Reports of the Department of Geodetic Science
Report No. 201
APPLICATION OF KINEMATICAL GEODESY FOR DETERMINING
THE SHORT WAVE LENGTH COMPONENTS OF THE
GRAVITY FIELD BY SATELLITE GRADIOMETRY
by

George B. Reed

The Ohio State University
Department of Geodetic Science
1958 Neil Avenue
Columbus, Ohio 43210

March, 1973



Foreword

This report was prepared by George B. Reed, a graduate student in
the Department of Geodetic Science of The Chio State University. The typing
and preparation of this report was supported by Air Force Contract No.
F19628 -720C -0120, The Ohio State University Research Foundation Project
No. 3368Bl. The contract covering this research is administed by the
Air Force Cambridge Research Laboratories, I.,G, Hanscom Field, Bedford,

Massachusetts, with Mr. Belz Szabo, Project Scientist.

’}?hié report was also presented fo the Graduate School of The Ohio State
University in partial fulfillment of the requirements for the Ph.D degree.
The original reproduction and distribution of this report was carried out through
funds supplied by the Department of Geodetic Science. This report was also
distributed by the Air Force Cambridge Research Laboratories as Scientific

Report No. 9 under contract F19628-72~C-0120,

Several corrections, supplied by the author, have been made to the

original version, for this October 1982 printing.

ii



ACKNOWLEDGMENTS

The author expresses his sincere gratitude to the Faculty and Staff
of the Department of Geodetic Science, The Ohio State University, and
particularly to his adviser, Professor Richard H. Rapp, who provided not
only encouragement and guidance, but also arranged for resources which
enabled this work to be completed in a timely manner, and to Professors
Urho A. Uotila and Ivan I, Mueller, who, as members of the author's
réading committee gave many helpful suggestions,

Special thanks are due to the Department of the Army for giving the
authof the opportunity to participate in the U.S. Army Civil Schools Program,
and to the Instruction and Research Computer Center of The Ohio State '
University for providing free computer facilities without which this work
could not have been accomplished,

The author is deeply indebted to his wife, Bettyé, for he;ﬁ- patience
and understanding during his years of study, and for typing the draft of
this paper.

Finally, the author extends his sincere thanks to Miés Janet 1.
Wancho and Miss Kimberly R. Focht who did an exceptional job of typing

this dissertation.

iii



Abstract

This report describes an investigation into the use of satellite borne gravity
gradient devices for the recovery of terrestrial gravity information in terms
of discrete mean gravity anomalies, point masses or potential coefficients.
Simulatiion studies were conducted considering two possible instrument
configurations: 1) a hand-mounted system capable of sensing five independent
components of the gravity gradient tensor and 2) a rotating gravity gradient

system.

The spatial partial derivatives of a gravitational potential are developed
using the methods of tensor calculus with specialization fo the potential in
spherical harmonics. A method is presented for estimating the root mean
square magnitudes of all components of the gravity gradient tensor. The
resulting estimates and the simulated solutions for the hard—mclmnted system
strongly indicate that the measuring sensitivities required for the cross-
gradient terms are beyond practical limits for satellite gradiometers. In

addition, the effect of altitude attenuation on the gradients was evaluated,

The simulation experiments demonstrated that a rotating gradiometer with
a sensitivity and accuracy of 0.01 E can satisfactorily resolve 2° x 2° mean
gravity anomalies (equivalent to degree 90) with an accuracy of0.5t0 1

milligals at 250 to 300 kilometers altitude.
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INTRODUCTION

;A long standing goal of geodesy is fhe determination of the gravity
field of the earth, The qualitative and quantitative achievement of this
goal has been essentially an evolutionary process associated with the needs
and state-—of—fhe-art of technology and science. Today socio-economic
pressures coupled with unprecendented technological achievement is placing
ever increasing demands on the geosciences. Among these are increasing
scientific and functional requirements for detailed knowledge of ’;he fine
struéture of the earth's gravity field, The applications are to be found in
numerous civil and military endeavors. Amf‘mg those applications of
greatest significance are satellite navigation, inertial navigation, earth and
ocean physics, earth resources, surveying and mapping, and trajectory
computations for strategic weaponry and artificial satellites.

In the past, the acquisition of detailed gravity data through classical
gravimetric methods was limited by inaccessability or denial of large regions
of the earth, With the advent of the space age and the development of the
satellite gravimetry, geodesy experienced a quantum jump in capability to
refine and survey the gravity fieldon a global basis. As a consequence,
progressively over the last decade, movre detailed and accurate models of
the earth's gravity field have been produced, Such models have normally

been in the form of coefficients of the spherical‘harmonic expansion of the
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geopotential;

V= k;\’l [ 1+.>ci i (%)ﬂ (Cpy COSMA + S, SInMA) an(sincp)] | (0. 1)
n=2 wro :

The detail expressed by such a model depends on the number of coefficients
(Cans Sna) which it contains, Such models have been developed by satellite
orbit perturbation analysis and by combinations of satellite determined
harmonic coefficients and surface gravimetry (Kaula, 1966a; Rapp, 1969;
Gasposchkin and Lambeck, 1970).

While dynamic satellite methods have been eminently successful in
. advancing our knowledge of the earth's gravity field, there are apparent
limitations in detecting the short wavelength components which inake up the
so called fine structure of the gravity field. As a consequence, impetus has
been given to various proposals for satellite-borne hybrid measuring systems
which, in general, provide a capability to sense or measure some spectrum
of the earth's gravitational field directly. The requirements for such systems
are discussed in the report of the Williamstown Conference (Kaula, 1969a)
and the JPL Earth and Ocean Physics Applications Planning Study (Loomis et
al., 1972).

Proposed systems currently in an advanced stage of development are
satellite altimeters, satellite-to-satellite Doppler and satellite gradiometers.
The concepts of altimetry and satellite~to~-satellite tracking have been studied
in subsmntial detail with respect to exploitation in geodesy (Hu&sm, 19703
Lundquist, et al,, 1969; Wolff, 1969; Schwarz, 1970). On the other hand,

satellite gradiometry has received minimal attention for geodetic implications



(Forward, 1971a; Glaser and Sherry, 1971; Kaula, 1971; Beil et al., 1970;
Moritz, 1971; Glaser, 1972)., With the exception of Moritz and Glaser,
the investigations pﬁblished to date have been limited in scope and rather
non-specific as to how the éradi@nt measurements are to be used in forming
more detailed geopotential models. Although Moritz specifically addresses
the use of airbome. gravimetry and gradiometry, he presents some extra-
polation of the airborne system to satellite gradiometry. However, in all
published studies, the implied proposed uses of satellite grac_iiometer
measurements are based on global solutions in terms of harmonic coefficients
and/or dir;act geophysical interpretaion in combination with data such as
georﬁagnet:ic field measurements, surface gravimetry and tectonic platé
movements, ete.
The JPL Study (Loomis, et al., 1972) suggests the following probable

order of decreasing resolving power for satellite gravimetric techniques:

(1) radar altimetry (Ocean areas only)

(2) gravity gradiometry

{(3) high-low satellite—to-satellite tracking

(4) low-low satellite-to-satellite tracking

(5) Upgraded orbit analysis from improved tracking and

lower satellites.

Comparative'analyses (Forward, 1971a; Sherry and Glaser, 1872; Gardner,
et al., 1_972; Loomis,et al., 1972) of the above systems indicate that each

has an optimum range of sensitivity in terms of harmonic degree and the



associated wavelength. In fact, the analyées point ~ut that theoretically
the various systems are complimentary ra‘t.her than competitive. In the
case of satellite g:radiometry, the resulting measurements are expected to
yield significant information to harmonic degree 90; Of interest is the
evaluation in the JPL Gravity Gradiometer Study (Gardner, et al, 1972)
that while present state-of~the-art orbit determination is adequate for a
satellite gradiometer mission, it is not adequate for an altimeter mission.
Their analyses show that about a two order of magnitude improvemént in
the gravitational uncertainies is necessary to the success of an altimeter
mission. Satellite gradiometry canprovide such improvement according to
that evaluation.

Satellite gradiometry thus presents an exciting possibility of developing
global gravity maps in heretofore unﬁrecedented detail, As a consequence,
the principal purpose of this investigation was pointed to development of a
possible procedure for use of satellite gradient measurements in obtaining
gravity boundary values and to determine if gradiometry can provide, with
sufficient accuracy, discrete geopotential information equivalent to harmonic
degree 80,

Since real data was not available, the study relied heavily on computer
simulation experiments, Further, because of various proposals for gradio-
meter ﬂxstrgmentation which are under development (Anthony, 1971), simula-
tions were limited to two possible instrument configurations: (1) A hard-

mounted system capable of sensing five independent components of the gravity



gradient tensor; (2) A rotating system which produces 2 signal which can be
analyzedr in terms of signal.amplitude as a function of three components of
the gradient tensor,

Chapter 1 discusses the general concept of satellite gradiometry and
the mission parameter considerations which governed the simulation experi-
ments. Chapter 2 presents some current thinking with respect to gravity field
representations and discusses the choice of representations used in this study.-
In Chapter 3 the first and second derivatives of a potential function are develop~
ed by the methods of tensor calculus. These derivatives are then spec ia}ized
- for the spherical harmonic expansion of the geopotential. Chapter 4 preseﬁts
a discussion of various investigators attempts to evaluate the magnitude of
the anomalous gravity gradients at orbifal altitudes and the gradiometry
sensitivity required to resolve the anomalous spectrum of the gravity field.
Formulae for gravity gradient estimation are developed along the lines of
classical estimation theory in physical geodesy. The results of estimates
obtained are evaluated in terms of gradiometer resolution and sensitivity.
Additionally, the effect of altitude attenuation on the gradients are considered.
An algorithm fof generating simulated satellite gradiometer data is presented
in Chapter 5. In Chapter 6, least squares solutions with gxfadiometer data
are mathematically formulated and the physical nature of the solutions are
discussed. Development of the simulation models, the simulation experiments,
and numevrical resulis are ﬁresented in Chapter 7. Chapter 8 briefly sum-

marizes the study and presents relevant conclusions.



1. THE CONCEPT OF SATELLITE GRAVITY GRAbIOMETRY
1.1 General Principles

In the usual convention of physical geodesy, the total gravity potential
is separated into a normal or reference potential, U,‘ and a disturbing or

anomalous potential, T:

W=U+T ' ' (1.1)
Normally, the function U represents the potential of an equipotential ellip~
soid (Heiskanen and Moritz, 1967). It also may fepresent the potential of
a high order equipotential spherop (Neet_iham, 1970). On the surface, W and
U include the potential of the centrifugal force due to the earth's angular
rotation. For points in external space, the centrifugal potential does not

act. In this case it is appropriate to express the total gravitational potential

by:

V=U+T s (1.2)
where it is understood that U does not contéin a centrifugal term;
In principle, gradiometers in orbiting artificial satellites measure
the secon‘d spatial derivatives of the total gravitational potential. Defining
a local earth space Carles ian coordinate system (&, 1, {) where the §-axis
is directed Northward, the n-axis Eastward, and the {-axis is perpendicular

to the Enplane and is directed outward from the earth, these second
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derivatives can be expressed in matrix form by:

Vee Ven Veg

Ve Vnh Ve | (1.3)
Vee Ven Ve

* Vv Py

where V , etc. are called the "gravity gradients".

gg ae ’ En g
The term. "gravity gradient” is a misnomer since the first derivatives of

the potential form a vector or gradient of the potential. A vector has no
gradient; therefore it would be more accurate to call the second derivatives
the components of the gravity tensor, However, since the usage is well |
established, no confusion should result from retaining the designation
"gravity gradients'., The matrix, equation (1.3) will be referred to as the
"oravity gradient tensor'.

Of fundamental importance to the application of gradiometry is the
nature of the earth's external gravitational field. From classical potential
theory (MacMillan, 1958), any gravitational field in empty space belongs
to thé class of force fields in which no dissipative losses of energy occur
when a mass particle is moved from point to point, Such a field is sé,id to
be consefvative. I addition, the potential energy differences between points
in the field are a function of position oniy i.e., independent of the path along
' ﬁhich the particle moves, The basic properties of the gravitational vector

force field § in empty space (external to the masses producing the field) is

associated with a scalar potential V(x,y, z) such that:



(1.4)

<}!
b
=
K
<

These equations indicate that V(x,y,z) and its gradient VV are
~ harmonic functions. Further, since the divergence of the field, ¥V g, is
- zero, the field is said to be solenoidal, i.e., the flux of the field in empty
space along a "'tube of force' is constant. The curl, v x é, iz also zero;
hence, the field is both conservative and irrotational, The significance of
these properties to gradiometry are:

(1) The harmonic nature of the gravitational field requires that the
first and second derivatives of the potential function exist,

(2) The solenoidal nature requires that in é, stationary system of
referenc.e: Vex +Vyy +V,, =0.

(8) The irrotational nature imposes the conditions:

Vey = Vyu
Vx Z sz
V}'z = Vzv

(4) From (2) and (3) we see that of the nine gradient components in
equation (1.3) only five are. independent.

(5) The field is independent of the coordinate system.

(6) The first and second derivatives are non-zero, unless the potential
is everywhere constant in space. This means that any possible field except

the zero field is non~uniform in space,
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The non-uniformity of the external gravitational field has two features.
One pertains to variation of field strength along a line of force (the plumb
line), while the other appears as a variation of its‘direction when passing from
one line of force to another. The latter feature is called "curvature effect".

These properties and features make gradiometry a viable method of
surveying the gravitational field provided the inertial effects can be separated
from the gravitational effects. The earliest method devised for such separation
is attributed to Roland von EStvos, Early inthis century; EStv’ch designed a
"orsion balance” or pendulum which he made insénsitive to the influence of
gravity at i’-,hé origin of the instrument's coordinate axes by confining its.:r;.mtion
fo é, horizontal plane (Flugge, 1956, Mueller, 1960). In the case of a moving
platform such as an aircraft, Moritz (1967) has shown that the inertial part
of the gravity field can be separated by inertially stabilizing the gradiometer
instrument axes. For field separation, an artificial satellite provides the
ijdeal environment for a gradiometer. In an orbiting vehicle, the gravitational
force at the center of mass is in equ_ilibrium with the centrifugal force thus
the mertial part of the field is zero. In fact, the only direct measurements of
the gravitational field possible in a satellite are the gradients of gravity.

As pointed out previously, this study considers two possible types of
satellite gradiometer systems. Both systems are conceptually feasible and
have been the subject of analytical studies and/or active research and
devélopment; Numerous references found in the bibliography to this report
provide detailed information oﬁ specific instrumentation. Discussion here

will be limited to describing in general terms a hard-mounted system and a
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rotating system.

The hard-mounted or strap—a;.lown type gradiometer hypothesized could,
for example, be assembled from a set of vibrating string transducers described'
by American Bosch Arma (1966) or from seismic devices proposed by Savet,
etal,, (1967). Five independent components of the gravity gradient tensor
é,re assumed to be measured. M addition, the orientation of Ithe gradiometer
with respect to inertial space is maintained by active attitude control and
gradient torque stabilizaﬁon of the satellite carrier. The satellite is assumed
to have on-board attiﬁxde sensors which provide a read-out of the spatial
orientation of the local Cartesian coordinate axeé along which the gradieﬁts
are measured. Details of the hard~mounted gradiometer orientation are
gi§en in section 5.6.1. The gravity gradient tensor components which may

be measured by the hard-mounted system include the off-diagonal terms:

V:I.E! Vls L] Vza

and any two of the diagonal terms:

Viis Veos Vaz,
where the subscripts denote the gradiometer and satellite fixed coordinate
axes along which the gravity gradients are measured. In general, the 1-axis
lies in the satellite's orbital plane, and 3-axis is directed outward from the
earth in the direction of the local vertical; and the 2-axis is perpendicular to
the 1~3 plane forming a right-handed (1,2, 3) coordinate system. Only tv;zo of
the diagonal térms or components are independent by virtue of the condition

imposed by the Laplace equation V° V = 0,
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For satellite-borne systems, rotating type gradiometers, such as

described by Forward (1971c) and Glasexé (1972), are the most likely to be
operational in the near future. The signal output for a typical rotating

gradiometer may be expressed by:

Signal = (Vaz =~ Vy1) sin wt - 2V, 5 cos wt (1.5)

where w is the spin rate and t is the time interval from some initial epoch.
This is simply a harmonic oscillator which may be evaluated in terms of

gignal amplitude given by:

;i

Amplitude = [(Vas ~ V11)% + 4V34] (1.6)

Attiﬁzde control for fhis gsystem is provided by spin étabﬂiﬁation of the
satellite. The orientation of rotating gradiometer‘fixed coordinate axes
is described in section 5.6.2. As in the case of the hard-mounted system
we have assumed that oﬁ—board attitude sensors will be provided. Further,
the rotating system requires sensors to provide in-flight spin rate correction
or telemetry of data for post-mission corrections, For more detailed
discussion of gradiometer attitude control concepts, the reader is referred
to Chapter VI and VII of the JPL gradiometer study {Gardner, et al., 1972),
In simulating the grfadiometer' systems, the output signals in terms
of gradients or functions of gradients have been assumed to be exact.
Actua;lly these signals differ from the output of a real gradiometer by some
proportionality factor. This factor depends on the characteristics of the

particular instrumentation employed. The constancy of the proportionality
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is subject to various dyramic and thermal noise effects. Mallove (1972)
analyied the equations of motion for a dynamic model of a rotating gradio-
meter in a spin stabilized satellite. Dynamic errors were evaluated using
parameters for an Earth orbiting experiment. The reported results show
that the dynamic errors produce inaccuracies less than 0,01E ' ata system
integration time of about 30 seconds (Forward, 1971a, 1971c). Since similar
accuracy data was not available for the hard-mounted gradiometer system,
0.01E at 30 seconds was assumed to be applic;ible.

Satellite gradiometry offers several advaﬁtages when bompared to
surface gravimetry and other satellite gravimetric techniques. First of |
all, a gradiometer instrument package mounted in & single satellite in low
polar orbit can obtain complete global coverage in a period of days. Gravi-
metric methods based on orbit pertubation analysis and satellite-to-satellite
tracking require two or more satellites at various altitudes and inclinations
f:o obtain complete sampling of the gravity field. Pertubation methods are
highly dependent on orbit determinat_ion and indiréct; whereas direct measure-
ments are made by a gradiometer which permits on-board data storage and
less stringent orbit determination. Satellite altimetry as currently conceived
is limited to measurements over ocean areas and in order to achieve its
full potential will probably require orbit determination one or two orders of
magnitude above current technology. Further, the more conventional
satellite techniques and satellite~to-satellite tracking measure responses due

to the gravitational acceleration. It is well known that the acceleration signals

1

1E(Eotvos) = 10°° Gal/em where 1 Gal = 1 cm/sec”



are most responsive to the longer wavelength components of the field and
tend to filter out the short wavelengths at orbital altitudes, With graciiw-
metry, the high frequency short wavelength part of the gravitational field
is accentuated because spatial derivatives of the acceleration are measured,
In the rotating gradiometer which measures a combination of gradients, this
accentuation is further amplified. Still another advantage of satellite gradio-
metry is insensitivity to atmospheric drag effects. While drag results in
orbital decay and influences mission duration, the effect on the gradiometer
sensors (proof masses) is essentially uniform and thus the observed gradients
are unchanged., This is not the case with other satellite methods where -
atmospheric drag constitutes a significant source of error. However, this
error source can be controlled by ﬁse of drag-free satellites.
1.2 Satellite Gradiometer Mission Paré,meters

.Here we will summarize the pertinent considefations for an orbiting
gradiometer mission based on the JPL Gravity Gradiometer Study (Gardﬁer,
et al., 1972, Section III B and IV C). That study demonstrates the desirability
of placing the satellite in a nominal éircular polar orbit at nominal altitude of
300 kilometers, Placing the satellite carrying the gradiometer in polar orbit
allows for complete global latitude coverage. Further, this also permits
using the earth's poles as calibration points as the satellite will pass over
both poles in each revolution, A circular-orbit, or perhaps more practically,
an orbit of small eccenfricity, permits unifozjm sampling of the gravitational
field. This should yield data of near uniform accuracy and thus eliminate

complex weighting schemes in the data reduction. The altitude is a trade-off
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betwgen gradiometar signal resolution and mission life. Gradiometer
resolution is discussed further in Chapter 4.- The JPL evaluation indicates
that the orbital life at a ﬁomiﬁal altitude of 300 kilometers will be approximately
15 to 40 days duration. Satellite tracking and orbit determination _for a gradio-
meter mission was determined by JPL to be adequate with current state-of-
the-art methods. The required 1 ¢ position accuracy specified is 20-25 meters
for gradient measurements accuraﬁe to 0.01E,

The simulation experiments described in Chapter‘? were guided .
by the JPL mission analysis. To the greatest extent possible, the experiments
were desighed by using parameters which conform to actual conditions ex-

pected.



2. GRAVITY FIELD REPRESENTATION
In recent years there has been extensive study of .alternatives to the

spherical harmonic representation of the gravity field. The spherical
harmonics are ideally suited to depiéting the long-wavelength. components

" of the field, which makes them compatible with the resolution of satellite
perturbation analysis. While Kaula (1969) advocates continued use of
spherical harmonics for satellite geodesy, he acknowledges that the new
’satellite-borne Systems, altimetry, gradiometry, etc., will require more
' apprépriate representations for the fine structure of the field. Various
alternatives have been proposed, Koch (1968) developed a spherical harmonie
representation with a superimposed variable density layer. This procedure
has been implemented by Koch and Morrison (1970) to .calculate a density
layer model fixed over 30° x 30° blocks, Witte (1970) formulated the com~
putational procedures for applying the density layer model to solutions using
Doppler observations. The same concept was also applied to satellite-to-
satellite Doppler tracking simulation studies by Schwarz (1971) using

2° x 2° apd 5° x 5 density blocks. Lundguist et al., (1969) proposed using
a set of periodic functions that have the property of being effectively zero
except at a particular location. Needham (1970) demonstrated the formation
of a geopobeﬂt;ial model based on fitting point masses to mean gravity
anomalies referred to a high order spherop. A significant feature of the

point mass model is the detail that can be represented by superimposing
15
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mass arrays of varying distribution and depth. Arnold (1967) was largely
responsible for the concept of obtaining gravity anomalies directly from
satellite orbit analysis. A direct simulated solution for 15° x 15° mean
anomalies was carried out by Obenson (1970).

As ﬁobed previously, the spherical harmonic representation has been
the only representation considered to date in connection with satellite gradio-
metry. The reason for this apparent fixation on spherical harmonics comes
from nearly exclusive consideration of satellite gradiometry by orbit
analyst., However, there are several agruments against the use of a spherical
harmonic representation in connection with satellite gradiometry. Becaﬁse
each'harmonic coefficient represents an integral over the total mass
distribution of the earth, gradient observations over the entire earth must
be included in each solution. That is each solution is necessarily a global
solution. Since the spherical harmonic representation is global in nature,
the fact that some features of gravity field are better known in some regions
cannot be reflected, e.g., land masses vs. oceanic areas. The logical
alternative is to use some local representation which can be discretely
expressed in terms of the anomalous gravity field in some appropriately
sized blocks on the earth's sﬁ?face or on the geoid. Additionally, arrays
of point masses beneath the surface are another possible representation.

For this investigation, two geopotential representations were con-
éidered:

(1) Mean gravity anomalies referred to a high order spherop.
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(2) Point masses fitted to the gravity anomalies

As is well known, gravity anomalies have long played a significént
‘role in geodesy for use in the geodetic boundary value problem and in the
determination of absolute positions of points on the earth's surface.
Additionally, they are extensively used in geophysical exploration and,
perhaps to a lesser extent, in trajectory computations. The lack of adequate
global coverage has long been a shortfall in geodesy, Various geophysical
and statistical methods have been applied to fill in gravimetrically unsurveyed
areas, Uotila (1962, 1967) developed model anomalies by geophysical analyses
and by Ieast; squares fitting of surfaces through known values. Rapp (1964),
Moritz (1964), Obenson (1968) applied statistical methods of interpolation
and extrapolation.

As demonstrated by Needham (1970), the point mass representation is
considerably simpler and more efficient in computations similar to those
hased directly on gravity aﬁomalies. TFurther, for the purpose of this study,
the point mass concept had two appealing features, First of all, masses
fitted to the gravity anomalies produc;e a somewhat smoothed field which was
thought likely to be more consistent with the resolving capability of an
orbiting gradiometer. Secondly, simulation experiments with point masses
might givé an indication of the capac; ity of satellite gradiometry in discrete
mass detection for geophysical analysis and military intelligence applications,
Unfortunately, these expectations were not attainable due to reasons which

will be explained.
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2.1 The Spherop Reference Field
The concept of a spherop or high order reference field has been dis-
cussed by Molodenski (1962), DeWitte (1966), Wong and Gore (1969) and
Needham (1970). In essence, the usual level ellipsoid Whose‘ gravitational
potential is described in terms of zonal harmonic coefficients by:

y=-2M [1+§ (-—%)gncg“ Payo (S0 1) ) 2.1)

n=2

where C_, = £(Cy,), I8 replaced by complex undulating surface. The potential

of this surface is given in spherical harmonic form by:

Nn
U_s = krM [1,+Z z (--%u)n(cnm cosmA + S, ,8inmA)Py, (Simp):! (2.2)
n=2 p=o

In equations 3.1 and 3,2 the notation has the following meaning:

U = Spheropotential of level ellipsoid

Us = Spheropotential of spherop

kM = Product of the gravitational constant, k, and the mass of the earth, M
a = Equatorial radius of the earth

r = Geocentric radius to computation point

p= Geocentric latitude of computation point

)= Geocentric longitude of computation point

Caps Snp = Conventional spherical harmonic coefficients

P, ,(sin o) = Ordinary associated Legendre functions

N = Degree and/or order at which the series is truncated,

The sphérop reference gravity field used in this study is identical
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to the shperop 14 system described by Needham (1970, Chapter 3). The

parameters of the reference field are based on the Geodetic Reference System
of 1967 and a set of 14th degree and order spherical harmonie coefficients
developed by Rapp (1969)., The defined parameters for the GRS 67 (IAG, 1967)

in equations (2.1) and (2.2) are:

a 6378160 meters
Jy = ~Cgo =1082.7x 10°

kM= 3.98603 x 10%°cm®/sec®

2.2 The Anomalous Potential

Both gravity field representations for the anomalous potential used
in this study are dependent on a set of mean reé idual gravity anomalies
referred to the spherop reference field. The models formed used the 1°x 1°
mean residual anomaly set developed by Needham (1870). This set covers
most of the United States. However, since the models are used in a
simulation study of gradiometry, the specifics of the anomaly set used is
relatively unimportant. In fact, any number of reasonable arbitrary anomaly
sets could have been used; aithough simulation models based on real data do
have certain ascetic appeal.
2.2,1 The External Anomalous Potential in Terms of Gravity Anomé,lies

The anomalous potential T, at any point above the surface of the

A residual gravity anomaly is defined as the difference between a gravity
measurement, reduced to the geoid, and the spherop normal gravity at the
corresponding point on the spherop reference surface,
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‘earth may be expressed by the familiar formula of Mizzetti:
T = —ZI}T-—ijAgS(r,l}i)dc (2.3)
o

In this expression, Ag normally represents {ree air gravity anomalies.
Here the Ag are residual anomalies referred to the (14, 14) spherop.
DeWitte (1969) has shown that this substitutio.n is valid and has the effect
of reducing the truncation errors associated with the Stokes' kernel of

the integral, The integration surface is a mean earth sphere of radius R =
6371000 meters; dog .is an elémental area on the surface; S(r,v) in the
generalized Stokes' kernel or function given by Heiékanen and Moritz

(1967, p. 235) in the form:

I-tcosfy +D :| (2. 4)

S(r,zp):t[%+1-—3D-tcoszi:(5+36n 5

where V¥ is the angular distance between :he computation point P and the
variable point P! at the center of the mean anomaly block defined by geo~

centric latitude and longitude (¢, A") is given by

§ =cos™* [singsing' + cosgcose' cos (A - A)] (2.5)
_ R
t=— (2.6)
1
D= (1~2tcos} + t%)” 2.7)

where r is the geocentric radial distance to the computation point,
2.2.2 The External Anomalous Potential in Terms of Point Masses

Given a set of point masses in places of gravity anomalies, the
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anomalous potential at an external point P, can be computed by the simple

summadtion formula (Needham, 1970):

T, uz._lf_% (2. 8)

where: = the distance between the computation point P and the

=
-
em
i

point mass m

the gravitational constant (6,673 x 10%cm® /g sec?)

e
i

il

my; = the jth point mass.



3. SPATIAL PARTIAi; DERIVATIVES OF A POTENTIAL FUNCTION
ﬁormally a gravitational potential function is related fo position in

terms of spherical coordinates (A, v, T ). Geofnetrically, t:he function, if
set equal to constants, defines a family of equipotential surfaces or 2- |
dimensional Riemannian manifolds imbedded in a 3-dimensional flat space.
Since we are dealing with a gravitational potential function, the function is
harmonic and thus will be restricted to satisfy the Laplace equation. This
is also essentially a geometric consideration, analogous to Einstein's la\&
of gravitation obtained by contracting the gurvature tensor of 4-space,
(Moritz, 1967). In fact, the Laplacian of the potential is simply a contraction
of the gravity gradiéni tensor.

The spatial derivatives of interest in connection with the output from a
satellite gradiometer (or for that matter any gradiometer) are the second
partial derivatives with respect to a local Cartesian coordinate system at
an arbitrary point in near earth space, The first partial derivatives of a
gravitational potential function are the covariant components of the gravitational
gcceleration vector, a first order tensor. The gravitational gradients, the
second partial derivatives of the potential with respect to Cartesian coordinates,
are the components of a covariant second order tensor. The latter is obtained

by absolute or covariant differentiation of the acceleration vector components.

22
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8.1 Transformations Beiween Coordinate Systems

As the derivatives of the potential are tensor components, the required
transformations are conveniently derived by the methods of tensor calculus.
In Figure 1 the geocentric system is représented by x5 = (x,¥,2) and the sphericsﬂ
coordinates by u = (X, ®, ). The geocentric system is further described by the
unit vector triad ( fl, ?2 , 1“3) designated as the basis ipf Similarly, the local
space coordinate éystérﬁ is described by the baéié e,. Note that the vectors in the
triad ( ey,es,€,) ave not, in general, unit vectors, Adopting the notation of Moritz
(1871), we introduce the local rectangular coordinate system (17, §, £ ) defined by
the e, basis.

First, let us consider the position vector of anarbitrary point P in space

given in terms of the geocentric Cartesian coordinates by:

P, 4 4 A
r=x ip = Xi; + ¥ip + Zi, (3.1

From the geometry of the figure the geocentric coordinates are functionally related

to the spherical coordinates by:
PpLp
x = X (u) (3.2)

which is specifically given by:
' X = Y COSgp COSA
y = rcoso sinA (8. 3)
z = 1 8ing

1 The summation convention illustrated in equation (3.1) is used throughout this

chapter,
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Figure 1. Coordinate Systems and Basis Vectors
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The covariant basis e, of the local coordinate system at the point P is

given by:

eq = 7§50 (3. 4)

Using equation (3.3) the partial derivatives o % /3 v’ can be reédily ob~

tained. These terms arranged in matrix form are:

T

-r cose sinA  -r sing cosA coso cos \|
3(X, ¥, 2) = r cosg cosA -r singsind  cosg sini (3.5)
3(Ay, 1)
| 0 rcose sing
-

Similarly, the geocentric basis i, in terms of the local basis e, is ob-
tained by:

Bus

s 9 Xp

- e (3.6)

1p

Substituting (3.4) into (3.6), then:

P 8
3x ou
ip = i-p aud a xP

which is true only if:

ax’  dus 6 {1 s=q
ou®  ax?P e 0 s+#q
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o) B,
Thus the matrix of partial derivatives du /3x is the inverse of (3.5),

_sin A cos A 0 -
T CO5 T cos
d(Ao,r) _ |- Sino cos) . singsind - cosA (3.7) '
d(X,¥,2) T r r
cospcosSA  cosgsink  sing

Now by taking the inner products:

we obtain the covariant metric tensor of the surface described by the

vector function T = r(A, ©, I):

°cos®yp 0 0
B = 0 * 0 (8.8)
0 0 1

212 0 0_—1
rfcos o
e ‘ 1
= ] — 0 .
g - | (3.9)
L 0 0 1[

To complete the mathematical preliminaries we must introduce

the Christoffel symbols of the second kind which are defined by: |
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{S} = __:Lgst(?g t + agpt agpq) 7
pq 2 o uP dut A u (3.10)
Equation (3.10) yields 27 values of which only 9 are non-zero. Thus
s 1"_'_
0 - ta —
{. 1 b= - taneg 0 0
pq
L 0 0
r
Msincpcosm 0 0]
2 } - 1
{p o} 0 0 T (3.11)
0 L 0
L r .
-r cos®p 0 0
{ 3 } _ T
pq = 0 -r 0
0 0 0

By making use of the Christoffel symbols and equations (3.4) and (3. 5) we

find that the derivatives of the e, basis vectors are given by:

gii - {psé}es . 3.12)

Similarly for the contravariant components € defined by:
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e = grie, (3. 13)
we get
de® _ pl.s '
dut {s q} © (3. 14)

Let us now consider a potential function
V o= V(uP) = V(A,0,r)

The gradient of V is defined in the (x,y,2) or {7, &, {) cartesian coordinate

systems, Since V is defined in terms of spherical coordinates, we have

VV = er 3.15
e ( )

or using (3. 13)
Yv = OV  _pp ‘ 3.16
vV o7 g'te, (3.16)

TV = g Vel“§“§§'v ep + V ey (3.17)

Using (3.4) and (3. 5), V is transformed to the geocentric system by:

vV = (_sin/\ v, - BOCOSA v 4 cospeosAV ) i
r coSop r A *

/ coS A singsinA : A

" (._m_..__v - 2EEERA YV + cosgsinAV ip 13.18)
rcoso A r P ' r
- o8 o ‘ Y

+ ( V. sineV / s

Sl

©



Recalling equation (3. 7) the first partial derivatives of V (A, w, r) in the

geocentric system is given hy:

_ T —
V. v
V; . 3 (A, 0, T) V?\
Vz a (x £ .3" LA ) V{ﬁ

Consider equation (3,16) in view of the fact that the vector triad defining
the e, basis are not all unit vectors. The obtain the correct physical
components in the local coordinate system the e, bagis must be normalized

to a unit vector basis, & »» Thus the normalized vectors are:

1 X'COSCP 19 ©p T

. A .
€, €3 ¥ Cg
Equation (3.16) rewritten in the normalized basis is' then:

i A 1 A A
v T mmmsrria— €y F e +
Vv T 608 V)\ 1 = V}peg Vr63

Therefore the first derivatives i the local (7, & () system are:

- 1

V‘ﬂ ~ Tcos o A
P

v, =V
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(3.19)

(3. 20)

(3.21)
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Substituting (3.21) into (3.19), we get the transformations of the first
derivatives or gravitational acceleration components between the geocentric

“and local coordinate system:

AT v, |
: 3(A r .
Vo |= %} (rcosgp, ¥, 1) Vlg (3.22)
v, Ve
~ginA -sing cosA cOSg COSA v,
i . . f
= cosA ~sing sindA cose sinA Ve
0 cos @ © sing N3
If we let .
~8inA ~-sing cosA lcosap cos A
A = cosA =~gingsind  cosgsind (3.23)
0 cos ¢ sing
B —_—
then
- - o
Vn Vi
T
e = A Vs (3.24)
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The next step is to obtain the second partial derivatives of the poten-

tial function V(A,®, r). Recall equation (3.15):

VV = 55 e (3.15)
To form the second derivatives we make use of the dyadic notation where the
V operator is applied in a more general sense, That is we will use the
notation ¥ V to distinguish the computation for the Laplacian v°V. In general
the operator v can be expressed in terms of the contravariant basis e’ and

spherical coordinates by:

Ty
BT

Then
(3. 25)
_ ep(azv , 3V ae“>
suf o u? dus du’
Using (3.14) for de’ /du® (3.25) takes the form:
- BV BV 8] N\, '
Wy = {375er " 5SS /€° - (3.26)

where the term inside the parenthesis is the covariant derivative of the

acceleration vector. Again the basis vectors must be normalized to give
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the proper physical components in the local Cartesian system. Using the
normalizedl basis €p from (3. 20) and the Christoffel symbols from (3.11)
in equation (3.25) we obtain the dyadic equation (3.27) in the dyad basis,

€y eq:

== 1

g - 51 2 A '
Poos®o (Vk A smcpcosmvm +reos® oV elél

PR T +tan¢vk)<’§1é2+ 1 v - Llv)dd,

£
r'cosg ® rcosg AT r A

AA
rzcosw(vkcp * tan‘ov’\)éﬁéf’ %é(lvcp@ trVy)eaes (3.27)

s Loy -lvoaybse, s Lo (v -
r o¢f r o recosm Ar T X

1 1, ACA '
+ ";(chr_ m;VtP)es% + Ve 8o 8y

Thus the second derivatives of the potential or gravitational gradients in

the (1, &, () system from (3.27) are:

1 tan g
= e - E Y+ TV,
V'n'n rgcos"q;vpt;\ r2 o T
(3.28)
o1 1
V. - ":?:_,'V + =V
£EE g r
V= Yy

£e
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(3. 28) - continued

v v 1 v N sinog v
- ~ r®cos r® cos%
§n  nE AR voA

1 1
\ v o - v
¢(n mf rcoso p riosep A

v =v =4+v - 1ly
ce e¢ r gr %0

\4 Vey Vi i A v ]

e : nm N, n¢ T
Voo Yoy Ve | = A Ve vgg Ve A (3.29)
sz VY ¥y Vz 2 Vg n Vgg Vgg

By performing the mulitplications indicated on the right-hand side of (3. 29)
and usi_ng the relationships in (8. 28) the second partial derivatives of the
spherical coordinates with respect to the geocentric coordinates can be
determined, The resulting 'partial derivatives are given in Chapter b in a
form suitable for computer programming,
3.2 Specialization to the Potential in Spherical Harmonics

From eguation (0. 1). the spherical harmonic expansion of the potential

is:

V(J\,tp,r)- = ”%,M[l + i i (-%—)‘n (CppCOS A + Sy SInMA) P,,m(sincp)] 0.1)

n=a B=Q
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Using equation (0. 1) and (3. 21) one obtains the acceleration vector components

in the local system:

_'-kn-r%&— inz (——3—) (Cpy SMmMA- Syy COS m)\). P a (SIR)

a=2 n=o
KM & o« /aV 3
Vg\z z z (..%,) (ChnycosmA+ S, sinmA) Py (sing)
r-ﬁ
0= e 220 : {3. 30}
kM

25014 § 5 o conm + sy o]

n=g a=0

where the polynomial terms are:

Plly (sing) = — 2= Pys (5in0)

o
Py, (5p) = Pyasy (S @) - mtan Py (SIg) (3.31)
Pgm (sing) = (pn+1) Py, (5In9)

Similarly, usmg equation (2. 28) we obtain the second partial derivatives

kM -1+Z Z ( ) nm"cosrn)& Suw smmX) Py (Smo)
n=8 n=0
Veg= ";V[ [-;-1 }Z Z (-%-}' (Cra cOSTAAH 8,y STATAN ) PES (smp) (3. 32)
. n=2 =0
MR | (R L '
k . ‘ |
Vg gz 2 M %z Z (“%") (C,p CO8 MA+ SysinmA)B EE(SWD)

1= 2 m=0
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(3.32) - continued

= %ﬂz “Z (—%—)n(cnm sin mA =Sy, cosmA) Pgn(smcp)

nan 0

=]

KM o w2 \° ' 18
re Z z(;_) (Cpg SINMA - Sy, cOSMA) Pyy (SiRep)

n=e o~

1=

at

- 5 ZZ ( > (C#; cos mA + Sy, SinmA)P,FE (sing)

=2 =0

The polynomial terms in (3. 31) are:

m . SmM mp=-1N . i .
PMsing) - 2SR pnC T (p41)Paa (i) - tano P (3inc)

. |
,S, (singp) = m—mﬁl—n——(ﬁu (n+1)2]]?m(sin ®) +tanoP (sino)
J +

cos® g

ngmg(smtp) = (n+1)(n + 2)Py,(sineg)

~m{m -~ 1)sineg

n . i
P, (sing) = P P.u(sing) + P P lgsmm (3. 33)
. m(n+2 -
Pi(eing) = - Goa, B (6i9)
&C

Pon(Sine) = mm + 2)taneP (sing) ~ (0 + 2) P (sinwp)
n n, n¥l



In the next chapter the polynomial expressions in (3.33) will be
discussed in connection with the estimation of the harmonic degree root
mean square gravitational gradients. In Chapter 5, computationally more

practical expressions for the gravitational gradients will be presented,
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4, GﬁAVITY GRADIENTS AT ALTITUDE AND GRADIOMETER RESOLUTION

Concurrent with on~going development of satellite gradidmeters there
has been keen interest in studying the nature of gravity gradients at orbital
altitudes. Such studies have a direct bearing on sensitivity and error budget
parameters governing the development of an operational satellite gradiometer
system. Various investigators have taken different appfc.)aches in evaluating
the gradient contribution from the short Waveléngfh, high order terms of the
external gravitational field, |

Chovitz, etal. (1972) performed an analysis of gravity gradients
along simulated 300 kilometer altitude orbit trajectories over selected regions
of dense 1° x 1° anomalies. Rather than using the anomalies directly, spherical
harmonic coefficients through degree and order 75 were computed from a set
of several thousand gravity anomalies in 1° blocks covering more than 30 per
cent of the earth and 5° blocks over the remainder.

The results of Chovitz's investigation indicate a gradiometer sensitiv-
ity of better than 0.01E is necessary to res-olve the harmonics of a single
degree in the range of degrees 60 to 70, In order to resolve the total band
of harmonics between degrees 60 to 70, a required sensitivity of 0.02 E
was indicated.

In another study by Sandson and Strange (1972) the anomalous vertical

gradients were evaluated at an altitude of 300 kilometers above the North
37 ‘
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Atlantic Ocean. Usinga (12, 12) spherop reference field and 1° x 1° mean
anomalies referred to the spherop, the gravity disturbances and the anomalous
vertical gradients at altitude were computed. The conclusions of the investi-
gation indicated that gradiometer information would require accuracies better
than 0. 1E to recover 1° or 2° surface block values. The maximum amplitude
of the anomalous gradient was found to be 0. 5E. Over the study area, the
rate of change of gradient was on the order of 0. 1E per degree of ground trace.
Of particular interest in that study were the short wavelength variations
detected by the gradients but smoothed over by the gravity disturbances. This
latter effect can also be seen in Figure 11, Chapté-r 7 of this report.

Various investigators have made guantitative extimates of the gravity

gradient spectrum based on Kaula's "rule of thumb'", (Kaula, 1966b):
Cpp =~ Sy ~ 10°/0° (4. 1)

where n is the spherical harmonic degree. Equation (4.1) expresses the power
spectrum of the normalized Spherical harmonic coefficients. From this power
spectrum, one obtains the contribution of the (2n+ 1) terms to each degree by:
n X
=

\ [X(Efw"éfi ):] = (2n + 1)% 10°/n® (4.2)

n=0

This latter form is also attributed to Kaula. Using this model the spherical

harmonic expansion of various spectral responses of the gravity field may be
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estimated. In the case of gravity gradients such éstimaf;es havé been made
by Forward (1971a), Kaula (1971a, 1971c), Glaser and Sherry (1972), and
the JPL Gradiometer Study (Gardner, et al., 1872).

_ Forward has estimated the contribution of all harmonics of degree 75
to the radial component of the gravity gradient tensor to be about 0.01E at
250 kilometers, which is the threshold sensitivity proposed for the rotating
gradiometer. However, from equation (1.6) we see that the amplitude of the
rotating gradiometer signal contains more than just the radial gradient.
Essentially equivalent results were obtained by the JPL Study.

Kaula in a similar analysis estimated the contribution at degree 75 to
be roughly half that estimated by Forward. An aspect of Kaula's analysis
which surely dismrbed some proponents of satellite gradiometry was his
estimate that an accuracy of 0.03 E.U. at 260 kilometers would only yield
resolution of the gravity field to about harmonic degree 23. This corresponds
to a half-wavelength of 870 kilometers. It should be noted that in arriving
at his estimates of degree contribution and resolution, Kaula stated that he
conservatively assumed a 10:1 ratio for the error contribution of any one
harmonic coefficient to the total error. Kaula compares this resolution of
a gradiometer to equivalent resolution for satellite-to-satellite tracking
accurate to 0.5 mm/sec and satellite altimetry accurate to 1,0 m. In
addition, he states that 0,05 mm/sec satellite-to~satellite tracking and 0.015E
gradiometry have a common resolution of 400 kilometers at 200 kilometers

altitude., Certain aspects of Kaula's analysis are not clear, In particular,
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the meaning of fhe 10:1 error ratio and his method of computing the gravity
gradient spectrum are cbscure. I any case, Kaula's estimates markedly
differ from results obtained by other investigators.

Tn the Glaser and Sherry paper, root mean square (RMS) amplitudes
remaining by harmonic degree at various altitudes were estimated from a
spherical harmonic expansion of the linearized rotating gradiometef signal.
Their results indicate that a rotating gradiometer signal at 0. 01E would have
a resolution of about 300 kilometers (n = 120} at 300 kiloineters altitude,
They compare this to 0.05 mm/sec satellite—to-sétellite tracking estimated
to have resolution to degree n = 60 at the same alltitude. However, certa;in
assumptions were made in deriving the expressions for the RMS gradiometer
signal which are questionable. We will discuss this in the next section and
propose an alternative approach.

In addition to the analytical investigations, laboratory experiments
were carried out by Hughes Research Laboratories using a prototype gradio-
meter (Bell, et al., 1970; Forward, 1971a), The noise level of the sensor
was 1.0E (1 oat 10 seconds integration time). Using this sensor real time
gradient signals were observed in an experiﬁ:ent which simulated the mag-
nitude and‘time variation of gravity gradient gignals which would be expected |
in a lunar orhit. Forward concluded from the laboratory results that the
limiting resolution is the altitude at which the gradiometer is flown. For
example, a gradiometer at 300 kilometers can resolve a wavelength of not

less that 300 kilometers at the earth's surface, In other words the maximum
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degree resolution of a gradiometer can be expresser empirically by:

21 R
n = h (4' 3)
where: R = radius of the earth
h = altitude
n = harmonic degree to the nearest infeger.

Thus at 300 kilometers altitude, the maximum possible degree resolution is
about 120, which agrees with the analytical results by Glaser and Sherry.
Other factors to be considered in assessing resolution are the efféct
of gradiometer sensitivity and integration time on signal response. Savet
(1967) discussed the trade-offs between sens itivity and integration time for
various candidate gradiometers. In general, sensitivity may be improved
by lengthening integration time. It should be obvious that as integration
time increases, regardless of sensitivity, the signal response will be
smoothed out over a longer path., As a result, the shorter wavelengths will
be lost in the measurements. Considering the various factors that influence
resolution, A. B. Whitehead in (Loomis, et al,, 1972), concluded that a
satellite gradiometer with a sensitivity of 0.01E can provide useful measure-
ments over a wavelength region between 400 to 1500 kilometers, Whitehead
used a planar approximation and assumed a series of sine waves fo represent
the 'g'ravitati;nal field, which is a solution of the Laplace equation, V°V = 0, in

Cartesian coordinates.
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4.1 Estimation of Gravity Gradienf:s é,t Altitude
Estimation of the spectrum of anomalous gravimetric quantities relies
on the assumption that such quantities are stochastic processes over
a surface (Meissl, 1971). = This simply means that we may apply expecta-
tion operators to the signals of the anomalous gravity field. In the usual

statistical sense, the expectation of a random variable X is given by:
E(X) = _f Xp(X)dxX (4. 4)
- 00 : -

where p(X) is a probability density function which has the characterisitics:

[ees

J p(X)dx = 1 (4. 5)

fanll ¢<]

Unfortunately, the probability structure of gravimetric quantities is essenti~
ally unknown. To overcome this difficulty, the probability structure is assumed

to be adequately represented by areal weights, We see that the integral
L II do =1 (4.6)
o
o ‘

where ois the total surface area and do a differential element of surface

area, Thus, if X(P) represents some quantity such as gravity anomalies or
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gravity gradients then the expected value is given by:

E[X(P)] = X(P) = %-”X(P)do (4.7
g

where X(P) is the mean value of the signal over the surface area ¢. If the
quantities X(P) are a true smoothed representation of thé actual gravity
field and contain no term of degree zero in the harmonic expans ion of the

quantity, the integral over the entire earth yields:

TPy = 0

Clearly X(P) provides no information with which to characterize the magni-
tude of the quantities‘ X(P). Fortunately, we may consider the mean square

of X(P) by applying the variance operator, thus

var [X(P)] = E[X*(®)] - E[X(P))?,

but since E[X(P)] = X(P) = 0,

1 Pf o
var [X(P)] = EIX*(P)] = o~ jf}@(?)do. (4.8)
. : g

Consequently the root mean square value of X(P) is:
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2

RMsIX(P)] = |2 [ [%2(P)do] (4.9)
g

In order to specialize equation {4.9) to obtain estimates one might
consgider the Cartesian derivatives of the Legendre functions in equation
(8.33). This is essentially the procedure used by Glaser and Sherry (1972).
In their development of RMS estimates for thq linearized rotating gradiometer
they neglected terms inequation (3. 33) containing B, ,.1(8in¢) and the harmonic order,
m. If this assumption were to be applied to all the Cartesian derivatives of
the Legendre terms, only the diagonal components of the gravity gradient
tensor would have non-zero RMS values. The Cartesian derivatives of the
Legendre terms corresponding to the diagonal tensor component would be

given approximately by:

P (o) ~ ~(n+1) Pyy(Sino)

Py (sing) ~ ~(n + 1) Py, (sino) (4. 10)

ng(smcp) ~ (n+1) (n+2) Prg(sing)

Since the Legendre terms are harmonic, they must satisfy the

condition;
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m gE .
Poo(sing) + Pyy(sSine) + ng(sinq;) =0 (4.11)

Obviously this is true for the terms in both (3.33) and (4. 10). What then
does this imply ? A probable explanation, one which would be tedious to
demonstrate analytically, is that the terms in (4.10) are simply the eigen-
values of the Legendre terms in the gradient tensor since the {race of the
tensor matrix has been preserved even though certain terms have been
neglected. Which means tha.t;. the - axis and the § - axis have been rotated
about the { -axis, thus changing the orientation of the coordinate system
such that the horizontal axes no longer coincide with the direction of the |
parametric lines (parallels and meridians) on the (A,o,r) surface. Marussi
(1949), Mueller (1960), and Hotine (1957, 1969) have shown that the gravity
gradient tensor components are related to the curvature and torsion of the
equipot;ential surface, Savet (1967) demonstrated that, if the horizontal
coordinate axes are taken along the directions of maximum and minimum
curvature (the principal directions) of the equipotential surface at a point,
the off-diagonal components of the gradient tensor are zero. However, the
orientation of the principal directions on a surface as complex as an equi-
potential sﬁrface in near earth space may vary considerably from point to
point, Consequently, the validity of global integration of the first two
polynomial expressions in equation (4. 10) would seem to be suspéct.
Clearly the integration of the terms in equation (3.33) would be

extremely complex.. As an alternative method for the development of
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expressions for RLS gradients consider the second cartesian derivatives
of the potential derived by Hotine (1969, pp. 179-183).

Hotine's derivation is quite lengthy; hence, will not be repeated here.
I general, his development of the Cartesian derivatives is based upon a
power series expansion of the associated Legendre functions given by Hobson
(1965) ,. which is conformally mapped into isometric space using the theory
of complex variable. By taking the pole of the harmonics along the local
vertical, the resulting expression for the second derivatives in terms of

fully normalized harmonics is:

ag v - k ® < a A\ = e ) _— .
dX10X,; “;rs‘z Z (";“) (Can cOSTA+ S, cos mA)Pyp(sing)  (4.11)
0 w0

where énm and §n . are modified coefficients which are functions of the fully
normalized coefficients and X = (7n,£,{). The modified coefficients for the

components of the gravity gradient tensor are:

]

V‘rm : Cpy = 1/4Cy pen - 1/2 (n-m+1)(n-m+2) Cy

+ 1/4(-m-1)n-m)@-m+1)n-m+2) C; ez

(€2
=
=

il

1/4 8, g = 1/2(n-m+1){n-m+2) Sy n (4.12)
]

+1/4 (nwmwl)(n-—nrnl)(n~m+1)(n-»m»su‘Z)Sn .
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V. 1t Cog = -1/4Cy, pp ~ 1/2 (n-m+1)(n-m+2)Ty 4

~1/4m-m+1)(n-m)(n-10+1)(n-m+2)C, , z12

gnm = —1/4§n,m_2 - 1/2(1:1——m+1)(3r1—1rn+2)n(3‘,\,m
(4.13)
~1/4 (n-m~1)(n-m)(n-m+1)(m-m+2)8, 1.4g
Vt;g: (m?,m e {n~m+1)(n~m+2)§n,m
_ (4.14)
Se = @-mil)p-mi2)S, ,
Ve :Caw = -1/48,, 40 - 1/4@-m-1)(0-m)(n-m+1)F, ..
{4.15)
:Sn.m = 1/4621,11:-»2 "'1/4(n“m+1)(n)(n"m+1)(n”m+2)-én,m+2
Vg ¢’ Con = ~1/2(0-m+2)8; pa -1/2(n~m)kn—m+1)(n—m+2)§n’mﬂ
(4. 16)

Bae = 1/2-m+2)T, gy + 1/2(-m)n-mH1)n-mi2)Cy s
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v,

ne Cog = 1/2(@~m+2) G, , 5oy -1/2 (n~m) (n-m+1) (0-m42) Cp_p s wa1

(4.17)

Sup = 1/2(n-m+2) Sy pe1 ~1/2(n-m)(n-m+1)(n-m+2) Sy, 5y

The local coordinate system of the derivatives in equation (4, 11) is
in a astronomic basis which is nonintegrable (Grafarend, 1972b). Hence,
we see that the Vg c component is now dependent upon the harmonic order m
(see equation 4.14). However, if we neglect m, the factor terms on the right

hand side of (4. 14) reduce to:

(nt+l) (n+2)

which is exactly the factors for the ‘secoﬁd radial derivative of the potential
referred to a spherical orthogonal coordinate system. We would like to
eliminate the order m from all the factors in equations (4.12) through (4.17)
so that we can perform the integration of the gravity gradients implied by
equation (4.9). )
The usual- practice in estimation theory as applied to Physical Geodesy
is to assume that stochastic processes of the gravity field are isotropic. This
meaﬁs .that the covar iancé functions for gravimetric quantities are independent
of direction and hence independent of the harmonic order m. Although the
assumption of isotropy may not be a physical reality, it reduces the problem

of estimation to a manageable level which appears to yield satisfactory results.

| ‘
Using the assumption of isotropy the coefficients in the harmonic expansion
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may be replaced by a power spectrum;
wn =0 n/ Jzn-%]_‘“ (4:. 18)

where ¢, is obtained from the square root of the degree variance which is

defined by Xaula (1966b, 1967) as:

n - -
0.7 = T (G," + Sua) (4.19)

 Thus the power spectrum implied by Kaula's "rule of thumb", equation 4. 1),
may be used . Considering the altitude attenvation of the higher degree terms,
say n>1000, the error in computing RMS gradients due to truncation at some
finite value of n will be relatively insignificant,

Specializing the assumptions discussed in this section to equations
(4.9), and (4.11), and using the orthogonality properties of the spherical
harmonicg, we obtain the following expressions for the RMS gravity gradients

for n> 2

(_%.) n[f;t-- (u+1)(n+2)](2n+1 10 /o (4.20)

- _ kM
RMSz, = RMSpp = 3

RMS, ; = Rms,s.g = "1%\"@"\/ Z ~ -~~—(n+1) (n+2):] (2n+1)107+°/n* (4.21)



50

kM [ © rat” )
RMSz5 = RMSQQ = B \/Z (_af) o+ 1)3(11~!~2)2{2n+1)10""]‘U/IfJa ) (4.22)
n=a
kM & ,al" -LO g A '
RMS,y = RMSpg = 7 Z (*5_,.*) 1072 /4n (4. 23)
RMS, 5 RMSW‘
kM >/ a : -
= 2 —\/ z ("“"i-') m+1)% 107+°/n* (4. 24)
MS.s|  |RMS )

§C

Tn a similar fashion the RMS amplitude of a rotating gradiometer may be

obtained. Using the previous results of this section and equation (1.6) we get:

REVIS',m]lp1 kM \/ Z (1/2 + 3/2 (n+1)(n+2))+4 (n+1) ]{2n+1)1o"l°/n

(4. 25)

Glaser and Sherry (1972) and Glaser (1972) suggest a meaningful way
to plot RMS results devrived from equations of the type given above. What is

done is to plot the contribution of each degree to the RMS value and the sum
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of the higher degree terms above and including the harmonic degree nasa
function of n, In Figure 2, the RMS values of the gravity tensor components
summed to n = 1000 are plotted in this mamner. Similarly the RMS signal
amplitudes of a rotating gradiometer are plotted in Figure 3. In both cases the
altitude is 300 kilometers and the values of the scale factor, kM, and the
radius of the Earth, a, are the GRS 67 values given in section 2, 1.

Care must be taken not to over interpret the results in Figures 2 and
3. A reasonable interpretation would he to view the plot of RMS value re~
maining by harmonic degree as a measure of the minimum gradiometer sensi-
tivity requi:red to resolve the harmonics up to and including degree n. On the
othef hand the RMS value by degree gives a measure of the upper limit of
degree resolution, which is the degree Whe:re the curve becomes approximately
asymptotic. For example, the curves in Figure 2 for the radial (3, 3) tensor
component indicate a sensitivity of about 0.01E required to resolve harmonic
terms to degree 90, while the upper limit of resolution is about degree 120,
The latter limit of resolution thus tends to confirm eguation (4.3), which is
based upon Forward's laboratory results (see page 41 ). Using the same
reasoning for the remaining tensor component curves in Figure 2, we can
see that the hard-mounted gradiometer system would require sensors of
considerably better sensitivity to obtain resolution to degree 90. At 0,01E,
sensitivity a gradiometer measuring only the horizontal components (1, 1)
and {2, 2) have a possible resolution of about degree 75. The other components

measurable with a hard-mounted system appear to give very little information
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in the range of harmonics necegsary to make the system competitive with
other satellite~-borne hybrid gravimetric systems.

To further illustrate the difficulty that may ;arise with the hard-
mounted gradiometer, the RMS gravily gradient ténsor components for various
harmonic degree summations and altitudes are given in Table 1. Assuming
a threshold sensit‘ivity of 0.01E, it is clear that thé off~-diagonal or cross~
gradients will provide little or no information for the short wavelength com-
ponents of the gravity field. This is true even at altitudes impractidally too
jow for a reasonable orbital life expectancy of the satellite, The diagonal
tensor con;ponents with the exception of the radial (3, 3) component are marginal
at 306 kilometers for degree 75. Other computed results, not shown here,
indicate that useful information to degree 90 from the (1,1) and (2,2) com~
ponents would require a maximum altitude in the neighborhood of 250 kilo-
meters,

Table 2 shows the same information given m Table 1, but for the
signal amplitude of the rotating gradiometer, These results along with the
data plotted in Figure 3 indicate that we have no difficulty in resolving wave~
length correspondin.g to harmonic degree 90 at 0,01E sensitivity., The
corresponding surface block size that we can expect fo resolve at 300 kilo~
meters is given by 180°/n, which yields 2° x 2° squares. ‘Numeri.cal results
of the simulations discussed in Chapter 7 of this report tend to confirm this

upper limit of resolution.



Altitnde (km)

400

300

200

100

Table 1

RMS Gravity Gradients at Altitude

0.1016

0.0025

0.1332

. 0.0084

0.1938

0,0394

0.3693

0,1942

n>2
0.0021

0.0988

n=z956
0. 0000
0. 0025

n>2
0. 0023
0.1304

n=75
{.0000
0. 0094

n>2
0.0025
0.1912

nz=v5s5
0, 0000

0.0394 .

n>2
0.0028
0,3673

nz=7v5
0.00600
0.1841

Gravity Gradients (E)

0.0217
0.0217
0.2004

0.0000
0.0000
0.06050

0.0250
0.0250
0.2636

0.0002
0.0002
0.0188

0.0292
0.0292
0.3849

0. 0008
0.0008

0.0768

0.0356
0.0356
0,7366

0.0037
0,0037
0.3883

0.0590

0,0011

0. 0053

0. 1569

0.0259

0. 3438

0.1654
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n>14
0.0001  0.0050
0.0588  0.0050
0.1177

nz=90
0.0000  0,0000
0.0011  0.0000
0. 0022

n>14
0.0002  0.0072
0,0914  0.0072
0,1831

n=90
0.0000  0,0001
0.0053  0.0001
0.0106

n>14
0.0002  0.0107
0.1565  0,0107
0.3134

n=9%0
0.0000  0,0005
0,0259  0.0005
0.0518

n>14
0.0004  0.0172
0.343%3  0,0172
0. 6871

‘n=90
0,.0000  0.0027
0.1654  0.0027

0.3308



Table 2

RMS Signal Amplitudes at Altifude (Rotating Gradiometer)

n>2
n~ 14
n= 75

n= 90

100 km. 200 km. 300 km.
(RMS amplitudes in Eotvos Units)
1.1083 0.5816 0.3999
1,0315 0.4708 0.2752
0.5825 0.07178 0.0281
0.4963 0.1152 0.0152
Table 3

400 km.,

0. 3050
0.1770
0.0075

0.0033

Maximum Degree Resolution of Gravity Gradients At Altitude for

Gradient Term
(1,1)
(1,2)
(1, 3)
2,2)
(2, 3)
(3,3)

Ampl.

Measuring Sensitivity of 0.0lE

100 km

301

32

301

32

350

378 .

200 km

126

16

126

16

151

164

300 km

74

10

4

10

91

101

56

400 km

50

50

63

70
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Table 3 shows the maximum degree resolution at 0.01E sensitivity for
each component of the g‘ra,vity‘ gradient tensor and the rotating gradiometer
signal amplitude. This further demonstrates the apparent lack of significant
information in the cross-gradient terms.

4,2 Altitude Attenuation of Gravity Gradienis

As is known the second derivatives of the potential are altitude attenuated
by a factor (a/ r)n*s. Figure 4 graphically illustrates altitude attenuation of the
anomalous gravity gradient tensor components. The values plotted were
computed using the superimposed point mass set described in Tables 17 and
18 of Needham (1970). For convenience those tables are reproduced in
Appeﬁdix A. These point mass seils were formed by least squares selufions

lusing as observed data gravity anomalies residual to the (14,14) spherop de~
scribed in Chapter 2. The local (1,2, 3) coordinates to which the anomalous
gradients are referred are defined as follows: The 3-axis is taken positive
outward along the normal to the GRS 67 ellipsoid (iAG, 1967), 1-axis points
North, 2-axis points West, The fooipoint of the normal is located in the
central United States at o= 37°, A= 260.5°. Typical values from which the
plot was drawn are given in Table 4, along with the gradients of the reference
* field and the total gradients, Although, it is difficult to draw specific in-
ferences from such localized values, certain aspects of the alfitude variation
of the gravity gradients do stand out, It is evident that the anomalous part of
the gradients are considerably less sensitive to altitlide attenuation than the

gradients arising from the (14, 14) field. Simple calculations using Table 4
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indicate that the rate of change of total gradients m the 275 to 300 kilometer
altitude region, is on the order of 10°® E/meter, Similarly for the anomalous
gradients we find 107 E/meter.  The variation of the total gradient is sig-
nificant as it implies a tolerance of about 10 meters in determining the radial
position of the satellite carrying the gradiometer for 0.01E accuracy in
measuring the gradients, This was confirmed by more detailed computations
where the altitude was varied + 20 meters about a 300 kilometer altitude in one
meter steps. The maximum variation in the total gradients over this range
was about 0,08E for computation points varied up to =15 minutes in latitude
and longittrlde about = _37° , A=260,5 over the point mass model described on
page ‘57 . Additionally, these computations indicated that cross-track and along-
track variations of position of about 100 meters have a negligible effect on the
total gradients. These results clearly indicate that orbit determination should

not be a critical factor in satellite gradiometry.



5. SIMULATION OF SATELLITE GRADIOMETER DATA

This chapter describes the algorithm for the generation of simulated
satellite gradiometer observations. The simulations are developed for two

distinct gradiometer and satellite configurations.

(Iy A strap-down or hard-mounted gradiometer in a satellite using

gradient torque stabilization and active attitude control.

(2) A rotating gradiometer in a cylindrical satellite using spin

" stabilization.
5.1 Generation of Satellite Orbits

In order to be consistent with proposed gradiometer mission profiles,
selected orbital passes over the model region were genefated in polar,
near circular orbits, The orbital parameters were generated using the
Rapp (14,14) geopotential model (Appendix B) in a modified version of the
Cowell orbit generation program (Cigarski, et al., 1967). This program
uses an eighth order Runge-Kutta starting integration followed by a variable
option step and order Cowell predictor-corrector and optional force functions
(drag, luni-solar, solar radiation). For this study an eleventh order

integration with a fixed time step size was used. The force model used

61



62
included only the earth's geopotential effects,

Pertinent data generated for subsequent gradient computations and

analysis included:

(1) The pass and observation point number and time from initial epoch
(2) The Greenwich Apparent Siderea] {ime

(3} The satellite state vector

¢
3
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st
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i
Do de e D St ¢
i
l’%]
|"$]1t

¥
[

(4) The satellite subpoint and altitude.

5.2 Computation of Gradients in the Inertial Coordinate System

As a preliminary to computing the simulated gradiometer observations,
the first and second derivatives of the potential were computed with respect
to the inertial coordinate system. This facilitated transformation of the
gradients into the gradiometer fixed coordinate axes,

From equation (1, 3) the following partial derivatives are required: |

Vaxs Vays Vesr Vyys Vogs Vago
In addition, to define the local vertical at the satellite the partial derivatives
Ves Vy, V,

are also required. Since the potential is divided into a reference potential



defined by the (14,14) spherop and an anomalous potential due to the

residual gravity anomalies or point masses, the fotal derivatives have the

form:

The algorithm for computing these derivatives is based upon the chain

rule method derived by Gulick (1970).

are first taken with respect to the spherical coordinates (A,q,r). The

Vie = Upx + Ty

With this approach the derivatives
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spherical derivatives are then transformed to the inertial Cariesian system

as follows:

_ 23V 3r OV_ Oy oV oA
Ve ™ 3y X S ox Y 3%
and _
v = 2V ®r or °V dr 2%V Bp 3V 2
X dr 3”7 d | dr® 3 3rdp o ArdAX 3, |
V. 2% aw | PV odr PV 3 PV an ]
TR A | 310 3 T AR A, dpdA By
. AV 2 oa_[ v ar PV 3p . 3V A
YN D | 3WX -3 AR LY G
3V %r  ar | 3V dr PV e BV M
V = ) + 4-
¥ 3,9 o, | or° 3 drdm  dy ArdA 3y ]
V. Po o PV dr APV dw . PV ]
+ + =3
30 0, | ¢ | Brop B,  Ag® B, SgdA Dy
LAV A oy [V e AV e PV ]
BA Bx ay a.x I al’ak ay BCQAA. P’y a}tg ay

(5.1)

(5. 2)



and similarly for the remaining derivatives.
The partial derivatives of the spherical coordinates with respect to

the inertial Cartesian coordinates can be derived from the following

relationships:

n

oj

r =& +y° + 27
a=A+0

where ¢ is the right ascension of the satellite and & the Greenwich apparent
sidereal time. The longitude A is taken positive eastward.

tan ¢ = y/x

11

z/r

@+ /e = Pir

sin ¢

cos @
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Using equations (3,23), (3.28) and (3.29) as explained on page 27, we obtain:

or X Ao Xz A y

’xr ' 3x  #p ' 3x T TTps
dr  _ y . D9 _ _yz ., OA _ X
oy r 3y r*p Jy p®
ar am Z . Btp = P . . aA - 0
dz r 2z ¥ ' 3z

>Pr rP-x* | P __z@fy+2x"P%) A | 2xy

e © 0 r* p° kP
¥r  _xy Fo  xyz@P®+1?) S
3y 0 awy r* p° ‘axdy Pt
Fr . xz o =_ox(272% - Py | A

dX0% r° * 3xdz P * 3xoz

(5. 3)

(5.4)

(5.5)

(5. 6)

(5.7

(5.8)
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Fr _ rf-y? e 2@y PP r¥XY A 2y (5.9)
ayz I‘S ) a)f? r& pSl H aya p‘.% M
¥r o yzn o __ya® -22%) 3N _

dydz ™  dyoz rp " dydz (6.10)
¥r . -2, o _  2zP 3%\ _

o2 rr ang CTTE R ° (.18

It can be shown that the chain rule method is identical to the tensor fransfor-
mation technique presented in Chapter 2. From a programming point of view
the method shown here appears to be simpler.
5.3 Spherical Partial Derivatives of the Harmonic Reference Potential

Upon differentiation of equation (2. 2) for N= 14, with respect to the

spherical coordinates we obtain:

: -3 n
BU = - kM s n ) .
ar 2 [1 + z z (n+1) (—E—') (Cpy COSMA+S, , SiINMA) Pnlm(Sln{p)] (5.12)
n=2 w=o0
' 14 n
U _ kM : a . '
3 T [Z Z (—gj'(CnmcosmA+Smsmm)\)(mtancppnm(smcg)

Sl o]

“Pypv 3 (5100)) | (5.13)
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2}3 = - kM l:z Z ( )(CMSmmA— Snmcosmh)man(smcpﬂ (5. 14)

A= =

Differentiating equations (5.12), (5.13) and (5.14) again with respect to the

spherical coordinates yields

L4 n
*U _ 2kM
3re 1@ I:l+2 ZZ ( )(n+l)(n+2)(cnmcosm)\+ Snmsmm;\)an(Smcp)J
n=8 w=o ‘ _ (. 15)
2 4 0
0 U kM \ a
3 z - Z }: (r) (CrpeosmA + 8, sinmA)
n=e m-—O
m ) . ‘
X ('cos% P, (5ing) + mtang (P, 5,1 (Sing) - mtang Py, (Sing))
+ (m+l) tan Py oy (8Ing) ~ PH,M e(sincp)>j _ (5.16)
o°U - kl\f[
Se [zz ( ) (Cp pCOSMA+8, ysinm Aym?® P“(smcp):’ (5.17)
n=2 n=0

and the cross partials

14
22;;;): - 1;1;& [}:i (n+1)( )(C RCOSMA+S,, sinmA)
n=2 pxo .

X (Pn,m 18ing) - m tane an(SiIl(p)j:] | (5.18)



67

14 n
*U kM ;
sed) ¥ [}: Z (n+1)("CnmSinm)L+Snmcosm}\)an(sinw)] (5.19)
n=0 =0
14 1
U kM a\* .
dpdA T x® [:z Z (uf'“) (~Cp SImA+ S, cosmd)
n=2a= 0

. i ‘ 5.20
X m(mtan Py, (sing - P, ,.:(8In CP)] ( )

Po evaluate the Legendre functions in the partial derivatives, the

recursion formula is given by Hobson (1965) as:

-

Py (sing) = [ (20+1) 8NP, s o (8109) - (1-1)Pa o o (5109) /n, nz2  (5.21)

The associated Legendre functions are evaluated by:

P, . (sinop) =[ Pz, n (5ing) + {(2n+1) o8Py 1, 51 (Sincp)] , Az 2, m=21 (5.22)

where the term - P,,,_a),, (S”incp) = @, for m>n-2. In equations (5.13), (5.16)
and (5. 20); the term Pn};,ﬂ'_lr(s-inm) =0, for m>n-1. The required initial values

are:

|
bt

Pgo(sm{‘_p) =
Pyo(sing) = sing
P,1(siny) = cosSeo

It

H
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Pao (sing) = 1.5 sinq - 0.5
P,, (sing) = 3sinwcose
Pse (5ing) = 3cos®p

The contribution of the spherical harmonic reference field to the

acceleration vector and gravity gradients in the inertial system may now be

computed by the method given in section 5.2.

5.4 Partial Derivatives of the Anomalous Potential in Terms of Gravity

Anomalies

If the anomalous potential is represented by mean gravity anomalies

in blocks, the integration of equation (2.3) may be expressed as a finite

summadtion:

R
T = “@";T-'""ZAg‘k S.(r’q;)ASk : {5.23)
E s

where AS¢ denotes the area of the km-block in solid angle. The partial

derivatives analogous to those in section 5.3 are:-

oT - R .38, ) :
dr  4nm ;Agk sr Qs (5. 24)

3T R 3s(r,¥) Y
e ;Agk Y 30 “%k

15, 25)

3T R a8, b)) 3
X T 4m 2 Bk 3y ax As, (5. 26)
k
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*T R 3%8(x, ¥)
drF  4n ;Agk ore | A5y 5. 27)

B3¢T R D2 8(r,¥) 73N O8(r, 1) 3%y
3" 4 ;Agk[ TS (acp>+ 3y a@QJASk (5.28)

3\ dS(r,Y) 27y
<8A>+ R : e ] as, (5. 29)

*T R 2%s(r, 1)
e 4ﬂZAgk YL

BET > R aBS(r,w) ‘. aw Bﬂr BS{I',\B) 821}}
BepdA = dn ;Agk[ ap® Y -+ Y Sy ]Ask 5. 30)

2T _ R Bsmy)
ordy 4w ZA k oy 20 %% (5.31)
AT R ags(r ) 2

= o 5,32
Sron | dn ZAgk 3oy an . Asg (5. 32)

k
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The derivatives iswa.%‘wl_m and j.%%_’_q’l—.. are given in Heiskanen

and Moritz (1967) as:
M) PBroi-tt 4 " 1-tcos{¢+D
s TR LT ot 1‘-6D—tcos¢(13_+6?m 5 ﬂ (5.33)
as(r, ) ) 2 6 1-tcosy~-D 1-tcos¥ +D 7
3y T "“tzsmq’[ p° "D -8-3 Dswy ~30n 2 i (5.34

at B R . __&
d T R
3t

3y 0

and from equation (2.7), D=(1-2t cos + t#7,

3D IW 3D ot . t(cost-t)
3r ot or DR



71

Using the above dixferentials the second partials of S(r,{) may be computed.

Differentiating equation (5.33) again with respect to the radial distance r

yields
P,y . T 3(1-t%) 4 \_ (%) 10
o R L(1-teos ) = = ) e — - 18D
+ 2 -3tcos} (15+ 6on ——LCGRY LD )}' | (5. 35)

This derivative was originally derived by Witte (1970a) in another form.,
As a check on the derivation of equation (5. 35), an attempt was made fo

converi Witie's equation (4):

9®sir, ¥) R? 3r(r-Reos{)ir® -R?) - 4% r® +R?)
_brz-- = I'B [‘ R ﬂs

4R? (L% + r (r-Rcos§))+2RL% -64° (34°% - r (r-Rcos §))

* R 4%
_ Bcosy r-Rcosy + 4 2(r-4)
2 13+6hn oy - T

¢ 1 :
where L= (r° + R® - 2Rr cos ¥)?, into the same form. It became apparent
that Witte's derivation has a probable printing error. The last line of

Witte's form should be

| _ 92(r-4
. Boosy (134» gon —L-Reosytl 2 )ﬂ
T 2r £
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The mixed partial of 8 (r, ¥) is obtained by differenctiating equation (5. 33)

with respect to the spherical distance :

3®S(r, 1) tssinq:[?){l-tg) 4 6
= R D

orol P T Tp -1 (5. 36)

6on i1-tcos§y + D tcost(D+1)
- p) T D(I-teos y+D)

This derivative agrees with the derivation by Witte (1970b). Differentiating

equation (5. 34) with respeet to the spherical distance yields

3®8(r 2 6 1-tcosy-D
Sl S0 —tecosq:[i‘édr"’“ 8 v

37§ = D “8-3 Dswy
l-tcos{+D .2 6 6 {(D~1
~3in 5 }+ t sin ¢|: F + 7 + 3 Ddsin“‘r?ii (5. 37)
+3 (D+1) -3 1-tcos ¥ ~-D 2cosy __L>]
D(l-tcos{ +D) Dsin® ¢ (tsinzzy D®

As an independent check on equation (5.37), the surface form of the Stokes'

function:

S(y) = 1 —Gsini +1-5 cosx};-3cos$.@n(sin%—+sin2 JzL.)

was differentiated twice fo obfain
2+-5-sin-§- + 2 sin® —g— ~4sin® ——%—

) L4

D s
Sin "—2'—"' (l-l-SHi'—*z-‘“‘)

FS(r, 4 1

° 4

¥

+ B sin""g” -22sin® 5~

+ 3cos{dn (sin -2‘1’—- + sing--%--)
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I

L
rof=

By letting t=1and D= (2~ 2 cos )" = 2 sin , and after tedious algebraic

and trigonometric manipulations, equation (5.37) was reduced to this form.
To obtain the parﬁal &erivati\.re's of the spherical distance with respect

to geocentric latitude and longitude, we recall the well-known spherical tri-

angle relationships:
cos | = singp sing, + COSPCOSq cos(}tk-l) {5.38)

Cos o) sin Ay = A

Si’ﬂ‘i’ = Sin‘if (5.39)

cos ¢ singy - sinwcosq cos A =)

cos oy = (5. 40)

sin A

where oyis the azimuth from the satellite subpoint to the center of any
mean anomaly block. Differentiating equation (5.38) and using equations

(5. 39) and (5.40) gives

3 cosgsing, + sinpcosy) Cos Py~ A)

S sin
(6. 41)

- COS O
k

il
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coseos g Sin (A ~ A)

%{—-z - siny

15.42)
= -~ coS¢sing
Ok
Differentiating equations (5.41) and (5. 42):
do
»® k
“g;g” = sin oy T3 ’5. 43)
a‘?ﬂf aak . _ 5. 44
F = T Cospeose Ty (6. 44)
From eguation (5.39):
e
rra sinoy coty » (5. 45)
3oty COS @) COS (?\k—)\.)-—COS{pSinEOdkCOS\II
e . (5' 46)
OA cos oy siny
Substituting these differentials into equations (5.43) and (5. 44):
i ¢ : '
Bcpz = sin akco ] o 15, 47)
%y cos @

e | = Siny cos 9 CcOS (Ak—)k) —~coa=;cpsina ozkoosozk] {5.48)
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The mixed partial of | from equation (5.41):

(). Deos e
5o on \ o x

which is simply minus the derivative of the right hand side of equation (5.40)

with respect to A. Thus

o?y . :
) sina, (Sio-CcoS@Cos oy cot ) _ {5.49)
With the equations given in this section, the anomalous part of the

acceleration vector and the gravity gradients in the inertial System may

be computed by the previously described chain rule method.

8.5 iDartial Derivatives of the Anomalous Potential in Terms of Point Masses,
In the case of the point mass repreéentation as used in this study the

position of 2 mass element is defined by earth-fixed Cartesian coordinates

(X, Y, Z). This system has the Z - axis along the mean rotation axis of the

earth, positive North, the X- axis positive through the Greenwich meridian,

and ig right handed. The relationshi'p between the éomputation peoint in

earth-fixed system and the inertial system is

Xy .Xi
Yi = Rs (6) N 5, 50)
Zl 2y

where 9 is the Greenwich Apparent Sidereal Time.
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Rigorously the above transformation should include the effects of polar

motion. For the purpose of simplifying the simulations, polar motion is
neglected.
The gravitational acceleration components are computed by differentiating

equation (2. 8) with respect to the earth fixed coordinates. For example,

aazx g

ATy X

— k. - —h (5. 51

a Xi Z ‘@?J kmj )
J

where

Lyy= I:(Xs"xa)e'}' ('Yi “YJ)2 4"(21’“23)2]2 (5. 52)
Differentiating (5. 52) we obtain:

B,@U Xiux.j _ AX!.J

= = {5. 53}
Thus
BTi _ A X1 ) _
5%, Z 3, km; (5. 54)
Similarly for the other components we get
T AY . '
1 . g2y -
Sy, uza:- 23, km, , (6. 59)
T AZ
A - el S
37, Z g, (5. 56)
4
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Now the acceleration vector Ty in the earth fixed system may be transformed

to T, in the inertial system by

Ty = Rg(~0) Tg
where as before 8 is the Greenwich apparent sidereal time

Differentiating (5.54) again yields

-] (H8Ee ),

Similiarly from (5.55) and (5. 56) we get

BBT _‘5-‘ ( SAY?J —ﬂ?" )
bl

The mixed partials are given by

s R S LC R P

BXiaYi : 2513 3
J

2T — ; 8AY,,AZ )

A S 1 L4 km

0K, 0Z; Z( 7, s

- J

(5. 57)

5. 58)

(5. 59)

‘5., 60)

(5. 61)

(5. 62)

5, 63)
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At any instant of time the derivatives (5. 58) through (5. 63) are the
components of a second-order gravity gradient tensor, Hence, the usual
rules for change of basis may be applied to transform the earth-fixed
gravity gradients into the inertial system. If we define the earth-fixed
tensor as Tps and T, as the tensor in the inertial system, then

Trr = RS (“e) TR‘.‘; R& (e) (5‘ 64“

5

5.6 Tmnsformatién of Gravitational Gradient Tensor to the Satellite

Coordinate System.

Up to this point a method has been shown for‘computing the gravitational
acceleration vector and gradient components in the inertial coordinate system.
In this section, the transformation of the gradients into a satellite-fixed
system will be derived.

1t should be noted that Glaser (1972) used a transformation from a
local (9, A, r) coordinate system to the satellite system using the Keplerian
orbital elements. The transformation derived here used the Cartesian
elements defined by the satellite state vector and.the gravitational acceler-
ation vector. The pervasive difference arises from the definition of the
orientation of the gradiometer output axes. Since a gradiometer operates
in a gravitational field, the output is influenced by the variation of the field
strength along the direction of the local vertical, The direction of the local

vertical is the negative direction of the gravitational acceleration vector
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(outward from the earth).
Basically the transformation between two coordinate systems may be

expressed by

X x' x! X
1 1 T
y - A y! v = A v (5. 65)
Z VA z! 2
where
a3 851 g1
A = I 90 250 ' (5. 66)

A5 8 o 833

is an orthogonal matrix of direction cosines and A is its transpose. The
corresponding gradient tensor transformations would be
Vas = A Vrg A

(5.67

What we are seeking here is a change of basis. In figure 5, the unit

. A A A . . . T Y N A

vector triad (ti, tz, L) is defined at point such that t;, Ly, and Lz are
parallel to the geocentric inertial coordinate axes X,y and z, respectively.
if we define the directions of the satellite-fixed axes by the orthogonal

A A A
basis unit vectors e;, €y, €, it can be shown that the relationship between

A A A A A A P
the ( Ly, Lp» Ls) basis and the (e;, €, e;) basis is

= =q§13pq > P=1,2,3 ' (5. 68)
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Figure 5. Gradiometer Coordinate System,
Basis Vectors and Euler angles
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where (2,)'= A, the transformation matrix desired.

5.6.1 Orientation of the Hard-Mounted Gradiometer Satellite

For the hard-mounted gradiometer system, it is assumed that active
attitude control maintains, at least approximately so, the orienfation of
the satellite. In this case the satellite is in what we choose to call a
"gravitationa}l" coordinate syslem.

The 8 - axis is defined by the local vertical:

A b .
es = - 8/g (5. 69)
where
Ex Vi
g= {g = (W} (5.70)
gz vz‘_

is the gravitational acceleration vector defined by its component in the
inertial coordinate system, The 2 - axis is defined by the projection of

the angular momentum vector.

h=1x 1 (5.71)
onto the 1 - 2 plane, Thus the 1 ~ axis is defined by the cross~product

A L - '

& = B/hox By (5.72)

and the 2 - axis by

A A A

e = € X € (5.73)
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Using (5. 68), (5.69), (5.72) and (5, 73) the direction cosines for the

transformation may be computed:

ay, = -(hy/h) (8./8 + (& /8 (h,/h)

tp = ~(h,/h) (8/) + (& /8 (ha/h) (5.74)
815 = ~(he/D) (g/8) + (& /2 (by/h)

agy = ~Ex/8

83 = -8 /8 ' (5. 75)
Aas = ~8./8

81 = 8138z ~Hip das

8pp = 811833 ~O13 B33 (5. 76)

835 ¥ 835 85y 8933 832

5.6.2 Orientation of the Rotating Gradiometer Satellite

Since the rotating gradiometer is requiréd to be spun, attitude control
by spin stabilization has been proposed by JPL (Gardner et al, 1972}, In
effect, the spinning satellite acts like a gyroscope. If the angular rate ié
sufficient, the spin axis will, in the absence of external torque, tend to

maintain its orientation in space. This phenomena arises from the well
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known principle of conservation of angular momentum. Thus it is reasonable
to definel the plane of rotation as the plane of the orbit, In this caée-we
say that the satellite is in an morhital' coordinate system.

The 2 - axis is defined by the angular momentum vector given in

equation (5.71). Thus

A

e, = h/h ‘5, 77)
hy

o= b, 5, 78)
h,

in terms of components in the inertial coordinate system.

If we define a unit vector

A —
k = -g/g (5. 79)

in the direction of the local vertical, the 1 - axis is given by the cross-

product
A A A
e, = § x k ‘5. 80)
The 3 - axis given by
A A " A :
G =8 X & {6.81)

which is the projection of -g/gonto the 2-3 plane.

Using (5. 68), (5.77), (5.79) and (5. 80) the direction cosines for the
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transformation may be obtained. Note that the orientation of the | - axis
is identical to that given by equation (5.74). The orientations of the 2 and

3 axes are given by

8gy = hx/h

a,, = hy/h | 5. 82)
8pag * hz/h

g7 = 8y138z3 ~813 222

za T 831 8zp ~3p Be1

5.6.3 Gradiometer Satellite Orientation in Terms of Euler Aﬁgles

In the previous two sections, the orientation matrix was shown to
contaiﬁ 9 elements. These elements, the direction cosines, however,
depend upon only 3 independent quantities, the Euler angles, ¥y, Y24 Vs,
(see figure 5). We will see in Chapter 6, that the hardwxﬁounted gradiomefier
system provides the possibility of modeling for the orientation parameters
in a least squares solution.” On the assumption that on~broad sensors will
provide orientation information along with the gradiometer output, the Euler
angles may be treated as observablés in the solution.,

From figure 5 the orientation matrix expressed in terms of the Euler

angles is given by
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A =Ry (~N) Ry (~¥)Rs ' =Y3) ‘5. 84)
Performing the indicated multiplications in (5.84) results in
' COSY,; COSYy ~ 8inyy co8)p 8inYy, -cosyy siny, - siny,; cosYyzcosy,
A= giny; CO8Ys + COSY, COSY, SinYy -Siny; sinyz + COSY; COSYzC08Y;
sinys, siny, 8inYys cosy,
siny, siny,
-CO8Y,; SinYs 5, 85)

COSYs
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LEAST SQUARES ADJUSTMENT OF SATELLITE GRADIOMETER DATA

The algorithms presented in this chapter simulate the least squares -
solutions for parameters describing the Earth's gravity field from data
collected with the hard-mounted and rotating types of satellite gradiometers.
The adjustment models do not include uncertainties in the satellite orbit.
Rather it has been assumed that any errors in the satellite position are
direcﬂy reflected as errors in the gradiometer measurements, This assump-
tion is based upon the fact that the measurements are taken directly and
do not depend on perturbations of the satellite. Thus the position of the
satellite a£ the time a gradiometer measurement is recorded may be
assufned to be known from post{-mission analysis. As noted in Section 1.2,
the JPL Gradiometer Study (Gardner, et al, 1972) concludes from a simulation
study that current orbit determination technology is adequate for a gradiometer
mission. Results of gradient computations given in Section 4. 2 confirm the
JPL conclusion. However, Glaser (1972) has suggested an iterative procedure
whereby the gradiometer data itself may be used to improve the orbit
determination, and to remove positioning errors from the data. Glaser's
procedure uses an integral curve fitting technique to obtain harmonie
coefficients from the amplifude of a rotating gradiometer signal. Hence,
the observed quantities are five independent components of the gravity
gradient tensor i the case of the hard-mounted system, and the signal
amplitude in the case of the rofating system. In addition, orientation

86
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parameters of the hard-mounted system are assumed to be observed as
noted in section 5.6.3. However, these are considered nuisance parameters
of no particular interest.

As discusses in section 1.1, the gravitational potential is conveniently
partitioned into normal and disturbing parts V= U+ T. Here the normal
part refers to the potential of a high order sherop. The gravity gradient
tensor in the gradiometer fixed coordinate system may be similarly parti-

tioned:

[V*J]ZEUij]Jr[TH(@)]’ i, j=1,2,3. 8. 1)

where § is a parameter describing the anomalous gravity field. Alternately,

(6.1) may be written in terms of the inertial coordinates:

T T[,.
[Vu]sA [qu:]A+A {_qu f@)]A, P,Q = X,¥, Z. 6.2)

where A is the orientation matrix described in section 5,6. Since the
principal unknowns of the least squares solutions are the parameters, &,
describing mean residual anomalies (Ag) in some convenient sized blocks

or an array of point masses (km), a value of zero may be used to approximate
all of the mean anomalies or point masses, Therefore, if the resulting
obsérvation equations are sufficiently linear, the final adjusted values of

the parameters may be obtained in a single iteration. This is a significant
advantage since the parameters may be neglected in forming the observation

equations,
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In formulating the adjustments, the classical least squares method using
the procedures and notation of Uotila (1967) will be followed. | It should be
mentioned that Moritz (1971) suggests the method of least squares collocation
for solutions from obs.erved gravity gradients. Collocation solutions are
characterized by 2 minimum mean square error of estimation, This
method is, in fact, a generalization of classical adjustment computations
where the square sum of the residuals (adjusted values minus observed
- values) is a minimum, The pervasive difference in collocation arises from
the inclusion of field covariances derived from an appropriate covariance
function, These field covariances express the behavior of the anomalous
gravity field as a stochastic process as compared to error covariances
which express the statistical behavior of obgervational errors. While
collocation provides, theoretically, an optimum method for geodetic appli~
cation of gradiometer measurements the formation and inversion of the
covariance mairix is analytically and computationally a formidable and

expensive undertaking (Moritz, 1972).

6.1 Mathematical Model and Observation Equations (Hard-Mounted Gradiometer)
A mathematical model for a gravity gradient measured by the hard-mounted

system could be written functionally as

Vij‘mvi,j {ansZ;tiUsYIs?@’yS’él'"én) 6'3)
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where (x, y', z) are the inertial coordinates of the point of observation

at time t; U represents the parameters of the reference spherop; v,,

vas Ya are the Euler angles describing the orientation of the gradiometer
at timé t, and n the number of anomaly blocks or mass points. As discussed
earlier, the satellite position, and consequently the time history of the
observed gra dients may be assumed known. The parameters U are defined
to fixed. More appropriately the mathematical model should be expressed

in terms of observations and unknowns, thus

Fy VygsVsYesVar .o 8n) =0 . 16, 4)

Tn the case of the hard-mounted gradiometer we actually have 5 equations

of this form:

CFo Vi 2Yer Y8 8y) =0
Fy (Viz s Y2 %2 s Yoy n 8y) =0
Fy (Vigs1sYasYas 8.0 08) =0 (6. 5)
Fy (Vaz,%1:%2,Y3,%1...8,) =0

Fi(Vags N »YasVasPre. . 8) =0

Note that in (6.5) V,5 could be used in place of either V,; or Vg, since
Vip+ Vapt Va=10
At any time t, the errors in the observed gradients are given in

differential form as:



- i . "
dvya | | d#,
]
av, 5 !
|
AV, = D ! Dy .
|
dVsz : . 6. 6)
|
L p t L i £ e————
d’)’lt
d%'at
dyatm
where .
D1 = a(V-il,; Vla‘-!: V}s, Vaa. st)g;
. a ’@1 ------- CEE N BB B B . . @ﬂ.)
DE = a (Vlls V}Bs V},Ss V:—zE; Vpg}p

3 (1 Ve, Valt

Since Uy is not a function of the parameters, %,, the Dy partition may be
written in terms of the anomalous gradients as:

D1 - a(Tu, Tizs Tias Toz, Toakt
X (2 Cereieeaeas )

6.7)
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Approximating the differential quantities in equation (6.6) by finite differences,
the left hand side can be obtained by taking the differences between the
observed gravity gradienis and the approximate gradients at time t. With
the approximate values of the parameters, &,, taken to be zero the
approximate gradient tensor is first computed from the truncated harmonic
series describing the external potential of the (14, 14) spherop as described
in sections 5.2 and 5.3. The approximate tensor is then transformed into
the approximate gradiometer fixed coordinate system by

[Uiﬂlt AE [_qu tAo | ‘6, 8)

where Ao is the approximate orientation matrix computed by the method
given in section 5.6.1. In this case the local vertical (the 3-axis} is defined

by the unit vector

es = ~go/%o 6.9)
where
Uy
g = {U 6. 10)
U,

Note that although only 5 components of the gravity gradient tensor
are required in equation (6. 8), the computations are facilitated by using
matrix operations on the full tensor. The desired components may then be

extracted at any step of the computations. In addition, as shown in
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section 1.1, if five independent components of the tensor are known all the
components are known. This procedure will also be used in obtaining the
partial derivatives required to form the observation equations for both

types of gradiometer.

6.1.1 The Parameter Sensitivity Métrixl

The matrix D, in equation (6.6) may be properly called a parameter
sensitivity matrix which describes the effect of a differential variation in
the parameters 3, on the gravity gradients. Considering eguation (6.7)
the partial derivative of the gravity gradient tensor with respect to the

parameters is:

) T
3V oT T 12 :
—Yid L =il _ DA A .
8y = {38, = A (TG, 6. 11)
t t L

If 8, represents mean residual gravity anomalies, equations (5.27) through
(5. 32) and the transformations given in Chapter 5 are used to form the
partial derivatives in (8.11) by differentiating with respeclt to the anomalies,
Ag,. Similarly for point masses, equations (5. 58) through (5.63) are differ-—

entiated with respect to the point masses, kmy..

6.1.2 Partial Derivatives with Respect ic the Orientation Parameters
Recall that the orientation matrix A given in section 5.6 may be readily

computed using vector operators on the unit basis vectors of the geocentric
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inertial coordinate system and the gradiometer fixed coordinate system,

From eqguation (5. 66) the orientation matrix is given in terms of direction

cosines as:
a1 85y g1
A = a3 82 agp
a3 k] 433

In section 5.6, 3, it was shown that (5. 66) may also be given in terms of -
the Euler angles y;, ¥2, ¥a (See equation 5.85).

Here we require the partial derivatives which go into the D, partition
of equation (6.6). Development of a method of forming these partials presents
an inferes ting problem in matrix calculus, First of all using equations (5. 66)
and (5, 85) and taking the partial derivatives with respect to the FEuler angles,

we get in ferms of direction cosines:

[ -y ., ~8zp ~8gp
..améu -3 3,11 3.21 a-sl 5‘6, 12)
A, ) ‘ '
0 0 0
[ 2, 5843 An5day Agzdgy
3A . e a, .8 a A, .8 76,13
5, laﬁs { #1afas 823832 33932 J \ )
L 213935 8y 3833 ~(1-853)°
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0 ' 6. 14)

0

By considering the pattern of the element in (6.12) and (6.14) it can be shown

that
A
= = 8 A
o
and
AA
Ty, ~ A8
where
0 / . 0
g = 1 0 0
0 0 0

T
8 = -8 !
Thus
T
DA T.T T
A -
™ 8 A™S
and
aaT T.T T
= SA = -SA
3Ya _

(8. 15)

‘6. 16)

6.17)

'6.18)

6. 19)

Having established these properties for the derivatives of the orientation
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matrix, the next step is to compute the partial derivatives of the gradient
tensor with respect to the Euler angles. We have shown in equation (6. 2)
that the tensor in the gradiometer fixed coordinates can be expressed in

terms of the tensor in the inertial system by
[Vu] = AT {qu ] A 6. 20)
t { ‘

The orthogonality of the A matrix requires that
AAT =1

and | | | 6. 21)
aTa =1

where I is an identity matrix. Hence, by pre-multiplying both sides of

(6. 20) by A we get
A[VH]: l:VMJtA 6. 22)

Similarly, post-multiplying by AT gives

[Vu]tAT = AT qu]t 6. 23)

Now taking the derivative with respect to v,, and using the relationships

in (6.15), (6.17), (6.22) and (6.23):

T

[%}%L]; 'g“{,;“[m] A+A [‘%m ‘"5“"

= -A SA]:VH:] + [VH:"A SA
¢ ¢

6. 24)
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Differentiating the tensor with respect to v, using (6.13), (6.22) and (6.23)

we get

T
.[_S%L]t ) aA [qu} A+A [qu}t e

572] [Vis]t i) AT%%

6. 25)

Now with respect to ¥, using (6.16), (6.19), (6.20), (6.22) and (6.23) the

partial derivatives are
T
B3Vy ]m DA [ ] T [ BA
s -t Vs Voa Jy AHAT (Voo i Ty
T - T ‘
_SA A[Vujt-k[v”]t}\ AS (6. 26)

s[w], Lol

1

it

An interesting aspect of the results of this development is that the
partial derivatives with respect to the orientation parameters can be computed
completely by matrix operations on the orientation matrix and the observed
gradients. The only exception is the formation of 3A/8v, in equation (6.12).
Once these operations have been carried out, !;hé components corresponding
to the differentials on the left hand side of equation (6. 6) can be extracted to

form the D; partition in equation (6.6).

6.1.3 Formulation of the Adjustment Model
We now want to collect all of the data to be incorporated into the adjustment.
The mathematical model in equation (6.4) may be represented by the matrix

equation:
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F (L, x% =0 (6. 27)

where L denotes a vector of observations and X a vector of parameter, some
of which are obs e.rvables. Such a model may be solved by generalized least
square models (Uotila, 1967). If we treat the gradients errors in equation
(6.6) as finite differences, then we must replace dVy,, dViz, dVi 3, dV;@ s
and dVz, by dViy + Va1, AVig + Wiz, dVyg +Vigy AVaz + Vap, AVpg + Vg,
where the small v's are the observation residuals of the data. .The linearized

form of equation (8. 27) is then

BV, + AV, + W =0 (6. 28)
where
IF AT 0
B = T3 3’1’A=“§““X:W=F(Lb,X) . 18.29)

Note that in equation (6.27) the superscript a indicates adjusted values, while
in (6.29) the superscripts b and o denote observed and estimated values,
respectively. It can be shown that the correctons V, to the parameters may
be obtained from the following:

' T

T - . .
v, = g[A PE_A+P,{} Y AT P,W (6. 30)

where P ¢ is the weight matrix of the observations and P, the weight matrix
for the parameters, The values of the parameters weighted are taken as xX°.
Weights were introduced for each observation equation by inverting the

estimated variance for the observation. The Pymatrix and the P, matrix



98
are arranged in diagonal form for each set of 5 gradient measurements and
each set of 3 Euler angles treated as observed parameters, However, the
only parameters of interest are those pertaining to the anomalous gravity
field. Hencé, we want to eliminate the orientation parameters from the
system of norzﬁal equations. Rewriting equation (6. 28) in the form

“V, + ABE, + Ay Xy + W= 0 6. 31)

2

where the subscript j denotes the jth set of 5 gradient observations and

The normal equation may be written in partitioned form as

Nya Ny2 6§k _ -U,
T 6. 32)

Nz Nep

M
i
o
i

The desired reduced normal equations are of the form:

N6 = -U 6. 33)

In order to economize on compute core storage each set of 5 gradient
observation equations were output into a disk storage unit as temporary

data sets, When all observation equations were formed the sets of 5 equations
were reintroduced into core storage one set at a time, The following algorithm
was used to form the reduced normal equation by iteratively adding the

contribution of each set of 5 obgervation equations:
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N]_]_J 3XTP£J Kd

-WT ——
Nizy = Ay” Pyy Ay

Moos = A L Pyy + Pyy

‘8.33. 1)

!
)

i
>

6.2 Mathematical Model and Observation Equations (Rotating Gradiometer)
As discussed in section 1.1, the signal of the rotating satellite gradiometer,

equation (1. 5) may reduced to a signal amplitude,
Amplitude = [(Vsa -V ) v AVyR } 1. 6)

which will be treated as the observed quantity to be adjusted. Letting G

denote the amplitude, equation (1.6) may bhe written functionally' as:

G = G(V}_l, V}.S’ Vga) 6.34)

where Vi1, Vi and V,, are functionally given in equation (6.3), However,
in this case all the parameters of V,, are assumed to be known with the

exception of the gravity field parameters &,. Thus the model in terms of
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observations and unkaowns i8:
F (G 81y onee 8,) = ‘6. 35)

In differential form the error in the observed signal amplitude is

3G 3G .

S - T A dfy
’ 6. 36)
dsg,
The development of equation (6. 36) into finite difference form for the
observation equations will be, in principle, the same as in section 6.1,
6.2.1 The Parameter Sensitivity Matrix
The elements of the parameter sensitivity matrix for the rotating
gradiometer are computed by
3G aGl Vi1 AG 8V13 3G av‘ga_ 1
[a@k I [avu B ip S8 OVes 0% I - 83D
Recalling from equation (6.11) that
[Fer]-[33e ] a5 ]a
38, 0%, L 3g, ¢
equation (6.37) becomes
3T, oT: 3 3T
[ ] l: 11 4+ ©G 12 4 0G 33 } 6.38)
aVJ_ 1 a@k aV13 a®k aV33 a @R t

Applying equation (6.38) to equation (1.7) we get
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I 07Ta3 a'rn> 8Ty a
= -V A + 4V
, [ Oy :| Voo = V1) {75, CLN P RE,

‘6. 39)

These are the only partial derivatives required in forming observation
equations for the rotating satellite gradiometer, Clearly, we can never
get sufficient equations to permit the inclusion of orientation parameters

as in the model for the hard-mounted system.

6.2.2 Formulation of the Adjustment Model
Again collecting all of the data to be adjusted, the matrix form of the

mathematical model is identical to equation (6. 27

F(%, xH=0 6.27)

Here we replace dG in equation (6.36) by dG + v, where v is the observed

amplitude residual, The linearized form is again

ﬁvﬂ AV, + W =0 6. 28)

The solution for the correction vector is:

T

V, = -—(ATPA)"1A PW, ‘6. 40)

where P is the weight matrix of the observed signal amplitudes. In this case
there are no weights on the parameters.
The observation equation for the jth observation may be written in the

form
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Taking the géneral form of the normal equations to be

N6%, = -U 6. 42)

the normal equations were formed by the algorithm:

N =ZA'prJ
LI

U ﬂz A pW
H

6, 43)

where p is the weight or the inverse of the apriori estimate of the variance

of the observed signal amplitude.

6.3 Constré,ints on the Least Squares Solutions

The principal purpose of the adjustmenté on safellite gradiometer data
is to obtain estimates of the gravity field parameters ¢,. In effect, what we
are attempting is to determine, from some spectral response of the Earth's
external potential (in this case gravity gradients), quantities on or beneath
the Earth's surface which represent the causative factor of the observed
response, The formulation of such solutions are called improperly posed
problems of inverse potential theory (Krarup, 1969; Moritz, 1972; Grafarend,
1972a,b). What this means is that the distribution and magnitude of the
causative factor is not unique. Generally the causative factor, which we may
represent by mean gravity anomalies or point masses, referred to an
equipotential surface approximating the figure of the earth, is the distribution
and density of masses within the earth. Now this does not mean that our least

square solutions are not unique, but rather there are a family of possiblé
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solutions depending on the sampling of the external gravity field and the modeling

of the earth's gravity field, Hence we must consider the conditions imposed

on our model by the physical nature of the problem we are attempting to solve.
Obenson (1970), Rapp (1971}, and Needham (1970) have suggested

conditions which should be placed on the adjusted parameters. The purpose

of such conditions is to form a gravity field model which maintains the total

mass and moments of inertia of the earth, This meané that constraints should

be placed on the gravity parameters, ., in order to eliminate zero and

first degree terms from the harmonic representation of the parameters. In

addition we ‘also want to eliminate térms of higher degree and order which

define'the normal gravity field,

6.3.1 Anomaly Constraints
To define the conditions to be imposed on the mean residual gravity
anomalies, we may consider the representation of the anomalies in spherical

harmonic forms:

n
g =y Z { AjgcosmM + By, sinm)) P, sino) 6. 44)
n'—"—é n=0
where :
A, ' cosmAX
1 .
- A P (8i do‘ ’6-4:5
Bua 4m j J‘ & Prw (8100) sinmA )
o

Rapp (197]) gives the general form of the condition equations as follows:
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I
=1

Gy (&%j J‘AgPMcosm?\dOmAm) =
G ‘6. 46)

Gy ("&%JIAg P,p 8SiInmAdo -B,,) = 0
o

These equations represent a possible (n+ 1)2 linear constraints on the adjusted
mean gravity anomalies assuming that the harmonic coefficients are perfectly
known. That would mean up to 225 constraint equatibns for a normal field
defined by a (14, 14) spherop. Certainly if our model contained several
thousand anomalies, 225 constraints would not be unreasonable. However,
as we will se in Chapter 6, the maximum anomalies in any solution is 64,
thus tﬁe imposition of a large number of constraints vould have completely
overwhelmed the observational data. Thérefore, the only constraint céns idered
was elimination of the zero degree term:

Aco = Ag,
where Ag, is the mean residual gravity anomaly over the model region.

The condition equation for a limited region in finite summation form is

1 - -
ng Mg, AS, - Ago = 0 6. 47)
k

where AS, is an element of surface area in solid angle and

SZZAS,:
k

6.3.2 Point Mass Constraints

In using the point mass model, Needham (1970) demonstrated that at



least two conditions are necessary to constrain point mass solutions. These
conditions require that the integral of the potential over the model region be
zero and that sum of the point masses in the model be zero.
Z Z o kmy cospAp AN = 0 6.48)
T £y

Similarly the condition on the total mass is given by

Z km,; = 0 | | 6. 49)
b

The latter equation was the only condition used in the simulated gradiometer
solutions for the point mass representation.
6.4 Modification of the Normal Equation for Constraints

The basic mathematical model for the conditions imposed on the
parameters is

G =0 6. 50)

in linearized form the condition equation is

C X+ Wo 6. 51)

where

3G b

0 [
C="3y W, = G(Lg X)) 6. 52)

The condition modified normal equations from equation (6. 33) or (6.42)

will have the partitioned form:

105



= 6. 53)

C 0 -K ~-Wg
8 J | ]

where K is a vector of correlates associated with the conditions imposed on

the parameters, &, .

Equation (6. 53) is solved for corrections to the approximate values of
the gravity field parameters 63, . The inverse of the normal coefficients N
modified by the condition equations is the variance-covariance matrix of the
parameters. By analyzing the standard errors and correlations obtained
from the normal inverse together with the numerical errors in the simulated
solutions and indicators of conditioning of the normal coefficient matrix,
conclusions may be drawn on the effectiveness of satellite gradiometer

measurements in resolving either point masses and/or mean gravity anomalies.
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7, SIMULATION EXPERIMENTS AND NUMERICAL RESULTS

The algorithms described in Chapters 4 and 5 were coded in FORTRAN
IV language. Various versions of the algorithms were used to perform a
series of simulated solutions. Computations were carried out on the IBM
370/165 of The Ohio State University Instructional and Research Computer
Center. Double precision arithmetic (8 bytes per word) was used in all
computations.

Gravity models were formed using as normal gravity the potentiai of
the (14,14) spherop described in section 2.1, A set of 1000 1° x 1° anomalies
derived from terrestrial observations which were transformed into the GRS 67
system and subsequently reconciled to be consistent with the set of coefficients
defining the (14,14) spherop. Thus the 1° x 1° set which are used in this
study o form selecfced gravity models may be regarded as the best estimate of
a 1° x 1° field consistent with the harmonic coefficients. -

The residual anomaly models formed consisted of 2°x 2°and5° x 5
bloeks over the bulk of the continental United States and Northern Mexico. The
largest area considered in the simulated solution is described by 40 5° x §°
blocks. A smaller sub-area was used in solutions for 2° x 2° blocks. The
anomalous gravity outside the model regions considered was assumed fo be
zero. To ob;.ain some idea of the possible effect of neglecting distance

anomalies, the second radial derivative of the generalized Stokes' function,
107
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(5. 4), was plotted against the spherical distance ¥ as shown in Figure 6,

Additionally, Table 5 gives select values of the function out to § = 180°. If
these values are multiplied by 10 they could be interpreted as the contfibution
to the vertical gradient in Eotvos Units from a 1 milligal gravity anomaly over
a 1 radian solid angle at the spherical distances shown. It is interesting to note
that the first zero in the function oceurs in the region §< 5° as compared to a
first zero at about 38° for the Stokes' func tion itself and about 30° for the
first radial derivative '(Rapp, 1966), while the second zero in all cases comes
at about ¢ = 120°,
7.1 Gravity Field Models

Five assumed gravity fields were formed using the Rapp (14, 14) field
and the Needham 1° x 1° residual anomaly set. The five models are described
below. |
A. A setof 40 5° x 5° residual anomalies were generated from the set of
1000 1° x 1° residual anomalies, The value of the anomalies in this set are
shown in Figure 7.
B. A set of 240 2° x 2° residual anomalies generated from the 1° x 1° set
excluding 80 1° x 1° blocks along the Southern edge of the area. The area
covered by this model is designated region B in Figure 8.
C. A subset of B consisting of 64 2° x 2° residual anomalies in the sub-
area block designated region C in Figure 8,  See also Figure 9.
D. A subsetof 256 1° x 1° residual anomalies in region C. |

E. A set of 152 point masses least squares fitted to set B using a slightly
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Altitude (km)

200
300.
350

l--‘d.,_.

SPHERICAL DISTANCE ~ ()

- Figure 6. Behavior of the Second Radial Derivatives of
Stokes Function at Altitude




110
Table 5

3% 8(r, ¥)
3r®

Representative Values of ﬁr at 300 Kilometers Altitude

R 3%8(r, 1)
4 3r®

¥ (x10°%)
0 4,970
1' 4.969
15 4,843
30" 4, 488
1° 3.361
2° 1.255
3” 0.328
4° 0,043
5° -0,029
10° -0.018
15° -0.006
30° ~0.002
60° ~0.003
90° -0.,002
1207 0.000
150° 0.002
180° 0.003
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modified version of (e point mass program developed by Needham (1970).

"The modifications were limited to reducing the amount of computer core
storage required. The specifications for point mass models given by Needham
require an over-determination ratio (anomalies/point masses) of about 1,6
and a mass depth to block side ratio of at least 0.8, The model formed here
used a depth of 200 kilometers. The number of masses was determined from
3 possible solutions having over-determination ratios in the neighborhood of
1.6. The 152 mass solution was selected as the best fit to the 2° x 2° anomalies
| on the basis of the mean and RMS residual anomaly after fitting the masses.
" The results of the point mass solution are summarized in Table 6.
Table 6

Point Mass Solution Using 2° X 2” Mean Anomalies

Depth of masses (km) 200
Latitude limits | 26°N - 50° N
Longitude limits 240°E - 280°D
No. of anomalies used in solution ‘ 240

No. of unknown masses determined 152

Mean input anomaly (mgal) | 1. 34

RMS input anomaly (mgal) | 11,27

Mean residual anomaly after fitting masses (mgal) 0.30

RMS residual anomaly after fitting masses (mgal) 5, 7I2
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7.2 Sensitivity of Gravity Gradients to Gravity Model Representations

As pointed out by Schwarz (1870), the coefficients in observation
equations provide a measure of the sensitivity of the measured quantity
to the unknown parameters. In Figure 10, the partial derivatives of the
rotating gradiometer signal amplitude with respect to the mean value of
the gravity anomalies in the 40 5° x 5° blocks (Set A) were computed and
plotted for a point near the Eastern edge of model region B at 300 kilometers
altitude. The subpoint is located at latitude 37.5° N, longitude 278°, These
sensitivity coefficientsr may be viewed as the effect on the gradiometer signal
amplitude of a block in which the anomaly is 1 milligal. This illustrates
that the gradients are most responsive fo the features of the gravity field
arising from crustal masses direcily beneath the observation point. However,
this also implies that observation points over the boundaries of the model
blocks will produce high correlation between adjacent blocks, while points
directly over the blocks should provide good separation. This suggests that
it would be desirable to filter out data taken near the block boundaries. This
was not done in the simulated solﬁtion, but should be considered in operational
reduction of gradiometer data for solutions of the type given in this study.
Examination of the coefficients at other points within the model region
indicate that the pattern of sensitivity contours in Figure 10 is fairly constant and
exhibits symmetry about the observation point. |

In the case of the point mass model the coefficients of the observation

equations are on the order of 10*® to 10'® E per/em® /sec®. The size of the
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point masses in terms of km (see equ. 2.8) are on the order of 10™cn#/sec®, This

clearly indicatesihat the gradients areinsensitive to this type of gravity' repre~
gentation, - :An explanation of this in addition to the sheet size of the masses.arises
from. the fact that the-masses are 200 kilometers beneath the earth's surface, and
the coefficients are on the order of the inverse of the cibed sum of the altitude
and the mass depth. The apparent lack of sensitivity seriously impacted on
solutions attempted with the point maés model which are discussed later in
this chapter.
7.3 Experimental Solutions Using Simulated Data

In this section we will describe the simulation experiments and the
resulté of the simulated sclutions. Sev‘”eral series of solutibns were performed
to evaluate the potential capabilities of satellite gradiometry. The solutions
test the gradiometer configurations considering accuracy and sensitivity of
the measurements and density of the observational data; In addition, the
solutions evaluate the effect of the gravity model rebresentation on the solutions,
7.3.1 Preliminary Considerations of Data Simulation

Attempis to conduct experiments which require generation of fictitious
data simulating dynamic measuring Sysﬁems presents ceriain difficulties in
achieving a satisfactory degree of realism. Satellite gradiometers are dynamic
systems whose signal output is associated with .a threshold measuring sensitivity
and finite time response. What this implies is that computing point values of
the signals from some model will in all likelihood fail fo be representative of

the signals measured under dynamic conditions, In computing the fictitious
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da.ta it may ‘seém desirable to have models which, in this case, represent
the maximum possible spectrum of the external gravity field. Indeed this
would be the case if accurate point values were being sought. We could
theoret'ically compute a sufficient density of such point values and obtain
some functional operator 'Whicl'-l would simulate the measuring systems
dynamic integration of the point values over some finite period of time.

In this manner, provided we have chosen the proper operator, smoothed
values simulating the signal output could be obtained. Alternatively,
consideration can be given to smoothing the model itself.,

From the estimates given‘in Chapter 4, the upper limit of gradiometer
resolutions at 2 nominal altitude of 300 kilometers is about degree 90 at a
measuring sensitivity of 0,01 E, Assuming that a real gradiometer of this
sensitivity would selectively filter out all wavelengths represented by degrees
greater than 90, the model should not contain those Wa\;elengths. To test
this; hypothesis, trial rotating gradiometer solutions were run to recover
64 2° x 2° gravity anomalies from point values of the gradiometer signal
amplitude computed from 256 1° xI° anomalies at 30 second intervals along
the satellite trajectories generated at 300 kilometers over model region C -
(Figure 8). The resulting solutions produced large errors in the recovered
anomalies. Only 8 of the recovered anomaly errors were less than 1 milligal
while 23 errors were in excess of 5 millig‘éls. Six errors were lgreater than
10 milligals with one over 20 milligals. These results indicate that the

roughness of the point values computed from the 1° xI° anomalies cannot be
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adequately smootheu just through the adjustment itself,

To further illustrate the roughness of the signal amplitude point values,
é single trajectory pass was generated at 300 kilometers over the approximate
center of model region C using a 5 second step size, The point values of the
rotating gradiometer anomalous signal amplitude were computed from
1° x I° anomalies (set D), and from 2° x 2° anomalies (set C) using a center
point quadrature and a 4 point quadrature of the 2° x 2° blocks. The results
are plotted in Figure 11, n addition the norm of the anomalous acceleration
at each point was also computed from the I” x I” anomalies and is plotted in
Figure 11, Considering that a 30 second gradiometer integration time represents
smoothing over about 2 degrees of the trajectory arc, it was judged that the
point values computed from 2° x 2° anomalies using the 4 point quadrature
was adequately representative of the smoothed gradiometer signal amplimde.
7.3.2 Experiments Using the Point Mass Model

As discussed in section 7.2, the gradients at orbital altitude show poor
sensitivity to the point mass represeniation. Ekperimental solutions using
the 152 point masses (set E) for both the rotating s;}stem and the hard-mounted
system were judged to be unsatisfactory. These solutions were characterized
by uncertainties and errors of about tﬁe same magnitude as the true values.
Solutions were initially attempted using orbital passes with a cross-frack
spacing of about .2° . Reducing the cross-track spacing to about i° made no
marked improvement in the solution. Attempts at scaling the normal equation |

proved fruitless. Although this was not attempted, a satisfactory solution might
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be obtained _if approsimate values of parameters other than zero were used
in forming the observation equatibns. However, the magnitude of the point
mass values (km) are of the order 10** cm® /sec® and may be positive or
negative. It would be unreasonable to expect such quantities to be estimated
apriori.

All subsequent experiments discussed make use of the mean residual
gravity anomaly representation.
7.3.3 Simulated Rotating Satellite Gradiometer Solutions

More emphasis has been placed on the rotating gradiometer system ‘in
the experiniénts because it is the most likely candidate system for real data
collection.
7.8.3.1 Experiment with 300 Kilometer High Orbits

The ipitial series of solutions using the 64 2° x 2° residual gravity
anomalies (set B), were designed fo determine the density of orbital passes
req'uired to separate the 2° x 2°, and the effects of weights based on apriori
estimates of the standard error of the observations. Based on the proposed
design measuring sensitivity ‘of 0.01 E, (Gardner, et al., 1972) it is reasonable
that the standard error of the measurements ‘should be compatible with the
sensitivity, Whether or not this can bé achieved in a real gradiometer system
remains to be seen,

A solution was attempted using 14 orbital arcs of a polar circular orbit

with 7 passes ascending and 7 descending. Correlation between adjacent

blocks was found to be highly asymmetric; east and west through the center of
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the model region. Examination of the locations of the data points showed that
several data points were on or near the block boundaries with no points near
the center of the blocks. Consequently, some blocks could not be adequately
separated. TFourteen additional arcs were added so that there were at least
two data points nearly over the center of each block. These arcs were also
divided evenly between ascending and descending passes., This reduced the
t::ross—track spacing of the passes to about 1°,

A series of 3 solutions were then run to evaluate the solutions con-
sidering the effect or random errors on the cbservations and truncation of the
simulated data to simulate measuring sensitivity.® The first Wo solutions did
not include conditions on the zeroth degree term (seé page 103).

Solution 1.1 used untrﬁncated data without simulated errors. The
weights on the observations were generated using a standard error of 0.01 E.
The errors in recovering the anomalies are shown in f;igure 12, The mean of
the differences (adjusted - true) or errors was ~0,032 mgal, and the RMS
difference of adjusted anomalies was 1,92 mgai. The mean anomaly recovered
over the 16° x 16° block (Region C) was 0.09 mgal compared to the block
mean of the true values of 1,00 mgal, While the individual anomalies are
recovered fairly well, considering the regional mean indicates a need to

constrain the solution as discussed in Chapter 6.

Ipruncation here is defined to mean the rounding off of the computed gradients
or signal amplitudes to a pre-determined number of significant digits consistent
with the measuring sensitivity of a gradiometer.
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Solution 1,2 was run with the same basic data as in soh’xtion 1.1,
However, in this case the generated observations were truncated to 0.01 E.
In addition, simulated normally distributed errors were generated for the
observations using subroutine GAUSS which is a normal deviate generator
available in IBM Scientific Subroutine Package (IBM, 1968). The errors
were specified to have a mean of zero and a standard deviation of 0.01E,
I\;one of the generated errors exceeded 4 . Figure 13 shows the errors in
recovering the anomalies, The mean error is -0,39 mgal, and the RMS error
is 8,45 mgal. The recovered block mean is 0.61 mgal, From the standpoint
of the anomaly errors, this solution is judged to be unsatisfactory. A probable
reason for this is that the generated errors have in some of. the data over-
whelmed the truncated sigﬁal amplitude,

Solution 1.3 again used the same basic data as before. Truncation
of the signal amplitude and generated errors were also applied. However,
the condition oﬁ the zeroth degree term was included in this solution, The
adjusted differences associated with this solution are in Figure 14, The

pertinent statistics pertaining to the solution are summarized as follows:

16° x 16° adjusted mean anomaly = 1,00 mgal,

Mean difference in adjusted anomalies ~0.001 mgal.

RMS difference in adjusted anomalies = 1.13 mgal.
Mean error imposed on observations = ~-0,001 E
RMS error imposed on observations = 0.01 E

Mean ohservation residual
after adjustment = 0.005 E
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RMS observational residual

after adjustment = 0.01 E
Standard Errors of Unit Weight
after adjustment = 1.22

The standard errors of the recovered anomalies are given in Figure 15.
Although this figure is specifically associated with the last solution in the
series, it is typical of the standard errors in solutions 1.1 and 1.2. The
correlation between the recovered values in neighboring blocks is described

by the typical correlation pattern below.

1.0 ~0. 80 +0,55 ~0.30
120,40 +0. 35 ~0.25 +0.15
+0, 20 -0.15 +0.10 ~0.05
-0.05" +0.05 -0,05 +(,00

This pattern is interpreted by imagining the number in the upper left-
hand corner to be the correlation of the block with itself.. The number in the
second column of the first row is the correlation of a block with its immediate
neighbor to the east or west. | The third number in the first row is the correlation
of a block with another block at the same latitude when a third block separates
them, and similarly for the fourth number in the first when two blocks intervene
between them. Going down the columns describes correlations of a block with
other blocks to the north and south in the same manner. The actual correlation
coefficients for any particular block may vary as much as +0.05 from these
values.

The pattern of the standard errors in this solution exhibit definite edge
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(Rotating Gradiometer, Solution 1.3, 300 kilometer
Orbit). '
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effects as the errors increase inward from the east und west sides. The
systematic increase of standard errors from south to north are probably
associated with the reduc tior; of surface area toward the north.

It was encouraging to see that the adjustment model removed the errors
in the observations as indicated by the mean and RMS of the signal amplitude
residuals; Other than the fact that the separation of blocks in the east and
west directions can only be considered fair, the overall solution results are
satisfactory.
7.3.3.2 Experiment with 250 Kilometer High Orbits

In order to see if the block separation éould be improved, 29 orbital
arcs were generated over model region C at 250 kilometers altitude. The
passes were divided between 14 ascending and 15 descending. Greater care
was taken with these passes to have the data points fall as near as possible
to the center of the blocks.

For sake of comparison, solution 2,1 was run using the same procedures
prev“ilously described for solution 1.2, that is, truncation of signal, addition
of errors and no conditions imposed, The resulting differences in the adjusted
anomalies are given in Figure 16. These results show improvement over
solution 1.2, since there are only 6 differences in excess of 4 mﬁligals in
solution 2.1 compared to 14 differenceé in solution 1.2, In solution 2.1, the
mean difference is -0.53 mgal, and the RMS difference 2.64 mgal. The block
mean recovered is 0.47 mgal.

A second ekperiment at 250 kilometers, solution 2.2, added the condition
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on the zeroth degree harmonic, Anomaly errors are shown in Figure 17 and

the standard errors in Figure 18, Statistical data forthis solution is as

follows:
16° x 16° adjusted mean anomaly = 1.00 mgal.
Mean difference of adjusted anomalies = 0.00 mgal,
RMS difference of adjusted anomalies = 0.45 mgal,
Mean error imposed on observation = ~0.001 E
RMS error imposed on observations = 0.01 E
Mean observation residual
after adjustment = 0.007 E
RMS observation residual
after adjustment == 0.01 E
Standard .error of unit weight
after adjustment = 1.36

The typical pattern of correlation coefficients for solution 2. 2 shown
pelow indicates some improvement in block separation cross-track and

significant improvement along-track:

1 -0. 75 +0.45 ~0.25
C=0.25 +0. 15 -0.10 +0.05
+0.05 -0.05 +0.012 -0.01
~-0.01 +0.01 -0.00 0.00

The actual pattern for any given block may vary about £0.05. While the
uncertainties égain show a definite edge effect and a tendency fo increase

to the north, the effect is somewhat less pronounced, In general one would be
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Figure 18 Standard Errors of Recovered Gravity Anomalies
(mgal.) (Rotating Gradiometer, Solution 2.2,
250 kilometer Orbit).
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inclined {o say'that Jhe results of this solution are embarassingly good,
7.3.3.3 Experiment Combining Data at 250 and 300 Kilometer Altitude

We know that a satellite orbit at the relatively low altitudes envisioned
for gradiometer missions will decay rapidly due to atmospheric drag.
Consequently, one can expect to obtain data from more than one altitude, In
fact, the simulated perturbed orbits generated for these experiments rénged
about + 20 kilometers about the nominal altitudes. As a rgsult we have from
both the simulated orbits the possibility of gradiometer observations over
a range of about 230 kilometers to 320 kilometers altitude. Assuming that
the orbital life is sufficiently long, say about 40 days, a considerable amount -
of data may be collected over any region of the earth within this range of
altitudes. To test the value of combining observations over a range of
altitudes, solution 3.1 combined all of the data generated for solutions 1.3
and 2,2

Resulting anomaly errors and uncertainties for this combined altitude

solution are shown in Figures 19 and 20. Significant statistics of this solution

are:
16° x 16° adjusted mean anomaly = 1.00 mgal.
Mean difference in adjusted anomaliés = -0, 00 mgal.
RMS difference in adjusted anomalies = 0.33 mgal,
Mean error imposed on observations = -0,000 E
RMS error impased on observations = 0.01 E

Mean observation residual
after adjustment = 0.005 E
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RMS ohservation residual
after adjustment = ¢.01E

Standard error of unit weight
after adjustment = 1.23

A somewhat surprising result of this solution may be seen by comparing the
correlations here with those for solution 2.2, The pattern of the correlation
coefficient given below show a slight degradation of the cross~track block

separation for immediately adjacent blocks:

1 -0, 80 +0,45 -0.25
-0, 25 40,20 -0.10 +0, 05
40, 05 -0.05 +0,02 -0.02
~0.02 0.01 ~0.00 0.00

Further comparing the error in anomaly recovery with solution 2, 2 indicated
21 errors were increased. The only significant reduction in error occurred
in the 6 interior blocks along the northern edge, -We also see little or no
differences in the uncertainties. Thus we can conclude that combining rotating
gradiometer data over the full range of orbital altitudes does not enhance the
solution; hence, would be an unjustifiable effort.

A comment should be made here concerning the fairly poor cross-track
correlation in the solutions t,o this point. The sensitive axes of a rotating
gradiometer are orien£ed generally thé direction of the vertical and along the
plane of the orbit. It seems reasonable then that the lack of cross~-track
directivity causes the correlations to be higher east and west,
7.3.3.4 Experiment with 300 Kilometer High Orbits Over 5° x 5 Anomaly

Blocks
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Solution 4.1 for the simulated rotating gradiometer used data generated

from 20 days of a simulated orbital arcs over model region B. A total of 849
simulated gradiometer observations were generated over the regién. The
gravity model used 40 5 x 50 residual gravity anomalies (set A). Although
the amount of data used is probably much more than necessary to solve for
5° x 5° anomalies, this solution does show what the gradiometer may be able
to do with sufficiently smoothed data, In this solution the anomalous gradients
" were computed by four point quadrature of the 5° x 5° blocks, The signal
amplitude was truncated at 0.01E and normally distributed errors were
added to the computed signal amplitude. Neo conditilons were added to the
solution.

The anomaly error and uncertainties are shown in Figures 21 and 22.
Of interest in this solution is the nearly constant negative errors of the
recovered anomalies. A possible explanation might be a slight bias in the
- peconcilation of the terrestrial gravity data with the satellite derived harmonics
which was carried out by Needham (1970).

The typical correlation pattem; for this solution still shows the tendency

to high eross~track correlations:

1 -0.40 +0.10
~0.04 +0.02 ~0.01
+0,01 +0,01 ~0.00

Note the unusual pattern of positive and negative correlations as compared to
the previous solutions, This solution does give an indication that the rotating

gradiometer system potentially can resolve harmonic terms over a broad band,



139

woryeouni] ‘1 ¥ uonnos

. +(J1qx0 Ie3ewoTY 00¢ ‘pesodwi] sX0XxF ‘H T0°0 I
s yojourorpead Suryeioy) ‘(‘Tefuwr) sOI[EWIONY POIsA0DSY Ul SICILF 1g xNIL]

*o

.,J..-\.

—

31

0Lz LT 5 097 . A
G 2282 F]
08 #~L6 #2507 yra 052 . A

g0°0~
Yo~ [TT°0-
00 G0* 0 o
— ———— -
o2



.-140

MMV
cA - 1

2In81 g
JIepuels &%
DIDAODOY Ul SI0IIH D )
SI[BUIONY P _ |
A o,m.mwav 891 oo.w
,so 1 &nhw .ﬁoww ey
NS 52
. g * o -Wm.o -] O ‘J . 8 , O
o f/z/... *0 oo
m . 8 oo ‘J.Oo IJ — \.
.. .D ~os
00/ 10°0/) W0
05
o mo.o mo no 8 GO
£»
mo.o. mo.o moco mo o
o




41
7.3.8.4 Subconclusions (Rotating Gradiometer Solutions) 1

Comparison of the statistics for solutions 1.3 and 2.2 indicate that the
gravity anomalies were recovered best from the 250 kilometer orbit with
smaller standard errors. This tends to confirm an analysis by Glaser and
Sherfy (1972) that 250 kilometers is the maximum optimum altitude for re-
~ solution to degree 90. In addition, the differences in the two solutions can be

attributed in part to improved geometry for the 250 kilometer altitude as
greater care was taken in positioning the data points over the anomaly blocks.
Solution 2.2 is judged to be the best solution for the rotating gradiometer.
| 7.3.4 Simulated Hard-Mounted Satellite Gradiometer Solutions

Generally the simulation experiments performed for the hard-mounted
gradiometer system were similar in principle to those described in the
previous section. It would be possible to hypothesize gseveral hard-mounted
gradiometer configurations where the components of the gravity gradient
tensor are measured individually or in various combinations. This was not
done in this investigation. The tensor components assumed to be measured

in all of the experiments described below are as follows:

Virs Vazs Vigs Vezy Vas

7.8.4,1 Experiments Wtih 300 Kilometer High Orbits
‘Since orientation parameters are included in the adjustment model
for the hard-mounted system as observables, an apriori estimate of the

accuracy of these parameters is required. Grosch, et al (1969) and Grosch



(1967) in analytical studies and actual satellite experiments with the Self- 142

Contained Navigation System on ATS-II found that the RMS three axis |
attitude errors were in the range of 20 secondé to 1.5 minutes of are, The
better accuracy being obtained when the satellite was in the earth's shadow,

In preliminary tests, it was found that weights on the orientation
parameters based on standard errors up to about 0.1 degree did not materially
infiuence the results. This tends to confirm the analysis of allowable gradio-
mater orientation errors made in Gardner, et al (1972), assuming a measuring
sensitivity of 0.01E. Subsequent experimental solutions with the hard-mounted
system assume a standard error of 30 seconds of arc in the three Euler angles
defining the orientation. |

Solution 5.1 was designed to test the effect of equal relative weights
on the gradient observations. In this solﬁ'tion the 26 orbital arcs over model
region C described in section 7.3.3.1, were used. Since the gravity anomalies
are linear functions Of‘the gravity gradients in the mathematical model (see
Chapter 6), using simulated' data without truncation or addition of errors on
the observed gradients, the recoverefi anomaly errors should be nearly zero.
However, even with the addition of the zeroth degree consiraint the solution
did not approach zero errvors. Additionally, observation residuals were
relatively large in the cross-gradients.

The problem here appears to be related to the findings in Chapter 4, which
indicate that the Vig,Vigs Vos gradient tensor components do not contain
significant information to harmonic degree 90 when the _measurmg sensitivity

is only 0.01E. Analysis of the estimates of the gradients remaining at degree
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90 show the gradiometer sensitivity required by component to be approximately

as follows in the 200-300 kilometer altitude range:

Vi1 and Vup 167 E
Viz 16°E
V13 and Vgg 10—4 E

An interpretation of these sensitivities would indicate that the cross-gradient
components contribute less information than the diagonal components, If we
consider the sum of gradient degree variances by squaring the above sen-
sitivity values, we see that the V;1 and V., components contribute 10% times
as much ir;formation as the V;, component, and 10* times as much as the 'Vm
and V,5 components. Also note that V,, and Vyy contribute 10* times as much
as Vig. Relative weights based on the reasoning here should be as follows:

V,, and Vo, 10° /82

Viz 1/E?

Via and Vgg 10* /E®
Note that this use of relative weights is not the normal procedure in classical
adjustment computations where weights are based on apriori estimates 61:' the
error covariances of the cbserved quantities. Normally, the solution is
insensitive to the relative weights; however, solutions based on the weighting
procedure given here do exhibit sensitivity, This weighting procedure has
essentially the effect of allowing the solution to be carried by the V1 and Vg,
gradient components. |

Now assuming the apriori standard error of unit weight fo be 0.01, the
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relative weights reduce to:

Vy1 and Vs, 10* /E?
Viz 1074 /E°
Vis and Vos ]-/E2

The above weights were used in Solution 5.2. Again the simulated
gradient observations were untruncated and error free. The zeroth degree
constraint was included. The mean difference of the recovered anomalies was
-0.00016 mgal., while the RMS difference was 0.0005 mgal., which indicates
the relative weights based on the sensitivilies are approximately correct, This
also tends to confirm the reasonableness of the gradient estimates obtained in
Chapter 4. The standard errors resulting from this solution are shown in
Figure 23. Edge effects are still evident in the pattern of the standard errors,

A typical pattern of correlation coefficients from this solution is shown below:

1 ~0.75 - 40,45 ~0.25
~0.60 +0. 50 ~0. 30 +0.15
+0.30 ~0.25 +0,15 -0.05
-0, 15 +0.10 ~0.05 +0, 02

The variation of this pattern for specific blocks is about +0.05, While this
solution is considered to be satisfactory, we must remember that the simulated
data used is error free. Also the sensitivities assumed are more appropriately
applied to gradients at about a 250 kilometer altitude,

7.3.4.2 Experiments at 250 Kilometer Orbital Altitude

Solution 6.1 used the orbital arcs over model region C described in
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Figure 23 Standard Errors in Recovered Gravity Anomalies (mgal,)
{Hard-Mounted Gradiometer, Solution 5. 2,
Relative Weights Based on Sensitivity, No Trunca-
tions, No Errors, Zeroth Degree Constraint,
300 kilometer Orbit). |
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section 7.3.3.2. Relative weights assigned to the gradient observations were

identical to those used in solution 5.2. In this solution the mean anomaly
difference was -0.00016 mgal., and the RMS anomaly difference 0.0004 mgal,
Resulting standard errors are shown in Figure 24, While there is no marked
difference in the xecovefed gravity anomaiies, the standard errors are about
half of those obtained at 300 kilometers. Some of this improvément may be

- attributed fo slightly better positioning of the data points although the degrees
of freedom for solution 6,1 is slightly greater than in 5.2. In all likeihood,
improvement can also be attributed to the fact that the assumed relative weights
based on sensitivities are more applicable to the lower aitiinde gradients, The

correlation pattern from this solution is typically as follows:

1 ~0.70 0. 35 ~0.20
~0.50 0.35 -0. 20 0.10
0.15 ~0. 10 0.05 -0.02
-0.03 0.02 -0.02 0.01

Again the variation is about +0.05. Comparing this pattern with that of the
previous solution shows a marked improvement in block separation beyond the
immediately adjacent blocks.

Solution 6.2 used the same simulated gradient data at 6,1. However, the
gradient values were truncated fo the number of digits corresponding to the
indicated measuring sensitivity required (see page 143), and normally distrib-
uted errors were added to the simulated observations in the manner described

on page 124. Figure 25 shows the resulting solution with the zeroth degree
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Figure 24 Standard Errors in Recovered Gravi%;y Anomalies (ingal. }s

(Hard-mounted Gradiometer, Solution 6.1, Relative _
Weights Based.on Sensitivity, No Truncation, No Errors,
Zeroth Degree Constraint, 250 kilometer Orbit).
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Figure 25 Differences in Recovery of Gravity Anomalies (mgal.)
(Hard-mounted Gradiometer, Solution 6.2, Relative-
Weights and Truncation Based on Sensitivity, Errors
Imposed, Zeroth Degree Constraint, 250 kilometer

Orbif).
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constraint included. The statistics of solution 6.2 are as follows:

16° x 16° mean anomaly

after adjustment = 1,00 mgal.
Mean difference in adjusted

anomalies = ~0.0002 mgal,
RMS difference in adjusted

anomalies = 0.72 mgal.
Mean error imposed on

observations = -0.0004 E
RMS error imposed on

observations = 0.01E
Mean observation residual

after adjustment = ~0.02E
.RMS observation residual

after adjustment = - 0.04E
Standard error of unit weight

after adjustment = 1.17

The standard errors and correlation coefficients for this solution are identical
to those given for solution 6, 1.

While the overall solution inay be considered satisfactory, note that
the mean and RMS residual reflect a probable systematic bais in the siﬁmlated
gradient observations. A possible explanation may beattributed to the fact
that the sensitivity estimates given on page 143 are order of magnitude estimates
only. More accurate estimates of the required gradiometer sensitivities at 250
kilometers altitude based on the development in Chapter 4 are:

V1 and Vg 1.2 x10°R

Vi 1.1x10°E
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Viz and Vo 2.3 x10%*E

However, this may be placing too much credence on the accuracy of the esti-
mated RMS gradients, Additionally, the simulated data may represent a
sampling of the external gravity field which does not precisely fit the esti-
mated RMS values., This is especially so since the sample is derived from a
model region of limited extent, while the RMS values are esgentially global
estimates.

From the results of these experiments, it is apparent that a hard-
mounted gradiometer system would require cross-gradient sensors of consider-
ably greater sensitivity than that required for the rotating gradiometer syé tem.,
Development of such a system in view of the apparent technological difficulties
associated with achieving a thermally limited threshold sensitivity of 0.01E
and a 10 observational accuracy of 0,01E with the rotating system (Hughes
Research Monthly Progress Reports, 1971-72), can be considered highly im-
probable. Hence the concept of the hard-mounted gradiometer hypothesized in
this inve.stigation is not believed to be practical for satellite gradiometry,

This conclusion can also be extrapolated to the concept put forth by Moritz_
(1971} where he proposed using five independent components of the gravity
gradient tensor in a .collocatifon solution for determination of spherical har-
monics, As was the case in the simulated solutions presented here, the

requisite instrumental sensitivities present a serious limitation.



8. SUMMARY AND CONCLUSIONS

This investigation has demonstrated that satellite gradiometry is
theoretically capable of providing resolution of the Earth's gravity field to
harmonic degree 90 in terms of 2° x 2° mean gravity anomalies. Further,
considering the accuracy of the anomalies recovered in the experimental
solutions described in the preceding Chapter, one would be inclined to use
superlatives,

However, without depreciating the results of this investigation, a \;vord
of caution is in order. That is, while we can be optimistic about the potential
capabilities of satellite gradiometry, we must recognize that simulation
studies based on some hypothetical model are only as valid as the underlying
assumptions. For example, will it be technologically possible to achieve a
gradiometer sensitivity and accuracy of 0.01E? Will the real data be as
smooth as we have assumed in modeling the simulations ? Unfortunately, such
questions will remain essentially unanswered until an operational gradio.meter
system is actually placed in orbit about the Earth.

Based upon this investigation, the rotating gradiometer should be
chosen over the hard-mounted system by virtue of the extreme sensitivities
required in the latter., Comparing the simulation results using the rotating
system with aﬁalogous results given by Schwarz (1970) for satellite-to-

satellite tracking indicates a significant difference in the accuracies of the
151
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recovered gravity field parameters. In the simulation results reported by

Schwarz, density layer values in 2° x 2° blocks were recovered to an accuracy
of 1 milligals. The rotating gradiometer results obtained here indicate a mean
gravity anomaly accuracy of about 0.5 to 1 milligal. Both results are con-
siderably better than the accuracy of 2° x 2° mean gravity anomalies deter-
mined by measuring surface gravity along a profile through thé block (Moritz,
1963).
The accuracy with which the shape .of the geoid can be determined from

satellite gradiometry largely depend on the correlations between the anomaly
| blocks in addition to the accuracy of determining the mean anomaly in a
singlelblock. Certainly a combination of satellite gradiometer and altimeter
results can be expected to produce heretofore unprecedented . global details
of the Earth's gravity field.

| The excitingly great potential of satellite gradiometry dictates a
continuing research and development effort in both the area of instrumentation

and data reduction.
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West Half East Half Central
Area Area Area

Latitude limits 25° N - 50° N
Longitude limits 240°N - 260°E  260°F - 280°E  250° E - 276°K
No. anomalies used :
in solution 500 500 500
Mass depth (km) 100 100 100
No. of pre~-defined
masses - - 320
No. of unknown b b
masses determined 320 320 320
Mean input 4
anomaly (mgal) 1.20 - 1.50 1.78
RMS input : ' a
anomaly (mgal) 17.89 15.99 17.62
Mean residual anomaly after a
fitting masses (mgal) 1.02 1.41 1.28
RMS residual anomaly after
fitting masses (mgal) - 7.57 6.23 7.06

a Input anomalies have been corrected for predefined masses,

b One half of these mass sets were included in the final composite set,
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Summary of Superimposed Point Mass Set Solutions

Depth of Masses (km) -

Mean Anomaly Block Size
Latitude Limits

Longitude Limits

No. of Anomalies
Used in Solution

No. of Predefined Masses

No. of Unknown Masses
Determined

Mean Input Anomaly
RMS Input Anomaly

Mean Residual Anomaly

After Fitting Masses (mgal)

RMS Residual Anomaly

After Fitting Masses (mgal)

30'x 30

33°N ~ 41°N

260°E -~ 265°E

288

646

255
0.56
9.40

0.64

1.86

5'x 5!

- 36°N - 38°N

259°. 5K - 261° 5E

576

895

306
-0.11

7.10
-0. 21

1.7
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APPENDIX B
- RAPPS SPHERICAL HARMONIC

POTENTIAL COEFFICIENTS AND THEIR ACCURACY TO (14, 14)

< S

S ADJUSTED _ STANDARD  ADJUSTED STANDARD
VALUE ERROR VALUE ERROR

0 .=484.1750 _ 0.0120 _
2 243706 0.0551 ~143422 0.0551
L0 0.9365 0.0314
1
2

1.8556 0.0497 Q. 24 34 0.0531
07130 0.0491  =0,5486 00,0460

3 0.6331 0.0653 1.5234 0.0687
& 0065522  0.0197 et
1 C ~0.5513 0.0309 ~0e44T0 0.0272
.2 0,2971  0.0437 = 05844 = 0.0441
43 0.8729 0.0305 ~0.1975 6.0271
b 4 . 0.0936  0.0759 . 002741 0.0800
5 0 0.0496 0.0283 | i
5 1 ~0.0816___ 0.0393 _ ~ =~0.0635 = 0,0390 |
5 2 0.5228 T0.0419 -0 2134 0.0392 :
5 3 ~0+3560 0.0456 0.0273 0.0461
- S AR o s VX3 ST ¢ D o YA £ - B ¢ DAY ¢ I /S s VAN ¢ P B
5 5 .....0.0859 0.,0593 =0.5689 0.0600 .
6 0 ~0.1366 0.0297 B
6 1 ~0.064T 0.0261 ~0.0194 0.0226 |
6 2 0.0283 0.0396 -0.2835 0.0396
6 3. =0.0535  0.04}L  ~_0,0602  0,0373
6 4 -0.0250 0.0507 ~0e4123 0.0518
6.5 _—0.,2906 0.0339 04509 0.0316
6 6 -0.0087 0.0546 ~0e 1843 00,0540
L1 00,0702  0.0327 — e
7 1 0.1289 00489 0.1060 0.0480
T2 03065  0,0372_ 01372 _ 040354 _
7 .3 0.1796 0.0430 0.0092 "0s0433
T 4 ~0.1931 0.0430  ~0.0906 _ 0.0415
7 5 0.0704 ~ 0.0450 0.0355  0.0461
7 6 ~0.1654  0.0441  0.0917  0.0426
Y T 0.0679 0.0464 -0.0298 00464
8 0 0.0460 0.0345 ‘ '
8 1 ~0e0433 0.03265 040250 0.0343
8 2 - 0.0401 0.0441 0.0981 0.0439
8 3 -0.0044 0.0388 0.0380 - 0.0379
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e T e S
ADJUSTED STANDARD ADJUSTED STANDARD
T TV ALUE T ERROR TV ALDE " S ERROR-
8 & ~0,0922 0.0422 0.0188 0.0431
s TR 0630 0L 04057 T 0, 08187 gL G402 T
8 6  =0.1070 0.0423 0.2869 0.0424
8 7 0.0256 0.0348 0.0300 0.0370
8 8 =0,1041  0.0412 ~0.0168 0.,0402
970 0.0248 0.02341 .
9y o 0.1325 0.0405 ~0.0872 ~ 0.0388
9 2 0.0125 0.0328 0.0000 0.0327
“““““ 9 3 ~-0.0753 0.0411 =0, 0303 0.0412
9 4 0.0400 00406 ~o 0154 O.0400
9 5 =0.0465  0.,0399 " 0.0258  0.0405
9 6 —0,0102  0.0391 0.0432 0.0393
97 . 0.0421 @ 0.0373 . - 0,018l = 0.0380
g '8 T 0.2074 0.0377 ~0.0032  T0.0378
9. 9 - 0.0129 0.0382 ~0+0345 0.0384%4
‘”'1'{)‘“ o7 C-0L.0127 0.6 290 T T e
10 1 00788  0.0326  =0.0645 0.,0311
10 2 ~0.0402° 0.0389 TS0, 07067 T 0,0362
10 3 ~0e 0499 0.0371 ~0,13 14 0.0370
L0TTE TR L 03107 T TT0L.0353T TR, 0866 T 0.03567
10 5 -0.0046 0.0364 0o 0037 0.0369
1O TTeTTTTTTAG L 06227 T 03E3 T LG, 02027 T UL 0388
10 7 0.0745 0.0352 ~0.0160 0.,0352
108 T T L 043970023 T TR L1039 0,034
10. 9 0.0934 0.0344 -0.0026 00341
10710 T 06T O 034 TR 06907 0,038
11 0 ~0.,0880 0.0218 _
""" 117717777 70,0244 0.03797 0.0120 70,0319
it 2 - 0.0304 0.0313 -0s 0245 0.0315
YR TR0, 0049 TTTHL03 1T -0, 0049  0.0318
Al 4 ~0.0196° 00320 ~0,0597  0.,0318
11 5 0.0087 00,0313 -0.0615 0.0317
11 e 0.0339 0.0310 __0.0098 0.0311
117 0.0088 0.0308 ~0.0801 0.0309
11 8 040409 0,0297  0,0106  0.0297
1179 0.0334 0.0289 0.0060 0.0293
i1 10  =0,0140  0.0294  =0.0109  0.0295
11 11 0.0752 7 T 0.0297 0.0167 0.0298
12 0 =~ -0.0068 = 0.0236 ‘
12 1 ~0.0643 0.0302 -0.0596  0.0283
12 2 ~0,0184 0.0299 0. 0865 0.0305
12 3 0.0683 ' 0.0286 - ~0.0065 0.0287 77
12 4 ~0.,0176 0.0292 -0,0169 0.0287
1275 0.0318 "0.0286 “0,0677  0.0290 7
12 6 0.0033 0.0281 0.0346 0.0283
127 ~0.0423 0.0279

0.0280

0.0270



APPENDIX B (CONTINUED)

STANDARD

ADJUSTED

VALUE
0.0101

=0.0033

T=0.0179

0.0255

~ g oTiE T

~8 0k 62

~0,0098

A

ERROR
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Q0025
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0.0272
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0.0240

S
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et 039
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00627
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ERROR
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"'000172
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R Vi
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