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ABSTRACT

In stepwise collocation, the estimation procedure is split
up into two steps, corresponding to a partitioning of the co-
variance matrix to be inverted. Formulas for signal and parameter
estimates and for their error covariances are derived and inter-
preted statistically. Stepwise adjustment by parameters and by
conditions is exhibited as special cases of stepwise collocation.
Sequential collocation is an extension of the procedure so as to
comprise several steps. Finally, the relation between sequential
collocation and Kalman filtering is considered in some detail.



FOREWORD

This report was prepared by Helmut Moritz, Professor, Technische
Hochschule Graz, and Adjunct Professor, Department of Geodetic Science of
The Ohio State University, under Air Force Contract No. F19628-72-C-0120,
OSURF Project No. 3368Al, Project Supervisor, Urho A. Uotila, Professor,
Department of Geodetic Science. The contract covering this research is
administered by the Air Force Cambridge Research Laboratories, Air Force
Systems Command, Laurence G. Hanscom Field, Bedford, Massachusetts,

with Mr. Bela Szabo, Project Scientist.



CONTENTS

1. Stepwise Collocation

2. Covariances

3. Results and Statistical Interpretation
4. Stepwise Adjustment as a Special Case

5. Sequential Collocation; Relation
to Kalman Filtering

APPENDIX. Prediction and
Adjustment by Parameters

References

vii

12
22

27

40
43



1. Stepwise Collocation

It is frequently convenient to split up the estimation
by collocation into two steps, just as in ordinary least-
squares adjustment. This may be done to reduce the size of
matrices to be inverted; another application is the use of
additional observations to improve the original estimates.

We start with the basic equations of collocation:

X = (ATC 1Ay~ taTe iy, (1-1)
s, = CoCTH(x - AX) (1-2)

cf. (Moritz, 1972, eqs. (2-35) and (2-38)). In these expres-
sions, x is the vector comprising all observations, So

is a signal to be estimated, X is the vector of parameters
to be estimated, C 1is the covariance matrix of the obser-
vation vector x , CP is the covariance matrix between the
vector x and the signal Sp s and T denotes the trans-
pose; thus CP is a column vector and Cg is the corre-
sponding row vector. The matrix A 1is the "sensitivity
matrix" characterizing the effect of the parameters X on

the observed values x according to
x = AX + s + n . (1-3)

(Moritz, 1972, eq. (1-2)).
Now we split up the observations x into two parts,
the first part making up the vector x, , and the second

1

part forming the vector X, Thus the observation vector x

is partitioned as follows.



X = (1-4)

(note that X4 and x, are themselves vectors!). The ma-

trices C and Cg are partitioned accordingly:

C C
C - 11 12 , (1_5)
C21 C22
T - . -
Cp = [Cpl sz] ’ (1-6)
e.g., C12 denotes the covariance matrix between the vector
X, and the vector Xy s and CP1 denotes the covariance ma-
trix between So and X, o In the same way we partition the
sensitivity matrix:
A1
A = : (1-7)
A2

thus A1 characterizes the effect of X on Xy o and simi-
larly for A2

Using this partitioning we wish to split up the estima-
tion by (1-1) and (1-2) into two steps. Let us first consider
the estimation of the parameters X by (1-1), For this pur-

pose we need the partitioned inverse matrix ¢l Writing
C = (1-8)

we have the well-known relations (cf. Faddeeva , 1959, § 14):



~ _ -1 -1
Bzz - (C22 C21C11C12) ’
B,. = -C7lc. .8 B.. = -B_.C. . C.} (1-9)
12 11°12°22 ° 21 22721711 °
P B | P -1 -1
B11 - C11 C11C12821 N C11 + C11C12822C21C11
Using these relations we find
_ B B A
ATE-1a = | AT AT 11 12 1]
! 2l B A
21 22 2
_ 4T T T T
N A1B11A1 * A1B12A2 * A2Bz1A1 * AszzAz
_ aTa-1 T ,Tp-1 B -1
- A1C11A1 * (Az A1C11C12)822(A2 C21C11A1)
With the abbreviations
- _ _ ...1 _
A2 = A2 C21C11A1 . (1-10)
_ pTp-1 -
P, = ACILA (1-11)
this becomes
Ta-1, _ 7T 7 _
ATCTTA = P+ ALB AL . (1-12)
The inverse matrix is then given by
Tz-1,\-1 _ p~1 _ p=15T,n=1,5 p=15T\~17 p-1 _
(A°CTPA) T = P Py AL (B, +A P A) AP (1-13)



This is readily proved by multiplying the right-hand sides
of (1-12) and (1-13): after some straightforward algebra
the unit matrix results as it should be.

With the new abbreviation

= B _ -1 = —-1=T
sz B C22 C21C11C12 * A2P1 AZ

(1-13) becomes"

Tr-1,\-1 _ p-1 _ p=13Tz-1f -1
(ATCTPA)Th = pUt - PUTADEL AP

We further have
ATE= 1y = [AT AT] Biy Bys

Tg

. T
= A1 11x1 + AlB

12%2 2

and substituting (1-9) and using (1-10) we obtain

+ ATB

(1-14)

(1-15)

(1-16)

The substitution of (1-15) and (1-16) into (1-1) gives

X = (AT¢ Ay~ taTc 1y

o= 1,T~-1 _ p-15Tr-17 p=1,Tn~~
- P1 A1C11x1 P1 A2C22A2P1 A1C11 1

“lopt1RTE IR pTY)AT

+(P1 1 272221

2Boa(x5=Cyy

(1-17)



The first term on the right-hand side is

Cp=1,Ta-1,  _  aTp=1p y=1,Ta~1 )
Ky = PoACyaxg = (AC A TAC Xy s (1-18)

which is nothing else but the least-squares collocation esti-
mate of the vector X on the basis of the partial observation
vector Xy only, as the comparison with (1-1) shows.

The last term on the right-hand side may be transformed
as follows:

-1_p-13Tz~17 p=1,7T B
(PL1-PT AT, ,A P AT, =

2722727 22
-17T -1 1=T
P1 A2(I'C22A2P1 Az)Bzz

_ o=17Tr=-1,-1 B
- P1 A2C22822822 -

_ p-13Ta-1 | .
= PATESS (1-19)

here we have used (1-9).
In view of (1-18) and (1-19), eq. (1-17) reduces to

X = X, + P_YATE  (x -c, ¢t

1 ARG, (xy=Cy Chyx ALK ) (1-20)

This is the required equation for the parameter vector X

The first term on the right-hand side represents the esti-
mate (1-18) on the basis of the first part, Xy o of the
observations x ; the second term expresses the improvement
of the estimate by using, in addition, the second part, x. ,

2
of the observations.



Now we shall effect a similar transformation for the
signal estimate (1-2). Putting

z = x - AX , z = = (1-21)

[72]
vl
"
—
(gp]
Lav)
—
(]
el
N
— )
[N
—
—
N
-

= (C..B, +C__B

p1B11%Cp,By02, ¥ Cp,B

p1812%Cp,B55)2,

whence, by (1-9),

-1 -1
C,,C71C,,)B,,(2,-C,.Cliz ). (1-22)

~ -1
sp = CpyC P2 “P1°11°12

p p1C112y * (C

22(

By (1-21) we have

z, = x, - AX = x, - AX - A (X-X), (1-23)
z.-C. . Cc Yz = x.  -AX-cC..cTix. +c..citax
2 T Y21711% 2 2 211151 217117
= x. -C..C i - E.x
) 2171171 2
_ _ -1 _ I _ R _ _
= x, = €, CTix, - AX = A (X-X,), (1-24)

using (1-10).



We note that

SP,

1

P1 11

1

) “loy
= €, Cli(x,- AX,)

is the estimate of the signal

observation vector

shows.
comes

Using (1-23),

S - C

X

C,

1

only, as the comparison with (1-2)
(1-24) and (1-25), eq.

A

P,1 P1711 1

(CppmCpyC

(sz'cp1C1

The substitution of
unit matrix,

where we

h

(C

C

Sp 1t [(CP2 C

—1
CP1C11 1 1

s + RC

1

1
1

C

12)

X-X

1

IAT

-1

2 2

P, 1 22 (X"

ave put

-¢c_. ¢t

-1 -
P1C11A1P1

C

P2 "P1 11712

T
A2

)B

(1-25)

on the basis of the partial

(X-X ) +

B

222

11 12)B22(

A

-C..CTix

2171171

(X-X,)

BAPLE

by (1-20) gives,

C

2](x -C

-C

21 11 1

22(

-1
P1°11°12

C.

C

C

22

) (I A

1
21C11 1

- X,)

-A pTRT

2°1 2

)

-A

'R

2%1)

)

(1-22) then be-

I denoting the

T=-1
2C22

)

(1-26)



By (1-9) and (1-14) we find

= = -1:T, _
B22(622 - R,Py Ay) I,
so that
B _ -1 _ -1 -1=T
R = sz Cp1C11C12 CP1C11A1P1 Az )

Hence (1-26) becomes

1

_1 -
X,=Cp Coix =R X ) + (1-27)

_ -1, -1, p-13Ty\ & -
+ (C,,-C,,C1C ,-Co CTIA PTIAT)E S (x,-C,, C]

P2 “P1°11712 17117171 72
This is the required equation for stepwise estimation of

the signal, together with (1-25). It is analogous to the cor-
responding equation for X and has the same interpretation.

2. Covariances

We shall now transform the expressions for the covariances
in a similar way, by partitioning the original expressions
given in (Moritz, 1972), eqs. (3-33), (3-37), and (3-39). Using
a slightly changed notation, these expressions read:

_ o aTa-1l,y-1 _ -1 _
Ep = (ATTThM)Th =t (2-1)
. p=1,Tz-1 }
E.p = -PTIATCT e, (2-2)
o =¢C__ -cTe e+ cTetapTiaTe e . (2-3)

PQ PQ P Q P Q



Here EXX denotes the error covariance matrix of the param-

eter vector X, EXP is the error covariance matrix between
X and the signal Sp o and b denotes the error co-
variance between the signals Sp and sQ . The notations
on the right-hand sides are the same as in eqs. (1-1) and
(1-2).

The transformation of (2-1) by partitioning may be
written down immediately using (1-15): we have

_ p-1 _ p~l3Tz-13 p-1 _
Exx = P - Exx,1 Py A2C22A2P1 ’ (2-4)
where
E = pot (2-5)
XX, 1 1
The corresponding transformation of (2-2) is also
easy if we note that, apart from the minus sign, (2-2)
differs from (1-1) only by
X C
X = ! being replaced by CP = LF ;
X2 Cop
cf. (1-4) and (1-6), with C._ = CZ C.. = CI. . Writ
: : ip ~ “p1 * “2p _ °“p2 - "MItE

(1-20) in the form

) -15Tz-1,  _ -1, 5 p-1,Ta-1
X = X1 + P1 A2C22(x2 C21 AP, "AC, . X

Craxy=RAP AL xy)

and perform the replacement indicated, also changing the
sign. This gives at once

~ _ p-lgTa-1 _ -1 % p-1,TA-1 _
ExP - EXP,l P1 A2C22(C2P C21C11C1P A2P1 A1C11C1P) » (2-6)

where, by (2-2)
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_ _p-1,Ta-1 _
Exp,1 = PTALC G (2-7)

The partitioning of the remaining equation (2-3) is
more laborious. Consider first the second term on the
right-hand side of (2-3). Using (1-9) we find

-cTe~lc = -|c C B11 B12 C1Q
P 0 P1 PZ] B B C
21 22 2Q
= -c_clc. - (c..-c_.c’tc. . yB..(Cc. ~C..cTic. )
Pl 11719 P2 P1711°12 22 29 21711719
(2-8)

By (1-16), with Cg replacing AT and A replacing x ,
we have

CoCTTA = CoiCrphy + (CppCpiC11Cy2)Bo0R, (2-9)
and from (2-2), (2-6), and (2-7) we get

P“lATC'lcQ - leAfc;ile ¥ PIIE§C;;C2Q (2-10)
with

C2Q = Cho - C21C11C1Q B AzpzlATC;iC1Q ‘ (2-11)

On multiplying (2-9) and (2-10) and taking (2-8) into
account, eq. (2-3) becomes

(C. -C..clc. ) +

-1
C,,)B 20 21711719

Opg © © - (Cpp-CpiCyiCy,y

PQ PQ,1 22

-1 i p=1,Tr-1 z p-13Ta-1%
(070 010 5) By (AP A1Ci1CigthaPy A2C22C2Q) !

-1, p-13Tz-1z7 .
+ CP1C11A1P1 A2C22C2Q (2-12)



11

where

= _ -1 -1 -1,T~-1 _
9p0,1 - Cpg T Cp1CiiCig * Cp Oy AP TACIC (2-13)

Using (2-11) we may transform (2-12) as follows:

_ . ) -1 = 7 p-1fTa-1g
950 = Ipg,1 ~ (CppmCp 0 30 0By, (Lyg-RyP AL 50,0) +

-1, p-13Ta-1x
CpiCi1A Py A2C22C2Q

+

= %9g,1 (sz'CP1CIiC12)Bzz(czz"ﬂzpzlﬁgcgéczg *
* CpiCTAPT AT a0 -
By (1-9) and (1-14),
B,y(Cyp - szzlﬂz) - BzzB;; =1,
so that we finally get the simple result.
%0 = %po,1 " EPZC;;CZQ . (2-14)

Equations (2-4), (2-6), and (2-14) are the desired
expressions for the error covariances if the collocation
is performed in two steps.
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3. Results and Statistical Interpretation

Let us summarize the results so far obtained. The follow-
ing notations are introduced:

- _ - _1 _
Ay = A, Co1C11hy (3-1)
T.-1
P1 A1C11A1 : (3-2)
- _ _1 _
Xy = Xy = 0y Chixy - Ry (3-3)
C..=¢,. -¢C_.cltc. + A P iAT (3-4)
22 22 21711712 271 T2 ¢
= _ _ -1 _ -1 -13T | = AT _
Cpo = Cp CpC11C12 CP1C11A1P1 Az o Cop = Cpy - (3-5)

Then the estimates after the first step are:

_ p-l,TA-1 B
X1 = P1 A1C11x1 s (3-6)

i —1 - -
Sp,1 T Gl Xy - AKX (3-7)

and the corresponding error covariances
E = p? (3-8)
XX,1 1 °

_ _p-1,Tp-1 _
Exp,1 = Py A1C11C1P ’ (3-9)
o =Cc__ -c_.c’rc, +c_.citaptaTciie, . (3-10)

PO, 1 PQ P1°11°10Q P1-117171 "1711719
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The final estimates (1-20) and (1-27) may be written:

_ -17T=-1: _

X = X, + P, "ACox, (3-11)
-_— r --1- -

Sp = Sp.1 + CP2C22x2 , (3-12)

and their error covariances are

_ _ p-l3Ta-1p -1 _
Exx - Exx,1 Pl A2C22A2P1 : (3-13)
_ _ p-13Tz-1z .

EXP - EXP,l Pl A2C22C2P ? (3 14)
_ _F g-1lF _
%0 = %po,1 CP2C22C2Q . (3-15)

These equations permit a very simple statistical inter-
pretation. Consider least-squares prediction without system-
atic parameters. Denote the observation vector by y and the
predicted signal vector by wu . By (1-2) we have in the new
notation, with A =0 ,

-1

= C . -16
u Cuy vy y (3 )

We assert that both (3-11) and (3-12) are of this form:
for (3-11) we have

u =X -X., (3-17)

AT (3-18)
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In order to prove this, we must first verify that

M{xz} =0

X =x. -¢C.c?

-1 -1, T~.-1
, , 51C11%, = (Ay=C, CTiA )P ATC]

2 72171171771 17117

By eq. (3-5) of (Moritz, 1972) we have

M{x, } = A X, M{x,} = A X ,

denoting the true value of the parameter vector. Thus

- B -1 B _ -1 -1,T~-1 -
Mix, 1 = [Az Co1C11Ry (Ay=Chi Oy APy A1C11A1}X
- {A -c.cTia, - (A-C..CTiA )]X -0

- [ 2 2171171 (Ay-CoyCyihy - ’

which proves (3-23).

(3-19)

(3-20)

(3-21)

(3-22)

(3-23)

since (3-16) presupposes M{y} = 0 . On substituting (3-1)
and (3-6), eq. (3-3) becomes

(3-24)

(3-25)
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Introduce now the "centered observations" z1 and

z, by
z, = X, - A1X ,
(3-26)
22 = X2 = A2X )
so that
M{zl} =0, M{z,} =0 (3-27)

by (3-25). Then (3-24) becomes by means of (3-1),

X, = 2z, + A X - C . Cli(z +A X) -

2 T % 2 21711
- (Az'C21C11A1)P;1ATCIi(Z1+A1X) -
=z, - 0,02, - R PIIATC iz,
+ A% - K P TATCIIAR

The last two terms cancel in view of (3-2), and there re-
mains

1121 - (3-28)

- =T # p-1,T\~-1 T T.-1 -17T
XXy = [22 - (C21+A2P1 Al)C A ][ - 21C C,,+A,P A2)
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. T 5 p-1,T\a-1_ T _
= 2525 - (G *AP UANC 242,
T.-1 ~1;T
- 2221C11(C12+A1P1 Az) +
: p=1,T\p-1_ _T.-1 ~14T
+ (C21+A2P1 Al)C11z121C11(C12+A P, A,)

171 72
Forming the average M and taking into account that

T —
M{zlzl} = C11 , etc.

we find
Cyy = M{X, X7}
= C,, - (C21+52P11AT)C;1C12 )
C21C11(C12+A1P21A§) ’
+ (C21+K2P11AT)011(C12+A1P;1A2) ’

which, after obvious cancellations, becomes

) ) -1 = -1, Ta-1, o-1xT
= Cpp = Gy CyiCyy + APTAICIAPITA,
B ) -1 -

= Chp = 00y + AP TR, = Cpy s

by (3-4). This proves (3-22).

(3-29)
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We further have

(SP-SP,l)ig B spig ) Cp1czi(x1'A1X1)ig
Now,
xg = A= (T - A1P11ATCI1)X1
= (I - AP 'ATC D)z, +
+ (A, - AP TATCIIA )R
= (1 - AP ATCI Dz, (3-30)
by (3-26) and (3-2). Thus, by (3-28),
(Sp'sp,l)ig = Sp2, - SPZTCI1(012+A1P115§) -
- CpyCh (I-APTIATCT 2,25
* Cplczi(I'A1P11ATC11)Z1ZTC11(C12+A1P;1A§)

Hence (3-20) becomes

uy P pP,1

-17T
(C,,+A,PT*RAT) -

- ¢ ¢}

-1, T -1
p1Cyg (I-APLAIC )G,

1711

-1
CPlcll

+

-1,T.-1 13T
(I-A,P, "ATC 1)(C ,+A P TAD)
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which is readily seen to reduce to (3-5). This proves (3-20).
Finally we have to consider (3-17) and (3-18). The

signal u is now X-X1 or X-Xl if the true value X

is to be emphasized. We have

X - X, =% - p taTcT (z1+A12)

1 1 1711
_ p-laTa-1 _
= -p'ATC z, (3-31)

as the other two terms cancel. Thus, by (3-28),

- v -1 1
(X=X )xy = =P A1C11Z1 2 t.

-1 1 T,-1 F1sT
+ P A1C112121C11(C12+A1P1A2)

Then (3-18) becomes

_ vl =T
Cy = MUR-X)X;

}
uy

= -ptATCIic,, + PITATCTI(C, ,+A PTAY)

1 71711712 1 71711 17172
_ p-i,T FleT _ 43T
- P1 A1C11A1P1A2 - P1A2 >

which was to be shown.

In this way we have seen that the estimation formulas
for the second step, (3-11) and (3-12), can, in fact, be
considered as special cases of the simple least-squares
prediction formula (3-16). This is particularly striking
for X-X1 ,» €q. (3-11), since X itself is certainly not
estimated by such a formula (see, however, Appendix A).
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The error covariance formula corresponding to (3-16)
is given by
E =cCc -¢C_ Clc (3-32)

uv uv uy yy yv

cf. (2-3) with A = 0 . Here Euv represents the error co-
variance matrix for two signal vectors u and v that are
both estimated from the same data y by (3-16), and Cuv
the corresponding signal covariance matrix. Thus, Euv is
the "a posteriori" covariance matrix and Cuv is the
"a priori" covariance matrix.

One sees immediately that all the formulas (3-13),
(3-14) and (3-15) are of the form (3-32).
For (3-13) we have

B B _ _ p-lzT _ .T
u =v = X X1 s uy © P A2 = Cyv ;
for (3-14),
u =X - X1 s V=5, - Sp,1 . Cyv = C2P ;

[qp]

u==:s5_-3:5 s V = sQ--sQ’1 , Cuy = (o,

The "a priori" covariances Cuv are the error covariances
after the first step: Exx,l . Exp,l s, and °PQ,1 s
respectively.

One might wonder why in expressions such as (3-12),

the vector ;2 plays the role of observation and not, e.g.,

X, itself. The reason is as follows. Eq. (3-7) depends on
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and the vector consisting of ;1 together with ;2 is

equivalent to the original observation vector X to-

gether with Xo - However, whereas X and X, will, 1in

general, be correlated, the new vectors Xy and X,

will be uncorrelated. In fact,

P4
x1
[

=T
(xy =Ry Xy )%,

~1,Ta-1 T
(I-AP "AC )z 25 -

1,Tr-1 T~-1 13T
(I-AlP1 A1C11)2121C11(C12+A P,."A)) .,

by (3-28) and (3-30), so that

- =T, _ _ -1,T.-1 .
M{X1X2} = (I A1P1 A1C11)C12
-1, T~-1 -17T
- (I-AlP1 A1C11)(C12+A1P1 Az)
o 4T. -1,T~-1 -1;T
= -(1 APy A1C11)A1P1 Az
o -17T -1,T~-1 -17T
= APy Az * AP A1C11A1P1 As
=0 (3-33)
by (3-2).
Now, if 21 and ;2 are uncorrelated, then their
respective contributions to the estimate for So will simply
add; to see this, put C = 0 in formulas such as ( 1-22).

12
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Therefore, in (3-12), the contribution of Xx_ ,

- —_1_
CpalooXy s

is simply added to So o1 which represents the contribution
of il
The dependence of (3-11) on X may be explained along

similar Tines, although the detai]szare somewhat more in-
volved.

In this way we can understand the structure of equations
(3-11) through (3-15), which is conceptually very clear:
formally they are completely covered already by the elementary
theory of least-squares prediction as given, e.g., in
(Heiskanen and Moritz, 1967, pp. 268-270).

Applications of Stepwise Collocation. - Two applications
immediately present themselves:

1. If the size of the matrix C to be inverted is too

large, then a stepwise procedure might be applicable since

C11 and 522 are smaller matrices than C
2. Let signals and parameters have been estimated using
observations X, o If new observations X, are available,

then the original estimates can be improved by stepwise
collocation.

Both procedures, breaking down the problem into
smaller steps and adding a new group of observations, may
be iterated. This may be called sequential collocation and
will be described in sec. 5.
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4. Stepwise Adjustment as a Special Case

Adjustment by Parameters. - The mathematical model for
least-squares collocation is

x = AX + s + n ,
and for least-squares adjustment by parameters,
x = AX + n . (4-1)

Thus, adjustment by parameters may be viewed as a special
case of collocation if both the signal and all signal co-
variances are zero, so that now

C=0D, (4-2)

where D 1is the error covariance matrix. Cf. (Moritz, 1972,
secs. 1 and 2).
In this case we have the partitioning

if we further assume that the observations X and X,

are uncorrelated. Then

Cip = Dyy s Cyy=Dyy s Cy=0, Chy =0

so that
= T -1 .
Ry = A, P, = ATD]IA, , (4-4)



23

= —1,T )
C,, = D,, + APTIAT . (4-6)

Thus (3-6) and (3-11) reduce to

_ p-1,Tn-1 )
X1 = P1 A1D11x1 s (4-7)
_ —1,T “1,Ty=1,, _ )

X = X1 + P1 A2(D22+A2P1 Az) (x2 A2X1) s (4-8)

and the error covariance matrix of X is given by

) ) 1, T -1, -1
Exx = Bxx,1 = Py Ay(Dy+A P TAL) TALP,

It will be recalled that X1 is the estimate for the
parameter vector on the basis of only the first part of
the observations, forming the vector X, s and that X s
the estimate on the basis of the full vector x ; thus the
second term on the right-hand side of (4-8) represents the
improvement due to the use of the second part of the ob-
servations, X, Similarly, Exx,l is the error covariance
matrix of the estimate X1 , and EXX is the error co-
variance of the estimate X , so that the second term in
(4-10) represents the gain in accuracy due to the use of

X, in addition to X

Adjustment by Conditions. - The condition equations may
be written in the matrix form (Hirvonen, 1971, p. 154)

(4-9)

(4-10)
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BTV + w =0 , (4-11)

where v is the vector of residuals and w 1is the vector
of misclosures. By equations (13.29), (13.30) and (13.32),
loc. cit., the solution is given by

“lgaTp i) tw . (4-12)

Since both v and w are random variables with zero
expectation, let us try to apply the simple formula for
least-squares prediction (that is, collocation without
systematic parameters):

v==C Clw. (4-13)

VW WWwW

In the adjustment problem, the covariance matrix of v s
the given error covariance matrix D

M{vvT} =D = p !

(4-14)
The covariance matrices va and wa are to be found by
error propagation: we have

T

T
vw -vv'B ,

ww'® BTvvTB s
whence,on forming the average M ,

C = -DB , (4-15)

vw

o
§l

BTDB . (4-16)

ww
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On substituting the last two equations into (4-13) we ob-
tain (4-12), which shows that adjustment by conditions may
also be regarded as a special case of collocation.

More precisely, (4-13) is recognized as a special
case of (1-2) on performing the following identifications:

SP=V, X = W ,
T— = -
¢z =C, = -DB ,
(4-17)
c=¢ =8B,
A =0

(the fact that So in (1-2) is a single quantity only,
whereas v is a vector, is irrelevant in this context:
this equation would be formally the same if s, were a
vector).

Let us now split up (4-11) into two systems of con-
dition equations:

T -
Blv + w1 =0 ,
(4-18)
T -
82v + w2 =0,
so that
Wy
B = [Bl Bz] , el T (4-19)
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Then, (3-7) and (3-12) together with (4-17) give:

v, CP1C11W1 s (4-20)
v=uv, +C B2l -c  cTtw) (4-21)
1 P2°22'"2 “21711°1/ °
where
Cpy = -DBy Cpp = -DB,
_ T T _
C11 = BlDB1 s C12 BlDB2 . (4-22)
_ LT LT
C21 - BzDBl > sz - BzDBz
and
C_=c¢_. -¢_cl %
P2 P2 P1711712 °
(4-23)
= ~ B -1
sz - C22 C21C11C12

Equations (4-20) and (4-21), with (4-22) and (4-23),
are easily recognized as the basic formulas for the Boltz
partitioning procedure ("Boltzsches Entwicklungsverfahren")
well-known from triangulation adjustment. In fact, apart
from notation, (4-21) is identical to eq. (3442,7) of (Wolf,
1968, p. 363); the matrix

-1
11C12 (4-24)

Z=2¢C
constitutes Boltz' "Zwischenkorrelaten".

The error covariance matrix after adjustment is, of course,
given by specializing (3-10) and (3-15) to the present case.
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5. Sequential Collocation; Relation to Kalman Filtering

Two-step collocation may be iterated; this will be called
sequential collocation.

In stepwise collocation (see, particularly, sec. 3) we
have investigated how the estimation of parameters X and
signals s, may be done in two steps, the first step using
a part Xy of the observation vector x only and the second
taking into account the remaining observations, forming the
vector Xy In other words, we have seen how the estimates
X and s, are improved if, in addition to a first group of
observations, X, » @ second group, Xo s is used.

In sequential collocation, we may add a third group of
observations, a fourth group, and so forth. At each step, the
formulas of sec. 3 are applied.

This may be formulated mathematically as follows.

Let the vector Xy comprise all observations up to
and including the k-th group, and let Yy comprise the

observations of the k-th group itself. Thus,

[ yl'
Yy
X = ) . (5-1)

Yk

In the same way we partition the sensitivity matrix Ak .

which characterizes the effect of the parameters X on X
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thus, B represents the effect of X on Y, » SO that

k
B, X + s _+n_ =y (5-2)
If we consider an additional group of observations,
Yies1 » WE obviously have
X A
_ k - k -
Xget1 T ’ Agsr © B ’ (5-3)
Y1 K+1
and this partitioning corresponds to (1-4) and (1-7).
Corresponding to (1-5) and (1-6) we have
C F
_ k k+1 - -
Chwr = T ’ CP,k+1 - [CP,k GP,k+1J (5-4)
k+1 “k+1
Thus Ck and Gk+1 represent the covariance matrices of
X and Vi1 ° respectively; and Fk+1 represents the
cross-covariance matrix between X and Va1 Similarly,
CP K denotes the covariance between So and X, o and
GP’k+1 denotes the covariance between So and Yir1

Transcribing eqs. (3-1) through (3-5) to the present
case and using the abbreviation

T -1
K+l Fk+1Ck :
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we have
Brsr = Brpr T Zpiqhy o (5-6)
 aTa-1 _oo-1 )
Pk = Aka Ak R Qk = Pk 4 (5-7)
Yie1 = Va1 ~ Zye1Xx T BryiXy o (5-8)
Geer ™ Cpiy " ZLppqFry v B QB (5-9)
G = G -¢c..z%  -c.cilaq B 5-10)
P,k+1 =~ "P,k+1 P,k k+1 Pk k "k'k k+1 (

Egs. (3-11) and (3-12) become

Kew1 = Ko v Ky Yipr (5-11)
_ A =-1 = _
Spok+1 = Spok t Gp xr18ki1Yier (5-12)
where we have put
B =T =-1 _
Kk+1 - QkBk+1Gk+1 (5-13)
Xk and Xk+1 denote the estimates for X on the basis of
the observations Xy and Xipy respectively; similarly
for sP’k+1 and sP,k

The error covariances after collocation are, according
to (3-13), (3-14), and (3-15), given by

K B

Exx,k+1 = Qpyp = Q= KB Qo

(5-14)
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_ _ =T )
EXP,k+1 h EXP,k Kk+1Gp,k+1 : (5-15)

- - r =-1 =T _
°p0,k+1 - %pg,k GP,k+1Gk+1GQ,k+1 : (5-16)

Using these formulas we may, starting with k = 1 ,
successively compute the estimates Xk and sP’k and
their error covariances for k = 2, 3, ... The initial
estimates for k = 1 are, of course, to be obtained from
(3-6) and (3-7) and their accuracy, from (3-8), (3-9), and
(3-10).

In particular, after an initial estimate of X and
So from a sufficient number of observations, each con-
Secutive group Y, may consist of one observation only. In
this method it is remarkable that, after computing the
initial estimate, no matrix inversion is needed any more.
In fact, Gk now reduces to a single element, so that its
inverse is simply the reciprocal of this element, and Qk
is computed successively from (5-14) without having to use
the direct expression (5-7).

This advantage is, however, compensated by a great in-
crease of matrix multiplications, so that the total com-
putational effort is, in general,not reduced. In fact, step-
wise collocation may be compared to matrix inversion by
partitioning, and sequential collocation, using groups of one
observation each, then corresponds to matrix inversion by
bordering (Faddeeva, 1959, § 14 and 15).

Discrete Kalman Filtering and Prediction. - Let a

dynamical system be described by a parameter vector X(t)
which is a function of the time t . Consider equally spaced

discrete instants t1’ tz’ 37 , and let
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xk = X(t,) (5-17)

be the parameter vector at time tk . It is assumed that

the parameter vectors at consecutive instants are linearly
related:

X = ¢ X© o+

K+1 Uger @ (5-18)

k+1
vector of zero mean, representing "internal noise" of the

dynamical system; u and u are uncorrelated if tk # tz

where ¢ is a regular square matrix and Uy is a random

k %
The observations Yy at time tk are assumed to be
linear functions of X¥
= B X* +n (5-19)
Yy k k °’

where N, is a random vector of zero mean representing the
measuring error or "external noise". Obviously, (5-19) is
identical to the observation equations in adjustment by
parameters. The vector Yy is assumed to be of the same kind
(in particular, to have the same dimension) for each in-
stant tk . The noise vectors Ny of the individual groups
are assumed to be uncorrelated.

Denote by Xt the estimate of XX (the parameter
vector at time tk ) on the basis of all observations
Yys ¥Yg9s + . . Up to and including Yy - Thus, after deter-

mining X¥ on the basis of the observations up to (and in-
k+1
X

cluding) tk , that is, Xt ,» Wwe may predict at time
tk by

k+1 _ k -

Ko T = 0¥y (5-20)
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This follows from (5-18) since Uy iq is uncorrelated to all
quantities referring to the preceding instants tl, t2, ce e

tk and unknown, so that its estimate will be zero. The

notation X§+1 signifies that x5t s estimated on the
basis of the observation up to tk
Denoting by Qk+1 and Qk the error covariance ma-
K+ 1 N 3

trices of Xk and Xt s, respectively, we get from (5-18)

by error propagation

k+1 _ k. T )
Qk - ®k+10k¢k+1 * Rk+1 ? (5-21)
where
—— T —
Rrr = Mlup qug,yd (5-22)

is the covariance matrix of internal noise.
The problem now is to find Xiii » that is to improve
the estimate (5-20) of X*'! by including the observations

of the (k+1)th group:

k+1
Y1 T ByyqX My (5-23)
We may use x5*1 as parameter vector also for the preceding
groups of number 1, 2, . . ., k as we can successively ex-
press XX, xk-1, by means of xk+1 using
k _ -1 yk+1 _ -1 _
o= ey X k+19%+1 (5-24)

(by (5-18)) and the analogous relations for xk-1,
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In this way wé find a relation of the form

k+1 _ _
AkX tz, =X s (5-25)
where X comprises Yis Yoo o o os Yy in agreement with
(5-1) and the random vector z, is a linear combination
of observational noise Nys Ny cs Ny and internal
noise u,, u,, va Uy o
This relation is to be considered together with (5-23),
so that (5-3) holds. In (5-4), Gk+1 represents the co-
variance matrix of n
k+1
- T .
Gpr = MM M)
and
Fk+1 =0 (5-26)
because Nepq 18 not correlated to z, - Thus also
Zk+1 =0,

and (5-6), (5-8), and (5-9) become

Brr1 = Brsr s (5-27)
- B ) k+1 )
Yr+1 = Yi+1 Bk+1Xk ’ (5-28)
- B k+1 )
Gypp = Gpyq ¥ BrygQ "Bryy s (5-29)
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takes the place of Q since the parameter

vector is now

X = yktl1 (5-30)
Eq. (5-11) gives
k+1 _ yk+1 _ k+1 _
Xk+1 - Xk Kk+1(yk+1 Bk+1Xk ) (5-31)
with
o Ak+1,T -1 _
Kk+1 - Qk Bk+1 k+1 ° (5-32)
and (5-14) becomes
k+1 _ . k+1 k+1 _
Qk+1 = 0 Kk+1Bk+1Qk (5-33)
Let us compile the principal formulas. If the estimates
Xi and Qt are known, then first estimates for the quanti-
ties xk+1 and Qk+1 for the next stage are
k+1 _ k
Xy - ®k+1xk’
(5-34)
k+1 k. T .
Qk - ®k+1Qk®k+1 * Rk+1 ?
these estimates are updated by
k+1 _ k+1 _ k+1
Kot = X0 F K gy = B X 7)o
(5-35)
k+1 _ k+1 _ k+1
Qee1 = O Kier1Bra1
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These relations are evaluated recursively. Let an initial
estimate Xz be given, as well as its accuracy estimate QZ
By (5-34) we can compute Xi and Qé

x! = s x° ,
o 1o

(5-36)
Qi - ®1Q2¢1 * Ry

and then we get X, and Q; by (5-35). Then (5-34) gives
Xf and Qf , and (5-35) provides Xi and Qg . In this way
we can successively compute all estimates for X¥  and Qk

In deriving Kalman filtering from stepwise collocation
we have followed a similar approach as Deutsch (1965) and
Koch and Lauer (1971), who have derived it from stepwise ad-
justment. The usual treatment is in terms of Markov processes
(Bucy and Joseph, 1968, Bjerhammar, 1971). In fact, the rela-
tion (see (5-18))

G S Y ) (5-37)

with uncorrelated random variables , 1s characteristic

u
k+1
for wide-sense Markov processes; cf. (Papoulis, 1965, sec.

11-6).
Relation to Collocation and Least-Squares Prediction. -

Let us express all observations Yy in terms of one and the
same parameter vector X , for which we may take the vector
X° . Successive application of (5-18) for k =0, 1, 2,
gives



where

or

and

36

¢2X1 + u, = ¢2®1X + ®2u
®3X2 + u, = ¢3®2®1X + &
j
M. X + N. u 5
k 4o ke g
®k®k—1 ®1 ?
®k®k—1' ¢z+1

+

é_u

(5-38)

(5-39)

(5-40)

(5-41)

(5-42)
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This is precisely of the form (5-2) where, by (5-42),
the place of the signal Sy is taken by a linear com-
bination of internal noise u,

Thus, Kalman filtering is equivalent to least-squares
Collocation if the signal S is composed of uncorrelated
random vectors U, in the form (5-42). This imposes an
essential restriction on the Sy and on their covariances.
For instance, it is well known that in the stationary case
and for one-dimensional u_,6 , the covariance of Sk must

[
be of the form

-C
= C.e 2%

cov(s ktr) . R

.S (5-43)

k
with suitable constants C1 and C2 (stationary Markov
covariance).

However, if the signal s, may be decomposed into the
form (5-42), then the Kalman approach, while leading to the
same result as collocation, presents considerable advantages
from a computational point of view, which may be outlined as
follows.

The approach through sequential collocation would suc-
cessively estimate X and S (at all computation points),
first from Yy s then from Y, and Yy o then from Yo ¥y
P etc., the results being improved at every step. Then
the "total signal" (observation Yy with noise n, re-
moved) would be estimated by

t, = BiX + s (5-44)

k k °?

in view of (5-40).
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In the Kalman approach, we estimate xk instead,
using (5-34) and (5-35). Then we simply have

— k -
t, = kak . (5-45)
Since now Uy takes the place of S, » We have Fk+1 =0
because U, is not correlated to the preceding U, » where-

as the use of Sy implies a nonzero Fk+1
Thus, for the special case under consideration, the
Kalman method is computationally very appropriate. However,
its scope is much more restricted than the scope of colloca-
tion. Consider, for instance, the problem of one-dimensional

filtering and prediction (Fig. 1). Provided the signal Sk

: AX
"
kt1  k+2

Figure 1
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is of Markov form, then the Kalman method gives the total
signal t, (5-45) at the point k , using observations up
to point k only (the observations to the right of point k

are disregarded); furthermore these observations up to Kk

may be used to predict tk+1 , and also tk+2, tk+3 R

since
k+r _ k -
Xk T e frar-1 '®k+1xk (5-46)

by an extension of the argument leading to (5-34). We do not,
however, obtain estimates for tk using observations beyond

k , and we do not obtain the total signal t at points bet-
ween the measuring points, say, between k and k+1 . Thus we
can, to a certain extent, filter and extrapolate by means of
the Kalman approach, but we cannot interpolate.

The underlying Markov model also implies considerable

restrictions. As an example, in the one-dimensional continuous

case, (5-43) is equivalent to a covariance function

C(x) = cle"czlx| : (5-47)

which is not differentiable at x = 0 and, therefore,
implies sample functions that are, in general, not differ-
entiable. Thus, such sample functions are not sufficiently
smooth to adequately represent, for instance, gravity anomalies.

Thus, the Kalman approach is eminently appropriate to
certain applications "in real time", e.g., to space naviga-
tion, but its scope is restricted to such applications. On
the other hand, least-squares filtering and prediction and
their extension, least-squares collocation, are considerably
more general.
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APPENDIX

Prediction and Adjustment by Parameters

In sections 3 and 4 we have seen that almost all
estimation problems can be reduced to an application of the
simple least-squares prediction formula (3-16). This holds
for adjustment by conditions--cf. (4-13)--as well as for step-
wise collocation: not only as regards the signals, s and

Pi
S-S , but even as regards the improvements in the param-

eier vi%ues, X - X1 , as we have seen in sec. 3. Only the
parameter values themselves, X and X1 , were not of the
form (3-16).

However, even the parameter estimation may be reduced
to the prediction formula if a suitable limiting procedure
is applied, the idea being to consider the parameters as ran-
dom variables of very small a-priori weight; this idea was
introduced by Schmid (1965).

The observation equations for adjustment by parameters
are

AX + n = X ; (A-1)

cf. (4-1). If X s regarded as a random vector of zero
mean, then it may be estimated by (3-16):

X = C. C'x . (A-2)

XX XX

The occurring covariance matrices may be determined as
follows. We have



41

X X XXTAT + xnT ,

AXXTAT + AXnT + nXTAT + nn?

XX

Denoting the autocovariance matrices of X and n by C
and D , respectively, and assuming X to be uncorrelated
with s , we find by forming the average M as usual:

o
n

cAT (A-3)

[ep]
I

= ACAT + D . (A-4)

Thus (A-2) becomes

X = cAT(ACAT+D) 1x . (A-5)

We now take the matrix C to be a diagonal matrix
the elements of which are equal and very large (corresponding
to very small weights):

I (A-6)

where € is very small and I is the unit matrix. Then
(A-5) becomes

X = AT(AAT+eD) " 1x . (A-7)

This may be transformed as follows:

-1

X = [1+e(ATD"1A)‘1] [1+e(ATD"1A)"1]AT(AAT+ED)"1x
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i) ] [AT#e(ATDTIA)IAT |(AAT4eD) " 1x

[1+e(A

-1
[1+E(ATD‘1A)‘1] (ATD71a) " 1aATo "t (AAT+eD) (AAT+eD) "1

-1

= [1+e(a®0"ta)7t] (ATo"lA)"1ATD X . (A-8)
For € - 0 this reduces to
X = (AT la)y"taTp 1k (A-9)

o]

which is the usual estimate obtained by least-squares ad-
justment by parameters.

This shows that the basic prediction formula (A-2)
covers even this case if a suitable passage to the Timit
is used.

As a byproduct we find the relation between the col-
location solution (A-8), involving a finite covariance
matrix C of form (A-6), and usual adjustment by param-
eters (A-9):

Yl o, (A-10)

(o]

(I + P

>
1}

where
p= ATD"!aA (A-11)

is the weight matrix of the parameters estimated by (A-9).

This is rather analogous to the case considered in
(Moritz, 1970); the relation (6-6), loc. cit., is the
analogue of our present expression (A-10).
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