta \mathrm{g}, \Delta \mathrm{g}) \mathrm{S}^{\ell+2} \mathrm{P}_{\ell}(\mathrm{t})$
with

$$
\begin{aligned}
& \epsilon_{\mathrm{k}, \ell}(\mathrm{~T}, \Delta \mathrm{~g})=\frac{(\ell-1)}{\mathrm{R}} \cdot \epsilon_{\mathrm{k}, \ell}(\mathrm{~T}, \mathrm{~T}) \text { and } \\
& \epsilon_{\mathrm{k}, \ell}(\Delta \mathrm{~g}, \Delta \mathrm{~g})=\frac{(\ell-1)^{2}}{\mathrm{R}^{\delta}} \epsilon_{\mathrm{k}, \ell}(\mathrm{~T}, \mathrm{~T}) .
\end{aligned}
$$

Covariance functions, $\operatorname{cov}\left(S_{1}, s_{g}\right)$, where either s_{1} or s_{1} is a deflection component can not explicitly be found in Tscherning and Rapp (1974). But using the equations (20)-(24)we get $\left(\mathrm{K}=\mathrm{K}(\mathrm{P}, \mathrm{Q})=\operatorname{cov},\left(\mathrm{T}_{\rho}, \mathrm{T}_{\mathrm{Q}}\right)\right.$):
(44) $\operatorname{cov}\left(\zeta_{p}, \xi_{Q}\right)=-D_{\varphi} K /\left(\gamma \cdot \gamma^{\prime} \cdot r^{\prime}\right)$

$$
=-D_{\omega} t \cdot D_{\mathrm{t}} \mathrm{~K} /\left(\gamma \cdot \gamma^{\prime} \cdot r^{\prime}\right),
$$

(45) $\operatorname{cov}\left(\zeta_{P}, \eta_{Q}\right)=-D_{\lambda} K /\left(\gamma \cdot \gamma^{\prime} \cdot r^{\prime} \cdot \cos \varphi^{\prime}\right)$

$$
=-D_{\lambda} t \cdot D_{t} K /\left(\gamma \cdot \gamma \cdot r^{\prime} \cdot \cos \varphi^{\prime}\right)
$$

(46) $\operatorname{cov}\left(\xi_{\mathrm{P}}, \Delta \mathrm{g}_{\mathrm{Q}}\right)=-\mathrm{D}_{\mathrm{CO}^{\circ}}\left(\operatorname{cov}\left(\Delta \mathrm{g}_{\mathrm{P}}, \mathrm{T}_{\mathrm{q}}\right)\right) /(\gamma \cdot \mathrm{r})$

$$
=-D_{\mathrm{rD}} t \cdot \mathrm{D}_{\mathrm{t}}\left(\operatorname{cov}\left(\Delta \mathrm{~g}_{\mathrm{p}}, \mathrm{~T}_{\mathrm{Q}}\right)\right) /(\gamma \cdot \mathrm{r})
$$

(47) $\operatorname{cov}\left(\eta_{p}, \Delta \mathrm{~g}_{\mathrm{Q}}\right)=-\mathrm{D}_{\lambda}\left(\operatorname{cov}\left(\Delta \mathrm{g}_{\mathrm{P}}, \mathrm{T}_{\mathrm{Q}}\right)\right) /(\gamma \cdot \mathrm{r} \cdot \cos \varphi)$

$$
=-D_{\lambda}{ }^{t} \cdot D_{t}\left(\operatorname{cov}\left(\Delta g_{P}, T_{Q}\right)\right) /(\gamma \cdot r \cdot \cos : D)
$$

(48) $\operatorname{cov}\left(\xi_{p}, \xi_{Q}\right)=-D_{\varphi}\left(\operatorname{cov}\left(\xi_{\rho}, \zeta_{Q}\right)\right) / r^{\prime}$.

$$
=\left(D_{\varphi \varphi}^{2} \varphi^{\prime} t \cdot D_{t} K+D_{\varphi} t \cdot D_{\varphi}^{\prime t} D_{t}^{3} K\right) /\left(\gamma \cdot r \cdot \gamma^{\prime} \cdot r^{\prime}\right)
$$

(49) $\operatorname{cov}\left(\xi_{P}, \eta_{Q}\right)=-D_{\varphi}\left(\operatorname{cov}\left(\xi_{P}, \eta_{Q}\right)\right) / r=\left(D_{\lambda^{\prime}} D_{\varphi} t \cdot D_{t} K+D_{\varphi} t \cdot D_{\lambda^{\prime}} t \cdot D_{t}^{2} K\right)$ $/\left(\cos \varphi^{\prime} \cdot \gamma^{\prime} \cdot \mathrm{r}^{\prime} \cdot \gamma \cdot \mathrm{r}\right) \quad$ and
(50) $\operatorname{cov}\left(\eta_{P}, \eta_{Q}\right)=-D_{\lambda}\left(\operatorname{cov}\left(\zeta_{P}, \eta_{Q}\right)\right) /\left(\mathrm{r}^{\cdot} \cos { }_{0}\right)$ $=\left(D_{\lambda \lambda^{\prime}}^{2} t \cdot D_{t} K+D_{\lambda} t \cdot D_{\lambda^{\prime}} t \cdot D_{t}^{2} K\right) /\left(r \cdot \gamma \cdot \cos \varphi \cdot r^{\prime} \cdot \gamma^{\prime} \cdot \cos \varphi^{\prime}\right)$

Applying these equations on $\operatorname{cov},\left(T_{P}, T_{Q}\right)$, (39) shows, that the quantities we need to determine are (apart from the derivatives of t with respect to the latitude and longitude):
(51) $\quad D_{t} K=D_{t}\left(\operatorname{cov}_{k}^{!}\left(T_{P}, T_{Q}\right)\right)+D_{t}\left(\operatorname{cov}_{k}^{U}\left(T_{P}, T_{Q}\right)\right)$,
(52) $\quad D_{t}^{2} \mathrm{~K}=\mathrm{D}_{\mathrm{t}}^{\dot{z}}\left(\operatorname{cov}_{\mathrm{k}}^{\prime}\left(\mathrm{T}_{\mathrm{P}}, \mathrm{T}_{\mathrm{Q}}\right)\right)+\mathrm{D}_{\mathrm{t}}^{2}\left(\operatorname{cov}_{\mathrm{k}}^{U}\left(\mathrm{~T}_{\mathrm{P}}, \mathrm{T}_{\mathrm{Q}}\right)\right)$ and
(53) $\quad D_{t}\left(\operatorname{cov}\left(\Delta g_{p}, T_{Q}\right)\right)=D_{t}\left(\operatorname{cov}_{k}^{\prime}\left(\Delta g_{p}, T_{Q}\right)\right)+D_{t}\left(\operatorname{cov}_{k}^{U}\left(\Delta g_{\rho}, T_{Q}\right)\right)$

The last term in each of the equations (51)-(53)are identical to Tscherning and Rapp (1974, eq. (108)-(110), (118)-(120)and (133)-(135))for $k=1,2,3$.

For the first term in each of the three equations we have, using (41), (42) and (43):
(54) $\quad D_{t}\left(\operatorname{cov}_{k}^{\prime}\left(\mathrm{T}_{P}, \mathrm{~T}_{\mathrm{Q}}\right)\right)=\sum_{\ell=0}^{1} \epsilon_{\mathrm{k}, \ell}(\mathrm{T}, \mathrm{T}) \mathrm{S}^{\ell+1} \mathrm{P}_{\ell}^{\prime}(\mathrm{t})$

$$
\begin{equation*}
D_{t}^{z}\left(\operatorname{cov}_{k}^{\prime}\left(\mathrm{T}_{\mathrm{P}}, \mathrm{~T}_{Q}\right)\right)=\sum_{\ell=0}^{1} \epsilon_{k, \ell}(\mathrm{~T}, \mathrm{~T}) \mathrm{s}^{\ell+1} \mathrm{P}^{\prime \prime}(\mathrm{t}) \text { and } \tag{55}
\end{equation*}
$$

$$
\begin{equation*}
D_{t}\left(\operatorname{cov}_{k}^{\prime}\left(T_{p}, \Delta g_{Q}\right)\right)=\frac{R}{r} \sum_{\ell=0}^{\frac{1}{1}} \epsilon_{k, l}(\Delta g, T) S^{\ell+1} P_{\ell}^{\prime}(t) \tag{56}
\end{equation*}
$$

$$
\text { with } P_{l}^{\prime}(t)=D_{t} P_{a}(t) \text { and } P_{l}^{\prime \prime}(t)=D_{t}^{z} P_{l}(t)
$$

The sums (54) - (56) are evaluated in the program (subroutine PRED) using the recu sion algorihm given in Tscherning and Rapp (1974, section 9).

To avoid numerical problems for P near to Q , the following expressions are used for the evaluation of t and the derivatives of t with respect to 0 and 0^{\prime} : (denoting: $\quad d \lambda=\lambda-\lambda^{\prime}$ and $d_{\varphi}=\varphi-\varphi^{\prime}$):
(57) $\quad t=\cos \psi=\sin \varphi^{\circ} \sin \varphi^{\prime}+\cos \varphi^{\circ} \cos \varphi^{\prime} \cdot \cos (\mathrm{d} \lambda)$

$$
\begin{aligned}
& =\cos (\mathrm{d} \varphi)-\cos \varphi \cdot \cos D^{\prime} \cdot(1-\cos (\mathrm{d} \lambda)) \\
& =1-2\left(\sin ^{2}(\mathrm{dr} / 2)+\cos \cdot 0^{\circ} \cos C^{\prime} \cdot \sin ^{2}(\mathrm{~d} \lambda / 2)\right)
\end{aligned}
$$

$$
\begin{equation*}
D_{\varphi} t=\cos \varphi^{\cdot} \sin \varphi^{\prime}-\sin \varphi^{\cdot} \operatorname{coB} \varphi^{\prime} \cos (d \lambda)=-\sin (d \varphi)+2 \cos \varphi^{\prime} \cdot \sin \varphi \cdot \sin ^{2}(d \lambda / 2), \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
D_{\varphi}^{\prime} t=\sin (d \varphi)+2 \cos \varphi^{\cdot} \sin \varphi^{\prime} \sin ^{2}(d \lambda / 2) \text { and } \tag{59}
\end{equation*}
$$

$$
\begin{align*}
D_{\varphi \varphi^{\prime}}^{z} t & =\cos \varphi^{\prime} \cdot \cos \varphi^{\prime}+\sin \varphi^{\circ} \sin \varphi^{\prime} \cdot \cos (d \lambda)=\cos (d \varphi)-(1-\cos (d \lambda)) \cdot \sin 0^{\circ} \cdot \sin \varphi^{\prime} \tag{60}\\
& =\cos (d \varphi)-2 \sin ^{2}(d \lambda / 2) \cdot \sin \varphi^{\circ} \sin ^{\prime} \varphi^{\prime}
\end{align*}
$$

r
We will now introduce a compact notation for the normalized surface harmonics, which will facilitate the presentation of the covariances between the coefficients of T developed in spherical harmonics and other quantities. Denoting
(61) $\quad V_{\ell m}(\theta, \lambda)= \begin{cases}\overline{\mathrm{P}}_{\ell \mid m} \mid(\cos \theta) \sin m \lambda, & m>0 \\ \overline{\mathrm{P}}_{\left.\ell\right|_{\mathrm{m}} \mid}(\cos \theta) \cos m \lambda, & m \leq 0\end{cases}$
and the coefficients of T developed in spherical harmonics by $v_{\ell E}$ we have
(62) $\mathrm{V}_{\ell \mathrm{n}}=\frac{1}{4 \pi} \int_{\omega} \mathrm{T}(\mathrm{P}) \cdot \frac{\mathrm{a}^{\ell}}{\mathrm{r}^{\ell+2}} \cdot \mathrm{~V}_{\ell \mathrm{I}}(\theta, \lambda) \mathrm{d} \omega$
where $r=a$ in this integration and P is on the surface of the sphere of radius a. From equations (28) we get
(63) $\mathrm{v}_{\ell \mathrm{m}}=\mathrm{a} * \mathrm{kM} \cdot \begin{cases}\overline{\mathrm{C}}_{\ell_{\mathrm{m}}}+\mathrm{J}_{\ell \square} \cdot(2 \ell+1)^{\frac{1}{2}} & \text { for } \mathrm{m}=0 \text { and Aeven, } \\ \bar{S}_{\ell \square} & \text { for } \mathrm{m}>0, \\ \mathrm{C}_{\left.\ell\right|_{m} \mid} & \text { for } \mathrm{m}<0, \text { and } \mathrm{m}=0 \text { and } \ell \text { uneven }\end{cases}$

We will now compute the covariances $\operatorname{cov}_{k}\left(v_{d}, s_{1}\right)$ where s_{1} is either v_{11}, $\xi_{Q}, \eta_{Q}, \Delta g_{Q}$, or ζ_{Q}. These covariances are not explicitly used in the program, so we will not distinguish between the different covariance models, but denote the degree-variances by $\sigma_{\ell}(T, T), \sigma_{\ell}(T, \Delta g)$ and $\sigma_{\ell}(\Delta \mathrm{g}, \Delta \mathrm{g})$.

From eq. (62) and (33) we get

$$
\begin{align*}
\operatorname{cov}\left(\mathrm{T}_{P}, \mathrm{v}_{\ell \square}\right) & =\frac{1}{4 \pi} \int_{\omega} \operatorname{cov}\left(\mathrm{T}_{P}, \mathrm{~T}_{Q}\right) \cdot \mathrm{V}_{\ell a}\left(\theta^{\prime}, \lambda^{\prime}\right) \frac{1}{\mathrm{a}} \cdot \mathrm{~d} \omega \tag{64}\\
& =\frac{1}{4 \pi} \int \sum_{\omega} \sum_{1=0}^{\infty} \sigma_{1}(\mathrm{~T}, \mathrm{~T}) s^{1+2} \mathrm{P}_{\mathrm{l}}(\mathrm{t}) \cdot \mathrm{V}_{\ell ⿷}\left(\theta^{\prime}, \lambda^{\prime}\right) \frac{1}{\mathrm{a}} \mathrm{~d} \omega
\end{align*}
$$

(65) $\quad P_{1}(t)=\frac{1}{2 i+1} \sum_{j=-1}^{1} V_{1 g}(\theta, \lambda) \cdot V_{1 g}\left(\theta^{\prime}, \lambda^{\prime}\right)$,
and the orthogonality property of the surface harmonics, we get
(66) $\operatorname{cov}\left(\mathrm{T}_{\mathrm{P}}, \mathrm{V}_{\ell_{\mathrm{I}}}\right)=\frac{1}{4 \pi} \int_{\omega}\left(\sum_{i=0}^{\infty} \sigma_{1}(\mathrm{~T}, \mathrm{~T})\left(\frac{\mathrm{R}^{2}}{\mathrm{r} \cdot \mathrm{a}}\right)^{1+1} \frac{1}{2 \mathrm{i}+1} \sum_{\mathrm{j}=-1}^{1} \mathrm{~V}_{1_{j}}(\theta, \lambda) \cdot \mathrm{V}_{1 \mathrm{j}}\left(\theta_{,}^{\prime} \lambda^{\prime}\right) \cdot\right.$

$$
\begin{aligned}
& \cdot \mathrm{V} \quad\left(\theta^{\prime}, \mathrm{A}^{\prime}\right) \stackrel{1}{5} \mathrm{~d} \omega \\
& =\sigma_{\ell}(\mathrm{T}, \mathrm{~T}) \cdot\left(\frac{\mathrm{R}^{2}}{\mathrm{r} \cdot \mathrm{a}}\right)^{\ell+1} \cdot \frac{\mathrm{a}}{2 \ell+1} \cdot \mathrm{~V}_{\ell_{\mathrm{m}}}(\theta, \lambda)
\end{aligned}
$$

Again using (62) and the orthogonality property we see, that
(67) $\left.\operatorname{cov}\left(v_{i j}, v_{l a}\right)=\frac{1}{4 \pi} \int_{\omega}\left(\sigma_{l}(T, T)\left(\frac{R^{2}}{r^{2} \cdot a}\right)^{\ell+1} \frac{a}{2 l+1} V_{l_{a}}(\theta, \lambda)\right) \frac{a^{4}}{\left(r^{\prime}\right)^{+1}} V_{i j}\left(\theta^{\prime}, \lambda^{\prime}\right)\right) d \omega$

$$
- \begin{cases}\sigma_{\ell}(T, T)\left(\frac{R^{2}}{a^{2}}\right)^{\ell+1} \cdot \overline{2 \ell+1} & \text { for } i=\ell \text { and } j=m \\ 0 & \text { otherwise }\end{cases}
$$

Thus, the covariance of two different anomalous potential coefficients is zero and their variance is equal to the degree-variance multiplied by a constant depending on R, a and the degree ℓ.

The other covariance functions can be derived using (66) and (20)-(23):
(68) $\operatorname{cov}\left(\zeta_{P}, V_{\ell I}\right)=\sigma_{\ell}(T, T) \cdot a \cdot\left(\frac{R^{2}}{\mathrm{a} \cdot \mathrm{r}}\right)^{\ell+1} \mathrm{~V}_{\ell_{\mathrm{I}}}(\theta, \lambda) /(\gamma \cdot(2 \ell+1))$,
(69) $\operatorname{cov}\left(\xi_{p}, v_{\ell m}\right)=-\sigma_{\ell}(T, T) \cdot a \cdot\left(\frac{\mathrm{R}^{2}}{\mathrm{a} \cdot \mathrm{r}}\right)^{\ell+1} \mathrm{D}_{\varphi} \mathrm{V}_{\ell_{\mathrm{g}}}(\theta, \lambda) /(\mathrm{r} \cdot \gamma \cdot(2 \ell+1))$
(70) $\operatorname{cov}\left(\eta_{P}, \mathrm{v}_{\ell \Xi}\right)=-\sigma_{\ell}(\mathrm{T}, \mathrm{T}) \cdot \mathrm{a} \cdot\left(\frac{\mathrm{R}^{2}}{\mathrm{a} \cdot \mathrm{r}}\right)^{\ell+1} \mathrm{D}_{\lambda} \mathrm{V}_{\ell \mathrm{m}}(\theta, \lambda) /(\mathrm{r} \cdot \gamma \cdot \cos \varphi \cdot(2 \ell+1))$
and
(71) $\operatorname{cov}\left(\Delta \mathrm{g}_{\mathrm{p}}, \mathrm{v}_{\ell \mathrm{m}}\right)=\sigma_{\ell}(\Delta \mathrm{g}, \mathrm{T}) \cdot \frac{\mathrm{a}}{\mathrm{R}}\left(\frac{\mathrm{R}^{2}}{\mathrm{a} \cdot \mathrm{r}}\right)^{\ell+1} \frac{\mathrm{R}}{\mathrm{r}} \mathrm{V}_{\ell \pm}(\theta, \lambda) /(2 \ell+1)$

$$
=\sigma_{l}(T, T)(\ell-1) \frac{a}{r}\left(\frac{R^{2}}{a \cdot r}\right)^{\ell+1} V_{l n}(\theta, \lambda) /(2 \ell+1)
$$

2.3 Stcpwise collocation.

The solution of the normal equations (8) and (9) may be a difficult numerical task even when using a large computer, when the number of unknowns is greater than a few thousands.

Moritz (1973) uses the term sequential collocation when the observations are divided in two or more groups and when the corresponding normal equations then are solved by inverting only the submatrices containing the covariances between the observations within one group.

Let us first consider an example, where the observations have been divided in two groups containing m , and m , observations respectively:
(72) $x=\left\{\begin{array}{l}x_{1} \\ x_{2}\end{array}\right\}$,
where x_{1} is a m, vector and x_{2} a m, vector of observations. The covariance matrix is then divided in four submatrices accordingly:
(73) $\overline{\mathrm{C}}=\left\{\begin{array}{ll}\mathrm{C}_{11} & \mathrm{C}_{18} \\ \mathrm{C}_{21} & \mathrm{C}_{22}\end{array}\right\}$
and the vector of the covariances between the quantity s to be predicted and the observations becomes
(74) $\mathrm{C}_{\mathrm{s}}^{\top}=\left\{\mathrm{C}_{\mathrm{s} 1}^{\top}, \mathrm{C}_{\mathrm{s} 2}^{\top}\right\}$.

Hence, according to Moritz (1973, eq. (1-22)) we have

$$
\begin{equation*}
\tilde{s}=C_{s_{1}}^{\top} C_{11}^{-1} x_{1}+\left(C_{82}-C_{s_{1} C_{11}^{-1}}^{\top} C_{12}\right)\left(C_{22}-C_{21} C_{11}^{-1} C_{12}\right)^{-1}\left(x_{2}-C_{21} C_{11}^{-1} x_{1}\right) \tag{75}
\end{equation*}
$$

Let us regard the case where we want to estimate $\mathrm{T}(\mathrm{P})$. Denoting
(76) $\mathrm{b}_{1}=\mathrm{C}_{11}^{-1} \mathrm{x}_{1}$
(77) $\widetilde{\mathrm{T}}_{1}(\mathrm{P})=C_{P_{1}}^{\top} \cdot \mathrm{b}_{1}$
(78) $\mathrm{d}_{1} \mathrm{x}_{2}=\mathrm{x}_{2}-\mathrm{C}_{21} \mathrm{C}_{11}^{-1} \mathrm{x}_{1}=\mathrm{x}_{2}-\mathrm{C}_{21} \cdot \mathrm{~b}_{1}$
(79) $\quad d_{1} C_{22}=C_{2 a}-C_{21} C_{11}^{-1} C_{12}, d_{1} C_{P 2}=C_{P 2}-C_{P_{1}} C_{21}^{-1} C_{12}$
(80) $\mathrm{b}_{2}=\mathrm{d}_{1} \mathrm{C}_{2}^{-1} \mathrm{~d}_{1} \mathrm{x}_{2}$ and
(81) $\tilde{\mathrm{T}}_{2}(\mathrm{P})=\mathrm{d}_{1} \mathrm{C}_{P_{2}}^{\top} \cdot \mathrm{b}_{2}$,
we see that

$$
\widetilde{T}(\mathrm{P})=\tilde{\mathrm{T}}_{1}(\mathrm{P})+\tilde{\mathrm{T}}_{2}(\mathrm{P})
$$

Hence, we are by using stepwise collocation, getting an estimate \tilde{T} which is equal to the sum of two other estimates.

The first estimate $\widetilde{T}_{1}(P)$ is computed by (76) and (77) from the observations x_{1} using the original covariance functions. The residual observations $\mathrm{d}_{1} \mathrm{x}_{2}$ (78) is then computed. Then the second estimate $\widetilde{\mathrm{T}}_{2}(\mathrm{P})$ can be obtained from (80) and (81) using the covariances of the residual observations, $\mathrm{d}_{1} \mathrm{C}_{22}$ and $\mathrm{d}_{1} \mathrm{C}_{\mathrm{P}_{2}}(79)$. (Supposing the "noise" matrix D to be zero we easily see

$$
\begin{aligned}
\operatorname{cov}\left(d_{1} x_{21}, d_{1} x_{2 j}\right)= & \operatorname{cov}\left(x_{21}-\left\{\operatorname{cov}\left(x_{21}, x_{1 j}\right)\right\}^{\top}\left\{\operatorname{cov}\left(x_{1 j}, x_{1 k}\right)\right\}^{-1}\left\{x_{1 k}\right\}\right. \\
& \left.x_{2 j}-\left\{\operatorname{cov}\left(x_{2 \jmath}, x_{1} l\right)\right\}^{\top}\left\{\operatorname{cov}\left(x_{1 l}, x_{1 k}\right)\right\}^{-1}\left\{x_{1 k}\right\}\right) \\
= & \operatorname{cov}\left(x_{21}, x_{2 \jmath}\right)-\left\{\operatorname{cov}\left(x_{21}, x_{1 j}\right)\right\}^{\top}\left\{\operatorname{cov}\left(x_{1 j}, x_{1 k}\right\}^{-1}\left\{\operatorname{cov}\left(x_{1 k}, x_{2 j}\right)\right\}\right.
\end{aligned}
$$

which is nothing but the i , jth element of the matrix $\mathrm{d}_{1} \mathrm{C}_{\text {z2 }} \cdot$.)
The formulae (76)-(81) can be generalized as to describe a partition of the observations into more than two groups. Such equations can for example, be found in Moritz (1973, eq. (5-1)-(5-14)). We will here use a slightly different type of general equation.

For a partition in k groups,

$$
x=\left\{\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right\} \quad, \quad x_{1}=\left\{\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 m_{1}}
\end{array}\right\}
$$

and with

$$
\begin{aligned}
& \text { (78a) }\left\{\begin{array}{l}
d_{j} x_{1}=x_{1}-\sum_{l=1}^{j} d_{l-1} C_{l l}^{\top} \cdot b_{l} \\
d_{j} T_{P}=T_{P}-\sum_{l=1}^{1} d_{l-1} C_{P l}^{\top} \cdot b_{l} \\
d_{j} s=s-\sum_{l=1}^{j} d_{l-1} C_{s l}^{\top} \cdot b_{l},
\end{array},\right.
\end{aligned}
$$

and
(80a) $\quad b_{1}=d_{1-1} C_{11}^{-1} \cdot d_{1-1} x_{1}$
we have the estimates $\widetilde{T}_{1}(P)$ and \widetilde{s}_{4} based on the residual observations $d_{1-1} x_{1}$ (i.e. on all sets of observations with subscript less than i):
(81a) $\left\{\begin{array}{l}\widetilde{T}_{1}(P)=d_{1-1} C_{P 1}^{\top} \cdot b_{1} \\ \tilde{s}_{1}=d_{1-1} C_{51}^{\top} \cdot b_{1}\end{array}\right.$
and the final estimates

$$
\text { (82a) }\left\{\begin{array}{l}
\tilde{T}(P)=\sum_{i=1}^{k} \tilde{T}_{1}(P) \\
\tilde{s}=\sum_{i=1}^{k} \tilde{S}_{1}
\end{array}\right.
$$

(As usual, the linear equations corresponding to (80a) are denoted the normalequations and b_{1} the solution to the normal equations.)

One of the main advantages achieved by using stepwise collocation is according to Moritz (1973, page 1), that the normal equation matrices to be inverted are smaller than the original $\overline{\mathrm{C}}$ matrix. Thus, as may be realized from equations (79) and (80), the total storage requirements are not diminished. So, when using a computer, which has peripheral storage units with fast access, stepwise solution of the normal equations is of no real advantage.

Thus, a considerable simplification of the computations may be achieved when the residual covariances $\mathrm{d}_{\ell} \mathrm{C}_{1 \mathrm{j}}$ and $\mathrm{d}_{\ell} \mathrm{C}_{P_{1}}$ (79a) can be computed analytically. In this case, only the b_{1} vectors (80 a) are needed for the representation of \widetilde{T}_{1} and for the computation of p edictions. The residual covariance may naturally be computed analytically, when the datasets are uncorrelated, i. e. when $\mathrm{d}_{\ell} \mathrm{C}_{11}=\mathrm{C}_{11}$. But the possibility for analytical covariance also exists, when the first dataset x_{1} consists of potential coefficients.

The matrix C_{11} is in this case a diagonal matrix with diagonal elements equal to the sum of the quantities given in (67) and the error variances of the observed coefficient, $\sigma_{\text {vem }}^{2}$. We will suppose, that all the variances are the same for the same degree, R, and denote this variance by $\sigma_{v}^{2}(\ell)$.

The elements of the vector b_{1} are equal to the observed coefficient divided by the corresponding diagonal element. Let us then suppose, that potential coefficients up to degree I have been observed. The estimate $\widetilde{\mathrm{T}}_{1}$ is then (cf. eq. (66), (67) and (77)):

$$
\mathrm{r}^{\left(\mathrm{v}_{\ell} /\left(\mathrm{a}^{\mathrm{L}}\right.\right.}\left(\frac{\mathrm{R}}{\mathrm{a}}\right)^{2 \ell+2} \cdot \frac{\left.\left.\sigma_{\ell(\mathrm{T}, \mathrm{~T})}^{2 \ell+1}+\sigma_{v}^{2}(\ell)\right)\right)}{2}
$$

Denoting $\tilde{v}_{\ell m}=v_{\ell I} /\left(1+\sigma_{v}^{2}(\ell)\left(\frac{a}{R}\right)^{2 \ell+2} \frac{2 \ell+1}{a^{2} \cdot \sigma_{\ell}(T, T)}\right)$ we have

$$
\left(8_{3 \mathrm{~b}}\right) \quad \tilde{\mathrm{T}}_{1}(\mathrm{P})=\sum_{\ell=3}^{1} \frac{\mathrm{a}^{\ell}}{\mathrm{r}^{\ell+1}} \sum_{\mathrm{m}=-\ell}^{\ell} \tilde{\mathrm{v}}_{\ell \mathrm{m}} \cdot \mathrm{~V}_{\ell \mathrm{w}}(\theta, \lambda) .
$$

Using equations (66), (67)-(79)and (85b) we easily see, that the residual observations (78), $d_{1} x_{2}$ are nothing but the oxiginal observations, but now referring to a higher order reference field, $\mathrm{U}_{1}=\mathrm{U}+\mathrm{T}_{1}$.

For the \mathbf{i}, \mathbf{j} 'th element of $\mathrm{d}_{1} \mathrm{C}_{22}$ we get from (GG) and (79), supposing e.g. that $S_{21}=T(P), S_{2 j}=T(Q)$ and that $X_{21}, x_{2 j}$ are the corresponding observed values (and P different from Q):
(84) $\operatorname{cov}\left(d_{1} s_{21}, d_{1} s_{2 j}\right)=\sum_{\ell=2}^{\infty} \sigma_{l}(T, T)\left(\frac{R^{2}}{r \cdot r^{\prime}}\right)^{\ell+1} P_{\ell}(t)-\sum_{\ell=2}^{1} \sum_{m=-l}^{\ell}\left(a\left(\frac{R^{2}}{a \cdot r}\right)^{\ell+1}\right.$

$$
\left.\cdot \frac{\sigma_{l}(\mathrm{~T}, \mathrm{~T})}{2 \ell+1} \cdot \mathrm{~V}_{l_{a}}(\theta, \lambda)\right)\left(\mathrm{a}\left(\frac{\mathrm{R}^{2}}{\mathrm{a} \cdot \mathrm{r}^{\prime}}\right)^{\ell+1} \cdot \frac{\sigma_{\ell}(\mathrm{T}, \mathrm{~T})}{2 \ell+1} \cdot \mathrm{~V}_{\ell m}\left(\theta^{\prime}, \lambda^{\prime}\right)\right) /\left(\mathrm{a}^{\mathrm{z}}\right.
$$

$$
\left.\cdot\left(\frac{R}{a}\right)^{\sigma \ell+z} \frac{\sigma_{\ell}(\mathrm{T}, \mathrm{~T})}{2 \ell+1}+\sigma_{v}^{2}(\ell)\right)
$$

$$
=\sum_{l=2}^{1} d_{1} \sigma_{l}(T, T) s^{\ell+1} P_{l}(t)+\sum_{l=1+1}^{\infty} \sigma_{l}(T, T) s^{\ell+1} P_{l}(\mathrm{t})
$$

with

$$
\begin{equation*}
\mathrm{d}_{1} \sigma_{\ell}(\mathrm{T}, \mathrm{~T})=\sigma_{\ell}(\mathrm{T}, \mathrm{~T})\left(1-1 /\left(1+\sigma_{\mathrm{v}}^{2}(\ell) /\left(\mathrm{a}^{\alpha}\left(\frac{\mathrm{R}}{\mathrm{a}}\right)^{2 \ell+\mathrm{a}} \frac{\sigma_{\ell \cdot}(\mathrm{T}, \mathrm{~T})}{2 \ell+1}\right)\right)\right) \tag{85}
\end{equation*}
$$

This quantity is zero for $\sigma_{v}^{2}(\ell)$ equal to zero. The covariance function (84) is in this case a local I'th order covariance function, cf. Tscherning and Rapp (1974, Section 9).

It is supposed in the program, that the error variances $\sigma_{v_{m}}^{2}$ can be either disregarded or that they only depend on the degree. The progran will, in the latter case, require that the quantity

$$
\begin{equation*}
d_{1} \sigma_{\ell}(Q, A g)=d_{1} \sigma_{a}\left(T, 1^{\prime}\right)^{\frac{(\ell-1}{2}} \frac{R^{2}}{R^{2}} . \tag{86}
\end{equation*}
$$

is specified. The quantity will be treated as if it was an empirical degree-variance.
We have here seen, how we in one case explicitly can derive expressions for the covariance, $\operatorname{cov}\left(d_{1} x_{21}, d_{1} x_{2 j}\right)$. Anolher method would he simply to estimate a covariance function for the rcsidual. observations $d_{1} x_{2}$. However, the program can only use three types of covariance functions, and they are all isotropic.

We are then restricted either to divide the observations x in groups of quantities, which are nearly uncorrelated or to find a kind of observations, which we can treat like the potential coefficients.

The potential coefficients are (in a general sense) weighted mean values of the anomalous potential. Mean gravity anomalies are also mean values, weighted with a function, which is equal to one in the considered are a and zero outside.

A mean gravity anomaly fieid will represent an amount of information which is equal to the amount of information contained in a set of potential coefficients of degree less than or equal to an integer I. The magnitude of I will depend on the size of the area over which the mean anomaly is computed. I will be large when the area is small and small when the area is large. (I will be zero when the area is the whole Earth and infinite when we are dealing with points). An estimate of the degree may be fund in the following way: The total number of equal area mean anomalies of a particula size is theoretically equal to the total area of the Earth divided by the area of the basic mean anomaly. Let us call this number N . For the perfect recovery of N quantities we need a set of coefficients of degree up to $\mathrm{N}^{\frac{1}{2}}$. This method of estimation will give us $\mathrm{N} \approx 202$ for 1° equal area anomalies. The degree may also be estimated in a more empirical way. This can be done by first estimating the empirical covariance function of a set of residual observations (gravity anomzlies) $d_{2} x_{3}$. The first zero point of the empirical. covariance function (regarded as a function of the spherical distance ψ) will then give a reasonable estimate of the degree (cf. Tscherning and Rapp, (1974, Section 9)).

As an example, the program described in this report was used to compute residual point gravity anomalios in a $2^{\circ} 30^{\prime} \times 3^{\checkmark} 40^{\prime}$ square in the state of Ohio, U.S.A. The data set x did consist of three groups. The set x_{1} was a set of potential coefficients of degree upto and inclusive of 20, given by Rapp (1973, Table G). x_{2} consisted of $1571^{\circ} \times 1^{\circ}$ mean gravity anomalies surrounding the area and X_{3} was a set of 420 point gravity anomalies, spaced as uniform as possible with
a distance of $77^{\frac{1}{2}}$ ' in latitude and 10^{\prime} in longitude between the points. The datasets x_{1} and x_{2} was regarded as errorless.

The covariance function recommended by Tscherning and Rapp (1974) was used (i.e. given by eq. (32) with $B=24$ and $A,=425 \mathrm{mga}^{2}$). The covariances $d_{1} C_{s_{1} g}$ can then be computed using a corresponding local 20^{\prime} th order covariance function (i.e. with degree-variances of order up to and inclusive of 20 equal to zero), cf. (84).

The function \widetilde{T}_{1} is then computed without actually solving any normal equations. We have (cf. (83a) and with $\sigma_{v}^{2}(\ell)=0$):

$$
\begin{aligned}
T_{1}=C_{\rho_{1}}^{\top} \cdot b_{1} & =\sum_{\ell=2}^{1} \sum_{m=-l}^{\ell} a \cdot\left(\frac{R^{2}}{r \cdot a}\right)^{\ell+1} \sigma_{\ell}(T, T) \cdot V_{\ell m}(\theta, \lambda) \frac{1}{2 \ell+1} \cdot b_{1 l u} \\
b_{1 \ell m} & =V_{\ell m} /\left(a^{2}\left(\frac{R}{a}\right)^{2 \ell+2} \cdot \frac{\sigma_{l}(T, T)}{2 \ell+1}\right)
\end{aligned}
$$

We will now, as mentioned above represent the mean gravity anomaly as a point anomaly in a certain height 11^{\prime} above the center of the area. Let us denote this point by Q and its distance from the origin r^{\prime}. (We have in this case used $\mathrm{h}^{\prime}=\mathrm{r}^{\prime}-\mathrm{R},=10.5 \mathrm{~km}$, cf. Tscherning and Rapp (1974, Section 10)).

The residual anomaly is then, cf. eq. (78a) and (71):

$$
\begin{aligned}
& d_{1} x_{a j}=x_{2 j}-\sum_{\ell=2}^{1} \sum_{m=-\ell}^{\ell} \operatorname{cov}\left(x_{2 j}, v_{\ell_{m}}\right) b_{1 \ell_{I}} \\
& =\mathrm{x}_{2 \jmath}-\sum_{\ell=2}^{1} \sum_{m=-\ell}^{\ell} \sigma_{\ell}(\mathrm{T}, \mathrm{~T})(\ell-1) \frac{\mathrm{a}}{\mathrm{r}^{\prime}}\left(\frac{\mathrm{R}^{2}}{\mathrm{a}^{\circ} \mathrm{r}^{\prime}}\right)^{\ell+1} \mathrm{~V}_{\ell_{m}}\left(\theta^{\prime}, \lambda^{\prime}\right) \frac{1}{2 \ell+1} \cdot \mathrm{~b}_{1 \ell m} \\
& =x_{a j}-\sum_{\ell=2}^{1} \sum_{m=-\ell}^{\ell} \mathrm{v}_{l_{m}} \cdot(\ell-1)\left(\frac{\mathrm{a}}{\mathrm{r}^{\prime}}\right)^{\ell+1} \frac{1}{\mathrm{r}^{\prime}} \mathrm{V}_{l_{\mathrm{I}}}\left(\theta^{\prime}, \lambda^{\prime}\right)
\end{aligned}
$$

$$
=x_{a j}-\left(-\frac{\partial}{\partial r}, \tilde{T}_{1}(Q)-\frac{2}{r}, \tilde{T}_{1}(Q)\right)
$$

i.e., the mean anomaly computed with respect to the higher order reference field $U_{T}=$ Us \widetilde{T}_{1}. (The program does not use this equation for the computation of the residual anomaly. The contribution from $\widetilde{\mathrm{T}}_{1}$ is evaluated using the actual length of the gradient of U_{1}, see the description of the subroutine IGPOT, Section 5.4).

The residual obscrvations $d_{1} x_{2}$ was then used to determine \widetilde{T}_{2}, this time by actually solving a set of normal equations, obtaining the solution vector b_{2}.

The residual point gravity anomalies were then computed by

$$
d_{8} x_{3}=x_{3}-d_{1} C_{23}^{\top} \cdot b_{2}-C_{13}^{\top} \cdot b_{1}
$$

cf. (78a). The term $C_{93}^{T} \cdot b_{2}$ is again here the change due to the higher order reference field U_{1}.

The empirical covariance function was computed using $d_{2} x_{3}$ by taking the sample mean of the products of the residuals sampled according to the spherical distance between the points of observation. The size of the sample interval was $7 \frac{1}{2}$ '. The covariance function

$$
\operatorname{cov}\left(\Delta \mathrm{g}_{\mathrm{p}}, \Delta \mathrm{~g}_{q}\right)=\sum_{\ell=2.05}^{\infty} \frac{81.8 \mathrm{mgal}^{2} \cdot(\ell-1)}{(\ell-2)(\ell+24)} \cdot \mathrm{s}^{\ell+2} \mathrm{P}_{\ell}(\cos \psi),
$$

with $R / R_{e}=0.9998$ was found to have the same zero point as the empirical covariance function, see Figure 1.

We then see, that the two mentioned methods give nearly the same estimate of the integer L This agreement should merely be taken as an illustration and not as a proof. It shows one of the many kinds of coinputaticns the FORTRAN program can perform.

The choice of a proper covariance function is a delicate task, but we point out that the presented program may use three different degree-variance models and hence be useful in test computations using different covariance functions.

The program may compute $\widetilde{T} i n$ up to three steps. The different possibilities are illustrated in Table 1. Note, that potential coefficients always form a separate data set, which will be the data set x_{1}.

Table 1
Different: options for the Computation of \widetilde{T}.

Number	Dataset May Contain:			
of steps	x_{1}	X_{3}	x_{3}	T =
1	Potential coefficients			\widetilde{T}_{1}
1	$\overline{5}, \eta, \zeta, \Delta \mathrm{~g}, \overline{\Delta g}$			
2	Potential coefficients	$\overline{5}, \eta, \zeta, \Delta \mathrm{~g}, \overline{\Delta \mathrm{~g}}$		$\widetilde{T}_{T}^{T}+\widetilde{T}_{2}$
2	$\bar{\zeta}, \eta, \zeta, \Delta \mathrm{g}, \overline{\mathrm{\Delta g}}$	$\bar{\xi}, \eta, \zeta, \Delta \mathrm{g}, \overline{\Delta g}$		$\widetilde{T}_{1}+\widetilde{T}_{2}$
3	Potential coefficients	$\bar{\zeta}, \eta, \zeta, \Delta \mathrm{g}, \overline{\Delta g}$	$\overline{5}, \eta, \zeta, \Delta \mathrm{~g}, \overline{\mathrm{Lg}}$	$\widetilde{T}_{1}+\widetilde{T}_{2}+\widetilde{T}_{3}$

3. Data Requirements.

In this section the data requirements will be discussed. The precise specifications are given in Section 6.

Three types of information are needed for the determination of T : observations, information about the reference system of the observations and a covariance function.

3.1 The Observed Quantities.

The observed quantities we want to use are (a) potential coefficients, (b) point or mean free air gravity anomalies or measured gravity values, (c) height anomalies and (d) deflections of the vertical.

The potential coefficients available will generally all be of a degree less than 25 . There has then only been reserved space in core store for up to 625 coeflicients.

The program accepts potential coefficients, which are fully normalized and multiplied by 10^{6}. The coefficients can naturally only be used, when a value of kM and the semi major axis a are specified.

An observation (different from a potential coefficient) will be given by (1)the geodetic latitude and longitude, (2) a potential difference, (a geopotential number, for example), conve ted into a metric quantity e.g. by dividing the difference with the reference gravity and (3) the measured quantity. The height above the reference ellipsoid is regarded as unknown except, naturally, when it itself is the observed quantity.

All measured gravity values will have to be given in the same gravity reference system or a correction must be known. Measured gravity values are converted to free-air anomalies. The orthometric height must hence be known. The geodetic latitude (which is used to evaluate the normal gravity) would principally have to be given in a geodetic reference system consistent with the gravity reference system (i.e. with the same flattening and semi major axis as used for the computation of the coefficicnts in the expression for the normal gravity). But the variation of the normal gravity with respect to the latitude is so small, that this requirement can be neglected here. The point or mean gravity anomalies will all have to be free-air anomalies. They must all refer to the same normal gravity field. If they are not all given with respect to the same gravity base reference system, the correction to be applied for the conversion must be known.

A mean gravity anoinaly will be represented as a point gravity anomaly at a point of a certain height, h, above the center of the area over which the mean value is computed. This height is specified by the ratio, R P between the sum of this height and the mean Earth radius R_{s} and the mean Earth radius, i.e.

$$
\begin{equation*}
R P=\left(R_{e}+h\right) / R_{e} . \tag{87}
\end{equation*}
$$

A height anomaly will have to be given in the same reference system as the geodetic latitude and longitude. This will generally require, that a height anomaly obtained through an absolute position determination and given in a geocentric reference system must be transferred back to a local geodetic refe ence system, before it can be used in the program.

We are, with observed deflections of the vertical, faced with a complicated problem. The deflections are equal to the difference between the astronomical coordinates of a point on the geoid and the geodetic coordinates of a point on the reference ellipsoid (multiplied with cosine to the latitude for the longitude difference).

We have hereby implicitly introduced assumptions about the mass densities in between the geoid and the astronomical station. To avoid this, the deflections should have been given at the proper height (i.e. the height of the observation stations).

Thus, heights of astronomical stations are seldom found recorded together with the deflections. But if the heights are actually recorded, the program will treat the deflections as quantities, which have not been reduced to the geoid.

The astronomical coordinates may carry systematical errors due to systematic differences between star catalogues or due to the neglect of corrections for polar motion. The observations may be corrected for known systematical errors, if they can be specified in the same way as a datum shift, i.e. by specifying the corrections in the latitude and the longitude components at a certain point. Systematic errors in the height anornalies may be corrected in the same manner.

In Section 2.2 we mentioned, that the equations which related the observations and the anomalous potential was given in spherical approximation. This means, e.g. that all points on the surface of the Earth are regarded as lying on the mean Earth sphere. This fact has been used in the program to speed up the computations. This is done by using the fact that the quantities

$$
\sigma_{l}(\mathrm{~T}, \mathrm{~T}) \mathrm{s}^{\ell+1}, \quad \sigma_{\ell}(\mathrm{T}, \Delta \mathrm{~g}) \mathrm{s}^{\ell+1}, \quad \text { and } \sigma_{\ell}(\Delta \mathrm{g}, \Delta \mathrm{~g}) \mathrm{s}^{\ell+2}
$$

will be the same for a group of input data.
Data which actually are observed above the surface of the Earth must be grouped so that they all refer to a sphere with radius equal to a mean height of the points plus the mean Earth radius, R,. As for mean gravity anomalies, the height is specified in the program through the value of the quantity RP, (ey. (87)).

The standard deviations of observations, different from potential coefficients, will have to be given in meters for the height anomaly, in mgal for gravity observations and in arc sec for deflection components. The standard deviations may be specified (1)individually for the single observations, (2) for a group of observations or (3) as being zero for all observations.

3.2 The Reference Systems.

We have to know the parameters specifying the geodetic coordinate system. The program requires the semi major axis, a, and the flattening, f, to be specified.

The gravity formulae may then either be given (1)through the values of kM , ω, a, and f, (2) by specifying that the international gravity formulae and the Potsdam reference system has bcen used or (3) that the Gcodetic Reference System 1967 has been used. One of the three excludes the others.

The covariance functions which can be used, will all have the degreevariances of degree zero and one equal to zero. This implies, that we, in the computations, have to use the best possible kM value and a geodetic coordinate system which has origin coinciding with the gravity center of the Earth, Z-axis parallel to the mean axis of rotation and Z -X-plane equal to the mean Greenwich meridian plane.

We will also require the global mean value of the gravity anomalies, the height anomalies and the deflections to be zero. This requirement implies, that we have to use the best possible semi-major axis. The geodetic latitude and longitude may then be transformed into such a reference system by specifying the new $\mathrm{kM}, \mathrm{a}, \mathrm{f}$ values, the translation vector, the scale change and the three rotation angles for the rotations around the X, Y and Z axes respectively.

The approximation \tilde{T} will be given in the same reference system as the one specified through the transformation parameters, i.e. in a geocentric reference system. Predictions will be given in both the original and the new reference system.

3.3 The Covariance Function.

We explained in Section 2.2 how an isotropic covariance function can be specified through (1)a set of empirical anomaly degree-variances of degree less than or equal to an integer $I, \hat{\sigma}_{\ell}(\Delta \mathrm{g}, \mathrm{Ag})$ and (2) an anomaly degree-variance model for the degree-variances $\sigma_{\mathrm{k}, \ell}(\mathrm{Ag}, \mathrm{Ag})$ for R greater than I .

The values of the empirical degree-variances will depend on the radius of the Bjerhammar sphere, R. We have, therefore chosen to specify these quantities on the surface of the mean Earth, i.e. the quantities

$$
\begin{equation*}
\hat{\sigma}_{\ell}^{\mathrm{E}}(\Delta \mathrm{~g}, \Delta \mathrm{~g})=\left(\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{e}}}\right)^{2 \ell+4} \hat{\sigma}_{\ell}(\Delta \mathrm{g}, \Delta \mathrm{~g}) \tag{88}
\end{equation*}
$$

must be given together with the ratio R / R_{0}. The quantities (88) must be given in units of mgal^{2}.

The anomaly degree-variance model is for $\mathrm{k}=1$ and 2 specified through the constants A, and A, (eq. (30) and (31)) and for $k=3$ through the constant A_{3} and the integer B (eq. (32)).

Thus, in the program the models are specified not through the constants $\mathrm{A}, \mathrm{k}=1,2$ or 3 , but through the variance of the point gravity anomalies on the surface of the Earth.

This quantity is then used for the determination of A,. We have from (29):
(89)

$$
\begin{aligned}
\operatorname{cov}\left(\Delta \mathrm{g}_{\mathrm{P}}, \Delta \mathrm{~g}_{\mathrm{P}}\right)= & \sum_{\ell=0}^{1} \hat{\sigma}_{\mathrm{k}}(\Delta \mathrm{~g}, \Delta \mathrm{~g}) \cdot\left(\frac{\mathrm{R}}{\mathrm{R}_{\theta}}\right)^{2 \ell+2} \mathrm{P}_{\ell}(1) \\
& +\sum_{\ell=1+1}^{\infty} 0_{\mathrm{k}, \ell}(\Delta \mathrm{~g}, \Delta \mathrm{~g})\left(\frac{\mathrm{R}}{\mathrm{R}_{\theta}}\right)^{2 \ell+2} \mathrm{P}_{\ell}(1)
\end{aligned}
$$

Let us now, for example regard model 2, i. e. $\sigma_{2, \ell}(A g, A g)=\frac{A_{2}(\ell-1)}{(\ell-2)}$. Then
(90) $\quad \mathrm{A}_{2}=\left(\operatorname{cov}\left(\Delta \mathrm{g}_{\mathrm{p}}, \Delta \mathrm{g}_{\rho}\right)-\sum_{\ell=0}^{\mathrm{I}=\underset{\sigma_{k}}{h}(\Delta \mathrm{~g}, \Delta \mathrm{~g})}\left(\frac{\mathrm{R}}{\mathrm{R}_{g}}\right)^{2 \ell+2}\right) /\left(\sum_{\ell=1+2}^{\infty} \frac{(l-1)}{(\ell-2)}\left(\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{e}}}\right)^{\ell+2}\right)$

The infinite sum may be computed by the formula given in Tscherning and Rapp (1974, Section 8), and A, (and in the same way A, or A,) can then be found.

We will finally mention, that the ratio R / R_{e} is used by the program for the computation of the radius of the Bjerhammar sphere.

4. Main Lines of Function of the Program.

In Section 2 we mentioned that the program could be used to estimate \widetilde{T} from maximally three sets of observations x_{1}, x_{2} and x_{3}. \widetilde{T} would then be equal to the sum of up to three harmonic functions, $\widetilde{T},, \widetilde{T}_{2}$ and \widetilde{T}_{3}. The limit of three was only attained, when potential coefficients formed the first set of observations, x_{1}.

We will here clescribe the function of the program, when we are in this situation, i.e. when we have three datasets x_{1}, x_{2} and x_{3}, and x_{1} is a set of potential coefficients.

The flow of the program is illustrated in Figure 2. Several logical variables determine the flow. The logical variable LPRED will e.g. be "false" until the estimation of? is finished and will have the value "true", when predictions are computed.

The program will start by intializing different variables. It wiil require information about the reference systems of the observations and use this information to select e.g. the proper formulae for the normal gravity.

When the reference system is not geocentric or when the normal gravity does not correspond to a proper kM value, the necessary transformation elements and the kM value must be given.

The next step is then to read in the observations x_{1}, the potential coefficients. The normal equations (12) will not have to be solved in this situation, cf. Section 2.3. \widetilde{T}_{1} is represented by (83).

The following two steps, where we explicitly use the equations for collocation, will be denoted Collocation I and Collocation II. We will first have to specify the covariance function and observations used in Collocation I:

The covariance function for the residual anomalies $d_{1} x_{2}$ must be specified through the selection of an analy degree-variance model and contingently by specifying a set of low order empirical. deg ee-variances.

The observations x , (and later x ,) may be subdivided in different files according to format, kind of observed quantity etc. Each single observation is first transformed to a geocentric reference system (if necessary). Then the residual observation is computed, by subtracting the contribution from $\widetilde{\mathrm{T}}_{1}$ from the observed value. After the input of a file, the value of a local variable LSTOP will be input, which will signify if more files belonging to x_{2} will have to be input.

Figure 2

Flow-Chart of Program.

The main flow is determined by the values of the following logical variables:
LTRAN $=$ coordinates and observations must be transformed to a geocentric reference system and gravity observations must refer to a gravity formulae consistent with the refe ence system.
LPOT = potential coefficients from first set of "observed" quantities.
LCREF $=$ second set of observations (or third when LPOT is true) will be used, and the harmonic function computed by Collocation I will be used as an improved reference field. LCREF is initialized to be false and will get its final value after Collocation I is finished.
LPRED $=$ predictions are being computed.
LGRID $=$ the predictions are computed in the points of a uniform grid.
LERNO $=$ the error of prediction must be computed.
LCOMP= compare observed and predicted values (an observed value is input together with the coordinates of the point of prediction).

Figure 2

After the last file has been input, the vector $\mathrm{d}_{1} \mathrm{x}_{2}$ is stored on a disk. The coefficients of the normal equations are then computed and stored on the disk as well.

A subprogram NES, which only uses a limited amount of core store, will then compute the solution vector b_{2} and in this way \widetilde{T}_{z} is determined.

The solution vector may be output on punched cards, so that the function $\widetilde{\mathrm{T}}_{2}$ can he retrieved without computing the coefficients of (and solving) the normal equations.

Collocation I is now finished. It is then possible either to start the computation of predictions or to start Collocation II. A logical variable LCREF is used to distinguish between the two situations. Thus, LCREF will have to be true in this case, because we have decided to describe the situation, where three datasets are used.

The covariance function of the residual observations $d_{2} x_{3}$ is then first specified. It is done in the same way as for the covariance function used in Collocation I, though the kind of anomaly degree-variance model used will have to be the same.

The different files of the dataset x_{3} can then be input. Each observations is first transformed to a geocentric reference system. Then the contribution from $\widetilde{\mathrm{T}}_{3}$ and $\widetilde{\mathrm{T}}_{3}$ is computed, so that finally $\mathrm{d}_{5} \mathrm{x}_{3}$ can be stored. The coefficients of the new normal-equations can then be computed and the equations solved. Again, here the solution b_{3} may be output on punched cards. (Incase b_{z} or b, had been computed in previous runs of the program, their respective values would have been input and the coefficients of the normal equations are then not computed.)

When the equations have been solved, the reduced normal equation matrix is retained on a disk, so that errors of estimation can be computed, using equation (13).

The estimate of the anomalous potential is then, cf. eq. (82a)

$$
\widetilde{T}(\mathrm{P})=\widetilde{\mathrm{T}}_{1}(\mathrm{P})+\widetilde{\mathrm{T}}_{2}(\mathrm{P})+\widetilde{\mathrm{T}}_{3}(\mathrm{P}),
$$

with T, (P) given by eq. (83),

$$
\mathrm{T}_{2}(\mathrm{P})=\sum_{1=1}^{\pi_{1}} \operatorname{cov}\left(\mathrm{~d}_{1} \mathrm{~T}_{\mathrm{p}}, \mathrm{~d}_{1} \mathrm{x}_{21}\right) \cdot \mathrm{b}_{11} \quad \text { and }
$$

$$
T_{3}(P)=\sum_{i=1}^{x_{2}} \operatorname{cov}\left(d_{2} T_{p}, d_{2} x_{31}\right) \cdot b_{2^{!}},
$$

cf. eq. (81a).

The prediction of a height anomaly, a gravity anomaly or a deflection component can now be computed using eq. (82a). The computation is based upon exactly the same type of information as was used for the computation of \widetilde{T}_{2} and and \widetilde{T}_{3}, i. e. geodetic latitude and longitude, and a height. The program itself may generate lists of coordinates. Such a list is generated, when the logical LGRID is true. The list will consist of coordinates of points lying in a grid. The grid is specified by its south-west corner, and the number and magnitude of the grid increments in northern and eastern direction. The heights of the points are specified by the ratio $R P$ (equation (87)).

The prediction of a quantity, e.g. a gravity anomaly will then be computed by first determining the difference between the anomaly given in a geocentric reference system and the reference system of the observations, $\Delta \mathrm{g}_{0}$. The contribution $\widetilde{\Delta \mathrm{g}}_{1}$ is then evaluated from $\widetilde{\mathrm{T}}_{1}$ and the contributions from $\widetilde{\mathrm{T}}_{2}$ and $\widetilde{\mathrm{T}}_{2}$ using (81a), i. e.

$$
\tilde{\Delta g_{i}}=\sum_{j=1}^{m_{1}} \operatorname{cov}\left(d_{i-1} \Delta g, d_{i-1} x_{1 j}\right) \cdot b_{i j}, i=2,3
$$

The predicted value is then, (cf. eq. (82a)):

$$
\widetilde{\Delta \mathrm{g}}=\Delta \mathrm{g}_{0}+\tilde{\Delta \mathrm{g}_{1}}+\tilde{\Delta \mathrm{g}_{2}}+\tilde{\Delta \mathrm{g}_{3}}
$$

Predictions of other quantities are computed in the same way. A special facility for the comparison of observed and predicted quantities can be used, when the logical LCOMP is true. The differences between observed and predicted quantities are in this case, computed together with their mean value and variance. A sampling of the differences is done in intervals of a specified magnitude.

The processing time (or more correctly, the central unit processing time) will vary depending on (1)the covariance function used, (2) the number of observations and (3) the number of quantities to be predicted and estimates of errors to be computed. The program has been used for a variety of test computations, though never with more than 500 observations. The used processing times for a number
of situations are presented in Table 2. The computations were all made on the IBM system/370 model 165 computer of the Instruction and Research Computer Centcr, Ohio State University. The so called Fortran H-extended compiler (IBM (1972)) was used for the compilation of the program. The normal equations were stored on an IBM model 3330 disk.

Table 2

Examples of Processing Times for Different Input Data and Covariance Functions.
Potential Coefficients of Degree up to 20 Used.

	Collocation I		Collocation II**			Predictions			Total processing time	
Covariance	Order of local	Number of	Order of local	Numb	er of	Num	mber			
Model	covar.fct. I	可 used	covar.fct. I	$\Delta \mathrm{g}$	ξ, η		$\|\xi, \eta\|$	5	m	sec
1	20	157				117	30	36	0	43
2	20	157				117	30	36	0	43
2	20	157	110	117		303	82	36	2	31
3*	20	157	110	117		303	82	36	3	22
2	20	157	160	117		303	82	36	2	57
3*	20	157	160	117		303	82	36	4	09
2	20	157	110	117	30	303	52	36	2	54
3*	20	157	110	117	30	303	52	36	4	09

* $\mathrm{B}=24$ in Model 3
**Normal equations not computed and solved in Collocation I.

5. The Storing of the Cocffic ients of the Normal Equations and the Function of the Subprograms.

We will in this section discuss in more detail the function of an important part of the main-program and the different subprograms which have been used. However, the most detailed description is found in the appendix, where the FORTRAN program, which includes a large number of comment statements, is reproduced.
5.1 The storing of the normal equations.

The IBMi system 370 model 165 computer of the Instruction and Research Computer Center of the Ohio State University makes available a 630 K !byte) core storage for a usual program. Let us suppose, that we have used 180 K for the storing of the program and variables different from the coefficients of the normalequations. We are then left with 450 K bytes, which can be used to store these quantities. When the coefficients are represented as double p ecision variables (8 bytes), it is then possible to store $450 * 1024 / 8=57600$ coefficients in the core.

A system of equations with N unknowns, and a full symmetric coefficient matrix plus a constant vector of length $\mathrm{N}+1$ will totally occupy $(\mathrm{N}+2) *(\mathrm{~N}+3) / 2$ 8 byte positions. This implies, that we maximally can solve a system of equations with 336 unknowns, if we want to store all the coefficients in the core.

The solution to the problem is naturally to divide the upper (or lower) triangular part of the matrix in blocks, which then are stored on a disk and later read into core storage when needed. The subdivision in blocks can be made in several ways. In case we wanted to compute the inverse matrix, the optimal subdivision seems to be a subdivision in squares submatrices, as used by Karki (1973). It is unnecessary to compute the inverse matrix for our purpose. The solution vector b (16) and the estimate of the error of prediction (13) may both be computed without using the inverse matrix. It is enough to compute the so .called reduced matrix L^{\top},

$$
\text { (91) } \bar{C}=L \cdot L^{\top}
$$

where L is a lower triangular matrix, cf. Poder and Tscherning (1973). The computation of L^{\top} is most easily programmed, when the upper triangular part of $\overline{\mathrm{C}}$ is subdivided in blocks, which contain a number of conspcutive columns, stored in a one-dimensioned array with the diagonal element having the highest subscript cf. Figure 3.

Block Number

Figure 3. Blocking of 400×400 matrix

It is necessary, that two blocks can be stored simultaneously in the core storage, i.e. the maximum block size is then 225 K or $(450 / 2) \cdot 1024 / 8=28800$ double precision coefficients. This number is then also the upper limit for the dimension of the normal equation matrix, N. (Another limit is set by the magnitude of the disk unit used. For the IBM model 3330 disk used here, N will have to be less than circa 5000).

We have in this program edition preferred to limit the total storage requirements to 252 K (which for the present operative system gives a reasonable turn-around time). Thus, 90 K can be used for the storing of the required two blocks and for the buffer area necessary for the transfer between core store and disk.

On a disk it is practical to block data in groups which occupy an integer number of tracks. We have then chosen to work with data partitioned into blocks of size $4800 * 8$ bytes, covering three tracks and to use a buffer area of $1200 * 8$ bytes. The total area occupied in core storage is hence $2 *(38400)+9600$ bytes or nearly 86 K . (The disk discussed is, as mentioned above, an IBM model 3330 disk). Figure 4 shows the number of tracks used as a function of the number of observations, N .

Figure 4. Number of tracks used on an IBM model 3330 disk unit for a varying number of unlnowns, N (12800 bytes used on each track).

When a coefficient of the normal equation matrix $\overline{\mathrm{C}}$ (eq. 12) is computed (subroutine PRED) it will first be stored in an array C of dimension 4700 (the last $100 * 8$ bytes are used to hold two catalogues). Where the array C is filled up with as many columns as possible, the content will be transferred to the disk and stored in a direct access dataset (see IBM (1973, page 67)). The constant vector of observations, x is stored together with the coefficients, as if it was an extra column. The ficticious diagonal element of this column will contain the normalized square sum of the observations.

As mentioned above, the last $100 * 8$ bytes of a block are used to hold two catalogues. The first catalogue contains the subscripts of the diagonal elements of the columns stored in the block. The second contains the subscript of the last zero element encountered in a column, starting the inspection of a column from the top. This catalogue may especially be used when $\overline{\mathrm{C}}$ is a sparse matrix (e.g. when potential coefficients are not necessarily stored). In this program $\overline{\mathrm{C}}$ will always be a full matrix, so the catalogue entries are just equal to zero. (Their value may be changed by the subroutine NES, in case singularities are encountered).

5.2 Solution of the Normal Equations and Computation of the Estimate of the Error of Prediction, Subroutine NES.

The equations are, as mentioned in Section 5.1, solved by first computing the upper triangular matrix L? (cf. (91)). This method is the well known Cholesky's factorization method.

We obtain, from (15) and (91) by a left multiplication with I^{-1}

$$
\begin{equation*}
L^{\top} \cdot x=L^{-1} b=b^{\prime} \tag{92}
\end{equation*}
$$

The algorithm for the computation of the elements of $L^{\top}, \ell_{1 j}$ is

$$
\begin{equation*}
l_{1 j}=\frac{1}{l_{15}}\left(c_{15}-\sum_{x=1}^{1-1} l_{k I} l_{k j}\right) \tag{93}
\end{equation*}
$$

and nearly exactly the same for the computation of the elements b_{1}^{\prime} of (92):

$$
\begin{equation*}
b_{1}^{\prime}=\frac{1}{l_{11}}\left(x_{1}-\sum_{k=1}^{1-1} l_{1_{k}} \cdot b_{1}^{\prime}\right), \quad i=1, \ldots m \tag{94}
\end{equation*}
$$

i.e. the algorithm (93) will compute (92), when X is regarded and stored as an extra column of the matrix $\overline{\mathrm{C}}$. When b^{\prime} has been computed, b can easily be obtained from (92) by a so called back-substitution procedure. We note, that we have (cf. eq. (6) and (13)):

$$
\begin{equation*}
C_{8}^{\top} \overline{\mathrm{C}}^{-1} \mathrm{C}_{8}=\mathrm{C}_{8}^{\top}\left(\mathrm{L}^{\top}\right)^{-1} \mathrm{~L}^{-1} \mathrm{C}_{8}=\left(\mathrm{L}^{-1} \cdot \mathrm{C}_{8}\right)\left(\mathrm{L}^{-1} \mathrm{C}_{8}\right) . \tag{95}
\end{equation*}
$$

Then, using the algo ithm (93) for $\mathrm{j}=\mathrm{m}+1$ with c, substituted for $\mathrm{c}_{1_{j}}$, we will obtain the quantity $L-C^{\prime}$, for $i=1, \ldots, m$. By defining an element $c_{m+1, m+1}=C_{s s}$ and using (93) for $\mathrm{i}=\mathrm{m}+1$ we will have computed the quantity $\widetilde{\mathrm{m}}_{\mathrm{s}}^{2}(13)$.

The sub outine NES uses these algorithms for the computation of the vector b and the quantity $\tilde{\mathrm{m}}_{\mathrm{s}}^{2}$. The elements of L^{\top} are stored in the positions on the disk, where earlier the coefficients of the upper triangular part of $\overline{\mathrm{C}}$ were stored.

The matrix $\overline{\mathrm{C}}$ is theoretically, always positive definite. Thus, mistakes may be made, which make $\overline{\mathrm{C}}$ non positive definite. The Choleskys algorithm (93) will not work in this case, because the diagonal element of L, ℓ_{11}, is computed by taking the square- root of equation (93), where both sides have been multiplied with ℓ_{11}. The occurence of a negative quantity

$$
l_{11}^{2}=c_{11}-\sum_{k=1}^{1-1} l_{k i}^{e}
$$

will not stop the execution of the program. NES will regard the column and corresponding row as deleted, and b_{1} will be put equal to zero.

Cholesky's method is very favorable numerically. But the proper use of the method requires that the sum of the products $l_{k!} l_{k!}$ in (93) are accumulated in a variable, which in this case would be in quadruple precision. The final product sum would then have to be rounded properly to double precision. Unfortunately rounding is not done by simply requiring the quadruple precision variable to be stored in a double precision variable, but supplementary statements have to be used. Thus, the solution vector b, is here obtained by computations performed in double precision only, which in this case anyway, gives a satisfactory number of significant digits.

The solution vector b , is obtained in $0.7 *\left(\frac{\mathrm{~N}}{100}\right)^{3}$ seconds, where N is the dimension of the normal equation matrix.

5.3 Transformation Between Reference Systems, Subroutine ITRAN.

We pointed out in Section 3, that it was necessary to transform the coordinates and measurements into a geocentric reference system. This transformation is performed for the coordinates, the deflections and the height anomaly by the subroutine ITRAN.

The subroutine uses the euclidian coordinates X, Y, and Z for a point with geodetic latitude φ and longitude λ and with the ellipsoidal height equal to zero.

These coordinates are then transformed into geocentric coordinates, $\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$ by
(96) $\left\{\begin{array}{l}X_{1} \\ \mathrm{Y}_{1} \\ \mathrm{Z}_{1}\end{array}\right\}=\left\{\begin{array}{l}\Delta \mathrm{X} \\ \Delta \mathrm{Y} \\ \Delta \mathrm{Z}\end{array}\right\}+(1+\Delta \mathrm{L}) \cdot\left\{\begin{array}{ccc}1 & \epsilon_{1} & -\epsilon_{2} \\ -\epsilon_{1} & 1 & \epsilon_{3} \\ \epsilon_{2} & -\epsilon_{3} & 1\end{array}\right\} \cdot\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y} \\ \mathrm{Z}\end{array}\right\}$,
where ($\triangle X, A Y, A Z$) are the coordinates of the center of the old reference ellipsoid given in the new coordinate system, AL the scale change and ($c,, c,, c$,) the three infinitesimal rotations around the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively.

The new geodetic latitude φ_{1} and longitude λ_{1} of this point is computed using the ite ative procedure given in PG (p.183). This computation will also furnish us with the change in the height anomaly, which is identical to the height of the point $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}\right)$ above the now reference ellipsoid.

The change in the deflection components are then determined using the differences $\varphi_{1}-\varphi$ and $X,-X$.

A contingent correction for systematical errors in the deflections or the height anomaly (cf. Section 3.2), specified by the changes $\delta \xi_{0}, \delta \eta_{0}, \delta \zeta_{0}$ in a point with coordinates φ_{0}, λ_{0}, is computed by the subroutine using the equations given in PG (eq. (5-59)).
5.4 Computation of the Normal Gravity, the Normal Potential and the Contributions from the Potential Coefficients. Subroutines GRAVC and IGPOT.

The normal gravity may be given in two ways. Either by a gravity formula or by specifying a normal gravity field, from which the gravity formulae then can be derived, (cf. PG, Chapter 2). The only gravity formulae which can be used is the international gravity formulae, PG (cq. (2-126) and (2-131)). The normal gravity fields which can bc used, are those for which the reference ellipsoid is an equipotential surface, i.e. it is specified by the values of kM , a, f and ω.

We may need to kuow the reference gravity in two situations. Firstly when free-air anomalies are computed using measured gravity values and secondly, when we want to compute the change in the gravity anomalies due to the use of a new reference system.

The subroutine GRAVC will compute and store the constants (PG, Section 2.10) necessary for the computation of the normal gravity in one or two reference systems. The constants used to compute the value of the normal potential (J_{an}, $\mathrm{n} \leq 5$ in eq. (26)) and the change in the latitude component of the deflection of the vertical ξ due to the curvature of the normal plumbline ($\mathrm{PG}(5-34)$) are computed as well. When the height exceeds 25 km , the derivatives of the series (26) with respect to the latitude and the distance from the origin, will be used for the computation of the normal gravity and the change in ξ. Thus, this method of computation can, unfortunately, not be applied when the international gravity formula is used.

The values of the normal gravity, the normal potential and the change in ξ are computed by calling separate entries to the subroutine. The subroutine IGPOT computes the value of the potential $W(P)$ and the three components of the gradient of the potential, the value of kM , a and ω, cf. eq. (25).

Let us, as usual, define V by

$$
\mathrm{W}=\mathrm{V}+\frac{\omega^{3}}{2}(\mathrm{r} \cdot \cos \theta)^{2}
$$

The coefficient modification method is used for the computation of the values of V and the gradient of V . This method uses the fact, that the derivative of a harmonic function with respect to euclidian coordinates again is a harmonic function. The potential coefficients of the (three) new harmonic functions $D_{X} V, D_{Y} V$, and $D_{2} V$ are computed by means of a recursion algorithm given in James (1969, eq. (3) and (4)). The recursion algorithm is identical to the algorithm used for the evaluation of the values of the solid spherical harmonics. This fact simplifies the computations very much. It furthermore makes it unnecessary to store the three sets of modified potential coefficients. They are computed for each call of the subroutine from the original potential coefficients. The algo ithm may easily be modified to compute higher order derivatives (without extra storage requirements). Thus, the algorithm may also be used in case the program is extended to use second order derivatives as observed quantities.

The value of the potential and the gradient is used to compute the residual observation $\mathrm{d}_{1} \mathrm{X}_{21}$:

The value of the potential is used together with the value of the normal
potential (as computed by GRAVC) to compute a residual height anomaly. The gradient is used to compute the residual gravity anomalies and deflection components:

$$
\begin{equation*}
\mathrm{d}_{1} \Delta \mathrm{~g}_{1}=\Delta \mathrm{g}_{1}-\left(\left(\left(\mathrm{D}_{\mathrm{X}} \mathrm{~W}\right)^{2}+\left(\mathrm{D}_{\mathrm{Y}} \mathrm{~W}\right)^{2}+\left(\mathrm{D}_{2} \mathrm{~W}\right)^{L^{2}}\right)^{\frac{1}{2}}-\gamma_{1}\right), \tag{97a}
\end{equation*}
$$

(97b) $\quad d_{1} \xi_{j}=\xi_{j}-\left(\arctan \left(D_{2} W /\left(\left(D_{x} W\right)^{2}+\left(D_{Y} W\right)^{2}\right)^{\frac{1}{2}}\right)-\hat{\varphi}_{j}\right)$
(97c) $\quad \mathrm{d}_{1} \eta_{\mathrm{k}}=\eta_{\mathrm{k}}-\left(\arctan \left(\mathrm{D}_{\mathrm{Y}} \mathrm{W} / \mathrm{D}_{\mathrm{x}} \mathrm{W}\right)-\lambda_{\mathrm{k}}\right) \cdot \cos \varphi_{\mathrm{k}}$,
where γ_{1} is the normal gravity, $\hat{\varphi}_{\mathrm{g}}$ is the geodetic latitude plus a correction for the curvature of the plumbline and X , the longitude.

The components of the gradient used in (97a) are evaluated in a point with height equal to the orthometric height plus the distance h_{0} between the reference ellipsoid and an equipotential surface of $U_{1}=U+T_{1}$ with potential equal to the potential of the normal potential, U on the ellipsoid. The separation h_{0} is computed by evaluating T_{1} / γ on the ellipsoid. The other gradients are evaluated in the height equal to the orthometric height.

5.5 Computation of,Euclidian Coordinates, Conversion of Angles to Radians, Subroutines EUCLID, RAD.

The subroutine EUCLID computes the euclidian (rectangular) coordinates for a point with geodetic coordinates $\mathrm{p}, \mathrm{X}, \mathrm{h}$ (ellipsoidal height) given in a reference system with semi-major axis a and second eccentricity e by the equations PG (5-3) and (5-5).

RAD converts angles given in either (1)degrees, minutes, arc seconds, (2) degrees and minutes, (3) degrees or (4) (400) grades into units of radians. Other options may easily be added.
5.6 Subroutines for Output Management and Prediction Statistics, HEAD, OUT and COMPA.

The output requirements are discussed in Section 7. The main requirement is, that a determination of $\widetilde{\mathrm{T}}$ must be as well documented as possible. ? may be computed in several ways, cf. Table 1. This implies, that the output may vary in just as many ways.

An array OBS is used for the storage of the observed quantities, the residual observations, the contributions from the different sets of observations and the predicted quantities. The storage sequence of these quantities is determined by BEAD, which also will print proper headings. The coordinates of an observed or predicted quantity and the quantities stored in OBS are printed on the line printer by OUT, which also will punch a part of this information when requested (see Section 7).

COMPA uses the content of OBS for the computation of prediction statistics. The difference between observed and predicted quantities are sampled in classes defined by a specified class width. The number of differences in each class is printed by COVA after the final predictions have been computed. The sampling is done separately for $\Delta \mathrm{g}, \boldsymbol{\xi}$ and η. No sampling is done for ζ.
5.7 Subroutines for the Computation of Covariances, PRED and SUMK.

PRED computes:
(a) the vector $\mathrm{d}_{1-1} \mathrm{C}_{\mathrm{s}}$ ord $\mathrm{d}_{1-1} \mathrm{C}_{1}$, (cf. eq. (78a) and (82a)).
(b) a column of the upper triangular part of the normal equation matrix (eq. (80a)) $d_{1} C_{11}$ or
(cj the product sum $d_{1} s=d_{1} C_{s}^{\top} \cdot b_{1}$, (cf. cq. (81a)).
The subroutine may theoretically work even when the observations (different from potential coefficients) are divided in more than two groups, as long as the total number of observations do not exceed 1600 minus the number of groups minus one.

When the observed quantity is a pair of deflections of the vertical it is very easy to compute the two corresponding columns of the upper triangular part of C at the same time. This is due to the similarity of the equations for the covariances (44)-(50)for ξ and η. This fact is used in the subroutine.

We mentioned in Section 3.1, that it would facilitate the computations if the observations were grouped according to common characteristics, i.e., e. g. gravity anomalies on the surface of the Earth in the first group, deflections in the second group, gravity anomalies in 10 km 's height in the third group, etc. The group characteristics (the type of observation and the quantity RP, (\$7)) are stored in two arrays INDEX and P, which will also contain the subscripts of the first observation in the group within the total set of observations and a quantity related to the square root of the variance of the observations. This quantity is used for the scaling of the normal equations (in which all the diagonal elements will be equal to one).

The covariances are computed using the equations given in Section 2.2. Thus, for degree-variance model 3, the covariances will be evaluated using the subroutine SUMK as well. This subroutine computes the sum of the infinite series

$$
\sum_{\ell=3}^{\infty} \frac{1}{(\ell+B)} s^{\ell} P_{\ell}(t), \sum_{\ell=3}^{\infty} \frac{1}{(\ell+B)} s^{\ell-1} D_{t} P_{\ell}(t) \text { and } \sum_{\ell=3}^{\infty} \frac{1}{(\ell+B)} s^{\ell-2} D_{+}^{2} P_{l}(t)
$$

which are needed for the computation of the quantities $\operatorname{cov}_{3}^{u}\left(s_{1}, s_{\mathfrak{g}}\right)$, cf. eq. (39) and Tscherning and Rapp (1974, eq. (130)- (135)).
6. Input Specifications.

We can divide the input data in different (sometimes overlapping) groups:
(A) Data (generally true/false values of logical variables) determining the flow of the program (LTRAN, LPOT, LCREF, LGRID, LERNO, LSTOP),
(B) Data specifying selected input/output options,
(C) Data specifying the reference systems used for coordinates and observations,
(D) Data specifying the degree-variance model used,
(E) Data used for the determination of T (i.e potential coefficients, gravity values, deflections, etc.) and solutions to normal equations, and
(F) Data used to specify which quantities we want to predict.

The input flow is roughtly sketched in Figure 5. The position of the integers $1-5$ in the diagram indicates the beginning of the input data belonging to one of the 5 groups described below:
up to one repetition

Figure 5: The Input Flow.
(x) Input data of category
(A)-(F)mentioned in text.

The input consists exclusively of data on 80 -column punch-cards. We will describe the content of each card, but not the format of the card. Instead, the format statement number will be given (in brackets) together with a two to five digit number, e.g. 3.013. This number will be used to identify the corresponding card shown in the input example, Appendix B.

We will divide the data in 5 categories:
(1) Data of type (A), (B) and (C), i.e. data describing the reference systems used,
(2) Data of type (A), (B) and (E), where the data of type (E) are the potential coefficients,
(3) Data of type (A), (B) and (D), i.e. data related to the degreevariance models,
(4) Data of type (A), (B) and (E), where the data of type (E) are observations of gravity anomalies, measured gravity values, height anomalies and deflections of the vertical,
(5) Data of type (A), (B) and (F).

The first digit in the identifying number will be the number of the category to which the card belongs. The other digits are used to indicate to which group or subgroup within the category the card belongs. In case an input situation depends on the content of e.g. the card 3.01 and there are two different input possibilities, the two cards will have the numbers 3.011 and 3.012 respectively. (Data of type (A) and (B) will, as mentioned above, in many cases be the true or false value of a logical variable. The function of a logical variable can be explained by writing e.g. : LE is a logical variable, which is true when XXX and false otherwise. Thus, we will in several cases below simply write $\mathrm{LE}=\mathrm{XXX}$.)

Category 1. (The numbers in brackets are, as mentioned above, the corresponding format statement numbers).
1.0 (105) The (true or false) values of five logical variables: LTRAN= the observations must be transformed to a new reference system, LPOT= potential coefficients are part of input data (observation data. set x_{1}), LONEQ = output the coefficients of the normal equations on the line printer, LLEG = output a legend of the tables, which will be printed and $\mathrm{LE}=$ the standard deviations of the observations to be input (otherwise they are set equal to zero).
1.1 (103) A text of maximally 72 characters included in apostrophes, which identify the reference system of the observations.
1.2 (120) The semi-major axis (meters) and the inverse of the flattening of the Geodetic Reference System. The value of two logical variables, LPOTSD $=$ the gravity are given in the Potsdam system and LGRS67= the gravity data are given in the Geodetic Reference System, 1967.

In case the gravity data are not in the Potsdam system or in GRS 1967, input of:
1.21 (121) The product of the gravity constant and the mass of the Earth (kM) in units of meters ${ }^{3} / \mathrm{sec}^{2}$.

When LTRAN is true input of:
1.3 (131) The new semi-major axis (meters), the new $\mathrm{kM}\left(\right.$ meters $^{3} / \mathrm{sec}^{2}$), the inverse flattening, the translation vector ($\mathrm{dX}, \mathrm{dY}, \mathrm{dZ}$) (meters), $\mathrm{dL}=$ one minus the scale factor, the three rotation angles (c, c, , c,) (arc sec) and the value of a logical variable, LCHANG, which is true when the deflections and the height anomaly are to be corrected for a systematic error. (The correction must be given as a change $\delta \xi_{0}, \delta \eta_{0}, \delta \zeta_{0}$ at a point with coordinates $p \quad X$, , cf. Section 5.2).

When LCHANG is true, input of:
1.31 (133) φ_{0} and λ_{0} in degrees, minutes and arc seconds, $\delta \xi_{0}, \delta \eta_{0}$ in arc seconds and $\delta 5_{\circ}$ in meters.

Category 2. Data of this category are only input, when LPOT (card 1.0) is true. The values of kM and a, input on card 2.1, will have to be the best available estimates, cf. Section 3.2. They must be identical to the values input on card 1.3, when LTRAN is true.
2.0 (103) A text of maxiinally 72 characters, describing the source of the potential coefficients.
2.1 (137) kM (meters ${ }^{3} / \mathrm{sec}$ "), a (meters), the normalized coefficient $\overline{\mathrm{C}}_{2,0}$ multiplied by 10^{6}, the maximal degree of the coefficients and the value of a logical variable, LFM, which is false, when the coefficients $\bar{C}_{\ell, 0}$ are punched on a separate card, and $\bar{C}_{1 j}, \bar{S}_{19}$ on the same card in a sequence increasing with i and j , and true when the coefficients are punched in the same sequence, on a number of cards, but with a fixed number of coefficients on each card. The first coefficient will, in both cases, have to
be $\mathrm{C}_{\text {, }}$ (even when this is zero) and all cards must have the same format, as given by 2.1. All the coefficients have to be fully normalized and multiplied by 10^{6}.
2.2 (103) The format of the cards on which the coefficients are punched (in brackets).
2.11 (format as given by 2.2). When LFM is false, the coefficients with $\overline{\mathrm{C}}_{1.0}$ on one card and $\overline{\mathrm{C}}_{11}$ and $\overline{\mathrm{S}}_{11}$ on one card.
2.12 (formatas given by 2.2). When LFM is true, the coefficients in a sequence increasing with i and j on a number of cards.

Category 3. We can select one of three anomaly degree-variance models, by giving the variable KTYPE the value 1,2 or 3 , cf. Section 2.2 eq. (30), (31) and (32).
3.0 (102) KTYPE

When KTYPE is equal to 3 :
3.01 (107) $\mathrm{IK}=$ the variable B in equation (32).

The degree-variance model is then specified by giving
(a) the ratio R / R_{e} between the radius of the Bjerhammar sphere and radius of the mean Earth,
(b) the variance of the gravity anomalies on the surface of the Earth (VARDG2), (from which the constant A, in the equations (30)-(32) are computed, cf., e.g. equation (90)),
(c) either the "order" IMAX of the local covariance model to be used or a zero, which will indicate, that empirical anomaly degreevariances are used, and in this case
(d) the empirical anomaly degree-variances, given on the surface of the Earth, ${ }_{\sigma}^{\mathrm{A}} \mathrm{a}(\Delta \mathrm{g}, \mathrm{Ag}),(88)$.
3.1 (101) R / R_{e}, VARDG2 (in mgal ${ }^{2}$) and IMAX.

When IMAX is equal to zero, input of the maximal degree, IMAXO of the degreevariances \& $(\Delta \mathrm{g}, \Delta \mathrm{g})$.
3.12 (103) The format of the degree-variances. These must be punched on one or more cards, sequentially from degree 2 to IMAXO.
3.13 (format as given on card 3.12). The quantities $\hat{\sigma}_{\ell}^{\mathrm{E}}(\Delta \mathrm{g}, \mathrm{Ag})$ in units of mgal ${ }^{2}$.

Category 4. Input of up to 9 datasets with significantly different characteristics. One dataset can, for example, be two separate datasets punched differently, but both being gravity anomalies on the surface of the Earth. Another dataset may consist of mean gravity anomalies, all with the same format. Before each separate dataset, there will be input of 2 or more cards specifying the characteristics of the dataset.

All the records in a dataset must, be punched in the same way. There are the following restrictions (or options): A station number may be punched. In this case it must be the first datafield on the card and maximally occupy seven positions. The next two datafields must contain the latitude and the longitude (in an arbitrary sequence). When the height is given, it must be punched in the next datafield.

The following (up to four) datafields will have to contain the observed quantity (or quantities in case of pairs of deflectipn components) and its standard deviation. When the observation is a pair of deflections, they have to be punched in the same sequence as the latitude and the longitude are punched. In the last datafield the value of the logical LSTOP has to be punched, generally false (= blank), but true for the last record in the dataset.
4.0 (103) The format of the records (in brackets).
4.1 (202) INO= $=1$ when a station number is punched, 0 otherwise, $\mathrm{ILA}=$ the number of the datafield occupied by the latitude, $\mathrm{ILO}=$ the number of the datafield occupied by the longitude (ILA and ILO will be equal to 1,2 or 3), am integer IANG specifying the units used for the latitude and the longitude (1 for degrees, minutes, arc. sec., 2 for degrees and minutes, 3 for degrees and 4 for 400 -grades), $\mathrm{IH}=0$ when the height is zero and not punched and otherwise the number of the datafield in the record in which the height is punched (generally 3 or 4), $\operatorname{IOBS} 1=$ the datafield number of the first observation in the record, $\mathrm{IOBS} 2=$ the clatafield number of the second observation (zero when there is only one observations), the
value of an integer IKP, specifying the kind of observation: $\mathbf{1}$ for height anomalies, 2 for measured gravity or gravity anomalies (point or mean), 3 for pairs of deflections, 4 for the latitude component ξ and 5 for the longitude component η.

Then the ratio $R P$ (87) between the sphere on which the observations are situated and the mean Earth radius and finally 5 logical variables: \quad LPUNCH $=$ punch observations together with the difference between the observed quantity and a possible contribution from the potential coefficients and a contribution from Collocation I, LWLONG = longitude is measured positive towards west, LMEAN = the gravity is a mean value, LSA = the standard deviations are the same for all observations, LKM = true when the height is in units of kilometers and false when the height is in meters.

When the observation is a height anomaly it will have to be given in units of meters, and when it is a deflection component in arc seconds. But when the observation is a gravity anomaly or a measured gravity quantity, it is possible to specify tivo constants DM and DA, which when DA is first added and the sum multiplied with DM will bring the observed quantity into units of mgal.
4.11 (203) DM, DA and a logical variable LMEGR, which is true, when the observation is a measured gravity value.

When LSA is true, the records of observations will not contain a standard deviation of the observed quantity, and the standard deviation will then have to be input separately:
4.12 (212) the standard deviation of the observations. Then the observations are input record after record, not exceeding a total number of 1598.
4.2 (format given on card 4.0). Input as specified on card 4.1, last record with LSTOP equal to true.

When LSTOP is true, a logical variable with the same name (i.e. LSTOP) is input. It is true when the last dataset is the final dataset used in Collocation I or II. The final card will hence have the value true (T) punched in the first datafield. On this card, in this case, the values of two other logical variables can be punched.
4.3 (230) The value of LSTOP, and when LSTOP is true, the values of two logical variables, $\mathrm{LRESOL}=$ input the solutions to the normal equations (they must then have been produced in a previous run of the program) and LWRSOL $=$ punch the solutions to the normal equations.

When LSTOP is false, the input process will be repeated from card 4.0. When LSTOP is true and LRESOL is true, input of the solutions to the normal equations: First an identification card is read, then the solutions:
4.31 (361) Input of solutions, i.e. the cards produced in a previous run of the program, where the logical variable LWRSOL was true.

When the set of observations is the first one (the variable LC1 is false), input of a logical variable LCREF, else jump to 5.0.
4.4 (230) LCREF = a new set of observations, which will be used in collocation II, will have to be input,

For LCREF = true, jump back to 3.1.

Category 5. Data specifying quantities to be predicted. This specification will naturally have to be done in much the same way, as when the observations were specified. We need coordinates and some variables, which specifies tile type of quantity to be predicted. There are then two possibilities, which are distinguished by the true and false value of the variable LGRID.

When LGRID is false, we will proceed in exactly the same way as above, dealing with data of Category 4. The quantities to be predicted will be specified by a list of coordinates and 2 or more cards specifying format and type of quantity to be predicted.

The list of coordinates may in fact be a list of observed quantities, which we want to compare with the quantities to be predicted. If this is the case, a logical variable LCOMP has to be true.

When LGRID is true, the predictions will have to take place in points which form a grid. The south-west corner of the grid will have to be specified together with the distance between the mesh points in northern and eastern direction and the number of mesh points having the same longitude and the same latitude.
5.0 (200) Input of the logical values of LGRID, LERNO = estimate of error of prediction is wanted and $\mathrm{LCOMP}=$ compare predicted and observed quantities.

First time LCOMP is true, two constants used to specify the sampling width for a frequency distribution of the difference between observed and predicted gravity
anomalies (VG) and deflections (VF) must be input (e.g. equal to 2.0 mgal and 0.5 arc. sec.). (The differences are sampled in 21 groups.)
5.01 (203) VG and VF.

When LGRID is true:
5.02 (201) Coordinates (latitude and longitude in degrees and minutes) of the south-west corner of the grid, the increments in latitude and in longitude (minutes), the number of increments in northern and in eastern direction, the value of the IKP giving the type of quantity to be predicted (see 4.1), RP (see 4.1), LMAP = print the predicted quantities on the line printer with all values which are predicted in points with the same latitude on one line and all values predicted in points with the same longitude above each other, LPUNCH = punch coordinates, predicted quantity and when LERNO is true the estimated error, LMEAN = gravity to be predicted is a mean value.

When LGRID is true, jump to card 5.1.
Now, when LGRID is false, we may input lists of coordinates just as above:
5.030 as 4.0 (format of records)
5.031 as 4.1 , with the following changes; When LCOMP is true, LPUNCH will mean the same as in 4.1 and the error of prediction will be punched when LERNO is true. When LCOMP is false, the predicted quantity as given in the new and in the old reference system will be punched together with the error of prediction, when LERNO is true. The logical variable LSA has no function in this phase of the computations.

When no observed quantity is contained in the record, both IOBS1 and IOBS2 will have to be put equal to zero. Thus, in this case the record will have to contain the height. (The program requires the presence of at least one datafield between the datafields occupied by the latitude and the longitude and the datafield occupied by the logical variable LSTOP).

When IKP $=2$ (we are predicting gravity quantities):
5.032 as 4.11
5.033 input as specified by 5.030 .
5.1 The value of LSTOP, true when no more quantities are to be predicted.

When ISTOP is false, jump to 5.0.
An input example is printed in Appendix B.

7. Output and Output Options.

The output from the FORTRAN program has been designed with the purpose, that the determination of \widetilde{T} and subsequent predictions should be as well documented as possible. This means, that nearly everything, which is used as input also will be output.

There are a few exceptions:
(a) data of type (A) and (B) (cf. Section 6) are not printed,
(b) the potential coefficients are not printed,
(c) a measured gravity value is not printed, but the corresponding free-air anomaly is,
(d) more than two decimal digits of coordinates given in minutes or seconds and of observations are generally not reproduced.

With these exceptions all input of type (C) to (F) are printed with proper headings on the line printer.

We will now distinguish between non-optional and optional output. The output can be made on two units, unit 6 the line printer and unit 7 the card punch. Nonoptional output is output on the line printer exclusively.

Non-optional output:
-A program identification is printed giving date of program version.
-The used mean Earth radius and the reference gravity used on the sphere in equations (20)-(22)is printed.
-The equatorial gravity and the potential of the reference ellipsoid as computed from the constants specifying the reference systems.
-The residual observations $d_{1-1} x_{1}$, and if meaningful: the contribution from the datum transformation, from the potential coefficients, the first dataset (Collocation I) and the second dataset (Collocation II) and the sum of these contributions, -The predicted quantity and if meaningful: the contributions from the datum transformation, the potential coefficients, Collocation I and II.
-The solutions to the normal equations,
-The estimated variance of the residual observed and predicted quantities, and
-Error messages in case e.g. certain array limits are exceeded.

Optional output on the line-printer:
-A legend of the labels of observations and predictions, (LLEG=true),
-The difference between observed and predicted quantities (LCOMP= true),
-The estimated error of prediction (LERNO = true),
-A primitive "map" of the predictions (LGRID= true and LMAP = true). (The predicted quantities multiplied by 100 will be printed with the values predicted in points with the same latitude on one line and the values predicted in points with the same longitude above each other, see the "map", Appendix C, page 125.) -Mean value and variance of difference between observed and predicted quantities and table of distribution of the differences samples according to specified sample width (LCOMP is true).

Optional output on the card punch:
-The solutions to the normal equations b_{1} and b_{2} (LWRSOL= true) -the observed quantities and the residual observations (LPUNCH= true), -the predicted quantities, the estimated error (LERNO= true), the difference between observed and predicted quantities (LCOMP = true), and when LCOMP is false, the predicted quantity in the original and the new reference system.

The solutions to the normal equation can be used as input to the program, cf. Section 6, input specification No. 4.31.

An example of the output on the line printer is given in Appendix C.

8. Recommendations and Conclusions.

A development of a computer program as the one presented here is a task, which can be continued for years. But at some point it is necessary to stop and present a fully documented program version, even if it is obvious that improvements can be made.

Most of the recent ideas and investigations in the field of least squares collocation are used in the program. Hence, the program may principally be used for
-the determination of an approximation to the anomalous potential, $\widetilde{\mathrm{T}}$ and
-prediction and filtering of gravity anomalies, deflections and height anomalies.

The determination of \widetilde{T} may be improved in several ways. The program should be changed so that other types of data as e.g. density anomalies, satellite orbit perturbations, and gravity gradients can be used as observations and predictions. The program should also be able to predict potential coefficients. The covariance models, which can be used in the program are all isotropic. The use of a non-isotropic covariance model may improve the determination of \widetilde{T}.

In Section 3.2 it was pointed out, that the data had to be given in a geocentric refe ence system. Thus, the necessary translation parameters may be estimated by including these quantities as parameters X, cf. eq. (7) and (9), Tscherning (1973) and Moritz (1972, Section 6).

It is also possible to add new data to an original set of observations, without having to compute and invert the full covariance matrix. This type of computation is denoted sequential collocation cf. Moritz (1973). This feature may very easily be incorporated in the program, especially because of the flexible design of the subroutine NES (cf. Section 5.2 and the comments given to the subroutine in Appendix A).

The determination of potential coefficients and datum shift parameters may also be incorporated without difficulties. But the other proposed improvements can not be made before the theoretical background and the necessary algorithms have been developed.

References

Grafarend, Erik: Geodetic Frediction Concepts, Lecture Notes, International Summer School in the Mountains, Ramsau, 1973 (in Press).

Heiskanen, W. A. and H. Moritz, Physical Geodesy, W. H. Freeman, San Francisco, 1967.
(IBM): IBM OS FORTRAN IV (H Extended) Compiler, Programmer's Guide, SC 28-6852-1, 1972.
(IBM): IBM System/360 and System/370 FORTRAN IV Language, GC28-6515-9, 1973.

James, R. W.: Transformation of Spherical Harmonics Under Change of Reference Frame, Geophys. J.R. astr. Soc. (1969) 17, 305-316.

Karki, P.: A FORTRAN IV program for the Inversion of a Large Symmetric Matrix by Block Partitioning, Department of Geodetic Science, OSU, Report No. 205, 1973.

Krarup, T. : A contribution to the Mathematical Foundation of Physical Geodesy, Danish Geodetic Institute, Meddelelse No. 44, 1969.

Lauritzen, S. L.: The Probabilistic Background of some Statistical Methods in Physical Geodesy, Danish Geodetic Institute, Meddelelse No. 48, 1973.

Meissl, P.: A Study of Covariance Functions Related to the Earth's Disturbing Potential, Dep. of Geodetic Science, OSU, Report No. 151, 1971.

Moritz, H. : Advanced Least-Squares Methods, Dep. of Geodetic Science, OSU, Report No. 175, 1972.

Moritz, H. : Stepwise and Sequential Collocation, Dep. of Geodetic Science, OSU, Report No. 203, 1973.

Parzen, E.: Statistical Inference on Time Series by Hilbert Space Methods, I, Tech. Rep. No. 23, Stanford. Published in Time Series Analysis Papers, Holden Day, San Francisco, 1967.

Poder, K. and C. C. Tscherning: Cholesky's Method on a Computer, The Danish Geodetic Institute, Internal Report No. 8, 1973.

Rapp, R. H. : Numerical Results from the Combination of Gravimetric and Satellite Data Using the Principles of Least Squares Collocation, Dep. of Geodetic Science, OSU, Report No. 200, 1973.

Tscherning, C. C. and R. H. Rapp: Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical implied by Anomaly Degree Variance Models, Department of Geodetic Science, OSU, Report No. 208, 1974.

Tscherning, C. C.: An Algol Program for Prediction of Height Anomalies, Gravity Anomalies and Deflections of the Vertical, The Danish Geodetic Institute, Internal Report No. 2, 1972.

Tscherning, C. C.: Determination of a Local Approximation to the Anomalous Potential of the Earth using "Exact" Astro-Gravimetric Collocation, Lecture Notes, International Summer School in the Mountains, Ramsau, 1973 (in Press).

Appendix

A. The FORTRAN IV program.
B. An input example.
C. An output example.

Appendix A.
The FORTRAN IV program.
The program is written in the language FORTRAN IV, cf. B M (1973). It may be run on an $\mathbb{B M}$ model. 370 computer equipped with an B M model 3330 disk unit. The program may be compiled and executed using the catalogued procedure FORTXCLG, cf. IBM (1972, p. 89) using the following job control language statements:

```
// EXEC FORTXCLG, PARM. FORT='OPT(2)',
// TIME. FORT=(,30), REGION}=252\textrm{K
//FORT. SYSIN DD*
```

program statements
-
//GO. FT 08F001 DD DSN=DASET, UNIT=SYSDA,
// $\operatorname{SPACE}=(12800,920), \mathrm{DISP}=(, \mathrm{DELETE}), \mathrm{DCB}=(\mathrm{DSORG}=\mathrm{DA}, \mathrm{BUFNO}=1)$
//GO. SYSIN DD *
-
-
input data
/
//

C
C PROGRAM GEODETIC COLLOCATJUN, VERSION 20 APR, 1974, FORTRAN IV, IIFM C 360/70). PROGRAMNED BY C.C.TSCHERNING, DANISH GEODETIC INSTITUTE/ DEP. GEODETIC SCIENCE OSU.
THE PROGRAM COMPUTES AN APPROXIMATION TO THE ANOMALOUS POTEVTIAL OF THE EARTH USING STEPWISE LEAST SQUARES COLLOCATION. THE METHDO REOUIRES THE SPFCIFICAYION OF (I) ONE Oh TWO (AND IN A SPFCIAL CASE THREE) SETS OF OESERVED QUANTITIES WITH KNOWN STANDARD DEVIATIONS AQD (2) ONE OR TWO COVARIANCE FUNCTIONS.
THE COVARIANCE FUNCTIONS USFD ARE ISOTROPIC. THEY ARE SPECIFIED BY A SET OF EMPIRICAL ANOMALY DEGREE-VARIANCES OF PEGRFF LE S THAN AN INTEGER VARIAELE IMAX, ANO EY A ANOMALY DEGRFE-VARIANCE MODFL FOR THE DEGREE-VARIANCES OF DEGREF GREATHER THAN IMAX.
THE OESERVATIONS MAY EF POTENTIAL COEFFICIENTS, MEAN OR POINT GRAVITY ANOMALIES, HEIGHT ANOMALIES AND DEFLECTIONS OF TUE VERTICAL. A FILtering of the observations takes place simultaveously with thf determination of tre anomalous potential.
THE DETERMINATION IS MAOE IN A MUMBER OF STEPS EOUAL TO THE NUMBER OF SETS CF ORSERVATIONS. WHEN POTENTI AL COFFFICIENTS AFE USED, WILL THEESE FORM A SEPERATE SFT AND THE TOTAL NLMBER OF SETS MAY IN THIS CASE AMOUNT TO THREE.
EACH DATASET (EACH STEP) WILL DETERMIUE A HAOMONIC FUNCTIOM, AND THE anomalous potential will ge equal to the sum of theese gmaximally THREES FUNCTIONS.
POTENTIAL COEFFICIENTS WILL DETERMINF A FUNCTION EQUAL TO THE COFFFICIENTS MULTIPLIED BY THE COFRFSPONDING SOLID SPHERICAL FARMOVICS. THE UP TO TWO SETS OF DATA OIFFFRENT FRPM POTENTIAL COEFFICIENTS WILL FACH RE USED TO DETERMINE CONSTANTS E(II. THE COPRESPONOING HARMONIC FUNCTIONS ARE THEN FQUAL TO THEESE CONSTANTS MULTIPLIFO BY TYE COVARIANCE EETWEEN THE CBSERVATIONS AND THE VAlUE OF THE ANOMALOUS POTENTIAL IN A POINT, P.
THF MAIN FUNCTION OF THF PROGRAM IS: BESIDES THE COMPUTATION OF THE CONSTANTS E(I S,THE PREDICTION GF THE QUANTITIES ZFTA, OELTA GQ KSI AND ETA IV POINTS Q. THE PREDICTED VALUE IS EQUAL TO THE PROOUCT SUM OF E(I) ANO TEE COVARIANCE EETWEFN OBSERVATION NO. I AND THE QUANTITY TO RF PRFDICTED.

REF(A): TSCHERNING,C.C. AND R.H.RAPP: CLOSED COVARIANCE FXPRESSIONS FOR GRAVITY ANOMALIES, GEOID UNDULATICNS, AND DEFLECTIONS OF THE VERTICAL IMPLIED EY ANOMALY DEGREE-VARIAVCE MODELS. DEPARTMENT OF GFODETIC SCIENCF, THE OHIO STATE UNIVERSITY, REPORT NO. 208; 1974 .
REF(B): TSCHERNING,C.C.: A FORTRAN IV PROGRAM FOR THE DETERMINATION OF TUE ANOMALOUS POTENTI AL USING STEPWISE LEAST SQUARES COLLOCATION, DEPARTMENT OF GEODETIC SCIENCF. THE OHIO STATE UNIVERSITY, REPORT NO. 212. 1974.
REF(C): HFISKANEN W.A. AND H.MORITZ: PHYSICAL GEOCESY, 1067.
REF (D): JAMES, R.W.: GEOFHYS.J.R.ASTR.SOC., (1960) 17, 305.
IMPLICIT INTEGEP(I,J,K,M,N), LOGICAL(L),REAL*8(A-H, O-Z)

```
C
    COMMON/PR/SIGMA(250),SIGMAO(250), B(1600),P(42),
    *SINLAT(1600),COSLAT(1G00),RLAT(1GOO), RLONG(1GOO),COSLAP,SIVLAP,
    #RLATP,PLONGP, DP, PRETAP,DREDP, PW, LONFCO, LNKSID,LNETAD,LDFFVD,LNOFP,
    *LGKP,LNGR,LKEQ1,LKEQ3,LKNE1,IV1,NI,NR,KTYPE,INDFX(4?)
    C IN/PR/ AKF STORED: DEGREE-VARIANCES (SIGIAA,SIGMAO), THE CONSTAVTS
    C E(I), TWO CATALOGES OF OBSERVATIONS (P ANO I NDEX), LATITUDF AND COS,
    C SIN HEREOF ANO LONGITUOE OF THE OBSERVATIOY POIVT (SINLAT,COSLAT,DLAT,
    C RLONGI, CORRESPONLING QUANTITIES FOR POINT OF PRENICTION (DI, RATIORP
    C PETWEFN RADIUS OF SPHERE GN WHICH P IS SITUATED PND PB, TWO VARIARLES
    C IN WHICH FREDICTIONS ARF ACCUMULATED (PRF[IP, PRETAP), A QUANTITY RELA-
    C TED TO TUE VARIANCE OF THE OPSERVATIONS OR PREDICTIONS (PW), LOGICAL
    C VARIAELES USED TO DISTIVGUISH BETWEEN DIFFERENT PPEDICTION SITUATIONS
    C ANO COVARIANCE MODELS.
        COMMON /CRW/WOES(16OO)
    C IN /CPW/ ARE STORED THE APRIORI STANDARD DEVIATIONS AS LONG AS THEY
    C APE NEEDED. THE STORAGE LOCATIONS ARE LATER USFD FOR OTHER PURPOSFS.
        CCMMON /EUCL/X,Y,Z,XY,XYZ,DISTO,OIST2
    C IN //EUCLID/ APE STORED: THE EUCLIDIAN COOROINATES MF A POINT, TUE
    C OISTANCE ANO THF SQUARE OF THE DISTANCE FROM THE Z-AXIS XY, XY3 ANO
    C THE DISTANCE AND THE SGUARE OF THE GISTANCF FROM THF ORIGIN DISTO AND
    C DIST?.
        COMMON /NESOL/C(4700),NCAT(100),ISZE(100),NEL(310),MAXBL,IO
    C IN /NESOL/ ARE STORED: THE ARRAY C USED TO TRANSFER TUE CREFFICIENTS
    C OF THE NORMAL EQUATIONS AND THE SOLUTIONS TO AND FOOM OISK-STOOAGE,
    C NCAT, ISZE AND NBL HOLDS INFORMATION ABOUT THE STORAGE SEOUENCE OF THE
    C COLUMNS: MAXEL IS THE NUMBER OF ELOCKS OF SIZF C+NCAT+ISZE USFD ON THF
    C DISK* IQ POINTS ON THE TRACK ON THE DISK AREA IN WHICH DATA IS TO EE
    C STOPED OR RETRIVEG.
        COMMON/OUTC/K2,K3,K4,IU,K21,IU1,IANG,LPUNCH,LOUTC,LNTRAN, LNEDNO
        *,LK30
        COMMON /CHEAD/IA,IB,IH,IP,IT,IA1,IGI,IPI,ITI,ICI,ICI1,KI,IGBSI,
        *1OBS2,LPCT,LCI,LC2,LCREF,LKM
    C IN/OUTC/ ANO /CHEAE/ ARE STORED INFORMATION USED TO HAYDLE THE DIF-
    C FERENT I/O SITUATIONS.
        CORMON/DBSER/OBS(20)
        COMMON /DCON/DO,01,02,03
        COMMON /SCK/IK,IKO,IKI,IKZ,IKA
    C
        DIMENSION IMAP(400),FMT(9),WP(5),C1(1600),C2(1600),C3(1500)
        *,COFF(630)
        EQUIVALENCE (C(1),C1(1)),(C(1601),C211)),(C(3201),C3(1))
C
        DATA RE,GM/6371.003,3.98019/,LNEQ,LT
        *,LDEFF,LF,LGRIO,LFRNO,LCTMP, LCOM.LWLONG,LPREQ/2*.TRUE.,8*.FALSE.
        */,NO,NAI,NLA,IC,IS,ISO,II,JR/6*O,2*2/
C
C THE DIRECT-ACFSS FILE DEFINED HERE IS USED FOR THE STORAGE OF THE
C COEFFICIENTS OF THE NORMAL EQUATIONS. IT CAN HAVE UP TO 310 RECORDS
C OF NT*3200 4-PYTE WORDS EACH. THE LIMIT IS ONLY DETERMINFD BY THE DI-
```

```
C MENSION OF THE ARKAY NRL IIN THE COMMON BLOCK/NESNL/I.
            DEFINE FILF 8(920,3200,U,IQ)
C
    INITIALIZATION OF VARIARLES, WHICH ARE IN COMMON BLOCKS.
        DO = 0.000
        D1 = 1.00n
        D2 =2.000
        D3 = 3.000
        P(1)=00
        P(21)=00
        COSLAT(1600)= O1
        SINLAT(1600)=00
        RLAT(1600) = DO
        RLONG(1600)=00
        CLA = PO
        WP(1)= RE**3/GM
        W=RE**2/GM*206264.80600
        WP(2)= D 1
        WP(3) =W
        WP(4)=W
        WP(5) = W
        BT=0
        lP=0
        LNERNO = LT
        LCPEF = LF
        LC1 = LF
        LC2 = LF
        INDEX(1) = 0
        OO 1200 I = 1, 250
    1700 SIGMAO(I)= DO
C
C HEADINGS AND DEFINING CONSTANTS.
    WRITE(6,104)
    104 FORMAT\'1GEODETIC COLLOCATION,VERSION 20 APR 1974.%//1
        WRITE(6.113)
    113 FORMATI ONOTF THAT THE FUNCTIDNALS ARE IN SPHERICAL APPROXIMATION'
        */ MEAN RADIUS = RE = 6371 KM AND MEAN GRAVITY 981 KGAL USED.')
C
C INPUT OF 5 LOGICAL VARIABLES, LTRAN = COORDINATFS ARE TO SE TRANS-
C FORMED TO NEW RFFERENCE SYSTEM. LPOT = POTEYTIAL COEFFICIENTS ARF TO
C BE USED AS FIRST SET OF OBSERVATIONS, LONEQ = OUTPUT COEFFICIENTS OF
C NERMAL EQUATIGNS ON UNIT G, LLEGN = OUTPUT LEGENO OF TAELES OF ORSFR-
C VATIOYS OR PREDICTIONS AND LE = TAKE ERRORS OF OESERVATIONS INTO AC-
C COUNT.
        READ(5,105)LTRAN,LPOT,LONEQ,LLEG,LE
    B05 FORMAT(5L?)
        LNTRAN = .NOT.LTRAN
        LNPOT = .NOT.LPOT
        IF (.NOT.LE) WRITE(6.118)
    118 FORMATI" FFRORS IN GESERVATIONS ARE NOT TAKFN INTO ACCOUNT.'I
```

```
C
    IF (LLEF) WRITE(6,114)
    114 FORMAT(OOLEGEND OF TABLES OF OESERVATIONS AND PREDICTIONS:',Ig
        *' OES = ORSERVED VALUE (WHEN BOTH COMPONENTS OF OEFLECTIONS ARF:/:
    * OBSERVEG ETA EELOW KSII: DIF =THE DIFFERFNICF BETWEFN OSSERVFO'/,
    * AND PREPICTFD VALUE. WHEN PREDICTIONS ARE: CONDUTFD ANO FLSE'/.
    *: THF RESIOUAL OBSEPVATION, ERP = ESTIMATED ERROR OF PREDICTICV*/,
    *' TRA = CONTFIEUTION FROM DATUM TRANSFORMATION, POT = CONTRI-'/,
    *: BUTION FROM POTENTIAL COEFFICIENTS. COLL = CONTRIEUTION RROIA/,
    *' COLLOCATIOV DETERMINEC PART OF FSTIMATE, WHEN THERE ONLY HAS*/,
    *: PEFY USED ONE SET OF GBSERVATIONS (DIFFERENT FROM POT.COEFF.I'/,
    *: COLLI = CONTRIFUTION FROM ESTIMATF OF ANOMALDUS POT. DETER-'/,
    * MINEO FSOM FIRST SET OF OBSEPVATIONS, COLLZ = CONTRIBUTION'/,
    *! FROM ESTIMATE IIRTAINED FROM SECOVD SET OF OESFRVATIOVS, PRED='/,
    *' PREDICTFD VALUE IN NEW REFFRENCE SYSTEM, WHEN PRFDICTIONS APE'/*
    * COMPUTEG ANO FLSE THE SUM OF THF CONTRIBUTIONS FROM THF DOT.:/,
    *: COEFFICIENTS ANO FIRST ESTIMATE OF ANOMALOUS POTENTIAL. ANO:/%
    *' PRED-TRA = PREDICTIPN PR SUM OF CONTRIEUTIONS IN THF OLE RE-'/.
    *' FERENCE SYSTEM.')
C.
C. INPUT OF MATA OF REFERFYCF SYSTEM.
    WRITE (6,106)
    106 FORMAT('OREFERENCE SYSTEM:')
C INPUT OF TFXT DESCRIRING REFERENCE SYSTEM (MAX.72 CHARACTERS).
    READ(5,103)FMT
    WRITE (G,FMT)
C INPUT OF SFMI-MAJOR AXIS (METERS), I/FLATTENING. VALUE OF TWO LOGICAL
C VARIASLES, LPCITSD = GRAVITY IN DOTSDAM SYSTFM AND LGRS67 = GPAVITY RE-
C FER TO GRS 1967.
    READ(5,120)AX1,FO,LPOTSD,LGRSE7
    120 FORMAT(F10.1,F10.5,2L2)
    F1= OI/FO
    E21=F1*(N2-F1)
    IF (LPOTSD.OR.LGRSG7) GO TO 1021
C. INPUT OF GM OF PEFERENCF-SYSTFM OF ORSERVATIONS.
    READ(5,121)GMI
    121 FORMAT(D15.8)
1021 IF(.NOT.LGRSG7) CALL CRAVC(AX1,F1,GMI,O,LFOTSD,UREFO,GRFF)
    IF (LGRS67) CALL GRAVC(6378160.000,01/298.2471700.3.08603014.0.
    *LF,URFFO,GREF)
    WRITE(6,122)AX1,FO,GREF,UREFO
122 FORMAT(OA = ,F1O.1,' MO/,
    *: 1/F = ',F10.5/p
    *: REF.GRAV1TY AT EQUATOR =',F12.2.' MGAL'/,
    *1 POTFNTIAL AT REF.FLL. =0,F12.2.' M**2/SEC**2'/,
    *! GRAVITY FORMULA:')
        IF (LPCTSO) WRITE(6.123)
        IF (.NOT.(LPOTSF.OF.LGRS67))WRITE(6,124)GM1
    123 FORMAT( INTERNATIONAL GRAVITY FORMULA, POTSOAM SYSTEM.'I
    124 FORMAT/: COEFFICIENTS COMPUTED. USING GM =',015.8/1
```

IF (LSRS67)WFITF(6.125)
125 FORMAT("GRS 1967 USED. $)$
C
LNTP $=$ LNPOT ANO. LNTRAN
IF (LNTP) GO TO 1030
IF (LNTRAN) GO 101097
C
C INPUT OF TRAVSFORMATION ELEMENTS: NEW SEMI-MAJOR AXIS (AX2, MFTERC),
C NEW GM (GM2, METERS**3/SEC**21, I/FLATTENING, THE COORDINATES AF THE
C CENTER OF THE REFERENCF ELLIPSOID (THE TRAISLATION VECTOR) (DY,DY, OZ)
C IN METERS, YHE CHANGE DL IN SCALE, AND THF ROTATION ANGLES EPSI, EPSZ.
C EPS 3 AROUND THE X,Y Z AXFS IN ARCSEC. THEN THE VALUF OF A LOGICAL
C VARIABLE LCMANG, WUICU IS TPUE, WUEN WUEN TUE DEFLECTIONS AND THF
C HEIGHT ANOMALIES (BUT NTST THE CQORUINATES) HAVE TO BE CHANGED. THIS
C CHANGE MUST EE GIVEN AS A CHANGE IV THE DEFLECTIONS AND THE HEIGHT
C ANOMALY IN A POINT WITH COORDINATES (LATO, LONGO).
C THE COOROINATES MUST RF INPUT IN DFGRFES, MINUTES ANO SFCONOS FOL-
C LOWED EY THE TRANSFGRMATION ELEMENTS IN KSI. ETA AND ZETA IOKSIOg
C DETAO, UZETAOI IN ARCSEC ANO METERS.
C
READ (5,131)AX2,GM2,F2,OL,OX, 1 Y, O2,EPS1,EPS2, EPS3,LCHANG
131 FORMAT(F10.1.015.7.F10.5,010.2/3F7.1,3F6.2.L2)
WRITE (6,122)AX2,GM2,F2,OL, OX, DY, DZ, EPS1,FPS2, EPS 3
132 FORMAT(IO NEW A NEW GM NEW 1/F'/,
*F10.1.015.7.F10.5.1/

* $D L$ DX $D Y$ DZ 1., D10.2.3F7.1.1/,
* 1 EPS1 EPS2 FPS3'./.3F6.21
$F_{2}=\mathrm{D} 1 / \mathrm{F} 2$
$E 22=F 2 *(02-F 2)$
CALL GRAVC(AX2,F2,GM2,15, LF, UREFO,GREF)
WRITE (6, 135)GREF, UREFO
135 FORMAT: 'O NEN REF. GRAVITY AT EQUATOR=',F12.2." MGAL', $/$
* NEW POTENTIAL AT ELLIPSOIO = 'F12.2, M M**2/SEC**2*/)

IF (.NOT.LCHANG) GU TO 1022
C
READ(5,133)IOLAT,MLAT, SLAT,IDLON, MLON,SLON,DKSIO, DETAO, IZETAO
133 FORMAT(213,F6.2,213,FG.2, ЕF6.2)
WRITE (6, 134)IOLAT,MLAT, SLAT, IOLON,MLON, SLON,DKSIO, OETAO,DZFTAO
134 FORMATI'ONEFLECTIONS AND HEIGHT ANOMALIES CHANGED INP;/,
** LATITUEE LONGITUDE BY DKSI DETA DZETA'.\%
*2I3,F6.2.2I3,F6.2,3F7.21
CALL RAD (IDLAT, MLAT, SLAT,RLATO,1)
CALL RAO(IDLON,MLON, SLON,RLONGO,1)
1022 CALL ITRAN(DX,DY,D2,EPS1,EPS2,EPS3,DL,AX2,E22,RLATO,RLONGO,
*DKSIO, DETAO,DZETAO, LCHANG)
GO TO 1008
C
$1097 \mathrm{E} 22=\mathrm{E} 21$
$A \times 2=A \times 1$
1008 IF (LNPOT) GO TO 1030

```
C
C INPUT OF TFXT DESCRIBING SDURCE OF THE POTENTIAL COEFFICIENTS IMAX. 73
C CHARACTERS).
    READ(5,103)FMT
    WRITE(6,130)
    130 FORMAT('OSOURCE OF THF POTFNTIAL COEFFICIENTS USED:')
    WRITE(h,FMT)
C
C INPUT OF GM (METERS**3/SEC**2), A (METERS), THE NORMALIZED CNEFFICIENT
C OF DEGREE TWO AND OPCEP ZERO (THF SECOND DEGRFE ZONAL HARMONIC) MUL-
C tIPlIED gY l.ODG, the mAXIMAL degree of the coefficievts, a logical
C variable, tpUE when the COEFFICIEYTS are puncheo With a fixfd vumeer
C ON EACH CARD AND FALSE, WHEN THF COEFFICIENTS OF THE ZOMAL HARMMNICS
C ARE PUNCHED SEPERATLY ON ONE CARP AND TYE OTHFR COEFFICIENTS WITH THE
C COEFFICIEMTS OF THF SAMF OROER ANO DEGREF ONE ONE CAFO. IN POTH CASES
C MUST TUE COEFFICIENTS EF PUNCGED दCCOPDING TO INCREASING DEGREF AND
C ORDER. ALL COEFFICIEYTS MUST EE NOFMALIZED AND MULTIPLIED BY 1.ODG.
            READ(5,137)GMP,AX,COFF(5),NMAX,LFM
        137 FORMAT(O15.8,F11.1,F10.4,14,Lz)
            WRITE(6,1E8)GMP,AX,COFF(5),NMAX
        138 FGRMAT(:O GM A CC'FF(5) MAX.OEGREE',/
            *015.8,F11.1,F10.4,141
                IF (NMAX.LT.24) GO TO 1009
            URITE (6,140)
    140 FORMAT(' YMAX TOO EIG.')
        GO TO 9990
C
    1009 NZ = (NMAX+1)**2
C INPUT OF FORMIAT OF COEFF.
    READ(5,102IFMT
            IF (LFM) CO TO 1225
            READ(5,FMT)(COFF(I), 1=6,9)
            JM = 9
            DO 1224 J = 3, NMAX
            JN = JM+1
            JM = JN+2*J
            READ(5,FMT)COFF(JN)
            JN = JN+1
    1224 READ(5,FMT)(COFF(I), I = JN, JM)
            GO TO 1226
    1225 READ(5,FMT)(COFF(I), I = 6, N2)
    1226 DO 1034 1 = 1, 4
    COFF(I+N2) = DO
    1034 COFF(1) = GO
C
    CALL IGPOT(GMP,AX,COFF,N2+4,NMAX)
    IF (.NOT.LTRAN) CALL GRAVC(AX,F1,GMP,15,LF,UREFO,GRFF)
C
C COLLOCATION SECTION: INITIALIZATION OF VARIABLES.
```

```
    1050 N = O
        WKITE(t.109)
    IOG FORMAT('OSTART OF CRLLOCATICN I:')
C INPUT CIF THF INTEGEP KTYPE DETERMINING TYPE OF DEGREE- VARIANCE MCDFL
C USED FOR DFGRFE-VARIANCES OF CEGREE GREATHER THAY IMAX (SEF BELOW).
C KTYPE MAY EE EQUAL TO 1, 2 AND 3 CORRESPONDING TO THE DEGREE-VARIANCF
C MCDELS 1, ? AND 3, CF. RFF(B), SECTION 2.2.
    READ(5.10Z)KTYPE
    LKEQ1 = KTYPE.FQ.1
    LKEQ3 = KTYPE.EQ.3
    LKNEI = NOT.LKEOI
    IF (KTYPE.LT.3) GO TO 1036
    READ(5.107)IK
    107 FORHAT(I4.)
    IF (KTYPE.LE.O GOR. KTYPE.GE.4) GO TO 9099
C INITIALIZATION OF VARIAGLES IN COMMON BLOCK /SCK/.
        IKO = IK-1
        IKI =IK+I
        IK2 = IK+2
        TKA = IK2*1K1
C
    1036 WPITE(6,141)
        141 FORMAT("OTHE MODEL ANOMALY DEGREE-VARIANCES ARE EQUAL TO*/*
            * A*(I-1)/1)
                GOTO (1037,1038,1039),KTYPE
    1037 WRITE (6,142)
        142 FORMAT('*',9X,'1.')
            GO TO 10OO
    1038 WKITE (t, 14.3)
        143 FORMAT('+0,9X,'(1-2).')
        GO TO 1000
    1039 WRITE(6,144)IK
        144 FORMAT(*+1,9X,'((I-2)*(I+',14,')).'1
C
    1000 CNR = On
        DO1035 I = 1. 25n
    1035 SIGMA(I)=00
        SSUES = DO
        SUMSIG = DO
        SUMRST = DO
        IVI = -1
        MAXC1 = 1
C
C INPUT OF CONSTANTS USED FOR THE FINAL SDECIFICATION OF THE DEGREE-VAR-
C IANCE MODFL. R = RATIO EETWEEN THE BJERHAMMAR SPHERE RADIUS ANO THE
C MEAN FARTH RAOIUS, VARDG2 = VARIANCE OF TKE GRAVITY ANOMALIES AND IMAX
C WHICH IS FOUAL TO THE ORDER OF TUE LCCAL COVARIANCE FUNCTION USFO.
C THUS IMAX=O lNOICATES. THAT WE ARE USING A GLOBAL COVARIANCE FUNCTION.
C IN THIS LAST CASE 4 SET OF EMPIRICAL ANOMALY DEGREE-VARIANCES OF ORDER
C UP TO IMAYO CAN DE INPUT, THEESE DEGREE-VARIANCES WILL HAVE TO BE
```

```
C GIVFN ON THE SURFACE OF THE MEAN EARTH, CF.REF(E),EQ.(P&).
    READ(5,101)R,VAROG2,INAX
    101 FORMAT(F9.6,F7.2.141
    IF (R.GT.D1 . OR. VARDG2.LT.DO.OR.IMAX.LT.O) GO TO @900
    LZERT = IMAX NE. O
    IMAXI = IMAX+I
    IF(LZERO)GO TO 1040
C INPUT OF THF FORMAT OF, THE HIGHEST DEGREF OF, AND THF EMPIRICAL ANO-
C KALY DEGREF-VARIANCES IN UYITS OF MGAL##2.
    102 FORMAT (| 29
    READ(5,102) IMAX0
    IMAX = IMAXO
    IMAX1 = IMAX+1
    READ(S, 1OE) FMT
    103 FORMAT(OAE)
    READ(5,FMT) (SIGMA(I),I=3, IMAX1)
C NOTE THAT THE dEGREF-VARIANCE OF OPDER I IS STORED IN SIGMA(I+I).
C
    DO 1001 I = 3. IMAX1
    1001 SUMSIG = SUMSIG + SIGMA(I)
    1040 | F (IMAXI+IS.LT.250) GO TO }100
    WRITE(6,108)
        108 FORMAT(' SUBSCRIPTS OF ARRAY SIGMA EXCEEDS AROAY LIMIT, STOP.'I
            GO TO 9990
C
    1002S = R%R
    S2 = S*S
    RL=(DI-N)*(Ol+R)
    S1 = RL
    RLNL= DLOG(RL)
    IF (IMAX.LT. 2) GO TO 1004
    RI = OFLOAT(IMAX)
    DO 1003 J = 3, IMAX
    GO TO (1101,1102,1103), KTYPE
    1101 RA = (RI-01)/RI
    GO TO 1105
    1102 RA = (RI-01)/(RI-n2)
    GO TO 1105
    1103 RA=(RI-[1)/((RI-O2)*(RI+IK))
    1105 SUMRST = (SUMRST +RA)*S
    1003 R| = RI- D 1
C
    SUMRST = SUMRST*S2
    1004 DIF = VARRG2-SUMSIG
    IF (DIF.LT.NO) GE TO G990
C COMPUTATION OF THE NORMALIZING CCNSTANT A, CF. REF.(B) FARA. 3030
    GO TO (1106,1107,1108), KTYPE
    1106 RA = RLVL+S/RL-S2/02
    GO TO 1110
    1107 RA = O1/RL-S2*RLNL-S2-S-DI
```

```
            GO TO 1110
    1108 CALL SUMK(S.S2,RL,S1,M1,KA,W,PW,LT,LT)
            RA = (-5 2*RLNL +IKI*RA)/IK2
    1110 A = DIF/(RA-SUMRST)
C
    IF IIMAX .LT. 3) GO TO ION6
    IF (LKEQL) SIGMAO(3+IS) = SIGMA(3)-A*S2/02
    SI=S2
    RY= D3
    R11=02
    OD 1005 I = 4, IMAXI
    SI=S!*S
    GO TO (1111.1112.1113).KTYPE
    1111 RA = DI/(RI*R11)
    GO TO 11115
    1112RA = 1/(FI1%(RI-02))
    CO 10 1115
    1113 RA = 1/(RI1*(RI-D2)*(RI+IK))
    1115SIGNAO(I+IS)=SIGNA(I)/(RII**2)-A*RA*SI
    RII = RI
    1005 RI = RI+OI
C THE DEG.VAR. OF THE COVARIANCE FUNCTION OF THE ANOMALCUS POTENTIAL
C ARE STOREO IN THE FIRST PART OF SIGMA (SUSSCRIPT I TO IMAXIR) FOR COL-
C LOCATION I AND IN THE LAST PART (SUBSCRIPT IS=IMAXIR+3 TO IS+IMAXI)
C FOR COLLOCATION 1I.
C
    1006 U0 = 02-01/DFLOAT(IMAX1+1)
C
    110 FORMAT('ORATIOQ/RE = ',F9.G./
    * VARIANCF OF POINT GRAVITY ANOMALIES = %F10.2.*MGAL**2%
    * THE FACTIR A = *F10.2, MGAL**2')
            AO}=A/(5*S
            WRITE(t,110)R,VAREG2,AO
    111 FORMAT(13,' EMPIRICAL ANOMALY DEGREE-VARIANCES FOR DEGREE > 1, %/,
            *' (IN UNITS OF MGAL`*2):')
C
    IF(LZFROIGO TO 1014
    WRITE(t,G11)IMAX
    WRITE(G,FMT) (SIGMA(1); 1 = 3; IMAX1)
    GO TO 1015
C
    1014 WRITF(6.112)IMAX
    112 FORMATI I4,' DEGREE-VARIANCES EQUAL TO ZERO')
C
C INPUT OF ORSFRVATICNS OR COOROINATES OF PREOICTION POINTS.
    1015 WR1TE(6.225)
    225 FORMATI'O OBSFRVATIONS:'/1
            IF(LNEG)GO TO 20OG
C
C INPUT OF LOGICALS DEFINING TYPE OF PREDICTION OUT-PUT. LGRID IS TRUE,
```

```
C WHEN PREDICTICNS SHALL RE MADF IN POINTS OF A UNIFORM GRID, LFRNO IS
C TRUE,WUFN THE ESTIMATED ERRPR OF FREDICTION SHALL PE CIAPUTED. LCOMP
C IS TRUE, WHEN OESERVEO AND FREDICTED VALUES SUALL BE COMPAIRED.
    2000 PEAD(5,200)LGRIO,LFFNO,LCOMP
        200 FOPMAT(3L?)
                            1F (.NOT.(LERNO.ANO.LKESOL)) GO TO }200
                    LERNO = LF
                    WRITE(6,226)
    226 FORMAT('*** ERROR WILL NOT BE COMPUTED, REQUIRED YFQ NOT STORED.
        #***!
    2002 LCOMP = LCOMP . AND.(.NOT.LGRID)
            IF (LCOM.OR.(.NOT.LCOMP)) GO TO 2005
            LCOM = LT
C INPUT OF SCALE FACTCRS, USED FOR TABLE OF DISTRIBUTION OF DIFFERFNCE,
C SEE SUSROUTINE COMPA.
            READ(5,203)VG,VF
            CALL COMPA(VG,VF)
C VG IN MGAL AND VF IN ARCSEC.
C
    2005 LNERNO = .NOT.LERNO
        LMAP = LF
        LMEGR = LF
        DM = D1
        DA = DO
        IF(.NDT.LGRIDIGE TO 2006
C
C INPUT OF COGNEHMAFES (LATITUDE,LQNGITUDE IN DEGREES ANO DEC OF MMNM-
C TESI OF SOUTH-WEST CORNER OF GRID, MAGYITUDE OF GYID INCREMENTS IN
C NORTHERN AND EASTERN DIRECTIOYS (NINUTES), NUMBER OF INCREMFNTS IN
C THE SAME DIDECTIONS. THE VALUE OF IKP: (l FOR ZETA, 2 FOR DELTA
C G; 3 FOR KSI, 4 FCR FTA AND 5 FOR (KSI,ETA)), RP = THE RATIO BETWFEN
C THE RADIUS OF THE SPHERE ON WHICH TYE POINTS OF PREDICTICN ARE SITUA-
C TED AND RE, TUE VALUE OF LMAP, WHICH IS TRUE, WHFN THE PREDICTIONS
C SHALL EE PRINTEO AS A PRIMITIVE MAP? THE VALUE OF LPUNCH, WHICH IS
C TRUE WHEY THE PREDICTIONS SHALL BE PUNCHED ANO THE VALUE OF LMFAN,
C TRUE WHEN THE PRERICTED QUANTITIES ARE MFAN VALUES (BECAUSE THIS IM-
C PLIES? THAT THEY ARE REPRESENTED AS POINT VALUFS IN A CFRTAIN HFIGHT).
            READ(5,201)IDLAC,SLAC,IOLOC,SLOC,GLA,GLO,NLA,NLO,IKP,RP,LMAP,
    *LPUNCH,LMEAN
201 FORMAT(?( I5,F6.2),2F7.2,214,12,F10.7,3L2)
    IF (NLA.GT.19.OR.NLO.GT.19.OR. IKP.EQ.5) LMAP = .FALSE.
    LWLONG = LF
    LGRP = IKP.EQ.2
    NAI=0
    NOI=0
    IOBS2 = 0
    IH=O
    H}=0
    IF (.NOT.LMFAN) H = (RP-Dl)*RE
    LKM = H.GE.1.OD4
```

```
            HO=H
            OBS(1)=K
            IF (LKM) OBSI1)= H*1.00-3
            LSTOP = LT
            IANC = 2
                            NO = 0
C
    2001 SLAT = NAT*CLA+SLAC
            SLON = NOI*GLO+SLOC
            ISLA = SLAT/60+0.10-2
            1SLO = SLON/60+0.10-2
            IOLAT = 1DLAC+ISLA
            IOLON = IDLOC+ISLO
            SLAT = SLAT-60*ISLA
            SLON = SLON-6O*ISLO
            NE = NO+1
            H=HO
            IF (NOI .EQ. NLO) GO TO 2003
            NO1 = NOI+1
            GO TO 2004
2003 NOI = 0
                            NAI=NAI+1
2004 IF(NAI.NE.O .CR. NOI .NE. 1)GO TO 2031
            GO TO 2007
C
C INPUT OF ONE PATA-SET DF OBSERVATIONS OR COORDINATES OF PREDICTION
C POINTS. ALL RECORDS MUST EE PUNCHED IN THE SAME WAY, THERE ARF THE
C FOLLOWING RESTRICTIONS ANO GPTIONS: A STATION NUMRFR MAY BE USFD, EUT
C IT MUST OCCUPY THE FIRST GATAFIELD ON THF RECORD. THE TWO NEXT DATA-
C FIELDS MUST CCNTAIN THE GEODETIC LATITUDE AND LONGITUDE ( IN AN AREI-
C TRARY ORDERI. IN CASE THE HEIGHT IS GIVEN, MUST IT BE PUNCHFD IN THE
C NEXT oATAFIELO. THE FOLLOHING UP TO FOUR DATPFIELDS WILL WAVE TO
C CONTAIN THE OGSERVED QUANTITY IGR QUANTITIES WHFN A PAIQ OF DEFLECTI-
C ONS ARE DESERVEDI AND CONTINGENTLY THE STANDARD DEVIATIONS (WHEN LE IS
C TRUE AND LSA IS FALSE), A LIST OF COOROINATES OF POINTS WILL HAVE TO
C CONTAIN A HEIGUT OR A FICTICICUS OBSERVATION. THF LAST DATAFIFLD HAVF
C TO HOLD THE VALUE OF A LOGICAL VARIABLE LSTOP, TRUE FOR THE LAST
C RECORD IN THE FILE AND FALSE (I.E. BLANK) OTHERWISE.
C
C INPUT OF THE FORMAT OF THE RECORDS HOLDING THE OBSEQVATION OR THE CO-
C ORDINATES GF THE PREOICTION POLNT.
2006 READ(5,103)FKT
C IYPUT OF VARIABLES SPECIFYIYG THE CONTENT OF THF RECORDS. INO = 1,
C WHEN THE STATION NUMGER IS PUNCHED, O DTHERWISE, ILA, ILD THE NUMEEQ
C OF THE DATAFIELDS OCCUPIEO FY THE LATITUDE ANC! THE LONGITUDE RESOFC-
C TIVELY, IANG SPECIFYING UNITS OF ANGLES (1 FOR DEGREES, MINUTES* ARC,-
C SECONDS,? FOR OEGREES, MINIITES, 3 FOR GEGREES AND 4 FOR 4OO-GRADESI,
C IU= THE NUMBER OF TUE DATAFIELD LOLDING TUE MEIGHT (ZERO WHEN NO
C HEIGHT IS CONTAINEDI, IOBS1, IOES2 = THF DATAFIELD NUMBER OF THE FIRST
C AND THF SECONO OBSERVATION, RESPFCTHVELY IZERO WHEY NO FIRST OR SFCOND
```

```
C OBSERVATION), IKP, SPECIFYIYG THE KIND OF MBSEPVATION, (1 FOR ZETA, 2
C FOR MEASUREG GRAVITY* POINT OR MEAN GRAVITY ANOMALIES, 3 FOR KSI, 4
C FGR ETA ANO 5 fOR PAIR OF DFFLECTIONS (KSI,ETA) OR (ETA,KSI),(IN THE
C SAME ORDER AS THE LATITUDE AND THE LONGITUDE)).
C TUEN TUE PATIO RP (CF.REF(B), EQ.(87)) EETWEEN THE SPHERE ON WHICH THE
C OBSERVATIONS ARE SITUATED AYD RE, THE VALUES OF 5 LOGICAL VARIABLES:
C LPUNCH = PUNCH OBS. OR PRFDICTED VALUE AND CONTINGFNTLY THEIR DIFFE-
C RENCE* LWLONG = LONGITUDE IS PGSITIVE TOWARDS WEST, LMEAN = THE DYED-
C ICTED OR OBSERVED QUANTITY IS A MEAN VALUE* LSA = ALL DESERVED GUAN-
C TITIES 能E THE SgME STANDARD DEVIATIONS AND LKM = THE HEIGHT IS IN
C LNITS OF KILOMETERS.
    READ(5,2O2)INO,ILA,ILD,IANG,IH,IOBSI,IOBS?,IKP,RP,LPUNCH,LWLONG
    *, LMEAN,LSA,LKM
    202 FORMAT(813,F10.7,5L2)
        GM = DI
        DA = DO
        LGRP = IKF.EQ.2
        IF (LGRPI READI5,203)DM,DA,LMEGR
    C LMEGR IS TRUE, WHEN THE MEASURED GRAVITY VALUE IS INPUT. DM ANO DA ARF
    C AN ADOITIVE AND A MULTIPLICATIVE CONSTANT* RESPECTIVFLY, WHICH CAN BF
    C USED TO CONVERT INPUT VALUES TO MGAL ER CORRECT FOR A SYSTEMATICAL
    C ERROR.
    203 FORMAT(2F1O.2,L2)
    C INPUT OF STANDARD DEVIATLON.
        IF (LSA) READ(5,212)WM
        212 FORMAT(FG.2)
    C
    2007 LRFPEC = IKP.FQ.5
C INITIALIZATION OF VARIABLES IN COMMON BLOCK /PR/.
    LONECO = .NOT.LREPEC
    LNKSIP = IKP.NE.3 •AND. LDNFCO
        LNETAP = IKP.NE.4 .AND. LONECO
        LDEFVP = IKP .GT. 2
        LNDFP = .NOT.LDEFVP
        LNGR = .NOT.LGRP
    C LREPEC IS TRUE, WHEN TWO COLUMNS CAN be COhputed at the same time.
    C LNSKIP, LNETAP IS TRUE, WHEN THE OBSERVATION OR REQUESTED PREDICTION
    C IN P IS NOT KSI PESP. ETA.
        LZETA = IKP.EQ.I
        LKSIP = .NOT.LNKSIP
        IF (RP.LT.R) RP = D 1
    C CHECK? THAT POINT IS NOT INSIDE THE BJERHAMMAR-SPHERE.
C
C COMPUTATION OF CONSTANTS USED tO NORMALIZE THE NORMAL-EGUATIONS OR
C SCALE THE ESTIMATES DF the ERrars OF PREDICTION.
        NI = MAXCI
        P(JQ) = D1
        P(JR+1) = RP
        INDEX(JR+1) = IKP
        PW = DI
```

```
    COSLAP = O1
    SINLAP = DO
    RLATP = OO
    RLONGP= UO
    CALL PREN(S,SREF,UO,A,IS,1590,JR,1,1,IMAX1,LF,LF,LT)
    PW = C(MAXC1)
    IF (PW.GT.DO) PW = DSGRT(PW)
    P(JR) = PW
    W =WP(IKP)
    IF (LNGR) W = W*RP*RP
    IF (LZETA) W = W*RP
    PWO= PW*W
    PW2 = PWO%PWO
    IF (LCREF) JVL= -1
C
C OUTPUT OF HEACIYG AND INITIALIZATION OF VARIABLES.
                LINVOE = LONECO.OR.(IORS2.EG.O).OR.(IOBSI.LT.IOBS2)
            LOUTC = LNEG.OR.LCOMP
            IF (LMFAN) WRITE(6,205)
        205 FORMAT('OTHE FGLLOWING QUANTITIES APE MEAN-VALUES, AND ARE REPRESE
            *NTED AS POINT VALUES IN A HEIGHT R.'I
                    IF (RP.GT.I.O3OO.AND.(LKSIP.OR.LGRP).AND.(LTRAN.OR.LPOT).AND.
            *LPOTSO) WF1TE{6,204)
204*FGRMAT('O** WARNING: THE HEICHT MAY BE TCO BIG FOR THE COMPUTATION
            OF',/;" THE REFERENCE GRAVITY OR THE CYANGE IN LATITUDE #*!)
C
    CALL HEADIIKP,LONECO,PWO,RPI
C INITIALIZATION OF LOGICAL VARIAELES USED TO DETERMINE WMICH QUANTITIES
C WE WILL HAVE TO ADD TOGETHER TO FOPM THE FINAL OUTPUT OR TO DETERMINE
C WHICH QUANTITIES WILL EE INPUT.
    LADRA = IH.NE.IA
    LADDBC = IB.NE.ICI
    LADDEP = 1B.NE.IP
    LADBPR = LADDBP.AND.LREPEC
    LTYB = LTRAN.AND.(IT.NE.IE)
    LTEB = LTRAN.AND.(IT,FQ.IB)
    LOE1 = LE.AND.(.NOT.LSA).ANO.LONECO
    LOE2 = LE.AND.(.NOT.LSA).AND.LREPEC
C K1 HAS PEEN INITIALIZED EY THE CALL OF 'HEAD'. IT IS EQUAL TO THE NUM-
C BER OF QUANTITIES READ N TO THE ARRAY OBS.
    IF (LOEI) K1 = Kl+1
    |F (LOE2) K1= K1+2
C
    |F (LGRID) GO TO 2031
C
    IF (LCOMP) CALL COMPB(IKP,LNGR,LREPFC,LONECO)
C
C INPUT OF COOROINATES OF OBSERVATION OR PREDICTION POINTS 4YD CONTIN-
C GFNTLY THE OESFRVED QUANTITIES ANO THEIR STANDARD DEVIATIONS.
    IJ = IANG*2+INO-1
```

```
    2023 60 TO(2024,2025,2026,2027,2028,2029,2028,2029),IJ
    2024 RFAD(5,FMT)IDLAT,MLAT,SLAT,IDLON,MLON,SLON,(OBSII),I=1,K1),LSTOP
        GOTO 2030
    2025 REAO(5,FNT)NO,IDLAT,MLAT,SLAT,IDLON,MLON,SLON,(OBS(I),I=1,K1),
        *LSTOP
        GO TO 2020
    2026 READ(5,FMT)IDLAT,SLAT,IDLON,SLON,(OES(I),I=1,K1),LSTOP
    GOTO 2030
    2027 READ(5,FMT)NO,IDLAT,SLAT,IOLON,SLON,(OBS(I),I=1,K1),LSTOD
    GOTO ?030
    2028 READ(5,FMT)SLAT,SLON,(OBS(I),I=1,K1),LSTOP
    GO TO 2030
    2029 READ(5,FMT)NO,SLAT,SLON,(OBS(I),I=1,K1),LSTOP
C
    2030 IF(ILA .LT. ILO)GQ TO 2031
C CORRECTING IYVERTED ORDER OF LAT. AND LONG*
        |= IDLAT
        IDLAT = IDLGN
        IDLON = I
        I = MLAT
        MLAT = MLCN
        MLON = 1
        AO = SLAT
        SLAT = SL[ON
        SLON = AO
C
    2031 CALL RADIIDLAT,MLAT,SLAT,RLATP,IANG!
            IF (LWLONG.AND.IANG.LE.2) IDLON = -IDLON
            I F (LWLONG.ANO.IANG.GT. 2) SLON = -SLON
            CALL RAD(IDLON,MLON,SLON,RLONGP,IANG)
            COSLAP = OCOS(RLATP)
            SINLAP = OSIN(RLATP)
            IF (LGRIO) GO TO 2049
C
    IF (LOEI) WOBS(N+1) = OBS(K1)
    IF (LOE2) WOBS(N+1)= OBS(K1-1)
    IF (LGE2) WGSS(N+2)= OBS(K1)
    IF (IH.NE.O) GO TO 2050
    IF (LREPEC) CBS(12) = OES(2)
    OBS(2)= ORS(1)
    OBS(1)= DO
    GO TO 2051
    2050 OBS(12)=OES(3)
    IF (LWLONG.ANO.IKP.GT.3) OBS(12) = -ORS(12)
C CORRECTING TUF OBSERVATION EY AN ADOITIVE AND MULTIPLICATIVE CONSTANT
C (IS USED ONLY FOR GRAVITY OBSERVATIONS).
    2051 OBS(2)= OBS(2)*DM+DA
        H=OBS(1)
        IF (LKM) H = H* 1.0D3
C CONVERSION OF HEIGHT INTO METERS.
```

```
    2049 |F (LNGR) GO TO 2056
    C
    IF (H.GT. 25.ODZ.AND.1.NOT.LPOTSDIICALL EUCLID(COSLAP,SINLAP,
        *RLONGP,H&E21,AXI)
    CALL RGRAV(SINLAP,H,O,GRFF)
C COMPUTING THE GRAVITY ANOMALY.
    IF (LMEGR) OBS(?)=OES(2)-GRFF
C
    2056 IF (LINVDE) GO TO 2032
    OB1 = OBS(12)
    OBS(12)=OBS(2)
    OES(2)= CEE 
    IF (.NOT.LE.OR.LSA) GO TC 2032
    WM = WOBS (N+1)
    WCBS(N+1)=WCES(N+2)
    WOBS(N+2)=WM
C
    2022 OESIIE)= DO
            IF (LREPEC) OSS(IB1)= DO
            IF (LNTP) GO TO 2055
C
    IF (LNTRAN) GO TO 2053
    CALL EUCLIO(COSLAP,SINLAP,RLONGP,DO,E21,AXII
    CALL TRANS(SINLAP,COSLAP,RLATP,RLONGP,IKP,ITI
    IF (LNGR) GO TO 2053
    GREF1 = GREF
    IF (H.CE.25.OD3I CPLL EUCLID(COSLAP,SINLAP,RLONGP,U,E2Z,AXZ)
    CALL RGRAVISIVLAP,H,15,GREFF)
    OBS(IT) = GREFI-GREF
    IF (LPOTS[I) OBS(IT)=OES(IT)-13.700
    GREFI = GREF
C
    2053 IF (LNPOT) GO TO 2055
    IF (LNGR: GO TO 2054
C
C FOR GRAVITY ANOMALIES WE USE, THAT THE NEW REF. POTENTIAL GIVES A BFT-
C TER ESTIMATE CF THE GEOMETRIC HEIGHT, SO THAT THE NEW REF. GRAVITY CAN
C BE COMPUTED AT THIS HEIGHT,
    CALL EUCLIC(COSLAP,SINLAP,RLONGP,DO,E22,AX2I
    CALL SPOTIRLATP,COSLAP,RLCVGP,1,11,GREF,UREFO,DOI
    H=H+OBS(11)
    2054 CPLL EUCLIO(COSLAP,SINLAP,RLONGP,H,E22,AX2)
    IF (LZFTA) CALL UREFER(UREF,15,H)
    IF (LKSIP) CALL CLAT(CLA,15,N,RLATP)
    CALL GPOT(RLATP,COSLAP,RLONGP,IKP,IP,GREF,UREF,CLA)
    IF (LAMNPP) OES(IB)= OSS(IB)+OBS(IP)
    IF (LADBPR) ORS(IR1)= OBS(IBI)+OBS(IDI)
    2055 IF (.NOT.LCREF) GO TO 2052
C
C THE VARIAFLE IVI IS USED TO INDICATEq THAT THE DEGREE-VARIANCE5 StGRED
```

```
C IN SIGMA WILL HAVE TO BF CUANGED FPPM COLLOCATION I TO COLLOCATION II.
C THE VALUF IS TKANSFERREO TO PRED BY THE COMMON BLOCK /PR/.
    CALL PRED(SR,SREFR,URO,AR,O,0,2,IOBSR,NIR,IMAX1R,LT,LF,LF)
    IVI = -1
    OES(ICI) = PRFDP*W
    IF (LADDBC) OBS(IR)= OES(IG)+OBS(ICI)
    IF (LONECO) GO TP 2052
    OBS(ICI1)= FRFTAP*W
    IF (LADOBC) OBS(IE1)= OBS(IE1)+OBS(ICI1)
    2052 |F (LPREE) GO TO 3021
C
C STORING COORDINATFS AND RIGHT-HAND SIOE OF NORMAL-EQ., N COUVTS THE
C COLUMNS ANO IC THE STATIONS.
    N = N+1
        IC=IC+I
        - IF (LTNB) OES(IU) = OBS(IE)-GES(IT)
            1F (LTEE) OES(IU) =-OFS(IT)
        IF (LK3O) OBS(3)= OBS(2)-OES(1U)
        OB1 = NBS(K2)/PWO
        B(N)=OB1
        IF (LSA) NOES(N) = WM
        SSOES = SSOES+OE1**?
        IF (LONECO) GO TC 20ミ3
C
    IF (LTNB) OBS(IU1) = OBS(IE1)-OBS(ITI)
    IF (LTEB) OSS(IU1) = -OES(IT1)
    |F (LK30) OBS(13)= OBS(12)-OBS(IU1)
    OB2 = OBS(K21)/PWO
    SSOES = SSOES+OE2**2
    N = N+1
    B(N)= QB2
    IF (LSA) WOBS(N) = WM
    2033 IF (N.LE.1598) GO TO 2060
C CHECK OF NUMEER OF OSSERVATIONS NOT EXCEEDING AROAY LIMIT
    WRITE(6,229)
    229 FORMAT(* NCMEER OF OBSERVATIONS TOO BIG. *** STOP ***!)
C
    2060 COSLAT(IC) = COSLAP
    SINLAT(IC) = SINLAP
    RLAT(IC) = RLATP
    RLONG(IC)= RLONGP
    CNR=RLATP*1C+CNR
C OUTPUT OF OBSERVATIONS.
    CALL OUT (NO,IDLAT,MLAT,SLAT,IDLON,MLON,SLON,LONECO)
    IF(.NOT.LSTOP)GO TO 2023
C
    230 FORMAT(3L2)
    REAO(5,230)LSTOP,LRFSOL,LWRSOL
C
    IF (LRESOL.AND.LWRSOLI GO TO }999
```

```
C
C fstablishing a catalngue of the deservations,maximally 9 sets allowed.
            INDEX(JR.) = IC+1
            JR=JR+2
            IF (INDEX(JR-3) .NE. IKP .OR. (DAES(P(JR-3)-RP).GT.1.OD-7))
            *GO TOI 2034
            JR = JP-2
            INDEX(JP,-1) = INDEX(JR+I)
    2034 |F ((JR-II) .LT. 19) GO T0 2035
            WRITE (6,298)
        298 FORMAT(" OESERVATIONS ARRANGED TOO COMPLICATED')
            GO TO &9GQ
    2035 HF (.NOT.LSTJPI GO TO 2006
C
C FND OF INPUT CF ORSEQVATIONS. M = NUMBER OF OBSERVATIONS, IOBS =
C numeer cF oesfrvation prints.
            IOBS = IC-ISO
            N=N-ISO
            N1 = N+1
            B(N2+ISO) = SSOBS
C
            IF (.NOT.LE) CO TO 2036
            WRITE(6,297)(WOFS(I+ISO), I = 1, N)
        297 FORMAT('OSTANDARD DEVIATIONS OF THE OESERVATIONS IN THE SA:AF SEQUE
            *NCE%/.' AND IN THE SAME UYITS AS THE OBSERVATIDNS:'/,1' ',1OF8.21)
C
    2036 IF (LRFSOL) GO TO 3228
C
    IF (LDEFF) GO TO 2037
    LDEFF = LT
    NT = 3
    IOIMC = 4700
C IN THIS PROGRAM-VERSION, THE ARRAY C HAS DIMENSION IDEYC AYD ITS
C ValUES are stured or retrived fPOM UNit 8 by Nt REAd oq write mpera-
C TIONS.
C setting up a catalogue of the normal fouations
C NG IS THE rechrd numore, IC COUNTS the number of COlumNS WITUIN A
C RECORD, AND THIS NUMBER I S STORFD IN NCAT(100). YCAT (I) WILL COVTAIV
C the subscript of the giagonal flement of column I-I, and all the
C flements of isze will ge zero because we work with a full matrix,
C Nbl(I) CONTAINS the NUMbER OF The LAST COLUMN IN RECORD 1-1. NOTE
C that maximally ge crlumNS mAy be stored in ONE RECORD,
    2037 NET = I
            NBL(1)=0
            N5 = 1
            IC=0
            I1=0
C
    DO 2304 I = 1. N1
```

```
    IC=IC+1
    IS2E(|C)=0
    NCAT(IC)=II
    H1 = I 1+I
    I2=11+1+1
C
    IF(|I2.LE.IDIMC).AND.(I.NE.NI).AND.(IC.LE.98)) GO TO 2304
    NCATB IC+1)= II
    IF(I.NE.N1) GO TO 2303
    I2=12+N1+1
    IF(12.LE.IEIMC) GO TO 2301
C SECURING THAT THF LAST COLLUMN + ONE MORE CAN BE STORED IN THF SAME
C RECORD.
    NCAT(100)=1C-1
    WRITE(&NET+2)C3,NCAT,ISZE
    NET = NBT+NT
    NB=NB+1
    NBL(NB)=I-1
    NCAT(2)=N1
    |1=N1
    IC=1
C MAXC IS THE SUBSCRIPT OF THE DIAGONAL ELEMENT OF THE CAST COLUMN, aND
C MAXCZ IS THF SUHSCRIPT PF THE FICTICIOUS DIAGONAL FLEMENT OF THE RIGHT
C HPND SIDE (IN WHICH THE SQUARE-SUM OF THE NORMALIZED OBSERVATIGNS IS
C STOREDI.
    2301 MAXC = II -NI
    MAXC2 = I1
C STORING THF RIGHT- HAND SIDE.
    DO 2307 J=1,N1
    2302 C(MAXC+J)=B(J+ISO)
C
    2303 11=0
                            NCAT(100)=IC
            IC = NET
            WRITE(E'IQ)C,NCAT,ISZE
            NBT = NBT+NT
            IC=0
            NE=NB+1
            NBL(NB)=I
            IF (NB.LE.309) GO TO 2304
            WRITE(6.299)
        299 FORMATI' RESERVED AREA PN FILE 8 TOO SMALL'I
            GO TO 0909
    2304 CONTINUE
C
    MAXBL=NB-1
    MAXPLT = (MAXBL-1)*NT+1
C
C CCMPUTATION OF ELEMENTS OF NORMAL EQUATIONS (EQUAL TO THE COVARIANCE
C BETWEEN THE OESERVATIONSI. THE COEFFICIENTS ARE STORED IN THE ONE-DI-
```

```
C mensional array C, COLLUMN aftFr COLlUfN,The DIAGONAL ELEmENT HAVING
C THE HEIGHEST SUBSCRIPT.
C
C INITIALIZING VARIABLES:
C NI IS IN MAIN THE SUESCRIPT OF THE FIRST ELEmENT OF COLUMN NC ICQRRAY
C C. IN THE SUEFOUTINE PRED, NI IS THE SUESCRIPT OF THF ELEMFNTS OF THF
C COLUMN, Ne IS thF Number OF the block IN which the covariancFs are
C stored and il is tee number of the last cplumQ stared in the block.
C ICNEXT IS THE NUMBER OF THE FIRST COLUMN WITHIN A GROUP OF DATA WITH
C the same characteristics. (the Characteristics are given by the arrays
C INDEX AYD P (SUBSCRIPTS JC AND JC+1)).
    N1 = 1
    NC=1
    JC = II
    IV1 =-1
    NB=1
    I1=NBL(2)
    READ(8'NTICB,NCAT,ISZE
    FINO(8'1)
    NBT= I
    ICNEXT = ISO+1
C
    DO 3100 JC = 1, 1OBS
    ICC = IC+1SO
    COSLAP = CLSLAT(ICC)
    SINLAP = SINLAT(ICC)
    RLATP = RLAT(ICC9
    RLONGP = RLONG(ICC)
C
        IFIICC .NE. ICNEXT)GO TO 3003
        IKP = INDEX(JC+1)
C INITIALIZATION OF VARIABLES IN COMMON BLOCK /PR/.
    PW = P(JC)
    RP = P(JC+1)
    ICNEXT = INDEX(JC)
    JC = JC+2
    LREPEC = TKP .EQ. }
    LONECO = .NOT.LREPEC
    LGRP = IKP.EQ.2
    LNGR = .NOT.LERP
    LNKSIP = IKP.NE.3 .AND. LONECO
    LNETAP = IKP.NE.4 .AND. LONECQ
    LOEFVP = IKP .GT. 2
    LNDFP = .NOT.LDEFVP
c
    PWO = PW*WP(IKP)
    IF (LNGR) PWO = PWO*RF*RP
    IF (IKP.FG.I) PWO = PWO*RP
    3003 LBST=LFEPEC.AND.(NC.EQ.11)
C AS WE FOR LREPEC=TRUE ARE COMPUTING TWO COLUMNS AT THF SAME TIME, WE
```

```
C MUST, IN CASE THE SFCOND CCLUYN IS THE FIRST ONE IN THE NFXT RECORD
C STORE THIS ONE TEMPORARY IN ARRAY B. THE PROELEM WILL INLY OCCUR WHEN
C We ARE SETTING UP THE NORMALEQUATIONS. LBST = B-STORE*
C
    CALL PRED(S,SREF,UO,A,IS,ISO,II,IC,NC,IMAKI,LF,LBST,LT)
C
    ND = NI-1
    DIA = C(NO)
    IF (LE) C(ND) = OIA+(WOGS(NR-1)/PWO)**2
    IF (LONECO) GO TO 3020
    IF (LE) DIA = DIA+(WOES(NR)/PNO)**2
    IF (LEST) E(NQ) = DIA
    IF (.NCT.LEST) C(NI+NC) = DIA
C THE PPECEDING STATEMENT ASSURES, THAT THE DIAGONAL ELFYENT CORRESPON-
C DING TO FTAP EECONES EQUAL TO THAT OF KSIP.
    NC = NC+1
    NI = NI+NC
C
    3020 |F (NC.LT.II.ANO.NC.LT.N) GO TO 3100
C
C STORING THE COEFFICIENTS OF THE NORMAL-EQ. ON FILE 8, RECORD NS.
    10 = NBT
    HRITE(8'IQ)C,NCAT,ISZE
    IF (.NOT.LONEO) GP TO ミ200
C
C OUTPUT OF COEFFICIFNTS OF NORMAL-EQUATIONS,
    WRITE (6,380)NB
    380 FORMAT('OCOEFFICIENTS OF NORMAL-EQUATIONS* BLOCK *,I4,/1
    II = NI- I
    IF (NB.EQ.MAXPL) I1 = MAXC2
C
    WRITE(6,381)(C(K), K = 1, I1)
    381 FORMAT(' ',10F8.4)
    3200 NBT = NBT+NT
    NE=NB+1
    NI=1
    |F (NC.NE.N) 11 = NBL(NE+1)
C
    I F (NB.GT.MAXBLI GO TO 3201
    READIRIIQICI
    READ(RIIQ)C2
    READ(8'IQ)C3,NCAT,ISZE
C WE HAVE TO READ THE WHOLE CONTENT OF BLOCK NB INTO ARRAY C, RFCAUSE
C WE MUST BE SUPE THAT THE RIGMT-NAND SIDE (WHICH ALREADY IS STORFD)
C IS PLACED COPRECTLY.
    FIND(8:NB1)
C
    2201 IF (.NOT.LBST) GO TO 3100
C
    00 3202 K=1,NC
```

```
    3202 C(K) = 6(K+ISO)
    NI=NC+1
    3100 NC=NC+1
C END OF LOOF FORMING NORMAL-EQUATIONS.
C
    CALL NES(NI,O,O&OTRUE.&PW)
C
C PUNCHING: NUMEER OF ORSERVATION POINTS, NUMBER OF OBSERVATIONS, DIF-
C FERENCE BETWFEN SQUARESUM OF OBSERVATIOVS ANO NORM DF APPROXIMATICN.
C A CHECK-NUMBER (KEE) CNR, AND FINALLY THE SOLUTIONS ANO THE SGUARE-SUM
C OF THE OBSERVATIONS.
            IF (LWRSOL)WRITF(7, 36I)IOGS,NI,PW,CNR,(C(J+MAXC),J=1,NI)
    361 FORMAT(215,2015.7%/9(4020.13))
            GO TO 3229
C
C INPUT OF SOLUTIONS.
    3228 MAXC = 0
                            READ(5,361)I,N1C,PW,CNFC,(C(J+MAXC),J = 1,N1)
C CHECK OF SOLUTIONS CORRESPONO TO OBSERVATIONS.
                            IF IIOES.EQ.I.AND.N1.EQ.N1C.AND.DABS(CNRC-CNR).LT.O.1DO)GO TO 3229
                    WRITE (6.354)
    354 FORMAT', SOLUTIONS DO NOT CORRESPOND TO INPUT DATA, STOP.*)
    GO TO 9999
    3229 WRITE (6,300)
    300 FORMAT('OSOLUTIONS TO NORMAL EQUATIONS:'/I
        WRITE (6,3OI)(C(J+MAXC), J=1,N)
    301 FORMAT(1X,5017.10)
            IF (LRESOL) wRITE(6,362)
    362 FORMAT( 'OTHF SQLUTIONS HAVE EEEN COMPUTED IN A PREVIOUS RUN.')
c
            MAXC2 = MAXC+N1
            WRITE(6,353)N,C(MAXCL),PW
    353 FORMAT("ONUMBER OF EQUATIONS = . I4./
        * NORMALIZED SQUARE-SUM OF OBSERVATIONS =%,D13.6.%%
        ** NORMALIZED DIFFERENCE BETWEEN SQUARE-SUM DF'/
                OBSERVATIONS AND NORM QF APPROXIMATION = 1,D13.6./1
C
C STORING SOLUTIONS DIVEDED BY A COMMON FACTOR.
            NI = P
            JRNEXT = 150+1
            JR = II
            DO 3032 I = 1, INESS
            IF ((I+ISO).NE. JRNEXT) GO TO 3030
            IKP=INOEX(JR+I)
            LONECO = 1KP .LT. 5
            JRNEXT = INDEX(JR)
            PW = P(JR)
            JR=JR+2
4030 IF (LONECTI) GO TO 303%
    B(NI+ISO)=C(MAXC+NI)/FW
```

```
            NI = NI+1
    3031 B(NI+ISO) = C(MAXC+NI)/PW
    3032 NI=NI+1
                            IF (LCI) GO TO 3110
C
    LCl = LT
C INPUT OF LCREF, WHICH IS TRUF WHEN ONE MORE SET OF OBSERVATIONS
C SHALL BE INPUT AND USED FOR THE ESTIMATION OF ONF MORE HARMONIC FUNC-
C TION.
    REA[I(5,230)LCPFF
    IF (.NOT.LCREF) GO TO 3110
C
C STORING ANAY THE NECESSARY CONSTANTS FOR COLLOCATION I.
    SR=S
    SREFR = S
    URO = UO
    IORSR = 1OBS
    AR = P
    IMAX1R = IMAX1
    NIR = N1
C INITIALIZING VARIABLES FOR STAR1 OF COLLOCATION II.
    IS = IMAX + 3
    II= 22
    JR=22
    IC = NIR+2
    N=1C
    ISO = IC
    INOEX(21) = IC
    WRITF(6,345)
    345 FORMAT('OSTART OF COLLOCATION II:'/)
            GO TO 1000
C
C INITEALIZIYG VARIABLES FOP. PREDICTION. NAXCI IS THE SUBSCRIPT OF THE
C FIRST ELEMENT IN THE COLUMN FORKING THE RIGHT-HAND SIDE,
    3110 LPRED = LT
    LNEQ = LF
    LE = LF
    LC2 = LCREF
    MAXC1 = MAXC+1
    INDEX(41)=0
    JR = 41
    WRITE(6,344)
    344 FORMAT('1 PREDICTIONS:`/)
    GO TO 20OO
C
    3021 NI = MAXCI
    CALL PRED(S,SREF,UO,A,IS,ISO,II,IOBS,NI,IMAXI,LT,LF,LERNO)
    IF (LNFRNO) GO TO 3022
C
    C(MAXC2)= D1
```

```
C STORING TWE NEW RIGUT-HAND SIDE ON FILE 8g SO THAT THE ERROR OF PRE-
C DICTION CAN BE COMPUTED.
    10= MAXBLT
    WRITE (8'IO)C,NCAT,ISZE
C COMPUTATION OF EPROR OF PREOICTION.
            CALL NES(NI,N,O, FALSE,DRS(K2))
    OBS(K2) = OBS(K2)*PW2+0.1D-6
    IF (OES(K2).GT.0.1D-9) OBS(K2) = OSGRT(OBS(K2))
C
    3022 IF ILONECO) GO TO 3026
            IF (LNERNO) GO TO 3024
            FIND(8:MAXBLT)
            OO 3025 J = 1, N
    3025C(MAXC+J) = C(MAXC2+J)
            C(MAXC2) = D1
            IQ = MAXBLT
            WRITE(8'IG)C,NCAT,ISZE
            CALL NES(NL,N,O,FFALSE.,OES(K21))
            OBS(K21) = CBS(K21)*PW2+0.1U-6
            IF (OBS(K21).GT.0.1D-9) DES(K21) = OSQRT(OBS(K21))
    3024 OBS(IAI) = PRETAP*W
            IF (LADBA) OSS(IEI) = OES(IEI)+OES(IAI)
            IF (LTRAN) OBS(IUI) = OBS(IBI)-OBS(IT1)
    3026 ORS(IA) = PREGP*W
            IF (LAOBA) OES(IB) = OBS(IB)+OES(IA)
            IF (LTRAN) OBS(IU) = CBS(IB)-OES(IT)
C
    IF ilCOmP) CALL COMPC(IU;
C
    CALL OUT(NO,IDLAT,MLAT,SLAT,INLON,MLON,SLON,LONECO)
    IF (LMAP) IMAP(NO) = OBS(IU)*100
    IF(LGRID.AND.NAI .LE.NLA) GO TO 2001
C
    IF (.NOT.LMAP) GO TO 3045
C
    K = NLA+1
    WRITE(6,360)IGLAC,SLAC,IOLOC,SLOC,GLA,GLO
        360 FORMAT(IMAP OF PREDICTIONS: / COORDINATES OF SOUTH-WEST CORNER*/
            *: LATITUDE LONGITUOE AND SIDE LENGTH LAT. LONG, %
            * D M M M M M M:/2(I4,F6.2),2F8.2,1/1)
            DO 3044 J = 1. K
            WRITE(6,350)
        350 FORMAT('0 &)
            NAP = NO-NLO
            WRITE(6.352)(IMAP(I), I= NAP, NO)
        352 FORMAT(0 *2015)
    3044 NO = NAP-1
C
    3045 IF (.NOT.LSTOP) GO TO 2023
```

```
REAO(5,230)LSTOP
IF (.NOT.LSTCP) GO TO 2000
C
IF (LCOM) CALL OUTCOM
C
9999 STOP
END
```

SUEROUTINF NES(NN, IIFC,IIFR,LBS,PW)
C THE SUBROUTINE WILL? USING THE CHOLESKYS METHOD:
C (1) COMPUTE THE REDUCEO MATPIX L CORRESPONDING TO A SYMMETRIC DOSITIVE
C DEFINITE (NN-1) $\ddagger(N N-1)$ MATRIX A, WHEN THE IIFC COLUMNS ANO IIFR
C ROWS OF L ARE KNOWN, (L*LT = A, LT THE TRANSPOSED OF L).
C (2) COMPUTE THE REDUCED NN-1 VECTOR (L**ー1)*Y.
C (3) COMPUTF THE DIFFFRENCE FW = YN-YT*(A**-1)*Y.
C (4) SGLVE THE ECVATIOYS LT*X $=(L * *-1) * Y,(T H E$ SO CALLED BACK-SOLUTION)
C
C THE REDUCEG ROWS ANO COLUMNS CF L (THERE MAY BE NONE), THF CORRES-
C PCNDING UNREDUCEO UPPER TPIANCULAR PART OF A, THE NN-VECTOR FORMED
C EY Y AND YN FORMS AN UPPEF TRIANGULAR NNANN-MATRIX.
C THE MATRIX IS STORED COLUMNVIZE IN NT\&MAXBL RECORDS OF A DIRECT ACCESS
C FILE (UNIT NUMEER 8). THE YT RECOROS (NT*128OO BYTES) CONTAINS AS MANY
C CCLUMNS AS POSSIELF IN THE FIRST $8 *(N T-1) * 1600+8 * 1500$ BYTES CORRESPON-
C DING TO THE DIMENSION OF THF ARRAYS C ANO CR. THE LAST ROO BYTES
C OF THE NT RECOPDS HOLDS TWO CPTALOGES (INTEGER ARRAYS) NCAT AND ISZE
C (NRCAT, IRSZE RESPECTIVELY). WE WILL CALL THE NT RECORDS A BLOCK.
C WHEN THE CONTENT OF A BLOCK HAS SFEN TRANSFERRED E.G. TO C, NCAT,
C ISZE, WE HAVE THF FOLLOWIAG SITUATION. THE COLUMNS ARE STOREO IN C
C FROM THE FIRST ELEMENT DIFFERENT FROM ZERC TC THE DIAGONAL ELEMENT.
C NCAT (I) IS THE SUESCRIPT CF TUE DIAGONAL FLEMEWT OF COLUMN I-I AVD
C ISZE(I) IS THF NUMBER OF IGVORED (SAVED) ZEROES IN COLUMN I. YCAT (100)
C I S THE NUMEER OF CDLUMNS STORED IN THE RECORD.
C NEL(I) IS EQUAL TO THE NUMBER OF THF LAST COLUMN STORED IN PECORD I-1.
C (1) TO (3) ABOWE WILL ALWAYS PE EXECUTED, BUT (4) WILL ONLY BF EXE-
C CUTED WHEN THE LOGICAL LBS IS TRUE* TUE EXECUTION OF (1), (2) FUD (4)
C I S EQUIVALEYT TO THF SOLUTION OF THE EQUATIONS A*X=Y. THE SOLUTIONS
C WILL BE STORED IN THE ARRAY C IN THE POSITIONS ORIGIYALLY OCCUPIED BY
C Y AND WILL EE TRANSFERRED TO MAIN THROUGH THE COMMON BLOCK.
C IN CASE A Numerical singularity cccurs in colump number jo. the column
C IS DELETED BY CHANGING THF CATALOGUE ISZE ANO THE ELEMENTS IV RCW JD
C AND THE JD'TH ELEMENT OF TUE SOLUTION VECTOR IS PUT EQUAL TO ZERO.
IMPLICIT INTECER(I,J,K,M,N), REAL *8(A-H,O-Z), LOGICAL(L)
COMMON /NESOL/C(4700),NCAT(100), ISZE(100), NBL(310), MAXBL, ID
COMMON /CPW/CR1 (1600)
DIMENSION CR (4700), NRCAT(100), IRSZE(100)
EQUIVALENCE (CR(1),CR111))
NT = 3
C NOTE. THAT IY CASE YT IS CHANGED, WILL IT ALSO BE YECESSAPY Tก CHANGE

```
C the dimevSION OF THE ARRAYS C ANO CR.
C
        N=NN
        IFR=1IFR+1
        IFC=IIFC+1
        IF (IFR.GT,IFC) WRITE (6,10)
    10 FORMAT(' ERROR IN CALL, IFR.GT.IFC .':
C
C REDUCTICN OF COLUMNS IFC TO N. ELEMENTS, WHICH ARE ALREADY REDUCEO,
C ARE STOREO IN CR [EXCEPT FOR JBL=KBL). ELEMENTS9 WHICH ARE GOING TO BF
C REDUCED, ARE STGRED IN C.
C
C FIND FIRST ACTUAL RECORD AND ROW/COLUMN.
    JEF=0
    200 JBF=JEF+1
        IF(NBL(JEF+1).LT.IFC) GO TO 200
        IL = NBL(JEF)
        JF= IFC-IL
        JTF= JBF*NT-NT+1
        JTL = JTF
        ID = JTF
        FINO(E:ID)
C
    KBF=O
    201 K6F = KEF+1
    IF (NBL(KEF+1).LT.IFR) GO TO 201
    KLO = NBL(KSF)
    KF=IFR-KLO
    KFO = KF
    KTF = (KBF-1)*NT+1
C
C READ RECORD JPL FROM FILE. the ARRAY C Will CoNTAIN AT lEAST ONE UNRE-
C DUCED COLUMN.
    DO 280 JBL=JEF,MAXBL
    READ(8'IDIC,NCAT,ISZE
    FIND(80KTF)
    NC=NCAT(100)
    JO=NBL(JBL)
    KL = KLO
    ID = KTF
C
        DO 270 KBL = KBF, JBL
        LREC=KBL.EQ.JBL
        READI 8'IDICR,NRCAT,IRSZE
        NR=NQCAT(100)
        K0=KL
        KL=KL+NR
        MR=MAXO(KO,IIFR)
C
C IN ORDER TO MINIMIZE TME NUMBER OF TRANSPORTS TO AND FROM FILE &, WE
```

```
C DO NOT (GFNERALLY) COMPUTE PLL TMF REDUCFD ELEMENTS OF ONE COLUMN, BUT
C ONLY THE ELEMINTS IN ROW KO+1 TO KL. (KO IS THE NUMBER OF TME LAST
C COLUMY IN THE PREVIOUS RECORD* KL THE NUMBER OF THF LAST IN THF ACTUAL
C RECORD. I
C
    00 260 J=JF,NC
    ISZ=ISZE(J)
C WE CHECH THAT THFRE ARE ELEMENTS (UNREDUCEDI DIFFERENT FROM ZERO IN
C COLUMN J WITH SUSSCRIPT GREATHER THAN OR FQUAL TO KL.
    IF (KL.LE.ISZ) GO TO 260
C THE SUBSCRIPT OF THE ELEMENT IN COLUMN J,ROW K IS NCAT(J)+K-ISZF(J)c
C THE DIFFERENCE NCAT(J)-ISZE(J) IS STORED IN THE VARIABLE ICO.
C THE SAME DIFFERENCF FOR COLUMN (ROW) K IS STORED IN IRO. TUE ELFMFNT
C JUST BEFORE THE FIRST ELEMEYT TD EE REDUCED WILL HENCE HAVF SUBSCRIPT
C I =ICO+MAX(KO,IIFR,ISZ). KG IS THE ABSOLUTE ROW NUMBER-
    ICO = NCAT(J)-ISZ
    J0}=\textrm{JO}+\textrm{J
    NRO=MINO(JD,KL) -KO
    IF (MR.GE.ISZ) KFS = KF
    IF (MR.LT.ISZ) KFS = ISZ-KO+1
C
    DO 250 K = KFS, NRO
    KD = KO+K
    K1 = KD-1
    \| = I C O + K D
C I IS THE SUBSCRIPT OF THE COEFFICIENT TO BE REDUCED.
    QSUM = 0.0LO
    IRSZ=IRSZE(K)
    IRO=NRCAT(K)-IRSZ
    QCI=CII)
    KF1=MAXO(IIFR,ISZ,IRSZ)+1
C IRSZ = KD INOICATES THAT COLUMN KD CONTAINS A NUMFRICAL SINGULARITY.
C THE ELEMENTS OF RCW KD IS PUT EGUAL TO ZERO.
    IF (IRSZ .FQ. KD) QCI = QSUM
C
    IF(KFI.GT.KI) GO TO 245
    IF (LREC) GO TO 235
C REDUCTION OF ONE COEFFICIENT.
    DO 230 M = KFl, K1
    230 QSUM = QSUM+C(ICO+M)*CR(IRO+M)
    GO TO 245
    235 DO 240 M = KFI, K 1
    240 QSUM = QSUM+C(IRO+M)*C(ICO+M)
    245 QC1 = QCI-OSUM
C
    IF(LREC) GO TO 246
        C(I) = QCI/CR(IRO+KE.)
        GO TO 250
    246 |F (JD.NE.KD) C(I) = QCI/C(IRO+KD)
    250 CONTINUE
```

```
C
    IF(.NOT.LREC.OR.(JI.NF.KD).OR.JD.EQ.NI GO TO 260
G
C TEST OF NUMERICAL STAEILITY
    QCI2 = QC1/C(1)**2
        IF (OC12 .GT. 0.1D-16) GO TO 251
        WRITE(6,20)JD,QCI2
    20 FORMAT(' NUMERICAL SINGULARITY IN ROW NO.',15,', TEST QUANTITY ='.
    *D17.101
        1SZE(J)=JO
C THE COLUMN IS DELETED.
        GO TO 260
C
    251 C(I) = DSGRT(2CI)
    260 KF = 1
    270 CONTINUE
C
C reduced array C baCk to file. FIRSt CCLUMN IN NEXT RECORD IS NOW THE
C FIRST STORED, EUT FIRST REDUCED COLUMN IS AGAIN COLU僤 KFO IN REC. JBF
        ID = JTL
        WRITE(8IID)C,NCAT,ISZE
        JTL = JTL+NT
        JF=1
        KF=KFO
C
    IF(JBL.NE.MAXBL) GO TO 280
    PW = CCl
    1F(.NOT.LBS) GC TO 280
C
C baCk-SOLUTION. NOTE tHAT tuE VARIABLE I At this mOment IS the sub-
G SCRIPT OF THE DIAGONAL ELEMENT OF THE COLUMN CONTAINING THE RIGHT-HAYO
C SIDE. I WILL SuCCESSIVELY take the value of the subsCRIPT of the elf-
C MENT IN RCJW M OF THIS COLUMN, AND THE SOLUTION WILL BE STORED IN C(I).
    M = N
    KTL = (MAXBL-1)*NT+1
    ID = KTL
C
    DO 277 KB= 1,MAXBL
    READIBIIDICR,NRCAT,IRSZE
    KTL = KTL-NT
    ID = KTL
    IF (KTL.GT.O) FIND(8.ID)
    NR=NRCAT(100)
C THE COLUMN CONTAINING THE RIGHT-HAND SIDE IS SKIPPED,
    IF(KR.EQ.1)NR=NR-1
    K1=NR+1
    IF(NR.FQ.O) GO TO 277
    DO 276 K=1,NR
C WE STEP BACKWARD (M) FRCM COLUMN \(N-1\), TAKING THE NR COLUMNS FROM EACH
C RECORD SUCCESSIVELY.
```

```
    I=1-1
    IC=I
    M=M-1
    IR=NRCAT(K1)
    K1=K1-1
    IRSZ=IRSZF(K1)
    MR=M-IRSZ
    IF (MR.GT.O) GO TO 373
C IN CASE A COLUKN HAS BEEN DELETED, THE UNKNOWN IS PUT EOUAL TO ZERO*
    C(I) = 0.000
    GO TO 276
C THE (UN)KNOWN C(I) IS COMPUTED (ONE EQUATION WITH ONE UNKNOWN).
    273 CI=C(I)/CR(IR)
    C(I)=C1
C
    IF(MR.EO.1) GO TO 276
    DO 274 MP=2,MR
C IR IS THE SUBSCRIPT OF THE ELEMENTS OF COLUMN M, RUNNING FROM THE
C DIAGONAL-1 UP TO THE SUESCRIPT OF THE FIRST ELEMENT DIFFERENT FROMM
C ZERO. IC IS THE SUBSCRIPT OF THE ELEMEYTS ON THF PIGHT-HAND SIDF IN
C THE SAME ROW AS (R(IR).
    IR=IR-1
    IC=IC-1
C THE CONTRIRUTION FROM THE (UN)KNOWN C(I) IS SUBTRACTED FROM THE QUAN-
C TITIES ON THE RIGHT-HAND SIDE.
        274C(IC)=C(IC)-CI*CR(IR)
C
    276 CONTINUE
    277 CONTINUF
C THE SOLUTIONS ARE NOW ALL STORED IN C FROM C(NCAT(N)+1) TO C(NCAT(N+1)
C -1). THEY ARE TRANSFERRED TO 'MAIN' THROUGH THE COMMON BLOCK NESOL.
        280 CONTIYUE
            RETUQN
            END
            SURROUTINE ITPAN(DX,OY,DZ,EPS1,EPS2,EPS3,DL,AX2,E22,RLATO,
                *RLONGO,OKSIO,DETAO,DZETAO,LCHANGI
C TRANSFORMATION OF GEODETIC COORDINATES AND CORRESPONDING DEFLECTIONS
C OF THE VERTICAL AND HEIGHT ANOMALY, WHEN THF COORDINATE SYSTEM IS
C TRANSLATE9 EY (DX,DY,DZ), ROTATED (EPS1,EPS2,EPS3) AROUNO THE X,Y,Z
C AXES RESPECTIVELY AND MULTIPLIED EY 1+DL.
C WHFN LCHAYG IS TRUE, THERE IS FUTHERMOEE A CHAYGF IN THE ASTROVOMICAL
C COORDINATES AND IN THF HEIGHT SYSTEM, GIVEN AS A CHANGE OF THF DE-
C fLFCTIONS OF THF VERTICAL AND THE HEIGHT ANPMALY IN A POINT HAVING
C COORDINATFS RLATO AND RLONUO.
        IMPLICIT INTEGER(I), REAL * &(A-H,C-Z), LOGICAL(L)
        COMMON /OESER/OES(2O)
        COMMON /EUCL/X,Y,Z,XY,XY2,DISTO,DIST2
```

```
        00 = 0.000
        O1=1.000
        RADSEC = 2062.64.80500
        EPSI = EPS1/PADSEC
        FPS? = FPS2/RADSEC
        EPS3 = EPS3/PADSEC
        IF (.NOT.LCHANG) GO T0 60
        SINLAO = OSIN(RLATO)
        COSLAO = [COS(RLATO)
    60 RFTURN
C
    ENTRY TRANS(SINLAP,COSLAP,RLATP,RLONGP,IKP,IT)
C INPUT OF COS AND SIN TO LATITUDE, LATITUDE, LONGITUDE (RADIANS),
C IKP SIGNIFYING WHICH KIND OF CHANGE IN THE ORSERVATIONS WE WANT TG
C COMPUTE AND IT EGUAI TO THE SUBSCRIPT IN THE ARRAY OBS IN WHICH THE
C RESULT IS RETURNED.
            1T1 = 1T
            IF (IKP.EQ.5) ITL = IT+10
            DKSI = DO
            DETA = DO
            OZETA = DO
            SI= OI+DL
            XI=X
            Y1 = Y
            X = DX+SI* (X+EPSI*Y-EPS 2*Z)
            Y = DY+S1*(Y-EPS1*X1+EPS3*2)
            Z=OZ+S1*(Z+EPS2*X1-EPS3*Y1)
            XYZ = X#X+YX:Y
            XY = DSQRT(XY2)
            DIST2 = XY2+2*2
            DISTO = DSQRT(DIST2)
            RLONG = OATAN2(Y,X)
C
C COMPUTATION OF TUE NEW GEODETIC LATITUDE, CF REF(C) PAGF 183.
    S = AX2/DSQRT(D1-E22*SINLAP**2)
    DH}=D
    RLATI = RLATP
    70 RLAT = PLATI
    RLATI = DATAN2(Z,XY-E22*S*COSLAP)
    COSLAP = OCOS(RLAT1)
    SINLAP = ESIN(RLATI)
    S = AX2/DSQRT(D1-E22*SINLAP**2)
    OH = XY/COSLAP-S
    S1 = (RLATI-RLAT) #2/(RLATI+RLAT)
    IF (DABS(S1).CT. 0.10-9) GO TO 70
    DLO = (FLONG-RLCNGP)*RACISEC
    DLA = (RLATI-RLATP)*RADSEC
    RLONGP = RLONG
    RLATP = RLATI
    IF (.NOT.LCHANG) GO TO 60
```

```
C
C CF. REF(C) PAGE 208, FORMULA (5-59)
        COSDLO = LCOS(RLONGP-RLONGO)
        SINDLO = DSIN(RLONGP-RLONGO)
        GO TO (61,75,62,63,t2),1KP
    61 DZETA = (-(CDSLAO*SIULKP-SINLAO*COSLAP*COSDLO)*DKSIO-COSLAP*SINDLO
        **DETAO)*AXZ/RADSEC+(SINLAO*SINLAP+COSLAO*COSLAP*COSDLO)*DZETAO
            GO TO 69
    62 DKSI = (COSLAP*COSLAO+SINLAP*SINLAO*COSDLO)*DKSIO-SINLAP*SINDLO*
        *DETAO-(SINLAO*COSLAF-COSLAO*SINLAP*COSDLO)*RADSEC*DZETAO/AXZ
        IF (IKP.NE.5) GO TO 69
    63 DETA = SINLAO*S INDLO*LETAO+COSDLO*DETAO+COSLAO*SINOLO*RADSEC
    **DZETAO/AX2
C
    69 GO TO (71,75,72,73,72),IKP
    71 OBS(IT) = DZETA +DH
        GO TO 75
    72 OBS(IT) = OKSI-DLA
        IF (IKP.NE.5) GO TO 75
    73 OBS(IT1) = DETA-DLO*COSLAP
    75 RETURN
        END
        SUBRDUTINE GRAVC(AX,F,GM,I,LPOTSD,UREF,GAMMA)
C THE SUBROUTINE COMPUTES FIRST BY TuE CALL OF GRAVC THE CONSTANTS TO EE
C USED IN THE fORMULA F09 the ydrmal gravity, the formula fo4 the Normal
C POTENTIAL AND THF CHANGE IN LATITUDE WITH YFIGHT. CDYSTAQTS RELATED TO
C two different reference fields may be used. they fre stored in the
C ARRAY FG IN THE VARIABLES SUBSCRIPTED FROM 1 TO 15 fחr tyF first
C FIELD AND FRCM 16 TO 30 FOP THE SECOND ONF. THE ARRAY FJ CONTAINS THE
C ZOYAL HARMONICS, WITH SIGN OPPOSITE TO THE USUAL CONVENTIONS, CF
C REF(C), EQ. (2-92).
    IMPLICIT INTEGER(I), REAL *&(A-H,M-Z), LOGICAL(L)
    COMMON /DCON/DO,D1,D2,D3
    COMMON /EUCL/X,Y,Z,XY,XY2,OISTO,DIST2
    DIMENSION FG(30),FJ(30),LP(2)
    D4 = 4.000
    D5 = 5.000
    OMEGA2 = (0.7292115150-4)**2
    LP(1+1/15) = .NOT.LPOTSD
    E2 = F*(02-F)
    AX2 = AX*AX
    FG(I+14) = AX
    FG(I+15) = GM
c
    IF (LPOTSO) GO TO 1501
    DO 1550 J = 1, 15
1550 FJ(J+I) = DO
```

```
    FJ(I+1)= D1
    E = DSQRT(E2)*AX
    EM2 = E2/(D1-E2)
    EX2 = AX2*(01-E2)
    BX = OSQRT(BX2)
    M = OMEGA2*AX2*BX/GM
    F2 = F*F
    FM = F*M
    TA = OATAN2(E,BX)
    E3 = E2*AX2
C QO IS THE QUANTITY PEF(C), EQ.(2-58).
    QO = ((D1+03*EX2/E3)*TA-D3*EX/E)/D2
    DO 1551 K = 1, 5
    K2 = 2*K
    DK = OFLOAT(K)
    DK2 = D2*nK
    1551FJ(I+K2+1)=(-1)**K*O3*E?**K*101-DK+D5*OK*(DI-D2/15.0DO*M*E/(BX
        * *Q0))/D3)/((DK2+1)*(0K2+03))
C
C GAMMA IS THE NORMAL GRAVITY AT EUQATOR, CF. REF(C), EQ. (2-105A) ANO
C (2-70). THE FIVE FOLLOWING COEFFICIENTS ARE FOUND IN REF(C) EQ.
C (2-115) AND (2-124).
    GAMMA = (GM/(AX*EX)-(D3/D2*D3*EN2/14)*OMEGA2*AX)*1.005
    FG(I+I) = GANHA
    FG(I+2)=-F+D5*M/D2+F2/02-26*FM/7+15*M*M/04
    FG(I+4)=(-F2+D5*FM)/D2
    FG(I+3)=-D2*GAMMA*(D1+F+M)/AX
    FG(I+5)= D2*GAMMA*(D3*F-D5*M/D2)/AX
    FG(I+6) = 03*GAMMA/AX2
C CF. REF(C), FQ. (2-118),(2-110).
    FG(I+11)=(D2*F-M-F2)/D3+D2*FM/21.000
    FG(I+12)=-D4*F2/D5+04*FM/7.000
C CF.REF(C), EQ. (2.61).
    UREF = GM*TA/E+OMEGA2*AX2/03
    GO TO 1502
C
    1501 GAMMA = 978049.000
    UREF = 62639787.000
    FG(1) = GAMMA
C
C CONSTANTS USED IN INTERNATIONAL GRAVITY FORMULA, CF.REF{C),(2-126),
C (2-131) AND (2-128).
    FG(4) = 4*0.0000059
    FG(2)=0.0052884-FG(4)
    FG(3)=-0.3087772400
    FG(5)=0.0004520600
    FG(6)=7.2650-8
C
    1502 FG(1+13)=(FG(I+2)+FG(I+4) )*6.47512D-2
    FG(I+7)=UREF
```

```
C FG(I+8) CONTAINS THE THIRC DERIVATIVE OF THE NORMAL GRAVITY.
    FG(I+&)= D4*FG(I+6)/(AX*[13)
    RETURN
C
    ENTRY RGRAV(SINLAP,H,I,GREF)
    IF (H.GT.25.OC3 .ANC. LP(1+I/15)) GO 10 1504
C COMPUTATICN OF THE REFEPENCE GFAVITY IN UNITS OF MGAL, CF. REF.(CI,
C PAGE 77 AND 79. H MUST PE IN UVITS OF METERS.
    SIN2 = SINLAP*SINLAP
    GRFF=FG(I+1)*(DI+FG(I +2)*SIN2+FG(I+4)*SIN2*SIN2I
    * +(FG(I+3)+FG(I+5)*SIN2+(FG(I+6)-FG(I+S)*H)*H)*H
    RETURN
C
    ENTRY CLAT(CLA,I,H,RLATP)
    LKSI = .TRUE.
    IF(H.GT.25.003 . ANO. LP(1+I/15)) GO TO 1504
C COMPUTATION OF THE CHANGE IN THE IIRECTION OF THE GRADIENT WITH HEIGHT
C CF. REF(C) EG. (5-34).
    CLA = -FG(I+13)*H*(Z*XY)/DIST2
    LKSI =.FALSE.
    RETURN
C
    ENTRY URFFER(URFF,I,H)
C CCMPUTATIDN OF THE VALUE DF THE NORMAL POTENTIAL* CF. ref(C), EQ.
C (6-14) ANO (6-15).
            LZETA = .TRUE.
            IF (DASS(H).GT.1.OO-3) GO TG }150
            UREF=FE(I+7)
            RFTUQN
C
    1504 LZETA = .FALSE.
C
    1503 T = Z/DISTO
            U = XY/DISTO
            AX = FG(I+14)
            GM=FG(1+15)
            A1 = DO
            AO = DO
            B1 = 00
            BO=DO
            DAI = DO
            DAO = DO
            S = AXIDISTO
            TS = T*S
            S2 = S*S
            K = 11
            C1 = 12.0[0
            CO = 11.0nO
C
C SUMMATION OF LEGENDRE-SERIES REPRESENTING THE NORMAL POTENTIAL. BO
```

```
C WILL HOLD THE OERIVATIVE WITH RESPECT TO THE DISTANCE FROM THE DRIGIN
C AND UAO Ghe eErIVATIVE WITH RESPECT TO THF LATITUDE AFTER THE FINAL
C RECURSICN STEP.
    00 \(1553 \mathrm{~J}=\mathrm{p}\) р 11
    \(F J K=F J(K+1)\)
    \(\mathrm{C} 3=[2-\mathrm{D} / \mathrm{CO}\)
    \(\mathrm{C} 4=\mathrm{CO}\) : S2/C1
    \(\mathrm{A} 2=\mathrm{Al}\)
    \(A 1=A 0\)
    \(A O=C 3 * T S * A 1-C 4 * A 2 * F J K\)
    If (LZETA) GO TO 1555
C
    \(D A 2=D A 1\)
    \(D A 1=0 A O\)
    \(D A O=C 3 *(S * A 1+T S * D A 1)-C 4 * D A 2\)
    R2 \(2=B 1\)
    \(B P=50\)
    \(\mathrm{BO}=\mathrm{C} 3 * \mathrm{~T} * \mathrm{~B} 1-\mathrm{C} 4 * \mathrm{~B} 2+\mathrm{FJK} * \mathrm{CO}\)
    \(1555 \mathrm{C} 1=\mathrm{CO}\)
    \(C O=C O-D 1\)
    \(1553 \mathrm{~K}=\mathrm{K}-\mathrm{I}\)
C
    IF (LZETA) GO TO P554
C GP IS THE DERIVATIVE OF THF NORMAL GSAVITY WITH RESPECT TO DISTO
C (THE DISTANCE FROM THE ORIGIN) AYD GL IS THE DERIVATIVE WITH RESPECT
\(C\) TO THE LATITUCE, CF. REF(C) EQ. ( \(6-20^{\circ}\) ) ANO (6-22).
    \(\mathrm{GL}=(G \mathrm{M} * \mathrm{DAO} / \mathrm{OI} 5 \mathrm{~T} 2-\mathrm{OMEGA} 2 * D I S T 0 * T) * U\)
    \(G P=-G M * B C / D I S T 2+O M E G A 2 * D I S T O * U * U\)
    \(G Z=T * G R+U * G L\)
    \(G R E F=D S \subset R T(G R * G R+G L * G L)\)
    IF (LKSL) CLA \(=-(\) DAFSIN \((-G Z / G R E F)-R L A T P) * 206264.80600\)
    LKSI \(=\).FALSE.
    GREF = GREF*1.005
    RETURN
1554 UREF = GM*AO/DISTO OMEGA2*XY2/D2
    RETURN
    END
    SUBROUTINE IGPOT(GM,AX,COFF,M,NMAXI
C the subroutinf computes the value of the gravitational potfntial and
C THE THREE FIRST ORDER DFRIVATIVFS IN A POINT P HAVING GEODETIC CORR-
C DINATES RLATP, RLONGP AND EUCLIDIAY COOROINATES X,Y,Z. THE POTEVTIAL IS
C REPRESENTED BY A SERIES IN UUASI-VORMALIZEO SPUERICAL HARMONICS, WAVING
C COEFFICIEUTS OF HIGHEST DEGREF NMAX, ALL STORFD IN THE ARRAY COFF.
C THE ALGOOITHM USED IS CESCRIBED IN RFF(D).
    IMPLICIT INTEGER(I,J,K,M,N), LOGICAL(L), REAL \(* 8(A-H,(1-Z)\)
    COMMON /EUCL/X,Y,Z,XY,XYZ,DISTO, DISTZ
    COMMON/OBSER/OBS(20)
```

```
    DIMENSION F(55),G(55),A(25),B(25),COFF(M)
C
C THE ARRAYS P AND B ARE USED TO HOLD THE VALVES OF THE SOLIN SPHERICAL
C HARMONICS OF [IFFFERENT DEGREES, THE SUBSCRIPT OF A OR B IS EOUAL TO
C THE OROFR-1.
C THE ARRAY COFF CONTAINS THF FULLY NORMALIZEO COEFFICIENTS OF THF PCT-
C ENTIAL DEVELOPED IN A SERIES OF NORMALIZED SOLIO SPHERICAL HARMONICS
C UP TO AND INCLUSIVE DEGREE NMAX AND FOUP OUMMY COEFFICIFNTS FQUAL TO
C ZERO. THE CDEFFICIFNTS WILL BE QUAZI-NORMALIZED BY THE SUBRDUTINE.
C F AND G CONTAINS SGUAFEGROOT TABLFS USED IN THE RECURSION PRO-
C CEOURE. GM I S THF PRODUCT OF THF GRAVITATIONAL CONSTANT AND THF MASS
C OF THE EARTH (METERS**3/SEC**2), AX THE SEMI-MAJOP AXIS (METERS),
C OMEGA2 THE SQUARF OF THE SPEED OF ROTATION.
C INITIALIZING CONSTANTS.
    OMEGA2 = (0.7292115150-4)**2
    RADSEC = 206764.80600
    DO=0.000
    D1=1.000
    D2 = 2.000
    NMAX1 = NMAX +1
    N3 =NM AX+3
    N4=2*NMAX+3
C
C THE ZERO GRGER COEFFICIENT IS PUT EQUAL TO ZERO AND TUE CONTRIBUTION
C FROM THIS TERM IS FIRST USED, WHEY THE CONTRIBUTION FROM ALL OTHER
C DEGREES HAS EFEN ACCUMULATED.
    COFF(1)=00
C
C SETTING UP A SQUARE-ROOT TAELE.
    F(1)= DO
    G(1) = PO
    DO 1031 N = 1, N4
    DN = OFLOAT(N)
    F(N+1)= DSGRT(ON*(DN-D1))
    1031 G(N+1) = DSQRT(DN)
C
C THE COEFFICIENTS ARF GOOING TO BE QUASI-NORMALIZED.
    l J = 1
    DO 1033 I= = NMAX
    DN=G(2*(I+1))*1.00-6
    N2=2*I+1
    DO 1032 J = 1, V?
    1032 COFF(IJ+J)= CDFF(IJ+J)*DN
    1033 IJ = IJ N N2
        SQ2=G(2)
        RETURN
C
    EYTRY GPOT(RLATP,COSLAP,RLONGP,IKP,IP,GREF,LREF,CLAI
C THF SUBROUTINE IS HERE USFD TO COMPUTF HEIGHT-ANOMALIFS, GRAVITY-AVD-
C MALIES AYD DEFLECTIOYS (KSI, ETA OR (KSI,ETA)), CORRESPONDING TO THF
```

C VALUE OF IKP = $1 \ldots 5$. THE RESULT IS STOREO IN OBS(IP) AYD OBS(IP 410$)$ C FOR IKP $=5$.
C
$I P 1=1 P$
IF (IKP.EG.5) |PB = IP+10
$U=X / D I S T O$
$V=Y / D I S T O$
$W=Z / D I S T 0$
ADIVR $=A X /[15 T 0$
POT-DO
$D X=D O$
$D Y=D 0$
$O Z=0$
C all IS NOW the value of the solid sph. Harmonic of dfgree o.
$A(1)=01$
$B(1)=C O$
FACT-PI
$A D I V R I=01$
C
DO 7001 I $=2, ~ N 3$
$A(I)=00$
7001 B(1) $=00$
C
DO $7010 \mathrm{I}=1, \mathrm{NMAXI}$
$C 1=D 1$
$A I=D O$
B1 $=00$
$82=$ no
$D A 1=00$
$D B 1=00$
DE2 $=$ DO
DXO $=00$
DYO=D 0
$D Z O=00$
POTO $=00$
$\mathrm{C}=\mathrm{no}$
$I S=(I-1) \neq(I-1)+1$
C
$C 2=01$
$\mathrm{CO}=\mathrm{SO2}$
$A 2=A(1)$
DA2 $=$ COFFIIS 1
1PLUSJ=1
IPLUSI =I +1
IMINJI $=I+2$
$I S=I S+1$
$A R F A C=A D I V R I / F A C T$
C
DO $7005 \mathrm{~J}=1,1 P L U S 1$
IPLUSJ=IPLUSJ+1

```
    1MINJI=1MINJ1-1
    JPLUS1=J+1
    ALFA = F(IPLUSJ)*C1
    ALFA? = ALFA*C2
    BETA = F(IMINJI)*CO
    GAMMA=G(IMINJ1)*G(IPLUSJ)
    C
    C
        AO=A1
        A1 = A2
        A2=A(JFLUS1)
        B0=B1
        B1=82
        B2=B(JPLUS1)
        ALAO=ALFA2*AO
        BEA2=5FTA*A2
        ALEO=ALFA*EO
        BEB2=EETA*E2
        AJ=(U*(ALAO-EFA2)-V*(ALEO+BEB2))/O2+GAMMA*A1*W
        BJ=(U*(ALEO-EEBZ)+V*(ALAO+EEAZ))/D2+GAMMA*BI*W
        A(J)=AJ
        B(J)=EJ
    C
        DAO=DA1
        DA1=DA?
        DC2 = COFF(IS)
        DBO=DE1
        DE1=DB2
        DB2 = COFF(IS+1)
        ALBO=ALFA*DEO
        BEB2=EETA*OR2
        ALAO=ALFA2*DAO
        BEA2=BETA*DA2
        DXO=DXO+(ALAO-BEA2)*AJ+(ALBO-BEB2)*BJ
        DYO=DYO+(ALAO+REAZ) %BJ-(ALBO+BEB2)*AJ
        DZO=DZO+GAMMA*(OA1*AJ +DEI*EJ)
        IS =1S+2
        C1=D1/CO
        C2 = D 2-C
        CO= [1]
    7005 C = D1
C
POT=POT+ARFAC*POTO
FACT=FACT*I
ARFAC=ADIVRI/FACT
C DX,DY,DZ IS THF VALUE OF THE FIRST DERIVATIVES OF THE PQTENTIAL WITU
C RESPECT TO X,Y,Z.
DX=DX-ARFAC*DXO
DY=OY -AFFAC*DYO
```

```
    OZ=DZ-ARFAC*OZO
C
    7010 ADIVRI=ADIVRI*AOIVR
C
C CONTRIEUTION FROM ROTATIONAL POTENTIAL.
                            R\capTX=OMEGA2&X
                            ROTY = OMEGAZ*Y
    ROTPOI = DMEGAZ/D?*XY2
    POT = (DI+POT)*GM/OISTO+ROTPOT
    AO=GM/DIST2
    DX = (U-DX/D2)*AO-ROTX
    DY = (V-DY/D2)*AO-RCITY
    DZ=(W-DZ)*AO
    IF (IKP.LE.2) GP = OSQRT(UX*DX+OY*DY+OZ*DZ)
C GP IS THE GPAVITY IN P.
    CO TO (7006,7007,70\cap8,7009,7008),IKP
    7006 OBS(IP) = (POT-UREF)/GP
    RETURN
    7007 OBS(IP) = GP*1.005-GREF
    PETCQN
    70\cap8 OES(IP) = (DATAN2(DZ.DSQRT(DX*DX+DY*DY))-RLATP)*RADSEC+CLA
    IF (IKP.LT.4) RETURN
    7009 OBS(IP1) = (DATAN2(GY.OX)-RLONGP)*RADSEC*COSLAP
    RETURN
    END
SUBRJUTINE EUCLID(COSLAP,SINLAP,RLONG,H,E2,AX)
C COMPUTATION OF EUCLIOIAN COIRDINATES \(X, Y, Z\), PISTANCF AND SOUARE OF
C DISTANCE FROM Z-AXIS XY, XY? AND DISTANCF AND SQUARE DF DISTANCE FROM
C THE ORIGIN DISTO AND DIST2 FROM GRODETIC COORDINATES REFERRING TO AN
C ELLIPSOID PAVING SEMI-MAJCR AXIS EQUAL TO AX AND SECOND EXCENTRICITY
C EZ.
IMPLICIT INTEGER(IIJ,K,M,N), PEAL *8(A-H,O-Z)
COMMON /EUCL/X,Y,Z,XY,XYZ,OISTO,DIST2
```



```
\(Z=((1.0 D O-E 2) * O N+H) * S I N L A P\)
\(X Y=(D N+H) * C O S L A P\)
\(X Y Z=X Y * X Y\)
DIST2 \(=X Y 2+Z * Z\)
DISTO \(=\) OSQRT(DIST2)
\(X=X Y * D C O S(R L O N G)\)
\(Y=X Y * D S I N(R L O N G)\)
RETURY
END
```

```
    SUPROUTINF RAO(IOFG,MIN,SEC,RA,IANG)
C THE SUEROUTINE CONVERTS FOR IANG = 1,2,3,4 ANGLES IN (1) DEGRFFS, MI-
C NUTEST SECONDS, (2) DEGREES, MINUTES, (3) DECREES AND (4) 400-DEGREES
C TO RADIANS.
    IMPLICIT INTEGER(I,J,K,M,N),REAL*&(A-H,O-Z)
    1=1
    IF (IDEG .LT. 0 .AND. IANG .LT. ミ) 1=-1
    GO TO (1,2,3,4),1ANG
    1SF=I*IOEG*3AOO+MIN*60+SEC
    GO TO 5
    2 SF=1*IDEG*3600+5FC*60
    GO TO 5
    3 SE = SEC*3600
    GO TO 5
4 SE = SEC*3240
5RA=1*SE/206264.80600
    RE TUF?N
    END
    SUEROUTINE HEAD(IKP,LONFCO,FWO,RF)
C OUTPUT OF HEADINGS ANO INITIALIZATION OF THE FOLLOWING VARIABLES: IA,
C IE,IP,IT,II,IAI,IEI,IPI,ITI,I21,I31,ICI,ICII (ALL SUSSCRIPTS OF DIF-
C FERENT OUTPUT QUANTITIES), KZ - K4 (SUESCRIPT BOUNGARIFS FOR OUTPUT
C QUANTITIES), K1 = UPPER LIMIT FOR QUANTITIES READ INTO OBS.
    IMPLICIT LOGICAL(L)
    COMMOV/OUTC/K2,K3,K4,IU,K21,IU1,IANG,LPUNCH,LOUTC, LNTRAN,LNEQNO
        *, LK30
    COMMON /CHEA[I/IA,IE,IH,ID,IT,IA1,IGI,ID1,IT1,ICI,ICII,KI,IOPSI,
    *IOES2,LPOT,LCI,LC?,LCREF,LKM
    LTRAN = .NOT.LNTPAN
    LERNO = .NOT.LNERNO
    K1 = 0
    IF (IOES1.NE.O) K 1 = 1
    GO TO (2008~2009~2010~2011~20lK$)
2008 WRITE(6,204)
    204 FORMAT('O NO LATITUOE LONGITUDE H ZETA (M)')
    GO TO 201E
2009 WRITE(6,205)
    205 FORMAT('O NO LATITUDE LONGITUDE H DELTA G (MGAL)'
        *)
            GO TO 2013
2010 WRITE (6,206)
    206 FORMAT("O NO LATITUDE LONGITUDE H KSI (ARCSEC)"!
            GO TO 2013
2011 WRITE(t,207)
    207 FORMAT('O NO LATITUDE LONGITUDE H ETA (ARCSFC)')
        GO TO 2013
2012 WRITE(6,208)
    2 0 8 \text { FORMATIO NO LATITUDE LONGITUDE U KSI/ETA (ARCSE}
```

```
            *C)01
            IF (IOES2 .NE.O) K1 = 2
    2013 |F (IH.NE.O) K1 = K1+1
            WRITF(t, 267)DWG,RP
```



```
C
            GO TO (2018,2019,2020,2021),IANG
    2018 WRITE(\epsilon,2\capG)
    209 FORMAT(' D M S O M S M M')
                GO TO 2022
    2019 WRITE(6.210)
        210 FORMAT(: O M D M MO)
            g0 TO 2022
    2020 WRITE(6,211)
        211 FORMAT(: DEGFEES DFGRFES M')
            GO TO 2022
    2021 WFITE (6.212)
    212 FORMAT(' GRAUES GRADFS M')
C
    2022 IF (LKM) WRITE(G.213)
    213 FORMAT('+',37X,'K')
C
C WF NOW COYPUTE THE SUPSCRIPT DF THE DIFFFQFYT GUANTITIES. WHICH WILL
C EE STORED FOP LATER CUTPUT IN THF ARRAY OES. THF DIFFFRENCE BETWEFN
C TUE OBSERVATIUN GIVEN IN TUE ORIGINAL AND THE NEW REF.SYSTEM IN
C OBS(ITI, THE CONTKIGUTION TO THE REF.POT. FROM THE HARMOYIC EXPANSION
C IN OBS(IP), THE CONTRIBUTION FROM COLL.I IN OBS(ICI) AND FROM COLL.II
C IN GBS(ICZ).
            ICI=11
            IF (LTRAN) GO TO 2105
            IF(LPOT) GO TO 2102
            IF (LCl) GO TO 2201
            IB = 4
            GO TO 2104
2201 IC1 = 5
            IF (LC2) GO TC 2101
            IE=5
            WRITE (6,250)
    250 FORMAT('+',64X,' PRED')
            GO TO 2104
C
    2101 1B=7
            1C2=6
            WRITE (6,251)
    251 FORMAT('+',63X,' COLLI COLL2 PRED81
            GO TO 2104
C
    2102 IP=5
        IF (LCI) CO TO 2202
        B=5
```

```
        WRITE (t,,245)
    245 FORMAT(1+1,64X,1 POT ')
        GO TO 2104
C
    2202 1C1 = 6
        IF (LC2) GO TO 2103
        IB=7
        WR1TE(6,252)
        252 FORMAT('+',64X,' POT COLL PRED')
        GO TO 2104
C
    2103 IC 2=7
        IB=8
        WRITE (6,253)
        253 FORMAT('+'.64%' POT COLLI COLLE PRED')
    2104 K3 = 1P-4
    IU = IE
    GO TO 2110
C
    2105 IT =5
    IF(LPOT) C3 70 2107
    IF (LCI) GO TO 2205
    IB = 3
    WR 1TE (6,246)
    246 FORMAT(1+1,64X,1 TRP 1)
    GO TO 2103
C
    2205 ICI = 6
        lF (LC2) GO TO 2106
        IB=7
        WRITE (6,254)
        254 FORMAT('+',63X, TRA PRED PRED-TRA')
            GQ TO 2109
C
    2106 IC 2=7
        |B=8
        WRITE (6,255)
    255 FORMAT('+',63X,' TRA COLL1 COLL2 PRED PRED-TRA')
            GQ TO 2109
C
    2107 IP=6
        IF (LCI) GO TO 2208
        IB=6
        WRITE (6,247)
    247 FORMAT('+',63X:' TPA POT PCT-TRA')
    GO TO 2109
C
    2208 IC1 = 7
    IF (LC2) GO TC 2108
    IB=8
```

```
            WPITE(大っ2EG)
        256 FORMAT('+..63X.' TRA POT COLL PRFD PRED-TRA')
            GO TO 210c
C
    2108 102=8
                            1E=9
                            WRITE (6,25.7)
        257 FCRMAT('+'.63X:' TRA POT COLLI COLLZ PRED PRED-TRA')
    2109 K3=19-3
            IU=15+1
C
    2110 IF (LC2) IA = 1C2
                            IF (.NOT.LCREF) 1A = 1C1
C
    IF (LOUTC) GO TO 2125
    IF(LERNO) GO TO 2112
    K2=1
    GG TO 3135
C
    2112 k2=2
                            WRITE (6,260)
        260 FORMAT('+'.43X,* FRR')
            GO TO 2135
    2125 IF(K3.GT.0) GP TO 2127
        K2=2
        WRITE (6,26.1)
        261 FORNAT('+9%43X:' OES'1
            GO TO 2135
C
    2127 IF (LFRNO) GO TO 7128
            K2=3
            WR1TE (6,262)
    262 FORMAT ('+'.43X,' DBS DIF')
    GO TO 2135
C
    2128 K2=4
            WR1TE(6.763)
        263 FORMAT('+•,43X,' OBS DIF ERR!)
C
    2135 K4 = K?
        LX30 = K3.GT.0
        IF (LONECO) GO TO 2111
        IBI= IE +10
        IUI = IU+10
        IAI= IA+1n
        ITI= IT+10
        1P1 = IP+10
        IC11 = 1C1+10
        K4 = ?*KZ-1
        K21=K2+1n
```


C

2111 RETUQY
END

SUBROUTINE OUT(NO, iDLAT,MLAT, SLAT, IOLON, MLON,SLON,LONC)
C THE SUBROUTINE WFITES ON UNIT 6 (Il STATION NUMEER,(2) COMRDINATES,
C (3) DESERVED VALUE (IN ORIG.REF.SYSTEM),(4) DIFFERENCE SETiNFFN OBSER-
C VED AND PREDICTET VALUE, (5) ERROF OF PREOICTION, (6) TRANSFORMATION
C VALUE, (7) SPHERICAL HARMONIC SEPIES CONTPISUTION, (E) QESULT OF COLL
C I AND (9) COLL.II, (10) SUM OF QUANTITIES (7)-(9) AND (11) SUN MF (6)-
C 191 - all if meaningfull. in case we ake dealing witr a paik of de-
C FLECTIONS, (LONC = FALSE), TUE CORRESPONDING QUANTITES FOR ETA ARE
C WRITTEN A LIVE EELOW.
C WHEN LPUNCH IS TRUE, THE FOLLOWING OF THE AGOVE MENTIOVED QUANTITIES
C ARE WRITTEN ON UNIT 7: (1) AND (2), ANO WHEN LOUTC IS TRUE (3) - (5)
C AND ELSE (11), (10) AND (5).
IMPLICIT INTEGER(I, J, K, M, N), LOGICAL(L), REAL *8(A-H,O-Z)
*COMMON/OUTC/1,I1,12,14, I21,131, IANG, LPUNCH, LOUTC, LNTRAN, LNERNO 9 LKこ0
COMMON/OBSER/OBS(20)
DIMENSION CBN(IO)
IF (DAPS(SLAT) .LT. O.10-6) SLAT $=0.000$
IF (DABS(SLON) .LT. 0.10-6) SLON $=0.000$
C THIS IS DONE IN ORDER TO AVOID PRINTING OF SIGN, WUEN TUE ARC-SFCOND C PART IS NEAR TO ZERJ, iOR ZERO IS REPRESENTED AY A SMALL NEGATIVE NUMC BER).

IF (OES(1).COE.1.004) CES(1) $=9999.900$
IF (OBS(1).LE. -1.003) OBS (1) $=-999.9900$
IF (.NOT. LPUNCW) GO TO 8010
IF (LOUTC) GO TD 8007
OBN(1) = OBS(1)
$10=2$
OBN(2) $=\operatorname{DES}(14)$
IF (LNTRAN) GO TO 8031
OBN(3) $=$ OES(14-1)
$\mathrm{IO}=\mathrm{IO} 0+1$
8031 IF (LNERND) GO TO 8032
IO $=10+1$
OBN(10) $=\operatorname{OBS}(I)$
8032 IF (LONC) GO TO 8034
$10=10+1$
OEN(IO) = OES(I31)
IF (LNTRAN) GC 708033
$10=10+1$
OBN(IO) $=\operatorname{CES}(14+a)$
8033 IF (LNERNO) GO TO 8034
$10=10+1$
OBN(IO) $=$ OBS(I21)

```
    8034412=10
    GO TO 8010
C
    8001700 800% M = 1, 1
    80OE ORN(M) = OES(M)
        IF (LTNC) GO TO 8010
            OO &O\capG M = 2.1
    80OQ OBN(M+I-1)= OBS(N+10)
C
    801060 TO 18000,8001,8002,80021,IANG
    8000 WRITE(G,8OOINO,IOLAT,MLAT,SLAT,ICLON,MLCN,SLCN,(ORS(J),J=1,I)
        8CO FORMAT1: ,17,2(15,13,F6.2),F8.2,2F7.2,F6.2,4F7.2)
            IF (LFUNCH) WRITE(7,81OBNO,IULAT,MLAT,SLAT,IDLON,MLDN,SLON,IOBN(J)
            *, J = 1, 12)
        810 FOPMAT(I7,2(14,12,F5.2),7F7.2)
            GO TO 8004
    8001 WRITE(G,801)NO,IDLAT,SLAT,IULON,SLON,IOPS(J),J=1,I)
        801 FORMAT(' ',17,2(IE,F6.2),F8.2,2F7.?,FG.2,4F7.2)
            IF (LPUNCH) WRITE(7,811)NO,IOLAT,SLAT,IDLON,SLON,(CBN(J),J=1,I2)
        811 FORMAT(17,2(15,F6.2),7F7.21
            GO TO 8004
    8002 WRITE(G,8O2)NO,SLAT,SLON,(OES(J),j=1,I)
        802 FORMAT(: ',17,2F14.9,FH.2,2F7.2,F6.2,4F7.2)
            IF (LPUNCH) WRITE(7,812)NO,SLAT,SLON,(OHN(J), J=1,12)
        812 FORMAT(I7,2(F11.6),7F7.2)
C
    8004 IF (IK30) MRITE(E;&03)(OBS!J+4), J = 1, I1)
C OUTPUT OF TRA,POT,CRLLI,CGLL2,PRED,OP DPEG+TPA
    IF (LONC) RETURN
C OUTPUT OF QES,DIFR OR ERR FOR ETA
    IF(I.GT.1) WRITE(K,RO4)(OES(J+10),J=2,I)
    IF (LK30.AND.I.ET.1) WRITE(0.803)(0ES(J+14), J=1. II)
    IF (I.LE.1.ANO.LK3O) WRITE(6.805)(DES(J+14), J=1, I1)
    804 FORMAT(' 1,42X,2F7.2,F6.2)
    803 FORMAT('+ 1,62X,6F7.2)
    805 FORMAT(' ',62X,6F7.2)
        RETURN
    END
    SUBROUTINE COMPA(VG,VF)
C THE SURROUTINE IS USED TO COMFAFE OBSERVEG AND PREDICTFD DUANTITIES.
    IMPLICIT INTFGER(I,J,火,M,N),LOGICAL(L),REAL*E(A-H,O-Z)
    COMMON /OFSFR/OES(2O)
    DIMENSION NUM(70),VARI(18)
    DATA NUM,VARI,DO/70%0.19*0.00DO/
C INITIALIZING VARIAELES FOF FREDICTION STATISTICS.
    RETUR!N
C
```

```
            ENTEY COMPR(IKP,LNGF, LREPEC,LONECO)
            IF (LNG?) 6O TO 2041
            SCALE = VG
            GC TO 204?
    2041 SCALE = VF
    2042 SCALE2 = SCALE/2
C
                            IF (LONECO) I = 1KP-2
                            IF (LREPEC) I = 1
            INN = 1*2 2+1
            INV = I * * +1
            RETURN
C
            ENTPY COMPC(IUS
            J=0
        3028 OES(J+2) = OES(J+2)-OES(J+IU)
            DO 3035 I=1,2
            GO TO (3040,3041,3042),I
    3040 OB1 = OBS (J+2)
            GO TO 304?
    3041 OE1 = DES(J+IU)
            GO TO 3042
    3042 OF1 = OES (J+3)
C OGl IS NON EGUAL TO TUE DIFFEFENCF BETHEEN MEASURED AND PREDICTED
C GUANTITIES.
C COMPUTATION OF SUM ANO SQUARESUM FOR PREDICTION STATISTICS.
    3043 VAPI(1NV+I-1) = VARI(INV+I-1)+0B1
    3035 VARI(INV+1+2)= VARI(INV+1+2)+CB1**?
C COUNTING NUMEER OF CBS CF TYPE IKP.
                            NUM(INN) = NUM(INN) +1
C
            1ND=(DALS(CR1)+SCALFZ)/SCALE
            IF (OEI &LT. DO) INO= -IND
            IND = INO+11
            IF(IND.GT.21.OR.IND.LT.1)IND=22
            INC=INO+INN
            NUM(INO) = NUM(1NO)+1
            IF (LCNFCO) GC TO EO2O
            IF (INN .FQ. 47) GO TO 3036
            INN = 47
            INV = 13
            J=10
            GO 10 3n2&
    #O26 INN = 24
            INV = 7
        3 0 2 9 ~ R E T U R N
C
    ENTRV OUTCOM
C OLTPUT GF PREEICTION STATISTICS.
    J = 0
```

401 FORMAT ©ICOMPARISON DF PPEDICTIONS ANO GBSFRVATIONS'I

$$
\begin{array}{ll}
0+1 \\
v+3
\end{array} 60 \text { T0 } 4020
$$

VARI(I) $=$ VARI(II/NC , IKP
403 FORMAT('OLATITUDE COMPONENT OF DEFLECTION OF THE VERTICAL (KSI)')
GO TO 4006
4005 WPITE 6,404$)$
404 FORMAT('OLONGITUUE COMPONENT OF OEFLECTION OF THE VERTICAL (ETA)')

$$
\begin{aligned}
& \text { *:O OBSERVATIONS } \\
& * \text { MEAN } \quad 3 F 12.21 \\
& \text { IF(NC.FG.1) GO TO } 4007
\end{aligned}
$$

FORNATI'OGRAVITY ANOMALIES')
GO TO 4006
WPITE $(6,403)$

$$
\begin{aligned}
& 1 N V=1 N V+3 \\
& I N W=1 N W+3
\end{aligned}
$$

$$
\begin{aligned}
& \text { INV INW } \\
& \text { RI I I NNC }
\end{aligned}
$$

4006 WRITE $(6,405) N C,(V A R I(1), I=1 N V, I N W)$

$$
\stackrel{10}{8}^{*}
$$

```
\[
\begin{aligned}
& 4007 \text { GO TO (4008,4009,4009), IKP } \\
& 4008 \text { WRITE }(6,407) \\
& \begin{array}{l}
\text { WRITE }(6,408) \\
\text { FORMAT } 1+ \\
\text { GO TO } 4010 \\
\text { WRITE }(6,407)
\end{array} \\
& \text { GO TO } 401 \mathrm{C} \\
& 408 \text { FORMAT }{ }^{4}+1,45 \mathrm{X}, \text { 'MGAL') }^{\prime} \\
& \begin{array}{l}
\left.409 \text { FORMAT( }{ }^{4}+1,45 \mathrm{X},{ }^{\text { }} \text { ARCSEC: }\right) \\
4010 \text { INN }=1: N N+1
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
10 \text { FORMAT(: } 2113,3 \times, 15 / \\
* 0-10-9 \\
* 8-7-6-5
\end{array} \\
& \text { * * OUTSIOE' } \\
& \begin{array}{l}
J=J+1 \\
\text { RETURN } \\
\text { END }
\end{array} \\
& \begin{array}{c}
\stackrel{8}{\mathrm{O}} \\
\underset{+}{+}
\end{array}
\end{aligned}
\]
```

```
            SUBPOUTINE PREDISS,SREF,UO,AA,IS,ISO,II,IC,NC,IMAXI,LPREN,LBST,
                    * LCST)
C THE SUBROUTINE COMPUTES THE COVARIANCES BETWEEN A QUANTITY DF TYPE IKP
C {MAVING COORDINATFS RLONGP, KLATPI AND IC OTHER OUANTITIES HAVIVG COOR-
C DINATES STORED IN THE ARRAYS RLAT, KLONG. INFORMATION ABOUT TUE KIND OF
C QUANTITIES ARE FOUND IN THE ARRAY INDEX AND P.
C because the sugroutine may ee called several timfs for thf same type
C DF QUANTITY SOMF COMMON VARIAELES ARE TRANSFERRED THROUGH /PR/. THE
C INTEGERS II ANO IS GIVES INFORMATION AECUT FROM WHICH PLACE IN THE
C DIFFERENT ARKAYS THE COORDINATES AND DEGREE-VARIANCFS ARE TO RF PICKEO
C UP (ACCORDING TO COLL.I OR II). THE COMPUTEO COVARIANCES ARE STORED IN
C THE ARRAY C. THUS WHEN LSST IS TRUE, THFY ARE FIRST STORED IN APRAY B
C AND LATER TRANSFERRED TO C.
C WHEN LCST IS TRUE, THE PROCEQURE IS USEO TO COMPUTE EITHER THF COEF-
C FICIENTS OF THE NGRMAL EQ. OR THF VECTCE OF COVARIANCES USFD IN THE
C COMPUTATION OF THE ERROR OF PRFGICTICN.
C WHEN LPRED IS TRUE (COMP. OF PREDICTIONS), THE PRODUCT OF THE COVARI-
C ANCES ANO THE SOLUTIONS TO THE NOFMAL-EQ. (FOUND IN B) ARE ACCUMULATED
C IN THE VARIAELE PREDP (RESP. pRFTAP).
            IMPLICIT INTFGER(1,J,K,M,N), LOGICAL(L),REAL *O(A-H,O-Z)
            COMMON /NESOL/C(4700),NCAT(100),1SZE(100),NSL(310),MAXBL,IQ
                COMMON/PR/SIGMA(250), SIGMAO(250),E(1600),P(42),
            *SINLAT(1GOO), COSLAT(1GOO),PLAT(1GOO), RLONG(1600),COSLAF,SINLAP,
            *RLATP, RLONGP,RP,PRETAP,PREDF,PW, LONECO,LNYSIP, LNETAP, LDEFVP, LNOFP,
            *LGRP,LNGP,LKEGI,LKEC3,LKNEI,IVI,NI,NR,KTYPE,INDEX(42)
                COMMON/DCON/OO,DI,D2,DZ
                COMMON /SCK/IK,IKO,IKI,IK2,IKA
C
LIMAX3 = IMAX1.LT. 3
LNBC = .NOT.LBST.AND.LCST
JR = 11
NR = 150+1
SRNEXT = NR
PRETAP = DO
PREDP = OO
C
C COMPUTATIGN OF THE COVARIANCE CORRESPONDING TO ORSERVATION IN P
C AND DBSERVATIONS NUNBER 1 TO IC.
    DO 3019 IR = I. IC
    IIR = IR+ISO
    COSLAQ = COSLAT(IIR)
    SINLAQ = SINLAT(IIR)
    DLAT = RLATP-RLAT(IIR)
    DLONG = RLONGPaRLONG(IIR)
    SINDLA = DSIN(OLAT/02)**2
    SIOLO2 = DSIN(OLONG/D2)**2
C
```

C T IS COSIVF TO THE SPMERICAL UISTANCE EETWEEN P AND Q,CFOREF(B) ER. C (57).
$T 1=\Pi 2 *(S I N O L A+C O S L A P * C O S L A Q * S I O L O 2)$
$T=01-T 1$
C
IF IIIR.NE.JRTEXT) GO TO E005
C GETTING INFIRMATION ABOUT NEXT DATA-SET FROM CATALOGUE JRNEXT $=$ INOEX (JQ)
$I K O=I N D E X(J R+1)$
$P Q W=P(J R) \times P W$
$S D=R P * P(J R+I)$
$S=S S / S O$
$A=A A /(S D * S D)$
$S 2=S * S$
$J R=J R+2$
C
LRFPFR $=I K Q$-EQ. 5
LNDFE $=1 K G \cdot L T \cdot 3$
LNDERI $=$ LNDFP.AND. LNDFQ
LNONDD $=$ LNDFP.OR. $\angle N O F Q$
LGRO $=\mathrm{JKG.EQ.2}$
IF (LGDD.GR.LGRO) IV = 1
IF (LGRP.AND.LGRG) IV $=2$
LIVO $=$ (LNGR.ANC. (.NOT. LGKQ))
IF (LIVO) IV = 0
IF (IV.EQ.IVI AND. DABS(SREF-S).LT. I.OD-n) GO TO 3005
$\operatorname{IVM} 1=I V-1$
$I V I=I V$
C
SREF $=S$
IF (LIMAX3) GO TO 3005
C COMPUTATION OF DEGREE-VARIANCES OF NEW TYDE IF NECESSARY
IF (DABS (SD-E1).CT. 1.OD-8) GO TO 3003
DO $3002 \mathrm{I}=3$, IMAXI
3002 SIGMA $(I+I S)=\operatorname{SIGMAO}(I+I S) *(I-2) * * I V$
GO TO 3005
$3003 S 1=01 /(50 * * 3)$
DO $3004 \mathrm{I}=3$, IMAXI
$S I=S I / S O$
3004 SIGMA $(I+I S)=S I G M A O(I+I S) *(I-2) * * I V * S I$
3005 LREROW = LREPER
C
$T S=T * S$
RLL $=\mathrm{DI}-\mathrm{D} 2 * T \mathrm{~S}+\mathrm{S} 2$
$R L=$ OSQRT(RLL)
$R N=D I-T S+R L$
RLNL $=$ DLOG(D2/DN)
C
C SUMMATION OF LEGENDRE SERIES,CF. REF(A) PAGE $6 G$ F.
$M=1$ MAXI

```
    U1= UO
    AO = 00
    AL=00
    OAO = DO
    DAI= DO
    000=00
    DO1 = DO
    IF (LIMAX3) GO TO 3007
    DO 3006 T = 1, IMAX1
    U2=U1-D1
    U1 = D2-D1/DFLOAT(M)
    UTS = UI*T
    A2 = AI
    A1=AO
    AO = UTS*A1-U2*A2+SIGMA(M+IS)
    M = M-1
    IFILNDERISGO TO 3006
C FIRST DERIVATIVES OF SERIES
    A2 = OA1
    DAI = DAO
    DAO = UTS*DAI-A2*U2*A1*U1
    IF\LNONDOIGO TO 3006
C SECOND DERIVATIVE OF SERIES
    A2 = DOI
    ODI= OOO
    DOO = UTS*DO1-A2*U2 +D 2%DA1*U1
    300Ó CONTLMUE
C
    3007 DML = OI-RL
        IF (LKEQI) GO TO 3120
        T2 = T*T
        P2 = (D3* 12-01)/02
        SP2 = S2*P2
        DTS = D3*TS401
        RM = DPI-TS
        RM2 = RM/Z
        IF (LKEQ3) CALL SUMK(S,S2,RL,RN,T,RL2,DRL2,DDRL2,LNDERI,LNONDD)
C JUMP TO COVARIANCE NOT INVOLVING DEFLECTIONS
    3120 IF &NOERI| GO TO 3014
        DPL= DI+RL
        RNL = RL#RN
            IF (LKEG3) DKC = (OTS/RL+D2-7.000*TS-03*RL)/02
            * +D3*TS*RLNL+SP2*DPL/RNL
C BELOW COMFUTATICN OF FIRST ANO SECOND DERIVATIVES OF CLOSED PARTS CF
C K(P,Q) &NO COVIDELTA G(P):T(Q)) WITH RESPECT TO THE VARIABLE T. CF.
C REF(A) SECTION 8, EQ. (108)-(110), (119)-(121) AND (133)-(135).
C
    IF (IVMI) 3009,3008,3010
    30C8 GO TO (3121.3122.3123),KTYPE
    3121 RLO= OPL/RNL-DI
```

60703130
3122 RLO $=10 M L * O T S / R L-T S\} / D 2+03 * R N 2+D 3 * T S * R L N L+S P Z * D P L / R N L$ GO 703130
3123 RL.O $=10 K C-D R L 21 / 1 K 2$
60 TO 3130
C
300960 TO $13176.3127,31281 \mathrm{HTYPE}$
3126 RLO $=$ TS/RNFRLNL
GO TO 3130
3127 RLO $=(D 3 * 1 S \rightarrow D 1)$ *RLNL+(SP2-TS)*DPL/RNL+TS+DML*(DI-D3*RM2)/RL
G0 103130
$3128 \mathrm{CK}=\mathrm{DML} / R \mathrm{~L}-[3 * \mathrm{TS}+\mathrm{RLNL}+\mathrm{TS} \times \mathrm{OPL} / \mathrm{RNL}$
RLO $=(I K I * D K C-I K 2 * L K E+\cap R L 2) / I K A$
$3130 \mathrm{RLO}=\mathrm{GAO}+A+S 2 \mathrm{RLO}$ IF (LNONOO) 60 TO 3010
C
IF (LKNEI) PL $3=$ RLL*RL
GO TO (31シ1, ड1 こ2, 31 33), KTYPE
3131 RL1 $=(01+D P L * 2 / R N L) / R N$
G0 TO 3135
$3132 R L 1=(03 * T S-D 1) *(02 *[F L / R N L+D 1 /(02 * R L 3))+D 3 *(R L N L+D 1 / R L)$
$* \quad+(S P 2-T 5) *(D P L * D P L * R L+R N) /(R N * * 2 * R L 3)-01 / 02$ GO TO 2135
3133 DDKC $=(D T S / R L 3-7.000) / D 2403 *(R L N L+01 / R L)+6.0 D 0 * T S * D P L / R N L$

* $\quad+5 P 2 *((D P L / P N L) * * 2+D 1 /(R L 3 * R N))$ $D O K B=D 1 / R L 3-D 3 * D 2 * D P L / R N L+T S *(D P L / R N L) * * 2 * D 1 /(R L 3 * R N)$ RLI $=(I K I * D O K C-I K 2 * D O K S+D D R L 2) / I K A$
$3135 \mathrm{RLI}=000+A \times S 2 \% \mathrm{RLI}$
c
3010 LKSIQ = LREPER O OR. IKQ.EQ. 3
$\angle E T A Q=I K Q \cdot E Q \cdot 4$
SINDLO $=$ DSIN(OLONG)
SINDLA $=$ OSIN(DLAT)
C THE DERIVATIVE OF T WITH RESPECT TO THE LATITUOF IN D AND Q. IF (eNOT.LNKSIP) DLAP = -SINOLA*OZ*SINLAP*COSLAQ*SIDLO2 IF (LKSIQ) DLAQ = SINDLA+D2*COSLAP*SINLAQ*SILLCZ
C
3011 IF (LVETAP)GO 103012
C COVARIANCE BETWEFN ETAP AND OTHER FUNCTIONALS IN Q. IF (LNONCDICOVPQ $=$ RLO*SINCLU*COSLAQ
IF(LKSIQ) COVPQ = SINOLO* (SINLAG*RLO-DLAQ*COSLAQ*RLI)
IF(LETAQ) COVPQ $=-$ SINDLO* $2 * C O S L A Q * C O S L A P * R L I+D C O S(D L O N G) * R L O$
IF (LONECO) GO TO 3012
$I F(L R S T) B(N R)=C O V P Q / P Q W$
IF (LNBC) C(NI+NC) = COVPQ/PQH
IF (LPRED) PRETAP = FRETAP + B (NR) $\% C O V P Q$
3012 IF (LNKSIPIGO TO 3013
C COVARIANCE BETWEEN KSIP AND OTHER FUNCTIONALS IN Q. IF (LNONDDICOVPQ $=-R L O * D L A P$
IF (LKSIC) COVPQ = DLAP*DLAG*RLI+(DCOS(DIAT)

```
        *-D2*SINLAP*SINLAQ*S1OLO2I*RLO
            IF|&ETACICOVPO = (OLAP*COSLAP*RLI-SINLAP*RLO|*SINOLO
C
    3012 IF(LDFFVP)GO TO 3018
C COVARIANCE GFTWEEN KSIG,ETAQ AND GRAVITY OR HEIGHT ANOMALY IN P.
    IF(LKSIQ)COVPG = -RLO*OLAQ
    IF(LETAG)COVPQ = -RLO*SINDLO*COSLAP
    GO TO 3018
C
    3014 IF (LKEQ1) GO TO 3034
    RKC = DTS*RM2+((D1-T2)/4.000+P2*RLNL)*S2
    RKB = RM-SF2+TS*RLNL
    3034 IF (IVMI) 3015,3016.3017
C CF,REF(A), EQ.(105),(115) ANL (130).
    3015 GO TO (3141,3142,3143), KTYPE
    3141 RLO= CML+(TS-D1)%RLNL
            GO }70315
    3142 RLO = RKC-RKE
            GO TO 3155
    3143 RLO = (IK1*RKC-IK2*RKB+RL2)/IKA
            GO TH 3155
C
C CF.REF(A), EQ.(106),(116) AND (131).
    3016 GO TO (3146,3147,3148).KTYPE
    3146 RLO = RLNL -TS
    GO TO 3155
    3147 RLO = RKC
    GO TO 3155
    3148 RLO = (RKC-RL2)/IK2
    GO TO 3155
C
C CF,REF(A), EQ.(107),(117) ANO (132).
    3017 GO TO (3151,3152.3153),KTYPE
    3151 RLO = OML/RL-RLNL
        GO TO 3155
    3152 RLO = OML/RL-TS-SP2 +RKC
        GO TO 3155
    3153 RLO = (RKC+IK1*RL2|/IK?
C
    3155 COVPQ = AOtA*RLO
C
    3018 IF(LCST)C{NI) = COVPQ/PGW
        IF(LPRED)FREDP = PRFDP+COVPQ#B(NR)
        NI=NI+1
        NR =NP+1
        IF (.NOT.LRERON.OR.(IC.EQ.IR.AND.(.NOT.LPREDI)) GO TO 3019
        LKSIO =.FALSE.
        LFTAG = -TRUE.
        LREROW = FALSE.
        GO TO 3011
```

3019 CONTYNUE
C END OF LOOP COMPUTINC A NR-1 VECTOR OF COVARTANCES. RFTURN
EMD

SUBROUTINE SUMK (S,S2,RL-TGL.T,RL2,DRL2,ODRL2.LND,LNDO)
C COMPUTATION OF THE SUM CF AN INFINITE LEGENORE SERIES AND ITS FIRST
C AND SECOND DERIVATIVES WITH PESFECT TO THE VARIABLE T, CF REF(A) EQ.
C (72): (96)-(104). THE SUM DLVEDED PY S IS RETURNED BY THF VARIABLE
C RLZ, THE FIRST DERIVATIVE (DIVEDED BY $S * S=S 2$) BY DRLZ ANO THE SECOND
C DERIVATIVE (DIVEDEO SY ऽ*SZ) BY DORLZ.
C THE SUM IS THF SUM OF THE TERMS $1 /(I+I K) * S * *(I+1) *$ (LEGENDRE POLYNOMIAL
C OF ORDER I EVALUATFE IN TJ FROM THREE TO INFINITY.
IMPLICIT INTEGER(I, $\left.J_{g} K, M, H\right)$, LOGICAL(L), REAL * $8(A-H, O-Z)$
COMMON /SCK/IK,IKO,IKI,IKZ,IKA
COMMON /DCON/DO,01,D2,003
RLO $=$ DLOG(D1+D2*S/(01-S+RL) $)$
$R L I=(R L-D 1+T * P L O) / S 2$
RLI $=$ RL/S2
RLO $=$ RLO/S
IF (LND) 60 TO 901
ORLI $=-D 1 /(R L * S)$
DRLO $=S /(T S L * R L)$ ORLI $=(-01 / R L+T * O R L O+R L O) / S$
IF (LNDO) GOTO 901
RL3 = RL考3
ODRLI $=-01 / R L 3$
DORLO $=S 2 *(1 D I+R L) /((T S L * R L) * * 2) * D 1 /(T S L * R L 3))$
ODRLI $=-01 / R L 3+(02 * D R L O+T * D D R L O / / S$
c
$901009021=2$. 1 KO
RI $=$ DFLOAT(I)
$D 21=(02 * R I-D 1 / / S$
$D 11=(R 1-D 1) / S 2$
$R L 2=(R L I+D 21 * T * R L I-011 * R L O) / R I$
$R L O=R L 1$ RLI = RL2 IF (LND) GO TO 902
C FIRST ORUER TERIVATLVE WITH RESFECT TU T. DRL2 $=(D R L I+D 21 *(R L 0+T * D R L 1)-D 11 * D R L O) / R I$ ORLO $=$ DRLI ORLI = DRL2 IF (LNDD) GO TO 902
C SECOND DERTVATIVE WITH RFSPECT TR T. ODRL2 $=($ ODRLI + D2 $1 *(02 * O R L O * T * D O R L 1)-D 11 * D D R L O) / R I$ DORLO $=$ OMRLL OORLI = DORL2
902 CONTINUE

```
    RL2 = RL2-D1/IK-S*T/IK1-(D3*T*T-DI)*S2/(D2*IK2)
    IF (LND) GO TO 905
    DRL2 = DRL2/S-D1/IK1-03*S*T/1K2
    IF (LNDD) GO TO 905
    DDRL2 = DORL2/S2-D3/IK2
905 RETURN
    END
```


Appendix B.

An input example.

The digital numbers written to the left of the input data correspond to the numbers identifying the input specification given in Section 6.

The input example will produce the output shown in Appendix C. It corresponds to the situation described in Section 4, i.e. where three datasets of observations $\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{3} are used for the determination of \widetilde{T}.
1.0
1.1
1.2
1.3
1.31
2.0
2.1
2.2
2.12
$\begin{array}{rr}0.7224 & -0.5755 \\ 0.8804 & -0.2317 \\ -0.1203 & -0.0209 \\ 0.0153 & -0.2185 \\ -0.2009 & 0.0890 \\ -0.0145 & 0.0612 \\ 0.0017 & 0.0621 \\ -0.0859 & 0.2170\end{array}$

 10-127218108999055 0 $0+00$

1.007

ONかo

u \quad GONin

4.31

mondmonr
9

```
    5.0 F T T 1.00 0.10
    5.030 (15,20X,13,13,F6.2,13,13,F6.7,2F7.2.L1)
    5.031 1 2 3 1 0 4 5 5 5 1.0 F F F F F F
    5.033 40216 EJER BAVNEHOEJ 55 58 39.68 9 40 54.90 -5.13 3-61
    40606 VIGERLOESE 54 42 54-22 11 55 55.30
    5.1 F
    5.0 F T T
    5.030 (16,2(13,F6.2),2F7.2,L2)
    5.031 1 2 3 2 4 5 0 2 1.0 F F F F F F
    5.032 1.00 981000-00 T
    4413 54 51.49 9}59.055 6-94 517.58
    3163 54 50.23 12 00.01 17.63 510.18T
    F
    5.0 T T F
        54 30.00 9 00.00 30.00 60.00 1 1 2 1.0156961 F F F
    5.1
    5.0 T T F
##5.02 F 54 30.00 900.00 30.00 60.00 1 1 1 1 1.0156961 F F F
    5.1 F
    5.02 54 30.00 9 00.00 30.00 60.00 1 1 5 1.0156961 F F F
    5.1 F
    5.0 T T F
    5.02 54 30.00 9 00.00 30.00 60.00 2 2 1 1.0 T F F
5.1 T
```

Appendix C.
An output example.
The output has been produced by the FORTRAN program using the input given in Appendix B.

GEODETIC CDLLOCATION.VERSION 20 APR 1974.

MOTE THAT THE FUNCTIONALS ARE IN SPHERICAL APPROXIMATION MEAN RADIUS $=$ RE $=6371 \mathrm{KM}$ AND MEAN GRAVITY 981 KGAL USED。

LFGEND OF TABLES OF OBSERVATIONS AND DREOICTIONS:
ORS = OESEKVED VALUE (WHEN POTH COMPONENTS MF DEFLECTIONS ARE OPSFRVEC ETA FFLOH KSII, DIF =THE IIIFFERENCE EETWEEN OBSERVED THE PESIGUAL NECEDVATION, FRR = FSTIMATFD FRODR OF PREDICTION TQA = CO:TPISUIINY FPOA OATUM TRANSFOPMATIO4, POT = CONTRICITION FO OM POTENTIAL COEFFICIFNTS, COLL = CONTRIBUIIONFROM COLLOCATICN GETFRMINED PART OF ESTIMATE, WHEN THERE ONLY HAS BEEN USED ONE SET OF OBSFRVATIONS (DIFFERENT FROM POT-COEFF.I COLLI = CCNTRIEUTION FROM ESTIMATE OF ANOMALOUS POT. DETER MREM PREDICTFD VALUF IN NEW RFFERENCE SYSTEM, WHEN PREDICTIONS ARE COMPUTE ARO ELSE THE SUM OF THF CONTPIEUTIONS FROM THE POT COEFFICIENTS AND FIRST ESTIMATE OF AYOMALDUS FOTENTIAL, ANO PRED-TRA = PREDICTION RR SUM OF CONTRIBUTIONS IN THE OLD REFERENCE SYSTEM.

REFFREYCE SYSTEM:
EUROPEAN DATUM. 1450.
$\mathrm{A}=6378388 \mathrm{O}$
$/ F=297.00040$
EF.GRAVITY AT EQUATOR $=978049.00 \mathrm{MGAL}$
POTFNTIAL AT REF.ELL. $=62639787.00$ M**2/SEC**2
INTERNA TIONAL GRAVITY FORMULA* POTSDAM SYSTEM.
$\begin{array}{ccc}\text { NEW A } & \text { NEW GM } & \text { NEH } 1 / F \\ 6379143.0 & 0.390601 & 20+15 \\ 298.25000\end{array}$

$D L$	$D X$	$D V$
$0.52 D-05$	-111.1	-111.5

EPS1 EPS2 EPS3

NEW REF. GRAVITY AT EQUATOR= $97 R 032.67 \mathrm{MGAL}$ NEW POTENTIAL AT ELLIPSOID $=62636916.84 \quad$ M**2/SEC**2

```
DEFLECTIONS AND HFIGHT ANOMALIES CHANGED IN
LATITUDE LONGITUDE BY DKSI DETA DZETA
55 30
```

SOURCE OF THE POTEVTIAL COEFFICIENTS USED:
R.H.RAPP, THE GEOPOTENTIAL TO (14,14) ETC., IUGG, LUCERNE, 1967.
$\begin{array}{cccc}\text { GM } & \text { A } & \text { COFF(5) } & \text { MAX.DEGREE } \\ \mathbf{0 . 3 9 8 6 0 1 2 2 0 + 1 5} & 6378143.0 & -484.1803 & \mathbf{8}\end{array}$
start of collocation I=
THE mODEL ANOMALY oEGREE-VARIANCES ARE EQUAL TO
A - ($11-2$)*(1+ 24)).

the following quantities are mean-Values, and are represented as point values in a hedght Re

no	latituoe		LONGITUDE		H	DELTA G (MGAL)		ST.VAR. $=27.98$,		RATIO R/RE = 1.0025554,	
		M		M	M	OBS	DIF	TRA	POT	- TRA	
937269	56	30.00	9	0.0	0.0	18.00	-5.26	-6.69	16.57	23.26	
937271	56	30.00	11	0.0	0.0	10.00	-13.19	-6.69	16.50	73.19	
937273	56	30.00	13	0.0	0.0	27.00	3.93	-6.69	16. 37	23.07	
937289	55	30.00	9	0.0	0.0	26.00	3.50	-6.47	16.02	22.50	
937241	55	30.00	11	0.0	0.0	12.00	- 10.43	-6.48	15.96	22-43	
937293	55	30.00	13	0.0	0.0	6.00	-16.32	-6.48	15.84	22.32	
937309	54	30.00	9	0.0	0.0	5.00	- 16.67	-6.25	15.42	21.67	
937311	54	30.00	11	0.0	0.0	10.00	-11.61	-6.25	15.36	21.61	
937313	54	30.00	13	0.0	0.0	2.00	- 19.51	-6.25	15.25	21.51	

STAFDARD DEVIATIONS OF THE OBSERVATIONS IN THE SAME SEQUENCE
AND IN THE SAME UNITS AS THE OBSERVATIONS:

SOLUTIONS TO NORMAL EQUATIONS:
$-0.98301161300-01-0.57126957130+000.76922964870+00 \quad 0.80152811840+00-0.44450525120-01$ $-0.50637711980+00-0.71472871840+00 \quad 0.51066680190-01-0.50623471140+00$
the solutions have been computed in a previous run.
NUMEER OF EQUATION $=9$
normalized square-sum of observations
NORMALIZED DIFFERENCE BETWEEN SQUARE-SUM OF OBSERVATIONS AND NORM OF APPROXIMATION

START OF COLLOCATION II:
VARIANCE OF POINT GRAVITY ANOMALIES TME FACTOR A
90 OEGREE-VARIANCES EQUAL TO ZERO
$\begin{array}{ll} & 0.999800 \\ = & 170.00 \mathrm{MGAL}\end{array}$
$=\quad 170.00 \mathrm{MGAL} * 2$
$=\quad 65.83 \mathrm{MGAL} * * 2$

dbservations

	NO	$\underset{\mathrm{D}}{\operatorname{LAT} I} \underset{\mathrm{M}}{\mathrm{M}}$	$\begin{gathered} \text { LONGI TUOE } \\ \mathrm{OH} \mathrm{~S} \end{gathered}$	$\begin{aligned} & H \\ & M \end{aligned}$	$\begin{gathered} \text { KSI/ETA } \\ \text { OBS } \end{gathered}$	$\begin{aligned} & \text { (ARCSEC) } \\ & \text { OIF } \end{aligned}$	$\underset{\text { TRA }}{\text { ST.VAR。 }}=$	$\begin{gathered} \text { 1.95, } \\ \text { POT } \end{gathered}$	RATIOR COLL	$\begin{gathered} \text { RE }=1 . \\ \text { PRED } \end{gathered}$	$\begin{aligned} & .0000000 \\ & \text { PRED-TRA } \end{aligned}$
	40216	555839.68	94954.90	0.0	-5.13	-3.99	0.86	-0.07	-0.20	-0.28	-1.14
					3.61	4.21	3.93	1.71	1.62	3.33	-0.60
	40621	555756.16	$12 \quad 20.37$	0.0	-2.20	0.66	0.78	-0.13	-1.95	-2.08	-2.86
					-0.37	1.97	3.80	1.98	-0.52	1.47	-2.34
	40058	54581.40	95832.48	0.0	-5.13	-2.42	1.00	-0.25	-1.45	-1.71	-2.72
					1.11	2.33	3.96	1.72	1.01	2.73	-1.22
	40606	544254.22	115555.39	0.0	-1.34	0.28	0.97	-0.34	-0.32	-0.66	-1.62
					1.00	2.11	3.85	1.96	0.78	2.74	-1.11
	No	catitude	LONGI TUDE	H	2ETA (M)		ST.VAR. $=$	0.37.	RAT I O R	RE $=1$.0nocono.
		O M S	D M S	H	OBS	DIF	TRA	-	COLL	PQED	PRED-TRA
	28	555238.51	125038.93	0.0	20.40	-0.07	22.55	46.20	-3.18	43.02	20.47
	No	LATITUDE	LONGITUOE		DELTA G 1	(MGAL)	ST.VAR. $=$	13.04,	RATIO R	RE $=1$. 00000000
		D M	0 H	H	OBS	DIF	TRA	POT	COLL	PRED	PRED-TRA
	261301	$56 \quad 4.90$	$10 \quad 0.34$	70.60	37.49	21.61	-6.60	16.32	-7.04	9.28	15.88
	700181	$56 \quad 7.10$	1157.00	0.0	-5.70	-19.90	-6.61	16.25	-8.66	7.59	14.20
ω	4413	5451.49	59.55	6.94	17.20	5.69	-6.33	15.61	-10.44	5.18	11.51
	3163	5450.23	120.01	17.63	14.89	8.68	-6.33	15.52	-15.64	-0.12	6.21

standaro deviations of the observations in the same secufnce
$\begin{array}{llllllllll}\text { AND } & \text { IN } & \text { THE } & \text { SAME } & \text { UNITS AS } & \text { THE } & \text { OBSERVATIONS: } & & & \\ 0.30 & 0.30 & 0.30 & 0.30 & 0.30 & 0.30 & 0.30 & 0.30 & 0.0 & 0.20\end{array}$
OEFFICIENTS OF NDRMAL-EQUATIONS, BLOCK 1

1.0237	0.0	1.0237	0.0512	0.0032	1.0237	0.0005	-0.1358	0.0	1.0237
-0.1328	0.0182	-0.0391	-0.0662	1.0237	0.0181	0.0907	-0.0632	-0.0597	0.0
1.0237	-0.0479	0.0488	-0.1348	-0.0090	0.0547	0.0440	1.0237	0.0461	-0.0426
-0.0089	0.0482	0.0419	-0.1278	0.0	1.0237	0.0009	-0.0240	0.0746	-0.3934
0.0099	0.0168	-0.1508	-0.0662	1.0000	-0.0780	-0.2589	-0.0105	0.0898	-0.0968
-0.0015	0.0080	-0.0082	-0.0968	1.0002	-0.0108	-0.0787	-0.3605	0.1171	-0.0051
-0.0048	-0.0378	-0.0003	0.2441	-0.0298	1.0002	0.0945	-0.0078	0.0047	0.0051
0.3743	-0.0333	-0.0132	0.0929	-0.0877	-0.0413	-0.0462	1.0002	-0.0014	0.0016
0.0936	0.0019	0.0081	-0.0835	-0.36111	-0.1160	-0.0386	-0.0461	-0.0444	-0.0365
1.0002	-2.0488	2.1613	0.3411	1.0083	-1.2433	1.1969	0.1459	1.0804	-0.1945
1.6571	-1.5266	0.4366	0.6654	19.9161					

SOLUTIONS TO NORMAL EQUATIONS
$-0.20011160360+01 \quad 0.26359065030+01-0.37611424140+00 \quad 0.19163451750+01-0.19090748910+01$ $0.13470935840+010.57353237030+000.15419180570+010.16381875390+010.16499035950+01$ $\begin{array}{rl}-0.19071606430+01 & 0.14332485970+01 \\ -0.13106388510+01\end{array}$

RUMEER OF FCUATIONS $=13$
NORMER OF FCUATIONS $=13$
NORMALI ZED DIFFERENCE BETWEEN SQUARE-SUM OF $=0.1991610 * 02$
OBSERVATIONS AND NORM OF APPROXIMATION
$=-0.4244870+01$

predictions:

40218	$\begin{aligned} & \text { LATITUDE } \\ & \text { D M S } \end{aligned}$	LONGITUDE D M S		KST/ETA OBS	$\begin{aligned} & \text { (ARESEC) } \\ & \text { DIF } \end{aligned}$	$\text { ST.VAR }=$		1.95.	Ratio	R/RE = COLL2	1.0000000 ,				
	555839.68	94954.90	0.0	-5.13											
								0.01	-0.20	-3.90	-4.18	-5.04			
40606	544254.22	1155	0.0	-1.34		0.30	3.93	1.71	. 62	4.09	.42	3.19			
				1.00	0.07	-	0.97	-0.34	-0.32	- 0.26	-0.40	-1.37			
				1.00	0.07	0.30	3.85	1.96	0.78	2.03	4.78	0.93			
NO	$\text { LATITUDE } \underset{D}{M}$	LONGITUDE	H DELTAOBSOBGALDIF			ST.VAR. $=13.04$, RATIO R/RE $=1.0000000$, ERR TRA POT COLLI COLL? PRED PRED-TRA									
4413	5451.49	59.55	6.94	417.20	0.00					4.59	10.86	17.20			
3153	5450.23	$12 \quad 0.01$	17.63	314.89	0.00	0.20	-6.33	15.52	-15.84	4.67	88.55	14.88			
NO	$\text { LATITUDE } \underset{D}{\text { M }}$	LONGITUDE	$\underset{\text { KM }}{\text { M }}$ (DELTA ${ }_{\text {ERR }}$ (MGAL)			$\text { ST.VAR. }=$		0.90 ,	RAT10 R/RE $=1.0156956$,						
						COLL1	COLL2		PRED P	ED-TRA					
$\frac{1}{2}$	5430.00	90.0	100.00	0.80					-4.31	13.60	-6.56	-0.24	46.81	11.12	
2	5430.00	100.0	100.00	0.0 .74			-4.31	13.57	-7.77	-n. 25	56.05	10.36			
3	550.0	90.0	100.00	0.74			-4.40	13.85	-5.40	0.41	8.80	13.20			
4	550.0	100.0	100.00	0.67			-4.40	13.82	-6.49	0.29	7.62	12.01			
No	LATITUOEE	LONGITUDE	$\begin{gathered} \mathrm{H} \\ \text { KM } \end{gathered}$	$\underset{\text { ERR }}{2 E T}$ (M)		St.VAR. $=$		0.06, RATIO R/RE $=1.0156956$,							
						st.var	TRA								
1	5430.00	0.0	100.00	00.05			27.80	48.69	-2.48	-0.01	44				
2	5430.00	100.0	100.00	0.05			26.55	46.17	-2.65	-0.01	43.51	15.40			
3	550.0	90.0	100.00	0.05			27.50	46.73	-2.38	0.03	44.38	15.98			
4	550.0	100.0	100.00	0.04			26.27	46.22	-2.55	0.02	43.68	17.41			
no	$\begin{aligned} & \text { LATITUDE } \\ & \text { D M M } \\ & 5430.00 \end{aligned}$	LONGI TUOE	$\begin{array}{r} \mathrm{H} \\ \mathrm{kM} \end{array}$	KSI/ETA (ARCSEC) ERR		St.var. $=$		$0.14,$							
						stovar	${ }_{\text {TRA }}=$		COLLI	R $\mathrm{RE}=1$	1.0156956	-TRA			
1		90.0	100.00	00.12			1.10	-0.19	-0.25	-0.11	-0.56	-1.66			
				0.12			4.03	1.57	0.60	-0.02	2.16	-1.87			
2	5430.00	. 100.0	100.00	00.11			1.07	-0.22	-0.21	-0.09	-0.52	-1.58			
				0.12			3.97	1.69	0.44	0.01	2.14	-1.83			
3	550.0	0.0	100.00	00.12			1.03	-0.12	-0.49	-0.16	-0.76	-1.80			
				0.12			4.01	1.57	0.61	-0.04	2.15	-1.85			
4	550.0	$10 \quad 0.0$	100.00	00.11			1.00	-0.14	-0.46	-0.13	-0.73	-1.72			
				0.11			3.95	1.69	0.51	0.07	2.26	-1.69			
No	latitude	LONGITUDE	H	ZETA (M)		$\text { ST.VAR }{ }_{\text {TRA }}=$		0.37	RATIO R/RE $=1.0000000$,						
	D M	D M													
1	5430.00	0.0	0.0	0.34			27.80	49.21	-3.57	-0.10	44.55	16.75			
2	5430.00	100.0	0.0	0.31			26.55	47.69	-3.65	-0.15	43.89	17.34			
3	5430.00	110.0	0.0	0.30			25.33	47.13	-3.80	-0.04	43.29	17.96			
4	550.0	90.0	0.0	0.32			27.50	48.28	-3.02	0.17	45.43	17.93			
5	550.0	100.0	0.0	0.24			26.27	47.77	-3.36	0.20	44.61	18.34			
6	550.0	110.0	0.0	0.29			25.07	47.21	-3.67	-0.05	43.49	13.42			
7	5530.00	90.0	0.0	0.31			27.23	48.33	-2.43	0.37	46.27	19.05			
8	5530.00	100.0	0.0	0.27			26.01	47.82	-3.00	-0.19	45.00	18.99			
9	5530.00	110.0	0.0	0.30			24.82	47.27	-3.44	-0.11	43.73	18.90			

190418991890
179218331842
167517331795
comparizon of preoiciolons mno observations GRAVITY ANOMALIES
NUMBER: $\quad z$
 $\begin{array}{lrrr}\text { MEAN } & 16.04 & 16.04 & 0.00 \\ \text { VARIANCE } & 2.68 & 2.68 & 0.00\end{array}$ DISTR PJUT ION OF DIFFERENGES UNIIJ
0
0 0

 $\begin{array}{lrrl}\text { MEAN } & \text { OSSER } \\ \text { VARINNCE } & -3.23 & -3.20 & -0.0: 3 \\ & 7.16 & 6.74 & 0.011\end{array}$

 $-10-9-2$| | 7 | 6 | -5 | -4 | -3 | -1 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | LONGITU DE CM PDNENT OF DEFLECTION OF OHE VEO TCAL IET,

NUMGER:
2

$\begin{array}{rrrrrrrrrrrrrrrrrrrr}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0-10 & -9 & 0 & -0 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & z & B & 4 & 5 & 6 & i & 8 & 9 \\ 10 & 0 & 0 & 0\end{array}$

