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ABSTRACT

The following quantities are considered: geoidal undulations N, gravity
anomalies Ag, deflections of the vertical Av, a fictitious surface density Ag,
the vertical gradient of gravity anomalies Aa. These quantities are interrelated
by linear operators having the spherical harmonics as eigen-functions. If the
covariance of one of these quantities is specified, that of the others can be computed.'
Thereby rigorous bounds for the ratios of the different variances can be established.
These bounds demonstrate that Ag, Av, A are quantities of equal smoothness.
N is smoother and Aa is less smooth. These smoothness properties are important
in various approaches to determine the earth's potential. Though the earth’s disturb =
ing potential can be represented by any of the above quantities, there are differences
in the stability of the resulting solutions. Attention is focused on potentials obtained
from a combination of satellite information and gravimetry. In that case the intro-
duced quantities are considered as residuals with respect to a geoid resulting from
the adjusted lower degree harmonic coefficients. It is shown that the covariance of
any one of the residual quantities tends to have certain theoretical properties. These
are a predetermined number of zeros as well as negative correlation at certain pre-
determined distances. A comparison has been performed between the gravity anom-
aly residuals with respect to a low order geoid and mean 5° x 5° block anomalies
having uncorrelated errors. Compared are the resulting errors in geoidal undula-

tions and deflections of the vertical.
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1. Introduction and Summary

It is a well established fact that satellite methods are very capable of
yielding good information on the lower degree harmonics of the earth's potential.
Details of the geoid or the gravity anomaly field can at the present time only be
brought out by gravimetric methods. The reason why these details cannot be ob-
tained from satellite perturbation is two-fold. First the variations of gravity at
the earth's surface or close to it are attenuated at the altitude of the satellites.
Second the perturbed motion of the satellite is a two-fold integral (solution of a
second order differential equation) over the gravity disturbances along its path.
This integration process generally favors the low frequent part of the anomalous
gravity field. Low frequent gravity variations have a greater impact on the sat-
ellite motion than the short period variations. Exceptions are certain resonance
effects. They allow to determine certain isolated coefficients of higher degree.
However this does not contribute significantly to the knowledge of regional gravity
variations. Those can only be obtained from gravity measurements. From gravi-
metry alone the low degree harmonic coefficients of the earth’s potential are not so
good determined at the present time because of the unsurveyed areas where no or

only little gravity information is available.

Thus a combination of gravimetric and satellite information is the most prom-
ising approach toward a better knowledge of the earth's potential. Numerous com-
bined solutions have been computed. The most recently published is that of Gaposchkin-
Lambeck [1970]. Any of these solutions yields spherical harmonic coefficients com-
plete and with good accuracy up fo and including a certain degree N. Disregarding
possible higher degree harmonics with lower accuracy as well as the aforementioned
isolated coefficients one can compute a geoid based on the harmonics up to and in-
cluding degree N. One can compute gravity anomalies with respect to this geoid.
They are generally smaller than the original gravity anomalies with respect to a
reference ellipsoid. The original gravity anomalies can be split into a low frequent
portion associated with the geoid based on the coefficients up to N and a residual,
mostly high frequent portion. The residual portion is unknown in areas with no

gravity coverage. Substituting the low frequent part for the whole anomalies means
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that an error equal to the residual part is committed. Thus, it may be desirable to
know about the statistical behavior of the residual part. This may not only be of
interest for the unsurveyed areas. Replacing the true anomalies by the analytically
and computationally simpler low frequent portion may be advantageous also for the
surveyed areas provided that the error is tolerable for the purpose of using the

anomalies.

The main objective of this report is to study the statistical behavior of the
residual anomalies. It is a widely adopted rule of the thumb to assume that the resid-
ual anomalies after removal of the harmonics up to degree N have statistical proper-
ties comparable to those of uncorrelated B{;?i X 1—81%.; block averages having the

same variance as the residuals. It will be shown that this is only partially justified.

First it will be shown that the covariance of the residual anomalies has certain
theoretical properties which are quite general and hold for a wide class of stochastic
" processes on the sphere, if the contribution of the harmonics up to and including N
is removed.
These properties are:
1. The covariance has at least N+ 1 distinct zeros in

the interval 0 < 3 < 180°%;

2. The covariance is negative in the neighborhood of the
smallest positive zero of B (cos ) (i.e. the zero
for which cos § is largest and therefore closest

to 1.)
The covariance is positive around the second smal~-
lest zero, negative around the third smallest zero
and so on.
Property (1) is a rigorous one. Property (2) is true only under certain addi-
tional conditions. Moreover, property (2) is most likely to hold for a few of the

smallest zeros. For the larger zeros it may fail to hold.

These properties can be verified by looking at/"covariances found in the litera-
ture. Familiar are the two zeros of a covariance after removal of the zero and first

order degree harmonics which bear no meaning for many questions within physical

geodesy.



Rapp [ 1967] has encountered negative correlation between neighboring 15° x 15°
means of residuals. This is in agreement with property (2) if one considers that at
the time of this investigation satellite methods yielded a satisfactory accuracy only up
to N =8. Under this assumption the covariance of the residuals should be definitely

negative around = 16°.

In this report we base our numerical estimates mainly on the Gaposchkin-Iambeck
[ 1970] solution. Though Gaposchkin and Lambeck give a complete solutionup to N =
16 and in addition several isolated higher coefficients, we take N =12 since we feel
that the relative accuracy for the higher harmonics is inferior. As the basic gravity
anomaly field we use that given by Kaula [1966] and which comprises averages over
areas comparable to 5° x 5° blocks at the equator. This field has also been used by
Gaposchkin-Lambeck for their statistical analysis.

The 5° x5° mean anomalies with respect to the international ellipsoid have
an overall standard deviation of Viﬁ =17 mg. If we compute gravity anomalies, not
with respect to the ellipsoid but with respect to a geoidal surface derived from the
Gaposchkin-Lambeck harmonic coefficients up to degree 12, the residual anomalies
have a standard deviation of about VIS_O =12 mg. From the theoretical properties (1),
(2) above we expect a covariance of the residual anomalies which has value ~ 150 at
¥ =0, which is negative around = 11°, positive around 25°. It is otherwise expected
to ocsillate along the abscissa. The covariance estimated in section 6, Table 11, has

indeed these properties. See also the figure on page 84.

The question is now the following. How do these anomaly residuals with respect
to the Gaposchkin-Lambeck [1970j geoid, which residuals in unsurveyed areas have to
be regarded as errors, compare with purely gravimetrically derived block means
having errors of about 6 mg and no significant error correlation between blocks. An
accuracy of 6 mg or better can be obtained by airborne and shipborne gravimetry

methods.

If we take the errors in the resulting geoid as a basis of comparison then we
have to say that the two sets of anomalies cause about the same error in the geoid.

This error is about 3-4 m. The geoid depends mainly on the low frequent portion of



the anomalies and these are determined very well by satellite observation. Though

the anomaly residuals aré of large standard deviations (12 mg) their impact upon geoid
errors is much smaller due to their peculiar correlation which is significantly negative
for certain distances. This peculiarity of the correlation is, as we have indicated above,
nothing but a consequence of the fact that the influence of the lower degree harmonics

has been (nearly) removed.

Uncorrelated block errors of 6 mg have still some small low frequent portions
and those cause errors in the geoid which, relative to the error standard deviation,

are larger.

The undulation of the geoid should however not be taken as the only basis for
comparison. In inertial navigation the deflection of the vertical or in other words the
inclination of the geoid is the most decisive quantity. A comparison of the two sets
of anomalies performed on the basis of the deflection of the vertical gives a quite dif-

ferent picture.

First, we have to clarify that the deflections of the vertical which we compare
are smoothed versions of the true deflections. They are smoothed in the same way as
the underlymg anomalies are, namely averaged over 5° x 5° blocks. The same is true
of the geoids discussed above. However, whereas the geoid varies little within 5° x 5°

areas, the deflection of the vertical shows much more variation.

The Gaposchkin-Lambeck geoid which has 12 mg correlated 5° X 5° mean anom-

aly residuals has a residual error in the smoothed deflections of about 3".

Mean 5° x 5° anomalies with uncorrelated errors of 6 mg yield an error in the
smoothed deflections of 1"5. Thus we see that the slope of the geoid is by a factor of
two better than in the case of Gaposchkin-Lambeck [ 1970] geoid with harmonics up to
and including degree 12.

This is an outline of the main results of this report. The reader will find the
derivation and a more detailed discussion in Part III. It remains to outline the purpose

of Part I and II.

Part I contains a collection and unified presentation of the necessary mathematical

tools. The geodesist is sometimes led to the presumption that as soon as a problem
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is specialized to the sphere, everything is a consequence of the special properties of
spherical harmonics. In many treatizes one finds formal manipulations involving spher-
ical harmonics which prove or demonstrate the same principle over and over again.

This principle is that of isotropy or in other words the complete rotational symmetry

of the sphere. Mitller [1966] gave a treatize of spherical harmonics starting from

this principle. Some of the ideas contained therein héve been utilized for our presenta-
tion. The notion of what I call an isotropic operator (and what may be called by any
other name elsewhere) having the spherical harmonics as eigen-function, greatly simpli-
fies in my opinion most manipulations with spherical harmonics. The treatment also
clearly shows the limitations of the approach. As soon as a problem looses its com-
plete rotational symmetry the usefulness of spherical harmonics is diminished.

The spectral decomposition of a stochastic process on the sphere involves spherical
harmonics only if the covariance has the property of distance dependence. That means
it depends only on the distance between two points. Distance dependence is in agree-
ment with the rotational symmetry since two pairs of equidistant points can be brought
to coincidence by a rotation. Such isotropic stochastic processes can be decomposed
into uncorrelated harmonic components. Zero correlation between harmonic compo-
nents is not always self-evident, especially dealing with satellite problems. On the
contrary, correlation between different harmonics has often been verified. This ob-
servation shows that our model in Part IIl is a highly idealized one. Dropping the assump-
tion of zero correlation between harmonics would, however, mean to abandon the iso-

tropy property. The treatize would become much more involved.

Part II does not claim complete originality either. It is well known that the
earth's disturbing potential can be represented by many different quantities like geoidal
undulations, gravity anomalies, deflections of the vertical, a fictitious surface density,
vertical gradient of gravity and many others. If these quantities are regarded with
respect to the sphere and if the linear operators relating most of them are identified as
isotropic operators then all further formal proofs are much simplified. The eigen-
values 6f the interrelating operators yield much more information than is usually
utilized in the geodetic literature. First they allow to set up rigorous bounds for the
mean square norm ratios of any two quantities. In case a stochastic process model

is employed,the bounds hold also for the ratios of the standard deviations. Second, the
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qualitatively well-known fact that the geoidal undulations are much smoother than the
gravity anomalies which in turn are smoother than their vertical gradients can be
made precise in a quantitative sense. An absolute yardstick of smoothness can be
introduced. It shows for example that gravity anomalies, surface density and deflec-
tions of the vertical are all quantities of equal smoothness. Their use in representing
the.earth's disturbing potential results in no differences in the encountered stability
problems. A preference may only result from the viewpoint of computational conven-

ience.

I have also tried to possibly clarify the inter-relations of the operators transfer-
ring the quantities into each other with what I call narrow-sense smoothing operators.
By this I mean operators which remove or damp irregularities of a rapidly var ying
function. An example is the averaging operator over a certain area. If such an op-
erator happens to be isotropic, like for example the averaging operator over a circu-
lar cap, then its interplay with the other isotropic operators is quite simple. The
reason is that all isotropic operators commute. One consequence is that the above
indicated bounds for the norm ratios (or standard deviation ratios) hold also true for

the (narrow-sense) smoothed quantities.

Though I give full credit to previous workers in this field, from which I men-
tion only Cook, Molodensky, Jeffreys, Moritz, De Witte, for establishing the spherical
harmonic relationships from which everything else can also be deduced, I think that
the presentation given here is helpful for a better understanding because it yields more

insight into the underlying mathematical structure.



Part I

Mathematical Background



2. Hilbert spaces of functions on the unit sphere I

It is not the purpose of this section to theorize. A few facts taken from the
theory of Hilbert - (and Sobolev - ) spaces of functions are specialized to the unit
sphere [. The presentation is mathematically not rigorous. Proofs and arguments
are only presented if they are formal and short. This and the following two sections
shall support the understanding of the remainder and shall not introduce unnecessary
sophistication.

Denote by &, 7 ... unit vectors, i.e. points on I. Consider the totality of real
functions f(E) which is quadratically integrable on I. These functions form the Hil-

bert space H . The square root Hf H Hp of the following expression.

2
lelly = [£®?2dr(e) @-1
T

which is finite per assumption, is called the Hn - norm of f(§). For any two func-

tions f(£), g(E) one may form the inner product

€ gy = JH(EB(EAT(E) . 2-2)
r

Then apparently

£ H, = V(&) @ - 3)

If @, g)I_I =0, then f and g are called orthogonal. The geodesists usually
r
deals with functions out of H,, in terms of spherical harmonics. Denote by Spa (E)

n=o, 1,... m =-n,..., +n a system of orthogonal and normalized spherical har-

monics. Then
47 f =p, m=
Isnm(g)qu(g)dr(g) = 0 e;)sren P, m=q

r

The S, ,(§) form then an orthogonal system of functions in H, having equalnorm

I Suall = Var.



Remark: The reader should not be confused by the way the spherical
harmonics are indexed. We have 2n + 1 harmonics for each n as required. We
shall never need the explicit form of a specific harmonic. So we may index them
in any way.

If we have an orthogonal system of vectors e,, €, €3 in the ordinary three-
dimensional Euklidean space and if the = have equal length \\ e, H = || ey || =

” €3 ” = g, then any other vector x of finite length || X ” can be represented

in the form

X = x,e, * xzez + Xxzej3

with
L
xi = 0 2 (x, el)
whereby
2
"x” = 023x% + x3 + x3)
The situation is formally the same in the Hilbert space H~ .  Any function of "finite

length", i.e. any quadratically integrable function (any function of H ) can be

expanded as

® +n
f(g) = = T f3,5..(8) 2-4)
n=0 m-=-n
with
1
fw = T7 & Swdy 2-3)
’ r
hereb
whereby ’ . tn
£ =47 % T f3, (2 - 6)
Hl" n=o m=-n

Returning to our three-dimensional anologon, we may say: any triplet of numbers
X,, Xz, X3 gives rise to a vector x givenby x =x,e, * Xz€; + Xg€s. In
H, the situation is similar. Any sequence f,,, having the property

s 2, <o
n,m



[} +n

(note the abbreviation ¥ for I L ), gives rise to a function f(g) given by
n,m n=o0 m=-n

(2 - 4) and having norm given by the square root of (2 - 6).
We say the S,,(€) form a complete orthogonal and normalized basis in

H . The relationship (2 - 4), (2 - 5) shall be abbreviated in the future as

£~ fa, 2-7

Iff ~f,, and g ~ g, then
(f’ g)Hr‘= 4T nz’:m fnngnn . (2 = 8)

This is sometimes called Parcevals' relation and has its well-known anologon in

3-space; namely, x, y) = || x|| . ||y || cos&x,y) = £32@&x,y, + xzyz + xaya).

Functions from Hj need not be finite everywhere. The relation (2 - 1) re-
quires only the finiteness of the integral over the squared function. Functions from
H, need notbe differentiable either. We are therefore interested in finding sub-
classes of functions in H, which are smoother and better behaved in some sense.
There are many ways in singling out such functions. We prefer the following ap-

proach. Consider the class of functions f ~ f,, in H. for which not only
2 £3
I £lly, = 47 5 2. <

but also

47 £ n33 <o
n,m

Since n? <n(n+1) < 2n3, we may equivalently require

2
Iell, = 4 { 13, +ngmn(n+1)f; } <o @-9)
r ’

As already indicated by the notation ” £|| y! Wwe comprise the totality of
r‘
all these functions to another space H;. . Itis also a Hilbert space with norm
given by the square root of (2 - 9). The inner product forf ~ f,,, 8 ~ 8

would then be
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& 8y = 47 {£y080 + & 0(+1) fo1g8an } (2 - 10)
r n,m

The functions in H;. are certainly smoother than those functions in H which are
not in H,'. . The coefficients of the higher harmonics taper off more quickly. In
fact, from (2 - 9) follows that at least lfm,| < “ f “ H|1" / (V&7 . n). Functions
from H;. need not necessarily be continuous. However, they have the following
remarkable property. They possess generalized derivatives of first order. Before
discussing this we make a short vector = analytical digression.

Let f(E) be a differentiable function on T'. Then we denote by

Grad f(g)"

its surface gradient. Itis a vector, tangential to ' and pointing mto the direction
of the largest increase of £(€). The length of the vector Grad £(g) is equal to the
rate of increase of f(§). i

If one extends £(§) to the whole 3-space (except the origin) by put-
ting

f(x) = f(x &) = £(§)

then Grad f(€) coincides with the usual gradient taken atx = g

Grad f(g) = grad f(x) x=E (2 -11)

If f is twice differentiable then we can also apply the so-called surface Laplace

operator toward f(g). We have then

Lap f(g§) = Div Grad f(€) 2 - 12)
i.e. the Laplacean is the (surface = ) divergence of the surface gradient. If we
extend f(E) in the same way as above then Lap £(§) equals the ordinary three-
dimensional Laplacean taken at x = €. Expressions for Grad, Div, and Lap in
terms of differential geometric quantities are found in most textbooks on differential

geometry. The geodesist may wish to consult Hotine (1969) or Strubecker (1969).

_11_
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There are many interesting vector - analytical integral formulas involving

these quantities. We present a few, specialized to the whole sphere T.

ff(Grad f, Grad g) dT = - [f Lap gdT' = - [g Lap fdT

r r
(2 - 13)

£(g) = -;ITJ'f(n)dF(n) + le j‘(Grad(Mm Egn_l), Grad f(n)) dI'(n)
: %

r (2 - 14)
2(8) = o4 ftm) -7 [ 20 ) - Lap £(m) ar () @- 15)
r r

These formulas are consequences of the so-called Green's formulas. Let
B be a subarea of T' and let 3B denote its boundary. Let g be the arc length along
the boundary and let the unit vector v be tangential to I' and normal (outward) to

B. Green's first formula is then

f(Grad £, Grad g)dl = [f(Grad g, v) dg - [f Lap g dT (2 - 15a)
B 3B B

Specialized to the whole sphere B =T this yields already (2 - 13). If one puts

g(n) =212/ |€n| ), where € is now a parameter, if one verifies Lap g(n) = 1, if
one lets B be the whole sphere except a small circular cap around € then one ar-
rives in the usual manner at (2 - 15) by letting the cap contract toward § . (2 - 14)

is in a similar way obtained from Green's second formula:

[ Lap g - g Lap £)dT = [ [{(Grad g, V) - g(Grad £, v) ]dg (2 - 15D)
r 3B

We return now to our functions of H:, . If£(€) out of H:-, happens to be dif-
ferentiable, then Grad f(x) shall have the usual meaning. However, for any func-
ton f(g)~ f,, in H;. there exists a (surface - tangential -) vector function Grad

_12..



f(€) which acts in many ways like an ordinary gradient and is "squé.red i'ntegr‘abie'-' e
fulfilling: |
[Grad £, Grad £)dT = 47 T n@+1i3, < = @ - 16)
r n, m

Thus from (2 - 9) and (2 - 5) specialized to f,, we get

e —— ———be e - S s - B et ——— o ——

2
£l Y = {[gfdl"]a + r‘["(Grad f, Grad f) dr' } 2-17)

. .yt .
Moreover the inner product in H, can be written as

¢, g)H1 = { J‘fdrj'gdr + [(Grad £, Grad g) dr} (2 - 18)
r
T r r

Let us motivate formula (2 - 16). Recalling from the theory of spherical harmonics
that
Lap Snn(g) = -n(n+l)snn(g) (2 -19)

we proceed in the following formal way. From
HE) =T f1uSm(8)

we derive by differentiation
Grad f(g) = nzrnf“ Grad S,, (§) (2 - 20)
Now by (2-13) and (2 - 19)

[(Grad S,,, Grad S;,) dT" =- [Sas Lap Sy, dT = n(n+1) [S,,8,,dT
T T r

{41[ n(n+1) forn=p, m=q
=10 else

Thus ( )
47 n@m+1) forn=p, m=q
[Grad S,,, Grad S,,)dT = {o else

r

@ - 21)

- 13 -
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Y

From (2 - 20) and (2 - 21) the formula (2 - 16) follows formally in an easy way, by

inserting (2 - 20) into the left-hand side of (2-16). The justification of this formal
1 . .

approach as well as the extension to those functions of Hp  for which (2 - 20). is

problematic is a more difficult mathematical task which will not be undertaken hc_are.

We mention that formula (2 - 14) holds for all f from H:. . Generally but
loosely speaking, the generalized derivatives act like ordinary ones if they are in-

volved in certin integrals.
Formulas (2 - 20), (2 - 21) show also the following. If we define the surface

tangential system of vector functions U, by

1
Unl(g) - VE(n—_i—_—Iy Grad Snl(g) (2 -. 22)
then the relation

47 forn=m, p=q
JUaa» UpddT = {9 else (2 - 23)
r

holds. Thus the U, ,(§) may be viewed as a orthogonal and normalized basis in a
space of vector functions tangential to . Call this space Ul" and define it by all

vector-functions representable in the form

u(g) = I U, Uy,u(E) (2 - 24)
n,m

with 2
” u ”U,. = 4" znnufn < = (2 = 25)

(Note that the u,, are scalers and not vectors).

UI" is then a Hilbert space. Itis the space of all generalized surface gradients of
functions from H:. o

Given a sequence u,, of constants for which (2 = 25) holds we get a vector

T emes

-l4~



function u(g) by (2 - 24). Can we construct a function f(g) ~ f,, in H for which
Grad £(g) = u(E)
holds? Very easily. Put

u
fan = VR—I;%_——D (2 - 25a)

Then by (2 - 25)

47 T n@+1fE =47 T ul <o
n,m n,m

and

Grad f(E) = Grad T £,,.5,,(8) = T f,,Grad S, (§)
n,m n,m

= 2 fn- bn(n-*-l)Unu(g) = z:dnnUnu(g) = u(g)
n,m n,m

The norm || u ”U in Ul" is given by
r

2 : |
lull, = [, wdr @ - 26)
ror

This follows from (2 - 23) and (2 - 24). The inner product in Up is given by

@, v), = J@, v)dar (2 -27)
r
From (2 - 17) we have .
2
lellye = (ftdr)® + [[Grad £ (2 - 28)
r T r

If we call I'-iz. the subspace of H,’. with the property that all its members f ~ f,,
fulfill



then we see that H:, and Ur are isometric:

”f ”H,'. = ”Grad f ”Ur' , (, g)H;’ = (Grad £, Grad g)Ur'
(2 - 29)

Remark: (a digression). The space Ur does not coincide with Wl" , the space

all surface vector functions w(§) an [’ for which

2
lwll. = [w(g), w(E))dT(g)
v r

is finite. Only a vector function u(g) which is the surface - gradient of some f

in H;. is in Ul'" If u(g) is differentiable, then
Rot u(g) = 0

is a sufficient condition for u(g) to be in Ul"' Ul" is some sort of completion of such

functions. U (E) = Grad S 5 () /Yn(@ + 1) is a basis in Up
on
Likewise one can form a space V, which shall be a completion of differentiable

vector functions v(g) fulfilling
Div v(g) = 0

One can show that the vector - functions V,, (§) =€x U,,(€) form an orthogonal and

normalized basis in VI‘ and that Wl" consists of all functions

W(g) = U(E) + V(g) ’ u€U1", Ve VF

In other words, Wl" is the direct sum of its (orthogonal) subspaces Up, Vp.

We consider one more Hilbert spaceon I'. It is the subspace of Hl" and

also of H:, for which

2
llfHng = 47 {ffo t I @ (n+1))2ff,} <w (2 - 30)

- 16 -



\\ f lhz will then be the norm of this Hllbert space H?, " The inner product may be
formed accordingly. Hlf consists of all functions in HI’ for wh1ch the Laplacean

s R

exists in a generalized sense and is squared integrable. The squared norm

(2 - 30) may be written as

2
£ HH‘,‘ = [ [fdr]® + i[:(Lap £)3dr (2 - 31)
r

This may be formally motivated in a way analogous to that described for H:, . =,

For functions of H,z1 all vector analytical formulas which have been ]isfed |
hold true. Moreover functions of H,a-'. are continuous and thereforg bounded. Con-
tinuity can be derived from (2 - 15) or also from the spherical harmonics series.
The argument for the latter approach runs as follows:

From (2 - 30) it follows that

fra = O( 2 ) (2 - 32)

Together with

Sa.(5) = V2n+l. (2 - 33)

(see Milller (1966), Lemma 8 on p. 14) we see that the series of continuous functions

£(E) = % fap Sua (8)

is absolutely and uniformly convergent. Hence f(§) is continuous.
(2 - 32) shows again that the functions of H:‘. are smoother than those of
H;. . We could now go on and define further Hilbert spaces H,'f. with the
property that
2 K .2
It = 47{f3+ 3 @a+n*e, | <= (2 - 34)
Hp n, m

These spaces certainly contain smoother and smoother functions. We shall not

need them explicitly for k> 2.
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What we shall be interested in is to identify some linear operators from

k - ; .
Hp, into H':.*e or H:f. ® for some £ = 0. We shall find some of these operators

in the next section.

Thereby we shall sometimes use the following subspaces of H::

consisting of all functions f ~ f,, in lef for which f” =0.

ﬁk
r

A% consisting of all functions f ~ f,, in Hl]f for which fo, =f; |

f10 = f1,1 =0

- 18 -



3. Isotropic linear operators on I.

We consider in this section linear operators transforming functions on the

unit sphere into other such functions. We write this symbolically as

g = Lt @-1)
or sometimes as:

g(g) = L(emf (n) (3 - 1a)

Notation (3 - la) is suggested by the special case of an integral operator

g(e) = [K(5m) £(ndl(n) (3 - 1b)
r

We shall be particularly interested in operators with the following property. Denote
by U an orthogonal 3 x 3 matrix. Define the linear operator RU by

Ry (& m) £n) = £(UE) @-2)

We require now of L that it commutes with any RU for arbitrary but orthogonal U:

RUL = LRU 3-3)
In other symbols
L((UE) n) f(n) = L(&m) £(Un) @ - 3a)

If we visualize the function f(g) as a topographical surface over I, then the
relationship (3 - 2) transforms this surface by rotating it around . 'The shape of the
surface is not altered. Application of L toward the rotated surface shall produce
the same result as application of L toward the unshifted surface followed by the
rotation. It is clear that L must have certain symmetry properties in order to ful-
fill this requirement.

In order to give some name to these operators we call them isotropic on TI.

The class of these operators has the following remarkable characterization. The
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spher1cal harmonics form a complete system of elgen-funcuons The elgen-va]ue

R

belonging to S,, (§) depends only on n and shall be called An. In symbols K

L(E,N) Sm (M = An S1a(8) (3~‘ 4)

Denote by € .7 the inner product of € and n: §.m = coS zp,(y..-angle g
between € and 7). A special sphencal harmonic of degree n is then given by :

P, (cos ) = P,(§.7m), where P, (t) is the usual Legendre polynomial. Pn(g 77)

is a spherical harmonic in § for fixed n and also vice versa. Since s,,,(g) need

B e,
s s

not be normalized in (3 - 4) we may insert

San(E) = R(L.5)

into (3 - 4). If we afterward put { =& and observe P, (€. g) = P {l) = 1, we get

A = L(S,m)Pa(E-M) 3-5)

We shall verify that any operator having property (3 - 4) has property @3 - 3a) From
(3 - 4) it follows for £(€) ~ £y ’

Lf =L n)i:mf”S“ =n,sz“ LS., =nz,:m As B San
Thus
L(E,n)EM) = T ApfySu (8) (3 - 5a)
n,m

Replace g by UE, then

L(Ueg), n)f(n) = 0T Mo fr.5:22(UE) (3 - 5b)

On the other hand
L(E,n) £(Un) = L(E,n) E f,,S;,(UnN)
n,m

Now we utilize that (cf., Muller, (1966) )
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+n p
Soa (Un) = Iz anmsnp (77)
p=-1n

Then we deduce in much the same way as above that

L(gvn)f( UT]) = z }‘nfnmsnn(Ug)
n,m

which coincides with (3 - 5b) and shows that (3 - 4) entails (3 - 3a).

The reverse is also true. At least after exclusion of pathological operators,
(3 - 3a) entails (3 - 4). The proof given in Mdller (1966) for integral operators with
kernels of the form K(E.7n) can be modified to cover the more general case of an

operator fulfilling (3 - 3a). However this will not be done here.
We give now examples for isotropic linear operators.

We mentioned already that the surface Laplace operator has the S, as
eigen-functions with eigen-values A, = - n( + 1). The Laplacean is therefore

an isotropic operator on I.

We consider integral operators (3 - 1b) where the kernel K(g,n) depends
only on the distance Ig '77| or, equivalently, only on €.7n (inner product:
E.n = cosy, ... angle between E,n:

g(g) = [K(g.n) £(n)dT(n) @3- 6)
r

The property (3 - 3a) is readily verified

g(Ug) = [K(UE.mf(m)dTn) = [K(E. U 7)E(n)dT (n)

r r
substituting
-1 _ »
Um=n
and noting
dr(n’) = dI'(n)
we get

g(Ug) = [K(g.n")E(Un")dl(n), q. e. d.
r
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The S, , (§) are then eigen-functions:

[K(E-1) Spa M AT(M) = AyS,4(E) @-7
r

The A, are by (3 - 5) obtained as

= [ K(g.n) P, (g.n)d(n)
T

Assuming a . » A system with pole in € we derive witht =cosy:

+1
An = 27 [ K(t) P(t)dt (3-8)
-1

This is called Funk-Hecke formula in Muller (1966).

We give now some specific examples for integral operators with distance

dependent kernels. Put £(€.m) = |§ '77|

1
88 =2 [ TEy EMdaTm) oo Ay = 3257 3-9)
r

1 0 forn=1,2
g(5) = 27 [SHE.MEMAT(n) ..., = { O ©°8

T n-1
..(3 - 10)
St(E.n) = St(cosy) ... Stokes' function
g(s) = [ 2B f‘")drm) . =2 @3- 11)
r 2(E.m
2
g(g) = % IZ%(]@__T’) )f(n)dl"(n) coe }\n =n'(;'+ 1) y1 2 1
r
..(3 - 12)
1 2
g(8) = 37 [2(E-n)im)dT(n) ... A, =~ (20 + P(@-3) (@3- 13)
r

k .
We see that all these listed operators are operators from some Hl” into some
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Hlf.."' £ . The Laplacean is an operator from lef into H?'Z . If functions f .~ fy,
with f,, =0 are excluded, then the Laplacean has an inverse which is given by the

~ ~ +
negative of (3 - 12). Confer (2 - 15). (3 - 12) is an operator from lef onto Hll_,( 2

(by f—I'F we denote the subspace of HF comprising fqnctions f~f,, withf, =0).

Stokes' operator is an operator from 'I:IIF( (functions f~f, , with f,, =0 and

+1

f,, =0) onto H k , having an inverse.

r
Let us agree within this study to call an operator with the property A, - 0

a smoothing operator in the wide sense. A, -0 means that the higher harmonics

are subdued by the operator. Then (3 - 9), (3 - 10), (3 - 12), (3 - 13) are wide

sense smoothing operators. The Laplacean and (3 - 11) have an opposite effect; they

unsmooth because the higher harmonics are highly amplified.

We shall also deal with smoothing operators in a narrower sense. In addition,
to A, = 0 we require A, = 1. In that case, the constant function is reproduced. Thus
if one wants to smooth a function in the sense of removing, damping or filtering out its

irregularities, one has these narrow sense smoothing operators in mind.

An example is the averaging operator over a circular area of I' with angular

radius §,. Its integral kernel is

1 1
27 1-cosy for £€.m = cos
B(Z.7) = ° it @ - 19)
M 0 for £.7m <cosp,
Its eigen-values are by the Funk-Hecke formula:
11
Ba = T cosy, J Palt)dt (3 - 14a)

cosy,
Using the recurrence relation (cf. Lense (1954), § 13):
d

FTP L () = FiBy o () = (2 +DE (D)

we get forn =1 (recall Ao T 1)
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ﬁn = l-cols ‘!b R 2n1+ i {Pn_l(cos wo) = Pn+l(COS {bo)} (3 - 14b)

Since for fixed t# 1 we have

Pa(t) = (=) 3 - 15)
(cf. Lense (1954), § 24) we see that
1
Bn = 0(Caym ) (3 - 16)

This shows that g » 0 as it should be for a smoothing operator. It also shows that

itis an operator from HF into k+1,

Let us point out another remarkable property of these isotropic operators on
['. Any of these operators commutes with any other, at least if applied o sufficient

smooth functions. The reason is that all these operators have a common system of
eigen~functions.
If f~f,, and L has eigen-values A, and M has eigen-values u, then we

have Lf ~A f,,, Mf~p, f;,, and
LMf = MLf~A_u, £, 3-17)
This shows that LM =ML at least for functions for which

lLME||? = 418 (Mg Bafy)? <= (3 - 18)

From this we see that it is immaterial whether we apply a narrow-sense isotropic
smoothing operator such as (3 - 14) toward a function, like gravity anomalies and
compute from it a smoothed version of the geoidal undulations by Stokes' formula,
or whether we make the transition from anomalies toward undulations first and apply

the smoothing operator afterwards. The result is the same since the smoothing op-

erator commutes with the Stokes' operator.

During this discussion the following question arises. We have introduced narrow-

sense smoothing operators such as (3 - 14) acting on numerical valued functions £(g).
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How does the smoothing operator act on vector functions u(g) out of UI‘ . For
fanctions f(g) ~f,, the operator B yields a function f (§)~ f;, with f;, =pB,fs,-
We want the same for u(g) ~ u,, (coefficients with respect to the system U,, (§) =

( Vn_(rﬁ-_l—)) "1 Grad S;a (B). ). The smoothed function U(E) ~U,, shall be given by
U,, =B, U,,- K f(€) happens to be the function for which

u(g) = Grad £(g) ' (3 - 18a)
holds, then necessarily
§(g) = Grad £ (g) @3 - 18b)

In fact, (3 - 18a) is equivalent to u,, =\Vn@+l)f, (cf. (2-25a) ). Multplica-
tion with 8, on both sides gives U,, = Vﬁm)}n . and this in turn is nothing but
(3 - 18b).

If the smoothing integ:;al kernel B(§ .n) is specified as applying to functions
f(n), then the corresponding matrix kernel acting on vectors u(g) can be analytic-
ally derived with the help of (2 - 14). The following result is obtained:

i(g) = [M(g, n) u(n)dl(n) (3 - 18¢)
r

M(gE,n) is a 3 x 3 matrix given by

1 2
M(g,n) = g Grad, Grad;‘ 1!‘B(g 0)2n o ATE) @ - 18d)

The notation Grad ,;7[‘ shall indicate that the differentiation with respect to 7 shall pro-

duce rows whereas that with respect to § produces columns.

We shall not need later on this explicit form of the smoothing operator acting

on u(g).

Finally we shall be interested in the following. If two functions f~f,,,

g§~8wm outof Hp are related by the isotropic operator L, having eigen-values A,
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then the relationship
g = Lf

may, as we have seen in (3 - 5a), be written as
8aa = Mafm

We shall be interested in the possible range of the rato

le I,

£ llu,
From

2

bell, =4m = £3, 3 - 19)
and 2

lgllg. = 47 = g2, = 47 = (afo0)® @ - 20)

n,m n,m

the following will be shown

GLB (|r.]) ﬂiﬂﬁ s LUB (| Aa]) (3 - 21)

| £ ”Hr

G LB stands for greatest lower bound which is some sort of a generalized minimum,
and LUB stands for least upper bound, some sort of a generalized maximum. Take
for example A, = Ill, n=12,... Then the minimum of the A, does not exist. The

greatest lower bound is however zero.

To see the validity of (3 - 21) as a consequence of (3 - 19), (3 - 20) consider

. the following simpler problem. Find by a proper choice of ¢, ..., ¢y the extrema
of

N

S AP o?

i=1

N 3

by

i21 %t
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This is equivalent to finding the extrema

N P
T Af oy
i=1

subject to the constraint

Calculus yields then the extrema in the form
N
T Al of
Min Af s 1= < Max A%
o? I<si<N

In the infinite case Max and Min have to be replaced by GLB and LUB.

It is remarkable that the inequalities (3 - 21) remain true, if we apply an

isotropic operator B, with eigen values B, to both functions g, f. Call

L

f

Bf

g = Bf

Then we have with ; O 8o

~

fnm = annm’ gnu = annm

Hence
§ = Lf

and consequently

cu(in, ) < JEME o rus(aal) @ - 22)
|| £ ”HP
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If B is a narrow-sense smoothing operator then we see that the bounds of the

norm ratios remain valid if we deal with smoothed versions of the functionsf, g.

Remark: If some of the eigen-values 8, of B happen to be zero, then the
corresponding A, may be excluded from consideration in (3 - 22). This may in

~

some cases improve the bounds for the norm ratio of g and f.
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4. Isotropic stochastic processes on the unit sphere.
Consider the series

X(g) = Z xnmsnm(g) (4 = 1)
n,m

and assume that the x , are uncorrelated random variables with variances

1

Ofe = ==2T Oz “-2)

Then x(€) may be regarded as a random variable depending on €, i.e. as a sto-

chastic process on [I.

The covariance of x(g€) and x(n) is computed as

C(Evm) = ELx(®) . x(n) ) = T 02 T Saa(E)Sm(m) (-3
n,m

By the addition theorem for spherical harmonics (cf. Miller, 1966, p. 9):

1 +n
Pn(g‘n)=2n+1 E-Snn(g)snn(n) (4-4)
m=-n

we obtain

C(E,m = £ o°P,(E.n)
n=o0

We see that C(g, 7) depends only on the inner product cos ) = §.n or equivalently

only on the distance |En| . We write therefore C(§ . ) instead of C(§,n) and

obtain

C(§.m) = £ 2P (E.n) (4 -5)
n=o

or, replacing €.7 by t=cos

C(t) =z onapn(t) (4-6)
n=o
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Because the correlation between x(g) and x(7) depends only on £.n or on
||, x(€) is called an isotropic stochastic process on [. The o2 are called
degree-variances. Isotropic stochastic processes are the counterpart of the more

familiar stationary stochastic processes depending on the argument t( time).

Since the sequence of steps leading to equation (4 - 6) can be meaningfully
reversed we see that any isotropic stochastic process on I' can be represented in

the form (4 - 1) which is called its spectral representation.

Let L(E, n) denote an istropic linear operator on I'. If x(g) is a stationary

stochastic process then we shall be interested in the linear transformation of this

process.
y(E) = L(§,n)x (n) “-7)

Let A, be the eigen-values of L(&7). Then from (4 - 1)

y=Lx = L & XpuS; = T XppLgp Spa
n,m n,m

Thus by LS,, = A,S,s (cf. 3 -4))

Y(g) = Z A’nxnn Snn(g) (4'8)
n,m

It becomes apparent that y () is also an isotropic stochastic process on ' having

degree variances
o2(y) = A3 0% (x) “-9
The covariance of y(E) is obtained as

Cy(E.m) = L(EE)L(Nn,n')C((E .7n") (4 - 10)

This follows either from (4 - 7) and the propagation law for covariances,
or by forming E(y(E) . y(n)) using (4 - 8) and comparing with L(E, £")L&y, n ")
C,(€ .n') based on (4 - 5).
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Thus we see: an isotropic operator on I' transforms an isotropic process on
T' into another such process. The degree variances of the new process are obtained from

those of the old one by multiplication with the squares of the eigen-values of the operator.

If the operator has smoothing properties then we see that the higher degree
variances are subdued. Operators with A, = have the opposite effect. Let us have a

closer look at this phenomena by comparing the two formulas

2 =]

c?(x) = = o? @ - 11)
n=o

c3(y) = £ A2o? @ - 12)
n=o

which follow for

y(§) = L(E, n) %(&)

from (4 - 5) and (4 - 9) by putting E equalto 7. A, are of course the eigen-values
of L.

We can pose the following question. What is the range of values for the ratio
o(y) /a(x). The problem is analogous to that encountered in section 3 where we were

dealing with the ratio ||g ”Hr'/ ||f ||H . Using the same approach as there we find
r!
GLB (|A,] ) s ;L((}}(’T) < LUB ([ ) @ - 14)

We recall that GLB stands for greatest lower bound which is a generalization of the
concept of a minimum. LUB stands for least upper bound which is a generalization

of maximum. For example the GLB of the numbers 1 , n=1 2, ... is zero, a

n

minimum does not exist. Note that inequalities (4 - 14) are formally the same as
the inequalities (3 - 21) for the ratio of the norms of two functions related by the
operator L. For a smoothing operator we have A, — 0. Hence GLB ( [r,])=0.

The LUB ( |A,] ) must necessarily be finite (and constitute a true maximum). Thus
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we have for smoothing operators

0s () < Max(|r,]) (4 - 15)
o(x)

For operators with the opposite property: A, - « (as for example for the Laplacean),
we have

. o
Min(|A,]) < U_%Z < ® @ - 16)

Such operators may badly blow up the variance, even to the limiting case of infinity.
This can never happen with smoothing operators which in turn may yield image-
processes y =Lx which are nearly deterministic (¢ 2 (y) = 0) . All kinds of
intermediate cases are also possible and we shall encounter some in the sequel. We
shall see that the transition from gravity anomalies to undulations of the geoid has
property (4 - 15). The transition from anomalies to the vertical gradient of gravity
has property (4 - 16). The transition from anomalies to deflections of the vertical,

however, involves non-zero and finite upper and lower bounds in the form

0 < GLB(|A4]) sclg_)L < LUB(|A.]) < = @ - 17)

It may be interesting to throw some more light onto the inequalities of type
(4 - 15), (4 - 16), (4 - 17) by asking for processes x(£) and operators L for with
the ¢ - ratio comes close to the upper or lower bounds.
Assume first that we have a (wide sense) smoothing operator with A, = A,4,

and A, = 0¢( ni). The operators (3 - 9), (3 - 13), (3 - 12) fulfill this assumption.

Stokes' operator (3-1Q is another example if A,, A, are excluded from consideration.

It is clear that LUB(|A,]) =A, (0r = A in the case of Stokes' operator).

If we take the process
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x(g) = xOOSOO(g)

with

c(x) = 0,(x) ©@3(x) ... zero degree variance of x(g) )
then

0(y) = |ro] 0 (oo Sae) = |Ao| Oo(x)
and

_O'_(ﬂ = ‘Ao\

o(x)

Hence, we have an example of a process for which the upper boundary of the ¢ - ratio

is reached. In the case of Stokes' operator we have to take

+2
x(§) = T X2,5.(8)

m=-2

with

o(x) = o5(x)
We find then

o(y) = |As| ga(x)
and

a(¥y) = |a

o(x) | al

Processes of this type are not very realistic. However, the following is clear. I
the contribution toward ¢( x) comes mainly from a few low degree harmonics then

the ratio o (y) /o (x) will be close to the upper bound.

Introducing on the other hand the sequence of operators

+N
xtNI(g) = % x Sym(®)
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[N]

it is seen that the ratio o(y )/ o (x |:N]) tends toward zero for N-— . Processes

of this type are even more unrealistic. However we see that a concentration of variance

in the higher harmonics tends to push the g -ratio near to its lower limit zero.
Consider as a special case the process

N +N +N
x(")E) = a®(N) T T X Spau(E) (4 - 18)
n=o m=-n

where the variances of all x,, are equal to unity
0 (Xzs) = 1 (4 - 19)

Such a process has degree variances (2n + 1) @®(N) and if we choose

1

o?(N) = N (4 - 20)
then the variance of x (¥ )(g) is unity:
c(x(N)) =1 @ - 21)

The covariance of this process is

(V) N
C "(E.n) = c(N) £ (2n+1P_(E.7n) (4 - 22)
n=o

The significance of these covariance is that for N— « it tends to the degenerate
covariance of a process having variance equal to 1 and no correlation between

different points. We may talk of this limit case as of "white noise" on the unit sphere.

In order to demonstrate this consider the integral kernel

N D G -
P(¥)(E.q) T 2 2+ DP(5 1) @ - 23)
P(N) differs only by a factor from C( ") . The effect of applying this integral kernel

toward a function f(g) ~f,, is simply the following
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r

() ©
[P (g.m nE:ofn, Sxa(n)dT(n) = T £, Sp,(8)

(4 - 24)

Thus the kernel P(") transforms a function into its truncated spherical harmonics

expansion.

As it is known and as it is rigorously proved in Hobson (1931) we have for

sufficiently smooth functions

fim ‘]'P(N)

N-e T

(E.m) £(n)dD) = £(3)

(4 - 25)

This means that the kernels concentrate more and more around 7 = §

whereas the values for 7 #& taper off. In the limit they act similar to Dirac 's delta-

function on the line.

Since for ¢ (x(")) we have the expansion

02(x ")) = ar) g Cn+ 1

=0

we have for ¢°(y) the expansion

N

UQ(Y(N) = aZ(N) § (211+l) . }‘na

n=o

since
_ 1
A2 = 0(3)
and
N 2n+1
T n2 = 2mN + 0(1)
n=o

(see Knopp (1947), chapter 4) we get with a*(N) = 1/(N+1)3

o*¢ ")) = ocalisa)

This tends to zero for N— « Because of ca(x (N)) = 1, the ratio

tends to zero in the same way.

o(y (" o

(~)
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Dropping the assumption A, <0 now, one can more generally show the

following (cf. Kantorowitsch-Akilov (1964) chapter VII, § 2).
Suppose that the operator L has eigen values A, such that

2im A, = A (4 - 26)

n-—o

exists and is either finite or infinite. Then we have for x")(E) asin @ - 18),

@-20)and y™ () = L(g,n)x*n) the relation

o) A (4 - 27)

f2im

For operators like the Laplacean or (3 - 12) where the limit in ( 4 - 26) is infinite,
we see that the image of a near-white noise process has a very large variance becom-
ing infinite in the limit.

We shall also use processes obtained by averaging x(N)(g) over circular areas

of spherical radius i, . This process Bx (") (cf. (3 - 14), (3 - 14a) ) has variance

N
o26x(Y) = OP(N)nz:O(zn +1)p2 (4 - 28)

which necessarily tends to zero for N— » because B, — 0, Since we need a process
with a prescribed variance equal to, lets say, unity we apply an appropriate factor

obtaining a process

Z(N) = k(N)Bx(N) (4 - 29)
where k(N) is chosen in a way that

o'a(z(N))=kz(N)o(1(N)Iz\I 2n+1)B2 =1 4 - 30)
n=o

For N increasing the process z( v tends to have less and less correlation at points
€,n for which
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E.m > cos 2y,

i.e. for points which cannot be covered by one circular area.

We shall mainly need modified versions of these processes which are obtained
by removing the harmonics of degree zero and one. The factors at(N) and k(N)
will then be adjusted in a way that the resulting processes have certain prescribed var-
iances. The processes z (N) after removal of the zero and first degree harmonics will
have some correlation even between non-overlapping caps. However, this correlation

comes in only through the removal procedure.
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Part II

Various quantities related to the

earth's disturbing potential.
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5) Representation of the earth's disturbing potential.

The disturbing potential of the earth may be represented by its values T(E)
at the surface of the geoid (or some equipotential surface). T(E) is then the deviation
of the true potential from the normal potential associated with the reference surface.
The undulation N(E) of the geoid with respect to the reference surface is then given

by Bruns' formula.

NE) = TR 6-1)

where G is a mean gravity value. Certain manipulations involving the quantities
N(g) and T(g) allow it to regard them as functions over a sphere which may be the
unit sphere. The errors committed in doing so are small since the deviations of
the reference surface from a sphere are small. By (5 - 1) the disturbing potential
may be equivalently represented by the geoidal undulations. We may expand them
in spherical harmoics

+n
L NppSus (8) (-2
m=-n

[=-]

N(g) = =

n=2

We have assumed that the zero and first order terms are eliminated which may always

be accomplished by a change in scale and position of the reference surface.

The undulations of the geoid are connected with the gravity anomalies by

Stokes’ formula.
N(g) = o= [St(E.m) Ag(n)dr(n) - 3)
r

which (cf. (3 - 10) can be written as

Agyp, D22 G- 4)

Ny, =

R .
G n=1

where Ag,, are of course the spherical harmonic coefficients of Ag(§):
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Ag(g) = T L AgmSm(E) (5-79)
n=2 m=1

Stokes' formula shows that the disturbing potential may also be represented by gravity
anoamlies. If zero and first order harmonics are excluded then there is a one to one

correspondence between the anomalies and the undulation which is seen by (5 - 4).

What is the difference between representing the disturbing potential by
undulations N(E) and anomalies Ag(§)? From our discussion in section 3 we know
that the Stokes' operator has a smoothing property. If we start with a field of anom-

alies which has a spherical harmonic expansion, then necessarily

\ .
- 2 [--]
lag ”Hr i T AgL,? <

Substtuting for Ag,, from (5 - 4) shows that the coefficients of N,, fulfill
3 2
s @-DANE, = Boflagll <. G - 6)
G Hy

This means that N(g) is a function out of Hp having first order generalized deriva-

tives. The H:. norm of N is given by the square root of
2 = 2
IN|I';, = 47 £ n@+ N3, < = (5-7)
Hp n,m

(The convergence of (5 - 7) is indeed a consequence from that of (5 - 6) since for

n=2wehave n@+1) < 6@ - 1)3.
On the other hand, if we start with some function N(E) ~ N,,, requiring only
2 = 2
IN[|® = 47 £ N3, <=
Hp n,m
then we end up with gravity anomalies which are not necessarily square integrable

because

2
2
lagll: = 4r £ Aga = 417(9) £ (@1)°N2
Hr' n,m R n,m



need not be convergent. N has to be at least a function out HI}. in order that

lag ”Hn is finite.

Using the inequalities

l<s@1®<n@+1) <6@-153n =2
it is easy to verify the following estimates
R
R = -
Il = Bllagly <INl = V6 G lasly  ©-9

Confer also (3 - 21).

The discussion may appear pure academic. It has, however, the following
consequence. If we try to determine the earth's potential by measuring gravity
(anomalies) then we end up with a smooth geoid. The geoid depends mainly on the
low degree harmonics of the anomalies. The higher harmonics are smoothed out by

a factor proportional to 1/(n-1).

On the other hand if we use satel}ite perturbations in order to obtain informa-
tion on the potential then we havé to be aware that the disturbance of the satellite path
is a two-fold integral over gravity anomalies (at satellite altitude). This two-fold
integration has certainly a smoothing effect. The consequence is that only the lower
degree harmonics of the potential (or of N( ) ) can be accurately determined. (Res-
onance effects yield some higher coefficients too. But since the latter are isolated
they do not significantly contribﬁte to a better knowledge of N(E) in regional areas.)
From our previous discussion it is clear that gravity anomalies derived from such a
satellite derived geoid are bad. The higher harmonics, which are not or only badly

determined are multiplied by a factor proportional to (n - 1).

Only in so-called combination solutions a representation of the potential in

terms of gravity anomalies is feasible. In that case both quantities namely gravity

anomalies in surveyed areas and satellite derived coefficients should be improved. The

resulting anomalies in unsurveyed areas are still of dubious value.

We shall discuss these questions in more detail later on. Here we wanted
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only to point out the close connection between the stability of various approaches to
determine quantities depending on the potential and the smoothing or unsmoothing

properties of operators relating these quantities.

Let us now turn to the derivatives of N(E) i.e. to the quantity Grad N(§).
This quantity, measuring the slope of the geoid is closely related to the deflections of

the vertical. Introducing the surface tangential vector

Av(g) = - -11{ Grad N(g) -9

it is readily verified that the quantity Av () is nothing but the deflection of the
vertical on coordinate free representation. (Recall that the operator Grad is per-

formed with respect to the unit sphere. Therefore the multiplication with 1/R,

R ... mean earth radius).

Recall from section 2 that Av(g) = - % . Grad N(E) may be viewed as a

member of the Hilbert space Ul'" The norm in this space is the square root of

lavly = [@av®, av@)are (5 - 10)
r

Since N(E) has no zero order component (i.e. N,, =0) we conclude from equation

(2 - 29) that

= 1 -
”AV”u,. L™ G - 11)

We can therefore substitute for ”N ”Hl in (5 - 8) obtaining
r

La <llavl < V& |agll 5 - 12)
Liagll, < lavly <V lagly (
which may also be written as
1 lavlly, . Ve o- 13
G

lagl,
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This shows that the ratio of the norms of Ag and Av is within non-zero fixed and

relatively narrow bounds.

Deflections of the vertical may also be used to represent the disturbing poten-
tial. Equation (2- 14) gives at once the following representation of N(g) in terms

of AV(E) = -R°! Grad N(E)

R

N(E) = - 2 [(Grad (2o TE—z_m) 5 AV ())dT (1) G - 14)
r

The relationship can also be written in terms of spherical harmonics: Expand

N(g) = = Ny Sy,(8)
n,m

AV(E) = T Avy, Un(E) (5 - 15)
n,m

where U,,(E) = (Vn@+1))™* Grad S,,(§) is the orthonormal system introduced

in (2 - 22). Note that the Av,, are scalar coefficients and not vectors. From

Grad N(E) = & N,, Grad S ;(§)
n,m

we getby Av = -R"'Grad N

Avyp, = = % Vn(n+1) Ngg » 5 - 16)

From (5 - 4) we also see that

AVy, =

-4 Vo@ + ) E_J’l D ag,. (- 17)

This shows that Av(E) is equivalentto Ag (E) in representing the disturbing potential.
There is no smoothing or unsmoothing during the transition from Ag to Av. The

factor - 1 _Ilﬁ’l_"'_l)_ does not increase to infinity nor does it tend toward zero.
n-1
It is absolutely bounded by é and _Vé; which is in perfect agreement with (5 - 13).
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Another quantity which serves the purpose to represent the potential but which
has no physical significance is a surface density function. Representing T(E) bya

surface density function means to write it in the form

R pdao(n)
T — [ ==L 4ar 5- 18
(8) = =47 1! TG0 ) ( )

Equivalently:

R rAe(n) -

In spherical harmonics (cf. (3 - 9))

1
Ny, = %m Agy,, 022 (5 - 18b)

It turns out that A ¢ is just in the same way as Ag and Av suited to represent the

potential. We have from (5 - 4) and (5 - 18b)

Agas = 321 Ag., G - 19)

Hence (confer (3 - 21)

lagly,
L < <

la olli,

(5 - 20)

D=

We turn to a last quantity which compared to N(§) is even rougher than Ag, AV,
A . Itis the vertical gradient of the anomalies. Call this quantity Aa and take its

definition from Heiskanen-Moritz, (1967) p. 116:

sa(g) = 222 = G {2N(z) + Lap N(2) | - 21)

Lap. is the surface Laplacean operator with respect to the unit sphere . From

section 3 we know that the eigen-values of the Laplacean are given by -n(n + 1).
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The spherical harmonics equivalent of (5 - 21) is therefore

Aa(g) = T Ady Sy, (E) (G - 22)
n,m
with
G
Ao, = &, {2Ny - n@+ )N} = 2 T D (n2) TN,
(5 - 23)
This shows that for Aa ¢ Hf" i.e. for Aa ~ Aa,, with
Z -
laa Iy, = 47 Zn0em <=
we get N(E) € H?., . For we have
2 G3 3N 3
laally = 4 F L) (2PN < =
one can verify the following inequalities:
| aa (g
" G
% %2 < —————— < ey} (5 - 24)

Nl g2

The transition from Aa to N involves heavy smoothing. The transition from N to

Aa therefore presupposes that N is a very smooth function, i.e. at least out of
HT -
Table 1 on the following page summarizes and complements the results of

this section.

The entries in this table give the relationship between the spherical harmonic
coefficients (for Av the coefficients with respect to the U, ,(E) = Grad S,, /Vn@+l))
and the bounds for the norm ratios. Norms are with respect to Hp (for Av with

respect to Ul")' Thus for example from the row Av and the column Ag

1 VYn(an+l) Ao

AVas =7 G 2n+1 =

1ve _ llavlly, 1 4

G 5 = G 2
laellg



N Ag Av qu Aa
R_1 . _R R_1 -Rz 1
) / G ot @+l G Il G @-D@t2)
3 R R 1 g
0, 0, == 0,2 o, X
G Vé 765 Y6 1
G - ., _n-1 n-1 _ 1
Ag R(n 1) / Vn(n+1) 2n+1 )
ﬁ’ V—-é'- ] G 5 ? '2' ’ z
. L _ﬂ[_Ln 1 1 Yn(ntl R Vn@+l
A -z +1 - v -
v R V/n(@+1) G o / G 2ntl G @) @)
e, - 1% 1V6 11} o _RKE
R’ G G G5 G2 5G4
G 2n+1 2n+l 2n+1
A =(2n+1 -G
g o Va@+n / @ D@+
G 5 5
- [..] 2, 2 , — 0’ 5
SR 5 G, 7= © R 2
Aa -93 (n-1)(nt+2) -1—11 @t2) |& n-1)@+2) | _1 (@-1)(@©t+2)
R R Vn(n+1) R 2n+1 /
S = e 64,00 |14,
4Ra’ R’ -R- v‘g ’ -R 5' ’
Table 1

Note the narrow bounds for the norm ratios in this particular case.

As we have demonstrated at the end of section 3, all the operators involved in

Table 1 commute. They commute in turn with any isotropic operator and therefore with

any isotropic smoothing operator in the narrow sense. Hence the relationship between

spherical harmonics coefficients is the same whether we regard the quantities like N(E),

Ag(E) ... themselves or smoothed versions of them.
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Let B denote a narrow-sense smoothing operator having eigen-values B,

then we have for example

Ag = BAg ~ BoAZuw = AZyy, SaY

N BN ~ BaNpypy = Ny

and the relationship between the smoothed versions Ag, N of Ag and N isstll

the same,

1

n_1 Agﬂﬂ’

y R
Nn = -G-

as it was for the unsmoothed quantities (confer (5 - 4) )

It turns out that the bounds for the norm ratios remain valid. This follows from
the considerations in section 3 leading to equation (3 - 22). Therefore the bounds for
the norm ratios exhibited in the above table hold true also in the case of smoothed
versions subject to the same smoothing operator. Recall in this context what smooth-
ing means for the vector function Av(g). The narrow-sense smoothed version
AV(E) is the surface gradient of the smoothed geoid ﬁ(g). 1:1 (E) is obtained by
smoothing N(£). N(E) and AV(E) afe connected by (5 - 14).

Remark: Most of the spherical harmonics relationships contained in Table 1
are very well known. Several are found in the textbook by Heiskanen-Moritz (1967).
The interrelation between Ag and Av has been discussed in papers as old as Cook
(1950). There, as in may other treatises, the deflection vector is decomposed into
two components. Schwarz (1970) gives a brief disucssion of the relationship between
Ag and Agy. He also arrives at the conclusion that the variationin Agand Ag in
regional areas (i.e. after exclusion of the lower degree components) is nearly propor-
tional. Shaw et al. (1969) use a local model for their discussion of the Av process.
In their case, which is a limiting one, the norm ratio between Agand Av is a strict
constant. (Actually they consider a variance ratio in the sense of our next section.

However, these variance ratios will have the same bounds as the norm ratios.).

Our aim in this presentation is three-fold. First, ® outline a systematic

approach based on isotropic operators which have the spherical harmonics as eigen-
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functions. Second, to emphasize the (wide-sense) smoothing or unsmoothing properties

of these operators, especially to derive the bounds for the norm ratibs . Third, to dis-

cuss and possibly clarify the interaction of these operators with the narrow-sense smooth-

ing operators such as the averaging operator over a circular cap.

The bounds for the norm ratios in Table 1 are based on the assumption that

harmonics of degree n =o, 1 are disregarded. Numerical values of these bounds are

exhibited in Table la, (top line in each box). The bounds hold for the indicated meas=-

uring units, i.e. meters for N, arc seconds for Av, milligal for Ag, A¢ and

Eotvos units for Aa.

Table 1a contains also the bounds for the case that harmonics

up to and including degree 12 are disregarded (bottom line in each box). One sees that

these bounds are much narrower in many cases.

) Ae mg Av " Ap mg Aa E.U.
N 0, 6.5 0, 12.6 0, 1.3 0, 1000
meters 0, 0.7 0, 2.5 0, 0.3 o, 27
Ag 2.0, 4.8 0.2, 0.5 0, 160
milligal 4.2, 4.8 0.4, 0.5 o, 46
Av .10, .11 0, 82
arc seconds .11, .11 0, 11
Ag 0, 800
milligal 0, 104
Table la

Thus, for example, if the norm of Av is 1", the norm of Ag is between

2 and 4.8mg for harmonics of degree n =0,1 excluded and between 4.2 and 4.8 mg

if harmonics of degree n < 12 are excluded.

We conclude this section with a sidelight on truncation errors. These result

from the fact that in the various integral formulas like that of Stokes, Vening Meinesz and
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others, the integration is not carried out over the whole sphere. The reason for omit-
ting certain areas is either incomplete knowledge of the integrand due t® unsurveyed
areas or a reduction in computing time. In either case the resulting error must be
tolerable. In previous investigations of the truncation error it was mostly assumed
that the omitted area is (1) a circular cap and (2) is centered at the antipode of the
point in which the integral transform is to be evaluated. See Molodensky etal, (1962),
chapter VII, Cook (1950), (1951), De Witte (1965), (1966), Heiskanen-Moritz (1967),

chapter 7.

Though attention in this report is not focused on truncation errors, an altern-
ative approach should perhaps be indicated. Itis based on Green's second formula.

Confer (2 - 15b).

Take for example Stokes' formula (5 - 3). If an arbitrarily shaped area B

with boundary 3B is omitted, then the resulting error is

BN(E) = o [St(E.m) Ag(n)dT(n) 5 - 25)
B

Assume that the point E is not contained in B. Find a function G(n) having the follow-

ing properties

Lap G(n) = Ag(n) in B

0 on 3B

G(n)

From our previous discussions we can expect that G(n) is rather smooth
and small compared to Ag(n). Apply now Green's second formula to (5 - 25) and ob-
tain

R
N®) = gg | Lapy {seg.m } G@arm)

R
- 26 { St(£.n) (Grad G(n), v(n)) dT(n) S - 26)
oB

If € is ata sufficient distance from 3B then Lap {St(e.n)} is found
to be rather small. Thus the first term on the right can be expected to be small.

The second term may be larger in some cases. If St(g .n) happens to vanish on



3B, then the second term disappears. This is the reason why De Witte found small
truncation errors for a B being a circular cap and one of the zeros of St(§.7)
located at 3B. Ifeel that much more can be learned by thoroughly discussing both
right-hand terms in (5 - 25). However, this will be done elsewhere.
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6. Gravimetric quantities and their errors viewed as isotropic stochastic process

on the unit sphere.

It is a widely adopted practice to view gravity anomalies and related quantities

such as undulations, deflections, as isotropic stochastic processes, on I'.

I see no easy way to give a rigorous justification for this practice. An isotropic
stochastic process on [' can, as we have seen in section 4, be generated by a series of
uncorrelated random coefficients x,, having variance of /(2n+l). The random process
x(€) is then formed by

X(8) = T XuuSaa(8) ) 6-1
n,m '

What meaning shall we give to the random variables x,, = Ny = Agun ?

I give four motivations for regarding the gravimetric quantities as stationary
stochastic process without attempting to fully solve this philosophical question.

a. Behind the terms random or stochastic is the idea of some repetitive
pattern, some experiment which can be repeated yielding different outcomes. One
can visualize such a repetitive pattern by viewing e.g. anomalies, in a population
of limited areas. Thus we have a repetitive pattern in space since the earth's sur-
face may be regarded as consisting of hmy such areas, for example 5° x 5° blocks.
This is a reasonable justification for viewing Ag as stochastic process in a limited
area. However, the global random function Ag(g£) has still no meaning. Nor have
the coefficients Ag,, as random varianbles.

b. One can regard Ag(g) as a fixed function and introduce a randomization
by selecting points at random 6n ['. Thus for example selecting random points at
fixed distances and cemputing the sample correlation should give a value in reasonable
agreement with the overall covariance function.

But why shall we choose points at random on the earth's surface?

c. One can adopt the following point of view. If the gravity anomalies are
completely known all over the earth, then there is no need o regard them as a stochastic
process. However, as long as this is not the case, I may think of a population of
functions Ag(E) to which I assign certain subjective probabilities. If I do not know

the outcome of a football game, even though it may already have taken place, then I
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may assign subjective probabilities to the different outcomes,probabilities which
reflect my judgment and background knowledge. I may use these probabilities for

bets with friends who, hopefully, do not know the exact result either. K Ilearn more
about the gravity anomalies by new measurements or evaluations of satellite - observa-
tions, I may change my subjective probabilities in the same way as I change my proh-
abilities for the football game - result when I obtain additional information for example,
the score after the first quarter or an injury of a certain key player. As soon as the
full result of the game or anomalies is known, t me, I abandon my probabilities or,
as some would like to say, I assign probability 1 to the true outcome.

d. Imay use the concept of stochastic process just for the sake of a formal
anology, as a heuristic guideline for working out procedures such as interpolation,
prediction, adjustment. In doing so I hope that the procedures turn out to average
and weigh my observations in a reasonable way. Another probability assumption would
just be a transition to different weights . Quantities like means or variances bear then
no stochastic meaning. They are numbers computed from observations and weights,
characterizing them in a certain way. The stochastic process - terminology is used
merely to make the language more picturesque (or the reader more confused).

There could be an endless discussion of these and possible other ways to view

gravimetric quantities as stochastic processes. I confine myself to a few remarks.

* If gravity anomalies all over the earth are viewed as a single realization

of an isotropic process (with whatsoever underlying probability structure) then the
ergodic law does not hold for the covariance function. This has been pointed out for

. example by Krarup (1969). This means that the sample covariance i.e. the covariance
computed from gravity anomalies need not be the same as that implied by the under-
lying probability structure. Even in the case that we have a world wide gravity cov-
erage.

* Only if one focuses attention on very small areas in the sense of a.), one may
assume that the ergodic law nearly holds. In other words, the sample covariance has
much more meaning for small distances than for larger. This presupposes on the

other hand that gravity anomalies are fairly homogenous all over the world. Cer tain
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regions have certainly to be excluded from this assumption.

Let us now view the gravimetric quantities as stochastic processes. Since the

quantities N, Ag, Av, A, Aa are interrelated by operators, we may start with

probability assumptions for one of them and derive the stochastic properties of the

others. Usually Ag is taken as starting points since most observations are in terms

of gravity.
Assume that ¢3(Ag) are the degree variances of Ag(g). The variance

of Ag is then given by (confer 4 - 11))
3 - ® 3
o*ag) = T 0l(Ag)

The degree variances of the other quantities are then obtained by multiplying with the

A2 of the appropriate operators. The A, are found in column Ag of Table lin

section 5.
Thus
2 _(RY? = _1_ s
c°(N) = |\g T @-1° 0a(Ag) (6-3)
n: .
l oo
0?(av) = 57 T Toni @) (6 - 4)
2 - o [2n+] Z 5
o%ag) = T (2H) o2ae) (6 - 5)
0°(8a) = 3 TD)70%(40) 6 - 6)

The formal relationship between the degree-standard deviations, €.g.:

_R_L
On (N) - G n-1 On (Ag)

is the same as that for the harmonic coefficients, €. g.:

— Agny



Therefore the upper and lower bounds for the ratios of the standard deviations are

the same as those for the HI" norms. They are listed in Table '1, sécﬁon S.

Take for example row Ag and column Av in Table 1 and obtain

G So_'(_Ag_) < G
Ve o(Av)

The degree variances of N taper off more quickly than those of Ag. Thisisin
agreement with the smoothing properties of the Stokes' operator. The degree variances

of Aa blow up compared to those of Ag. The sum
£n®0% (A8)

has to be finite, in order that the process Aa may be formed from the process Ag.

Since we may equivalently require

41 Tn@+l)of(Ag) <= 6-7)
n

we can also say, that Ag has to be a function out of Hlf with probability 1. I
(6 - 7) fails to hold Aa does not have a finite variance.

If we study smoothed versions of the gravimetric quantities with respect to an
isotropic (narrow-sense) smoothing operator B having eigen-values B, then the degree
variances are multiplied with the squares of the eigen-values. Denoting the smoothed

quantities by tildas we have for example:

c2(Ag) = T2 f(Ag) = Tof(AR)
n n

The relationships (6 - 3) to (6 - 6) remain true also for the smoothed quantities. For

example

a~ 3 L]
(N = (%} ot (aF).

Again, the upper and lower bounds for the variance ratios exhibited in Table 1

remain valid also for the smoothed quantities.
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Sometimes it is not so much desirable to regard the gravimetric quantities
as stochastic processes rather than errors in these quantities. Sometimes even a
superposition of two stochastic processes, e.g. gravity anomalies plus error in
gravity anomalies is assumed.

If x(E) denotes any gravimetric quantity we shall denote by 6x(§) the error
in x(E). The covariance of &(E) will be called the error covariance of x(g). Like-
wise we talk of error variance, error-standard deviation or error degree-variances.
Error covariances depend not so much on the quantity itself (as a matter of fact, one
frequently assumes zero correlation between x(g) and 6x(g) ) as in measurement
methods. Since measurements may be repeated and since they are affected by random
errors there is sometimes a stronger motivation to regard the errors as stochastic
processes than there is for the quantities x themselves.

If we represent an observed quantity in the form

x(E) + 8x(E)

. 7
’.

i.e. as a sum of true value plus error, and if we make a transition to another quantity

.

by a stationary linear operator, then we have because of the linearity

y + 6y = Lx+6x) = Lx + Léx =

St

This means that not only

y = Lx L N ; -

but also Y
6y = Léx

Hence everything which has been said about the stochastic processes N,_'.A g,

Av and so on can be transferred to the error processes 8N, 8Ag, AV, ...
We need not repeat the discussion how the degree variances transform under
linear operators, how the g-ratios are bounded and how things interact w1th the nar-

row-sense smoothing operators.

Needless to say, Table 1 holds also for the o= ratios of the error processes and

their smoothed versions.
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7. A qualitative discussion of various approaches to determine the earth's

disturbing potential.

We consider two sources of information: gravity anomalies and orbit perturba-

tions of satellites.

As it is known and as we have already pointed out earlier, the orbit perturbations
are much smoother than the variations in gravity anomalies since the former are so to
speak a two-fold time integral over them. Ozrbit perturbations are generally more sen-
sitive to the lower degree harmonics of the earth's potential if we disregard certain
isolated harmonics causing resonance effects. Isolated higher harmonics do not sig-
nificantly contribute to a detailed regional knowledge of the field. The consequence is
that the satellite observations contribute considerably to a better knowledge of the lower

degree harmonics of the field. The higher harmonics cannot be determined except for

a very few ones.

In a pure satellite approach toward the determination of the earth's potential,
the higher harmonics are usually forced to be zero. In such a solution we can hope to
get a good approximation of the coefficients N,, of N(§) up to degree n=N say.
Since N(E) is a rather smooth surface, the error in N(E) mainly due to truncation
may not be large. If N is about 12, the standard error may be about 3-5m. Now
N(g) is the smoothest of gravimetric quantities considered here. If we try to com-
pute other quantities like Ag(g), Av(g), we face serious trouble. The transition
from N(E) toward Ag(g) amplifies the higher harmonics. Since the higher har-
monics are not determined, the resulting error is much larger. Even if we confine
ourselves to (narrow-sense) smoothed versions of the quantities  Ag(g), Av(E)
we end up with considerable errors. We shall devote several later sections toward

this question.

If we still consider a pure satellite approach, representing, however, the
potential in a different way by gravity anomalies (or equivalently, as should be clear
by now, by a surface density or by deflections of the vertical) then we face a prob-
lem with poor stability. Large variations in local anomalies cause little variations

in N(E), especially in its lower harmonics, and even lesser variation. in the satellite
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motion. Thus the anomalies are poorly determined. They are, however, poorly
determined in a certain way. Namely, in a way that the resulting geoid N(E) is
rather good. If we manage to overcome the computational difficulties in getting
numerical values for the anomalies then whese values have a rather large error.

The error correlation shows, however, 2 peculiar ﬁattern as we shall make more
clear later on. This correlation is due to the fact that the exrors in the lower degree
harmonic components are small. The consequence is then that N(g) which depends
mainly on the lower degree harmonics is of much better accuracy than we could hope

from the standard deviation of the anomaly errors.

If we use a pure gravimetric approach trying to determine the potential from
gravity anomalies alone, then we face at the present time the problem of large areas
wi th poor coverage. These uncovered areas prevent a development into spherical
harmonics except if we extrapolate gravity anomalies all over the earth. This is
possible by prediction procedures based on, Or in formal analogy to, stochastic process
concepts. If the whole earth is covered by good gravity measurements, then a good
geoid with good deflections of the vertical results. At least if one accepts Stokes' form-

ula as a suitable tool to compute the geoid from anomalies.

If the coverage is good only in certain areas, then the geoid suffers in those
areas only from the influence of the distant zones. Because this influence is nearly

the same in limited areas, the relative accuracy of the geoid there will be good.

In combining the gravimetric and the satellite approach one gets certainly a
distinct improvement OVE€Tr each of the two separate approaches. The satellite infor-
mation will insure good lower degree harmonics and a good overall N(g) . The
gravimetric data will insure good detail, especially good deflections in well-covered
areas. The influence of distance zones which was encountered there previously will
be diminished. In areas with poor coverage the detail of the geoid especially its slope

(deflections of vertical) will hardly be better than in a pure satellite solution.

The question arises how to represent the potential during the combination pro~
cedure. If one takes gravity anomalies Ag (or a comparable quantity like A, AV)

then things will be stable in well-covered areas and unstable in the rest.
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If one uses the spherical harmonic coefficients of N(£), i.e. the N,, up
to a very high order then one would have to impose some conditions on the N;, in
order that they give a good fit o Ag(£) in the well-covered area. The numerical
solution of this problem would probably be a little more stable. If, however, one
goes back to gravity anomalies in unsurveyed areas, then large fluctuations in the
computed anomalies will be observed. These are similar to those for pure satellite

solutions.

The best approach would probably be a hybrid one, representing the potential
by the coefficients Np, up to n=N and by residual anomalies with respect to the
(still unknowrn) surface given by the N,, up to n=N. Residual anomalies would only
be assumed in areas with good coverage. Care has to be taken that the residuals

are free of spherical harmonic components up to degree N.

In section 9 we will use a very simplified procedure of this nature. This will
only be done to provide the necessary background for some error estimates. Solution

procedures designed for actual data may be much more sophisticated.
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Part III

The Covariance of Anomaly-Residuals with Respect to

a Satellite Dei‘ived Geoid
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8. The covariance of an isotropic stochastic process on ' having degree

variances zero for n <N.

Satellite observations establish very well the low degree harmonics of the
earth's potential. The disturbing part of the potential may be represented by the
geoidal undulations

N(g) = anN,,.. S ()

If one tries to derive more and more coefficients from satellites alone than their

relative error, i.e. the ratio, error divided by coefficients, certainly increases.

The reasons for this are mainly the general decrease in the degree variances.
with increasing n and the attenuation effect which reduces the influence of the higher

coefficients even more at satellite altitude.

Let us disregard this gradual decrease in relative accuracy and let us study a
limiting case. Assume that the coefficients N,, are exactly known for n <N and

that they are completely unknown for n>N.

From the N,, we can compute the Ag,,, i.e. the coefficients in the expansion

of Ag(E) by (cf. (5 - 4)).

Ag,.a = S (@-1)Ng
R
We can then assume that the Ag,, are known for n <N . We now have the following
situation
AgE) = Ag"(8) + Ag' () = T AguSiu(§) + T\ Afus Sua(B)
neN n>
m m
ees (8-1)
A gt(g) represents the truncated part and Agr(g) the residual part. The
residual part may also be regarded as the gravity anomalies with respect to the sur-

face implied by the truncated part, i.e.

N*(g) = 5 Nua Saa(9) @ - 2)
m
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We shall study now Ag7(g). Since the considerations hold for any isotropic

process, we change the notation from Ag to x .

Let us split an isotropic stochastic process x(§) on [ in the following way

x() = x(8) +x°(5) =% XmSw(E) + T X,55,,(E) @ - 3)
nriN >N
m

x* (E) represents then the truncated part and x" () the residual part. Let C(t) =

C(E . n) denote the covariance of x(g). It splits in the same way as

C(t) = C¥(t) + C™(t) = = @2 P, (t) + £ o2 P, (t) @ - 4)
n<N n>N

C'(t) is then the covariance of the residual part.

We shall now show that CF (t) has two general properties which hold for a

wide class of stationary processes on ' having zero degree variances up to and in-

cluding degree N.

The first property holds for any function f(t) of the form

f(t) = T @ Py(t) (8 -5)
n>N

with not necessarily non-negative coefficients. We shall show that

(1) A contdmous function of the form

f(t) =% ¢ Py(t), ~1lst=<+1
n>N

has at least N + 1 distinctzeros in -1 <t <+ 1.

Remark: The harmonics of degree 0, 1 are frequently removed from the Ag.
In any case they are small. The covariance should then have at least two zeros in the
inteﬁal -1 <t<+1 or equivalently with t=cos ) in 0 < § < 1807 We find this
verified in Heiskanen-Moritz, p. 254 or in Kaula (1966), p. 5304. In the latter case

the degree variance g5 is rather small. We are therefore not surprised to find even

more than two zeros.
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Thus we shall expect covariances c’ (t) oscillating around the abscissa if

N is greater. This holds true regardless of the special shape of the original covar=-

iance C(t).

Proof of (1). Put

Fo(t) £(t)

t
[Fer@dr , k=1
-1

Fy(t)

We have then trivially

Fy(-1) =0, k=1,
We shall show that also

F,(+1) =0, k=1,..., N+1
Assume for the moment that this has been shown. From Fy 4+ y(-1) =F g4, (+1)
it follows that

Fy(t) = adTFN+1(t)
has a zero somewhere in 0<t < 1. Denote it by z
From
Fy(-1) = Fy(z) = Fy(+1) = 0
it follows in a similar way that Fy_,(t) has a zeroin -1<t <z and inz<t<+1.

Proceeding in that fashion we arrive at N+1 zeros for f(t) = F,(t). We

show now F, (+1) =0. From

+1
[ f(t) Po(t)dt = 0
-1
we deduce, since P,(t) is a constant that F(1) = 0. By partial integration we find
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+1 o+
[ (0P (t)dt = Fy(t)Py(t) -‘rFl(t)Pl'(t)dt = 0
-1 -1 -1

Because of F, (+1) =0, we have

+1
[ P(t)Fy(t)dt = 0
-1

Since P,' is a constant we have Fz(1) = 0. Proceeding in that fashion we verify the

desired relaton.

Having established the oscillatory behavior of c’ (t) we would like to know a
little more about the location of these zeros. We are particularly interested in possible
zeros in the neighborhood of t = 1. These correspond by t =cos § to zeros for small
Y i.e. to points at a close distance. We shall not prove an e.xacf result. However
utilizing the fact that the coefficients in the expansion of c’ (t) are non-negative, we

shall demonstrate the following.

(2) There is a strong tendency that c’ (t) is of alternating sign at the larger

zeros of Py(t). At the largest zero of Py(t) it would then have negative sign.

Remark: The large zeros of Py(t) are close to 1 and correspond to small
¥. For N=12, the largest zero is at t =0.981561 or i =11.02°. Thus, at distances

around 11° we should expect negative correlation.

Since (2) is not a precise theorem, we cannot prove it. So we give a motiva-
tion. Itis known that the zeros of P,_,(t) separate those of P, (t). Denoteby =z
the largest zero of Py(t). Since P, (1) = 1 forall n, we see that Py_,(z)>0. We

use now the recursion formula. (See Abramowitz (1964), equ. 8.5.3.)

@+1)P, 4 1(t) = (20+1)tP,(t) - P, ,(t)
to compute Py4,(2), Py4+z(z) and perhaps a few more. We obtain

Phyr1@ = - ﬁ%l_ Py-4,(2z) <0
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This shows that Py 4 ,(z) is negative and of about the same modulus as Py-,(2).

Now:
Py ya(z) = - % . ZPy,(z) <0

For large N and therefore z close to 1 we see that Py4,(z) is about twice

as large (absolutely) as Py ,(z). Now it goes on

_ | . @N5)@N+3)N (NN
Py +32) [ (N+3) (N+2) (NF1) 2%+ (N+3)(N+l)] Py-1(2)

this is for larger N still <0 and about three times as large as Py-,(z). Py 4(2)
would then be roughly four times as large as Py ;,(z). This certainly cannot go on
that way. Eventually the increase in modulus has to taper off since always | P, (t)'

< 1. However, we see that there are a certain number of P,(z) n = N+1, ...,

N + Ky which are definitely negative. Returnnow to C' (t) for t =z
C'(z) = T_of Pu(z)
n>N

The ¢° are 20. If 09+,>0, 0f+2 > 0, ..., and moreover if for larger
n the 02 taper off to zero quickly enough then we have
Cc'(z) <0
which was to be motivated in the case of being largest zero of Py(t).

The motivation for the following zeros is similar. Since z is then smaller

the motivation is somewhat weaker.

Let us look at P,z(t) for example. It has a zero at z =0.9816 which
corresponds to = 11°02. We have P, 5(z) =-0.0957, P,(z)=-0.18124, P,5(z)=
0.2546, P,5(z)=-0.3142 .... One sees clearly the tendency to follow the pattern

1xp, 2xp, 3xp, .... which has been motivated above.

We shall further exemplify these effects using two covariance functions

published by Kaula in 1959 and 1966.
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Example 1.

Kaula (1959) estimated the following correlation function for the

gravity anomalies (See Table 2.)

Arc Arc ! Arc Arc
distance, Covariance, | distance, Covariance, | distance, Covariance, | distance, Covariance,
degrees mgal? degrees _ mgal? degrees mgals degrees mgal®
0.0 +1201 21 +35 " 59 —23 97 +10
0.5 +751 23 +10 61 -38 99 +13
1.0 +-468 25 +20 63 -17 101 415
1.6 4356 27 +18 65 -34 103 +16
2.0 +332 29 +6 67 -17 105 +8
2.5 +-306 31 +8 69 -19 107 +13
3.0 +296 33 +5 71 —-20 109 -2
4 +272 35 -8 73 -7 111 +19
5 +246 37 -10 75 -6 113 +1
6 +214 39 -13 7 0 115 +10
7 +174 41 -11 70 +3 117 +31
8 +124 43 -7 81 -6 119 +6
9 +104 45 —18 83 +6 122 +26
10 +82 47 -18 85 —6 126 +14
1 +76 49 -18 87 +4 130 +4
13 +54 51 -23 89 -7 134 +2
15 +-47 53 -12 91 0 138 -4
i7 +45 56 -32 23 -2 145 r23
19° +-34 57° -23 295° +4 165 -20
167° +5
Table 2
He also computed the first 32-degree variances.
n g2 g2 n g2 n o2
2 7.3 9 22 16 6 23 9
3 43.6 10 15 17 12 24 11
4 29.8 11 18 18 19 25 9
S 10.5 12 7 19 10 26 11
6 24.2 13 15 20 7 27 4
7 2.8 14 23 21 14 28 8
8 22.7 15 22 22 10 29 S
Table 3

We have listed them only up to n =29. Kaula's ¢3, is negative and therefore not

acceptable.
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Using these degree variances, we have removed the harmonics up to order
N from C(t). The results are shown for N=2, 3, ..., 12 in Table 4. Arguments
are <51° in Table 4. We know that for greater arguments we have to expect oscil-
lations around the 3 axis. These show up in the results very well but are not exhibited

here.

According to our "theorem" (2)-in section 2 we should expect negative correla-
tion at the smallest zeros of Py(cos ). The first zeros in increasing order are listed

in Table 5 for various N.

> Wy T o
3 39°2 - -
4 30°5 70°2 -
5 25°2 57° 4 -
6 21°8 47°0 76° 2
7 18°4 422 66°0
8 16°2 37°2 58°3
9 14°5 333 5202
10 13°1 30°1 47°2
12 11°0 25°3 39°7
Table 5

We can verify alternating signs at these zeros. For example, take N = 12,
C(cos y) is negative around @, = 11°, positive around 5 = 25° and again negative
around g =40°.

Example 2. In 1966 Kaula estimated the following covariance based on mean

5° x 5° blocks. (See Table 6 on page 72.)
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Rapp (1967) has observed positive correlation between neighboring 5° x 5°

blocks of residual anomalies obtained after removal of satellite observed harmonics.

Since at that time the degree up to which the satellite derived harmonics had a reason-

able accuracy (i.e. a standard error considerably less than their value) was certainly

not above N=8 we see from Table 5 that this positive correlation is in agreement with

our results (positive correlation for 3§ =5°.). Rapp observed negative correlation be-

tween 15° x 15° blocks. This is again in agreement with Table 5 if we assume that

N is greater or equal to 6.

origt

|

W nal 0

. 0.0 274, 271.
5.0 116. 113.
e 960" 89. - .86.
13.0 S5l. 48.
— 18.0. 34. 31.
23.0 20. .17

— 2%.0 5 2o .
3”00 -4 -7.

- E 39.0 -10. -13. .
44.0 -9 -12.
. 49.0 -90...-120
54.0 ‘10- -130
- 59.0 -13. -16.
64.0 -ll- -14.
—.. 69.0 f6ou...-9-
74.0 °5. -8
—i 80.0 - = _-.S- ..... _. =8.
85.0 -3, -6

- 90-0 - -lo.. - _-l’o.
" 95.0 S5e 2.
-.100.0. _.. 9. . 6o
105.0 16. 13.
.- 111.0 17. 14.
116.0 16. 13.
--.121.0._. 14. . 11.
126.0 11. 8.
. 131.0 To.. 4.
136-0 lo -2.
. 1”1-0 -1. -4,
1"600 -8 -ll-
151.0 -4e =T
156-0 -9, -12.
162.0 -2, -5.
167.0 2. -1.
17200 l- ‘2.
175.0 l- '2.
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9. The covariance of the gravity anomalies after imperfect removal of the lower

degree harmonics.

The lower degree harmonics are not perfectly determined by satellite methods,
but have relative errors generally increasing with the order n. Therefore the effects
outlined in section 8 cannot be expected to show up uhperturbed. Whereas those attri-
buted to the very low harmonics should still be recognizable, the effects due to the
rather unprecise determined harmonics of order 10 and more are certainly somewhat
blurred. Nevertheless the characteristic feature of negative correlation between rela-

tively close points is expected to be still present.

In the following we discuss a simplified procedure for combining satellite and

gravity information. Then we make some experiments with the examples of section 8.

Let Ag(E) be the observed gravity anomalies (complemented in some way for
the unsurveyed areas). Ag(g) is superimposed by observation and prediction errors.

We can calculate the spherical harmonics coefficients Ags  defined through

Ag(E) = T AggSu(E)
n,m

We can only calculate them up to a certain degree without committing too large an error.

On the other hand, satellite methods provide us with harmonics Ag;, up to

a certain degree N.

We can view A g:m and Ag:,l as observations of the true harmonic coefficients

Ag..- The observations are superimposed by errors. Thus
g g
Ay = Agne T 6Agnll (9 = 1)

Aghs = Agna t 8Aga. 9-2)

We are now going to estimate or predict the true coefficients combining the

two observations. Thereby we assume
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Ag,, has variance 3 == 9 -3)

2n+1
2
. . T
6Ag,, has variance 2 = ol 9 - 4)
’ (lﬁ
§Ag . bas variance w2 = 2ntl (9 -5)

We assume no correlation between all these quantities.

This assumption is certainly a simplification. We know that there is some cor-
relation between satellite derived coefficients, i.e. between different §Ag;, . We
ignore this here. The reader too ready to condemn such simplification shall however
notice that this assumption is the only one to insure the estimated anomaly process
(after the combination) to be an isotropic process on I'. As soon as there are corre-
lations between different § Ag?, the estimated combined process would no longer be
an isotropic process. Its covariance would no longer be dependent only on the distance

between two points but also on latitude and possibly longitude of the points.

Thus the problem would have to be attacked by means of general, i.e. non-
isotropic, processes on T.

Since in this study we want to retain the isotropic property of the process,

our assumptions are nearly the most general one to insure this.

If we employ now the methods for linear prediction, (Papoulis, (1965), p. 390),
we find by the orthogonality principle that the problem decomposes into an estimation
problem for each single coefficient. Moreover we see that we have a non-trivial esti-
mation problem only for those coefficients for which we have two observations, i.e.
for which we have a value from anomalies and from satellites. Coefficients obtained

from anomalies only remain unchanged. They need not even be evaluated during the

combination procedure.

The prediction problem for one coefficient looks as follows:
Find an estimate Ag,, for Ag,, as a linear combination

Aénn = a:mAg:l + a:lAg:m n <N (9 - 6)
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The criterion for the choice of the a's is

E {(Agnp = A8y )? } = Minimum

The problem is solved by the orthogonality principle leading to

E {(Agw - AFa) A% 3 =0, E{(Agys~08as)A8ma } =0
.(9-7
Inserting .
Afan = Qfa(Agm + 64gh,) + 0h, (Agw T 848,
we obtain for fixed n, m the two equations:
(02, + 73, ofa t 05,00, = O
olah t+ (oh + of) an. = O, (©-8)
Their solution yields of,, Ogp:
_ O 1
6~Fnl| - Tf Una.+0i (9- 9)
+
L+ 72 7&
o2 1
8 = -
Ta T2
0 <n <N

-n<m<+n
The best estimate for n >N, i.e. for the coefficients with no satellite information is
9 - 11)

merely
ABw = Agn

However, the Ag%,, n> N need not be evaluated. For we have for the best estimate

AZ(E) for Ag(E):
Agnmsnn + Z Agilsnl
N



g ~
=Il mAgEmSu - nzsN(Ag“ - Agnn)snﬂ
m

Thus AF(E) = AKE) - T (A8 - Afrs)Su(® © - 12)

n<N
m

This serves the evaluation of the estimated gravity anomalies after combination

with satellites.
The (unknown) true anomaly process is

true
Ag =z Agnl Snn(g)
n,m

The residual process after subtraction of the estimated low degree component is

Agr =z (Agnu - Agnn)snu + Z Agnnsnn (9 - 13)
ns<N n>N
m m

The quantity Ag,, - AZ. iS the errorin Ag,,, its variance €5 is according to

~

prediction theory obtained as €2, = E {(Cpg = C14)?} =E{(cay = Cou)Cm }» OF

€2. = 02 (1mag, - 02)

This is according to (9 - 9), (9 - 10) equal to

2
2 = €n 3 = 3 1 -
€nn 2n+l Hd En oln of 0? (9 14)

The covariance of the residual process is therefore

"(E.p) = 3p (E.n) + 3p (. 9-15
c'(g.m) = T €3Pa(8n) + T o7 Pu(E.n) (@ - 15)

The second term on theright has been investigated in section 8. The first term
blurrs the picture obtained there somewhat. As long as the ¢ are small, the effects
discussed earlier should still be visible. However they need not necessarily be present

up to degree N.
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Remark: The combination procedure outlined in Rapp (1968) is a limiting
case of the one presented here. It is obtained for g, » = ( Cf. ibid. equ. (31)).

Examples continued.

Kaula (1966) has compared various satellite derived potentials with gravity
anomalies. The statistics which he used during this comparison are clearly based on
the concept of isotropic processes. This means that any discussion based on these
statistics neglects correlation between harmonics.

Gaposchkin and Lambeck (1970) used the same set of statistics to compare their
1969 Smithsonian standard earth with surface gravity anomalies. The gravity anomalies
were the same as those used in Kaula (1966). Their estimated correlation function is
listed in section 8,.Table 6.

We shall use these statistics to obtain an idea of the covariance of the residual
gravity anomalies which are obtained after removal of the harmonics derived by
Gaposchkin and Lambeck. Equivalently we may say that we are interested in the covar-

iances of gravity anomalies with respect to the 1969 Smithsonian standard earth.

Though Gaposchkin-Lambeck derived a complete set of harmonic coefficients up
to degree 16 and in addition several higher coefficients, we shall base our discussion only
on coefficients up to degree 12. The harmonics above n =12 certainly serve to better
interpolate and predict the motion of the satellites which had been used to determine the
field. They also may give a better fit to surface gravity data in well surveyed areas. It

is however, questionable whether they contribute favorably to a better fit in areas with

poor gravity coverage.

The problem is to find estimates for the quantities €2 in (9-15). From
(9-14) we have

. ]

€ =03 E
142 +

T ez

2 2

Since the ratios —g, 2% increase with increasing n we expect ratios €, /0, in
n wn

the form of

&L
c. 1+4+f(n)
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where f(n) is an increasing function.

Figure 5 in Gaposchkin-Lambeck yields the following values of these ratios:
(the coefficients in Figure 5 refer to the potential rather than the gravity anomalies.

However this is immaterial for the ratios).

n - €& [/0a
2

2 e
2 practically zero

5 | _

6 0.1

7 i 0.15

8 0.25

9 0.28
10 0.34
11 0.48
12 0.67

Table 9

We may check them using the statistic E(g?) given and explained in Gaposchkin-

Lambeck. We should have

12
E(e3) = I €3
n=2

For E(g?) we have the value 9 taken from Table 20 in Gaposchkin-Lambeck
(1970). The right-hand side can be evaluated if the degree variances are given.

Gaposchkin- Lambeck (1970) lists the following degree variances: (See Table 10 on
following page).

The first column should coincide with Table 7 since the same gravity data have

been used. Apparently a re-evaluation has taken place. The differences with Kaula's

results in Table 7 are small.
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from satellites

after combination

n gravimetry alone gravimetry-satellites
0 2.9
1 0
2 5.9 7.4 7.4
3 31.0 33.3 33.0
4 18.2 19,7 20.0
5 7.3 17.5 17.8
6 20.7 14,4 15.7
7 9.2 16.4 15.5
8 7.0 8.5 6.7
9 8.7 15.1 12.7
10 9.4 17.7 12.9
11 5.7 13.7 12.2
12 3.5 8.4 5.1
Table 10

We use the last column together with the ratios €, /0, in Table 9 to evaluate

the €2

[V}

L o
2 -
3 -
4 -
5 -
6 0.2
7 0.3
8 0.4
9 1.0

10 1.5

11 2.8

12 2.3

Table 11

12
The sum Zzef is evaluated to 8.5 and compares well with E(€3) = 9.
n:

We use Table 1l to evaluate the covariance of the residual anomalies by
perturbing the results of section 8 according to formula (9 - 15). For N =12 we would

have to add to the last column in Table 4 the expression

0.2 Pg(cos ) + 0.3 Py(cos ) +...+2.3 Pyz(cos b)
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This is essentially done in Table 12 except that Table 4 has been modified
according to the differences between Table 7 and Table 10 concérniﬂg the gravimetric
degree variances. Results are exhibited for N <12 in Table 12 on page 83.

The results in Table 12 refer to the case where satellite derived harmonics
have been combined with gravimetric data. One may also be interested in the covariance
of the anomaly residuals after removal of harmonic coefficients which are purely satellite

derived.
It is clear that in this case the €2 have to be greater. We try to account for that

by multiplying the €2 in Table 11 with an appropriate factor. This is theoretically not

satisfactory but may be practically feasible because of the smallness of the ¢'s.

The size of the factor will be determined from the E(¢?3) values in Table 20
of Gaposchkin-Lambeck (1970). We have already used E(e%) =9 in the combination
case with N = 12. The corresponding value for the pure satellite solution is EE€?3) =

17. Thus we use a factor of two. The corresponding results are listed in Table 13

on page 85.
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10. Comparison with uncorrelated block errors.

In this section we try to answer the following question. How do the 12 mg
residual standard deviation of 5° x 5° anomalies which are obtained after the removal
of the estimated harmonics up t order 12 compare with the residual errors of 5° x 5°
block means which are derived by gravimetric methods. Note that in the combination
Procedure gravimetric and satellite information has been combined. In areas with
good gravity coverage the accuracy of the final (combined) estimate of a 5° x 5° block
is then certainly not less than it was before the combination with the satellite data.
Our question pertains then mainly to areas with poor gravimetric coverage. On the
other hand, if we deal with a pure satellite solution then our question concerns the

residual anomalies all over the earth.

First we clarify the following: What is the standard error of the geoid which
is caused by the residual gravity anomalies (which in unsurveyed areas have to be
regarded as errors). It will be convenient to discuss this question in terms of

spherical harmonics.

It will be necessary to estimate the full spherical harmonics expansion of

the covariance C(t) of the original anomalies. Table 10 (first column) gives the
degree variances up to n = 12. Summed they account only for 130 mg?® of a total

of C(0) = 274 (Table 6). We dispose of the remaining 144 mg'in the following way:

02(Ag) = ——— 82, n=13. (10 - 1)
(m+d)?

This formula is motivated as follows: c/(n+d)?® is assumed to constitute the degree
variance of the unaveraged gravity anomalies for n > 13. The denominator assures
that the corresponding covariance function is continuous. B. is chosen as in formula
(3 - 14a) whereby y, is assumed to be 2°8. B, are thus the eigen-values of the
averaging operator over circular disks of spherical radius i, =2°8. The area of
these disks is approximately equal to that of 5° x 5° blocks (at the equator). Hence
(c/n+d)3B2 are the degree variances of the averaged anomalies for n = 13. ¢

and d are chosen in a way that for the sum over the g2(Ag), n= 13 accounts for

144 mg and that ¢35(Ag) is roughly Smg®, i.e. close to 03,(Ag) =5.7 mg? and
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022 (Ag) = 3.5mg? in Table 10, column 1. After some trial calculations the values
c =5.10%, d =250 have been adopted. They gave the desired sum T ol(ag) =
n=

144 mg® and ¢05s is about 6 mg.

According to formula (6 - 3) and the discussion on error variances at the end

of section 6, we get the error variance of N in the form

2 »

3 = (R 1L 42
o2 (6N) (G) 11>:=2 (n-1)9°“(5Ag)

(10-2)

The o¢2(6Ag) are the error-degree variances of Ag. Inour case we have to

put them equal to the ¢? in Table 11 for n <12 and equal to the above estimated
values for n> 12,

We get
12 €2
n§-2 (n_l)a No.ll
and s s
@ §. 10 Bx
0.35
o3 @+250)° @- D2 ©
Hence

G?(6N) = (—g—) *x 0.46

Thus 0(8N)=~s 4.4 m. This is close to estimates in Gaposchkin-Lambeck (1970).
It should be pointed out that this is the error of the smoothed geoid, i.e. a geoid which

is averaged over areas of about 5°x 5° in the same way as the anomalies are. (f
the end of section 5).

Now we assume that we have 5° x5° means which are uncorrelated. Assume
f or the purpose of better comparison that their error is also 12 mg. What is the error
in the undulations caused by them? The numerical results in Heiskanen-Moritz

(1967), chapter 7, suggests an undulation error of about 7.5 m. Letus check this
result in a different manner.

Assume for this purpose that averaging takes place not over 5° x5° blocks but

again over a circular area of 2.8° spherical radius which is of about the same size.
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To obtain a covariance of averages over these ¢, =2.8° disks we take the process
zm’(g‘) from section 4, equation (4 - 29), for N =500 and zero and first order

harmonics omitted. We multiply the process by a suitable factor p 2 in order to ob-

tain the desired variance 144.

The formula for the error variance of the undulations is then

3 500

The value ¢(6N) = 6.9m is in good agreement with the 7.5m from Heiskanen-
Moritz (1967).

This shows the following: Due to their particular correlation the mean
anomaly residuals after removal of the estimated harmonics up to order 12 yield
a smaller error in the geoidal undulation than uncorrelated errors of mean anom-

alies with the same standard deviation. The factor is roughly 1/2.

If we have uncorrelated errors in mean anomalies of about 6 mg , then
the error of the geoid is about the same as in the case of unknown mean anomaly

residuals with respect to the Gaposchkin-Lambeck geoid.

The reason behind this is the following: The geoid is much smoother than the
gravity anomalies. The smoothing properties of Stokes ' operator have already been
demonstrated in section 2. Stokes’ operator damps the harmonics of degree n by a
factor proportional to T}T . The geoid depends therefore mainly on the lower degree
harmonic components of the gravity anomaly field. Satellite methods are able to provide
this component with good accuracy. Even though the anomaly residuals with respect
to a geoid determined by satellite methods (or by a combination procedure) are large,

their correlation is in favor of smoothing out their impact upon geoid errors.

Mean anomalies determined by gravimetric methods may be regarded as
having errors uncorrelated between neighboring blocks. This error is even with the
use of airborne or shipborne methods smaller than the 12 mg standard deviation of the
anomaly residuals with respect to a (combined) satellite geoid. The error may be
around 6 mg. This error is not so favorable on smoothing out the impact upon geoid

errors. There are low degree components inherent in them which are certainly small
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because of the zero correlation between blocks. Nevertheless, they are larger than
in the other case where they are precisely counteracted by appropriaite correlation

(which must necessarily be negative somewhere).

If the undulation errors in the resulting geoid are the only basis for comparing
satellite and gravimetric methods then we can only séy that the Gaposchkin-Lambeck
(1970) geoid is about as good as one determined from an overall coverage of the earth
with mean 5° x 5° anomalies having errors of about 6 mg. This seems to be true
despite of the fact that the anomaly residuals with respect to the Gapos chkin-Lambeck
geoid have standard deviation of about 12 mg.

Errors in the undulation of the geoid may however not be the only quantity
of interest. In inertial navigation, for example, the deflections of the vertical play

a decisive role. Letus turn to errors in the deflection of the vertical.

Using formula (6 - 4) we get for 8Av instead of Av:

0%6av) = —7 I, ﬂgﬁ? o (64g)

If we turn first to the anomaly residuals with respect to the Gaposchkin-Lambeck

(1970) geoid then we have again to put o2 (8Ag) equal to €2 (Table 11) for n <12,
whereas for n> 12 we put them equal t the estimates derived at the beginning of

this section.

We get

12 g’ )
T nn+lza €2 = 11.5
n=2 (n-1)

S 5.10° 3 n(n+ =
Z1; wFmneaT B - 16

This gives
c?@Av) = 31-5 175

which leads to a standard deviation of the deflection of the vertical amounting to 3".

We turn now toward uncorrelated 5° x5° mean anomaly errors which for
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reasons of better compairson shall for the first also amount to 12 mg. The formula

in accordance with the similar ¢3(5N) calculation is then

3 800 2n+1

*@av) = gz L, “@-D® n@+ B3

and yields g3(6Av) = -Ela—l73. This leads to the same standard deviation of 3".

This means however that with uncorrelated anomaly errors of about 6 mg we

have an error in the (smoothed) deflections of 1"5.

The qualitative reason for this is also clear from our previous discussion.
The transition Ag to Av involves no smoothing or unsmoothing the higher harmonics
of Ag are multiplied by a factor, which is almost constant for larger n. Hence the
regional variation in Av is up to a factor about the same as that of Ag. (Stochastic
process models dealing with very local variations Ag and Av show even a strict
proportionality between o(Ag), @(Av), cf. Shaw-Henrikson (1969). We should not
wonder therefore that multiplying ¢(Ag) by a factor of % yields a g(Av) multiplied

1
by 3, irregardless ofa change in the correlation pattern for distant points.

Thus we see that the geoid obtained from gravimetrically determined 57 x 5°
block means having uncorrelated errors of 6 mg is indeed better than that obtained by
the harmonics up to degree 12 on the Gaposchkin-Lambeck solution. The improverrient
does not show up in the undulations. It becomes apparent in the quantities characteriz-

ing the slope of the geoid.

Recall that the deflections of the vertical in the above discussion are smoothed
versions of the true deflections. The reason for this is that the gravity anomalies
underlying the discussion are already smoothed versions; namely, averages over
areas comparable to 5° x 5° blocks (at the equator). Thus our standard deviations
of 3" and 1"S seconds refer to smoothed versions of residuals and errors, respectively.
The errors of the corresponding quantities prior to averaging are certainly greater.

A rough estimate for them is obtained by comparing the standard deviation of the
(unaveraged) gravity anomalies in Table 2 which is VI_ZO—I = 35 mg with the stand-
ard deviation of ¥ 274 = 17 mg of the averaged anomalies in Table 6. The latter

have been used in the estimates leading to 3" and 1"5. If we split the 35 mg in the
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following way
352 = 17° + 30%,

we see that a 30 mg additional standard deviation is involved in the transition from
the averaged to the unaveraged anomalies. If we add this to the 12 mg standard de-
viation of the anomaly residuals with respect to the Gaposchkin-Lambeck = N < 12
geoid we obtain 123 + 302 = 32mg. If we add it to the 6 mg error standard
deviation of the block means we get 6° + 30° = 31 mg. We know that the stand-
ard deviation ratio of anomalies and deflections is within relatively narrow bounds,
especially if the low frequent portions are nearly removed. In that case the ratio

is about 4 - 5 mg/arc sec, (Table la). Applying this ratio toward the above estab-
lished estimates of 32 and 31 mg we find 32/4°5~ 7" (Gaposchkin-Lambeck) and
31/4*5 a 7" 5° x5° blocks. There is no significant difference in the standard devia-
tions of the unaveraged'deﬂections . The difference is only apparent in the averaged
versions. This means that only the low to medium frequent portions of the deflections
are better recovered by the 5°x 5° averages with 6 mg error than by the Gaposchkin-
Lambeck N=< 12 geoid. This may, however, be of interest for inertial navigation

over larger distances.
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