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ABSTRACT

This report is a continuation of a previous OSU report, "Kinematical Geodesy"
(1967). Part A gives basic principles and the theoretical foundations for the separation
of gravitation and inertia by a combined accelerometer-gradiometer system, with
applications to aerial gravimetry and to inertial navigation. In Part B, proposed
methods for the geodetic use of second-order gradients are briefly described and
evahmated. The new technique of least~squares collocation avoids the shortcomings of
those methods. The application of this technique to the use of gradients for the deter~

mination of the gravity field and of spherical harmonics is investigated.
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KINEMATICAL GEOQODESY I
Introduction

In an earlier report (Moritz, 1967) we have investigated theoretical questions
related to the use of moving instruments for the measurement of elements of the
gravitational field, such as airborne gravimeters or gradiometers. The main problem
is the separation of gravitation and inertia, the extraction of the gravitational "signal™
form the inertial "noise”. We have seen that such a separation is rigorously possible
for the second and higher derivatives of the potential, but not for the gravity vector
itself. In the latter case, in aerial gravimetry, one is, therefore, obliged to reduce
the effect of inertial noise as much as possible by using some statistical filtering. The
fact that a statistical separation of gravitation and inertia can never be perfect, is
mainly responsible for the fact that the accuracy of aerial gravimetry is considerably
inferior to the sensitivity of the instruments themselves.

In Part A of the present report we shall describe the principles of a rigorous
separation of gravitation and inertia for the gravity vector itself. This can be done
by simultaneously measuring the first and second derivatives, that is, by combining
a gravimeter, or accelerometer, with a gradiometer.

In (Moritz, 1967) we have also studied how measured second-order gradients
can be used in geodesy. We have seen that geodeti cally important quantities, such as
deflections of the vertical or geoidal heights, can be derived from these measurements
either by line integration (Somewhat similar as in astrogeodetic leveling) or by global
integration, using formulas analogous to Stokes' integral.

Unfortunately, such integral formulas have severe shortcomings, which make
their practical application hardly feasible:

1. Second-order gradients are much more irregular than gravity anomalies,
so that interpolation is difficult.

2. For a Stokes'~type formula global coverage would be necessary.



3. The available information is very incompletely used, because only one
of the five independent components of the second~order gradient tensor enters into
a Stokes’-type integral formula.

4. It is impossible to combine second-order gradients with other data such
as first-order gradients or gravity anomalies, in a simple and well defined way, and
to adjust for measuring errors. |

Since the first repoxt on Kinematical Geodesy was written, however, a least-
squares method for estimating the terrestrial gravity field (least-squares collocation)
was developed (Krarup, 1968, 1969; Moritz, 1970a), which avoids these shortcomings
and permits the optimal use of heterogeneous data for the determination of the earth's
¢ figure and its gravity field.

In Part B of the present report we shall first discuss proposed methods for
the geodetic use of gradients and then apply least-squares collocation to the determina~
tion of the gravitational field from measured gradients. This includes also the

determination of spherical harmonics by satellite gradiometry.



PART A

SEPARATION OF GRAVITATION AND INERTIA

1. Firstand Second Order Gradients

Let the gravitrational potential of the earth be denoted by V. Then the first

partial derivatives, or first-order gradients, Vx =3V/sx etc. form a vector

(1-1)

which is the vector of gravitational force on a unit mass.

Adding to V the potential of centrifugal force of the earth's rotation, we get

the gravity potential W. The vector

X X
WY = g = Vy + centrifugal force (1-2)
Wz v, '

is the gravity vector. Since the centrifugal force is given by a simple analytical expres-
sion and can be considered as known, the determination of gravitation (1-1) is equivalent

to the determination of gravity (1-2).

We have
< = o cos o,
Wy = gcos B, : (1-3)
W, = gcosvy,
where
g = \/W2+W2+W2 (1-4)
X vy =



is gravity and cos o, cos 8, cos y are the direction cosines defining the direction of the

vertical or plumb line.

The measurement of the vector (1-2) thus consists in the determination of g
and of the direction of the plumb line. Gravity g is measured by gravimetry. The
terrestrial technique for determining the direction of the vertical is to define it by
means of a spirit level and to refer it to a global rectangular cooxdinate system by

means of astronomical observations (latitude and longitude).

If the z-axis is made to coincide with the normal to the reference ellipsoid and

if the x and y axes are suitably oriented, then, obviously,
g:-w’nw—....:_ (1-5)

arenothing else than the components of the deflection of the vertical. Such an orientation
of the coordinate system can always be achieved by a coordinate transformation so that

deflections of the vexrtical can be computed from first-order gradients.

In aerial measurements, the direction of the coordinate axes is maintained by
gyroscopic stabilization, and the three components of the gravity vector can be measured
by three accelerometers. The accelerometer output will be affected by inertial diswurb-

ances, which must be removed as much as possible by statistical filtering.

The best-known technique falling under this general principle is aerial gravi-
metry, where the vertical component of the gravity vector is measured by a gravimeter
or a vertical accelerometer, which is basically the same; cf. (Szabo and Anthony, 197 1.
For a suggestion for determining deflections of the vertical by a similar principle cf.

(Bradley, 1970).

The second-order derivatives, or second-order gradients, Vxx = 82 V/3x 2

etc. form a symmetric matrix or tensor

XX ny sz
1-6
Vyx Vyy Vyz . (1-6)

ZX zZy ZZ



This tensor contins five independent quantities: because of symmetry we have

Vox T Ve Veax = Yz sz - Vyz’ (-7

and in free space, Laplace's equation

Vex T Vg F Ve = 0 (1-8)

holds, so thatthe 9 components of the tensor (1-6) must satisfy 4 conditions.

Instruments measuring second-order gradients are called gradiometers, A
stationary instrument of this kind is the well-known torsion balance, cf. (Mueller, 1964);
for recent developments in airborne and satellite-borne instruments cf. (Anthony, 1971),

(Forward, 1971), (Savet, 1970), (Trageser, 1970).

One of the most interesting features of gradiometer measurements is that sec-
ond-order gradients meésured by moving instruments are purely gravitational, inertal
disturbances having no effect on them provided the coordinate axes are gyroscopically
st@abilized. For an investigation of this problem, covering also the general-relativistic

aspects, see (Moritz, 1967).

Anomalous Gradients. - It is convenient to approximate the gravity potential

W by a given simple function U, called normal gravity potertial and representing the
gravity potential of an equipotential ellipsoid (Heiskanen and Moritz, 1967, sec. 2-13).

The difference

T=W-U (1-9)

is called disturbing potential, or anomalous potential, It is a harmonic function out-
side the earth, since the centrifugal partin W and U are equal and, therefore, cancel

in (1-9). For the same reason we may also write

T=vV-V , (1-10)



denoting by V the earth’s gravitational potential and by V the normal gravitational
potential, which is the normal gravity potential U minus the potential of the centrif-

ugal force.

We may form first and second order gradients of the normal potential U
{or V, respectively), and subtract them from the measured gradients. In this way

we obtain the anomalous gradients

Tx Ty Txy Tyo

T and T T T . 1-11
y w Ty Tye (1-11)

Tz sz TZY Tzz

If the poéition Pix,v,z) of the mea'suring instrument is determined with res-
pect to the center of the earth, then U and its derivatives can be determined at the
observation point P itself, so that the quantities (1-11) can be directly formed. This
is, at least approximately, the case in satellite gradiometry where the satellite position
is determined by tracking, and in aexial gradiometry if position is determined by inertial

navigation connected to points whose geocentric position is known.

If, on the other hand, the vertical position of the aircraft is determined by
measuring the height above ground, then itis more appropriate to consider th;:‘ normal
gradients as referring to a point Q which is situated on the plumb line of P and whose
normal potential U is the same as the actual potential W of P, thatis, UQ = WP .
See (Heiskanen and Moritz, 1967, pp. 245-246, figure 6-3). Consider, for instance,
the second vertical gradient W, , letting the z-axis coincide with the vertical through
P. Then

T, =W_(P) - U, (P), i (1-12)

whereas now we rather compute a quantity

T! = W,(P) - U,(Q) . (1-13)



The difference between the two quantities is
(1-14)

T - T

gz = Tpp = U (PY- U (Q)= U, Np

where

is the vertical separation of geop and spherop at P; cf. Fig. 6-3, loc. cit.

For an estimate, assume a spherical normal earth. Then

_kM - . XM _ _ 6kM
U"r : Urm r2 Uppr = 4

where k is the gravitational constant, M is mass of the earth, and r is the radius

vector. Near the surface of the earth we have approximately

r=R = 6371 km,

k
U\ - M. 980 gals ,
T 2
R
- = 8G o -7 2
‘Uzzzl 'Urrr[ = 5 = 1.5% 10”7 mgal/m*,
gso that, for NP = J00m,
l’I" - T I = 1,5 x 1072 mgal/m = 0.15 Etvs.
ZZ Z7%

Since 100 m is a maximum value for N, this difference is well below the expected

aerial measuring accuracy of about 1 E&vis . Differences in other second-order grad-

ients are even much less because of the near-spherical symmetry.

Thus we may probably safely put
z7 zz (1-13)



in most cases.

As for the first-order gradients, the fact just mentioned affects vertical grad-
ients and is responsible for the distinction between gravity anomaly and gravity disturb-
ance and for the use of the former in aerial gravimetry. This, however, is well known

and need not be discussed here, cf. (Heiskanen and Moritz, 1967, pp. 245-246).

Transformation of Gradients.- Let an orthogonal coordinate transformation be-

tween two rectangular coordinate systems xyz and £nl be given by

X £ £ X
y| = Aln , Inl = AT vi (1-16)
Z L £ Z

. : T, .
where A is an orthogonal matrix and A~ is its transpose. Then the first~order grad-
ients transform like

g X
T
= A -
Tn TY , (1~17)
Ty T

and the second-order gradients transform like

ey e

-
T
Tee  Ten ng: Tex Ty Txe
T
T =A" | T T A, 1-1
Tné: m e yX Tyy yz (1-18)
TC : Ten  Tee T,y sz T,

For a derivation cf. (Moritz, 1967 , sec. 1.5).

Let us now consider spherical polar coordinates r(radius vector), © (polar dis~

tance), and A (longitude). They are related to rectangular coordinates xyz by



X = rsind cos p,
= rsin & sin A, (1-19)
Z = rcos 9.

Here the z-axis is the axis of rotation of the earth, and the x-axis passes through the

Greenwich meridian; the origin is at the earth’s center of mass.

Together with this global system xyz, let us introduce a local rectangular
coordinate system {n{ as follows. The origin is at the point P whose coordinates
arex, y, z or r, 6, A . The -axis coincides with the radius vector, the £ -axis

points north, the yn-axis points east.

The first~order gradients in this system are given by

_ _oT _ 1
Tg ETY: r T
m o T = 1 -
Tn © Ysinédn rsino A’ (1-20)
_ 3T -
T, = 37 T, .

The relation between the derivatives with respect to x,y,z and to 1,8, is

found as follows. By the usual rules of partial differentiation we have

T =T x +T v +T =z
T x“r y'r z'r

and similar for Te and T, . The derivatives Xr etc. are obtained from (1-19), for

A

instance

Xr = gin 8 cos A .



In this way we find

T =T sindcos) + T sin®sin\ + T cos @,
r X v Z

= 881 - i -
’1“e TX:c cos 8cos A+ Tyr cos Osin A Tzrsme, (1-21)
T, =-T rsino®sinA + T rsindcosi
A X v

Substitution into (1-20) gives

- - B “
| Tg TX
Tl =at|T
i v
~T§- | T
with
- Cc0S 8 cos) - cos 9 sin) sin®
T .
A = - sin A cos ) o 1, (1-22)
sin®cos A gin © sin-) cos 8

which determines the transformation matrix A,

The first derivatives with respect to r, 9, A are expressed in terms of

rectangular gradients by

Tr = TC ,
Te = - :rTg, (1-23)
TA = rsin9 T

10



For the second derivatives we have

Ter T T

'I‘re = ~rT€§-T€ ’

Trk = rsinGTnC»im sin @ Tn,

TGE) = 1‘2 Té'-,-,’t‘:; - :th , (1-24)
TGAZ -;fzsine’fgn+ rcoseTn ’ )

Tk)t = 1 sin @T????+ r sin® cos 3 Té_', - r sin @T(f

These equations are readily derived by differentiating equations (1-21) with regard

tor, 6, A, using

T =T x + T v + T =z , et.,
Xr XX T xy XZ T

and expressing the derivatives with respectto x, vy, z by the derivatives with respect to

£, n, £ by means of (1-17) and (1-18) with (1-22).

Conversely we have

1 1
i3 e
Tee =72 T 7 T
1 cos &
T = - T |,
£En r“sin 6 ex rsin“e A
R S 1
ng: = -7 et 2 Ty
. . ! (1-25)
T = T. d e + coteéT ,
nMm  r“sin“ 0 AA r r | yE 0

N G
ne rsin® "rx  rZsin® A’

Tee ™ Tax

11



These relations are found by solving (1-24) with respect to T, _ etc. and substituting

33
(1-20).

The dominant texrms in (1-24) and (1-25) are the first terms on the right-hand
side. The following terms, representing effects of first-order gradients, are usually
below 1 E8tv0s. For instance, take the second term on the right-hand side of the

first equation of (1-25). For r = 6371 km and Tr = ]00 mgals it amourts to

1 _ _100 mgal .
" Tr 6371 km 0.016 mgal/km

0.16 Ebtvis .

We have given these formulas for later reference. The meaning of the
coordinate systems introduced is as follows. The system xyz is customarily used
as global coordinate system in geodesy. The gradients referred to this system can
be measured if the inertial platform carrying the accelerometer or gradiometer is
made to maintain a fixed orientation in inertial space, the direction of the instrument

axes coinciding with the directions of the xyz axes.

Usually, ﬁowever, the instrument axes are made to slowly rotate in such a
way as to always coincide with the normal to the reference ellipsoid, the tangent
to the ellipsoidal parallel, respectively. For the quantities of the anomalous gravity
field, such as the disturbing potential, gravity anomalies, deflections of the vertical,
or anomalous gradients, the spherical approximation may be used, which consists in
neglecting the flattening in ellipsoidal formulas so that formally spherical formulas
are obtained. Loosely speaking we may say that the reference ellipsoid is formally
replaced by a sphere (Heiskanen and Moritz, 1967, sec. 2-14). Then spherical
coordinates 1, 8, } may be conveniently used; and the instrument axes coincide with
the axes £, n, £ as defined above.

For a summary of relevant aspects of inertial navigation cf. (Schultz and

Winokur, 1969, pp. 4892-5).

12



Relations Between First and Second Order Gradients. - From the second

derivatives it is possible to obtain the first derivatives by an integration along the

flight path. For instance,

P
Vo= (V) + f (Vyy @xF V, dy+ V, dz). (1-26)

P
o

Here ("VX )0 refers to an initial point along the flight path, and VX refers to a current

point P. If the flight path is given as a function of the time ¢

x=x@, y=y0, z= z0), (1-27)

then

dx = =xdt, etc.,
the dot denoting differentiation with respect to time, and we obtain

P
(Vx)g o f (Vxxx + nyy * szz yde,

'V =
X
Py
V.= (V +J))V>':+V°+Vﬁdt, 1-28
;= V), (Vo 5+ Vo § + V%) (1-28)
PO
P
Vz - (Vz)o+ .f (VZXX+ szy“i* szz ye .

Py

In oxder to apply these formulas, it is necessaxy to know the flight path as a
function of time. In the next section we shall see how this can be achieved using a

combined accelercmeter-gradiometer system.

13



2. Separation of Gravitation and Inertia by

Using a Combined Accelerometer-Gradiometer System

Assume that all first-order and all second-order gradients are simultanously
measured in an airplane, the instrument axes, now denoted by x;, X, Xg, being inert-

ially stabilized in such a way as to maintain a fixed orientation in space.

In this case, the second-order gradient tensor measured is purely gravitational,
the inertial part being zero (Moritz, 1967, p. 28); it is, therefore, given by (1-6). The
measured first-order gradient vector, however, is not (1~1) because it is affected by

inertial disturbances.

By equation (67) of (Moritz, 1967) we have

3V - ¥ . y H -

Here all subscripts i,j,k assume values 1,2, 3; the Einstein summation convention is used.

an

#* .
The vector fi is the total measured force; b; is the inertial disturbance, the second

i
time devivative of the position vector b; of the origin of the local frame. In the present
case, the vector bi consists of the three coordinates of the aircraft (more precisely,
of the center of mass of the measuring instrument) in a fixed coordinate system. The
tensor Wij describes the rotation of the local frame with respect to the fixed coordinate

system; since we have assumed inertal stabilization, w;; is zero.

1]

Thus (2-1) reduces to

Q_...Y B H

ox; = fi + bi . (2-2)

Let us put for the gravitational gradients
3V 2
— 3V -
. = V., = V.. (2-3)

aXl . aXi aX] 1

14



and for the measured force,

f. = F, . (2-4)

b, = u, . (2-5)

Then {2-2) becomes

Vi = F, tu . : (2~6)
On the other hand, V; may be obtained by integration of Vij . In our new no-
tation, (1-28) is written concisely as
P -
V= (V) + [ vy byt @-7)
P

O

since the coordinates of the aircraft, bi’ have been denoted by x,y,z in section 1.

On introducing the velocity components (2-5) and denoting the times correspond-

ing to positions P, and P by to and t, eq. (2-7) becomes

t
v, = (V) + fvij ude (2-8)

%

Eliminating v between (2-6) and (2~8) we have
t
o+ O = (V) + fVijujdt , (2-9)
b
and differentiation with respect to t results in

i - Vyu *E =0, (2-10)

15



which is a second-order linear differential equation, or rather a system of linear

differential equations, for the velocity wu,.

To get a clear picture of the basic equation (2-10), we shall write it explicitly:

iy = (Vu, + nyuy + szuz) +F =0,

2 - + * - -
ty (Vyxux Vyyuy + Vyzuz) + FY 0, 2-11)
u, - (Vyu, + szuy + szuz) + Fz = 0,

, are the velocity components and FX, Fy’ Fz are the components of

the measured force.

where Uy uy, u

The quantities Fi and Vij being given by measurement, eq. (2-10) may be solved

by the usual numerical methods, for instance by a Runge-Kutta procedure, to get u_.
i
This integration may be performed in real time.

In this way we have indeed effected a separation between gravitation and
inertda:
The gravitational first-order gradient Vi’ free from inertial noise, is obtained

from (2-6) or, alternatively, from (2-8).

The inertial acceleration, free from gravitational disturbances, is obtained

as
b, = u, . (2-12)

It may be twice integrated with respect to time to give the position vector bi in a global

Cartesian coordinate system. Alternatively we have simply

t
b = () + tf udt . (2-13)
Q

16



Thus our combined accelerometer-gradiometer system acts at the same time
as a purely gravitational gravimeter and a true inertial navigation system that is not

affected by the gravitational field.

Additional Remarks.~ In order to make the basic concepts transparent, we

have introduced two simplifications which can, however, easily be taken into account.

First, with current gravimeter (or accelerometer) and gradiometer systems,
the force Fj or the quantities Vjj are not the direct output when they are functions of
time. In fact, the instruments may be considered as linear oscillating systems, for

which the output is obfined as a linear operation on the input (Fj or Vij )

p = Lo (2-14)

where 3 is the output and ¢ is the force Fj or gradient Vjj to be measured. If the linear

operator can be inverted, then ¢ is obtained as

=L ¥ . (2-15)

-1
The form of the operators L and L is characteristic of the measuring system under

consideraton.

Secondly, we have already mentioned in sec. 1 that the directions of the
instrument axes, instead of being kept fixed, may be rotated in a prescribed way such
that, for instance, one axis always coincides with the normal to the reference ellipsoid.
Then the rotation tensor Wijs instead of being zero, will be given, so that its effect
can be fully taken into account using formulas such as (2-1). For a special case cf.

(Hansen, 1971).

Finally we remark briefly on the relation of the present separation of
gravitation and inertia to the principle of equivalence of these forces. As we have seen
in (Moritz, 1967, p. 56), itis in fact impossible to separate gravitation and inertia as
long as the force acting at a point only is considered. As soon as we have a region in

space, even an arbitrarily small one, however, such a separation becomes feasible.

17



Thus we might use five independent components of the gradient tensor, e.g.

T , T ,T , T , T, (2-21)
Xx Xy vy XZ VZ

or the three components of the gradient vector plus two independent components of the

gradient tensor, e.g.

T, T, T, T , T , (2-22)

T, T, T, T , T . (2-23)

It would, however, be uneconomical to use only Tx , TY s 'I‘z or , a fortiori,

only T.

This fact imposes a strong requirement on the geodetic computation method
using these data: in order to take into account all available information, it should be
able to use simultaneously five independent quantities, and it should use them in such
a way that the result is the same régardless of which system of five independent quantities,

e.g. (2-21) or (2-22) or (2-23)is taken as input.

In sec. 4 we shall present a method that satisfies these requirements,

20



In the present case, we are given the foxce along a line. This fact by itself

is not yet sufficient for a separation, which becomes only' possible through the additional

measurement of the second-order gradients.

Here we have restricted ourselves to an approach through:classical mechanics

because analyses such as that in (Moritz, 1967) show that, to an extremely high accuracy,

it gives the same result as the more rigorous but also more complicated approach

through the General Theory of Relativity.

The Observational Data. - The measuring system under consideration gives as

output the second-order gradient tensor

ZX

the first-order gradient vector

v
Xy

v
vy

A%
zy

v
VZ

—

XZ

-4

—d

and even the potential V: by integrating

av

we get

V:

since the velocity components dx /dt = uy etc. are known.

.§.
VXdX Vydy + Vzdz

t
Vo + [ ( u + v u, + V,u )dz
t

(2-16)

(2-17)

(2-18)



This presupposes, of course, that inidal values (Vy), , (Vy), . (Vz), and

Vo at some initial point P, are given.

Likewise we obtain the position of the aircraft,

y = b, , z = b, , (2-19)

as a function of the time t, again presupposing suitable initial values that were required

for the integration.

As we have seen in sec. 1, it is convenient to subtract from the quantities
Vij » Vj and V their normal values, corresponding to a normal gravity potentdal U,
to obtain anomalous gradients and the anomalous potential:

" 7 ]
T T T T
XX Xy XZ X
T T T . T , T. (2~20)
yx vy ¥z y
T T T T
zX zy ZZ z

We remark that, since position is determined by inertial navigation, the normal
values will refer to the same point P as the measured values, so that (Tx’ Ty’ Tz)
represents the gravity disturbance vector; see sec. | and (Heiskanen and Moritz, 1967,

pp. 227 and 245-6).

Which of the quantities (2-20) are used, will depend on the geodetic computation
method chosen. For instance, we might use (TX, Ty , Tz} to compute defiections of

the vertical, to be used for astronomical leveling.

This would, however, be uneconomical because the available information is
not fully used. In fact there are 5 independent quantities (2-20) since the second-order
gradient tensor contains 5 independent quantities (see sec. 1) and the gradient vector

and T are obtained by integration of this tensor.

i
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PART B

GEODETIC USE OF MEASURED GRADIENTS

3. Review of Proposed Methods

First-order gradienis are equivalent to gravity anomalies {or gravity disturbances)
and deflections of the vertical, as we have remarked in sec. 1, so that their geodetic

use may, in general, be reduced to problems familiar in physical geodesy.

Still, this is not the optimal procedure, especially if all first~order gradients are
measured simultaneously. The main reason is that the familiar methods of physical
geodesy use either the gravity anomaly or the deflection of the vertical, a combination of
the two types of data not being directly possible. The simultaneous use of all three com-

ponents raises new problems.

Such novel features are particularly prominent in the geodetic use of second-~order
gradients, which is also rather more difficult. We shall, therefore, limit ourselves to

considering second-order gradients.

Various methods for their geodetic use have been proposed and discussed, e.g.

in (Moritz, 1967). We shall now try to give a brief evaluation of proposed methods.

a) Line Integration. - We may integrate second-order gradients along the flight

path to obtain first-order gradients. The basic formula is (1-28) or, written in a more
gradient tensor are measured and if the velocity components u j are known, either by
external measurements of the flight path oxr by the method described in sec. 2. The first-
order gradients so obtrined are converted to gravity anomalies (or gravity disturbances)
and deflections of the vertical, which are used in the conventional way (it is easy to de-
rive an integral formula analogous to Stokes' integral but using gravity disturbances in-

stead of gravity anomalies).

The advantage of this method is the reduction of the problem to problems familiar
in physical geodesy. A disadvantage is that the available information is not completely
used: The three components of the gradient vector are computed from the five independent
components of the gradient tensor, so that two independent elements are not used.
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Furthermore, as we have seen above, a combination of the data furnished by the gradient

vector is not easily possible.

b) Torsion~Balance Type Computations. - The torsion balance invented by
Eotvis, historically the first and still the only instrument in actual geodetic use, is
measuring, not all components of the gradient tensor, but only the quantities
VXY and Vyy - Vxx (3-1)
(with, possibly, sz and Vyz in addition), the xy-plane being horizontal. The quant-
ities (3-1) may be used to calculate deflections of the vertical by an integration method

whose mathematical structure is clarified in (Moritz, 1967, sec. 1.2).

This method, classical and relatively widely applied, is appropriate to the
torsion balance. For instruments that measure all components, the available informa-
tion is only partially used. Furthermore, in this method the lines of integration do not
coincide with the flight path, so that problems of interpolation and vextical reduction oc-

cur similar to those to be discussed for the next method.

c) Global Integration. - This was investigated in (Moritz, 1967, sec. 1.3).

The relevant formula is equation (32) of that report:
_ R?
T = o ffTrrSl () do . (3-2)
&)

This integral formula is completely analogous to the well-known Stokes formula: it
expresses the anomalous potential T in terms of the second-order vertical (radial)

gradient T ust as Stokes' formula expresses T in terms of the gravity anomaly

i
rr

Ag . The function Si(z/)) is a known function, R is a mean radius of the earth, do
is the element of solid angle, and the integration is to be extended over the full solid

angle o, that is, over the whole earth's surface.

This condition, that the integration be extended over the whole earth, is the

more stringent as the effect of the remote zones on the integration decreases even less
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Also the statistical meaning of the formal adjustment procedure is questionable.
The o and 5nm may be almost as irregular as the effect of the measuring errors,
and almost as small. It would, therefore, be more satisfactory to have a method that

takes this fact into account in a statistically well-founded manner.

Satellite gradiometry will probably be able to give barmonics of higher degrees
than does orbital analysis; it seems, therefore, proper to combine these two techniques,
possibly with other techniques such as satellite altimetry and satellite~to-satellite

tracking.

This brief discussion of different methods shows some features that arise
particularly in the geodetic use of second-order gradients:

1. A large amount of information is obtained simultaneously at the same
point: the five independent components of the gradient tensor,

2. There are difficulties in the application of conventional horizontal inter-
polation and vertical reduction techniques owing to the irregular and fluctuating
nature of higher gradients. To better overcome these difficulties, the additional
information just mentioned should be used in an appropriate way.

3. By its very nature, gradiometer data are better suited to give fine dewils
than to provide the large features. They are, therefore, best combined with other
data. This directly calls for a method that is able to combine heterogeneous data in

a natural way.

1

The classical methods of physical geodesy~-astrogeodetic, gravimetric,
dynamic satellite techniques--are always based on data of a single type. Attempts at
combining them are more or less ad hoc. This is also true for methods using gradio-
meter data as discussed above, since they are modeled after those classical methods.

4. Statistical estimation and adjustment techniques have never penetrated
very profoundly into classical physical geodesy. Adjustment techniques and methods
of error theory have not been incorporated there in an entirely satisfactory and
natural way. The same holds for the above-mentioned nﬁethods, which is particularly
serious here because random errors may be comparable in magnitude to the quantity
to be measured, and systematic effects have to 5e carefully eliminated.
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(1-25) or, alternatively, the series for ’I“XX R Txy » etc. by (1-25) and

Txx Txy T’xz Tg £ Tg n Tn n
T T T = A T T T AT , (3-4)
yx Yy yz . n&  nm n¢
T T T T T T
ZX zy ZE Y £ £ 7 £
| - |

which follows from (1-18), the matrix A being given by (1-22). In this way we may
express all measured second~order gradients as series which contain the coefficients

o and B___, for instance,
nmn nm

TXX. = f(r, 0, 050 5B )
TXY = fz(rsea )\.;anm, an) » (3"5)

Thus, every measurement gives one linear equation for the oy, and fpm in
the form of an infinite series; note that r, 9, A refer to the particular point at which the

measurement is performed and are assumed to be known.

To determine the infinitely many oy, and Bgp, . @ finite number of measure=~
ments and, therefore, of linear equations is cerminly not sufficient. The conventional
procedure in this case is to truncate the series at some n = ng, such that the number
of fetaineci parameters Opmy and Bpm is smaller than the number of observations and

these parameters can be determined by an adjustment.

Such a truncation is, however, a highly arbitrary procedure. In the present
case this is even more problematic than in the usual determination of spherical
harmonics from orbital analysis, since the magnitude of the terms in the series (3-5)
decreases considerably less than, e.g., in the series (3-3), namely by a factor of order
n2. Truncation thus introduces "aliasing errors” and increases the mutual dependence

of the resulting values.



than in Stokes' or Vening Meinesz' formulas.

Since the gradients are measured only at discrete points or along certain profiles,
they must be interpolated in between. Unfortunately, second-order gradients fluctuate
much more rapidly and are more irregular than gravity anomalies or deflections of the
vertical, so that interpolation becomes more difficult and more problematic. The best
that can be done to reduce interpolation errors is to use least-squares prediction which

will give as accurate results as the data permit.

Another problem arises in this context. In (3-2), all the quantities Trr should
refer to the same level surface, Since it will hardly be feasible to perform all the meas-
urements at the same level, they mighi": be made at different levels and reduced to the
same level. But because of the greater irregularity of second~order gradients, this re=

duction is even more problematic and less reliable than for gravity.

The main objection, however, is that most information remains unused: five

quantities are measured and only one quantity, T is used.

rr’

d) Determination of Spherical Harmonics. - The anomalous potential T can be

expressed as a series of spherical harmonics:

o n

+1 .

T = % by (-‘%-) n (04, cosmA + B, sin m)\)an(cos 8), (3-3)
n=2 m=0

where r(radius vector), &(polar distance) and X (longitude) are the spherical coordinates

already used in sec. 1, a is the semi-major axis of the earth, an {cos B) are

Legendre's functions, and 0 and Bnm are coefficients to be determined.

The use of spherical harmonics is most appropriate with satellite gradiometry
because the convergence of the series (3-3) is satisfactory at satellite altitudes but is
not so at flight elevations and a forteriori at the earth's surface, so that an excessive
number of coefficients would be required to get a good approximation to the fine structure

of the gravity field.

By differentiation we may find the corresponding series for the derivatives T,

Te, TA; Trr’ Tre’ Trk’ Tee, Tex TJ\A and then the series for ng, TE"?’ etc. by
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-:_ — — ‘_l' . o
Ci1 C12 Cin Xy
Cy; Caz -+- Coy Xy
sp =[Cpy Cpy -+ Cp, ] : (4-1)
Ch1 Cho --- Cnr; _Xn__

Here ﬁij is the covariance between the observations x; and Xi s and Cp; is the
covariance between the signal Sp and the observation x; (i,] = i,2,...,n). These co-
variances are basic; they carry, so to speak, the burden of the mathematical structure
of the gravity field. Therefore, much will have to be said in the sequel, especially in the

following section.
The above formula presupposes that the (suitably defined) average values of s P
and x; are all zero:

M(sp) = 0, M(x;) = 0, (4-2)

which means that both s, and x, must be quantities of the anomalous gravity field
(the systematic, "average" part of the gravity field being removed by subtracting the

; mustnot be affected by systematic errors,

normal gravity field) and that, in addition, x
The measurements x; can, however, contain the effect of random errors; eq.

(4-1) is valid in this case as well as in the case of exrorless observations.

The formula (4-1) is optimal in the sense that it determines Sp in such a way
that the value so obtained is compatible with the given observations x; and the mean
square error of estimation is a minimum. This has the following meaning. The n
given observations do not determine the gravitational field completely since this field
depends on infinitely many parameters (e.g., the full infinite set of spherical harmonics).
Therefore, there are infinitely many possible gravittional fields that are compatible
with the given measurements. To each of these possible solutions there corresponds

a mean square error of estimation, mp, and eq. (4~ 1) singles out that solution for
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4., Application of Least-Squares Collocation

The analysis of the preceding section has shown that none of the methods described
there is fully satisfactory for the geodetic application of gradiometer measurements. We

have also recognized some desiderata whichabetter method would have to satisfy:

1. It should be able to handle all occurring data -~ first and second order grad-

ients and any other data -- and combine them in a natural, objective and optimal way.

2. It should be able to handle discrete or profile data at different elevations directly,

without interpolation or vertical reduction.

3. Methods described in the preceding section should be suitable limiting cases
of it. For instance, if we assume that oply Trr has been measured, but that it is given
Withoﬁt errors at very many points of a level surface, then the new method should give a
result for T that tends, as a limit for infinitely dense coverage, to the result of eq.

(3-2).

4. It should give the same resuits whether second-order gradients or quantities

derived therefrom are used; cf. end of sec. 2.

5. It should, in a natural way, incorporate least-squares adjustment and give
statistically meaningful accuracy estimates. It should be able to make optimal use even

of "noisy' data.

Recently a new method of least-squares estimation of the gravitational field (least-
squares collocation) has been developed which satisfies these requirements (Krarup, 1968,

1969; Moritz, 1970a, b). It may be described as follows.

Let n quantities of the anomalous gravity field be measured; the measurements
will be denoted by x), X9, ..., X,. They might be anomalous gravity gradients but also,
e.g., conventional gravity anomalies, astrogeodetic deflections of the vertical or geoidal
heights derived from satellite altimetry. Denote by sp (the "signal') the quantity of
the anomalous gravity field that We‘wish to compute, for instance a geoid height or a

component of the deflection of the vertical, Then sp is given by the matrix equation
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which mp is a minimum.

The formulas for this mean square error of estirnation, mp, and for the error

covariances of any computed values s, and sQ , denoted by o, , are as follows:

— = -1 N
Cy1 €12 Cin Cpy
Cyy Cyp Con Cpo
mzzc -[C,, C Cp. ] . . (4-3)‘
P~ “PP™PL VP2 °° YPn . \ . . ?
nl “n2 e Cnn_ _CPn ...
— _ e =l —
Cll Clz “o s Cll’l CQ]_
Ca1 Cop -or Gy Cq2
opg= CpgLCp1 Cpy - -+ Cpp ] (4-4)
CI]_]. an 6 s b Cnn CQH .

These quantities are analogous to the mean square error after adjustment and the {error)

covariance of adjusted values in least-squares adjustment.

Note that in adjustment computations, "variance' and "'covariance’ always mean
error variance and error covariance, whereas in the present method we have both field

covariances (e.g., CPi) and error covariances (e.g., O‘PQ). Mozre about this will be

said in the next section.

For the derivation of all these formulas see (Moritz, 1970a, sec. 2). If the
x; are specialized to be errorless gravity anomalies, the well-known formulas for
gravity prediction result; note thé formal identity of the present equations (4-1), (4-3),
and (4-4) with equations (7-63), (7-64), and (7-65) of (Heiskanen and Moritz, 1967, sec.
7-6).
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Systematic Effects. - Especially in moving-base measurements, systematic

trends such as instrumental drifts or systematic navigation errors, are likely to occur.
They can also be easily incorporated in the present model by a method developed in

(Moritz, 1969 sec. 10) for the case of aerial gravimetry.

If the measurements x; are affected by systematic errors, they are split up
into a purely random quantity £; (comprising both signal and random error) and a sys-
tematic part, also called trend:

m

i (4~5)
=1

od Hd

where the Xoe are m systematic parameters and (Am? denotes a given matrix.

Thus the functional dependence on Xce is assumed to be linear; if it is originally

non-linear, it is to be linearized in the usual way by means of Taylor's theorem.

The parameters X& are determined by a least-squares adjustment with the

result
x=@Tg oAy, | (#-6)
where
- — 4-7)
are vectors or matrices, respectively.
Then the trend is subtracted from the data x; to get the "centered data”
£ =%y~ Ty, Xg» (4-8)

44

and these ‘51 may now be used in (4-1), in the place of X to get again an optimal esti~

mate.

A derivation of (4-6) by least-squares adjustment by parameters may be found in
(Moritz, 1969, sec. 10). A more satisfactory simultaneous deduction of {4~1) and (4-0)
from a unified minimum principle has been given in (Moritz, 1970b}).
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The basic equations (4-1), (4-3), and (4-4) need only be slightly modified when
systematic errors are present. In (4-1) we must replace X by gl as given by (4-8)

as we have just seen. In (4-3) and (4-4), the matrix

=~ — - ™ -1
Cip C2 -0 Cpy
021 (322 R CZI]
— -1
= C
Cnl Cn2 Cnn
is to be replaced by
clrr-aaTTiytaTe ™ 4-9)

where 1 is the nx n unit matrix, and A and C are given by (4~7).
A derivation of (4-9) will be found in the Appendix.

Properties of the Solution. = As we have remarked above, the present solution

is characterized by the fact that the mean square error of estimation is a minimum.
This is reminiscent of an analogous property of least~squares adjustment. In fact,

the present method is a generalization of least-squares adjustment for the case that
there is not only a random "noise" (measuring errors) but also a random "signal”
(elements of the anomalous gravity field). Cf. (Krarup, 1969) and (Moritz, 1970b).

To distinguish it from ordinary adjustment, the least-squares estimation of the gravity

field is called least~squares collocation.

As we have already mentioned, the quantities Xis Koy voes By entering in (4-1)
can be any elements of the anomalous gravity field, affected or not by random errors.
Thus, eq. (4~1) is able to handle and to combine any measurements of gravitational
field elements, not only first and second order gradients. Applied to gravimetrically

observed deflections of the vertical £, it would, eg., give an optimally combined
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astrogeodetic and gravimetric geoid; cf. (Moxitz, 1970a, sec. 9).

Eq. (4-1) could also be used with third-order gradients. The reason why third-
order gradients are not dealt with explicitly in this report, is that they are probably of
less geodetic usefulness. But the considerations of sec. 1 and the techniques of secs.

4, 6, and 7 could be readily applied to third and higher order gradients as well.

Also the signal sp can be any desired element of the anomalous gravity field.
The different quantities computed in this way are consistent with each other in the

sense that they belong to one and the same gravity field.

In fact, the second and third factor in (4~1), depending only on the observations

X

individual naturé of the quantity s P is expressed solely by the first factor, the vector

and their covariances, are the same for all elements Sp to be computed. Thus the

(cPi ), and the quantities s P will be consistent if and only if the covariances CPi are
compatible, The compatibility of these covariances is assured by computing them ac-

cording to the law of propagation of covariances to be discussed below.

For instance, letall X4 be errorless measurements of the second vertical grad-
ient Tr . at various points of a level surface, and use formula (4-1) to compute Trr
at e{rery point of this level surface; this is, then, a pure case of least-squares interpola-
tion in the usual sense. From the continuous global ’I‘rr-field obtained in this way, com-
pute T at some pointof the same level surface by (3-2). Alternatively, compute T
directly from the measured values X using again {4-1). The resulting value for T
will be the same in both cases because the covariances entering in (4-1) are chosen

80 as to ensure thisg,

In this way we understand why conventional methods described in sec. 3 can, in
fact, be considered as limiting cases of least-squares collocation for idealized data

distributions.

As another example, consider the "‘problem of Bjerhammar": gravity anomalies
are given at discrete points of the telluroid; for a definition of the telluroid cf. (Heiskanen

and Moritz, 1967, p. 292). As a limiting case, for continuous coverage of the whole
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telluroid by gravity anomalies, this problem reduces to the "problem of Molodensky ",
the well-known boundary-value problem of physical geodesy (ibid, p. 291). The
Bjerhammar problem may again be solved by (4-1) (Moritz, 1970a, sec. 5); if the
gravity coverage becomes denser and denser, this solution tends to a solution of
Molodensky's problem. As, under certain assumptions, the solution of Molodensky's
problem is unique, this limiting soluton will coincide with the usual solution of

Molodensky 's problem by integral formulas.

At first sight it may be difficult to believe that the simple matrix formula (4-1)
is equivalent to complicated procedures such as the sclution of Molodensky's p;;cblem.
The reason is that all covariances CPi are based on the same covariance function
K{P,Q) ({see next section), and that this covariance function may be selected to have a
relatively simple analytical expression. Hence, all necessary operations may be pexr-
formed analytically instead of numerically. Furthermore, starting from the covariance
function of the potential, the covariances of all relevant quantities such as gravity anomalies,
deflections of the vertical, or higher gradients are derived by differentiations. These
are much simpler to perform than the integral operations necessary when going inthe

opposite direction as in the classical procedures of physical geodesy.

By taking for the covariance function a function that can be analytically continued
down to sea level, all difficulties of analytical downward continuation are automatically

avoided; such difficulties beset conventional reduction procedures.

These considerations help to understand why (4-1) is at the same time a generali-
zation of classical procedures, so to speak with built-in interpolation and vertical reduct-

ion, and an essential simplification.

There remains to be discussed why the present method gives the same results
with any of the data sets (2-21), (2-22) or (2-23) or with similar sets. The undexlying
fact is that least-squares collocation shares with least-squares adjustment the property
of invariance with respect to linear transformations both of the signal s p and of the data
X Invariance with respect to linear operations on field elements Sp 1is the reason why
the method determines a consistent gravity field, as we have seen above; and invariance
with respect to linear operations on the data X5 is the reason for obtaining the same

results with the different data sets mentioned, since (1-28) and (2-18) are linear integral
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operations. Cf. also (Moritz, 19702, pp. 12-13).

The equations of least-squares collocation are directly suited for high-speed
computation. The biggest computational problem involved is the inversion of the
matrix C for a great number of observations. For a given set of data x;, however,
such an inversion is to be performed only once for all quantities to be computed and

for all accuracy evaluations, as formulas such as (4-1) and (4-3) show.

5. Covariances

As we have just seen, the covarlances have to carry the whole burden of the
mathematical structure of the problems under consideration. They need, therefore, be
investigated more closely. This has been done in (Moritz, 1970a, sec. 4); we shall
summarize the relevant resultsand apply them to the present problem of the use of

gradients.

To ensure that all our computed quantities belong to one and the same gravity
field, all covariances that enter into our computations must be derived from a single
covariance function, for which we may take the covariance function of the anomalous
potential T,

K(p,Q) = cov(TP, TQ) = M(TPTQ) , (5-1)

defined as the average product of the T-values at two points P and Q, the average

being understood in a suitable way,

The covariance function (5-1) and the quantities derived therefrom are field
covariances: they express the statistical behavior of the anomalous gravity field and

should be carefully distinguished from error covariances, which express the statistical

behavior of observational errors; only the latter are considered in adjustment compu-
tations. Ci. the remarks concerning the covariance function of the gravity anomalies

in (Heiskanen and Moritz, 1967, pp. 267-8).
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The results of the computations do not depend strongly on the choice of the
basic covariance function(3-1) (as loﬁg as it is used consistently throughoutl), in the
same way as the results in adjustment computations do not depend strongly on the
weights chosen. Itis, therefore, possible to take for K(P,Q) an analytically simple

functon.

K is a function of two points P and Q defined on and outside of some sphere of
radius R (which we may take to represent sea level) that must be harmonic both as a

function of P and as a function of Q:

AK(P.Q) = 0 = AK(R,Q), (5-2)

where A;; means the Laplace opexator applied at the peint P. This follows immediately
from the definition (5-1). Furthermore, the function K is assumed to be rotationally
symmetric: on the sea-level sphere of radius R, it depends only on the spherical

distance ¢ of P and Q. Thus
K(PaQ) = K(:CP’ rQ: 1!)) H] ' (5"'3)

itis a function of the radius vectors, rp and IQ, of P and Q, and of the spherical

distance i between P and Q.

Such a function has a spherical-harmonic expression of the form

- R2 n+1
K(P,Q) = 112'—'0 kn g Pn(cos b)), {(5-4)
, PTQ
where the kn are coefficients.
For example, we may take k, = k1 = kz = 0 and
A
k = = for nz 3. (5-5)

n (n~1)}n~2)
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With these coefficients, the series (5-4) may be summed so that a closed expression

is obtained:
2 3
_ o 1
K(P,Q) = J:'I' [P(cos¢)(l+£n““)+—--sm b1 -
- ( ) cos z/)ﬂn—gﬁ 4
2
+ A( ) 0 ) cos i - 1 ] (5-6)
PQ
where
.2 1‘02 2 ,.%m
_ 0
L = 1-2 cos P + ’
[ () )]
" 2
M =1-L - 4] cos P, (5~7)
PQ

2
]

2
T
1+ L - 0 cos §
e

/
and A and ry are suitable constants. According to (Lauritzen, 1971), to whom this

function is due, it fits excellently global gravity and satellite data, with

r, = 0.9%45R,

(5-8)
A = 7.84888,

R being again the mean radius of the earth.
A simpler function which might also be useful in appropriate cases is
_
I'p T 2 IpT 2

KP,Q) = B PQ - TPQ 0 cosy + 1 5-9
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given by Krarup (1969), with suitable constants B and Ty

The equivalent, for the plané, of the spherical expression (5-9), is the function
2 2 2 “2—1
= - - - -
K(P,Q) C [(xQ xP) 4 (yQ yP) + (zP +zQ +b)" ] 4 G5-10)

with constants C and b. It is readily verified that this function is harmonic with

respect to P and Q.

Propagation of Covariances.- The law of propagation of covariances states

how the covariances between any two elements of the anomalous gravity field are
derived from the basic covariance function (5-1). Perhaps the easiest way to express

it is verbally as follows:
Let u and v be two quantities derived from T by linear operations. Then the

covariance between u and v,

cov (u,v) , (5~11)

is obtained as follows. Apply to the covariance function K{P,Q), considered as a
function of Q, the operation that determines the quantity v from T. To the result,
considered as a function of P, apply the operation that determines the quantity u

from T. The resultis cov(u, v).

An example will clarify this rule. Let

uw =T |, v = T . (5-12)

Then u is determined by successive partial differentiation with respect to x and y,

and v is derived from T by partial differentiation with respectto z.

Then, by the verbal rule just given, cov(Ty,, Ty ) is found as follows. Apply
to the covariance function K(P,Q), considered as a function of Q, the operation that

determines v from T, that is, partial differentiation with respect to z, obtaining
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32 K(P,Q)
BZQ

To this result, considered as & function

with respect to x and vy, obtaining

(%)

Thus the desired covariance is given by

a2

A
EBZQ

, T) =

c:ov(TXy .

BX'P' 3

- Putting x =Xy, ¥ ®Xgs Z

>x

we obviously have

P

3T
axi

%0

ox,
1

3%k (@,Q)

2K(
=

_ K,

of P, apply successive partial differentiation

3> K(P,Q)

Vo BZQ (5-13)

and letting i, j, k, 1 take the values 1, 2, 3,

3K (P, Q)

]

_ 3K(R,Q

Q)

Z‘)Xi

- O%g,pAx,p

32K(P,Q)

- R (5-14)

9P j.PQ
PK(P,Q)

%4, P %5, P, Q

3%K(P, Q)
0%, P 9%§,Q %%k, Q

]

Hxer, 0)
Bxi’ P axj , P an’Q BXI’Q
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Here we have used X, to denote coordinates x,y,Zz, as we did in sec. 2. Otherwise
throughout Part B of the present report x;(i=12,...,n ) always denotes measure~

ments, so that no confusion should arise.

These formulas give the covariances between T and its first and second partial

derivatives. Extensions to higher derivatives are obvious.

Sometimes linear combinations occur. For instance, the gravity anomaly is a

linear combination of T and 3T/3r:

rg = - 2L - u_]_%....'r (5-15)

(Heiskanen and Moritz, 1967, p. 89). Another example is represented by (1-25).

Thus let us, for instance, find

cov{Ag, ng )

ng being given by (1-25):

e L 1 -

We shall use the rule for the propagation of covariances as given above. Apply
to the covariance function K(P,Q), considered as a function of Q, the operation that

determines T,, from T by (5-16), obtaining

€
1 aZK 1 K
A A ey

IQ a @Q rQ BIQ
To this result, considered as a function of P, apply the operation that determines Ag

from T by (5-15). Thus we obtain
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1 azK 2 akK —

Q 3r arQ rPrQ arQ

f cov(Ag, ng) . (5-17)

In this way we are in a position to express all covariances that occur in the

geodetic use of gradients, in terms of partial derivatives of the basic covariance func-

tion K{(P,Q).

Finally we consider briefly how these partial derivatives are evaluated. K
K is given as a function of rectangular coordinates x,y,z. then the evaluation is
straightforward. A fully worked out example will be found in sec. 7; for another example

see (Moritz, 1970a, sec. 7).

If K is given as a function of three variables r » ¥ as in (5-3), then the

pr ¥
differentiations must be performed as

3K 3K BI‘P akK Bl’Q aK aw

Sxp = 5T5 p + 'BIQ %p + azb S¥p (5-18)
Now -
2 = 2 2
rp = x% + Vs +zg
2 -2 2 2
re o= x- 0+ + Z 5-19
Xp Xy T +z P
cos P = = 2P (23 yp YQ P‘2 Q - ,
+ -§—z +Z
T T Vi TIG TR
so that, by straightforward differentiation,
p . X Q. = ¢
3Xp r_ ' 3% ’
X 1; P (5-20)
Xp X
—é;d:_ T sin rg oS 7 QI‘
P P PTQ
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In this way, all occurring differentiations may be performed without any mathe-

matical difficulties, although the analytical work may be laborious.

QObsexvational Errors. - I the observations x; are errxorless, then all covar-

iances CPi and "Chij entering into the basic collocation formulas @-1), (¢-3) and (4~4)

should be field covariances as we have just considered.

I the observations x; are affected by random errors, then the covariances

Cp; remain field covariances, whereas the covariances (C,,

jj @re now given by

C.= (. + -
Ty = Gy D, » | (5-21)

where Cij are the field covariances corresponding to the obsexved elements, and Dij
are the error covariances of the observational errors. In the terminology of adjustment

computations, the matrix (Dij) ig the variance~covariance matrix of the cbservations.

The simple relation (5-21) presupposes that the errors are uncorrelated to the
anomalous gravity field. This will be true if the observations have not yet been sub-
jected to a preliminary collocation, for instaﬁce, a least-squares filtering. In the
latter case, the covariance matrix (ff;.lj) is to be taken from this preliminary collocaﬁon;

cf. (Moritz, 1969, sec. 9). This is in complete analogy to least-squares adjustinent.

6. Determination of Spherical Harmonics

The collocation method described in sec. 4 may also be used to determine

spherical harmonics from gradiometer measurements.

Let the spheri'cal harmonic expansion of the anomalous potential T again be
given in the form (3-3), which we shall write in terms of fully normalized spherical

harmonics (Heiskanen and Moritz, 1967, sec. 1-14):

= n A\ nFl[_ -
o=z s (3 | B R @120 A NNCRN] O

Then the "signal” sp in (4-1) is any coefficient &nm or Enm ; let us assume
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°p ~ E.Jznm * (6-2)
Then

Cp; = cov (&nm’xi )s (6~3)

cij = cov (X ,» xj) . (6-4)

x; being again any measured second-order gradient (or any other measured field element).

The computation of the covariances 61} has already been considered in the pre-

ceding section; it remains to study the covariances (6-3).

The spatial covariance function of T may again be expressed in the form (5-4):

az n+1l
K(P,Q) = 5k ( ) P (cos p) . (6-5)

Then we have by (Moritz, 1970a, p. 45)

k
— — - — n
coV{( @y » Oy ) = V(B » B ) = IRFT ¢
,cov(b?nm,&pq ) = COV(Enm-,qu) = 0
if p#n or g #m or both, (6-6)

cov(@ . » qu) = 0 always,

In the report just quoted, these formulas have been derived for the covariance
function of the gravity anomaly. It is, however, obvious that they are valid for the

covariance function of the potential as well.

Any gradient is obtained by single or multiple differentiation of T (or by a
linear combination of such derivatives), to be symbolized by DT. Thus from (6-1)

we get
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- 2 n+l .. Rym = Sym
DT =% T a [aan(rn+1)+ﬁan<rll+l . (6-7)

Let DT denote the gradient the measurement of which is x;. Then

jH

C

pi cov( O * DT)

- P p+i l:.... (ﬁpq - <§ ]
. D + 3¢ }
cov { “am’ 52y geo %q D\ 531/ * Eg P\ T

R
=5 5 PT1 [cov(&nm,ﬁpq)D (-——99—> + ,
P q |

il

S
+ cov(&nm, ﬁpq) D ( §q+1) :I
T

= ntl - = Rom
= a cov(anm,anm)D(;m) s

since all covariances between coefficients are zero except one, by (6-6). Thus we have

an+l “ﬁnm(e’k) \
Cp = 2asT ¥a D\ 7 av 1) - (6-8)
Since 2 (62
R y
cam - = Loty 8) cos mM
Lo+l v nm( ) e

is a simple function of r, 8, A, any differentiations with respect to r, § A\ are easily

carried out, e.g.,

2 ™ - —
d (an(e,)\)> = (n+1) (n+2)r (n+3) P €os mh,

arz rn+1

2 R (82N ap
27 Jame Yy L ~(nt]) nm .
yerel ( e ) mxr —— ginmi ,
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and the components in rectangular coordinates follow from equations such as (1-25).

For the determination of the coefficient Enm we need cov(B, , DT), which

is again given by (6-8), with R(8,)) replaced by S(6, \).

After these preparations we are ready for the application of the collocation formulas
such as {4-1), (4¢-3) and (4-4) for the derivation of spherical harmonics from gradiometer

measurements .

Random measuring errors are automatically taken into account if the covariance
matrix (6-4) is properly computed, in the way outlined at the end of the preceding

section.

Systematic effects can also be incorporated into our computations as discussed

in sec. 4.

The advantages of the collocation method over the conventional procedure described

in sec. 3 (Item C) are as follows.

1. Every harmonic is determined independently, without aliasing errors, since
the infinite series (6-1) is not directly used and, consequently, no truncation occurs.

Convergence problems do not affect the present solution.

2. The statistical meaning of the new procedure is transparent: itis an optimal
procedure in the sense that it gives the most accurate results obtainable on the basis of
the given data. The statistical behavior of the anomalous gravity field is properly taken

into account.

It is said to be a disadvantage of spherical harmonics in satellite geodesy that
their orthogonality properties cannot be used as efficiently as it would be desirable .
The collocation method takes full advantage of these orthogonality properties, in the form

(6~6), to separate the individual coefficients.

Combination with any other observations--from classical techniques such as direct-
ion, range and range-rate observations or from pew-techniques such as satellite altimetry
or satellite-to-satellite ranging--are straightforward because (4-1) can be used with
heterogenous observations as well, systematic parts being eliminated as discussed in sec. 4.
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7. Use of Profile Measurements

In (Moritz, 1969, sec. 6) we have discussed at length the use of aerial gravity
measurements along parallel profiles. Since the least-squares estimation formulas hold
for any type of measurements, also of different kinds, the formulas given there are also

valid for measurements of first and second order gradients along parallel profiles.

To keep our problem simple we assume, as we did in the case of aerial gravi-
metry, that the profiles are parallel straight lines; they need not be equally spaced, and
they may be at different elevations, Let t be the distance counted along the direction of
the profiles, such that the lines t = const. are straight lines perpendicular to this
direction; cf. Figure 2 in (Moritz, 1969, p. 26). Denote by xi(t) the measurement of
some field element {in our case, of some first or second order gradient), recorded
along a profile as a function of t. In (Morxitz, 1969, sec. 6), subscripts such as 1 or
j,j=1,2,...,n) liave labeled the profiles; now they label the different quantities meas-
ured. All n measurements xi(t) might, in principle, be performed along the same
profile; or they might be performed along different parallel profiles: the formulas are

the same.

The computational formulas derived in the previous report just mentioned may

be summarized as follows.

Denote by
Cij(t) = cov(xi, xj) _(7‘-1)

the autocovariance function of the measurements. More precisely, Eij(t) is the

covariance between the value of X; for the axrgument u +t and the value of X for

the argument u, u being any real number. Similarly,

CPj(t) = COV(SP, Xj) (7-2)

denotes the cross-covariance function between signal and measurement; more precisely,

CPj(t) is the covariance between sp(u +t) and xj(u ).
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consists of the field covariance Ci} (t) and the error covariance Dij t).

The error covariances for second-order gradients and for first~order gradients
obtained by the method of sec. 2 should be very much smaller than in the case of aerial

gravimetry, because there Dij (t) also includes the inertial noise which is now absent.

An Example. - This method will be illustrated by a simple example. We assume
two parallel profiles 1 and 2, the first at elevation zj, the second at elevation z3.

Along profile 1, the second-order gradient Tx is measured, along profile 2, the

y
first-order gradient T, is measured; these measurements are errorless.

This example differs from Example 2 in (Moritz, 1969, pp. 35-36) only by

different observational data; the geometrical configuration (Fig. 1) and the

Y

I )

Dy a,

D, — a

D1 ai

o 1
B
X
Fioure I

mathematical structure are the same. The solution is represented by equations (7-12)

and (7-13) on p. 36 of that report. Only the covariance functions are different because

of the different observational data; they will be computed now.
As the basic covariance function, let us take the function (3-10), with C = 1:

1

KB = = (7-8)
with
2
D' = G- x) (g v+ Gy gt b)Y (7-9)
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The assumption that these covariance functions do not depend on u but only on
the argument difference (u +t} - u =t means that our measurements x;(t) are

considered as "stationary stochastic processes”; ¢f. (Meissl, 1970).

Now we form the Fourier transforms of the covariances, the spectra

— = ~ipt
5,,0) = { ¢, e dt,
o (7-3)
" iwt
Spy(0) = £ Cpy® dt
Next we compute the "system functions”
Lo g D
HPj(w) = El Sp; @) Sij @), (7-4)
i:

= (-1 - o
where Sij( )(w) are the elements of the matrix inverse to the n X n matrix with elements

§ij (). Applying the inverse Fourier transformation we obtain the "weighting functions

1 F iot
D) = 5o “f Hp ) ¢ %" do , (7-5)

and the optimum estimate of the signal sp(t) is finally given by

n o
5p(0) mjz:;l‘ :/' by, (€ - )x (@) da - (7-6)

For the validity of this method it is essential that the covariances be appropriately
computed. If the measurements can be considered as errorless, then all covariances
are directly given by the law of propagation of covariances as discussed in sec, 5, If
the measurements are affected by random errors, CPj (t) is again a pure field covariance,

whereas now

Cij(t) = Cij(t) + Dij () (7-7)
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Both the example and the covariance function have been chosen for simplicity; they are

obviously not very realistic.

By differentiation we find:

2
_ o K _ 3 - _ -
cov(T, Txy) S%53Yp 5 (XB XA)(YB YA) N (7-10a)
2K _ 1. -
cov(T, Tz) =Sz - D3 (ZA"l' zB+ b}, (7-10Db)
B
4
COV(TX ,TX ) = - Ba Kax > =
v A YA BB
3 15 2 15 2
= - B mx) - Tyt
® p/ B AT p7 VB A
105 2 2
| 3K 15
cov(T ,T ) = = & ~x )y v, )z, tz_+Db), (7-10d)
xy' z 3, 3V, 3%p D7 B “A’VB "A"YA "B
621( A 3 2
cov(T , T ) = = - — + —= (z,+ z_+ b) . (7-10e)
z' Tz vz, d7p DS A B
Substituting
A = P1 ’ B =P ;
Xp = Xp T L. YT YA T B
2 2. 2 2
D] = t+a) +@tz +h
wé obtain from (7-10a)
c. .t = 2Lt | (7-11a)
Pl 5
Dl
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substituting

2
X T EpA T Ty YpT YT TRy
2 2 2 2
D2 = t + a, +(zP+ zz-l— b)
we find from (7-10b)
Cor() = - = @, + 2+ b) ; (7-11b)
p2y’ D3 P 2 ?
2
substituting
Xp T Xy T t Vg~ ¥\ T 0;
2 2
D11 t -%-(Zzl-i- b)
we have from (7-10c)
2
C..@ == LN - (7-11c)
11 D 3 D 7
11 11
substituting
A = P2 y, B = P1 ;
Xp© Xy S U, YpT VT mas
-2 2 2 2
Dlz =t + a +(zl+ zz-z— b)
we find from (7-10d}
R -1 . -
G et z, + b); (7-11d)
D12
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and substituting
XBTXp Tty VgV, T 0;
D> = 2 + (224 +b)?

22

we finally obtain from (7-10e)

. 3 2 -
sz(t) = “IS-‘? + 5 g (2z9 + D)y . (7-11e)
22 22

For the notations cf. Figure 1; note that a, a,, ao, being measured in the xy-plane,
are shown in true size, whereas the spatial distances D 1’ DZ’ D 1 are shown as

projected onto the xy-plane.

‘ _,Now we can form the Fourier transforms of these covariance functions to get the
| spectrg SPl(w)’ SPz(w), Sll(w_)’ Slz(w)”’ and Szz(w).- Then we find le(w) and” I—IPz(w) |
. -by.eq.. (7-13) of (Moritz, 1969, p. 36), which are nothing else than our present eq. (7-4) e
specialized for the example under consideration, and. hPl(t) and th(t) by (7-5). Finally, .. "7

(7-6) gives T as the signal to be computed. |

49




APPENDIX

Error Variances and Covariances

in the Presence of Systematic Effects

We shall derive the modification of the formulas (4-3) and (4-4) for error variances
and covariances of the result when systematic effects are present, arriving at (4-9).

Equation (4-1) may be written
yp= B (a-1)
with

(a-2)

we are using a matrix notation similar to the notation in (Moritz, 1969, p. 11), writing

yp for the estimated value of sp to distinguish it from the true value sp.

If systematic effects are present, then in (A-1) the observation x is to be re-

placed by the centered observation

£E=x- AX, (A-3)
so that

yp = hp&-AX) (A-2)
with l:le again given by (A-2).

The error of estimation is then the difference true minus estimated value:

and by (A-é:),
€p= Sp- ho(x - AX) . (A-5)

Let us now introduce the true values of the parameters, X!, and the corresponding
true values of the centered ¢gbservations, g’, for which we have

£'= x-AX", _ (A-6) -
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in analogy to (A-3). Substituting
x =g+ ax &-7)
in (A-5) we find

et . (A-8)
€p=5p” Eph Thpa(X - X).

The estimated values of the parameters are given by (4-6), which may be abbrev-

iated as
X = Hx, (A-9)

with ) _
AYTATCTE. (A-10)

s
i
=
—
O

Thus by (A-"7) ’

and by (A-10) ,

HA =1 (A-11)
( I denotes again the unit matrix), so that
X'-X=-Ht', (A-12)

which is substituted into (A-8) to give

e =Sp-hp(I - AIME . (A-13)
With the abbreviation
hp = hp(L-AH (A-14)

we may write this as



sp - hp& (A-15)

€p = .
Thus
€peq = SpsSq - Sphgt’ - hp&isg + Epé’é’Tlag,
and on forming the mean value:
-T - T - =.T
°pq = Cpo " Eplg - EPQQ thpyChg o | (A-16)

Now

_— e =1 A Tmel, 1, Teml
B, = hp(-AW = c,8 t[1-2a@TE ay1aTe ]

is substituted into (A-16) to give, after some straightforward manipulations,

. _....1 T""”l ,,,1 T..,.._]_l T
#Cpny " C,y C .[I"A A A) T A A-1
% “tpg T =p = I-AATC A A C Lo > (A-17)

which is (4-4) with C o replaced by (4-9); and sétting Q =P gives the corresponding

result for the error variance my .
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