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ABSTRACT

A general least-squares method (collocation) which
encompasses , as special cases, least-squares adjustment
and least-squares prediction, is presented in detail and
applied to various problems occurring in geodesy and photo-
grammetry, such as interpolation and coordinate trans-
formation.

In particular, this method permits an optimal simul-
taneous determination of geodetic positions and of the
terrestrial gravity field by combining different data of
any kind--terrestrial angle, distance and gravity measure-
ments as well as data from advanced satellite techniques.
To provide an adequate statistical background, an alter-
native statistical interpretation of the anomalous gravity
field in terms of covariance analysis of individual functions
is given, and its relation to the usual interpretation as a

stochastic process on the sphere is discussed.
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1., INTRODUCTION

Least-squares adjustment is familiar to every geodesist.
Besides this classical technique, least-squares methods for
interpolation and prediction of gravity have found their way
into geodesy several years ago (Kaula, 1963; Moritz, 1962,
1963) . Later on such least-squares prediction methods were
applied to deflections of the vertical (Heitz, 1969;
Grafarend, 1971 a,b).

After some preliminary investigations on the relation
between least-squares adjustment and least-squares pre-
diction (Kaula, 1963; Moritz, 1965; Wolf, 1969), it was Krarup
(1968, 1969) who succeeded in completely clarifying the
mathematical structure of this relation by exhibiting least-
squares prediction as least-squares adjustment in a Hilbert
space with a kernel function. Furthermore, he vastly generalized
least-squares prediction of gravity to obtain a general least-

squares theory (least-squares collocation) for estimating any

element of the terrestrial gravity field. Subsequently this
theory, in a somewhat simplified form, was applied to the
solution of a number of problems in physical geodesy (Moritz,
1970 a,b).

A somewhat different line of development, already fore-
shadowed in(Kaula, 1963), leads to the incorporation of
parameters representing systematic effects. For the case of
gravity this was done in (Moritz, 1969); an improved de-
duction was given in (Moritz, 1970 c), where also applications
to other fields of geodesy are outlined. This line of develop-
ment finally leads to a joint least-squares determination
of geometric position and of the gravity field (Krarup, 1971;
Moritz, 1970 4).

Similar techniques are known in the theory of stochastic

processes (Parzen, 1961),



The present report attempts a systematic and fairly
comprehensive elementary presentation of the theory and its
geodetic applications.

The following simple considerations are intended to
give the reader some intuitive feeling for the problems
involved.

The conventional model underlying least-squares ad-
justment by parameters is

X =AX + n , (1-1)

where x , the "measurement", is the vector of the obser-
vations (usually denoted by & ), X is the vector of the
parameters or unknowns, and n , the "noise", is the vector
of the measuring errors (usually denoted by -v); A is
a known rectangular matrix. It is evident that x is split
up into a systematic part, AX , and a random part, n .

In the sequel, the number of observations will con-
sistently be denoted by g , and the number of parameters,
by m ; to get an overdetermined problem, we must have
m<gq . Then x and n are (column) vectors of g components,
X 1is a (column) vector of m components, and A 1is a qgxm

matrix.

The present report considers the following generalization:
X=AX+s +n, (1-2)

obtained by admitting, in addition to the noise n » & second
random quantity s , which we shall call the "signal".

This is the model underlying least-squares collocation
including systematic parameters.



Thus the measurement x consists of a systematic part,
AX , and two random parts, s and n . Usually the systematic
part will be nonlinear originally, and the linear form AX
is obtained on linearization by Taylor's theorem.

The signal s may exist at points other than the
measuring points; in particular, it may vary continuously
even if x is measured at discrete points only. This is why
we can use such a mathematical model for purposes of inter-
polation.

In fact, if the vector x consists of measurements of
the same kind, then we may consider our problem as a

generalized problem of interpolation, as Fig. 1-1 indicates.
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Figure 1-1

We have to determine the curve shown on top (full line) by
means of discrete observations (small circles), which are
furthermore affected by observational errors n . The curve
to be interpolated consists of a systematic part, AX , and

a random part, s , both of which are of importance.



If we consider the determination of the parameter X
as adjustment, the removal of the noise as filtering, and
the computation of s at points other than the measuring

points as prediction, we may say that least-squares col-

location combines adjustment, filtering and prediction.

The relevance of this model for geodetic problems is
made evident by mentioning some conceivable applications
from quite different fields of geodesy.

1. Gravity Measurements. - Here X is the gravimeter

reading, s represents the gravity anomaly Ag, n is the
random measuring error (including inertial noise in the
case of marine and aerial gravimetry), and X represents
systematic parameters of two different kinds: (a) the
parameters of the normal gravity formula and (b) instru-
mental constants and other systematic effects on the
measurement such as drift.

2. Satellite Observations. - Here x comprises op-

tical or electronical measurements to artificial satel-
lites, AX represents the normal orbit (after linearization
with respect to the parameters), s represents gravitational
perturbations of the orbit, and n comprises other random
effects, in particular measuring errors.

3. Transformations in Geodesy and Photogrammetry. -

Consider two overlapping local geodetic coordinate systems.
If one system is transformed into the other, there may
remain residual discrepancies or distortions which are
irregular but strongly correlated. Thus AX represents
the transformation formula, s comprises the residual dis-
tortions, and n is the effect of measuring errors on
position. This is a combined transformation and inter-
polation problem, which is the two-dimensional analogue
to the one-dimensional problem shown in Fig. 1-1.
Transformation problems of precisely the same
nature are frequent in photogrammetry.



4. Graduation Errors of Theodolite Circles. - Here x

is the circle reading, AX represents the "regular"
graduation error, s represents the "irregular" graduation
error, and n is the reading error.

In these generalized interpolation problems, the
measurements making up the vector x are all of the same
kind, so that we have the case of homogeneous measure-
ments. This assumption is not necessary, however: we may
also have heterogeneous measurements, as long as the
corresponding signal quantities are functionally inter-
related.

This is particularly important for applications to
physical geodesy. Here we have one basic signal field,
the earth's anomalous gravity field. The quantities
referring to this field--gravity anomalies, geoidal
heights, deflections of the vertical, anomalous second-
order gradients, etc.--are all functionally inter-
related through the field structure. Thus our present
method permits the use of measurements of arbitrary
field quantities and their combination. In (Moritz,
1970 a) we have considered many examples of this kind,
where systematic effects AX have been assumed to be
missing.

The admission of systematic effects greatly en-
larges the scope of the theory. In fact, any geodetic
measurement may be split up into three components:

1. a systematic part involving, on the one hand,
the ellipsoidal reference system and, on the
other hand, other parameters and systematic
errors;

2. a random part expressing the effect of the
anomalous gravity field; and

3. random measuring errors.



Consider, for example, a measured zenith distance =z
Then we have (cf. Heiskanen and Moritz, 1967, p. 190),

disregarding measuring errors,

z =2' — ¢ . (1-3)

Thus 2z' , the ellipsoidal zenith distance, represents
the systematic part due to the ellipsoidal reference
system; the quantity e , the deflection of the
vertical, represents the effect of the anomalous
gravity field as the second component; and the
measuring error of z (omitted in (1-3) ) gives the
third component.

Thus any geodetic measurement--from angular
measurements in triangulation to satellite-to-satel-
lite tracking--fits into the scheme (1-2).

The theory described and applied in the present
report is developed in such a way as to be formally
very similar to the well-known "general case of least-
squares adjustment", that is, the adjustment of
condition equations containing parameters. After the
deduction from a minimum principle of the form
VTPV = minimum , it is shown that the solution
possesses optimum accuracy, minimizing the mean square
error of the result.

The presentation of the theory given here is
itself an attempt to solve a minimum problem: to
develop the subject to an extent adequate for geodetic
applications, at the same time keeping the mathematical
apparatus to a minimum. It has been possible to get
along with ordinary linear algebra , bypassing Hilbert
space techniques. The corresponding loss in generality
and mathematical depth is probably acceptable to

geodesists primarily interested in applications;



the more mathematically inclined reader will find the
additional study of Krarup's (1969) monograph a
fascinating experience. Still, the present elementary
treatment may also have some theoretical interest from the
point of view of logical economy.

This theory is then applied to various problems in
geodesy and photogrammetry. In particular it permits
an optimal simultaneous determination of geodetic
positions and the terrestrial gravity field using

heterogeneous data of any kind.

2. LEAST-SQUARES COLLOCATION

In sec. 1 we have introduced the basic equation of

least-squares collocation:
X =AX + s' + n , (2-1)

where x 1is the "measurement", s' is the "signal"
(formerly denoted by s ), and n is the "noise". The
quantities x , s' and n are g-vectors ( g 1is the
number of observations); the m-vector X comprises

the m parameters; and A is a prescribed gxm matrix.
All vectors will be considered as column vectors.

It is convenient to substitute
z=s8'" 4+ n, (2-2)
so that (2-1) becomes

X = AX + z . (2-3)



The vectors s' and n are purely random quantities
whose expectation (average or mean value), M , is zero:
M{s} = 0 , M{n} = 0 . (2-4)

Then, by (2-2),

M{z}

Il
o

(2-5)
so that
z = x - AX (2-6)

represents the observations "centered" by subtracting
their mean value AX , or the purely random part of
the observations.

Let us now assume that we wish to estimate
(predict) the signal at an arbitrary number of
"computation points" which may be different from the
"data" points; cf. sec.l, in particular Fig. 1-1.
Denote by p the number of computation points; then

the signal vector to be computed will be the p-vector

T
= , 2-
s [sl Sy sp] (2-7)

T denoting the transpose ( s 1is a column vector!),
Since we want to denote by s the p-vector (2-7), we
had to change the notation for the g-vector
representing the signals that correspond to the
observations x , denoting this vector by s'



The vector (2-7) may be combined with the vector

z = [zl Zy o . . quT (2-8)

to give the vector

T [T T|T
V=,{8S] S2 « « « S_Z] Z0 . « . 2 = |s z 2-9
[ 1 S2 p 21 22 é] , )
comprising all p + g random variables that enter into
our problem.

The covariance matrix Q of this vector v may
be written as a partitioned matrix:

C C
SS SX
Q = . (2-10)
C C
XS XX
Here
C = cov(s,s) = M{ssT} (2-11)

SSs

denotes the covariance matrix of the signal s ,
C.. = cov(x,x) = M{(x-AX) (x-AX) T} = M{zzT} (2-12)

XX

denotes the covariance matrix of the measurement x
(note that

M{x} = AX (2-13)

by (2-5) and (2-6)!), and



10

M{s(x—AX)T}

C = cov(s,Xx)

M{szT}‘Ir
sX

(2-14)

M{ (x-AX)s"} M{zsT}

C = cov(x,s)
Xs

denote the crosscovariance matrices between s and x ;

obviously
C = C , (2-15)

T denoting the transpose as usual.
In this connection it is convenient also to

consider the covariance matrix of the noise,

Crm = cov(n,n) = M{nnT}, (2-16)

and the covariance matrix of the vector s' entering
in (2-1),

C ver = cov(s',s') = M{s's'T} , (2-17)

S

and to introduce the abbreviatidns

C Vet o c ., (2"18&)
s S

c =D, (2-18b)
nn

c =¢C. (2-18c)
XX

Thus C is the covariance matrix of the observations,
D is the covariance matrix of the measuring errors
and C 1is the covariance matrix of the "signal part"

of x.
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Let us now assume that signal and noise are uncorrelated
with each other. This assumption is justified if x is
the result of a direct measurement, where the size of
the signal s' has no influence on the size of its

measuring error n . Then

C__, = cov(n,s') = M{ns'"} = 0 ’
ns
(2-19)

Cs'n = cov(s',n) = M{s'nT} =0
Now

z=s'"+n,
so that

Cxx = M{zzT} = M{(s'+n)(s'T+nT)} =

= M{s‘s'T + ns'T + s'nT + nnT} =

= M{s's'"} + M{ns'T} + M{s'nT} + M{nnT}

=C||+C 14

S ' S nn

by (2-16), (2-17) and (2-19). With the notations
(2-18a, b, c) we thus have

C=C+0D, (2-20)

so that the covariance matrix of x 1is obtained by
simply adding the covariance matrices of its signal
and noise parts.
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Under the same assumption (no correlation between

signal and noise) we further have

M{szT} = M{s(s'+n)T} = M{ss'T} + M{snT}

Q
I

sSX

T

M{ss' "} ,

hence, together with (2-15)

Q
Il

cov(s,s') ,
sX

(2-21)

(@]
I

cov(s',s
%s v ( /S)

so that CSx and st are pure signal covariances.

All these covariances, and in particular the
covariances that make up the matrix (2-10), will be
assumed to be known in what follows.

In terms of the vector (2-9) we may write
(2-3) as

AX + Bv - x =0 (2-22)
with
] ]
(O2N0) . 010 (0]
oOo. . O 1 . .0
B=]. 4+ ¢ ¢ ¢« ¢« o o « @ = [:O I] , (2-23)
oOo0..000. .1
= _

where O 1is the g x p =zero matrix and I is the
d X g unit matrix; the matrix A 1is the same as in
(2-1) .
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Eg. (2-22) has the form of condition equations

with parameters. It is therefore tempting to apply the

algorithm of least-squares adjustment for this case,
that is,

vIPv = minimum (2-24)

with the side condition (2-22), where
P =0 (2-25)

is known by (2-10). The vector v plays the role of
"residuals", and the vector X represents the
"unknowns".

The solution is well known; cf. (Gotthardt, 1968,
pp. 238-241) or (Wolf, 1968, pp. 132-134). We
minimize the function ( k represents the vector of
correlates or Lagrange multiplyers)

1

o = ivTPv kT (AX + BV - X) (2-26)

1)

by forming 8%/8v = O , 30/3X = O , which gives

the equations

vTP - kTB =

|
@)
~
>
I
o

(2-27)

1)These conditions are only necessary but not
sufficient; that the solution obtained in this way
really gives a minimum will be shown at the end of
this section.
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The result of the first equation,

T

vT = xTpp~?

or
v=P Bk, (2-28)

is substituted into (2-22); together with the

transposed second equation this gives
-1_T
BP Bk + AX = x , A’k = 0 ; (2-29)

these are g+m linear equations for the g+m
unknowns k and X .

To find X , we multiply the first equation
of (2-29) by aT(ep !gT)"?

to obtain

and subtract the second

1 1

aT(ep!BT) "'ax = aT(BPp7!8T) "1x . (2-30)
Eg. (2-30) determines X ; then v follows from
(2-28) together with the first equation of (2-29) as

-1_T

v=r 8T 18Ty 1 (x - ax) . (2-31)

Let us now specialize to our present case,
where the matrix B is given by (2-23). We readily
find

Bp”'8" = BoB” = [0 1] =c =2¢,

(2-32)
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by (2-18c). Thus (2-30) and (2-31) become

ATc ax = aTé 1k (2-33)

v = 0BT 1 (x - ax) . (2-34)

The first equation determines the parameters:

x = (AT¢ 1y "aATe 1k |; (2-35)

the second equation may be partitioned using (2-9),
(2-10) and (2-23):

- ¢ l(x - ax) ,

so that

s=c Ccl(x -ax)|. (2-36)
sX

If only one signal Sp is to be predicted,

then the vector s will have only one component,

S and the matrix CSX will reduce to the line

p !
vector

— T -
[cpl Cpy + - cpq]— Cea I- (2-37)

Thus (2-36) will read

_ AT=-1,. _ -
sp = CxC~ (x - AX) |. (2-38)
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These equations solve our problem: first the
estimated values of the parameters X are computed
from (2-35), then the estimated (predicted and/or
filtered) values of the signal s are obtained from
(2-36) or (2-38).

This is the method of least-squares collocation.

To illustrate these general formulas, let us
write the occuring matrices explicitly for the case
p=2, gq=3, m= 2 . Then

s = sP_ ; X = x1 ’ zZ = le ’ X = X1 .
sQ x2 z2 X2
X3 23-
A=la _ a . z-[e & & ] c =lc..c.c
11 %12 7 11 12 “13] ' “sx pP1 ~P2 "P3
271 222 Ca1 €22 Co3 Co1 €92 Co3
83y 232 €31 C32 C33
we have written s, =8, . 8, = sQ for convenience (in

this way it is, e.g., easy to distinguish the
11-component of the matrix (2-18a), C11 ;, from the
corresponding component of the matrix Csx by denoting

the latter by CPl ) .

Then the solution (2-35) may be written in the form

-1 _ - _ _

= 7-1

|| T11 T2 211 @21 23111 Ci2 Cis !
X2] | Fa1 T2z 312 322 232]| %21 C22 Ca23 X, (2739)
€31 C32 C33 *3




Ly

with the abbreviation

r Y
11 712 _ g oo ATE"lp
Ty Too
and (2-36) becomes
s C C ¢ c..c..1 'z
P|_|~pt "P2 "P3 11 12 “13 1]
5o Co1 Cg2 Co3 || C21 €22 C23 Zy
Cyy C35 C34 23

where

zZ = X = AX .

The alternative expression (2-38) gives

B = = = 7-1
Sp T [CPl Cpo cp3} C11 12 C13 29| f
Coy Coa Cy3 2,
C3; G35 C33 Z4
L J

which coincides with s, as expressed by (2-40).

Already at this point we note the full formal
analogy of this formula, for A = O , with the
well-known formula for least-squares prediction of
gravity; cf. (Heiskanen and Moritz, 1967), p. 268,
eq. (7-63). Much will have to be said on this

analogy later on.

(2-40)

(2-41)
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Properties of Least-Squares Collocation. - The
solution expressed by (2-35) and (2-36) or (2-38) has
the following properties:

(a) The result is independent of the number p
of signal quantities to be computed.

(b) Both observed and computed quantities may be
quite heterogeneous.

(c) The observations may be errorless or
affected by measuring errors (noise).

(d) The method is invariant with respect to
linear transformations of the data or of the
results.

(e) The solution is optimal in the sense that it
gives the most accurate results obtainable
on the basis of the available data.

As for (a), the vector s may consist of one
component as in (2-38), or it may consist of a
thousand components. The result for the same signal
quantity will be the same in both cases, for the
following reason. Eg. (2-35) depends on the observations
only; the signal does not enter at all. In (2-36),
each component of the vector s is obtained
individually, without being influenced by the other
components: each component of s is expressed by (2-36)
in the form (2-38); compare (2-40) and (2-41).

This also shows that it is not necessary to
incorporate in the vector s all signal quantities
that correspond to the observations x , making up
the vector s' in (2-1): the vector s needs only

comprise those signal quantities we wish to compute.
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As for (b) the (physical or mathematical) nature
of the random quantities s and x is irrelevant.
All we have to require is that (2-22) be satisfied,
that s and 2z be purely random (i.e., of zero
expectation), and that the covariance matrix (2-10)
be known. In fact, all the quantities s and x may
be quite heterogeneous and of a different nature.

For instance, in applications to the gravity field to
be discussed in sec. 6, x may be a measured gravity

1

anomaly, X, may be a component of the deflection of

the vertical, and X, may be a tesseral harmonic

obtained from satellite observations, whereas Sy
may be a geoidal height to be computed.

The mathematical framework for the treatment of
heterogeneous observations is thus formally the same
as for homogeneous observations (e.g. problems of
interpolation, prediction, filtering), so that in
presenting this framework here we have been able to
follow closely the presentation in (Moritz, 1970c),
which unnecessarily restricted itself to the
homogeneous case.

Property (c) is a straightforward consequence
of the fact that the noise n does not directly
enter into our minimum problem, as the vector v
given by (2-9) does not contain it. We may thus have
n#0 or n=0 without changing anything in our
algorithm. This fact also accounts for the structural
identity of (2-41) (in which there may be n # 0 )
with the formula for (errorless) gravity prediction,

as we have pointed out above.
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This fact strongly contributes to the theoretical
and practical importance of this method because it has
the adjustment of measuring errors, as it were, already
built in.

It should also be mentioned that these formulas
do not presuppose that signal and noise are uncorre-
lated. If they are correlated, then the matrix C is
no longer given by the simple expression (2-20), but
(2-35) and (2-36) still hold.

Property (d) follows from the corresponding
well-known invariance property of least-squares adjust-
ment (cf. Tienstra, 1956, pp. 152 et seq.), since our
minimum problem is formally identical to the adjust-
ment of condition equations with parameters.

The proof of property (e) will be given in the
following section.

The present method may thus be summarized as
follows: take all observations x and all those
signal gquantities s which we should like to compute,
and take existing linear relations (2-1) into account.
In this way one obtains a random vector v which is
subject to the condition (2-22). Then the application
of the usual minimum principle (2-24), the underlying
covariances being assumed to be known, gives the de-
sired solution.

Some comments on the relationship between the
present method and ordinary least-squares adjustment
are in order. Formally, the present mathematical model
is adjustment by condition equations with parameters.
It differs, however, from an adjustment problem in the
strict sense. In adjustment computations, the conditions

connect all observations and, therefore, all residuals v:
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the principle v'Pv = minimum contains only those resid-
uals which also occur explicitly in the condition
equations.

In our present problem, however, the gquantities
that are most important here, namely the signal values s
do not enter at all into the condition equations (2-22),
although they do enter into the minimum principle (2-24).
Our problem thus contains additional random variables,
which are related to the observations only indirectly
through the joint covariances. Formally this makes no
difference: it only means that the matrix A contains
some all-zero columns, but conceptually it is quite
significant.

To repeat, the essential relation between the

observations x and the desired quantities s is

through the covariances which are assumed to be known.

This is the basic point that distinguishes our present
least-squares estimation from ordinary least-squares
adjustment; it also accounts, e.g., for the conceptual
difference between least-squares gravity prediction
and least-squares adjustment, cf.(Moritz, 1965).

Thus, rather than saying that we have reduced our
problem of estimating the signal to the adjustment of
condition equations with parameters, it is more appro-
priate to say that we have slightly generalized this
adjustment model in such a way as to cover our problem.

Not only conceptually, but also computationally
the covariances represent the crucial point in the
present method, as we shall see; everything else is
extremely simple--to be sure, apart from numerical

problems in handling large matrices.
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Proof that v 'Pv = minimum . - The derivation just

given should be supplemented by the proof that we really
have a minimum of (2-24); cf. footnote on p.1l3.

Besides the least-squares values, denoted by v and
X and given by (2-34) and (2-35), we consider arbitrary
values for the same vectors, to be denoted by v and X '
which also satisfy the condition (2-22):

AX + BY - x = O . (2-42)

We put

A (2-43)

X=X+ X1
The vectors v, and X1 satisfy the equation

AX1 + Bv1 =0 . (2-44)

We then have
VPV = (vT + v P(v + v))
= VTPV + VTPV + vTPv1 + VTPVl . (2-45)

Now

viPv = viPP 'BTC 7! (x - AX)

1

by (2-34), with Q = P~ Using (2-35) this becomes
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vipv = vIBTE 7 [1 - aaTC ') TIATE T x

= xTaTe 71 - a@Te i) TIaTE Y x

- —XTATE_lx + XTATE-lA(ATE_lA)-lATE-lx

1 1

= -XTATE- x + XTATE- X =0 ;

here we have taken into account that

by (2-44) . Since the matrix P is symmetric, we have

Hence (2-45) reduces to

GTPG = VTPV + VTPVl (2-46)
As the matrix P 1is positive-definite, we have

vipv, 20, (2-47)
the equality corresponding to v, = O . Therefore the

1
minimum of (2-46) is

~T A T
v Pv = v Pv

~
for v = v, where v 1is the least-squares solution.

This completes the proof.
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3. ACCURACY

In this section we shall first derive expressions
for the standard errors and error covariances of the
quantities X and s obtained by an arbitrary linear
unbiased estimation, then we shall specialize these
expressions for least-squares collocation, and finally
we shall show that collocation gives indeed optimum
estimates in the sense that in this case the standard
errors are the smallest that are possible for any
linear estimation method.

Linear Estimates. - Consider any linear estimates

for X and s , that is, expressions of the form

s =Lx + a , (3-1a)

X =Gx + Db, (3-1b)

where L is a p x g matrix, G 1is a m x g matrix,
a 1is a p-vector, and b 1is a m-vector. The quantities
L, G, a, b are assumed to be independent of x ,
so that (3-la,b) represent the estimated values of s
and X as linear functions of the measurements x
This is the meaning of the term "linear estimate".
These estimates must reasonably satisfy the same
relations as the original "true" values. In the sequel

we shall always denote true values by an overbar.
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Thus (2-3) and (2-2) are written for true values
as

X =AX + Z , (3-2a)

z=58'"+n1n, (3-2Db)
and for their estimates as

X =AX+ 2z , (3-3a)

z=s'+n . (3-3b)

Let us now postulate that the estimates (3-1a,b)
be unbiased. That is, the average M of these
estimates is to be the same as the average of the

corresponding true values: we are to have

M{s } =0 (3-4)
because of (2-4), and

M{X} = X , (3-5)

where X 1is the true value of the parameter vector;
note that the estimate X 1is a random quantity
because of (3-1b), whereas the true value X is
not.

Substitute (3-2a) into (3-la) to obtain
s = LAX + LZ + a ,

and form the average M . The result is
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M{s} = LAX + IM{Z} + a ,
since X and a are nonrandom quantities. By (3-4)

and (2-5) this reduces to
O=1LAX + a . (3-6)

For the estimation formula (3-la) to be meaningful,
the vector a must be given beforehand and cannot
depend on the true value X , which is forever un-
known and must be considered as arbitrary. Then

(3-6) gives
LA =0 , a=0. (3-7)

In fact, X , being arbitrary, may be taken as
small as we please, which is incompatible with a
nonzero a in (3-6). Thus a = O and hence
LAX = O . As X is arbitrary, we must have LA = O

The conditions (3-7) are thus necessary for
the estimate (3-la) to be unbiased; it is obvious
that these conditions are also sufficient.

Let us now investigate (3-1b) in a similar
way. Substitute (3-2a) into (3-1b) to obtain

X = GAX + GZ + b ,
and form the average M , with the result
X = GAX + b

or
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(I - GA)X -b =0,

where I denotes the unit matrix. Reasoning as before,

we obtain the conditions
GA =1 , b=0, (3-8)

which are likewise necessary and sufficient.

The unbiased linear estimates are thus

s = Lx with LA = O , (3-9a)

X = Gx with GA = I (3-9b)
Let us now put

L = H(I - AG) , (3-10)

for which the condition IA = O 1is automatically

satisfied:

LA = H(I - AG)A = H(A - AGA) = H(A - A) = 0 ,

since GA = I by (3-8); it may be shown that all
matrices L satisfying LA = O can be represented
in the form (3-10) (the matrix I - AG 1is a
projection matrix projecting onto the subspace

LA =0 ).

Then (3-9a) becomes

0]
I

Lx = H(I - AG)x

H(x - AGx) = H(x - AX)

by (3-9b).
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In this way we finally obtain the general expres-

sion for unbiased linear estimates:

]
|

H(X - AX) ’ (3—12)

where the pxg matrix H is arbitrary and the

mxq matrix G satisfies the condition

GA = T . (3-13)

Errors of Estimation. - The individual error of

the estimates is defined as the difference: true
value minus estimated value. Thus the individual
error of X 1is

e =X -X=X-6Gx =X - GAX - GZ = -GZ

by (3-2a) and (3-13), and the individual error of s

is

e =8 -5 =8 -Lx=25 ~-1ILAX - Lz =58 - LZ

because of (3-7). Thus we have

e, = -Gz , (3-14)

e =8 - LZ =8 - H(I - AG)Z . (3-15)
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Let us now pass on to the corresponding standard
errors and error covariances. We form ( T denotes

the transpose as usual)

T _ —=T.T -
€ €y = Gzz G~ , (3-16)
T - (m _ 13y (=T - 5T Ty _
€8, = (s LZ) (8 Z°L7)
= 88T - 1287 - 83°LT + 13z LT . (3-17)

By the usual definition of the covariances, the

matrices

_ T _ T _
Exx = M{exsx} ; Ess = M{eses} (3~-18)
are the error covariance matrices of the vectors X
and s . Forming the average M of (3-16) and (3-17)
and taking into account the definitions (2-11), (2-12)
and (2-14), we obtain

txd
1l

T
% x GCxxG ’ (3-19)

E,_=C,, -l _-c_1"+1c 1" . (3-20

These expressions give the error covariance
matrices for any linear unbiased estimation. The
diagonal terms represent the error variances (the
squares of the standard errors) of the estimated
quantities; the off-diagonal terms represent the
error covariances.

We may also consider the cross-covariance

matrices

— T —
E = M{exss} , (3~-21a)
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_ T _ T
ESX = M{ESEX} = EXs . (3-21b)

By (3-14) and (3-15) we have

e e, = - GZS' + Gzz LT
and hence
E, = -6c _+cc r" =E] . (3-22)
Least-Squares Collocation. - Let us now specialize

these general expressions to the case of least-squares
collocation. Comparing (3-11) and (3-12) to (2-35) and
(2-36) we see that here

1,T=-1

¢ = (aT¢ ta)~taTet (3-23)

H=c &t (3-24)

SX

The condition (3-13) for an unbiased estimate is
clearly satisfied.

By means of (3-23), the expression (3-19) be-
comes

— —T—

E,, = Gca’ =
= (aT¢ " a) " taTe 1GE ta(aTe 1Ay !
= (aTc la) AT 1a(aTc 1) !

(ATc a1 | (3-25)
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By (3-10) with (3-23) and (3-24) we have

L=c_&'1-an%tayae] , (3-26)
SX
so that
e, =c_&1-aa" e A% e | . (3-27)
Xs SX XS

In view of (2-15) it is readily seen that

c .Yt =1c . (3-28)

SX XS

By (2-18c) and (3-26) we get

c T = 1cnt =
XX

c_ &1 - amTeiy !
SX

¢r - ¢t

A(ATE'lA)"lAT]E"lc
XS

—— — — — 2
=c C 1[1 - aaTé 1a) "1aTC 1] c .
SX XS

By direct computation one immediately verifies that the
matrix expression between brackets is idempotent, that

is,

- _ - 172 - - -
[1 - aaTc a) "aTc 1] =1 - a@aTe la)"1aTet . (3-29)

Thus

1, T

we T =c 6'1[1 - a@aTc a7 1a C"l]C , (3-30)
XX SX Xs
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so that all three expressions (3-27), (3-28) and (3-30)
entering into (3-20) are egqual. Therefore, (3-20) re-

duces to

E = C - IC . (3-31)

Finally, (3-22) takes the form

E. =-6C + a6 1T =
XS XX

= -@a"c a) " aTe e 4
XS

+ (¢ ta) AL =

= (ATE"lA)'lAT[—E'lc +
XS
+ ¢ e - la@a®cla) aTé" e ]
XS XS
- —(ATE"lA)"1ATE'1A(ATE‘1A)"1ATE"1CXS
= -(a% 1) " aTe" e . (3-32)
Xs
Thus we have
=1 -1
EXX = (A°C "A) ' (3-33)
E =¢C - 6"1[1 - A(ATE"lA)"lATE'l]c , (3-34)
SS SSs SX XS
E. = -@Tc ta) aTc e (3-35)
Xs XS

here we have used (3-26).
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On writing (3-34) as

E =C =-cC C~ C _ + HAE ATH |, (3-36)

where H is given by (3-24) we see that the term

HAEbgFHT represents the effect of inaccurate estimation

of the parameters X . If there are no parameters,

this term is zero.
Similarly, (3-35) may be written more simply as

E = ~-E__A"H |. (3-37)

The error variance of any estimated quantity S5
1

expressed by (2-38), is given by

2 _ _ ~T=-1 T T _
m, = CPP CPC CP + hPAExxA hP (3-38)
( m, is the standard error of estimation), and the
error covariance between two estimated quantities Sy
and s is

Q

_ _ AT=-1 T T _
UPQ = CPQ CPC CQ + hPAExxA hQ . (3-39)

These expressions follow directly from (3-36); the

vector CP is given by (2-37), and the vector hP , by

_ T _ . T=-1 _
hP = C CP or hP = CPC , (3-40)
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in agreement with (3-24); analogously for CQ and
h . The quantity CPP is the diagonal element, refer-

Q
ring to sP , of the matrix CSS , and CP is a

corresponding off-diagonal element. ;

The equations (2-35), (2-36), (3-33), (3-36) and
(3-37) together constitute the basic computational
formulas for least-squares collocation, giving the
estimates together with their accuracy.

Alternative expressions for (2-36) and (3-36)
are (2-38) and (3-38) together with (3-39). Note that
(3-38) and (3-39) are directly comparable to equations
(7-64) and (7-65) of (Heiskanen and Moritz, 1967,
pp. 269-270), which are nothing but a special case of
our present, more general, formulas.

Least—-Squares Collocation as the Most Accurate

Estimation Method. - Let us now compare least-squares

collocation to an arbitrary linear unbiased estimation
method. Let the latter be characterized by the matrices
G and H with

”~

GA =1 (3-41)

by (3-13), whereas G and H denote the corresponding
least-squares matrices (3-23) and (3-24). In agreement

with (3-10) we form the matrix

I = H(I - aG) , (3-42)

whereas L 1is to be given by (3-26); obviously

LA = 0O . (3-43)
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Let us put
a=G+g, (3-44)
T=1L4+ 2. (3-45)
Then
gh = (6 - GA=CGA -GA=1I-1=0,(3-46)
¢A = (L -~ L)A=TA - LA = O . (3-47)

By (3-19) and (3-20), the error covariance

matrices for the arbitrary estimate are given by

N\ A o N -—
B, = GCGT = (G+g)C (GT+gT)
= oCcT + gCcT + cCgT + gCgT ,
~ Va) A A~ ~
E =c -1¢ -c¢ n¥+1c T
SS SS XS SX XX
=Cc =~ (+1)c  -c @'Y + (m)c  (LT+eT)
SS XS SX XX
=c -1c -c¢ T +1c 1T -
sSS XS SX XX
—ec -c 2T +1c 2T+ 2c LT 4 ec AT
XS SX XX XX XX
or
= _ =T = T = T _
Eix = Eyy + 9CG° + GCg™ + gCg™ , (3-48)
- _ _ T _ T T T
Ess = Ess + zcxs + zcxxL ) + ( Csxz + LCXXz ) + szxz '

(3-49)
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where Exx and Ess denote the error covariance

matrices for least-squares collocation.
Now, by (3-23),

cCgT = (aT¢ la) "laTc lcqT
= Te a9 = o (3-50a)
because
ATgT =0

as the transpose of (3-46). Similarly
= T
gCG™ = 0 (3-50Db)

as the transpose of (3-50a).
By (3-26) we have

e T =18t = ¢ 6"1[1 - A(ATE_lA)—lATE-{]EZT

XX SX
=c T -c_cla@Tcla " aT,T
sSX SX
SX
since
aTyT = o

as the transpose of (3-47). Thus

-c 2%+ 1c 2T=0, (3-51a)
sSX XX



37

and also for its transpose,
-2¢._+ 2c_ 1T =0 . (3-51b)
XS XX

On taking these relations into account, the
expressions (3-48) and (3-49) reduce to
E

%X (3-52a)

]
[zl
>
>
+
Q
Q
Q

E =E + 0% . (3-52b)
SS SS

The error variances (squares of standard errors)
of the estimated quantities are the diagonal terms of

the matrices EXX and ESS . Let us consider the

r-th component of X ; its error variance is given
by

~2 2 = _
m_ = m_ + YrCYr ’ (3-53)

where Y, is the r-th row of the matrix g . Since

C 1is positive definite, as all covariance matrices are,

we have
=, T 2 . _
y.Cy, =0 (3-54)
thus
~2 > 2 -
mo=m_, (3-55)

so that least-squares collocation, to which m_
corresponds, gives indeed the smallest possible

standard error of any component of the vector X
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If we apply the same reasoning, word by word, to
any diagonal term of the matrix ESS , we find that
least-squares collocation gives also the smallest
possible standard error of any component of the vector s.

Thus we have proved that least-squares collocation
is optimal in the sense that it gives the most accurate
results that are obtainable on the basis of the available
data.

This property is well known from least-squares ad-
justment and least-squares prediction of gravity (cf.
Heiskanen and Moritz, 1967, p. 268); we could, of course,
also have used it as a basis for deriving the solution
expressed by (2-35) and (2-36).

Error Covariances for the Complete Signal. - Con-

sider the "complete signal" t consisting of the system-

atic part AX and the random signal s
t = Alx + s . (3-56)

The p-vector +t comprises the "complete signals" at the
p computation points; the term A1X denotes the effect
of the parameters X at the computation points, so that

A1 is a pxm matrix (note that the matrix A is a

gxm matrix as (2-1) shows).
The derivation of the error covariance matrix of

t , Ett ;, is completely analogous to the derivation of

%x and Ess discussed previously in this section.

The individual error of t is
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= Ali + 5 - (A, GA + LA)X - (A,G + L)z

s - (A1G+L)E .
Here we have used (3-9a,b) and (3-2a). Thus

€ = § - Kz with K=1L+ AlG r (3-57)

whence

_ _ _ T T _
Ett = Css KCxs CsxK + chxK (3-58)
follows in the same way as (3-20) follows from (3-15).

For least-squares prediction we have by (3-23)

1

14

_ _ TS -
K=L+AG=1L+AE_AC

where L 1is given by (3-26) and EXX by (3-33).
Hence,

KC LC + A, GC
XS XS 1 XS

T..T
LCXS + AlEXXA H
(by (3-23), (3-24) and (3-33)),

C K=C T+ HAE__A”T
sx Sx xx71 !
KC_ _K' = nc_ LT + 1écTaT
XX XX 1

+ A1GELT + A1GEGTAT )
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By substituting (3-23) and (3-2¢) one verifies that
LCG'A] = O , a,GCL” = o,

and that

Hence (3-58) becomes
E =c -1c -c¢ 1T +1wc 1T -
tt sSs XS SX XX

T,.,T T T
AlEXXA H HAEXXAl + AlEXXAl P

and using (3-20) and (3-36) we finally get

_ _ =-1 _ T,.,T ,T _
Ett = Css Csxc st + (HA Al)EXX(A H Al) , (3-59)

where H is given by (3-24) and EXx by (3-33).

The use of Ett is appropriate when the total
signal t is of primary importance, such as in inter-
polation and transformation problems, whereas the use
of ESS is appropriate when the random signal s and
the systematic part A1X have different nature, such

as in applications to physical geodesy.
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4, APPLICATION TO INTERPOLATION

The simplest application of least-squares collocation
is to one-dimensional interpolation problems, as we have
already outlined in sec. 1.

Let the function F(u) , which is to be interpolated,
consist of a simple function £ (u) (e.g., a polynomial),

and a random function (the "signal") s(u) :

F(u) = £(u) + s((u) ; (4-1)

see Fig. 4-1.

]
fw)
[+
I o F(u)
Q |
Q | |
| |
[ i |
I I I ]
1V | Ly Ly
X, I Xy : X3 | X Xs
| | ! |
L ! J & il
U, vy Uy Vv, Us \/_,) Uy vy Us
ul, u2, ....data points
Vl' v2, ....interpolation points

Figure 4-1
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The values of F(u) at the "data points" u u

17 "2t
uq have been measured, but the measurements xi are af-

fected by random measuring errors n,

X, = F(u,) + n. . (4-2)
1l 1 1l

By (4-1), putting

g!
i

s(u,) , (4-3)
1

this becomes

x, = f(u.,) + s' + n, . (4-4)
1 1 h S

Let the function f(u) depend on m parameters. For in-

stance, if £f(u) 1is a polynomial

fu) =b, +bu+bu’+ .. .+bd"?
1 2 3 m
m
k-
= ] pu*t, (4-5)
k=1
then the parameters are the constants bk ; they form a
vector
T
x-[b1 b, - - .bm] . (4-6)
Then
f(u,) = b, u’ = A b (4-7)
i k=1 ki k=1 ik k

with
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k-1
Big =9y
Thus (4-4) becomes
m
= '+
%y kzlAikbk ts;+n

or in matrix notation,

X

= AX + s'!

with (4-6) and

= [x1 X
- ' 1
[sl s}
= [n1 n,
u u2
1 1 L] L
u u2
2 Up -+
2
u u
q g

(4-8)

(4-9)

(4-10)

(4-11a)

(4-11Db)

(4-11c)

(4-12)

But (4-10) is nothing else than the basic model (2-1).
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The interpolation problem consists in finding the val-

ue of F(u) at an arbitrary "interpolation point" on the

u~axis; let these interpolation points be denoted by

v2, e e e g vp (Fig. 4-1). We put
F(Vi) = ti ,
s(vi) = si R
m
k-1
f£(v,) = ) b v, ;
i k=1 k i

and introduce the p-vectors

-

n
I
| —
n
-
~

and the pxm matrix

k-1
Al—\:vi ]

which is analogous to the matrix (4-12) but has p
stead of g rows.
Then the vector t , comprising the values of

to be interpolated, may be written as

t=A1X+S,

which is identical to the "complete signal" (3-56).

Vl'

(4-13a)

(4-13b)

(4-14)

(4-15a)

(4-15Db)

(4-16)

in-

F(u)

(4-17)
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So far we have assumed the function £f(u) to be a
polynomial (4-5), which is linear in the parameters bk
We may, however, also use functions nonlinear in the
parameters. If they are linearized in the usual way, we
get again linear relations of the form (4-10) and (4-17).

The Covariance Function. - The signal s(u) is a

continuousfunction of u . Then all signal covariances

can be derived from a single function, the covariance

function C(r) , which is defined as

C(r) = M{ss'} , (4-18)
where s refers to a point P and s' refers to a
point P' such that PP' = r (both points P and P’
are on the u-axis); the average M 1is to be extended

over all pairs of points P and P' that are at a con-
stant distance PP' = r apart. More precisely, we may
form the function

a—r
c, (x) =2—é‘;5 J s(u) s (u+r)du , (4-19)

-a+xr

representing the average over a profile of length 2a ,
and form the mean of as many different profiles as we
can compute. As a matter of fact, the integral in (4-19)
is to be approximated by a sum for numerical evaluation.
The covariance computation program of Rapp (1966) may be
applied also to the present problem.

It is in general not advisable to directly use the
"raw" covariance values so obtained. It is preferable to
fit an analytical expression to the raw values. This ex-

pression must, above all, represent a positive-definite

function because all admissible covariance functions are
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positive definite (Fapoulis, 1965, p.349).
A simple positive definite function that may be appro-

priate in many cases is
C(r) = coe' . (4-20)

Signal and Error Covariances. - All signal covariances

can be expressed in terms of the covariance function. We

have

cov(s'!,s') = Cl(r..) (4-21)
i" 73 ij

where

r.., = |u, - u,| (4-22)

is the distance between the points u, and uj to which

the signals refer according to (4-3). In the same way,

cov(s,,s') = C(xr')) (4-23)
i3 ij

where

r'. = |u, - v,| . (4-24)
ij Jj i

= C soO

s's'

The quantities (4-21) form the matrix C

that the covariance matrix of x is found by (2-20):

o
I
Q

+D , (4-25)

by adding to C the covariance matrix D = Cnn of the

measuring errors n .
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On the other hand, the covariance matrix Csx is
composed only of signal covariances, so that its elements
are directly given by (4-23).

Computational Formulas. - Now we are in a position to

apply the formulas of sections 2 and 3. First, the parameter
vector X 1is obtained by (2-35):

x = (AT¢ lay "1aTe 1k (4-26)

so that the "functional part" £f(u) of the interpolation
curve F(u) is determined.
The random part s{u) at the interpolation points

Vo i. e., the vector (4-15b), is obtained by (2-36):

s=c Clx -nax) . (4-27)
SX

Then the interpolated values of F(u) , forming the
"total signal" , the vector t , are finally given by
(4-17) .

The accuracy of the estimated quantities X, s, and
t 1is characterized by the matrices (3-33), (3-36), (3-37),
and (3-59):

£, = i, (4-28a)
E =Cc =-c ¢ ¢ + ug aTuT , (4-28b)
Ss SSsS SX XS XX

- _ -—1 _ T T_ T _
P, =C, -c_Clc + ma-a)E (T2 (4-28¢)

are the error covariance matrices of X, s, and t ,
respectively; and
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_ T, T 3
EXs = EXXA H (4-29)

is the error-crosscovariance matrix expressing the error

correlation between the parameters X and the random

signal s . The matrix H is an abbreviation for Csxé_l
Since t represents the curve F(u) to be inter-

polated, the matrix Ett is of particular importance

for such interpolation problems.

A Numerical Example. - These formulas will be illus-

trated by a simple numerical example computed by
Dr. K.P. Schwarz.

Here £(u) is the straight line

f(u) = b1 + b2u '

so that

and m = 2 . There are g = 5 equally spaced data points
u, and p = 4 interpolation points situated halfway bet-
ween the data points, somewhat as in Fig. 4-1.

Data

u, X,

i i
.000 0.6108
. 445 1.0863
.890 2.9034
.335 4.,5925
.780 6.2714

5 S SENe)

The covariance function is an expression (4-20) with

I
@)
(o)}

cC = 0.1260 , a
o
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The covariance matrix of the measuring errors, Cnn , 1is
assumed to be a multiple of the unit matrix I ,
c = ¢°1I with ¢? = 0.01 .
nn
Covariance Matrices
[ 0.1360 0.0594 0.0062 0.0002 0.0000
0.0594 0.1360 0.0594 0.0062 0.0002
C = 0.0062 0.0594 0.1360 0.0594 0.0062
xx 0.0002 0.0062 0.0594 0.1360 0.0594
. 0.0000 0.0002 0.0062 0.0594 0.1360
[ 0.1260 0.0594 0.0062 0.0002
c _ 0.0594 0.1260 0.0594 0.0062
ss 0.0062 0.0594 0.1260 0.0594
| 0.0002 0.0062 0.0594 0.1260
[ 0.1044 0.1044 0.0232 0.0012 0.0000
c - 0.0232 0.1044 0.1044 0.0232 0.0012
XS 0.0012 0.0232 0.1044 0.1044 0.0232
| 0.0000 0.0012 0.0232 0.1044 0.1044
Results
Parameters Interpolated Values
b {0.3252} v, S, t, = F(v,)
X = 1 - i i i i
b2 0.9891 0.7225 -0.2221 0.8177
2.1675 -0.5590 1.9101
3.6125 -0.1052 3.7932

5.0575 0.1082 5.4359



XX

SS

tt

Xs

Error Covariance

[ 0.1136
| -0.0234

0.1034
0.0532
0.0343
0.0025

[ 0.0131

-0.0024
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Matrices
0.0343 0.0025 |
0.0369 0.0343
0.0564 0.0532
0.0532 0.1034
0.0015  -0.0009 ]
-0.0019 0.0015
0.0121 -0.0024
-0.0024 0.0131 |
0.0298 -0.0080 |
0.0048 0.0188 |
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5. APPLICATION TO TRANSFORMATION PROBLEMS

Least-squares collocation also lends itself to appli-
cation to coordinate transformations occurring in geodesy
and photogrammetry. In fact, such applications are the
twodimensional (or threedimensional) analogue to one-
dimensional interpolation as discussed in the preceding
section.

Consider, for instance, the following simple trans-
formation problem (Helmert transformation). Let the
plane be referred to two coordinate systems £ , n
and £ , n . These two systems are related by a trans-
lation and a rotation; furthermore the scale is differ-
ent.

Thus the transformation equations are:

™y
I

a + k(gcosa + nsina) , (5-1)

b + k(-£sina + ncosa)

=1
Il

The vector (a,b) represents the translation, a 1is
the angle between the ¢ and E axes, and k 1is a
scale factor.

Let the transformation parameters (a,b,a,k) be
unknown, but let there be a number of "identical"
points of which the coordinates ¢ , n , and ¥, N
in both systems are given. The problem is to deter-
mine the transformation parameters and to transform
a series of other points from the gn-system to the

En-system.
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First we must linearize egs. (5-1). The standard
procedure would be to introduce approximate values
(ao, bo, a ko) and to linearize by means of Taylor's
theorem. In this particular case, however, one proceeds
in a much simpler way. Instead of k and o we intro-

duce new parameters ¢ and d by

c = k cosa , d = k sina , (5-2)

obtaining
E=a+¢tc+ nd,
(5-3)
n=Db -4+ nc
Assume that ¢ , n are affected by measuring
errors v, , V., and similarly £ , # by Gg'
Gn . Then (5-3) becomes
E o+ Gg = a + (g+v€)c + (“+Vn)d ,
(5-4)
n+v o= - + + +
n v, b (g Vg)d (n vn)c '
or
E=a+tc+ nd+ n,
(5-5)

31
Il
o
I

Ed + nc + n_ ,

where we have put
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= =37 + +
nE VE vgc vnd ’

(5-6)

n = -y -v.d+ vce
n n g n

If r is the number of "identical" points, we can
form r pairs of equations (5-5). The 2r equations so

obtained may be abbreviated as

Xx =AX 4+ n (5-7)
with

X=1& | n= n€11 » A=110%, n |, X=]2a
Ny R 01l n-& b
) Do 1 0¢, n, €
n2 nn2 01 n2—£2 _d |
- | " - -
Er nér 1o Er nr

[nr | “nnr_ LO 1 nr—ErJ (5-8)

On writing (5-7) as
X - n=AX , (5-9)
this is seen to be the usual observation equation for ad-

justment by parameters: x represents the observations,

-n the corrections, and X the parameters.
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We might thus perform usual adjustment by parameters,
but the behavior of the residuals n obtained in this way

will frequently be different from the expected statistical

behavior of measuring errors, corresponding to the assumed
covariance matrix of n : the residuals will be larger and
fairly strongly correlated for neighboring points, whereas
ng and nn , though correlated when they refer to the
same point by (5-6), are uncorrelated for different points.
If these residuals are plotted above the xy-plane,
their contour lines might look somewhat like Fig. 5-1.

Figure 5-1

This indicates that, in this case, the chosen model
(5-7) is not appropriate. We must take into account random
distortions of the functional model such as shown in
Fig. 5-1. We therefore add to (5-7) a term representing

such random distortions, to arrive at the expression
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X =AX + s + n , (5-10)

which is nothing but the basic model (1-2).

This heuristic argument has been given here to
justify the need for introducing this refined model. In
fact, such a situation arises in many transformation
problems of geodesy and, it seems, in most transformation
problems of photogrammetry, where random distortions of
the functional model occur almost inevitably.

Using the model (5-10), the solution to our problem
is given by (2-35) and (2-38):

x = (aT¢7la)y "1aTE 1k (5-11)
TRl -
s,= CiC ' (x-AX) . (5-12)

Eg. (5-11) determines the vector X , that is, the
transformation parameters a, b, ¢, 4 . Then (5-12) deter-
mines the signal Sp 1 that is, the residual distortion
in & or n , at any point P (Fig. 5-1).

A central role in this method is played by the co-
variances as represented by the matrices C and CP
These covariances will now be considered in some detail.

The Covariance Function. - The signal, the distortion

in & or =n at any point of the plane, may be repre-
sented as a continuous function of the coordinates £ and

n o
s = s(g,n) ; (5-13)
to fix our ideas, let s denote the distortion in the

g-direction; for the moment, the distortion in the

n-direction is disregarded.
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As in the preceding section, all signal covariances
can be expressed by a covariance function which is de-
fined as follows. Consider the signal s at a point P
and the signal s' at a point P' , and form their
product ss' . Take the average M of the product ss'
for all pairs of points P and P' , situated in the
area under consideration, that are at a constant distance
PP' = r apart. This average product is the covariance
of the signal s for the distance r ,

C(r) = M{ss'} ( PP =1 ) , (5-14)

which, considered as a function of r , is the covariance

function for our present problem.
The way of taking the average M may be illustrated
by considering a rectangular area of sides 2a and 2b

(Fig. 5-2). Let us form the average

JLE

=3

Figure 5-2
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M over this area in two steps. First we average over a
circle of radius r with center at P , letting P

move along the circle: this gives
27w
5%— J s(g,n)s(g+rcosa, n+rsinae)da . (5-15)
a=0

This quantity is then averaged by letting P move
within the concentric rectangle of sides 2a-2r and
2b-2r with the result

a-r b-r 2

i
C(r) = gt _,J J f s(g,n) -
(0]

E=-a+r n=-b+r o=
+ s(g+rcosa, n+rsine)dednda . (5-16)

This equation gives a value of C(r) only for
r = ¢ where c denotes a or b whichever is smaller
(a formally satisfactory definition might be achieved
by putting b = a and then letting a - «). Practically
this is not very relevant since the covariance function
can only be estimated by representative sampling and by
fitting an analytical expression to the sampled values.
This analytical expression then gives C(r) also for
larger values of r

As in the preceding section, the function

C(r) = Coe , (5-17)
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with suitable constants CO and a , provides a simple
analytical expression that may be appropriate in many
cases; it satisfies the necessary requirement of being
positive definite.

The covariance function C(r) readily gives the
covariance between the signals at any two prescribed

points, say Pi and Pj : we simply have

C.. =Cl(xr, .) , (5-18)
13 1]
where r 1is the distance between Pi and Pj
The fact that the covariance depends only on the
relative position of Pi and Pj and not, e.g., on

the coordinates ¢,n of Pi is called homogeneity. It

is expressed by the average over & and n (the first
two integrals) in (5-16) . The fact that the covariance
depends only on the distance r and not on the direc-
tion a is called isotropy; it is expressed by the
average over a (the third integral) in (5-16).

The definition of the covariance function given
here is a straightforward extension of the concept of

the covariance function of the gravity anomaly Ag to

an arbitrary signal s ; cf. (Heiskanen and Moritz,
1967, sec. 7-2).

Covariance Functions for the Distortions. - So far
we have only considered one signal function (5-13); in

reality, however, we must simultaneously consider both

components of the distortion:

S¢ = sg(a,n) ' (5-19a)

the component in the g-~direction, and
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sn . Sn(E,n) 1] (5-19Db)

the component in the n-direction.
Correspondingly we have four covariance functions:

the expressions

Ceg (¥)

M{Sgsg} ; (5-20a)

C (xr)

M{s s'} (5-20Db)
nn nn

represent the autocovariance functions: the covariance

function of s and that of sn ; whereas the expressions

£
an(r) = M{sgs%} , (5-21a)
Cng(r) = M{snsé} (5-21Db)

represent the crosscovariance functions between s

g
and s
n

If all correlation functions are computed with the
average M defined as in (5-16), then they are in fact
functions of r only. Let us now assume complete isot-
ropy, such that all directions are equivalent. Then there
will be the same behavior in the £-direction as in the
n-direction, so that Cnn = ng ; let us put

- = . 5"'22
ng(r) cnn(r) C(xr) ( )
Furthermore the crosscovariances will be zero:

an(r) = Cng(r) =0 . (5-23)
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This is seen as follows. Consider a rotation of the co-
ordinate system:

E = gcosa + nsina , (5-24)

=—fsina + ncoso .

=31

Then the distortion components along the new axes §

and n will be given by the same transformation:

= g5 _cCcoSa + s _sina
£ g n !

m

(5-25)

w0l

=-~g sina + s cosa ,
n 3 n

and the new autocovariance function becomes

C = S S'1 = : \ Vs
ng M{sgsg} M{(SECOSQ + sn51nu)(sgc05a + sns1na)}

2 2
M{s _s'cos o + (s_s'+s s')cosasina + s s'sin a}
£ & E'n n g nn

2 2
+ + 1 + 1 _.2
ngcos o (an Cng)cosa51na CnnSln o (5-26)

or

ng = ng + (an+Cng)COSaSln&

by (5-22). Because of complete isotropy, there will be

CEE = CEE , so that

C + C =0 . (5-27)
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Since an depends only on r and since PP' = P'P ,

we have

CnE = an (5-28)
which, together with (5-27), gives (5-23).
A more general concept of isotropy, in which (5-23)
need not be satisfied, will be discussed in sec. 8;
cf. egs. (8-18), but the special case expressed by (5-22)
and (5-23) may be appropriate for many applications.

For instance, we may again assume

-a2r2
ng(r) = Cnn(r) = Coe , (5-29)
an(r) = Cng(r) = 0
Signal and Error Covariances. - Now we are in a

position to compute all covariances that enter into the
collocation formulas (5-11) and (5-12).

If there are no observational errors, then all
elements of the matrices C = C (by (2-20)) and Cp

are signal covariances. The matrix C has the form

€11 12 © Ciq
Ca1 G2z ¢ ¢ Cyq
o =| - : : = [cij} , (5-30)
C c C
e q2 qq |

where

cC.,. = cov(si,sj) , (5-31)
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s being the signal that corresponds to the measurement
We can distinguish four cases:
(a) S, = S , S. = 8 ,

that is, si is the sg—component at some point A , and

sj is the s_-component at some point B . Then

€

Cij = ng(rAB) , (5-32a)
where Tag is the distance AB . Similarly, for the case
(b) s, = sn’A ’ sj = Sn,B
we have

- (5-32Db)

Clj Cnn(rAB)
If
(c) s, = s‘g,A ’ sj = Sn,B ’
then

Cij = an(rAB) 7 (5-32¢)

and finally for

(d) S, = s , s, = s

we have
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c..=¢C__(r_ ) . (5-324)

If (5-23) holds, then the last two covariances will be
zero.

In this way all elements of the matrix (5-30) are
obtained.

The matrix CP has the form (2-37), briefly

c, = [cpi] T (5-33)
where

CPi = cov(sP,si) . (5-34)

Since also Sy is Sg or sn at some point A , we
again have one of the four cases just considered, so
that we obtain CPi , too, by one of the formulas
(5-32a-4d) .

So far we have assumed that there are no measuring

errors. If there are measuring errors n, , so that
X, =s, +n, , (5-35)
if these errors correspond to an error covariance matrix
D = [D,,] with D,. = cov(n,,n,) , (5-36)
i3] 13 3
and if the n, are uncorrelated to the signal s,
(which can reasonably be assumed here), then the matrix

C is given by

C=C+D, (5-37)



64

by adding the error covariance matrix D to the signal
covariance matrix (5-30), whereas the matrix CP remains
the same signal covariance matrix as in the errorless case
and is again given by (5-33) with (5-34). This follows at
once from (2-20) and (2-21).

Concluding Remarks. - After determining the vector

X = (a, b, c, d)T by (5-11), we can transform any point

in the plane from the coordinate system &n to the system

g by means of the formulas

™
i

a+ gc + nd + Sg(gln) ’
(5-38)

3
I

b - td + nc + Sn(E,n) P

which follow by adding to (5-3) the distortion components
Sg and sn in agreement with (5-10); these quantities
SE and sn are to be predicted by (5-12).

These are the complete transformation formulas that
also take distortion into account.

Obviously the quantities ¢ and 7 are nothing else
than the "complete signal", represented by the vector

equation
t =AX + s (5-39)

as the sum of the systematic part and the random signal.
The accuracy of ¢ and # is therefore expressed by the
matrix Ett (3-59).

It is instructive to compare (5-38) to the usual
procedure. There the vector X is obtained from a least-
squares adjustment, whereas the distortion s is either

neglected or obtained by a graphical technique:



65

the residuals of the adjustment, both in ¢ and in n ,

are considered as distortions s and sn and plotted

£
on the xy-plane; then lines of equal Sg and sn are
drawn (somewhat like Fig. 5-1), and sg and sn are

obtained by graphical interpolation.

The present method replaces, as it were, this graph-
ical interpolation by an objective numerical procedure
with optimum properties.

It is obvious that the functional model AX of the
transformation, instead of representing a Helmert trans-
formation, may be any other transformation, e.g., an
affine, projective, or conformal transformation.l)

A nonlinear model may be said to incorporate system-
atic distortions. Hence a linear model (Helmert or affine
transformation) may be supplemented by quadratic or higher-
order terms, the parameters of which are included in the
vector X , to take systematic distortions into account
(Hubeny, 1953, pp. 110-115).

The decision to which extent distortions are "systematic",
to be incorporated in the parameter vector X , and "random",
to be represented by the signal s , is not always straight-
forward. As a general rule, smooth effects are to be repre-
sented in the form AX , and irregular effects are to be rep-
resented as a signal s , but there are borderline cases. In
fact, irregular behavior might also be accounted for by a
very high-order polynomial. To a certain extent, the separation
of the distortion into a systematic and a random part will be

a matter of computational convenience.

1)For a comprehensive treatment cf. (Schatz, 1970); he con-

siders adjustment and prediction methods, but not yet the
combination of both by collocation.
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Investigations into this problem of separation have
been performed by Lauer (1971) for the case of gravity pre-
diction which is quite analogous, being covered by the
same model (Moritz, 1969, sec.l1l0). Lauer has tried to
split off a systematic part from the gravity anomaly field
before applying least-squares prediction.

Finally we wish to point out the difference between
the collocation formula (5-11) for the parameters and the

adjustment formula: for least-squares collocation we have

1 1

x = (AT¢71a) "1aTc 1k ,

whereas conventional least-squares adjustment yields

x = (aTpa) “'aTp~1x , (5-40)

as one readily verifies.

Thus the only difference, as far as the parameters
are concerned, is that the error covariance matrix D 1is
replaced by the matrix C that incorporates both signal
and error covariances by (5-37). This fact will also be of
importance for the determination of geodetic parameters to

be studied in the following section.



67

6. APPLICATION TO PHYSICAL GEODESY

Historically the first and still of foremost importance
are the applications of advanced least-squares methods to
physical geodesy. The first geodetic application of such
methods--beyond classical least-squares adjustment--was in
fact to a problem of physical geodesy, namely, to interpola-
tion and prediction of gravity (Kaula, 1963; Moritz, 1962,
1963); see also (Heiskanen and Moritz, 1967, sec. 7-6). Also
the decisive generalization of Krarup (1968, 1969), to some
extent foreshadowed by Kaula (1963, 1967) was motivated by
the intention to solve a principal problem of physical geodesy,
the determination of the terrestrial gravity field.

Even without introduction of systematic parameters, a
very general and powerful method is obtained, which permits
an optimal determination of the anomalous gravity field from
data of different type, systematic effects being absent.
Problems of this kind have been studied, in somedetail, in a
previous report (Moritz, 1970a). Although the present report
can be read independently, some knowledge of the previous re-
port may be useful for a complete understanding of secs. 6
and 7.

We shall here extend the scope of this method by ad-
mitting systematic parameters X . In this way we are able
to take into account, not only systematic errors, but also
parameters of the reference ellipsoid, station coordinates,
etc., obtaining a unified treatment of both geometrical and
physical quantities.

In the application to physical geodesy, the anomalous

gravity field is, so to speak, the signal field: all signals

s are quantities of this field, such as gravity anomalies,

deflections of the vertical, geoidal heights, anomalous
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gradients, spherical-harmonic coefficients, etc. All these
guantities may be derived from one basic function, e.qg.,
from the anomalous potential T , by linear operations such
as differentiations or integral formulas.

In the same way, all signal covariance functions (say,
the covariance functions for the deflection of the vertical)
may be derived from one basic covariance function, e.g., from
the covariance function for the anomalous potential, by the
corresponding linear operations.

The problem of covariances has already been treated in
sec. 4 of (Moritz, 1970a). In order to lead the reader famil-
iar with that report directly to the new aspects to which the
introduction of systematic parameters gave rise, we shall
postpone the consideration of covariances to the following
three sections, where the statistical background of least
squares collocation as applied to the gravity field will be
rather broadly discussed.

The basic model (1-2),

X =AX+s8 + n, (6-1)

applies, in fact, to our situation. As we have already re-
marked in sec. 1, any geodetic measurement may be split up
into three components:

(a) a systematic part comprising effects of the ellip-
soidal reference system, station coordinates and
other geometric parameters, as well as systematic
measuring errors;

(b} a random signal part s expressing the effect of
the anomalous gravity field;

(c) a random noise part n expressing the observational
errors.
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We shall now demonstrate this fact by analyzing various
measurable quantities x in this way. It is obviously suf-

ficient to effect a decomposition
X = AX + s , (6-2)

disregarding the measuring error n , because n can always
be added afterwards.

Consider first the classical measurements of physical
geodesy: magnitude and direction of the gravity vector, the
first being gravity g , the second being the direction of
the plumb line as defined by astronomical latitude, ¢ , and
astronomical longitude, A

We have
g =y + Ag , (6-3)

where vy 1is normal gravity and Ag is the gravity anomaly.
Normal gravity depends on the four parameters (denoted by

Pyr Pyr Py p4) defining the reference system used:
Y = Y(Plr pzr p3l P4) 7 (6-4)

to get a linear expression, introduce approximate values
pi ; set p, = pi + Gpi and linearize; then X 1is the

vector

X = [épl sz 6p3 6p41T . (6-5)

(In the Geodetic Reference System 1967 (Levallois, 1971)
we have p, = a. the semimajor axis, p, = GM , the

product of gravitational constant and mass of the earth,
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Py = Iy
P, = w the rotational velocity of the earth.)

the zonal harmonic coefficient of degree 2, and

Thus in (6-3), y represents AX , and Ag represents

In a similar way we may decompose the astronomical
coordinates ¢ and A :

© =4+ &,
(6-6)

=
I

A + nsecd ,

where ¢ and A are the corresponding geodetic coordinates
which depend on the reference ellipsoid, such that

¢ = ¢(p11 p2r p3r P4) ’ A= )\(plr P2r P3: P4) r (6-7)

analogous to (6-4), and where the deflections of the vertical
express the effect of the anomalous gravity field.

That is, ¢ and ) constitute the systematic part AX , and
g and nsect¢ represent the signal part s .

In (Moritz, 1970a) we have considered the parameters of
the reference ellipsoid as known; then the vector (6-5) is
zero, so that we have been able to consider 4Ag, &, n di-
rectly as observations.

As we shall see in the following section, the signal
field should not contain spherical harmonics of degrees O ,
1, and 2 . This implies that the reference ellipsoid is
in an absolute (i.e., geocentric) position. Cf. (Heiskanen
and Moritz, 1967), pp. 99-100; henceforth this book will be
referred to briefly as "HM".
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Astrogeodetic deflections of the vertical correspond
to a non-geocentric reference ellipsoid; they must there-
fore be transformed by shifting the ellipsoid into an
absolute position (HM, p.209), before applying them in
combination procedures such as the one described in
(Moritz, 1970a, sec. 9).

It is, however, also possible to determine the shift

parameters simultaneously by collocation: we write the
a a

astrogeodetic deflections g~ , n in the form (HM,
p. 213):
a_ 1 - nesing -
£ = R(6x051n¢cosx + 6y051n¢51nx Gzocos¢) + £,
(6-8)
na = l(Gx sinx - 8y cosi) + n
R o o '

where Gxo, Gyo, Gzo are the components of the shift of
the reference ellipsoid and R 1is a mean radius of the
earth.

Obviously this again fits into the model (6-2): &2
and n® are observations representing x , the first

terms on the right-hand side represent AX with
X =[ §X sy 5z ]T (6-9)
of of o !

and the geocentric deflections ¢ and n form the
signal s
The present method thus makes it possible to obtain
at the same time:
(a) a combined gravimetric-astrogeodetic geoid;
(b) the shift of the astrogeodetic reference ellipsoid

to its absolute position.
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It may be regarded as a combination of the method de-
scribed in (Moritz, 1970a, sec. 9)--with respect to (a)--
and the determination of the shift parameters by com-
bining astrogeodetic and gravimetric data (HM, sec. 5-10)--
with respect to (b).

But also any other observational quantities, which at
first sight seem to be purely geometric, fit into the gen-
eral scheme (6-2), for instance, measured azimuths, hori-
zontal angles, and zenith distances.

By egs. (5-10) and (5-13) of HM, p. 186 we have, after
a slight change of notation,

A = A' 4+ ntan¢ + (g£sinA - ncosd cotz , (6-10)

where A denotes the measured ("astronomical") azimuth and
A' denotes the ellipsoidal ("geodetic") azimuth.
A measured horizontal angle may be considered as the

difference between two azimuths:

so that we have

w = w' 4+ g(sinAzcotz - sinAlcotzl)

2

+ n(-cosA2c0t22 + COsA cotzl) ’ (6-11)

1

where w' 1is the ellipsoidal horizontal angle, that is, the
horizontal angle reduced to the reference ellipsoid, A1 and

z1 are azimuth and zenith distance to target 1, and A2 and

z, are the same quantities for target 2.
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Similarly we have for a measured zenith distance =z
(HM, p. 190):

z = 2' — EcosA - nsinA , (6-12)

where z' 1is the zenith distance reduced to the ellipsoid.
(This is identical to (1-3) since ¢ = gcosA + nsinA .)

In these expressions, the ellipsoidal quantities A' ,
w' , 2' represent the "systematic" part of the observations,
pertaining to the reference ellipsoid. If we vary the ellip-
soidal parameters P, by épi , these quantities take in-
deed the form AX with (6-5). The terms containing as fac-
tors the deflections of the vertical, & and n , represent
the signal s , that is, the effect of the anomalous gravity
field on the quantities under consideration.

This might be symbolized as

A =A' + Syt (6-13)

with the "signal part of A " given by
s, = ntan¢ + (£sinA - ncosA)cotz ; (6-14)

the guantities S, and S, the signal parts of w and
z , are to be understood accordingly.
These signal parts are thus nothing else than the

quantities representing the reduction to the reference ellip-

soid in the familiar sense (HM, secs. 5-4 and 5-5 ).

It is evident that the expressions (6-10), (6-11), and
(6-12) presuppose a geocentric reference ellipsoid; other-
wise £ and n are to be replaced by ga and na as

given by (6-8), which introduces additional parameters Gxo ,

Gyo ’ Gzo
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Thus, in principle, all measurements of A , w and 2z

give information, not only on the geometry through their

ellipsoidal parts A' , ' , and 2z' , but also on the
gravity field through their signal parts S, + S, ¢ and
s, - Since S, is readily seen to be very small, the con-

tribution of & to the determination of the gravity field
will in general be negligible, corresponding to the well-
known fact that the reduction of w to the ellipsoid can
usually be neglected (HM, p. 189). On the other hand, sz

is significant, which is in agreement with the possibility
of using zenith distances for determining deflections of the
vertical (HM, p. 176).

Let us finally consider satellite observations. Take,
for instance, photographical observations of right ascen-
sion o and declination §6 , and electronic measurements of
distances ¢ to the satellite. According to HM, p. 355 we
have relations of the form

a = a(XP' YP' ZP; t; aO’ eO' iO’ QO' wO' TOI Jnm' Knm) ’

§ = 6(xPr YP’ ZP; t; aol eO’ lO' QOI wol TO’ Jnmr Knm) ’

b= Xy Yoo 250 E5 agy ey 1o, Q40 wgr Toi T 0 K )
(6-15)

The parameter vector X consists of corrections to the sta-

tion coordinates x Ypr Zp v to the time t , and to the

P
o' S0 ot Uor ©or Tooi
of the reference gravity field is also implicitly contained

PI

orbital elements a e i w the influence

and may be taken into account by suitable parameters.
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represented by the effect of Jnm

the coefficients of the expansion of the grav-

itational potential into spherical harmonics:

_ 30 Ja
Sa = m?n(BJ 6Jnm + 3K GKnm) !
nm nm
_ 56 38 ~
sé - m?n(BJ GJnm + oK GKnm) ! (6-16)
nm nm
B 38 32
S T m?n(BJ 6Jnm + 3K 6Knm) !
nm nm
where
§J = J - J! ’ §K = K - K! = K (6-17)
nm nm nm nm nm nm nm

are the differences between the actual coefficients Jnm

and Knm and their normal values J;m and K;m refer-
ring to the reference gravity field; we have J;m = 0 for
m # O and K;m = 0 throughout because of the rotational

symmetry of the reference field.
On linearizing (6-15) and taking (6-16) into account

we obtain expressions of the form

o =o' + 85 ,

(o
§ = &' + Ss (6-18)
L= 2' + Sy

again falling into our usual model.



76

Doppler measurements, but also recently proposed obser-
vational schemes such as satellite altimetry, satellite-to-
satellite tracking, or gradiometry (Moritz, 1971) may be
treated in precisely the same way. The same holds, e.g., for
the determination of zonal harmonics from variations of the
orbital parameters (HM, sec. 9-6).

Systematic errors are taken into account by including
them in the vector X ; and to provide for random errors, we
add a term n to arrive again at the general model (2-1).

We are thus in a position to apply the basic equations
for least-squares collocation. First, the parameters X
are obtained from (2-35):

x = (aT¢ 1a) 1aTe x (6-19)

then any signal Sp will be given by (2-38):

s, = c €l x-ax) . (6-20)
Let us recall the meaning of these equations. The vec-
tor x comprises all observations of various types as we
have just considered; the matrix C is the covariance
matrix of x . The signal So is an arbitrary quantity of
the anomalous gravitational field, say a geoidal height at
a certain point, a deflection of the vertical at 10 km ele-

vation, or the spherical-harmonic coefficient K Any

93 °
field quantity may be obtained in this way by taking the
appropriate covariance vector CP .

As important limiting cases we have:

Case 1: X
Case 2: s =0

I
O
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The limiting case 1, that of no systematic parameters
occumring or all such parameters being known, has been the
subject of (Moritz, 1970a); here (6-20) reduces to

s_. =C.C "x . (6-21)

The limiting case 2 corresponds to the absence of the
anomalous gravity field. The earth is then considered as an
equipotential ellipsoid. Since with s = O also the signal

covariances C are zero, the matrix
C=C+D (6-22)

will consist only of the covariance matrix D of the mea-
suring errors, so that in (6-19) C is to be replaced
by D

x = (a™p71a) "1aTp 1tk . (6-23)

This corresponds to the result of a pure geometrical ad-
justment in the usual sense, the earth being identified
with an ellipsoid.

In a way, our general method splits up the problem
into two steps which are very similar to these limiting
cases. The first step, the determination of the parameters
by (6-19), corresponds to Case 2, with the error covariance
matrix D replaced by the general covariance matrix c ,
which incorporates also the signal covariances. The re-

placement of D by C is the only effect of the anom-

alous gravity field on the determination of the parameters

X (which describe, e.g., the geometry).
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Then, using the X so obtained, the observations x

may be centered by subtracting AX +to obtain
zZ = x - AX

As the second step, Sp is obtained by (6-20), which
amounts to using the centered observations 2z instead
of x 1in (6-21). In this way our problem reduces to
Case 1, so that all methods described in (Moritz, 1970a)

are now applicable to the observations centered by sub-
tracting AX

The accuracy of the estimated quantities X and
s 1is expressed by (3-33), (3-36) and (3-37).

Concerning the properties of the solution the reader
is referred to sec. 2. We only remark, in addition, that
all calculated quantities s , whatever they are, refer to
one and the same anomalous gravity field, so that our
method is indeed consistent. This is a consequence of the
invariance of the method with respect to linear transfor-
mations of the result; cf. also (Moritz, 1970a, sec. 3).

The signal field so obtained is optimal in the sense
that the accuracy of all computed gquantities is the highest
obtainable on the basis of the given data.

This field is also the smoothest gravity field that is
consistent with the given data; cf. sec. 10, where an appro-
priate definition of smoothness will be given. This fact is
important because spurious irreqgularities (caused, e.g., by
the instability of downward continuation) are avoided in
this way.
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Bjerhammar (1964) has formulated a basic problem of
physical geodesy as the determination of a gravity field
(or more generally the set of possible gravity fields)
compatible with the given discrete measurements. If we
generalize this "problem of Bjerhammar" to the determi-
nation of an optimal gravity field that is compatible with
all given measurements (or different kinds), we may say
that least-squares collocation solves this problem.

Here compatibility with the given measurements means
that the resulting signal field is such that exact mea-
surements are reproduced exactly (as, e.g., in the usual
least-squares gravity prediction), whereas inaccurate data
are adjusted in such a way that the effect of the measuring
errors is removed as much as possible.

As we have mentioned above and shall consider in detail
in the following section, all signal covariances can be de-
rived from one basic covariance function K(P,Q) . Each
choice of this function K(P,Q) corresponds to a possible
gravity field compatible with the given data; if we vary
the assumed basic function K(P,Q), we get a set of possible
gravity fields.

This is reminiscent of finding the set of unbiased
linear estimates in adjustment theory, which is most elegantly
expressed in terms of generalized inverses of rectangular
matrices (Bjerhammar, 1958, 1971a,b). In fact, there is a
close conceptual analogy between these two problems. To
further explore this analogy for our present problem would
lead us beyond our present elementary approach.

Finally some remarks on the relation of least-squares
collocation to conventional methods using formulas such as
Stokes' and Vening Meinesz' integrals are in order. We shall

illustrate the problems involved by two examples.
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Let first all X, be errorless measurements of gravity
anomalies Ag at various points at sea level, and use (6-21)
to compute Ag at every point at sea level; this is, then,

a pure case of least-squares prediction of gravity in the
usual sense. From the continuous global Ag-field obtained

in this way, compute the anomalous potential T at some
point at sea level by Stokes' formula. Alternatively, compute
T directly from the measured values X,
with the appropriate covariances CP . The resulting value

using again (6-21)

for T will be the same in both cases because of the in-
variance with respect to linear transformationsof the result
(Stokes' formula expresses T as a linear (integral) trans-—
formation of Ag .)

Let now the coverage of the geoid by gravity observations
X, become denser and denser. Then the interpolz}gngg—field
tends to the true Ag-field, and the value of T obtained by
applying Stokes' formula to the true Ag-field. Thus the
classical approach may be considered as an appropriately de-
fined limiting case of least-squares collocation.

As a second example, consider the problem of Bjerhammar
just mentioned: the gravity anomalies are given at discrete
points of the topographic earth's surface. As a limiting
case, for continuous coverage of the whole earth's surface
by gravity measurements, this problem reduces to the "prob-
lem of Molodensky", the well-known boundary-value problem
of physical geodesy (HM, p. 291). The Bjerhammar problem
may again be solved by (6-21) (Moritz, 1970a, sec. 5); if
the gravity coverage becomes denser and denser, this solu-
tion tends to a solution of Molodensky's problem. As, under
certain assumptions, the solution of Molodensky's problem
is unique, this limiting solution will coincide with the
usual solution of Molodensky's problem by means of integral
formulas.
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These and similar considerations show that the usual
methods of physical geodesy can, in fact, be considered as
limiting cases of least-squares collocation for idealized
data distributions.

At first sight it seems to be difficult to believe that
the simple matrix formula (6-20) is equivalent to compli-
cated procedures such as the solution of Molodensky's prob-
lem, equivalent in the sense just outlined. The reason is
that all covariances forming the vector CP are derived,
in a relatively simple way, from a covariance function
K(P,Q) which may be selected to have a relatively simple
expression. In fact, starting from the covariance function
of the potential, the covariances of all relevant quanti-
ties such as gravity anomalies,deflections of the vertical,
or higher gradients are derived analytically by differ-
entiations, which are much simpler to perform than the
(often iterative) numerical integral operations occuming
in the usual procedures of physical geodesy.

By taking for the covariance function a function that
can be analytically continued down to sea level, diffi-
culties in the analytical downward continuation will not
arise; such difficulties beset conventional reduction
procedures.

These considerations will makg it clear why least-
sqguares collocation is at the saméfgtgeneralization of
classical procedures, so to speak with built-in inter-
polation and vertical reduction, and a conceptual and
computational simplification--the latter at least as
long as the occurring matrices can be handled by the com-

puter.
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/. COVARIANCES

In this section we shall consider the basic statis-
tical prerequisites of the method considered in the pre-
ceding section, particularly the covariances which have
been seen to play a central role in this method.

First we must define the average M . For local
applications, it is an average over the area under con-
sideration. Take, for instance, a plane rectangular area
of sides 2a and 2b . Referring this area to axes ¢
and n , as we did in sec. 5 (Fig. 5-2), we may write for
the average of the gravity anomaly Ag :

a b
M{sg} = op J J Ag (g,n)dedn . (7-1)
E=~a n=-b

For global applications, with which we are mainly
concerned, the average must be extended over the whole

earth, that is, over the unit sphere o

M{ag} = f; JIAgdo
g
27 il
= Z% J J Ag(6,A)sinedfdxr , (7-2)
A=o f=o0
where 6 (polar distance) and ) (longitude) are spher-

ical coordinates.
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The basic condition

M{s} = 0 (7-3)

(cf. (2-4)) is thus equivalent to the absence of a zero-
degree term in the spherical-harmonic expansion of the
anomalous gravity field (HM, p.252).

The Covariance Function of the Gravity Anomaly. -

The mathematical properties of the covariance function
are discussed at length in HM, secs. 7-2 and 7-3. We
shall first recall, without derivation, some of these
properties which are particularly relevant for our pres-
ent purpose.

The covariance of the gravity anomalies at two points
P and ¢Q ,

c(p,Q) = cov(AgP,AgQ) = M{AgPAgQ} , (7-4)

is a function of the spherical distance 1y between P
and Q

C(P,Q) = C(y) . (7-5)

This function C(y) 1is the covariance function of the

gravity anomaly. The average M is now defined as follows:

27 m 2T

M{AgPAgQ} = %‘z J J ng(e,A)Ag(e',A') .

A=0 6=o0 ao=o0

» sinédedirda . (7-6)
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Here (6,2) denote the spherical coordinates of the point
P, and (6',2') denote those of Q ; « represents the
azimuth from P to Q (cf. Figure 7-2 in HM, p. 257);
the coordinates (6',)A') are related to ¢y and «o
through

cosy cosbcoss' + sinesing'cos(A'-=-A) ,
(7-7)

sing'sin(Ar'=2)

tana

sinpcoss' - cos6sine'cos(Aa'-21)

and ¢ 1is constant with respect to the integration.

The average M in (7-6) differs from the average
in (7-2) by the fact that in (7-6) one also averages over
the azimuth o to obtain dependence only on the spherical
distance ¢ . However, M as in (7-6) is in fact the gen-
eral definition which includes the average in (7-2) as a

special case: we have

2T il 2m

__LJ f JAg(e,A)dedAda=

A=o0 O6=0 a=o0

2w 2T 0w
- 1 1 -
= J da= J J Ag (e ,A)dedr =
=0 A=0o B=0
= L ||agdo (7-8)
4 !
o}

identical to (7-2), since Ag(e,A) does not depend on a
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In the same way we see that the average M in (7-1)
is a special case of the general definition as in (5-16)
(we now have r = 0 as P and P' coincide).

It is obvious that the average over the sphere,

2T m

1 1 . .
Z?fjdo = - J J sinededx , (7-9a)

o A=o0 6=o0

expresses homogeneity, whereas the average with respect
to a ,

27
L J da , (7-9b)
a=0

expresses isotropy.

The function C(y) may be expanded into a series

of Legendre polynomials (zonal spherical harmonics):

C(y) =

n

Il o~18

ocnPn(cosw) : (7-10)

The coefficients c ~are given by
2 T =
c = M{ag’l} = ) (@ + b7 , (7-11)

where Agn is the Laplace harmonic of degree n in the
expansion of Ag in spherical harmonics, and Enm and

bnm are the fully normalized harmonic coefficients in

this expansion:



86

Ag(o,A) = [ Ag_(8,}) (7-12)
n=o
with
n - R d —
Agn(e,x) = 3 (anmcosmA + bnm51nmA)an(cosB) ,
m=o (7-13)

where ﬁnm(cose) is a fully normalized Legendre function
(cf. HM, sec. 1-14).

From (7-11) it follows that all c_ must be positive,
This ensures that the covariance function is positive de-
finite as it should be; cf. (Krarup, 1969, p. 23).

The Covariance Function of the Potential. - The co-

variance function of the anomalous potential T will be
denoted by K(P,Q) . It is also a function only of s or
v 1if C(P,Q) 1is, because Ag and T have the same
properties of homogeneity and isotropy. Thus there are

completely analogous formulas:

K(P,Q) = cov(T, T, = M{T T } , (7-14)
K(P,Q) = K(y) , (7-15)
K(p) = ) k_P_(cosy) , (7-16)
n=o

2 v =2 =2
k =M@ }= mZO(Amm + B ) (7-17)
T(6,)) = ] T (8,)) , (7-18)

n=o n

n - — -
T (8,)) = ) (A__cosmi + B__sinmi)P__(cos6).(7-19)
n - nm nm nm

m=o0
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The relation between the coefficients krl of K(y)
and c. of C(y) 1is extremely simple. According to HM,

p- 97 we have

T = —Ag . (7-20)

Thus by (7-17),

2
k= M{T2} = —R— M{ag?}, (7-21)
n n 2 n
(n-1)
and by (7-11)
2
Kk = L_z c (7-22)
n (n-1) n

which is the desired relation.

The covariance function of the anomalous potential
is conceptually more fundamental and more convenient for
derivative analytical computations than the covariance
function of the gravity anomaly. The latter covariance
function, however, can be determined more directly since
the gravity anomaly is accessible to observation, rather
than the potential. Thus it is convenient to determine
C(P,Q) first and to derive K(P,Q) from it by expres-
sions such as (7-22) or by the general formulas for co-
variance propagation to be considered below.

Extension into Space. - So far we have considered

points P,Q on the sphere only. To extend the definition
of K(P,Q) to points outside the sphere, recall that the
anomalous potential T is harmonic outside the sphere,

that is, that it satisfies Laplace's equation:

AT = O . (7-23)
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We now go back to the definition (7-14), where now P and

Q are points in space:

K(P,Q) = M{TPTQ} . (7-24)

Consider Q as fixed, so that K(P,Q) is a function of

P , and apply the Laplace operator (7-23):

aPK(P,Q) = M{APTPTQ} = 0 ; (7-25a)

we have written AP to indicate that A 1is applied to the
point P . In the same way,

AQK(P,Q) = M{TPA TQ} = 0 . (7-25b)

Q

Thus the covariance function K(P,Q) in space is a harmonic
function both with respect to P and with respect to Q
Now it is well known that the nth-degree spherical har-

monic of a function harmonic outside a sphere depends on
-(n+1)

the radius vector r through «r . Thus K(P,Q) in
space must have the form
_ T constants
K(P,Q) = ) n+l_n+1 Pn(cosw)
. n=o0 ¥ r
P Q
For rP = rQ = R , on the surface on the sphere, this ex-

pression must reduce to (7-16). This determines the con-
stants. The result is

- 2 n+1
K(P,Q) = ] kn< Rr > P (cosy) , (7-26)
=0
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which expresses the spatial covariance function of the anom-

alous potential.

The extension of the covariance function C(P,Q) of
the gravity anomalies follows readily from the fact that
rAg 1is a harmonic function in space (HM, p. 90). Thus the

function

rPrQC(P,Q) = M{rPAgP-rQAgQ}

is the covariance function of a harmonic function and must,
therefore, again be harmonic both with respect to P and

with respect to Q . This gives

constants
n+l_n+1
n=or

P Q

rPrQC(P,Q) = Pn(cosw) ’

It~ 8

so that, on determining the constants by means of (7-10),

n+2

R2
cn<r - ) P (cosvy) . (7-27)
o P Q n

c(p,Q) =
n

Ne~—38

This is the spatial covariance function of the gravity

anomaly.

Practical Choice of the Covariance Function. - The

covariance functions C(P,Q) and K(P,Q) being related
through (7-22), one function is determined by the other.
The most obvious way of getting values for the co-
efficients c or kn is using (7-17) with spherical
harmonic coefficients determined from satellite obser-
vations or from a combination of satellite and gravimetric

data. This is possible for, say, n = 20 ; the higher cn
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or kn may be set equal to zero. The resulting covariance
function will, however, be too smooth for most practical
purposes as it contains only a limited number of spherical
harmonics.

A better way of determining C(y) is from observed
gravity anomalies, using (7-6). This has first been done
by Kaula (1959); see also HM, p. 254. To get in this way
a representative covariance function, it should be deter-
mined from samples of gravity anomalies that are distrib-
uted as evenly as possible over the whole earth and over
regions of different topography.

To make such an empirical function sufficiently well-
defined for our present purposes, it is necessary to fit
an analytical expression to the empirically obtained
values.

In fact, the covariance matrices C to be inverted
in formulas such as (6-20) may be rather large and un-
stable, so that their elements must be computed with high
numerical precision. Generally speaking it is extremely

important that all computations be internally consistent,

based on the chosen covariance function.

On the other hand, the choice of the covariance
function itself is less critical (provided it is positive
definite) because the results of least-squares collocation
are not very sensitive with respect to the covariance
function chosen, in the same way as the results of ordi-
nary least-squares adjustment do not depend strongly on
the weights,.

Therefore, even simple analytical expressions may be
of use. Krarup (1969, p. 62) suggests the function
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21
2 2
Y. r Y r
K(P,Q) = B <—339) - 222 cosy + 1 (7-28)
r r
O

o

with suitably chosen constants B and r

. If r. is
slightly smaller than R

, than such a function approx-

imates, say, Kaula's covariance function locally well.
As Krarup has also remarked, one might combine

satellite harmonics and empirical gravity anomaly co-

variances to fit them to an expression of the form

1
N n+l rr 2 oy )
k(2,0 = ) An(rRr )amw (_2_9> - 2720 cony + 1
n=o P Q rO o

(7-29)
with suitable coefficients An , B, and r
Another possibility is to start from the spherical-
harmonic expansion (7-26) and look for a function with
simple coefficients kn

For example, we may take kO = k1 = k2 = 0 and

S S—
Ky = =D (m-2y for n

v

3. (7-30)

With these coefficients, the series (7-26) may be summed
so that a closed expression is obtained:

2 3
r
K(P,Q) = A - ; [?2(cosw)(l + lné) + %sinZQ] -
PO
2 2
ro 2
- A p— coswlnﬁ +
P Q
r2 r2
+ A 2 N 3 2 cosy - 1 (7-31)
r r 2 r r 4
P Q P Q
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where

)cosw , (7-32)

Z
]
’—l
+
=
|
T
[at
[a]
H{O N
~—
Q
(0]
n
=

and A and r. are suitable constants. According to
Lauritzen (1971), to whom this function is due, it fits

excellently global gravity and satellite data, with

0.9945 R ,

o]
I

(7-33)
A

7.8488 ,

R denoting again a mean radius of the earth.

A remark on the gravity anomalies to be used in
these computations is in order. As we are always con-
cerned with the external gravity field, we are to use un-
reduced gravity anomalies, deflections of the vertical,
etc., referring to the surface of the earth in the sense
of Molodensky; cf. HM, chapter 8. This means that the
covariance function C(P,Q) is to be computed from free-

air anomalies.

In principle, one could also use appropriately re-
duced gravity anomalies (in the sense of HM, secs. 8-2

or 8-11). This has even the advantage that some effects
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of topography, which may have a quasisystematic character,
are eliminated, especially when using isostatic anomalies
(for global applications); as a matter of fact, the in-
direct effect has to be taken intoaccount afterwards. In
practical applications it must be examined whether the
gain in accuracy justifies the enormous increase of com-
putational work caused by gravity reduction.

Whereas this may appear doubtful in global applications,
the use of Bouguer anomalies for local interpolation of
gravity is well established. In this case, as in all local
applications, it is particularly important that the gravity
anomalies be appropriately centered by subtracting the
mean anomaly for the area under consideration; this is
necessary in order to have M{Ag} = O locally; then the
covariance function is to be computed from these locally
centered Bouguer anomalies.

Related to the use of Bouguer anomalies is the con-
sideration of correlation with elevation;cf. HM, sec. 7-10.
It would also be possible to include the (average local)
rock density p as a parameter to be estimated by (6-19);
other possibilities of using (6-19) and (6-20) for grav-
ity interpolation, by splitting off "quasisystematic"
effects, are discussed by Lauer (1971).

For global problems, one must use the same covariance
function for the whole earth. In order to exclude in this
case, as much as possible, systematic effects from the
signal field, the spherical harmonics, not only of degree
zero because of (7-3), but also of degrees one and two
should be missing. This is possible by properly selecting
the parameters of the reference ellipsoid (GM and a for
degree zero and J2 for degree two) and its position
(geocentric, for degree one); cf. HM, sec. 5-11. Thus, in

the above formulas, we should have
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k =k, =k, =¢c =c¢, =c, =0 ; (7-34)

this condition is satisfied by the function (7-31).
The spherical theory underlying the definitions
(7-2) and (7-6) and the developments based on them, cor-

respond to the spherical approximation in which the

flattening of the reference ellipsoid is neglected; cf.
HM, pp. 87-88. This approximation seems to be sufficient
in practically all cases.

For local problems, the sphere may even be formally
replaced by a plane, and corresponding plane analytical
expressions may be used for the covariance function; cf.
(Moritz, 1970a, secs. 4 and 7; 1971, sec. 5).

Covariances of Derived Quantities. - All quantities

of the anomalous gravity field can be derived from the
anomalous potential T by linear operations such as

differentiation or multiplication by a factor. For in-
stance we have for the geoidal height N (HM, p. 85):

N=< (7-35)
for the gravity anomaly aAg (HM, p. 89):
Ag = = —= - =T, (7-36)

and for the components £t and n of the deflection of
the vertical (HM, p. 112):

)

=
ot
Q
=

E:

3
|

(7-37)

>
-

~ GRsing 3

[o3]
D
-

L
GR

where G 1is mean gravity and R 1is a mean earth radius.
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Instead of using T as the basic function from which
all other quantities are to be derived, we might also use
Ag for the same purpose. For instance, N is then derived
from Ag by Stokes' formula:

N = Z%é JJAgS(w)dc (7-38)
g

(HM, p. 94).

This formula may be written in the form

N, = o (7-38")
P 417G jJAgAS(dJPA)ch ’

o

which makes explicit the computation point P and the
variable point A carrying the surface element do . Eq.
(7-38') may be abbreviated as

(7-39)

where LPA is the "linear operator" acting on Ag to
transform it into N ; in the present case, LPA simply
denotes the application of Stokes' integral.

After these preliminaries, let us now consider the
computation of the covariances of these derived gquantities,
starting from a basic covariance function. To fix our
ideas, let T be the basic field function, to be denoted
by £ , and let its covariance K(P,Q) be the basic co-

variance function.
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Let now u and v be two quantities derived from £
by

o
il
c
Hh
<
I
<

P PA A 0 QBfB : (7-40)

Here UPA and VQB symbolize the linear operations by
which u and v are derived from £ ; for example, in
(7-39) we have UPA = LPA y £ = Ag

By definition, the covariance between u and v is

its average product

cov(uP,vQ) = M{uPVQ} , (7-41)

since, as all signal quantities, u and v are supposed

centered: M{u} = M{v} = O . Substituting (7-40) we have

M{u_ f Vv _f }

M{uPVQ} PA A QB B

UPAVQBM{fAfB} (7-42)

(as to the interchangeability of M and the operators

U and V cf. sec. 8), so that by (7-14) and (7-41) we
obtain

cov(uP,vQ) = UPAVQBK(A,B) (7-43)

as the desired result.
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This equation may be called law of propagation of co-

variances because it is in principle nothing but an exten-
sion of the familiar law of error propagation, as general-
ized in (Moritz, 1961).

For applications, the law of covariance propagation is
most convenientlyexpressed verbally as follows:

To the covariance function K(A,B) , considered as a
function of B , apply the operation that determines the
quantity v from T . To the result, considered as a func-
tion of A , apply the operation that determines the quan-
tity u from T . The latter result is the covariance bet-
ween u and Vv

The meaning of this procedure will be illustrated by
an example. Starting from K(A,B) , compute the covariance
between Ag at a point P and N at a point OQ ,

cov(AgP,NQ) .
By (7-35) and (7-36) we have

- = _[3T\ _ 2 -
Ag_ =U_ T = (ar) 2 T , (7-44a)
P
T r (7-44b)

so that now A =P , B = Q

Let us now apply our verbal rule for covariance prop-
agation: To the covariance function K(A,B) = K(P,Q) ,
considered as a function of B = Q , apply the operation
that determines N from T . By (7-44b) this is simply
multiplication by 1/G , so that the result is

1
aK(PIQ) .
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To this quantity, considered as a function of A = P ,
apply the operation that determines Ag from T . By
(7-44a) we find

9

- F(éK(P,Q)) - %(éK(P,Q)) ,
P

so that the result is

= - 1 3K(P,Q _ 2 -
COV(AgP,NQ) = G T:— GRK(P,Q) . (7-45)

In this way we can derive all signal covariances
from K(P,Q) . It is evident that, using Ag as the basic
field function £ , one can also derive all signal co-
variances from C(P,Q) , the covariance function of the
gravity anomaly. Many other examples will be found in
(Moritz, 1970a, 1971).

This gives all elements of the matrices C and Cp *
If there are no measuring errors, then C=cC , SO that
we are ready to apply the collocation formulas such as
(6-19) and (6-20) and the corresponding accuracy eval-
uations.

If there are measuring errors uncorrelated with the

signal field, then we have again
C=C+D,

so that the total covariance matrix C is found by
adding the signal covariance matrix C and the error co-
variance matrix D . The matrix C remains unchanged as

P
a pure signal covariance matrix.
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The required lack of correlation between noise and
signal may usually be assumed to hold for direct measure-
ments. It will no longer hold if the measurements have
already been subjected to a preliminary least-squares
collocation such as least~-squares filtering; in this case
the needed covariances may be obtained computationally;
cf. (Moritz, 1969, sections 3, 4, and 9).
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8, THE STATISTICAL BACKGROUND

The final three sections of this report deal with a
closer study of statistical questions related to least-
squares estimation of the anomalous gravity field. They
are thus largely theoretical and may be omitted by read-
ers interested only in practical applications.

The anomalous gravity field (the Ag-field or also

the T-field , etc.) is often considered as a stochastic

process on a sphere. The topic of stochastic processes

is highly developed and widely applied and has a strong
intuitive appeal (cf. Papoulis, 1965). On the other hand,
their rigorous mathematical theory represents the most
advanced and difficult branch of probability theory (cf.
Doob, 1953).

Thus, while stochastic processes provide a convenient
terminology and suggest the application of standard tech-
niques to our present problem, they are less satisfactory
as a logical basis for least-squares collocation: why
should we put this simple theory on such a complex math-
ematical foundation?

This is not really necessary, however. In fact, more
adequate, as a logical foundation for our present problem,

than the theory of probability is the covariance analysis

of individual functions, or "generalized harmonic analysis"”

in the terminology of Norbert Wiener (1930), who was the
first to use this concept in a systematic and rigorous way;
see also (Doob, 1949, sec. 1).
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Primarily, probability does not enter at all into the
consideration of the gravity field. In probability theory,
we always have an ensemble of many possible realizations
of the same quantity, but here we have only one anomalous
gravity field. From the point of view of logical economy
(the well-known "Occam's razor") it is thus preferable to
develop the theory consistently in terms of this individual
field, avoiding the introduction of a fictitions ensemble.
This is achieved by using the covariance analysis of in-
dividual functions mentioned above, and this is what we
did in the preceding section (and also, e.g., in sec. 5).

In fact, the averages M in (7-2) and (7-6) are not
ensemble averages but spherical averages formed with one
individual field function. (In time series terminology,
they are not "phase averages" but "time averages".)

Thus all signal covariances are defined in a com-
pletely non-probabilistic way. Disregarding measuring
errors, the same is true for the standard error of the
predicted quantities. This is best seen in the well-known
case of gravity prediction. Following the presentation in
(Heiskanen and Moritz, 1967, sec. 7-6), we see that M in
the expression (7-55), loc. cit., is the spherical average
of one function ei which is defined on the sphere and re-
presents the square of the individual prediction error at

any point. The same holds for the error covariance

g o

Now, this definition of the average M is precizgly
what we need: we have only one gravity field but we are
interested in the average accuracy over a certain area, or
over the whole earth.

Derived Covariances. - If ourdefinitionof M as a

spherical average is to be meaningful, it must be consistent
with the law of covariance propagation as considered in the

preceding section.
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The issue at stake is the interchangeability of the
average M with the operators U and V in (7-42). If
M 1is considered as an ensemble average, then there is
obviously no problem since M acts on the ensemble, where-
as U and V act on the individual function. With the
present definition of M as an individual spherical aver-
age, this interchangeability is not immediately obvious
because now M , U and V act on the individual function.

The subsequent investigation will show that our pre-
sent definition of M 1is indeed consistent with covariance
propagation, but also that the problem is not entirely
elementary.

Radial Derivatives. - As we have seen, all gquantities

of interest to physical geodesy are derived from the anom-

alous potential T essentially by partial differentiations.
Consider, first, the radical derivative 3T/3r . Let

us write again £ for the basic function (in the present

case, T ) and K(P,Q) for its covariance function.

K(P,Q) = M{fPfQ} . (8-1)

The validity of the covariance propagation law is equiv-
alent to the possibility of interchanging radial differ-
entiation a/arP (or a/arQ ) with averaging M . Thus
there should be

of
3K (P,Q) _ 9 B P ~
——3?;—— = SE;M{fPfQ} = M{§;¥ fQ} ’ (8-2)

and similarly for B/arQ .
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The function £ , being nothing else than the anomalous
potential T , is a harmonic function in space. Let the
point P have the spherical coordinates (e,A,rP) , and
similarly (8',A',rQ) for Q . Then, in agreement with

(7-6) we have

2m 0w 2
1
r = f(e,x, LAy °
K(P,Q) a3 J J f (6, A rP)f(e A rQ)

A=o0 6=0 a=o0
*singdgdida . (8-3)

(In fact, (7-26) follows from (8-3) in the same way as
(7-10) follows from (7-6); cf. (Heiskanen and Moritz, 1967,
sec. 7-3).)

From the representation (8-3), however, it follows
directly that (8-2) holds, since r, enters into the def-
inite integral (8-3) as a parameter, so that the rule for
differentiating definite integrals with respect to a pa-
rameter can be applied. The same result obviously holds
for a/arQ .

Now also the interchangeability for linear combinations
of £ and 23f/3%r with constant coefficients follows; for
instance, for the linear operation (7-44a) that transforms
T into Ag

Horizontal Derivatives. - This case is already less

trivial. It is, however, significant indeed since, as (7-37)
shows, the components of the deflection of the vertical are
basically horizontal derivatives of T (derivatives along

the surface of a sphere).
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As a first step it will be convenient to introduce
longitudinal and transversal horizontal derivatives. The
longitudinal derivative, 3/3% , is taken along the great
circle connecting P and Q ; the transversal derivative,
3/9m , is taken at right angles to this line; both points,

P and Q , are now supposed to lie on the same sphere. In

Pole

P(8,2)

Figure 8-1

Fig. 8-1, the longitudinal and transversal directions at
P are denoted by £ and m ; at Q , by &' and m' .

For simplicity, we put the radius of the sphere R =1

Again we have

K(P,Q) = M{f £}, (8-4)
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but now, since P and Q@ refer to the same sphere

r, = rQ =1 , we may simplify (8-3) as
27 07 27
K(P,Q) = —15 J J J f(e,A)E(e',2") -
8w

A=0 6=0 a=o0
-singdedrda . (8-5)
As usual,
cosy = cosgcosd' + sindsiné'cos(r'-r), (8-6)
and ¢ 1is constant with respect to the integration.

For the validity of the covariance propagation law
we should have, corresponding to (8-2),

of
8k . & = M{—2 -
i alM{fPfQ} M{ v fQ} ’ (8~7a)
8K = 2.m{f f } = M{f i-f-S?} (8-7b)
28! oL P Q P aL*’ !

of
3K _ 3 3 p B
am amM{fPfQ} = Migo fQ} ! (8=7c)

of

%%T = EﬁﬁM{fpr} = M{fp am'} : (8-7d)

To prove (8-7b), shift Q along the great circle
PQ to the point Q1 such that Q01 = ¢ (Fig. 8-1).
Then
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27 il 27

K(P,Q,) = — J J J f(e,A)l:f(e',A') v 2 e}-
8 A=0 0=0 a=o0

*sinededrda

to first order in e . Subtracting (8-5), dividing by ¢

and letting € +- 0o we find

oK
!

K(P,Q,)~-K(P,Q)
. 1
= lim
€=

o €

2T il 2m

= L J J Jf(e,x)i"—f—.(e',x'>sinededxda,

N

A=0 f6=0 a=o0

which is identical to (8-7b).
To prove (8-7d), shift Q 1in a transversal direction
to the point Q2 such that QQ2 = ¢ (Fig. 8-1). Then

2T T 2w
J J J f(e,A)[f(e',A') + %ﬁT e]sinededa ,

A=0 86=0 a=o0

K(P,Q) = =
8w

again to first order in ¢ . Subtracting (8-5), dividing by

e and letting € - 0 we find

K(PIQ2) -K(PIQ)

' - il s
2T T 27
= 1 £(6,0) L (o', 2") sinededrd
—82 0, am.e,)smee o
m™

A=0 0=0 a=o0

identical to (8-7d).
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To prove (8-7a) and (8-7c), it is sufficient to remark
that we may interchange the role of P and Q as long as

(8-6) is satisfied. Thus (8-5) may also be written as

27 m 27

K(P,Q)=—l—2-J J Jf(e,x)f(e',x')-

87

A'=o 0'=0 a'=o0o
+sing'de'dr'de' . (8-8)

Now we can apply to the point P the same reasoning as we
just did to Q , to obtain (8-7a) and (8-7c).

In this way we see that horizontal derivatives in a
longitudinal and a transversal direction can be inter-
changed with the averaging symbolized by Mlg above we
have seen that this is also true for the radial derivatives.
In the same way we can prove interchangeability also for
the higher derivatives along these three orthogonal direc-
tions &, m, r

Since any (first or higher) derivative is a linear
combination of the derivatives along ¢, m, r (cf. eq.
(8-12) below), we see that M can be interchanged with any
operations by which geodetically significant quantities are
derived from the anomalous potential T , so that our def-
inition of M as a spherical average is indeed consistent
with the law of covariance propagation. This is what we
were to show.

Longitudinal and Transversal Covariances. - The co-

variances for derivatives along longitudinal and trans-

versal directions have a particularly simple form. We have

S f S f 2
_ P Q). _9° K
Cog (BrQ) = Cov(az ' az'> 5208" '

1)
The foregoing considerations are readily seen to be valid

even if rQ ¥ rP .
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of of ) 2
B P ol _ 3°K
Cmm(P’Q) - cov(am f 3m'/ ~ dmdm' '’
of of 2
Com (FrQ) C°V<az ' m'/ T From' ! (8-9)
of of 2
) p Q)_aK
Chne (B/Q) = cov(am r 32"/ T 3moag’
First we calculate, using (8-6),
3K _ dK 3y _ K'(y) ., Vo . -
56 _ dy 26 siny (sinbcoss cosesing'cos(A'=2)) ,
3K _ dK 3y _ K'(¥) __. i ' o '
5% ~ dy 3 _ siny (-sinesine'sin(rx'=-x)) ,
since, for r, = rQ =1, K is a function only of vy ,
K(P,Q) = K(y) ; XK'(y) denotes dK/3y . Continuing in

the same way we find 32K/3936' ’ BZK/BABA' ,
32K/aeax' , and azx/axae' , which is easy but leads to
lengthy formulas which will not be reproduced here. Fi-

nally we assign to P and Q the following spherical

A=0
l/A\
ey 171
Q
y
L
m
P

Figure 8-2
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coordinates:
P(6=6, A=0) , Q(e'=6-¢y, A'=0) ,
corresponding to Fig. 8-2, so that the points P and Q

lie on the same meridian A = O . For this special posi-

tion of P and Q we obtain simply

3%k ,
56307 — "KW
32K K' (4)
= - ; ; '
EEEN siny Stnesing’ .
2°K__ 9°K_ _
3661 _ 9196 '

with K" (y) = a’k/dy>
For this position of P and Q we have, by Fig. 8-2,

82K - 32K

2284" 3062306

2K _ 1 22K

dmam' singsing' d9Ax9A' 7
since d2 = -d8 , dm = sindd) ; similar expressions hold
for azK/azam' and 82K/ama£' . We thus find for the ex-

pressions (8-9)

K, () = K" () ,

=
=
[

tj

' (8-10)

=

=
1l
=

mz(w) =0 ,

so that longitudinal and transversal derivatives are un-

correlated.
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Because of the rotational symmetry, this result is
valid for an arbitrary position of P and Q , indepen-
dent of the special position used for the purpose of de-
riving it.

Derivatives along the Meridian and Parallel., - We

may write (7-37) as

(8-11)

3

I

|
Q-
<15

3/9x denoting the derivative along the meridian, and
3/3y denoting the derivative along the parallel, cf.
Fig. 8-1. The deflection components &£ and n are thus
essentially derivatives of T along the meridian and
the parallel.

With the notations of Fig. 8-1 we have

8f _ af cosa - ot sin
3x 9% ¢ 7 3m o
(8-12)
3 - % ging + ot cosa
3y 3% 7 m ’
or briefly,
f = f cosa - £ sina ,
X 2 m
(8-13)
f = f sina + £ cosa ,
y 2 m
and similarly at Q ,
f' = f'cosa' - f'sina' ,
X 2 m
(8-14)
f' =

f'sina' + f'cosa' .
2 m
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Thus we compute

£ f!

X X

(f cosa - £ sina) (f'cosa' - f'sina')
2 m 2 m

f f!cosacosa' + £ f'sinasina' -
L7L m m
- £ f!cosasina' - f f'!'sinacosa!
27 m m £
Forming the average M we obtain the covariance

K = M{f £'} = cov (a—f) , if—,) , (8-15)
XX X X X P X 0

and similarly for the other covariances. The result is

= U ] : '
Kxx(w,a) Kll(w)COSaCOSa + Kmm(w)31na31na ,
= ; ' . 3 '
ny(w,a) Kll(w)cosa31na Kmm(w)31nacosa ,
(8-16)
- : | : ]
ny(w,a) Kzz(w)31nac05a Kmm(w)c05a51na ,
= i i 1 '
Kyy(w,u) Kll(w)51na51na + Kmm(w)cosacosa
These covariances depend on ¢ and o ( o' is a
function of o and ¢ ), whereas the covariances Kzl
and Kmm depend only on ¢ and Kﬂm and KmJl are even

zero. This shows again the significance of the longitudinal
and transversal covariances.
One might wonder how a dependence on o is at all

possible if the average is defined as in (7-6),
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2w m 27

M{-} = - J J f (+)sinbdedida , (8-17)

8r

[\

A=o0 0=0 oa=o0

since there is averaging over o . The reason is that the
average is to be interpreted such that if Q moves
along a circle of radius ¢ with P as its center, then
the xy-system is understood to rotate in such a way that
the angle o between the x axis and the arc PQ remains
always constant. This is then the angle o in (8-16),
which is different from the integration variable « in
(8-17) .

Case of a Plane. - The plane may be considered as a

limiting case of a sphere whose radius becomes infinite.
For the plane we obviously have a' = a , and instead of
the spherical distance ¢ we take the plane distance r ,
so that (8-16) reduces to

_ 2 .2
Kxx(r,a) = KZl(r)cos a + Kmm(r)51n a
ny(r,a) = [Kgg(r) - Kmm(r)]SlnaCOSa = ny(r,u) ,
(8-18)
.2 2
Kyy(r,a) = KZR(r)51n a + Kmm(r)cos a

which provides the covariance for the components of the
plane vector

> o f o f
v = (3; ’ ——) = grad f , (8-19)

which is nothing else than the gradient vector of the

function £



113

Even for a general vector field in the plane (which
is not necessarily a gradient field), the covariances
have the form (8-18), provided the vector field is homog-
eneous and isotropic (Grafarend, 197la,p,c).

If the longitudinal and the transversal covariances
are equal, then (8-18) reduces to

K (r) = K (r) ,
XX YY

(8-20)

K (r) K (r) =0
Xy yX

This simple case has been used in sec. 5, cf. egs. (5-22)
and (5-23); here the average M was understood in such a
way that the xy-system did not rotate during the process

of averaging.
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9. MEASURING ERRORS: STOCHASTIC

PROCESS INTERPRETATION

The statistical interpretation as put forward in the
preceding section is particularly simple when no measuring
errors are present. In this case, the average M was con-
sidered, not as an ensemble average, but as an average of
individual functions over the sphere, in view of the fact
that there is only one individual gravity field.

Incorporation of Measuring Errors. - It is not dif-

ficult also to incorporate measuring errors into this model.
As far as measuring errors (the noise n ) are concerned,
the average M can only be interpreted as an ensemble
average, a mathematical expectation in the usual probabi-
listic sense, since repeated measurements of the same quan-
tity s (which as such remains the same) will be affected
by different measuring errors.

Thus, as far as the signal is concerned, the proper
interpretation is the average over the sphere (8-17), now
to be denoted by M1

2 T 27

M {-} = J [ J (+)sind dedrda , (9-1)

1 2
8m A=0 B=0 0=o0

whereas as far as the noise is concerned, the proper inter-
pretation is the mathematical expectation (the ensemble aver-
age), to be denoted by M2
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Now, the natural way to define the average M 1in
the general case (for both signal and noise) is a com-
bination of M1 and M2 , symbolically

M = M1M2 . (9-2)

This means that the average of a quantity g 1is formed

as

Miq) = M {M {q}} , (9-3)

by first forming the ensemble average, M2 , and then

the average over the sphere, M1

In fact, if g 1is either a signal s or a mea-
suring error n , the average M reduces to its proper
meaning, M1 or M2 ; respectively. We have

Mz{s} =s,

since s remains the same throughout repeated measure-
ments, so that by (9-3),

M{s}

M1{M2{S}} Ml{s} ;

and

M{n}

Ml{Mz{n}} MZ{n} ’

since Mz{n} , not depending on the gravity field, is un-
affected by the averaging M1 if we assume homogeneity
and isotropy (invariance with respect to rotations of the
sphere) . Thus
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M{s} = M1{S} , M{n} = Mz{n} , (9-4)

as it should be.

If the guantity g to be averaged is the product
of a function ql(s) that depends only on the signal
s and a function qz(n) that depends only on the

noise n ,
q = ql(S)qz(n) ’ (9-5)

then the definition (9-3) gives in the same way

M{q} = M {M {q, (s)q,(n)}} =
= Ml{q1(s)M2{q2(n)}} =
= M2{q2(n)}M1{q1(s)}
Thus
M{qg} = M1{q1(5)}M2{q2(n)} (9-6)

is simply the product of the two averages Ml{ql(s)}
and M2{q2(n)}
It is also evident that M 1is linear:

1

(with constant coefficients c1 and c, ), in view

of the linearity of both M1 and M2 .
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Let us now verify that the present definition of

M 1is consistent with the development in secs. 2 and 3.
First, (2-5) is satisfied if (2-4) are:
M{z} = M{s' + n} = M{s'} + M{n}
= Ml{s'} + M2{n} =0,
in view of (2-4) and (9-4).
Consider now the covariances. We have
c Vet o M{S'S'T} = M1{5|S|T} = C ,
c _=M{nn"} = M_{nn"} =D ,
nn 2
C _ =M{ns"} = M_{nIM {s"} = 0 ,
ns 2 1
c = M{sn"} = M {sIM.{n"} = 0 ,
sn 1 2
as usual, and also
C,, = M{zz "} = M{(s'+n) (s'T+n")} =
= M{s's'T + ns'T + s'nT + nnT} =C+ D
C = M{sz”} = M{ss'T + snT} = C , = cov(s,s')
SX SSs
C = M{zs"} = M{s's” + ns"} = C , = cov(s',s)
XS S’ s

everything

as in sec.

2.

r

r
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Therefore we can also apply the average M , as de-
fined by (9-2) or (9-3), to (3-16) and (3-17) to obtain
(3-19) and (3-20), and everything proceeds as usual.

This shows that our present definition of M is
indeed consistent with the developments in secs. 2 and 3.

Interpretation as a Stochastic Process. - Although

we believe that the interpretation of the statistical
background as given above and in the preceding section
is the most natural and logically the simplest, it is
often useful and convenient to use stochastic process
terminology and results. It is thus desirable to find
an interpretation of the anomalous gravity field as a
stochastic process.

Recently Lauritzen (1971) proved an important neg-
ative result in this direction: it is impossible to find
a stochastic process, harmonic outside the sphere, that
is both Gaussian and ergodic.

Thus we have to give up either ergodicity or the
Gaussian character of the process.

Ergodicity means that the individual average over
the sphere (i.e., what we have denoted by M1 in the

preceding section) should be equal to the phase average
(the average over the underlying probability space).

Ergodicity is very important in our case since only the
individual average is physically defined and can be de-
termined empirically, since there is only one gravity
field. Therefore, any appropriate stochastic process
model should be such that the phase average, which is
the probabilistically relevant definition of an average,
should be equal to the individual average, which is the

empirically relevant definition.
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On the other hand, the Gaussian character of the process
is less important, since it is well-known that least-squares
estimation, as the linear unbiased estimation of least vari-
ance, is meaningful also for non-Gaussian (not normally dis-
tributed) random variables.

Therefore, we should look for an ergodic non-Gaussian
stochastic process model for the anomalous gravity field.

Fortunately there exists such a model which is so simple
as to be almost trivial. This model consists in identifying
probability space @ with "rotation group space", which is
the space over which the integration in (9-1) is extended:
0=x<2r, 02 821, 0% g < 21 ; the name is justified
since we may consider 1, 0,a as the three Eulerian angles
by which a spatial rotation is described. The set of sample
functions (the probabilistic ensemble) arises from one basic
function £f by the set of rotations of the sphere.

For instance, let £ be the anomalous potential T ;
then any sample function is again identical with the same
function T , but referred to a different spherical coor-
dinate system (different origin and different orientation).
To every point of probability space § , i.e., to every
triple of Iulerian angles, there corresponds a different
sample function (because of the rotation of the coordinate
system) ; all these different functions, however, are in
reality nothing else but simple transformations of one and
the same basic function, which again takes account of the
uniqueness of the terrestrial gravity field.

It is clear that, in this case, the phase average is
identical to the spherical average (9-1), so that our simple
model is in fact "trivially ergodic" (Moritz, 1967).
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This almost trivial stochastiC process interpretation
is obviously nothing else but a formulation, in different
terms, of the interpretation in terms of a single function
as considered in the preceding section. Therefore, the
investigations in that section may also be interpreted as
showing the consistency of the present stochastic process
model.

If measuring errors are present, then the probability
space for the whole system, comprising signal and noise,
may be taken as the product space (Cartesian product) of
rotation group space (the product space for the signal)
and the probability space of the noise. This model pro-
vides the statistical independence of signal and noise as
expressed, in our new interpretation, by (9-6).

As an alternative model, we might identify, by a
measure-preserving mapping, the probability space of the
noise with rotation group space, so that the latter pro-
vides a simple probabilistic background for the covariance
analysis of both signal and noise.
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10, THE NORM OF THE ANOMALOUS GRAVITY FIELD

The minimum principle underlying least-squares adjust-

ment,
VTPV = minimum , (10-1)

may be interpreted as

|v| = minimm , (10-2)
where ||v|| is the "norm" of the vector v defined by
2 T
vl = v'pv ; (10-3)

|v|| may be considered as the measure of the "size" of
the vector v .

Thus least-squares adjustment may be regarded as
seeking a vector v of minimum norm compatible with the
given data.

Let us try to generalize this simple idea to least-
squares collocation of the terrestrial gravity field.

In sec. 2 we have used the minimum principle, anal-
ogous to (10-1),

VTQ_lv = minimum , (10-4)

where the vector v , as given by (2-9), comprises the
p + g random variables s and 2z that enter into our
problem, and where Q 1is the covariance matrix of the

vector v
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Instead of v , we might use the vector

T

T
_ T T e _
u=|[{8n ] = [slsz...spzlzz...zq] . (10-5)

This vector has again p + g components; we shall as-
sume that the number of signals to be computed is

p 2 g and that the first q signals to be computed
coincide with the g components of the vector s'
that corresponds to the observations x according to
(2-1) .

Then u is obviously a regular linear transforma-
tion of the vector v . Since least-squares collocation
is invariant with respect to linear transformations, we
may replace the condition (10-4) by

uTk 'y = minimum , (10-6)

where K 1is the covariance matrix of the vector u
K = = , (10-7)

assuming that signal and noise are uncorrelated and
using the notation (2-18a,b).
Then

K = , (10-8)

so that (10-6) becomes

sTC_ls + n'D 'n = minimum . (10-9)
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Since the minimum condition (10-9) is equivalent to
(10-4), it will lead to the same solution (2-35) and
(2-38) . This may also be verified by direct computation,
cf. (Moritz, 1970b).

Let us assume that the signal to be computed is the
anomalous potential T at a number p of points dis-
tributed over the sphere. Let the number p of compu-
tation points increase indefinitely until these points
cover densely the surface of the sphere. Then the quan-

tity sTc™ls may be shown to tend to a limit

Isll® = Lim s"c™'s = |i7|I* (10-10)

the quantity ||s|| is called the norm of the function

s = T , or the norm of the anomalous gravity field. In

a sense, |[|s|| is a measure of the average size, or of
the average smoothness, of the function s over the
sphere.

Let us assume, for the moment, that there are no
measuring errors, n = O . Then, since the number p
is arbitrary, the solution (2-35) and (2-38) will remain
the same if p =+ « ; it thus satisfies the minimum
principle, following from (10-9),

Is|| = minimm , (10-11)
that is, the resulting function s = T has minimum
norm.

If measuring errors are present, then we have in-

stead

Is||? + ||n|| % mindmm , (10-12)
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where we have put
In||> = a0 !n . (10-13)

The concept of norm, introduced in the present con-
text by Krarup (1969), leads to interesting cross-con-
nections to the theory of Hilbert spaces with kernel
functions (Meschkowski, 1962).

If the estimate T of T has the spherical-har-

monic expansion

~ o n - — 5 -
T(g,A) = nz3 2 (o _cosmx + Bnm51nmA)an(cose) ,

-0 omEe (10-14)
analogous to (7-18 and 19), then the norm |[|T|| 1is
given according to (Krarup, 1969, p. 32) by

2_ v 1 7 =2 2
Iell®= 1 & I +B_.) . (10-15)
n=3 n m=o0
with kn as in (7-16).
Consider now the norm ||Ag|| of the estimate Ag

of the gravity anomaly Ag . The transition from T to

Aé means multiplication of the coefficients &nm and

Bnm by (n-1)/R , according to (7-20). In the same way,

kn is to be replaced by

2
c = LE:%L_ K
n R n
Now in the expression for ||ag]|® analogous to (10-15),

the factor (n-l)2/R2 cancels, and there remains
(10-15), or

lagll = ll{l . (10-16)
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Thus the norm is the same whether we compute it for T
or Ag

In the same way we can show invariance of the norm
under transition to other quantities of the gravity field.
Thus ||s|| really expresses an intrinsic property of the
signal field, which justifies the name, norm of the anom-
alous gravity field.

Thus we have been justified in saying, in sec. 6,
that least-squares collocation gives the smoothest gravity
field that is consistent with the given data, in line with
the maxim "when in doubt, smooth" (from a letter of Sir
Harold Jeffreys).
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