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"ABSTRACT

Detailed models of the geopotential defined in a geocentric coordinate
system must currently be based on a combination of satellite derived data
" and terrestrial gravity observations. This investigation concerns the use
of such data to develop a geopotential model consisting of a spherical har-
monic series supplemented by point masses of defined magnitude and position.
An undulating reference equipotential surface described by a 14th degree and
order set of spherical harmonic potential coefficients is established and con-
ventional terrestrial gravity anomalies are redefined to refer to this surface.
‘These anomalies are used to determine mass magnitudes for point mass '
arrays positioned to approximate Green's equivalent layers. The technique is
demonstrated by developing a geopotential model for the central third of the
United States that is approximately equivalent to a model expressed in spheri-
cal harmonic coefficients to 180th degree and order. A much more detailed
model is also developed for a more limited area. Extensive comparisons are
‘made between geopotential functions computed from these models and com-
parison standards derived through classical geodetic procedures. The
results of this study show that a complex and accurate model of the geopoten-
tial can be developed using the described techniques. The method would be
most useful in situations requiring repetitive computations of geopotential
functions in limited areas.
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INTRODUCTION

Treatises on the theories of gravimetric geodesy very generally start
with a basic mathematical description of the gravitational potential of the

'vear't‘h of thé form:

@) Vo= k'f %‘-’[—
' ' M
where: v = gravitational potential at'a point;
k = graﬁtational constant;
dM = mass element; and
L = 'disténce.between‘the computation point

and the mass .eleme‘nt dM. -

. [Heiskanen and Moritz, 1967, p. 3]
Although the concept is basic to the entire dévelopment of gravimetric .
geodésy, these publications duickly point out that this equéti'oxi hﬁs no
praétical value in the computation of the earth's gravitational potenti;al or its
derivatives since the mass distribution within the earth is not known. As a
result, emphasis is shifted to formulations depending on forces actually.
nﬁeasurable on ofabove the surface of the earth. It is further pointed out .
that problems such as determining the potential and its first derivative and
thus;the mass of the earth and tﬁe shape of its exterior eqﬁipotential

1




can be solg}ed without knowledge' of the density ((;Iiétribution 'Within‘the earth
[ﬁeiékanen and Moritz, 1967‘, p. '64]; : .This is fovrtu'nate for there is no éolu-
fion .by which a unique ix;téx:nal maéé diéfriﬁutipn genefating a given potential

~can be determined froin_ measurements of that potential [Heiskanen and
Morifz, 1967, p. 17; Bullard and Cboper, 1948].

The simplicity of equation (I-1) and its various directional deriva- |
tives have stimulated various investigations to attempt to synthesize a mass -
distribution model that would generate an observed potential field. .
Weightman [1967] in 1965 suggested the use of "point sources' or "buried
’ma‘s,ses" as the basis for such a mathematical model for geodetic purposes.
He credited an earlier paper that used dipoles as a model for the geomag-
netic field [Aldridge and Horovitz, 1964] for suggesting some facets of his
development.b There are, however, many examples in geophysical literature
of attempts to interpret gravimetric data in terms 6f anomalous masses.
”Examplés: are given by Gérland [19v65] and Bullard and Cooper [1948]. In
theée examples, the 1§cation,_ size, and anomalous density of the masses
producing an observed field are sought for their geophysical implications.
This fype of geophysical problem is much different thaﬁ the probler of
finding an arbitrary mass distribution that will produce a given poiential
field and, és notgd, iﬁ has no unique solution. Most'gebphys ical discuSsions
~ of mass solutions as a result are rather unrelated to Weightman's propbsal.
An exception is the "equivalent soufcé technique' in which discrete.‘ point

masses on a buried plane are used in a very localized area to aid in inter—"




3
‘polating a regular grid of B‘dugugr anomalies. from irregularly—spaced obser-
_vétidns [Dampney, 1969] ,
Probably the Best'kncown utilization of point masses to geodesists is
_the work done by Muller, Sjogren, and 6thers as part of the Tumar Orbiter
Program. In this prbgram, point masses were used to model thé lunar
potential [Muller and Sjogren, 1968]. These sj:udi.es‘ have sthvn that under
the special situation pertaining to the Lunar Orbiter Prc)gfam, point masses.
ﬁavé contributed significantly to describing the local structure of the poten-
tial field [Wong, et al. ,‘ 1969]. |
A lesser known investigation utilizing point masses has been conduc—
ted by Geodynamics Corporation under the auspices of the United States Air
Force. This sfudy is related to the compensation of ballistic weapons sys-
-tems for anomalous gravity apcelerations. The existence of this effort and
its general outlines are not classified military information, but specific .
parameter values and requirements are classified. No information has been
published iﬁ‘the open scientific literature, to the knowledge of the author, on
these studies and the author has had no access fo classified documents.
Through personal communication with individuals at various Air Force activ-
ities, it has been determined that the point mass concept currently appears
to be applicable to some Air Force requiremenfs, but that many theoretical
and practical aspects of the cbncepts have nét been completely resolved.
There was a strong interest at all activities contacted in encouraging inde-

pendent studies utilizing point masses.




. :
This dissexjtation is fhereforé oriented i;(‘)ward the use of point masses
in geodesy. Specifically it treats the use of point masses as a means of

_ descfibing more detailed .gravitatio#al fields than are représented by'current
spherical hai-monic models. The approach has been to see what can be done
.in a practical mamner with actual data rather than to offer a purely théoreti—

| cal discussion. In some respects, as is often the case in actual practice,

the available data was somewhat inadequate. It seemed preferable, never-
theless, to use this reai data rather than to attempt to construct model gravi-
‘tational fields. The construction of such fields is too closely related to the
point mass concept to insure that the techniques employed in the study would 4
not be unconsciously biased t'owar& resolving the components of the specific

model originally postulated.




CHAPTER 1
~ THE COMBINATION OF SATELLITE _
AND TERRESTRIALLY OBSERVED GRAVITY DATA

11 Geﬁeral

The external anomalous gravity field of the earth is commonly
described by a truncated sphérical harmonic expansjon obtained from satel-
lite analys is, or by the explicit listing of anomalies derived from surface
obseﬁraﬁéns’ and reduced to a defined surface. Neither system is fully
satisfay.cbtory for modérn applications in geodesy and fhe missile and space
fields. ﬁew and proposed uses for gravity'daﬁa as typified byb rocket tra-
jeétory computations and inertia_lvnavigatiorix sysfem calibration and opera-
tion hé.ve presented problems thét are not eas ily solved using these repre--
sentations. These difficulties arise primarﬂy because, Wi;th the data
axvzailable' today, neither méthod’aloné can bequed to successfully de_scribe
t]ie full spectrum of the variation in the gravity field. The two methods are
complimentary and the best current model of the external gravity field must
include data obtained from both sources. This is the subject of much current
research'and.referenée will be made in subsequent sections to investigatioﬁs
concerned with specific aspects of this problein. |

To date, practically all data on the gravitational field of the earth that -




- has been ‘ob’cained by the analys is of 'savtellit‘e_orbit‘s has beén obtéméd ini- ’
tiélly in the form of spherical harmonic coefficients. ILess than 300 terms

in this infinite series of coéfficients have curréntly been determined with
any reliability [Gaposchkin and Lambéck, 1970]. Some current research
deals with the direct determination of surface gravity or surface ,‘dens ity
layers [Obenso_n, 1970; Rapp, .1970; Koc:h and Morrison, 1970], but irre—'
spective of the form of the data, the current methods of satellite analysis-
wiﬂ be iimited to forming models of a complexity comparable to that shown
by the spherical hérﬁonic modéls [Kaula, 1969]. This is inherent .in the

faqf that a satellite reaéts to the potential field through Which it moves. At
satellite he ights, the high fr‘equenéy variationé which occur in the near earth
fieid are damped out. If the wavelength, 8, of a variation is given by:

2mag

(1) o = o

where a, is the equatorial radius of the earth and n is an arbitrary integer,
then the potential field variations are damped with elevation by the factor:
2mae )

(1.2)(?3;_)u or (fg><T

r r

where r is the satellite geocentric radius; Thu;s, the shorter the wavelength
of the variation, the greater the attenuation of the disturbance to the normal
field and the less the observable perturbation of the nominal satellite orbit.

It is apparent that conventional satellite orbit analysis is not an optimum tech-
nique for defining the very detailed structui'e of the near earth gravity field.

It should be noted parenthetically that new satellite techniques using data




other than the motion of the satellite relative to earth fixed stations may be
‘ .expected to yield more detailed mformation in the future. For eﬁample,
satellite altimetry may con;iderably iﬁlprcve the knowledge of the fine struc-
ture of the geopotential over oceahic'areas [Young, 1970].
A converse situation exists Wiﬂ'l respecbt to terrestrial gravimetry.
~ Huge quéntities of '.Vell.'y‘ de_tal'ije-c-l’ii;formation e?gist as a result of ground gravity
observatio_ns, but this information is poorly distributed over the earth. In a
'feéént effort to dévelop a spheric_:al harmonic coefficient set from observed ‘
o terrestrial anomalies, only 1470 of the 2592 5°x 5° mean anomalies over the
- earth could be estimated from actual observations [Rapp, 1969a]. This situa-
tion does not allow a strong detefxﬁination of thé spherical harmonic clcr)effi—
; éients describing the gravitational field of the earth. Gravity anomalies are
known in great detail in many areas, particularly ‘in the United States and
'Europe, but the lack of worldwide gravity information prevents the fullest
utilization of this material. In effect, we know the short wavelength varia-
tions in the field in limited areas, buf do not have adequate information to
 fully define larger scale features from terrestrial observations.

In recent years, several investigators have utilized both satellite
information and terrestrial gravity in:fofmation to determine spherical har-
monic coefficient sets. These combmation'éolutions are essentially fhe
result of all of thé available qbservationél mé;terial concerning the variaf _
| tioﬁs in the geopotential field. . They prpvidé a bridge bet\&e'en "che:satell‘ite .

derived coefficients and the terrestrial gravity observations, but because of




»,

the limited availability of ground Qbéervatioﬁé in the context of a worldwide

sblution, the coefﬁc.iént sets have not been parried to a high degree and
order. Examplés of such coefficién’c sets derived from combination solu-
tions are Rapp's (14, 14) set [1969b], Gaposchkin and Lambeck's (16,16) set
[1970], and Kaula's (12,12) set [1966]. These solutions provide more detail
than the pﬁrely sate]lifé solution, énd the inclusion of the terrestrial materiai
improves the reliability of the detail that is -described.

1.2 Utilization of Gravity Information

Many of the applications of gravity dé"ca require worldwide knowledge
6f the gravity field at 1east in theory. Examples are compﬁtations of geoid
‘undulations, of deﬂectioﬁs of the frertical, and of the gravyitai:ional distrubance
componbents that are neede‘d in trajectory anﬁ orbit analysis.” I each of thevs‘ei
v ‘cases, détaile& gravity information is needed in sofne "inner zone" sur--
rounding the computation point while more generalized information W-ill suf-
fice for distant areas [Heiskanen and Moritz, 1967]. |

Prior to the development of satellite geodesy, a considerablé portion
of the effort in.gravimeiric geodesy was devoted to the practical solutién of
problems where only the inner field was known.- In these cases, the loéal
Variations in the geopotential field and the conéequences of these variations
couid be determined With' some accuracy. These computations were of value.
in applications such as intér'polating deflections between astrogeodetié deflec-
tion stations [Rice, 1967]. In these computations, the effect of the outer zone

was considered to be constant resulting in systematic errors in localized com-




P

puta'tion areas. Uﬁdulétipns or deflections determined in this manner could

not be considered to be measured in an absolute earth centered coordinate

3

“system and do not share in this primary advantage that gravimetric methods

enqu when Worldvséide gravity data is available. The magnitude of the sys’—
temaféic errors introduced by the neglecig of outer anomaly fields has been
s‘tudied_by Molodenskii et al. [1962] and will be discussed further in Chapter '4. |
" The spherical harmonic coefficient sets that have becqmé available
since the é.dvent of dynamic satellite géodes'y provide a means of computing
ﬁmcfions of the geopotential that arek definéd in anAabsolute geocentric coor-
dina;te system. Many examples ére‘ available in thg literature of the use of -
these coefficient sets to solve for various quantities of interest in geodesy
and the SPaqe séience’s [Rapi), 1966; Lundquist and Veis, 1966; Mueller, 1964;
Kaula, 1965]; Becausg these series are truncated at a relatively low order,

they yield highly smoothed representations of the various functions of the geo-

potential. For example, the actual absolute deflection of the vertical attains

magnitudes of 60 seconds of ai'q [Bomford, 1962], but the maximum deflec-

tions computed from current spherical harmonic coefficient sets are less
than 10 seconds [Lundquist and Veis, 1966, Vol. 3]. This smoothing, the
result of the neglect of short wavelength variations in the geopotential, is a

serious deficiency for applications near the surface of the earth.. Functions -

. computed in this mamner are described in a geocentric coordinate system,

but the smoothed value at an individual computation point may have only a

tenuous relation to the actual value of a rapidly varying function near the sur-
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face of the earth. Since these short Wavelength var1at1ons are damped at high
'.a1t1tudes, the functions computed from truncated sphermal harmonic sets at
satellite altitudes are mucli more repi'esentative of the actual value of the
function than is the case at lower elevations. For applicaticns' et high eleva—-
. tione, tlie truncated series are Satisfactcry models of the geopotential [Kaula,
1960,

To achieve a detailed representation of a geopotential function in a '
given area that is properly related to a me.ss centered refervence system, it
isl neceseary to‘ combine the worldwide knowledge of the geopotential obtained .
from eatellite studies with the detailed gra\iity information obtained from ter-
restrial surveys. One manner in Which this has been done is to compute
anomahes at the center of 5 °% 5° squares using satelhte der1ved spherical
harmonic coefficient sets and assume that these are satlsfactory representa-
tions of 5° 5° mean anomalies for use as an outer gravity field. This data -
is thenvcombined with detailed inner zone terrestrial anomaly data to pro-
vide a worldwide gravity field [Rapp, 1967, 1969b]. Another method is to
obtain an onter field from the available terrestrial data that has been adjus-
ted to be consistent with a set of spherical harmonic coefficients derived
from a combination solution [Snowden and Rapp, 1968]. This method has the

_advantage, over the preceding method, of retaining a larger amount of the
availeble information on the‘ outer anomaly field. It is a less smoothed field '.
than that obtained fronl evaluation of snherical harmonic coefficients, yet‘ it

- is fully compatible with the set of coefficients used in adjueting the field.
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This method will be discussed in more detail in Qhapter 6. Outer anomaly

fi'el'dsy dérived‘ in this manner have béen used-’»together with detailed inner
»terrgstir'ial ahomaly fields by Rapp [1.968], Mathef [1969], and»Sieb.enhﬁner‘
19691

Another approach that has been’ discussed theoretically is the use of
a high order reference system [Molodenskii, 1962;vde Witte, 1966a; Wong
and Gore, 1969]. The éommon reference systems of physical geodesy, for
example, the mtemational, adopted in 1930, and the Geodetic Reference Sys-
tém of 1967,‘ are based on the concept of an ellipsoid as a reference figure.
In the terminology uéed hére, a"high order, or s’pherbp, reference system is
‘one that is based on a more comple‘x_'figure than the ellipsoid and that is
defined by a finite set of spherical harmonic coefficients.

The traditional normal gravity field is‘ typified by a gravity formula of
the type:

(1.3) Yy = Ya(1+ﬁlsin2cp+ﬁgsin?2cp)

where: Yo = normal gravity at latitude o;
¥a = equatorial gravity; and
Bis ﬁz = coefficients depending on a set of ellipsoid

parameters such as:

1) equatorial radius;

2) mass; ‘

3) flattening; and

4) rotational velocity - -
- of the earth.
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This formula is a truncation of a series expansion of a formula

“describing the gravity field on the surface of a rotating level ellipsoid

- [Mueller, 1969; Mueller and Rockie, 1966]. Gravity anomalies at a point

are then defined by:

(14 Bz o= gV
where g, is the observed gravity reduced to the geoid at point i. This pro-
cedure reduces the observed gravity information to a perturbation of a nor-

mal field. Quantities computed from these anomalies, for example, undu-

lations, deflections, or disturbances at high altitudes, are then similarly

‘ pefturbations irom the normal field or normal refei'egqe figure. The €llip- .

,sc')'idal reference figure is simply an approximation to the true shape of the

sea 1eve1 equipotential surface. Ima completeiy analogous manner, a high
order, or s.pherop, reference figure can be defined that is more cbmplex and
is :i closer approximation to the sea level equipotential surface. For
example, the surface‘might be described in terms of ‘;he position dependent

radius, R(p',x, defined by:

l

(1. 5) ch" ' U T+ N\

* where: r,’ = geocentric radius to a point at geocentric latitude

®

¢’ on a defined reference ellipsoid; and

Np/, A = distance between the high order reference surface
and the reference ellipsoid along the radius
vector I

- A method of defining Ncp',K and of determining the normal gravity on
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»'bchi‘s'surfac'e will be described in Chapter 3. If ccomputatio‘nj,s are carried out
using anomali_és ‘referred to this h.igh order reference sﬁrface, then the
u_ndulations; deﬂ.ections,"-’.and disturbances are given with reference to this
reference figure or its associated gravitational field. In theory the results
' ‘ of these cdmputations, and the results of the usu;al combutations using anoma-
lies referred to a Speciﬁéd ellipsoid should be identical, after reduction to
some commdn reference system, if identical gravity information extepding
over the entire earth is used in the two computations. If adequate data is
available over the entire earth and this data is used in all computations,
- thefe is no appareﬁt advantage in using a high oi‘der reference system. In

- practice, the use of a high order reference sys;cem minimizes the importance
of the outer anomaly field to such a degree that anomaly information need be
used only in an iﬁner zone surrounding the computation point. If the spheri-
cal harmonic coe'fficient set used to define the spherop reference is consid-
ered to be derived pi‘imarily from satellite data and the inner zone anbma—
lies from terrestrial observations, then this procedure 1s in effect another
way of combining satellite and terrestrial data to obtain a detailed geopoten-
tial field referenced to a mass centered system. The procedures involved.

in defining a spherop referénce system are described in Chapter 4 and the

errors incurred by neglecting the outer anomaly field are treated in

Chapter 5.




CHA?TER 2.
" POINT MASS REPRESENTATION
OF AN EQUIVALENT LAYER_SURFACE

2.1 An Equivalent'Layer Model of the Disturbing Potential

The .potentiél fiéid,- W, of theb earth is corhmonly divided into two parts
to facilitate both practical and theoretical operations. One part, the normal
'field U, consists of some defined reference field. The remainder, known as
the disturbiné or anomalous potential T, consists 6f perturbations to the nor- -
mai reference field. This may be expressed as:

2.1) W .= U+T

The anomalous potential T could be expressed as:

@2 T = k[

where dM represents differential anomalous mass elements, £ represents
" the distance between a mass element and the point of computation of T, and
the integral is extended over all anomalous mass. |

Since U is a defined potential field, the mass distribution Whicil genér—
ates the field U need not be known. We will assume that the reference field is
génerated by a 'méan earth ekllipsoid that has the same mass, flattening, and rota-

tion rate as the earth and the same boundary potential as the geoid. This will

14
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imply that: . - et
(2.8) _f dM = 0 .
M u

“(2.4) f Tds = 0
(o)

where o is an.ec'{uiipotentiél surface and do repreéents a differential area
element,oﬁ that surface. The external geopofential field can be fully

described_ if an anomalous mass distribution is known so that. e@ation (2.2)

can i)e solved at all points on or above the geop exterior to all of the mass

| -of the earth. The mass distribution used for tilis purpose could be purely

. imagihary; Indeed "anomalous mass" can have little interpretable meaning
where no "normal" mass distribution ihas been specified.

| The task of finding a2 mass distribution that,vwﬂl génefate the true dis;

turbance botential T is simplified by the fact that we need only find a mass dis-

| tribution that generates the true potentiai T on all points of a giveﬁ surface S
that encloses all of the anomalous masses to assure that this mass distribu—- |
tion Wiil generate the true disturbance potential throughout the space exterior
to the closed surface S. This statément follows ffom Stokes' Theorem which
states, "...there is only one harmonic function V that assumes given boundary
values. on é surface S, provided that such a harmonic function exists' [Heiskanen
and Movritz, 1967, p. 417]. The existeﬁce of suph a function i.s assured by

‘Dirichlet's principle [Heiskanen and Moritz, 1967, p. 18].

. The problem can be still further simplified by specifying that alli of
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? .the,.anOmaloﬁs mas.sfbe_»concentreited into-an édi;-ivalent-layer on an equipoten--
tail surface that is external to ail of the anomalous masses that generate thev

“disturbing potential.bu't internal to the surface S. By Chas.les' Theorem we

~ know that it is possible to specify a surface density for this layer that‘Will
generate an exterior potential field identical to that generated by the original
anomalous masses [Heiskanen and Moritz, 1967, p. 16; Ramséy, 1959,

. p. 110]. Wifh this condition that the aﬁomalous mass will be found as an equi-
| valent layer on a speciﬁed equipotential .surface., the determination of the .
required .'mass distribution, or the analytic definition of the harmonic ﬁnqtion
T resolves to the Dirichlet—Néuman Inverse Problem which is stated by
Zidarov [1965] as "... the determination of a simple or double layer situated |

" on a surface S lying inside a surféce So at which the values of the potential or
of its normal derivative due to this layer are known. " It is important to note
that the problem is now reduced to the determination of masses (différential ,
elements of a layer) in pre-defined locations. Unfortunately, neither the |
anomalous potential, nor its normal derivative for a given sﬁrface are avail-
able from terrestrial gra\.rity measurements., Rather, gravity measurements.
lead to the determination of gravity anomalies. From consideration of the

spherical approximation of the basic equation of physical geodesy:

T 2T
2.5 = -2 - £
(2.9) , Ag oR R

where: dT/3R = the radial (approximately the normal) derivative

of T, and
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R | - the mean radius of the earth,
We‘rsee that a gravity anomaly is a linear conibination of the distqrbi;ng poten;
| tial and ité normal derivati;ré; A solution of this equation‘to obtain an expres-
‘sion _for‘ T is sometimes called the thii‘d bouﬁdary value problem or the’boun—
" dary value problem of physical geodesy [Heiskanen and Moritz, 1967, p. 37].
Stokes' Integral provides one method of determining the disturbing potential
from gravity aﬁomalies.
2.2 The Relationship Between Gravity Anomahes and Elemental Point Masses
" on an Equivalent Layer Surface

For purposes of deriving another solution for T by obtaining a defined

équivalént anomalous masé distribution, considér a model earth such-as

shown in Figure 1.

0: geoid surface

S: approximate equipotential
surface

d: surface separation

anomalous mass
Figure 1

A Ficticious Model Earth

In this figure, the outer surface ¢ is the true geoid. We will approximate
this figure by an ellipsoid thereby introducing, according to most geoid maps,

a maximum error on the order of 100 meters in the geocentric radius of the
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surface. Thé inner surface S encloses all aﬁérzn-fxalous masses and is ‘separated
o ffofp the sﬁrface o by a constant distance d. This surfacé is not precisely
aﬁ_ €llipsoid nor can it be shown that it is an equipotential surface. If, how-
éver; the distance d is képt sniall relative to the axes of tﬁe earth, it is
reé.soﬁaﬁle- fo éssume that this S surface is a cio.se a}pproximation to an equi-
| potenﬁal ;uﬁace. It is fher‘efore a suitable surface upén Which an equivalent
dens'i.ty’ layer can be found that will generate the potential T.

To find this mass distribution from a consideration of gravity anoma-
) ‘ lieAzé., »Wle Wili base the slolutionon equation (2.5), but expréss the anomalous -
| pétéﬁf?ai T gnd its normal derivative in terms of differential mass elements
on thé surface S. For compﬁtational,purposes we will expres; the integra-
tiéﬁ over the sﬁrface S as a summation of differential mass elements ovei'

" that surface. Thus we express the potential T at any point P, as:

‘@.6) Tp, = )
Ly
3
where: 4,, = the distance between point P, and mass element Mg
k = = the gravitational constant (6.673X 10"80m3g'1sec'2);
M, = the jth mass element.

» Figuré 2 illustrates the relationship between a computation point P;, a

- niass element M;, and the coordinate systems used in the following defiva— |
'tit;'»ns'. The subscripts i indicate that a value pertains to a point on the geoid
) énd the sﬁbscript i indicates a relationship’ with 2 mass element making up -

part of the surface S. For example, f{i is the radius vector to the ith point
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portion of
surface o

Figure 2

Notation of Point Mass Derivations
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on the geoid;:_—ﬁd‘vis the rédius vector ié .the‘ jth.';néss element; £4,-is the dis-
tancé} bétween_thé ith computétion point and the jth mass eIemeﬁtf The gen-
.era.llr n‘otafcion :re‘quired in this and éubséquént developménts is as fol‘lows.:

| X, Y, 7 Geocentric Cartesian coordinates of a comi:utation‘ p‘oint or
-~ mass element. This system has the Z axis along thé mean
‘bro‘tation axis of the earth, positive North, the X axis pos;

itive thro_ugh the Greenwich Meridian, and is right handed.

R Length of radius Vector_f{ toa point or mass
: L4y ' Distance between computation point i and mass element j
» ¢ Geocentric latitude |
K Geodetic latitude
A Geodetic longitude (positive to East)
Fyy | Dot product ﬁi- ﬁj
P Distance of a point from the rotationai axis of the earth,

Le. py= (x5 + 912

The following equations are listed for subsequent reference:

(2.7 X, = Rycosp;cos);
(2.8) Yy = R;cosg;sin)
(2.9) Z; = R,sing

(2. 10) F“ = XiXJ + YiYJ + ZiZJ_
C@AY) Sy o= ((Ki- KR (Y- Y+ (2 - Zy)?) V2
Making the approximation that the radial derivative of the disturbing

potential is the practical equivalent of the normal derivative, equation (2. 6)
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can be differentiated to find the gravity distll.'r‘t'):elnce'vat the ith-computation

point in terms of the j elemental masses on the S surface.

o 3T, K ng
(2.12) 221 = _2 SRy
( ) ) BRi Z“ .
!
. From differentiating (2.11) we obtain: .

344y 1 - dX, dy | dz
2.13) =4 ———-———(X-—X + (Y- Y 2 4 (7, - ___1>
19 3R, 1, \ Dar, T T Y0 gg, * B m B g

Differentiating equations (2.7), (2.8), and (2.9), we obtain:

.14 X o X

dR, _ R;
dR, R,

- dR, R,

Substituting equation (2.14), (2.15), and (2. 16) into equation (2.13), simpli-

fying and taking advantage vof equation: (2.10), one obtains:

2
@17 o - Bi-Fy
dRi » ,.@1331

Inserting equation (2.17) into equation (2.12) yields the gravity disturbance:

(2.18) .2_']% - _2: kM, (32—?';—51:11)

Equations (2. 6) and (2. 18) can then be substituted into equation (2. 5) to give

an expression connecting gravity anomalies on the geoid surface ¢ with mass

- elements on the equivalent layer s.urfa‘tc‘e S. This basic equation is:
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A LV (R-Fy . 2 o
(2.19) Agy- =Z ( 1= Fuy ) kM, .
o T Co . ':. ) z?jRi B 2 idRi"‘";.' " -

2.3 The Relationship Béméén 4 Point ,'Ma'ss Approximation and a Surfac.e
- Integral Approximation ,

The deveiopment of equétioﬁ (2.19) was based on equation (2.6) which
replaced an integral over the equivalent mass layer surface with a summation
of differential'mass elements of that surface. Implicitly therefore the sub-
script j Tuns from 1 f§ infinity. |

- If any coi:nputational use is to be made.of equation (2.19), the nﬁmber
of masses must be restricted to sbm_e finite number. When this is done,"the
differential mass element M, must bke. tedefined. If oné specifies that the
equivélent layer surface is to be divided into m 1hlocks" of the same area,
two obvious interpretations of M, arise. One is that M, is a dimensionless
méss pointl situated at tile center of the block that represents the mass in the
portion of the equivalent layer included inA that block. In this case, the equi-
valent layer is approximated by an ‘evenly spaced grid of point masses on an
otherwise empty surface. Equation (2.19) is unchanged, but the position of
M, is defined to be at the center of the block.

The second interpretation is that M, consists of a uniform mass dis-

tribution over the equivalent layer within the block. That is:

(2.20) MJ = p."dSJ or MJ = Py J‘ da
| | | ds,

where p, is the constant surface density on the surface element ds,, and da

is a differential area element of dS;. If this interpretation is accepted, the
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- simplicity of equation (2.19) is destroyed and the relationship becomes: .

| A ‘Rz F 2
2.21) Ag, = k> j( Lo 24 - >da
( ) gi ..opJ zgRi ZRi
j=1 d83

‘Where the integrations are carried out over each of the m blocks on the
eqqivalent layer surfaée. Both of these mterprétations must of course be
cénsidered as approximations. The mass making up the equivalent layer
that satisfies Chasles!' Theorem does not consist éf di‘scretempoin'ts or plates
of constant surface density, but is rather a continuously varying function on
that surfaced[yRamsey',' 1965, p. ilO] .

The second interpretation as expressed by equation (2.21) is obviously '
the theoretically better of the two :approxi;nations.w It is in fact an approxima-
tion only in _sb far that the density is considéred constant in some smail' area.
As m’in(ﬁ'eases to infinity and .dSJ decreases to da, equation (2.21) becomes
exact. It is therefore appropriate to compare equation (2.19) to equation’
(2.21) to determine the errors that will arise from uée of the more compu-
tationally practicablé point mass concept.

The analytical evaluation of equation (2.21) would involve a difficult
if not impossible integration over a nearly ellipsoidal surface. Fortunately,

- for the purposes of comparing equations (2.19) and (2. 21), this problem caﬁ
be avoided. The equivalency of the two equations is evident if the distance
between the computation point and mass area is large with respect to the
dimenéions of the represented area on the e;:Iuivalent layer surface. Eqﬁa—

tions (2.19) and (2. 21) are identical if the kernel of equation (2. 21) is effec-- |
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- tively consvta’x‘zt over the element dS IR ,Wevneéd’::énsider then, onlly»that area
on‘the equivalent layer .surfacev Whici‘l‘ 1s near the gravity andmaly observa-
tion point. This area can t;e treatéd as a pla.ne'mak.ing the computations much
“more tractible‘.' We will therefore refofmu—late equations (2.19) and (‘2;21) in
a plaﬁar approxilﬁation and evaluate the equivalency of the point mass and

| iniegr&ted block coefficients for different layer depths and different block
- positions with respect to the anomély point. The geometry of this approxi-
"mation is shown in Figﬁre 3. -

w
1 .

Pi (u:'O, V:O, W:O) :

Figure 3

Geometry of the Planar Approximation

In this geometry and with a constant surface density py, the potential at Py

from the density layer on dS; is given by:

' 1 1
_ (2.22) T, = kopy J' N da’ = kopy jj w2 dFdV
ds, ds,
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Differentiating (2.22) with respect to the norniél.direction w at Py:

(2 23) | -Z_g-l = dudv

o [[ G
s @® +v° +w9)>/°
‘ ds,
Inserting equations (2'. 22) and (2.23) into the basic equation (2.5), one
_Obtains thé planar form for integrated coefficients corresponding to the

kernel of equation (2.21):

(2.24) k p, _” ( e V;V+ W3 - (ﬁz " v22+ We)i/z R, ) dudv
ds,
Thé-"'pllanar approXiiﬁation of the point mass equation consists merely of
specialiéing eqﬁ_ation (2.24) sothatu =uy, v=v 3 where (u,4, vy, d) are the
coordinates of the center of dS, and the mass M, is identified as equal to
Py I J‘ dudv. If fdr purposes of comparison, thé vaiues of k, py, and dS; are

ds, :
specified as unity, the comparison may be carried out between the kernels

KINT and Kpyj representing the surface integral and point mass assumptions -

respectively.
d 2.
fed x - d d
(2.25) KINT ‘” CivP 5 @i+ IR, udv
ds,
2.26) K d - 2
(2. 26) PM = (u32+vja +d2)3/2 (qu +V32 +dz)1/z R,

The Kyyr kernél, (2.25), can be integrated with difficulty yielding an
unwieldy expression. See for example Hirvonen and Moritz [1963, p. 73]
-. and Nagy [1966]. To compare the integrated kernel with the point mass ker-

nel for this investigation, a numerical integration was used in which the sur-
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face regions dS, were divided into 100 elemeﬁt,s:. i

if Wé* restrict consideration tb squaye elements on the surface, it is
' - possible té describe the geometry.'required for this comparative investiga- .
~ tion vin terms of ohly two variables: the depth d of the equivalent layer surféce
beneath the computation point and the lateral distance s, measured horizon-
tally, from the computation point to the center of the block in question. If
‘both of these variables are expressed in units of the length of a block side,
.the interrelationship between the kernels and element spacing and depth is
made more apparent. Table 1 shows a comparison of fche integrated (KynT)
and point mass kernels (Kpyy) as deterzhined by equations (2.25) and (2. 26), ‘
for thrée different,depth/ side ratios and five lateral distances. In these com-

parisons, R; was taken as 63.8 block side lengths. Similar tests for R

equal to 638. 0 block side lengths lead to comparable results.

Table 1

General Comparison of Integrated and Point Mass Kernels

Lateral Distance Depth of Mass Layer

Between Point In Units of Block Sides _

and Block d=0.8 : d=1,0 d=2.0

- KiNT KpMm KNt KpMm KINT Kpm

s=0 1.106 1. 523 .778 .969 | .220 .234
s=1 . 379 .356 .338 .331 .161 .165
s =2 .070 .065 .080 .075 .078 .077
s =3 .018 .017 .023 .022 .035 .034
s =4 . 004 . 004 .007 .007 .016 .015

It is apparent that the two kernels are in close agreement except when consid-
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ering’relativelyv shallow blocks difectly undei.':'v,t:he‘a Qomputation point. Sup- a
plemental' computations were therefore made to investigate the variation with-
depth for blocks direétly under the computation point (Table 2), and the varia-

" tion with small lateral distances for d = 0. 8 (Table 3).

Table 2

Comparison of Integrated and Point Mass Kernels
For Blocks Directly Under Computation Point (s = 0)

Kernel Depth of Mass Layer in Units qf Block Sides -

: .8 1.0 1.2 1.4 1.6 1.8 2.0
KiNT 1.106 .778 . 570 .432 .338 .270 . 220
Kpm 1.523 .969 . 668 .488 .371 .291 .234

Tables 2 and 3 show that the agreement between the integrated kernels
and the point mass kernels improve rapidly as either the vertical distance or
thé horizontal distance between the computatién point and the block center
inéreases. For a given computation point Py at which Ag; is related to m
méss points M, in the sense of equation (2.19), an absolute maximum of two
mass points could lie within the interval, 0 <s < 0.5, if we restrict the mass
points and computation points to équare arrays. For the worst case coﬁ—
sidered, d = 0.8, the relative spacing of the mass points and the mean
anomaly block centers for the computations performed in this study ié such
that jﬁst one mass pbint could lie in this interval for a given computation
point. Only a small fraction Qf the mass point cbefficients could thus differ

. from the integrated coefficients by more than a few percent. From this
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J analyms, I conclude that equatmn (2.19) in 1ts pomt mass m’cerpretatmn is a.
sat1sfactory approximation of the more rlgorous equatlon (2 21) ifa depth/
- side ratio of at least 0.8 is maintained; As such, it is an appropriate tool to

use under the previously outlined assumptions in'defiiaing a discrete point mass-

_ distribution that approximates an equivalent layer. To illustrate the basic use

Table 3

Comparison of Integrated and Point Mass Kernels '
at Different Lateral Distances for Shallow Depths (d = 0.8)

Lateral Distance ‘ .
Between Point - KINT KPM
and Block Center :

s = 0.00 1.106 © 1.523
s =0.25 1.027 1.321 |
s =0.50 . 823 .920
s =0.75 . 580 . 578
s =1.00

.379 .356

of equation (2.19) for this purpose, consider a series of equations repre-
senting n points of observation of anomalous gravity. These equations may
be written in matrix form as:

2.2 G = AM
where G is an n X 1 vector of gravity anomalies, M is an m X 1 vector of
point masses, and Avis an n X m matrix of the point mass kernels, Ifn is
equal to m, this system can be solved directly for the m point masses. Ifn |
is greater tha m, recourse Ihay be made to standard least équares proce~

dures to find a solution for M.
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- 2.4 The Point Mass Model as a Representam.)’r‘l of a Smoothed Geopotent1a1
Field
The preceding discussion of the possibility of deﬁﬁing a set of anoma-
lous masses 'apprbximatin‘g an equivalent léyer presupposed an earth such as
is shown in F1gure 1 containing no anomalous masses outside of the equiva-
lent layers. Such an earth model could not exhibit the same short‘wavelength
bvariations in the gravitational field on the geoid as a model that allowed anom;-
alous masses between the geoid and the equivalent 1ayér surface, There is
ample evidence that many of the fluctuations of the earth's gravitatioﬁél z‘a'ﬁd
A potential fields arise from structural features near the surface [Garland,
1965]. Itmis evident that, at best, an equivalent layer surface can only pro-
x}ide a model for a smoothed representation.of the true fields. The technique
,éf finding this mass distribution should therefore be oriented toward giéte-rf
mining the best smoothed field rather than trying to recover irregularities
which cannot even theéretically be modeled. A natural step toward this goal
would be to use smoothed gravity anomalies as the input data to the solution.
This can be done by using the area weighted mean of the gravity anomalies
over some specified tesseral element of the geoidal surface to represent
:the gravity anomaly at the center of the element. By this process, the
speétral components of gravity anomalies having a wavelength less than the
side of the element ére filtered out of the observations [MpGinnis, 1970].
This procedure is réutine in the practical evaluation of the integral fofmula

~of physical geodesy, as typified by Stokes' or Vening Meinez's functions. In
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'  ’ these numerical vintegrations , the gravitationél’tfi‘eld is invariably s-nioéthed
| by usihg mean anomaiies over some finite érea. Upon reflection, it can be
seen that this smoothing is cloéely relatéd to an anomalous mass diétriﬁutipn .
~ of the type sh.own in Figure 1. Short Waireléngth variafions in gravity, from
the nature of the inxierse square law of gravitétidn must result from density
variations occurring near the surface of the earth. bFilter.ing out the short
:' wavelengtﬁ anomaly changes bsr using mean anomalies is analogous to denying .
‘the existence 6f short wavelength, near surface, density variations.’
A further smoothing of the field is the natural result of reducing thev
' ‘nﬁmber of paré.meters used to describe the field. If this reductioﬁ in
parameters, or mass points, is accompanied by a similar redﬁction in

obbservations, there is no gu'arantee that the model field will be a smoothed

-"ﬁ’epresentation of the real field buf may be simply a fit to the observation

yre -
SR

4points that deviates widely from the true field at uncontrolled intermediate
points. Le;as‘t squares procedures offer a method of slécuring an optimized
f1t of a smoothed geopotential field to the real field by minimizing the sum of
squares of the differences between the two fields at all known points of the
real field. Smoothing the model field by reducing the number of parameters
within reasonable limits and increasing the density of observation points Wiil
both tend to msure'against'large diécrepancies vat any arbitrary position.
“This o%rer-determination, or more exblicitly, avoidance of over-parameteri- .
zation is a standard safeguard Whén fitting d:ata to an empirical model [Pugh

“and Winslow, 1966]. In the point mass case, it can be given a physical
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meanin'g re_lated to the model earth illustrated'x:in‘ Figure 1.

| To illustrate, assunde that a solution is sought ‘for n point rhasses frbm
n mean anomaly. observatib;as and furthermore, assume that several of the
an‘omélies actuaﬂy arise primarily from largé anomalous masses near the
anomaly pdints and well above the defined equ_ivalent layer surface. A distri-
bution of ﬁass on the equivalent layer surface thai;,»would completely satisfy
the observations could be. found frdm the relaﬁonship:

- (2.28) M = ATG
Wﬁeré the A matrix was formed ﬁnder the conditioﬁ that all anomalous masses
‘ vlay on thé equivalent layer surface. Since the mathématical model is Wrong,
a fél‘se mass set would be forced into this surface that could’be ekpécted to
vgene:‘rate an erroneous anomély field at gll points other than the original
observation pdints., This field also would fail to generate the true potential
fieid even at the observation points. The anomalous potential depeﬁds only
on'the_d_isténce from the anomaloﬁs masses ‘and their magnitudes and not on
the false mathematical model, the Aimatrix, that generated these masses.
| 1f, however, there were reduﬁdant observations and a least squares
adjustment were performed so that:
(2.29) M = [A'A]T"A'G

it would be found that no set of masses in the specified locations could exactly
satisfy the observed aﬁomalies. In essence, the adjustment would reject the
compoﬁents of the anomalies tha;t were caused by énomalou's masses above the

equivalent layer surface and yield only a’'set of masses on that surface that
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coﬁld generaté' some p;)'rtion of f}ie obéerved 'ai;or‘na-lies. The components ‘of
- the ‘anqmal-ies thaf Were'actuat‘ltly caused by near surface anomalous masses
Would. éppear'as residual d;ffefences between fhe solution model and'the
observéd fieid. In effect, a further smoothhig of the observéd field would
E féke plége as a result‘ of fﬂtefihg out the mﬂﬁence of anomalous masses out-
éidé “of t}ié equivélent layer surface. Again, the over—deterniined least

squares solutiqﬁ Wéuid contribute toward finding a model earth of the type
- : shown in Figure 1.
‘ Thé filtering effects mentioned in the preceeding discussions 'Would
;’ not be c.ompletely effectivé and the mass distribution found by the outlined-

i _procedures Wouid not conform exactly to that of aﬁ earth smoothed according
,.Ftvo the model shown in Figure 1. The mass distribution found in this manner
and under these assumptions can only be considered as a basis for an épproxi—

“mate model .of a Smoothed geopotential or grévitational field. The intent of

" this diS;:ussion is simply to indicate that there is some rationale that makes
it plausible to consider constructing an anomalous mass model of the earth
where the mass points kare arbi’;rax;ﬂy fixed in a regular pattern at specified
depth. Theoietical discussions of the degree of approximation that arisés in
this procedure could oniy be speculative since the errors that _arise will be
intimately connected with the unlcﬁown detailed mass distribution of the;_ earth.

: Rather than construct questionable models that might be biased unconsciously

toward the method of solutioﬁ used, this investigation will use real dafa to

compare geopotential functions derived through the point mass concept with
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similar functions obtained through more traditional methods. This compari-

son will be deferred to Chapter 8.

2. 5‘ Practical 'Consequenges of the Geometry of the vPoint Mass S,oluﬁibn

: ‘Se'véral criteria for developing a point mass representation of an
equ‘ivvalént‘[layer have beeﬁ implied during the preceding discussion that ﬁter— :
relate to Set bounds on the various pararhetérs ‘»of a point mass solution. For
examplve, a ratio of at least 0. 8 Abetween the.‘mass depth and mass spacing
is desirable; the mass deptﬁ should be shallow and the masses shoﬁld be
closely si)aced to obfain maximum detg.il. At the same time, the mass
unknowns should be over-determined by observed mean anomalies.- .These
guidelines e_tllow some more specific interpretation of .the previoué genéralized ‘
discussion and lead to some further conclusions about the nature of a pﬁint
méss. solution. - |
If the entire earth were considered in the solution under the assump-
tic;l;; of d= 100 kilometers ana depth/side ratio of 0.8, then some 32,000 “
point masses Wouid be required to represent the anomalous mass distribution:
of ﬂxe earth. This, in turn, would require a minimum of 32, OOO mean gravity
anomaly observations evenly dispersed over the earth. The lack of such a set
of observations and the obvious computation difficulties of solving for,32, 000
unknowns make a worldwide solution imp‘rac'ticable. Such é solution is not
a goal of this investigation, which is rather directeci toward the determinatidn

of detailed potential fields over restricted areas. 'Chapters 5 and 6 will return
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to the possibilities of adequately describing a’i;oc:aliz'ed field by sets of masses::
of less than worldwide extent. It is appropriate at this point, however, to
note the rapid decrease in ;;he valués of the coefficients rélating anomalies
and--massés in equation (2.19) as the distance between an anomaly computation
point and the masses increase. As can be seen from Taﬁle 1, a shallow méss ,
(dépth/ side ratio = O,.-Sj more than 3 or 4 masses from the computation point
has practically no effect on the anomaly at thét point. A point mass and a
gravity anomaly separated by such a distance are therefore essentially unre-
lated and the anc;mély could nof contribute significantly to a solution for the
mass pqint. This has both advantages and disadvantages in practical applica-
tions. ~ Favorably, it means that an isolated point mass array can be found
f;fpm a set of anomaly observations covering an area only slightly 1érger
_than the array desired. If point masses are fitted under a limited area of
anomaly observations, the point mass magnitudes near the edge will be
: siightly distorted because of an edge effect but the ceﬁtral array, more than
3 or 4 rows of masses from the edge, will be the equivalent of the masses
that would have been found from a simultaneous solution covering a much
larg'er area. This conclusion is intuitive from a consideration 6f the coef-
ficients given m Tables 1 through 3. Numerical exainples of computations |
illu'strating the vélidity of the conclusion will, howex}er, be given in Chapter 5.
'i‘his fact that point masses are determinedvprimarily by the immediate
gravity field is an essential element of the c;)ncept of us ing point masses to

determine‘ detailed local potential fields.
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A less desirable con&equénce of the -ih(it;l;endence of point fnaésés and:
distant anomalies is the result that a point mass cannot be.wéll determined if
- -‘.there are no gravity anomaly observations in the immediafce vicinity of the
- point mass; Limited experimentation indicates that obviously aberrant
' fésults will be obtained if more than one contiguous mass point underlies an
- area laéking giavity anomaly obse'rx}étioﬁs. When a deﬁse' array of point mas-
- ses at a shallow depth is desired to develop the maximum ‘detaﬂ in the model
- pobentiél field, the observed gravityvanomaly field should be complete in the
ar‘eab of interest. I'Jnobs‘erved areas will naturally result in uncontrolled mass
‘ m’agnimcvies. ‘A transformation from a description of the field by means of
' -~ gravity anbmalies to a model based on point ﬁ;asses obviously cannot add real
' detail to thé described field. The model field can be seriously distorted,
‘deever, by unrealistic mass values determine.d by weak solutions based on

~ inadequate gravity anomaly information.




'CHAPTER 3

THE SPHEROP 14 REFERENCE SYSTEM

The concept of a reference surface and associated normal gravity
field based on a set of spherical harmonic potential coefficients was intro-
duced in Chapter 1. This concept will be used in the point mass investiga-

tions to obtain the most effective use of localized gravity anomaly informa-

tion. In this study we will refer to spherop reference surfaces, spherop nor-

mal gravity fields, and spherop gravity anomalies to distinguish the elements
of such a 'system'from those of the niore famﬂiar ‘ellipsoidal reference
system. |

The spherop normal gravity field used in this investigation is .the |
field determined by the kM and equatorial radius specified for the Geode'tic
Reference System of i967 and by a specific 14th degree and order set of
spherical harmonic coefficients developed by Rapp [1969]. These coeffi-
cienté, which are discussed in Chapter 6, will hereafter be designated as
Rapp's (14, 14) coefficien’c Seﬁ. The spherop reference surface based on
these coefficients will _be identified as Spherop 14 to indicate the ordeI.' and
degx;ee of the coefficient set used in the definition. This surface is an undu-

lating surface which is defined to have a normal potential equal to that asso-

36
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' ciated with the GRS 67 ellipsoid. ‘It holds a ‘meaning' in the spherop system

that is analogous in many respects to the ellipsoid in the GRS 67 but does not
replace the ellipsoid. An ellipsoid is retained for computational convenience.

As will subsequeﬁtly be séen', vthe elements of the Spherop 14 system are

" described as perturbations to the GRS 67 system.

A spherop gravity anomaly is defined as the difference between a gra-

vity measurement, reduced to the geoid, and the spherop normal gravity at

" the corresponding point on the spherop reference surface.

The mechanics of defining the spherop reference surface are basec_i on

- a spherical harmonic representation of the potential field of the form:

@
@.1) Ug = %1‘—’[- [ 1+ Z (%_?-)n i | (CracOSmA + §,,8inmA)
- n=2 m=0
. 'fnm(siilcp ) ]'+ 1/2 ofricos®p’
In this n'otation:‘
Us = Normal potential
kM - = Newton's gravitational constant times the mass of the

earth (specified by GRS 67)

ae = Equatorial radius of earth (specified by GRS 67j
r . = Geocentric radius to point of éomputation

w .= Rate of rotation of thé earth

o = " Geocentric latitude of computation point

A = Geocentric longitude of computation point
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Fully normalized dimensionless spherical harmonic

i

coefficients

It

Fully normalized associated Legendre functions:

(-t L‘“L)l./z -ncosmcp,z

n-+m)!

(2n—21)'(sm )n m-21

(il(n-i) ! (n~-m-2i)1

where; 6 =1ifm=20

6=0ifm#0

k= mteger part of ——E

One set of orthogonal components of the gravity field can be obtained

" by differentiating this function with respect to length units in the geocentric

coordinate system of équafion (3.1). These components are:

or:

| (3.2)

(3.3)

(3. 4)

(3. 5)

Yr

r

'}'cp’

oY

[e%4

éﬂ- 5 = !‘. U- = ___:1.‘_..61
or’ P r 5;” 7 rcosp’ oA

il

[ 1+ Z (@+1) ( )ni (CracosmX

n=2 m={

-+

_S-nmsin_m)\) -ﬁnm(sin;p "y + wPrcos%’
. bt n n d— . A
=" 1-5%—/[- 2 (51-3-> z (CcosmA + S;sinm}) dPyy(STgp )
T T dp .
n=2 m=( v

- uPr’sing’cosp’

n

- n —_ ' — -—

= rzclzlzl " (%) z m(CpsinmA - §,,cosm) Ppy(Sing 3
? -n=2 m=0
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These 'equations are most coﬁ\}eniently -'ev.eluated using recursiv‘e_
| relat10nsh1ps [Obenson, 1970] Splitting the fully normalieed aseociated
Legendre ﬁmctmn into a conventmnal Legendre function and e normalizing

faetor, the following relationships may be used.

(3.6) Py = QuPm

o n-m)!.1/2 .
8.7 Qu = [(2—6)(2n+1) (n-+m) !
3.8 P = Blaimgp -2l
(3.9) P = (2n-1) cosp Py pn

nn

(3.10) Py = Py * (20-1) cOSp Proge
These relationships also furnish a convenient algorithm for deriving

and computing the derivatives of P., with respect to o’ [Obenson, 1970]..

(3.1 T = B0 [ sy’ T + comp B0 ] - B dP, oo

n P n dy’
d dP,, .
(3.12) _%m = (2n-1) [coscp’_.rcxlj,u - Sm(p’Pn'._l’n._l-J
(3.13) dl; = é%n;,w + (2n-1) [COS(p' @.E?i?m:l - singPog,um1 :]

In the preceding equations:

Poo = 1 ; Pio = sing’ P, = cosep’
dPO (o] 0 dP 0 — cos dP — - Si]l 7
dCDI s d(p’ © ’ - d“‘l,'l‘QP ' )
Pppp = 0 if m > n-2 3 6 = 0 if m # 0

1 if m =0

o,
e,
\E)
'l
o
=N
B
%
=
1
™

(=]
i
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In addition, cosmA and sinmA can be computed. recursively through the

" relations:

(3.14) cosma

- 2cosA cos(ﬁr—l)h - cos(m-2)A

(3.15) sinm)

il

2005)\ sin(m-1)A - sin(m-2)A

The prthogonal components Yrs Yo ‘, and ) given by equations (3. 3),
(3.4), and (3. 5) are véct‘ors in a left-handed coordinate System with origin
~at theb computation point, the X; axis to the east along the prime v‘értical, fhe
. X5 axis to the north:along the meridian, and the XB axis upWard along the
radius vector from thé ‘mass center of the earth. Correspoﬁding components
in é similar c;)ordinate system but based on the normal to the ellipsoid rather

than the‘.réd'ius vector can be obtained by the rotation:

LU lEE o .0 [T
(3.16) |Yp | = | O cos(p™-q)  sin(eg) | | Yo'
| N | |0 - sin(p’~p)  cos(p '-q;)_ | 7r |

._.-The total gravity vector, normal to the spherop reference surface,
i A8 B'Wenby e

S ' 1/2 1/2
(3.17) ¥s = (}/?p/+)/i + %) / or ¥ = (4 +yfp:+ Yro)

The angles in the meridian and prime vertical directions between the normal.

to the spherop and the normal to the GRS-67 ellipsoid are given by:

Y,
3.18 = Lo

(3.18) & = -3
B9 g = -0
‘ Y

In these equations, &g and ng have the same sense as the components per-
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| tainiﬁg to astrogeodetic deflections [Mueller;"ibéi)]. That' is, Mg poSitii_re '
indicates that the‘ spherop surface slopes downward with respec.t to the ellip- :
soid in the direction of-vincxjeas ing iongitu‘de and Eg i)ositive indicates that the
N surface slopes downward with réspect to increasing'latitude.
The shape of the spherop is déte‘rminéd by considering the Ug field
" to be a perturbation of the GRS-67 potential field. The disturbance Tg is
defined as:

(3. 20) FTS = Us - UgRs

The separation or undulation of the spherop reference surface with

Ll respect to the ellipsoid is then given by Bruns' Formula [Heiskanen and

Moritz, 1967, p. 85]:

(3.21) Ng = Is
| Y

For all reasonable spherical harnc;onic representations of the earth's poten-
"tial field, the radius vector to the harmonic surface, rg, can be determined
by assuming Ng and the radius vector to be paréllel so that:
(3.‘22) rS‘ = rgRrs + Ng
The normal gravifation potential V (U less the centrifugal potential) of an’
equipotential ellipsoid of rotation is given by [Heiskanen and Moritz, 1967,
p. 230]: |
@ : »
(3.23) V = %M- [ 1- Z Jan (%‘&)zn Pgn(Sincpl):]
n=1

This expression is normally truncated atn = 2 [Mueller, 1964, p. 357].
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- J,, is related to Cy, by the relationship [Mueller, 1964, p. 186].

(3;24') Cp = -2
Qsny0
where Q is d’efined as in equation (.3. T)e
Fér a Spe;:.ifiqlgiq#ipopenfial ellijpsoid [Heiskanen and Méritz, >1967,
bp. 73]: |

' 2n‘
(3.25) Jop = (1P __8¢ _ q=n-s
(2n+1)(2n+3) - €

where e° is the first eccentricity of the ellipsoid. Various formulations for
. computing J, are available. See for examples Mueller [1964] and Heiskanen
and Moritz [1967]. Kaula [1966] gives direct expressions for both J; and J,

"of the form:

2 1, 1 3 2 .
3.26) 5. = 2¢(1-2n-Llm(1-3m-Z¢)+. ...
(3.26) Jp = Fi(1-50 3m< g ™ 7f> |
6.27) 3, = -g-s-f('zf-sm)#. -

In these equations:

f = Ze-b
e
m = 4ae
ge
b = semi-minor axis of the ellipsoid
ag = equatorial radius
ge = equatorial gravity
w = mean angular rotation rate of the earth

Using equations (3.1), (3.7), (3.20), (3.23) and (3.24) a direct expression for
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. Ty can be written as:

(3.28) Tg = i ( ) Z %, cosm + §,, sinm)) an(sm)
n=2 :

T
: m=0
- where C¥%, Idenotes a set of coefficients where the C¥, terms are the differences
" between the original terms and thé Cro appropriate to a spgcified ellipsoid.
Making the approximations:
v ~ kM/r?
ag/r ~ 1
r '~ R (mean radius = 6371 km)

and substituting equation (3. 28) into equation (3.21), we obtain:

(3.29) Ng = 6371000 Z Z (Gt cosm) +§ , sinm)) B, (sine’)
n=2 m=0

‘This value is substituted into equation (3.22) to obtain the value of rg needed
to evaluate equations (3.3), (3.4), and (3.5). v
The equations in the preceding paragraphs Suffice to define the se;;ara; |
tion between the spherop and the GRS 67 ellipsoid, the angular orientation of
the surfaces in the meridian and prime vertical directions, and the value of
spherop normal gravity;
An alterﬁate approach to the determination of yg can be based on

equation (3. 28) and the spherical approximation of the basic ‘equation of physi-

cal geodesy.

(3.30) Ag = :S'E -5
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‘ D1fferent1atmg equation (3 28): and subst1tutmg the values of 3T/3R and T into-
equatmn (3 30), we obtam, after making approx1mat10ns equivalent to those

6

in equation (3. 29):

(3.31) Agg = yZ n—-l)z (T, cosm\ + 5, sinmA) D, (sing’)
n—2 m-O

In practice, a single‘ mean value such as 979.8 gals is used for y
[Rapp, 1967a].
The Ags computed from équation (3. 31) can be interpreted as the dif-
| ~ ference between normal gravity on the ellipsoid, and gt'avity computed on the
- spherop. Therefore;' .yS, which in our definition is normal gravity on the
*-»spherop, is‘given by;:_ L |
(3.32) ¥s = Ags %'YGRS‘
The definedb parametet's of the Geodetic Reference System of 1967 are

[IAG, 1967]:

ag = 6378160 meters
J; = 10827x 1077
kM = 3.98603 x 1020 cm®sec™

The corresponding reciprocal ﬂattening is 298.247167427. Thése
values, together with 'the angular rotation rate of:
w = 7.2921151467 x 1072 rad sec
suffice to define ygRrg [TAG, 1970]
| (3.33) YGRS = 978031.8 (1 +.0053024 sm ® - . 0000059 sin Zq;)

" Equation (3.32) with (3.33) and _(3. 31) should yield the same result as equa-
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tion (3. i7) using the components from eduation’é (3.3), (3.4), and (3.5).
Both sets of equations were used in an effort to verify the programs
written to compute the cbmi)onents of the gravity field. Normal Spherop 14
'gravity was computed for the centers of 10°x 10° areas covering the earth
. using the-two forﬁmlaﬁons. The agreement between the two methods was
excellent below +45° latitude With few discrepancies over .25 milligals. - The
vaét majority in this area agreed within 0.1 milligal. Over the entire earth,
the disagreement reached a maximum 6f 1.05 milligals. Only 2% of the dis-
crepancies out of the 648v computed were over 1.0 milligals, and all were at

65° latitude or greater. No readily discernible pattern was evident except

that the maximum absolute discrepancies were associated with sharp inflexions

in the spherop occurring at high latitudes. Anomalies computed by the two
methods were integrated over the earth to determine if Agg satisfied the
relation:

(3.34) J'Agsda =0
o)

and did not exhibit any zero order component. In these computations, the

above integral was approximated by: -
648

— 1 '
(3.35) Ag = e z Aggcospdpdd
: n=1

For the equation (3.17) method, Zg was 0.06 milligals and for the equation

(3.31) method, Ag was 0.01 milligals. These values were accepted as

reasonably equivalent and satisfactory fulfillments’ of equation (3.34) con-
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' sidering the approximations which have been 'pi"eviousl.y outlined. It is proba~ '

ble that the discrepancies between the two computat’iéns arise from the approx-
imation a,/r ~1. This épr;roximafion becomes increasingly incorrectas the
latjtude increases toward thé poles. This effect is compdunded for tﬁe.highér
degfee coefﬁcients.' since the term enters the computation as ‘(ae/r)n. If this
inaccuracy is ﬁultiplied with a relatiyely large high order sub-éum of the

- spherical harmo:qic expansion, as might be expected near the inﬂexion points
of the surface, then the larger discrepancies that were observed mighf be
expected. The discrepancies noted at high latitudes were not important in this
invéstigation since spherop anomaly computations were limited to latitudes |
below 50°,

" Current literature contains many éxamples of the use of spherical
harmonic expansions of the potential field of the earth for the determinations
of geoidal undulations, deflections of the vertical, and gravity anomalies. In
these applications mention is usually made of convergence problems in a ser-
ies such as eqﬁation (3. 1)'§vhen the point of interest is inside a sphere which
- just includes all attracting masses [Rapp, 1968a]. If the earth were a per-
fectly homogeneous ellipsoid, equation (3.1) would converge down to a sphere
whose diameter is defined by the foci of the meridian, i.e., the potential
expansion would be valid well below the surface of the earth [Morrison, 1969].
The earth does not have this property of homogeneity, however, and the seriés
must be considered formally divergent at or near the terrestrial surface

[Heiskanen and Moritz, 1967; Mueller, 1964, p. 368]. This defect is more
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theoretlcal than actual in the usual apphcatmns s;nce the series-are trancated
‘to y1e1d smoothed approx1mat1ons of the true functlons. Grotea [1968] con-v
siders the errors irrelevant for the order of coefficients derived cvurrentlyv
fram satellite studies. Levallois [19'69] has statedvthat the potential fie‘ld
derived from satellites can be continued to the earth level and that it‘ 1s pos-

) sible to extend the series to about hundred;ch order. He further states that,
f 'f'The so obtained geoid cannot differ by more than a few meters from the co‘r%
.‘rvect. aae. " On the basis of Groten's and Levallais' studies, it seems justified
‘ to use a (14,14) spherical harmonic expansion to define a reference‘éwa;face
. approximating a smoothed géoid. Morrison [1969] raises the possibﬂity that
“evvea though a function may ba well approximated by a truncated series,‘ its
darivatives may not be approximafed by the series obtained through termwise
]:differantiation. For example, the potential or potential disturbance might be
v- adéqiiately approximated by a truncaied series, but the components of the
Egravity vector or the gravity disturbance vector migh‘; not be obtainable with
- comparable precision by differentiating tile original series.
For a meaningful refereace equipotential surface, it is essential that
the derivativea of the potential be well defined on the described surface. A
check was therefore made to insure that the derivatives used in equations |
(3.3), (3.4), and (3.5) were consistent with the shape of the reference surface.
Five areas were selected spacea over the globe. These were:
. . : ' P . A
1) The Icelandic High 65° 345

2) The South Atlantic High -50°  358°
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3) Mid United States T 35" 260°
4) Bahama Low - 25°  290°
5) Java Slope . 0°  100°

These areas provided a varied éample of geoidal features, latitudes
and longitudes. In eéch area undulation profiles were run along meridiéhs and
"para;llels. Thé deflection components invthe direction of the profile were com-
puted from spherical harmonic series at points spaced about 10 kilometers
" apart aldng the profile. These components were compared with the actual
slopes o‘f the profiles obtained through the numerical differentiation of the

geoid height (from equation (3.29)) using the equations:

1 Ny -Ny N,-N
3.36 - _1 1=3~Ny + 1=Niy )
( ) 2 (Ri(:os%()ti_l-}ni) ' Ricostpi(}\i—xi+1
(3.37) B, = -+ ( NiaoN; o NNy
2 \ Ry(p11a-91) Rulpi-pit)

Both the geoidal heights and the deflection c'oinponents were smoothly varying
functions. In all cases the deflection components com.puted by differeptiation
of the potential function agreed with those computed by the numerical differen-
tiation of the geoidal surface to within 0.1".

Rapp [1967] has reported one other test which has verified the legiti-
macy of defining an equipotential reference surface through the use of -sphei'i—
cal harmonics.  In the process of testing a computer program for geoid undu-
lations using Stokes' equatidn, he'in'troduced gravity anomalies computed-
according to equation (3.31). The resulting ﬁndulations were subsequéntly

comipared to undulations computed in the mamner of equation (3. 29). The dif-
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fel"enceé., m the two computations WQre on the order of 0.1 t0 0.3 me.teré. and
were considered insignificant in light of the precision of tﬁe computatién.

On thg basis of the_ I;recedihg tests aﬁd discussions it'seems safe to
say that it is possible to define a reference surface and asséciated-»-nofmal -
gravity function based on‘the. parameters of a given ellipsoid and a sét of
.. spherical harmonic coefficients. In this sense, vequat'ion'(?;. 17) is a normal
gravity formula. Equations (3.18), (3.19), and (3.‘295 define the position and

local orientation of the spherop reference surface with respect to the ellipsoid.




. CHAPTER 4
. ERRORS CAUSED BY USE OF
» LIMITED AREAS OF GRAVITY INFORMATION
4.1 General
~ The lack of detailed gravity data over large portions of the e‘érth's
surfaée, has traditionally been a limiting factor in the use of gravimetric

methods for the computation of geoid heights and other indicators of distur-

" bances in the normal gravitational field [Uotila,; 1959]. Because of the absence

of Worldwide data, evaluations of surface integrals, such as Stokes! ini;e_gral ’
for the aﬁoinalous potential, have been truncated to include a iimited area of
known gravity daté around the computation point. - These integrals musf in
theory be extended over the entire earth and failure to do so results in kan
error‘ that is a function of the generally unknown anomalies outside of the trun-
cated integration cap. A similar situation exists when a point mass model is
established from anomalies located in a limited area.

A number of investigators have studied the relationship between the
radius of the integration cap and the error arising from the negl;act of gravity
anomalies outside of this inner zone [Cook, 1951; Molodenskii et al., 1962;
Hifvonen & Moritz, 1963; deWitte, 1966a; Wong & Gore, 19.69]. A 'rather

elegant means of estimating the influence of distant zones on the potential field

50
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that is bas_e,d on a knowledge of the spherical 'hé;rﬁoni'c expansion of ihe geo—-
potential field has evolved through these studies. Complete derivations of this
method, so,ﬁxetimes calléd i\/[olodenskii's method of computmg the effect of
- remote zones, are giv‘evn.i'ﬁ fhe abov'e cited references. Iz:;routliﬁe, the

method is based on the Molodenskii coafﬁcient Qu» _define’d as:

Tr B
4.1) Q = j S(cosy)P,(cos})sinydy

Yo
- where:
S(cosy) = -S-l-ﬁlw-/—é- - 3cosy 0/1 <sjn -g- + sin® %)
-~ 6sin -g— + 1 - 5cosy (Stokes' coefficient)
P‘n‘(COS‘lf) = Legemire function
] = central angle measured from computation point

1l

Yo

radial extent of integrated anomaly field

It can then be shown [Hirvonen and Moritz, 1963; deWitte, 1966a] that
the error ANy in a computed undulation arising from truncation of the integra-
tion of Stokes' equation at {, is equal to:

) =]
4.2) ANy = R Z Q, AL,
2y
‘ n=2

where Ag, is the nth order component in the development of anomalous gravity -

in spherical harmonics (ref: equation (3.31)):
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(4. 3) Ag ZAgn

n=2
If expression (4.2) is squared and averaged over the earth, one obfa‘ins, after

noting that the integral of two Ag, of different order over the earth is zero:

Cuy B - & z QA&

n=2
In this ex';;;;s,sion, Q, can be évéluated by direct integration [Molodenskii
et al., 1962] or bjr numerical integration. Convenient formulae for the latter
are givén Bﬁr‘*ﬁéi‘skanen and Moritz [1967, p. 262]. |
Ti‘léKéﬁ appearing in expression (4.4) is the anomaly degree variance
or the average sQuare of the nth degree teﬁn in expression (4.3). Ifan
expression for Ag is given m the form of eqﬁation. (3.3.1'),“ then due. to th‘e N

orthogonality of spherical harmonic functions: " -

(4.5) BAF = Y@-1)? Z (CE? + 553

m=0

It should be noted that an exact evaluation of expressions such as (4.2) or (4.4)

cannot be made since they require knowledge of Ag, from n = 2 to infinity. If

such a knowledge existed, the problem of graviﬂletricé.lly unknown areas would

disappear. Our knowledge is deficient in that the high degree terms of Ag,”
- are virtually unknown é.nd the lower degree terms are‘ known with an uncer-
| tainty that increases with the degree of the term, Expreséion (4.4) used with
a‘réasonable set of _A—g_ng can nevertheless give us a method of comparing the -

results of different integration cap radii and comparing the influence of dif-.
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ferent definitions of the reference surfacebasea on a reasonable vmodel of the ~

earth's gravitational field.

4,2 Comparison of Truncation Errors for Geoid Heights Computed Wlth
Respect to Ellipsoidal and Spherop Reference Surfaces

The anomaly degree variances used in this study are shown in Table 4
[Rapp, 1968b]. These degree variances were computed with reference to an’
ellipsoid With a reciprocal flattening of 298.25. They are derived from Rapp's
(14, 14) spherical harmonic coefficientvset which is used in this study as a
basis for Spherop 14, More specificall&, a worldwide set of 5°X 5° mean free
air anomalies, adjusted to be compatible with this coefficient set, were |
developed into a (30,30) spherieal harmonic coefficient set by the summation

. formula [Rapp, 1968b]:

(4.6) {gm} - —-5-:-1—5; [[ agPutsme) {257 g

This coefficieet set was used in equation (4.5) to obtain the degree variances.
These degree variances are therefore completely compatible with the
spherop reference surface described in Chapter 3 but thebretically centain
more information on short wavelength anomalies than is given by Rapp's
(14, 14) coefficient set.

Anomaly degree variances with respect to the Spherop 14 reference
surface can be computed in a similar fashion froirl equation (4.5). In this
instance, Egkm and g;*;m ere formed by ‘subtraeting the coefficienfs defining

the reference surface from the coefficients describing the anomaly field.

Since these values are identical up through (n,m) = (14,14), Ag? forn< 15
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Lt
K

Table &4 °
Anomaly Degree Variances According to Rapp
" (mgals®) :

n A n e n As”
11 3.3 21 2,5

2 - 7.1 12 4.5 22 4.2
3 30.4 13 4.4 23 4.0
4 16.2 14 5.6 24 3.4
5 12.3 15 3.8 25 3.7
6 14.5 16 4.1 26 3.0
7 9.4 17 3.3 27 2.5
8 6.7 18 3.7 28 3.3
9 5.3 19 4.2 29 3.4
10 6.7 20 3.1 30 2.5

-

are zero; _ Since E%m and ;S-;’; fér n= 1'5 are éséum’ed to be zero in the reference
model, the values of Ag? for n= 15 are identical to those given in Table 4.

These two sets of anomaly degree variances were then used in equa-
tion-(tl‘. 4) to determine Zm,-, the root inean square-error‘ in the undulation
resulting from truncating the use of local gravity data at yo insteéd of utilizing
worldwide data. The results of these computations are shown in Table 5 aﬁd‘
Figures 4 and 5. (Note tﬁe differen'ce. in vertical scale in these figures.)

It is immediately evident from Table 4 or Figures 4 and 5 that the
use of the Spherop 14 reference surface in preference to an ellipsoid results
in a dramatic reduction in KI%. for a specified truncation angle. It is further-
. inore evvident—_that the reduction in m is mbre rapid with increasing {o for
ﬁe Spherop 14 surface. for thé ellipsoidal surface, m decreases very
slowlsr at larger V. in the next 50° past the region shown in Figure 4, m

decreases only by 1.3 meters to 8 meters at §, = 90°.
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Root Mean Square Truncation Error ZN—q, (Meters) -

Truncation For : For
Radius . . : Ellipsoidal Spherop 14
o 4 Reference Surface Reference Surface
0 28.11 2.45
1 . 26,98 1.61
2 25,84 .84
3 24.72 .43
4 23.64 . T0
5 22,59 1.00
6 21.58 1.16
7 20.62 1.18
8 19.69 1.10
9 18.82 .98
10 18.00 .86
13 15.82 .58
16 14.06 .55
19 12.67 .55
22 11.58 .42
25 10.74 .28
28 10.12 .24
- 31 9.70 .19
34 9.45 .12
37 9.33 .07
40 9.32 .06

4.3 The Effect of Neglected High Order Anomaly Degree Variances

The shape of the curve in Figure 5 raises some question as to the

 'validity of the computation. It would appear from this curve that truncating

the integration at 3° would be more accuraté than any extension to less than

o = 22°. It implies that the use of valid gravimetric data will increase the
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probability of error in the computattion of an ur’xau‘lation. * Intuitively this
seems‘enreaSOnable._ Several authors have ‘published cur\tes showing this
characteristic [deWitte, 19256&; Weng and Gere,; 1969;‘Hirvonen a,nd‘ ‘Mofitz,f
1963]. Only Hirvoner and Moritz have commented on tl}e phenomenon. They
eseentially reject the pessibility of -A_N;I, increasing inth'\po and recommend
" "pridging" the dips empirically to obtain a continuously decreasing function.
They tentatively suggested that the neglect of high order terms in equation
- (4.4) mlght be the cause of the dips. (The more limited data available at
the time of their mvest1gat1on restricted their summation to n = 8.) The
cemplexity of the Q, factors in equation (4.4) defies a ready visualization of )
the ixtteraction of the components of different degree. It seems entirely pos-
‘sibl‘e, however, that the neglect of high order terms coupled With the suppres-
sion of terms in the range of 2 through 14 might cause the anomalous dip in
the function. Data now available on the nature of higher order degree vari-
enees allow some speculative investigation of the reasonableness of Hirvonen
and Moritz's suggestion.

Kauia has published degree variances data through n = 15 [Kaula, 1967];
Kivioja's 5°% 5° mean anomaly data [1963] has been developed into degree vafi—-
ances through n = 36 [Rapp, 1967a]; and Rapp has developed the set, through ',

n = 30, given in Table 1.

* Tt should be noted that truncation of the integrated gravity field may improve
the accuracy of the computation if unknown constant errors occur in the gra-
vity data. This is an entirely different problem which has been mvest1gated
in depth by deWitte [1966a]. ' :
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Based on extrapolation of this data, various investigators have attemp-

ted to ostimate the effeot of the high degree portion of the anomaly field on

undulation computation. On the assumption that Ag? is constant at 2.5 mgal®
forn> 36 (based on the Kivioja data), Rapp concludes that the error OAN , , | . ‘
resulting from the neglect of z‘.\,g2 above n, is given by [1967a] | i

(4.’?) 6AN _ "(105.69)1/2

n-1
Wong and Gore [1967a] base an analysis on Kaula's rule that the variance of
a fully normalized geopotent1a1 coefficients of degree n can be estunated by

1072°/n* and derive that:

(4.8) OAN < (fbe,__za i £2__t_l>1/2
= ,

Pellinen and Demyanov, using Kaula's data to n = 15, derive an approxima-
tion [1969]:

_ Vems
4.9) 6AN < 2 %
Y n

where R is the mean earth radius and y the mean normal gravity.,

Although the assumptions entering the derivation of the three preceding
approxiﬁlations are quite different, the three, when evaluated, are in reason-
able agreement yieldiog the following approximations for the error incurred

by the neglect of Ag? above n = 30:

" Approximation: 6AN:
Rapp . 1.9 meters
Wong and Gore < 2.2 meters

.Pellinen and Demyanov © < 1.7 meters

e
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. The computations illustrated in Table 4 and Figures 4 and 5 neglect this error .
- -sou_fée. The Ver.i"or would be fully effective at Yo =0 and should be .quadrétigaliy

summed with the AN values obtained through equation (4.4) evaluated at §, = 0.

As o increases, the effect of the short WaVelength variations in gravity anoma-

lies will be incorporated into the computation through the inclusion of terres-

triai data and the error in undulation from this source will diminish, Wong

and Gore [1969] have estimated that Gmw is less than 0.5 meters for ¢°>10°

_ The total —A—ﬁ# including the neglected higher order terms would then be given

by:
T —— B __2 __.2 1/2
@10y Tomi BNy = (ANG + 0ANp)
whore: 7 G&Ry < 2 meters at yo= 0°

< 0.5 meters at o = 10°
Under these conditions, ’;he curve in Figure 4 is a very close approximation
to the "Total ZN_,#" with respect to an ellipsoid siﬁce the large values for
KI\-I_W' found with reference to an ellipsoid for n < 30 would dominate the quad%
ratic sum given by equation (4. 10). The curve in Figure 5 would, however,
be altered drastically for low values of |, since the error derived from high
degree variances would be a significant part of the total. This is precisely
the "dip" area of the curve that Moritz advocated "bridging' to obtain a
mon;)-;ﬁonically decreasing .f.u-i.lction. Simply to illustrate thepossibﬂity, a
set of monotonicélly decreasiné values of GANq, = < iK—Nﬁ)]‘/ 2 were arbi—

n=31"

trarily selected that satisfied the estimated ~ - values at

Vo =0 and {5 = 10° and that made "Total —A_N_(w)". in equation (4.10) a mono-
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-; ténica;lly dé_creas,ing; function of \l;o. These véglé-eeS‘are shpm in Table 6 and
the resp;lting Total ‘Zﬁ(\p) ;c1u1rve m .Fig‘ure 6. ”
| Table 6

Hypothesised Undulation Compufation Errors
Due to Neglected High Order Terms

(meters)
Integration Due to Degree Total ANy
Truncation Variances Above (14, 14)
Angle n =30 Reference
Yo G-A—N-q, , Surface
0 2.00 3.16
1 1.90 2,48
2 1.85 2,03
3 1.80 1.84
4 1.70 1.84
5 1.54 1.84
6 1.42 1.84
(f 1.40 - 1.83
8 1.20 1.70
9 .90 . 1.31
10 .50 .99

+

It is to be emphasized that these figures are purely afbitrary, and were selec-
ted simply to show that conceivable values couid exist for the inﬂuénce of the
high order degree variances that would make the shape of the ZN—q, curve more
plausible. The values with the exception of the limiting values specified at
o= 0° and {o = 10‘5 are of no con's'equence to the conclusions to be dra\;vn from
these c'omputations.'

Aﬁ examination of Figure 6 shows that the use of t_errestrial gravity
data in a region with radius o of about 13° will resﬁlt 1n an 80% reduction in

the error of determining the undulation with respect to a Spherop 14 reference
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Figure 6
- Total Undulation Error Due to Truncation of Anomaly Field
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surfece. ~ The total-erro‘r with respeet to the Vre;:'erence surface is a-reletively‘
mmgmﬁcant 0.6 meters thh can be compared toa 15 8 meter error obtained
if the computatlon is performed Wlth respect to an elhpsmd (1/f = 298. 25)
using the same Y.

4.4 The Effect of D1screpan01es Between the Reference Model and the True
Earth

 The very 'favorable error elimination found inthe preceding section

occurs because kwe have assumed essentially that the reference figure is an
exact representation of a comparably smoothed equipotential surface of the
true geopbtential. As a result, only the~7~sherter wavelength comi)oneﬁts of
the anomalous gravity (that is, Abn, n > 14) 'contribﬁte to an unduletion com-
putation made with reference to this surface. It is unlikely, considering our
present knowledge of thev geopotential, thet‘ we will select a high order refer-
ence surface such that this siteation prevails, It is therefore pertinent to con-
sider how the preceding discussion is affected if the spherop reference surfacle
is only a good approximation of a smoothed equipetential surface in the true |
geopotential field.

| Let us retain our present definition of Spherop 14 based on Rapp's
(14, 14) spherical harmonic coefficients. Let us assume, however, for pur-
poses of defining a different gravity field, that each am and S,, for.n < 15
is changed by the standard devidtion aseociafed with that coefficieﬁt [see
Appendix B]. Equation (4.5), after the referenc‘e figure coefficients were

subtracted, would then become:
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— n. e
(4 1) A& = Ye-17) ©F, *+ 9%5)

no .
m=0

" forn = 2,14 .
These values are shown in Table 7.
Table 7T

Anomaly Degree Variances for Altered Gravity Fleld
Referred to Spherop 14

n Ag:
2 .01
3 .08
4 17
5 .35
6 .51
7 .97
8 1,27
9 1,72
10 ' 1.99
11. : : 2.05
12 : 2.26
13 1.99
14 1.91

The anomaly degree variances in Table 7 were combined with those fér n>15
from Table 4 to provide a set of data representing a plausibly different gravity
field. The computations for the Spherop 14 reference surface were then
repeated using this data. The hypothesized contributions from Ag2, n>30,
from Table 5 were added in accordané’e with equation (4.10). The results are
sﬁown in Figure 7. |

The general conclusmns fr;)m F1gure 7 remain the same as from

Figure 6. The error ANq, drops fairly rapldly at first as Yo is mcreased but
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. the rate o_f‘ improvement slows after {5 = 10°_f ““For o = 13°; there is a 70%
reduction in the root mean square error as cqmpared fo \lr;, = 0. In. this -
cése, the influence of loﬁg ;;vaveleﬁgth ano‘mélies einphasizes the importance
of the more distant zones and the curve does not flatten as quickly. As was |
expécted, the root mean square error is greater for all values of ¥, When
.the reference figure is only an approxihlation of the true smoothed geoid. |
This example illustrateé that the absolute error in geoidal undulation
computation for a given integration radius is minimized by selecting a best
fitting reference surface.

4,5 Truncation Errors in the Computatioh of Gravitational Disturbance
‘Components »

-~ Computations similar to those described in the éreceding section
can also be accomplished‘bo analyie the effect of truncation on the deter-
mination of the components of gravitational dismfbances. |

The gravity disturbance at a point may be resolvéd into orthogonal
components in the spherical coordinate system r, q;', a.nd ) as [Heiskanen

and Moritz, 1967, p. 233]:

_ 3T
(4.12) &, = x3
‘ oT
(4.13) 8¢’ = %
. 12T
(4.14) X = 1cosy’ S

In a spherical approximation, these components can be related to

gravity anomalies, deflections and undulations at a given point by the equations:
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(4.16) B’ = - vE*
(417 6\ = -n

- The anomaly Ag is a known quantity at the points of computation on the refer-
ence surface and n, §, and 7 are subject to the errors ANy, Agy, and Any
due to truncation of the area of integration at radius ¥, so that the errors due to

' truncation may be expressed:

(4.18) Dbry = ERZ ANy
(4.19) ASoy = - yA%
(4. 20) Aﬁw = - ylny

 Squaring and meaning over the earth, we obtain:

(4.21) Abry® = %’; ANy®
(4.22) A8,,° = ¥ AEy? o 1

(4.23) AS)° = ¥ Any®
The expression for ANWZ in terms of anomaly degree variances is given by
equation (4.4). A similar expression for K’é—q,z and Zﬂz is given by [Moritz

and Hirvonen, 1963, p. 49]:

(4.24) AEy® = Ap? = -E%-; z nn+) QF Agh
4 n=2

The root mean square errors in gravity disturbance components are therefore

given by: o
(.25 By, = () @2 Bg )M
R =2
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N — — - . a '—z_’: .. ) ——
@z oy = By = (3 ) wenaing )’

 Equation (4.25) is the equivalent of:

———

(4.27) BBy, = .3086 ANy

Ty

and can'béeva_luated undér various assumptibﬁs from the tables and figures

- of the i)receding sections. |

V ‘Er‘rors in the horizontal _gravity components and deflections as func-j

~ tions of {o, éomputed by equations (4.24) and (4.26) and truncated at n = 30,

are shown in Figure 8. This composite figure éhows thé errors under the

~ assumption of using' a‘reference ellipsoid; a Spherop 14 reference surface

that‘is. én éxaét agreexﬁent with a coinpletely smoothed geop and a reference

surface, such as described in the preééding.section, that is not an exact

- »ge.:opotential surface.

' In these calculations, we must again assume that the neglect éf high

order anomély degree variances has caused‘under—estimation‘ of the errors

“associated With small truncation angles. Kaula has estimated the root mean 3
square deflection of the vertipal to be 6 seconds [1959]. This estimate was
based on anomaly covariances andbincludes the effect of high brder varia-
tions .in the gravity field. For comparison to Figure 8, his estimate would-
corresp.ond to a root mean square value of 4.2 seconds forba deﬂection com-
ponent coniputed with respect to anAell‘ipsoid at zero truncation angle. Kaula

also did truncation error computations using his covariance data. The esti- '

mated errors shown on Figure 8 were consistently about 10 per cent higher -




el i - A - Anomalies referred to ellipsoid; o
‘ B - Anomalies referred to a Spherop 14 reference = 7
" surface that is an exact fit to the anomaly field;
C - Anomalies referred to a Spherop 14 reference
3 surface that is not an exact fit to the anomaly field
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than Kéula's esfimétes, except at truncation ahglés below about one degree.
. Kétula's -cbmputatioﬁ shows ihe rapid increase in error that occurs when short
| ﬁavelehgth varjatio‘ns ﬁ'th; anomﬁly field near the computation‘ point are not
‘ c;nSidered. _The effecﬁ of this neglect is suppressed in the truncated Moloden-
_ “s‘kAii type éoﬁputation. If we assume the gravity dat’a. available for this current
. in\féstigation is more reliable than the data available to Kaula in 1959, it

,Woﬁld be appropriate to raise all of Kaula's error estimates by 10 per cent

“”incli;llding the estimated error at zero truncation angle. ' The difference

' b_etween the hibdiﬁéd Kaula xfalue and the value from equation (4.24), evaluated
‘v‘fofthe eﬂipébid; provides the i)ésis fqr a rough estimate based on decox.npovsi'—’>
‘ 'tioﬁ of the total quadratic sum that the contribution of the neglected anomaly )

: ~degfee .Vétriances above n = 30 is about 2 ér 3 séconds for a zero truncation
angle. This value could be summed quadratically with the §, = 0 values on

- Figure 8 ‘to obtain estimates of the total error under the different aséump—

: ﬁéﬁs shown. Cdnsidering the relative rate of chaﬁge of Stokes' function

and Vening Meinész's function [Heiskanen and Vening Meinesz, 1958, p. 81],
qﬁe could éxpect the error due to high frequency anomaly variations to
attenuate even more rapidly than the simﬂar 'eri'c;r discussed with relation fo
ﬁndulation computa;tions. The errors for truncation angles greater than 10°
are therefore prébably realistic. Fdr deflection computations, as in undula-
tion -computations., ‘the use of a high order reference surface results in a |
very significant reduction in the errors arising from anomaly field truncation.

The fact that a high order reference surface permits the accurate
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determination of a portion of the potential fie’lcfl'from a loc,ali.zedufield-of graVity
anomalies is one of the key factors making the concept of a point mass-repre-

o sentation computationally feasible.




CHAPTER 5

5.1 General

'fhis chapter will discusé the computer ﬁrogram and procedureé used |
in determining point mass sets suitable for adding detail to spherical harmonic
geopotential models. ’i‘he procedures are based primarily on the discussions
of Chapters 3 énd 4, but also depen‘d'on certain collateral concepts and assump-
tions which will be developed in this chapﬁer‘. |
5.. 2 Aséuﬁiptions Régarding Data

In the followiﬁé discussion we will assmﬁe that we have a set of spheri-
cal harmonic coefficients that are 4in agreement with our total knowiedge of the
gravity -field of the earth., This assumption implies that this set of coefficienté
is the resﬁlt of some method of adjustment that incorporates both satellite data
and terrestrial gravity observations. Examples of such sets of coefficients
are those of Kaula [1966] , Rapp [1969b], and Gaposchkin and Lambeck [1970].
It is further assumed that the terrestrial gravity information used in the
analysis, for example, 5° x 5° mean anomalies, caﬁ be traced backward to
its origin,b at least in general terms, This Would imp‘lyi that in areas of dense
gravity coverage, it would be possible to specify a 1°X 1° mean énomaly field
that could be combined to form the afoiementioned 5 X 5° méan anomalies, a

72
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30 30° field that is compatible with the 1% 1° Field and so forth down to the
smallest mean element size justified by the ob’servatio'nalldensit-y.

If is naturally assu;ned that the datal enté‘ring in_to thé adjustment has,
been prbperly weighted and that the mathemafical model is éorrecf so that an
adjusted observation could be expected to be a closer estimate of the"truve
value than was 'the original observation. This rather obvious remark is
included for emphasis because it is a jus-tification for certain modifications
which Wi]i be made in the observed terrestrial vgl.'avit.y field.

5.3 'Coﬁd'itions_Imposéd on the Solution

The concept of adding ioéalized detail to é. model describing the geo-
potential fields does _nbt imply that we change th'e‘basic refei'ence system that.
deséﬁbés these fieids. Rather we should impése conditions while developing |
this detail that will constrain the new model to be consistent with the param-
eters of the reference system.

Under the assumptions that we have properly weighted and utilized,
all a\%aﬂaﬁle observational data on the gravitational field to obtain a sbheri—
ca}_rharmonic ”c_oefficient set to a specified degree and order, we can assert
that this set of coefficients is the best available set of descriptors of the geo-
poténtial of that degree and order. If the degree and order are limited to
(14, 14) for example, the described fields are heavily smoothed representations.
of the true fields. As such, one would expect the mean value of the true funé—
tion and the mean value of the smoothed function over an area to approachba‘

common value as the size of the area is increased. That is:
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Asi ’ A81

wheré‘ Fgp is an épproxime;tion expressed as.a spherical harmonic series of
 the function FTRUE €valuated on the spherical surface 8 a‘nd AS; is sorﬁé por-
ﬁon of that surface. The.expression FSE is described by the (n+1)2 param-
eters making up the coefficients of the spherical harmonic series. The left
side of equation (5. 1) could thefefore be approximated as a sum and rewrit-
ten aé an expression in (n+1)® unknowns. The right side is a single number
for the integral of Fppyg over AS;.

A solution for the (n+1)® unknowns would.therefore require a minimum
of (n+1)® discrete areas AS,. If the surface of the earth, taken as a unit '
sphere, is divided into this nﬁmber of areas, .then:

4
(5.2) AS; = W

If AS, is considered as a small tesseral element, then the sides subtend the
central angle A® where:

203.1

5.3 A’ =~
( ) n+l

By this argument a set of mean values defined as:

(5.4) FTRUE = 375, f FrRUEds
AS,

where AS, has sides of Ag° would suffice to determine the coefficients in the:
spherical harmonic expansion. Conversely one could expect that Fop based

on these coefficients would satisfy the relation:
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(5.5 = | Fsmds ~ FrRUE
AS1

‘Equa'tion (5.2) therefore gives a minimum size to the area ASi where equation
(5 1) could be expected to be vahd A conservative approach would be to
apply the condition only to regions that were conmderably greater than the

- area glven by equation (5. 2).

‘Rapp [1967a] uses a pract1cally 1dent1ca1 argument to prOpose that

A31

‘ wﬁere FSH: is evalua.ted at the center of the block AS,. This would agree With
my:argument if: | |
(5.7 Fgm, ~ 7= | Fsuds
A5,
AS,

It 1s interesting to note that the vélidity of approxiﬁation (5. 7) would increase
 as AS, decreased while the validity of aﬁpioximations (5.1) and (5. 5) would
increase Withvthe size of AS;.

‘Let us now return to equation (5.1) and specialize the preceding
general discussion. Consider that Fgy in the léft member.' is the expression
for the anomalous potential of the form of equétion (8.28) of degree and order
- 14 which forms the pasis for our Sj)herop 14 System.: The corresponding
| right member of equation (5.1) would be the ﬁlean anomalous potential with
respect to an ellipsoid over the area AS,, or:

1
(5.8) g J' Tds

i
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Similar expressions: cou-l-’.d-bé defined for meainf;u'ldulations', mean»anomalieé,
ete., évé;' the area ASi If, however, we do not fofm the .spherical..harmonic | ) s
expansién referred to an ellipsoid, but rather to the Spherop 14 su,rfacé, all
cqéfficiént_é in Fgp become zero and the left side of equation (5.1) disappears. .
' "I“hus, if we have a set of spherical harmonic coefficients which We.a'ssert aré
a true‘s‘m'oothed representation of the actual potential field, then: |

(5.9) ‘f Trpypds ~ 0

, AS, '
| under the conditions that the disturbances TrRyUE 2re measured with res?ect

" to the reference model previously described and that the dimensions of AS;

s ‘satisfy equation (5.3). According to Bruns's equation (3;21), this is equiva-

Ulent of asSerting that the spherop encloses the same volume as the geoid
_ within the volume region subtended by AS;.
If the point masses are determined from anomalies referred to the
sphe.rdp" éystem, the model anomalous potential Tpyj arising from these
: méssesbca;n be-.taken as a detailed approximation of Tpgryyg referred to the

spherop system. It is appropriate therefore to impose the condition:

(5.10) [ Tpyds = 0
AS,

This can be rewritten in accordance with equation (2.6) as:

(5.11)2 Zk%’[-& cosdodh = 0
T % kd

where AS, is divided into J area eiements, ds = cosp,dod), for purposes of

R numerical integration.
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If we cduple this condition with the condition that.the sum of the anoma--
Ioué point rﬁasses undef the region AS; is zero, then our point mass solution
doesb not change the total ;I;ass or volume of oﬁr reference system in the
volume region subtended by ASi.' A compound model consisting of a number
| of'localized point mass areas superimposed on a spherop 'reférence system
Wouid retain the sétme mass and tﬁe same gross shape and volume as the
original spherop reference system. These considerations seemed concep-
tually significant enough tq justify the inclusion of the two conditions m the
formation of a point mass model. In actual practice, it'w‘as found that the
conditions were Qﬁite compatible with the observed data and ha‘d‘only a minor
influence on the solutidns. T.o illustrate, 180 point masses were fit to an
area of 285 1°x 1° ‘anomalies. This area 'is about 1.2 time the minimum AS
specified by equaﬁon (5.2). Ay solution Waé first found with no qonditions, the
integrated potential disturbaﬁce condition, equation (5.11), was then added,
and finally the condition was added that the point masées must sum to Zzero.
The slight strain‘ilﬁposed on the solution by the conditions can be illustrated
by fhe very minor changes in the variance of unit weight or the root mean
square residuals shown in Table 8. |

The individual residuals exhibited the same general patterns' inall
solutions. In these and a number of other solutions that did not include the
mass sum condition, it was observed that the sum of all of the positive and
négative anomalous masses was only of the ;)rder of the aﬁsolute magnitude of

an individual mass when masses were summed over an area satisfying equa-
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tion. (._5‘.'2)». Theseresufl‘ts; seem to verify the 'lé:gn'.timacy- of the-imbosed condi~
) tions when applied over adequately large regions'.
| Table 8

Influence of Conditions on Point Mass Solutions

Conditions . Variance of ' " RMS Residual

Imposed on Unit Weight ‘Anomaly (mgal)
. Solution : _ (Normalized) s : )
NONE : - 1.00 7.19
_fTPMds =0 o - 1.01 ' 7.26-
A51 )
ITPMds =0; [kM=0 $1.03 - | 7.32
As, AS,

5.4 Superposition of Mass Sets

'fhe arguments presented fhus far have implicitly imposed a number of
requirements which must be consivdéred in using point masses to determine a
detailed local geopotential field. These requirements can be separated into
those that must be met in order to dete-rmine a set of mass points and fo tho.se.
that must be met in order to determine potential related quantities at a given
_ location from a set of mass boints. Some confusion is possible with regard
to the areal réquirements-. Chapter 2 pointed out thai_t under the geometric

restraints imposed on a point mass solution, a point mass was almost com-

pletely determined by the gravity anomalies within a radius of a few point mass
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spacings. Chapter 4, howev,er.,‘ indicated: that,?ge‘oidal undulatiqﬁs and there-for.e:
potentialmf;;t a point Wé,rg a function of gravity ahomélies over a wider area. If
the information on the potel;tial field given by gravity anomalies is to be trané;-
forméd into a representation by pdint masses underlying the anomaly field
and these masses then used to generate poﬁential’ fields, it is apparent that
fhe area of anomalies and point masses must iae of greater extent than the
desired potential field. An estimate of the réduired radius of the area of éno—
malies and pdint massés can be obtained from Figures 6 aﬁd 8. These figures
show that the most.dramatic error reduction occurs in the case of a Spherop 14
reference surface if the integration cap extends to over 10°. Thus, if an
accuiate, detailed‘ ﬁoint mass densification of a spherical harmonic descrip-
tion of the geopotential is desired, even over a small area, several hundred

‘ sqﬁare degrees of gravity anomalies must be considered in determining the
point masses. The optimum number of‘ point masses to be fit to an area is
primarily a function of the size of the mean anomaly lr;locks used in the solu-
tion. As discussed in Chapter 2, the mass depth should theoretically be mini-
mized. At the same time, the depth/side ratio should be maintained at a
value that makes the observation equgtion coefficients consistentvwith equiva-
lent layer theory. These guidelines argue for many shallow masses, but aﬁ
ﬁp‘per limit is placed on the number of masses by the requirement thaf suffi-
cient anomalies be available to over-determine the point mass set. To illus-
trate how these guidélines interact, some characteristics are shown in Table 9

for typical solutions that were accomplished in this study.
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. Out of the many experimentél solutions’ :th‘at were computed, -those that.
- had the general chafacteristips shéwn in Table 9 ap_peaferi to provide sétisf
, fact;)x'y mass sets. Other,;olutioﬁs in,this‘ éeneral range also Were' satisfac-
tory. While no clear optimums could be identified, sndaller d"epth/ side'rafios
' séemed und'esirabie and no advantage was noted for greater over-determina-
ti-oii'i'é.tios.‘ These figures are presented here primarily to indicate the number
of masses involved in reasonable point mass configurations.

Table 9

Point Mass Solution Characteristics

Anomaly ' Depth to Over-Determination Depth/Side -

Block Size - Point Mass Array Ratio ' Ratio -
' (km) Anomalies/Point Mass
C1%1° 100 1.6 .8
'30'x 30’ ' 50 1.1 1.0
1.9 .9

5'x 5’ ‘ 10

Based on these configurations, it can be seen that the number of point masses--
or unknowns--involved in an area of séveral hundred square degrees bgcomes
formidable. Suppose, for exampie, we had a requirement for determining
gravitational disturbance components along trajectories origina?:ing at a point.

. The usual procedure for such a computation is to use smaller anomaly blocks

- for nearby areas and progressively increase the éiZe of the blocks as the dis-
tance from the computation point increases. Desirable anomaly block sizes

for different distances from the computation point are discussed in general

terms by inany authors [Uotila, 1959; Hirvonen and Moritz, 1963; Rapp, 1966].
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Soiﬁe suggeétions'of ﬁirvpﬁen and Moritz are" shown in Table 10. These sug-
gesti’ohé iné.de for énonialies feferred to an. ellipsoid should be reason.able‘v
bﬁt cénéer&ative for compu:cations usiﬁg anomalies referred to a spherop
‘ refere_ncé surfacéf The spherop reference surface takes out the loﬁg wave- -
length featﬁres of the anomaly field, but has little influence on the relative
' variatiﬁon-" of mean anomalies m the block sizes of one degree or less. |
Table 10

Suggested Anomaly Block Sizes for Disturbance Computations
[Hirvonen and Moritz, 1963]

~Anomaly Block Dimensions of Area
Size Centered on Computation Point
e ' Latitude Longitude
5'x 5’ 3° 4°
- 20'x 20’ , 7 9°
1% 1° ‘ 25° 30°
5%5° Remainder of Earth

Computations of Rapp [1966] suggest that the ﬁirvonen and Moritz
éstimate foi' area dimensions for 5'x 5' mean anomalies is conservatively
large for disturbance computations at high elevations. His results showed
no significant difference for disturbance components computed abox}e 50 kil-
ometers between computations'using 30’x 30’ anomalies and computations
using 5'% 5' anomalies in a 5°X S° area Surromdmgf'ﬁ‘-coﬁ;ggtatién i)oint. Con-
sidering that a point mass solution is at best é.. smoqthea solution that cannot
'sﬁow all the detail in the gravi’;ational field :;tt léw elevations, it seems rea- '

sonable to reduce the area of 5'x 5’ mean anomalies to a 2°x 2° rectangle sur- .
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" 'rquﬁdiﬁg: the computation point and Specify-ﬂia't:;the computations cannot be
carriéd éuccessfull& down to the surface. Even on the basis of conventional
computations, Rapp [1966] has indicated that 15 to 20 kbilomet»ervs in the lowest.
elevation at WHiCh the disturbance components bcan be accurately determined
from 5'x S' ‘mean anomalies, If points are desired below that elevation, more
detailed anomaly fields musf be used. | |
If we assume we use an iniegration, cap extended to the 1°¢'1° mean

anomaly' block limits suggested above; use v30'x 30’ anomalies in the area in
which Hif_vonen and Moritz use 20°X 20’ anomalies; and use 5'x 5’ anoinalieé
| ina céntral square 2° on a side; we can then goﬁpute the size of the point
mass ‘svet that Wbuld be necessary to model this field. Usiﬁg the over-deter-
mination fatios from 'i‘élble 9, we could model the fields by the following sets
of masks’es,

| a) 300 massés at 10 kilometers depth to represent the 5'x 5’ field

b) 210 masses at 50 kilometers depth in an annulus around the

5'x 5" field to represeﬁt the 30" 30’fieid.
c) 430 masses at 100 kilometers depth outside the 30'x 30 field
and extending to the limits of the 1°x 1° field

This total set of 940 masses could theoretically be determined by adjustment
ﬁrocedures using the 1499 anomalies in the described anomaly zones. This
would be a formidable coinﬁutational problem which would have to be répeated

in its entirety for each area in which disturbance component computations were

coﬁtemplated.
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An alternate approach to the development of very detailed fields that is

more compatible with the equivalent layer model is provided by point mass

sﬁpérpvositioning. In the context of this study, superpositioning can be defined

' a'svthe oveﬂaying of an arraiy of deep mass points by a more»’shallow array of
mére closely spac'ed mass points. The name arises from the principle of
suberposition of fields of force in potential the'oryv [Raﬁxsey, 1959, p. 22].

This principle states tha.tt the force exerted at a point by a system of particles -
is the vector sum of the forcés exerted by each of the particles separately.

It lS a basic premise of the Newtonian theory of attraction. The principle can

easily be seen to extend to the poinf wise vector addition of force fields and to

the' simple point wise addition of scalar potential fields. This concept has been .

us:eAd implicitly in earlier discussions when an anomalous field represented by
a‘ set of spherical harmonic coefficients was added to a normal field based on
an ellipsoid of revolution to obtain the Spherop 14 field. It was also used when
a point mass representation of an equivalent layer surface was added to the
- Spherop 14 ﬁeld to obtain a more detailed field. ‘In each of these instances
| anomalies referréd to a model of a certain complexity were u;sed to define a
more detailed model. Point mass superpositioﬂ simply continues 'this co’ncept‘
into reference models that incorporate point masses in their definition.

For example, suppose that point maés set M, had been obtained by a
'. solution using 1°X 1° anomalies referred to the Spherop 14 sysﬁem. Suppose
aiso that a set of 30X 30"1¥1ean anomalies, Ag, réferred to an ellipsoid were

available over a central portion of the area of set M,. Anomalies AgpM
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r‘efer‘red to the point mass model could bé f'ox"'nfled in accordance with equa-

tion (5:12).

14 . qn
(5.12) Agpy, = A8 -¥) (1) ) (Ciicosmi; +S,sinmh,) Py (singi)
: n=2 m=0 ’

_ z (312 ; Fu - 2 > kMJ
3 24"Ry £14Ry

" These anomalies would be referred to the detailed model defined by a spherical

harmonic coefficient set and point mass set My. They could be used as input

to a solution that would yield additional detail in the form of local perturbations
' to that model. It would again be appropriate ‘in,this case to enforce the condi-

~tions that the sum of anomalous mass found in the new set should be zero and

that the integral of the anomalous potential over the area of the solution be

zero. It is assumed that any such solution would overlay an area that was

. several of the original mass set spacings on a side. This condition would be

the equivalent of satisfying equation (5.2) to insure the validity of these condi-

~ ‘tions.

The procedure outlined above could be repeated to determine a mass
set representing 5'x 5' mean anomalies. In this'application, the mass set M,
in equation (5. 12) would include the mass sets fouﬁd from both the 1°% 1° mean
anomalies and the 30’ 30’ mean anomalies.

The superposition method would require more masses to represent
thé three sets of meé;rl,anomalies originally postulated than wouid a simui—
taneous solution, The mass sets required based on Table 9 characteristics

would be:
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1°%1° - 470 masses
'30’x30° - 230 masses

5'x 5’ - 300 masses -
* Total - 1000 masses

While the tb‘tal numbef of masses has increased slightly as compared to the |
éimulfaiieous solution, the number of uiiknowns that must be determined simul-.
taneously has, in i:his exé.mple-, decreaséd by oxiev—half. This greatly reduces
the computational probiems .
5.5 Generation of Contiguous Mass Sets -

The program given in Appendix A and outlined in section 5. 6 is capable
" of éimultaneousiy determining up to 324 mass points u.nderlying'an area. " This
is very nearly the maximulix number of unknowils -tha-t could be d‘etei'mined‘
using direct matrix inversion processes with the available computer facilities.
There are instances when it would be desirable fo solve simultaneously for a
greater number of unknown masse;s. It would be possible to solve for more
unlmOinns in these instances uging partitioning techniques but only at the
expense of a very conéiderable increase in program complexity and computer
usage time [Snowden, 1966]. While this approach would be theoretically cor-
rect, it did not seem justified in -this exploratory investigation. The fact thét
point masses are determined almost entirely by gravity anomalies in a local-
ized area, as pointed out in Chapter 2, makes it possible to use the basic ‘
point mass program outlined in section 5.6 to achieve a close simulation of a
larger scale simultaiieous sqlutiori.

The coefficients shown in Table 1 illustrate indirectly that a point mass
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is. deterﬁlined pﬁmarily by ﬁie. mean anqmalié; that are within three orbf‘oullc |
mass spaping intervals. Anomalies af a grgater"dista’mce; héve essentially no.
rélation boﬂthe point mass size sin;ze the coefficients relating the mass and the
anomalies are near éei'o. ' One might expect therefore that adjacent point mas-
| ses would be highly correlated because they ai'e effectively determinéd by
anomaly sets that have a large percenta'ge. of common members., Distant
point niasses would have little correlation. A typical set of correlatiqn coef-
ficients thaf was actually obtained in a point' mass solﬁtion is shown in Figure 9.
Tﬁese coefficients apply to a mass point near the center of a 16X20 array of
" mass points fit to a 20°x 20° field of 1° 1° anomalies. Only those coefficients

" greater than .01 are shown.
Figure 9

Correlation Coefficients for Members
' of a Point Mass Array.

-.01
-.01 .06 -.02
-.03 .11 -.30 .12 .-.04
-.02 .04 -.10 .25 -.58 1.00 -.60 .27 -11 .04 -.02
.02 -.05 .15 -.35 .1¢ -.06 .02
-.02 .09 -.03

e 02

The asymmetry in this array of correlation coefficients is due to the fact that

the gravity anomalies do not fall symmetrically about the center point mass .
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h and because the nofth—-southx and east-west -s;}:iging of the point maéses differ.
From f‘ig’ure' 9, it is apparent that the magnitudés of point inassés |
sépé.ratéd by 5 or more intervals in an afray ére not closely ‘rela'ted;_ .
CbnSidér a field' of 1000 1° 1° mean anomalies such as shown in Figure
10. Assﬁme that this field comprises all of the 1° 1° anomaly information
available for determiniﬁg thé anomalous potential in the'interior shadéd over.
Ideaily a in‘nt mass set to be used in modelling this anomalous potential shoﬁld

be found by simultaneously fitting masses to the entire anomaly area.

Figure 10

Arrangement of Contiguous Anomaly Areas

—— 10° 10° 10° 10°

A

o  Sub-area Sub-area
x A D

i, 'however, masses are fit only to anomalies in sub-areas A and B, it could

be assumed that the point masses found in A would be.the equivalent to those .
that would be found in a éolﬁtion based on all of the anomalies. Thé anomalies

| in sub-areas C and D are too. far from sub-area A to have any significant influ-

ence on these point masses. The interdependence of point mass magnitudesb
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ﬂlus-trated in Figure 9 attenuates too fapidly"f;r ‘point mééses determined in
' sub-area A to be depéndent on point mass values that ;might be found in sub-
areas C and D.’ ﬁ‘his arguﬁent cafnot be'ﬁsed for point masses in sub-a-rea B ,
. The truncation of t-he anom_aly‘field at the vboundary between sub-areas B and C
vwi.)uld eliminaté observational data that is significant to tﬁe determination of
point masses near that boundary. Point masses on both sides of the boundary
would be corréiated and would interact in a simultaneous solution.
Similarly, if-a solution was accomplished for sub-areas C and D, the
- point massés found in sub-area Dlwouldvbe essentially the same as would be
- fom;d from ’a solution covering the eptire area while those in sﬁb-—areaC Wouid
show the effects of the truncation of the available anomaly field.
By this reasoning, the two solutions described would define poiﬁt mass
‘s‘ets in sub-areas A and D that are the equivalents of those that would havé been
found from simultaneous use of all of the available 1° 1° mean anomaly infor-
mation. It is therefore a reasonable approximation }to hold these point mass
sets fixed and accomplish a new solutidn for point masses, in the B and C
‘areas, that will be compatible with the A and D mass sets. This can be accom-
plished by incorpofating mass sets A and Din the definition of "normal" gré.v—
ity qsed to form a new set of anomalies in sub-areas B and C. Poiﬁt‘masses
fit to this anomaly fi_eld will then smoothly bridge the area between thé two
previously defined point mass sets.
This type of solution is very similar to the superposition type of solu-

tion. The only differences are in the application of the conditions that are
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1mposed oﬁ the. solutlon. The: condition that the sum of the determmed masses:
is zero is cha;nged to a requirement that the sum of all of the mass sets (A, B,C
and D) is zero. Si.milarly,° the integral of the disturbing potential arising from
all of the'mass sets is constrained to-zero over the area of the solution.

5.6 The Point Mass Solution Computer Program

5.6.1 Geﬁeral |

The computer program used in this study to obté,in point mass ari-ays
is given in Appendix A. The program uses meén anomaly data in a specified
i'ectang'ular area boﬁnded by meridians and parallels to solve for a desigﬁated
number of masses at a specified depth.. As an option, the program will modify
the input anomalies to refer them to a "normal" gr;avity field that includes pre-
defined masses. (Reference equation (5.12). )  After the mass set is defined,v
a geoid for the area, referred to an ell'ips.oid'with the .ﬂattening of the GRS-67
e111psmd may be computed as an op’mon. (Reference equation (5.24).)

The program is ertten in Fortran IV, IBM 360 version [IBM, 1968a]
It requires a computer with core storage of 500,000 bytes and two per1pheral
storage devices. Thé program, as presented, is dimensionéd to allow for the
solution of 324 unknown mass points based on a maximum of 1000 mean
anomaly observations. Provision is made for the inclusion of 2000 pre-
determined masses.

The parameters of the Geodetic Reference System 1967 are built into

the program. Use of another reference system would require minor internal

“modifications.
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;Unless specifically noted, the units u's'é(i within the program and for

input and output are meters, mﬂligals, and degrees. The pqint Ymasses" are

°

‘not actually given in mass units, but rather in kM units of centimeters cubed

- per second (where Kk is approximately 6. 673X10'8cm3g‘1sec'

2),

5.6.2 Computation Control Parameters

The program is written to allow for considerable flexibility in the solu-

" tions without need for internal program changes. This is accomplished through

input parameters that specify variable options. The options that must be speci-

fied are:
TOP
BOT

EAST

WEST

NM1

DEEP

SIDE .
MIN

IGEOID

" 1coER

North latitude 1limit of anomaly field;
South latitude limit of anomaly field;

East longitude limit of énbmaly field measured east-
ward from Greenwich; B

West longitude limit of anomaly field;

Approximate number of masses to be determined - -
(See section 6. 54) '

Depth of masses below ellipsoid surface.

The side length of a mean anomaly square in degrees;
for example, for a 30'x 30’ mean anomaly, side =0.5;

The spacing, in minutes. of latitude and longimdé,
between grid points where the undulation is evaluated for

geoid computations;

The value 1 indicates a geoid is to be computed; 0

=« indicates it is not to be computed;

i ,_;:;The value 1 indicates that correlation coefficients

between the masses are to be printed out; 0 that
they are not;
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INITS ~ . - The value 1 indicates that the masses are to be fit =
: under the condition that the integrated potential )
disturbance over the reference surface is zero when -
. both the predetermined masses and the new masses .
are fit for the first time to an area, but other masses .
to be included in the model exist outside the area.
~ (See section 5.5.)" :
The value 0 indicates that the maSseé are to be fit
~ under the condition that the integrated potential
disturbance contribution over the reference surface
from the new masses will be zero,. This option is.
used when mass sets are superimposed over an
area in which deeper masses already exist. (See
section 5.4.) '
5.6.3 Input Data
The input data used consists of mean anomalies, predetermined masses
“and spherical harmonic coefficients. The latter two classes of data are
“required only for some options in the program.

The anomalies used are the Spherop 14 anomalies computed with refer-
ence to the normal gravity field defined by equations (3.17) or (3.32). An
anomaly input card includes the anomaly value, the ¢,A coordinates of the
anomaly block midpoint, the geocentric X,Y, Z coordinates of that point and
the geocentric radius of the midpoint; These geocentric coordinates and
radii were precomputed when the Spherop 14 anb_malies were formed to avoid
.rep‘etitioxs computations during the many solu’cions accomplished during
these investigations.

The mass cards give the point mass magnitudes times the gravita-

tional constant and Cartesian coordinates of predetermined masses. This data

is required 6n1y when the superposition concept is used.
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‘ Tﬁé, spherical harmonic éoefficients de’f:in‘ing the Spherop 14 reference: -
' sux-face are reduired if the geéid computatidn oiation is exercised. |
Formats and data s;zquences_ can be deduced from the pfogram sou.rce—
liisting giveﬁ in Appendix A. |
5.6.4 Mass Positioning
The SUbroutine NUMASL determines the geographié positioﬁ_s of a set
of mass points ~arranged in a regular trapezoidal array under the area épec-ified
fér the solution. The exterior points in this array afe situated one half of an
anomaly block dimension inward from the limits of the anomaly area. The
in;cerval between the points, in both latitude and longitude is selected so that
the product of the number of rows times the number of columns in the array is
apprdximé.tely equal to the number Qf points  specified by the parameter NM1
and so as to give approximately eqﬁal spacing in both directions. The sub-
routine MASL2 uses the output from NUMASL and the specified mass depth to
compute the geocentric Cartesian coordinates of the ﬁlass points. |
5.6.5 Formation of Normal Equations
The system of equations in the point mass solution may be represented

in partitioned matrix notation as [Uotila, 1967]:

- 1 ] - = - - ~
A'PA i c1’ i c2’ M A'PG
nxn { nXl 1 nX1 nxl nXx1

}
A SRS N i BN i, -
) ]
G| St o 1o Kl ] - | D
1Xn ; : 1X1 1X1

___________ ..:..............-..._....__ S I
c2 | K2 | E
O L 1x1 1x1
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The;A. matrix is the matrix of observation ‘edu;tion coefficients. An individual
element of this matrix for the ith apdmaly observation and the jﬂ1 mass is found
’ - by differentiating equation (2.19) with réspect to the produpt of the mé.ss and
the. gra\}itaitional constant fo obtain: .

'Riz - F“. _ 2
24°Ry £4Ry

- The notation is that of Chapter 2. The vcoeff-icients are evaluated for the mid-
point of the anomaly block, | Note that the unknowns found by this procedure
‘ are'lmasses multiplied by the g'ravitational constant.
Each observation is weighted according to the area represehted by’that

- mean anomaly. The P matrix is theréfo’ré a diagonal matrix with elements: -

| (5.15) P1y = Area, X constant
This may be ‘approximatéd by: |
| cose; A A\ X constant
(Xiz +RY{?)I/2 X constant .

. _

(5.16) pus

I

(5.17) Py

The G matrix is the vector of anomaly observations. If pre-defined
masses are included in the soiution, ‘the input anomalies are altered to obtain
anomalies such as those déﬁned by equation (5.12).

The partitions_Cl and C2 are thé conditions discussed in section 5.3.
The baé ic condition that the integral of the anomalous potential over thé area
of the point mass array is zero is given by equation (5.11). If, in addition,
we accept the pb'ssibility of pre-defined masses outside this area, but v&;iSh to-

retain the condition that the total anomalous potential arising from the new
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masses and the masses outside the area is zero, this equation must be

‘expanded to:

: (}5.18)2 1% cosgp, Ap A +Z l%g COS_cpi'AcpN\ = 0
4 1 ‘

i

where M, is the set of unknown masses and My is the set of pre-defined masses.
The utility of this concept was discussed in section 5.5. With this condition,

the elements of C1 are:

'
(5.19) c1, = ) oS fe S },A LA
1

or if a normalizing constant is introduced:

+
(5.20) C1, = 2 @232, constant
. ! Ryl

If pre-defined exterior masses are used, D is gix}en by:

(5.21) D = -ZZ KM @ +y A2 constant
N Rylg

In the normal case, without masses external to the area, D would be zero.
The condition that the sum of masses fit to an area must equal zero can
be extended in a similar fashion to allow for adjacent masses yielding the more

general condition:
(5. 22) }: KM, +z kMg = 0

The coefficients C2, are all ones or are normalized to a constant. If pre-

defined external masses are used, the term E is given by:
(5.23) E- = -Z KM# X constant

In the usual case when there are no pre-defined masses external to the area,
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The'partitions Kl and K2 are the usual Lagrange multipliers 'assdciated
with th1s type of solution [Uotlla, 1967]
' Equatmn system (5.13) is built up S1mu1taneously ‘in computer core -
storage by sequent1a11y addmg the contmbutmns of each observation, aé the
anomaly card is read, to the elements of the sub-matrices A'PA, ct’, | c2’,

A'PG, D and E. This procedure is required becéuse the A matrix alone, in

~ the solution considered here, would greatly exceed the core storage 'capability o

of the IBM 360/75 computer. ‘Actually, further space saving was accomphshed
by stormg only the upper right triangular half of the symmetric left member of
the normal equations as a "packed" matrix. '"Packed" in this sense meéns that
this uppei‘ triangular half-matrix is stored by column in a continuous .s'ingl'e
subscripted vector. |
5.6.6 Matrix Inversion

A'Z.[‘he matrix storage méde described in the preceding sectibnvis not
compatible Wiﬂ‘l the more familiar computer methods of matrix inversion based
on Gaussian elimination and pivoting. An accurate and efficient method for
inverting matrices in this storage mode is avaﬂablé, however, as the IBM
subroutine DSINV which is based on the Cholesky or square root algorithm
[IBM, 1968b; Faddeev and Faddeeva, 1963]. Unfortumately this algorithm is
applicable only to pobsitive definite matrices. Normal equations of the typeA
showp in equation (5.13), that include zerosén the diagonal as a re_sult of the

condition equations, are not positive definite and cannot be inverted by this
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ﬁethpd. T_he sub-matrix A’PA is, however,‘"p'(:)s‘itive definite and can be invé;r—‘ »
ted by ;che DSINV subroutine. Thié ope,ns the possibility of using the »éfficient A
and accurate DSINV subroutine to invert almost all of system (5.13) and then .
to cdmplete the inversion of the entire system by applying the method of bor-
‘dering to the cblu;nﬁs arising from condition 'eq'uétidns; The method of border‘—
ing, described in Faddeev and Faddeeva [1963] and Snowden [1966] “could' théo—
retically be used for the entire invérsion, but the accufacy of this technique
deteriorates progressi\}ely‘ as the éompﬁtation contiﬁueé through a large matrix.'v .
It is not as suitable for large systerﬁs as the Cholesky 'method; The dﬁal inirer— B
sion using the two different algérithms retains the advantages of the Cholesky
method and essentially extends them to apply to the inversion of ‘systems that
inc;;)rporate a relatively small number of coﬁdition"eqﬁations. The subroutine
BINV in Appendix A is a modification of a bordering inversion for packed sym-
metric matrices that will accept a part1a11y inverted matrix as a starting point.
Th1s dual inversion technique was a key element in determmmg large numbers
of unknowns without having to resort to complicated matrix partitioning and the
peripheral storage of sub-matrices.

5.6.7 Results and Statistics Produced by Point Mass Solution Program

The basic output of the program is a set of mass points multiplied by
the gravitational constant k, described by magnitudes (cma/secz) and positions
given in a geocentric X,Y, Z coordinate system. Other statistics and data
useful in analyzing and i}nterpref.;ing. the resuits are also given. This informa-

tion includes:
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a) The mean and root mean square of ;he anomalies used to form
the obsérvation e}quations;
b) The meén and roét mean square differénce between the observed
grévity anomalies and model grévity anomalies derived 'from. the .
. point mass set;
c) The correlation coefficients for the point masses and the diagonal
elements of the covariance matrix. (This is an optiqnal output.
_ The‘ c()mplete covariance matrix can also be printed by renioving
oﬁe card from the program.); | |
~d) The varizmce of unit weight; -
e) Turing's N number Whiph measures the conditioning of the nornial
matrix [ Faddeev and Faddeeva, 1963];
f) A listing of individual input mean anomalies, and the corresponding |
model anomalies derived from the point mass set.
5.6.8 Geoid Computation
As' a matter of comlrenience, subroutines were include'd with the basic
point mass solution program to provide the option of computing a geoid in the
area covered by the solution. The geoid compu;cation follows the point mass
solution and simply uses the results of that co'mputation. It is not an integral -
part of thé point mass solution.
The geoid is éoﬁlputed by the subroutine GEOH2. Thé geoid height
above the reference ellipsoid is evaluated at the intersections of a grid of

meridians and parallels. The mesh size of the grid is controlled by the control -




98
parameter MIN as. desecribed: in. section. 5.5.2.  The following equation is used

to determine the geoid height', Ny, at latitu”de w; and longitude A;.

(5.24) Ny, RZ z (c cosm), + S, sinm)\,) P, (sinep; )
n=2 m=0 '

Z KM, Z My
gy Li1gye

In this equatlon, ,%(1 1)k ‘refers to the distance betvveen a computatmn point at
- 15 A » and mass k. The other symbols are as previously defined. Mk is
again the mass set determined in the current solution and M is a pre-defined
- mass set. Note thét Pm(simpi"), is evaluated at the geocenfrié 1atitudé, rather
| than at the geodetic latitude. This subroutine print's N, at each grid point
within and on the boundarry of thé mass solution area. Punched cards suitf

able for use in a contour program are also produced.




CHAPTER 6

DATA USED IN FORMING GEOPOTENTIAL'MODELS:

6.1 ‘>Basic Data Used in Computations

The basic materials describing the geopotenﬁal that were used in this
mvesﬁgétion were a set of spherical harmonic coefficients and four sets of
mean anoﬁxaly data in various block sizes ranging from 5°X 5° means down to
5% 5/ means. These data sets aie described in the following paragré,_phs.

6.1. 1 Spherical Harmonic Coefficients

The ,spheriéal harmonic coefficients psed in this study are a set of 'the
type described for equationn ‘(3.' 1) that were devélopéd by Rapp [1569.0, 1968b].
This set is complete ‘to the 14th degree and order. The particular set used is
one of a number of very similar sets developed by Rapp and is known as thé
"J GR oth Iteratioﬁ" coefficient set. The coefficients and their standard errors
are given in Appendix B.

These coefficients are the result of a least squares adjuétment that
used both terrestrial gravity information and satellite derived spherical har-
monic coefficients as input data. The terrestrial gravity information ﬁsed was
a worldwide set of 5% 5° mean anomalies derived from gravity observations
and anomaly estimates based on earth models. The sourc‘es of this material
are described more fully i_anapp [196915]. The satellite derix}ed spilerical

99
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harmonic coeffic‘ientsi used as in}jmt data to. the?:a&justmént were taken from the:
SAO 66 Standard Earth Parameters [SAO, 1966] The adjuétment’ procedui:'e is
theoretically descr1bed in Rapp [1969b] and given in practlcal detail in Snowden.
and Rapp [196-8]:.

6.1.2 Five Degree by Five Degree Mean Anomaly Set

The 5°x 5° mean free air énomaly set used in this investigation is shown
in Appendix C. This set of mean‘anomalie.s is an outgrowth of thé combination
solution.adjustment Which produced the spherical harmonié coefficient set
described in the preceding section. It was formed’ from the ferrestrial_a:noﬁn—
aly set used in the combination solution by imposing the condition that the
adju'sted’anomaly field be compatible with the spherical harmonic coefficients
found in the combinéd( solution. This anomaly set was found through a separz;tte

adjuétment based on condition equations of the form:

01 G-y [JoaTamh (e - o

This equation is based on the summation method of determining spherical har-
monic coefficients given a Worldwide set of gravity anomaly data. A detailed
description of the procedure is given by Snowden and Rapp [1968]. This method
is not the equivalent of determining an anomaly field from spherical harmonic
coefficients. The resulting field retains the detail of the original field buf

is made consistent with the spherical harmonic coefficients résulting from the
combined solution.

These anomalies were based on the International Gravity Fbi'mula.
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- In the"adjustment to‘ determine tnis anomaly set the condition was imposed
that the mean value of terrestrlal grav1ty anomalles over the earth, in this
system, was Agp = 1. 9 milligals. The area weighted mean of this set of
anomalies ’is ther.efore 1.9 milligals.

_ 6.1.3 One Degree by One Degree Mean Anomaly Set

i A set of 1°X 1° mean free air anOmalies covering most of the United
States (25 < cp < 50°, 240° E< A < 280° E) was furmshed for this mvest1gat1on '
by Dr. R1chard H. Rapp. ThlS set has not been pub11shed but has been used
for detailed geoid computations in the central United States [Rapp, 1969b,
1967b]. This data‘is closely t'elated to the anomaly holdings of The Ohio State
' University Gravity Library and to the materials used to form the 5°X 5° mean
anomalies used in the combination adjustment discussed in section 6. 1. 2; 1t
is'not, however, identical to the nlaterial used to establisn the original
estimates of the 5°X 5° means throughout this area. The 1°X 1° anomalies
form a dynamic file that has been periodically" improxted and enlarged. The
exact values used to form the 5°X 5° means are no longer identifiable.

These anomalies are referred to the International Gravity Formula.

No formal accnracy data is available .for the set.

6.1.4 Thirty Minute by Thirty Minute and Five Minute by Five
Minute Mean Anomalies

These sets of mean anomalies are described by Rapp [1965]. The
5'x 5' mean anomalies were formed by statistical prediction methods from

point anomalies in The Chio State University Gravity Library. The 30x 30’
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mean anomalies Were formed by meanmg the mcluded 5'x 5'means. These
anomalies are referred to the Inbernat—mnal Gnavrcy Formnla. The 30’ 30’
‘mean anomahes and their standard errors have been pubhshed by Rapp [1965]. |
6. 2 The Relat10nsh1p Between the Anomaly Sets

The 5'x 5, 30'x 30 , and 1°x 1° mean anomaly sets are basically con—

‘sisten't sets of deta. The periodic changes in the 1°% 1° mean anomaly set,
mentioned in seetion 6.1.3 have taken place primarily 1n the peripheral areas
'of the data set where the original x}alues were uncertain and not in the areas

of dense point coverage where the 30'x 30’ and 5'x 5’ anomaly sets were formed.

| There is a basic difference between the 5°% 5° anomaly set and the other
sets., This set is partially derived from the information included in the
s;nelle;:,bleck ,anomely sets but also is inﬂuenced by satellite data; Assuming .

‘ valid data and rational weighting, this set must be presumed more accurate

~ than a set obtained solely from terrestrial observations.

It should also be noted that the 5°x 5° data has an enforced mean anomaly
that is not present in the smaller block mean anomalies. This must be taken
into account when the various data sets are used together.

6.3 Conversion of Mean A_nomahes from The International Grav1ty Formula
System to the GRS 67 and Spherop 14 Systems

All gravity anomalies used in this study were converted from the
International Gravity Formula Reference System to anomalies based ’on the
| Geodetic Reference System ef 1967 by means of the relation:

6.2 O = g-7 T

Using the subscripts INT, GRS, and S14 to identify quantities referred to the” -
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'vInternatio-nal, GRS 6»7',.,'and Sphgrf’op 14 As‘ys’.cemé: fespectiVely,

e BINT = levr YT

G . DgGRS . = ogGRS - YGRS |

k -~ The 'absoll;:te gravity iralue gINT Siven by -equation (6.3) deriyes'ultimately
from the assigﬁed. value of absolute gravity at 'Potsdam. : Médern méasufe— :
ments of the absolute vaiue' of gravity indicate that this Potsdam value 1s m
érrox_‘. Some recent:determinations are shown in Table li [Séabo, 196.8].'

Table 11

"~ Recent Determinations of Absolute Gravity

' . , - Observed -
Investigator Year ’ Potsdam System
S (milligals)
Cook S :
Teddington England 1967 -13.7
- Sakuma - ' - ’
- Sevres France v . 1967 - -13.8 .
' |
Faller |
Gaithersburg Md. . 1968 ‘ -13.6

We will assume a Potsdam correction of -13.7 milligals. The absolute value
of ggrs given in gquation (6.4) is not referred to a Potsdaﬁ valug- but is rather
derived from the parameters assumed to define a'mean earth ellipsoid. Under
this assumption: |

(6.5) ggrs = &INT - 13.7

Substituting equation (6.3) into (6. 5) and (6. 5) into (6.4):
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| | (éf 6):; AgGRs‘ = (Ag]_'ﬁr + YINT) ‘?E;RS - 13.7
~ Normal grav1ty for the GRS 67 is given by equation (4.33). The International
Gravity Fé’rmula is: o |
'(6; 7) Yyt = 978049 (1 + .005284Sin2cp - .0000059sin22q;)
- To convert an Iternational meén anomaly toa G'RS 67 mean anomaly, equa-
| _ tions (4. 33).and (6. 7) were evaluated at the mid-latitude of the anomaly block
v and AggRrs was then computed byA equation (6. 6}.
Sphérop 14 anomalies, Aggqs, Were computed in a similar fashion by:
(6.8) Aggi4 = (AgmT FYINT) ~ Ys14 — 18.7
~Normal Spherop 14 gfavit;; Y5140 18 given by equation (4.32) or (4.17). These
equationé vx}eré evaluated at the geocentric latitude of the midpoint of the anom-
aly block. - | |
| The mean anomaly sets described in Table 12 were formed by the above
~outlined inethods.
Table 12

Mean Anomaly Sets Formed

" Block Type : Latitude . Latitude

Size _ Anomaly Limits Limits
5% 5° GRS 67 World Wide
1%1° GRS 67 - 25°N - 50°N 240°E - 280°E
Spherop 14
30'x30° GRS 67 - 33°N - 41°N 256°F - 265°E
- Spherop 14 :
5'x 5’ GRS 67 . 35N -39°N 258°E - 263°E

Spherop 14 ) '
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The relatioﬁships betweeﬁ the GRS ‘67‘ anomaly ‘sets are basically the same .as. , :
‘ thdsé described in section 6. 2ﬂfor the anémalieé based on the International
| _ ».Gravity ‘-Formula.. 'fhe éha;lge of gravity formula does, however; change the
magnitude ‘of the zero order or Woridwide mean anomaly imposed on the 5°>; 5°
" anomaly set. Adap{tmg an }eqﬁatvion of Heiskanen and Moritz [1967, p. 111], |

this value may be calculated for the GRS 67 anomalies by:

(6.9) Bgogrs = Aoyt - (VINT-13-7) + 7GRS "'%'VINT (nT-fgrs) -
Whére Ag, reférs to a mean anomaiy over the earthi and f is the ellipsoid ﬂat—_
' téning. This éomputation yields a mean ainomaly of 0.8 milligals with refer-
ence to GRS. 6‘7. This value was confirmed by numerically integrating thé
5°x 5° field over the earth., The exisfence of a mean anomaly indicates that |
there 1s some inconsistency between the 5°x 5° mean anomaly field and the
GRS 67 mo’del. This is not unexpected nor disturbing. Current estimates of
the mean earth ellipsoid differ slightly from the GRS 67 [Moritz, 1968; Rapp,
1969Db; Veis, 1968] and the aﬁomaly field is certainly subject to érror. In any
event, in this investigation, the GRS 67 simply provides a basis for descrﬁaing
perturbaﬁons and need not have absolute accuracy.

The sets of 1000 1° 1° mean anomalies are large enough in both ﬁum—
ber and area that some st’atistics concerning these éets are of interes;c ’to‘ show
the ,relafion of the various. types of anomalies used in this study.

| The i'obt meén squaré anomaly vaiues are an.indicator of fhe fit of the
reference system to the observed terrestrial anomalies. As would be expec-

ted, the Spherop 14 system is the best fit.
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" Taple 13 -

Statistics on 1°x1° Mean Anomaly Sets

Reference . T Mem ' - RMS " Maximum

System o © Anomaly - Anomaly - - Anomaly
: " (milligals) (milligals) (milligals) .
International ’_ 2; o 19. 3 93.0
GRS 67 4 | 18.8 89.6 -
Spherop 14 -1.2 16.7 73.4

In accordance with thelogic of Chapter 4, the mean Spherop 14 anomaly

~ over an area of 25° 40° should be approximately zero.” That is:

1 4
(6.10) As J'ASAg'Slé.dS ~ 0

According to Tabie 13, the GRS 67 anomalies more nearly satisfy equation
(6.10) than do the Spherop 14 anoxﬁalies. | A more critical examination of thé-_ :
data reveals that this is a coincidegce for this particular integration block.

If equation >(6. 10) is evaluated for smaller areas spaced across the 25°x 40°
block, it is found that the Spherop 14 anomalies yield smaller and more nearl&
constant_values for the mean anomalies of the aréas than .do the GRS 67 anom-~
alies. This is ﬂlust_rated in Table 14 which shows thesé values and the cor-
responding areé Weighted root mean square anomalies for areas extending 19°
in latitude and longitude and centered along the central parallel of the 25°x 40°
area. Accordmg to equatmn (5.2), a 19° 19° area at this 1at1tude is about

1.5 times the absolute minimum area ov.er which equation (6 10) m1ght be

expected to have some validity for the Spherop 14 anomalies.
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Table 14 -~
Comparison of Spherop 14 and GRS 67

1% 1° Mean Free Air Anomalies
Averaged Over 19°x 19° Blocks

Block Center. - Spherop 14 Anomaly ‘ GRS 67'Ai10ma1y

Lat . Long . Mean RMS' - Mean RMS
37.50 . 249,50 -1.39 18.09 3.80 22,20
© 87.50 . 250,50 -1.49 17.95 4,11 21.79
37.50 251,50 -1.76 17.84 4,08 21.57
37.50 252. 50 -1.58 17,97 4,37 21.44
87.50 © 253.50 -1.66 17.94 4,26 21,29
37.50 254. 50 -1.22 17.80 4,56 21.00
37.50 255. 50 -1.46 17.70 4,06 20.71
37.50 -~ 256.50 -0.96 17.37 4,21 20.23
37.50 - 257.50  -0.43 17,27 4.82 19.93
37.50 258. 50 -0.14 17.29 4,13 19.62
37.50 259. 50 -0.15 16.08 3.59 18.91
'37.50 - 260,50 -0.16 16.76 3.02 18,27
37.50 ~  261.50 -0.24 16.71 2.85 18.41
37.50. ~ 262.50 -0.08 116,49 1.96 - 17.78
37.50 263. 50 -0.56 16.26 0.93 17.28
37.50 264.50 -1.57 - 15.15 -0.62 15.65
37.50 265. 50 -1.61 15,00 . -1.18 15.27
37.50 266. 50 -1.65 14.73 . -1.71 14.77
37.50 267.50 -1.55 14.83 -2.06 14.92
37.50 268. 50 -1.11 14.61 -2.05 14.85
37.50 . 269.50  -0,66 14.31 -2.00 14.69
' 37.50 270,50 -0.09 14,04 -1.81 14.44

Other block sizes in the range from 15°x 15° to 25°x 25° yielded generally
comparable results, The low mean GRS 67 anomaly for.the entire 25°% 25°
block is merely the result of a balance within the block of large regions with
a positivé mean anomaly against simila; regions with a negative mean énomaly.
The smaller negative mean anomaly for the Spherop 14 anomalieé appears té ‘

be a consistent feature eveh on a limited area scale. On the basis of this set
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of anomaiies and equation (6.10), one migﬁt éﬁi‘mise that the equatorial gfav
{zity"value used in defining norinal gravity is too high. Unless the sp,herical‘: :
harmonic model is exaqt and the mean anomaly values lare very reliable,
this Wouid be a dangerous method of determihin'g equatoriai gravity. A few
" highly aberrant mear’lx anomaly obsérvations couid seriously dis‘pliace the’ mean
in this 'small sample.

" 6.4 Reconciliation of Anomalies .

The sets of mean anomalies described above are derived directljr»and -
soiely from terrestrial observations and are not coﬁsistent with the set of
coefficienté defining the Spherop 14 surface nor with the 5°% 5° mean anomalies
adjusted to be consistent with those coefficients. The latter séts of data arose
from a combination adjustment of satellite data and 5% 5° méan anomalies.
Some of tﬁe 5% 5° méan anomalies that were used as input to the adjustment
. were derived from the smaller mean anomaly sets. In the context of a gra-
vity field defined by a combination adjustment, these small block anomaly
fields might be considered as unadjusted observations. If these anomalies
are to be used to add detail to the basic gravitational field described by the
Sphérop 14 reference system, then some method must be us‘ed.to make all
of the anomaly sets consistent with the c;oefficients forming that system. In
essence, we need to find "v's" or corrections to these smaller block anoma-
lies just as corrections were found to the input 5% 5° mean anomaly blocks.

A rationale for finding these corrections can be given as follows.

The adjusted 5°% 15° mean anomaly set found through the application of
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,équation (6.1) is the best available es’timaté of .:ﬂ;e grévitational field in that
degrée 6f defail. In theory, ‘atv least, itis a resultént bf aﬁl of our gravita-
tional knowledge mcluding ;111 avaiiable 1% i° anomalies. Any detﬁil that
could be added in a specific area by use of these 1°% 1° anoﬁalies could not
logically change ‘the value of the 5°x 5° mean anomalies. A consistent estimate -

of the 1°¢ 1° mean anomalies must therefore satisfy the condition:

25
1) (Bg-% ) BEgda) = 0
S i=1 .

where: Ags = 5°%5° mean anomaly;
A = area of 5°x 5° block;
Az, = iB }1°X 1° mean anomaly; and -
dA; = areaof ith 19 1° anomal&.

Approximating dA; by cosep(1°/ p)sz, this equation becomes:

, 25 COS®;
e 25
(6.12) ( Ags - 2 N Ag = 0
( =1 ), coser )
‘ i=1 '

Following Uotila's nb‘menelature and notation [Uotila, 1967], equation
(6.12) is the mathematical model for an adjustment by the method of condi-
tion equations. In matrix nptation, the vector. of corrections which must be
added to the 1°x 1° mean anomaiies to reconcile them to the adjusted 5% 5°

mean anomalies is given by:

6.13) V = -P7B/(BPB)W

partial differentials of equation‘(6.12) taken with
respect to Agy:

where: B
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. . . -

cosepy A cosgy’ coSyy ;5
25 25 25
- z cosgy Z cosp, " ,‘z cosgp;
' Li=1 ‘ i=1 ‘ i=1
P = covariance matrix of the observed 1% 1° mean gravity
’ anomalies; L ‘
W = misclosure obtained when evaluating equation (6.12)

with the fixed Agy value and the observed Agy values.
~ Once the reconciled values of the 1°% 1° mean anomalies have been '

‘foun‘d through‘equation (6. 13), they may be regarded as our best estimate of
a 1% 1° field'consiétentlwith the spherical harmonic coefficients. The samé
prdcedures' can then be used to reconcile the 36'.x 30" anomalies to the recon-
cilg.ci. 1°x 1° anomaiies and finally, the 5'x 5’ to the reconciled 30’% 30" anom-
aliés.

This process was accomplished for the anomaly fields listed in Table
12. In préctice, ‘covariance matrices were not available for the 1°x 1° and
the 5'x 5’ anomaly sets. Identity matrices were assuz;ned. Variances obtained
during the original estimation process were available for the 30’x 30" anomalies. '
A diagonal covariance matrix was therefore used in the 30'x 30" reconcilia-
tion adjustment. Except for the reconciliation of the 1°x 1° mean anomalies
to theV5°x 5°_nieans, the B matrix elements in equation (6.13) were essentiaily
coﬁstént aﬁd equal to 1/n where n' is the number of mean anomalies. This
simplificatién of the B matrix was used m the reconciliation of the 30 30"
and 5% 5' anomaiies. _

After the above outlined reconciliation process, the various anomaly
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- fields can be considered mutually ’consi.stent and .compatible with thé reference
| s‘et of si)herical harmonic coefficients. |
: . Idea,lly fhe correcfi;ns to the smalle'r anomaly blocks could be attx;i-
buted to the influence o:t"the safellite data in the combination solution that pro-
duced the spherical harmonic ‘coeffic ients, and to the fact that the worldwide
field was constrained to have a mean anomaly. In the case of the data sets
used i this investigation, this ideal Waé not met since the 1 1° anomalies
are not identicél to the sourcés of the gravity information used as input to
the combination solution. Figure 11 shows the average correction to the:
1°x1° mean anomalies within each 5° 5 block required to reconcile these
1° 1° mean anomalies to the 5°x 5° mean. Figure 12 shows the average cor-
rection applied to the original 57X 5° anomaiies as a result of the condition
equation adjustment following the combination sohition [Rapp, 1968c]. ‘The
parenthetical nunﬁbei's on this figure are the a priori standard errors assd—
ciated Wiﬂl each 5°% 5° mean anomaly. With the exception of the peripheral
blocks, the cofreétiéns to the 1°% 1° means were within a fraction of a mil-
ligal of th;: original correction applied to the corresponding 5°% 5° block means.
These fractional differences are not significant 'sﬁce the original input 5°x 5°
mean values were rounded to the nearest milligal. In some of the peripheral
biocks the a priori standard errors assigned to the 5°X 5° means were signi-
ficaptly higher than m the central portion .of the anomaly field. Thesé are thé‘
areas where thgre are the greatest discrepancies between the correctioﬁs to

the 5°x 5° and 1°x 1° anomaly sets. The Mexican area shows the largest devia-
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) tioﬁs. The deviatnions are not inconsisfent w1th 15he assigned standafd errors
- kof theséblocks in fhe combination solut'ion adjustment. |
The. failure in compelete agreement of the cbrfectioﬁs to the’5°x>5°‘ and

1°x 1° mean anom‘aiy fields is unfortunate from a theoretical'viewpéint and o
ﬂlustra‘pes some definite areas of uncexjtainty in 'the‘ actual gravity field. The
reconciled anomaly sets are, hm?véver, completely consistent and are suitable
for'te“stiﬁg the point mass method even though the Spherop 14 reference s&ste'r'n

and the reconciled anomaly fields may not reflect the latest estimates of the

terrestrial gravify field.
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CHAPTER 7
COMPUTATION OF STANDARDS OF COMPAIRSON
E 71 General |
The preceding chaptsrs have outlined a msthbd of adding detail to a
. geopdtential- model through the use of point masses. The method by its ns—
turev is based on as,eries of approximations and assumptions. Attempts have
A‘ been mad‘ev throughout the preceding discussions to,justifj .thes‘e.: assumptions
and to evaluafe ths ’effects of the individual aﬁprbximations. Conv‘inc:h_lg
sVidsnce of the validity of the .overa.ll process must come, however, from a
- comparison of point mass results and similar results obtained by more tradi-
.ti‘o’nsl and generally aceepted'm'ethods. Before discussing point mass repre- .
sentations of the geopotential, it is therefors necessary to develop some
standards against which these representations can be evaluated.

The geoid is a nat\iral standard to use in comparing geopotential
models. The geoid is directly rslated to the geopotential and cas be regarded
as a scaled expression of the anomalous potential mevasured with respsct to

- a specified normal potential. By Stokes' Theorem, a'proof that two models
of the geopotential yield the same geoid is the squivalent of proving that the °

model geoiaotentials are equivalent throughout the empty space outside the
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geoid. [Heiskaﬁen and Moritz, 1967, p. 17j. The geoid also has the advan- -
tagé of familiarity since most investigators ili;lrs;crate their geopétential
modéls by descriﬁing geoids. The significance of discrepanciesv'bet.vsiee;l‘tvvo
 models of the geopotential-det‘ermined frdm similar data céﬁ_therefore be
evaluated with some realis___m when the clliscrrepancievs can be compar’ed
dii‘gcﬂy to thé variations that appebax'wioétween pufolishéd models,

| The currently proposed applic.étions. of point massés are primarily
| COncemed with missile and spac‘e activities. The geopotential functions of
‘ most ihterest aré the components of the anomélous gravity field. Complete
worldwide agreement of geoids obtained from two different geopotential models
.. would guarantee the agre}ement of the components of gré,vity as previously
noted. The approximgte agreement of such geoids over é limited area l‘eaves"
the expected relationship between these components in theoretical doubt; An
actual cqmparison between point mass derived anomalous components and
f;hose dérived ﬁ’om more conventional formulations is therefore necessary to
invéétigate the applicability of poiﬁt masses to the dei;ermination of these
geopotential functions.

Two types of comparison standards were therefore developed. The
first consisted of é geojd of moderate detail developed over as large an area
of the ﬂnited States as could po.ssibly be justified by the available observa-.
tional material. This standard was designed to determine the adequacy of point
mass models in describing lgrger scale.features of the geopotential. The

‘second standard consisted of a family of vertical trajectories, originating in a .
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o 1°x1° square area, ,alqng which the anomalous compohents of gravity Weré
éomputed at elévations. rgnging_f];om 20 to 15”0';): Akilém‘eters. This standard was
‘ _de'sig'néd. to obtain the ma:dfnum detail and accuraéy that c’ouid be obtained
from gravity a.noma'lies given down to vthe detail of 5%5' means
The two types of standards outlined pernﬁit an evaluation of £he suc-
cess of modelling both the disturbing potential and its first derivatives. In
- combination they provide a much more complete evalué.tion of the model thag
§vou1d éither alone. It should especially be pointed out that the fact that a.
point mass model bésed on gravity anomalies permits the recovery of these
anomalies tells 1itt1é about the adequacy of the model. This agreement
merely means that a linear combination of .the model anomalous potential and
‘ its  normal derivative agree with the starting grav'ity anomalies on oﬁe equi-
potential 1evei. The agreement reveals nothing about the individual value of
either function nor about theif relationship to the true field at any other '
equipotential level. ‘ i
7.2 The Comparison Gravimetric Geoid
7.2.1 General

N An area in the south central United States has been used by Répp for
geoidal comparisons in a number of previous inveétigations [Rapp, 1967c, |
1968d, 1968b, 1969b]. This area, shown in Figure 13, is centered in the
block of 1°x1° mean free air a;nomalies available for this stady. To provicie
continuity with these previous studies, this area was selectéd as the coﬁpari—

son area for this study.' The area is only slightly larger than the minimum
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area:, de_terminéd in Chapter 5, over which tlle mean value .of a function ex- .
p;gssed aé a (14, 14‘)‘ spherical h:armonic sef'igs ‘might be expected to approx-
i,mﬁlte the true value. It was therefore deemed to be a minimum area"suited
to representative investigations concerning surfaces associated with such a
| sgries. |

’l‘he 'gravimetric compafiéon geoid.was computed in this area using
a conventional Stokes' formulation identical to that adopted by Rapp in the
previously referenced studies, The geoid undulations were computed at the

intersections of the grid formed by parallels and meridians spaced at'one

degree intervals. The undulations were given by:
: R : R
(7.1) N = —-4nG ﬂAgS( do + 1 IIAgS (V) do
S I I

In 't..his expression, Ag is the mean free air GRS 67 anomaly over the area ele~
méxlt do, R and G are the mean radius and rlormal gravity over the referenée
ellipsoid, | is the angular distance from the computation point to the centéi' ]
of doand S(y) is the Stbkes' coefficient defined for equatlon (4.1). The two |
integrals refer to area I, an inner zone of 1°x1° r;momalies sur:r;ounding the
gomputation point and area II, a field of 5°x5° anomalies covering the rest
of the world.

| Equation (7.1) does not actually yleld geoid undulations With‘respect-
tcl the ellipsoidal reference surface used to defiﬁe the anomalies. ‘Rather, '

it gives undulations of the free air co-geoid with respect to a mean earth

ellipsoid. The figtire obtained is a co-geoid instead of a true geoid since no
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éonSideraﬁon \ﬁas given to fhejn'direct effect of the theoretical mass ti'ansport
Vimi)licit in the free air reduction”of gravity to the ge_qid [Heiskanen and Moritz,
1967, p. 289]. This is not a direct matter of concern in this application since .
‘ a point mass solution using the sameA anomalies will also reSult in a free air
-co-geo1d If the mdu'ect effect is ignored in both computatlons, the two flg—
ures W111 err in the same manner and a comparison between the co-geoids
will be f:he‘ équivalent of a geoid comparison. In any event, the indirect effect
introduced by the uncompensated use of free air anomalies 1S minér'in rela-
tively smooth areas such as the designated test area When comparedkt‘o errors .
arising from uncertéintie_s in the gravity field [Mather, 1970, p. 4]. In sub-
seqqent discussions, no distinction will be made between the free air co-geoid
‘and the geoid except when such a distinction is relevant to thé.t discussion. |

| The fact that equation (7.1) gives undulations With respect to a mean
earth e’llipsoid does not cause any difficulty in comparing gravimetric geoids
and point mass geoids. The'point mass geoid is developed as perturbations |
toa éurface that is described by a set of ‘spherical harmonic coefficients in.
~ accordance with equation (3.29). This.latter surface is referred to a mean
earth ellipsoid. The point mass geoid is therefore described as undulations
above a mean earth ellipsoid and not above the adopted reference ellipsoid.
The two geoid representations are directly comparable, but neither can be used
to define the absolute undulation with respect to the'referénce ellipsoid. The
difference between the reference ellipsoid and thé mean earth ellipsoid must
be found by other methods.

In equation (7.1), the worldwide anomaly field is split into two parts;
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a;x innier field of one thousand 1°x 1° mean anoma_lies and an oute:f field of |
! 5° x 5° mean anoﬁalies. This da‘-ta .would not be adequate if‘the intent of this
bstudy was to produce a highly detailed geoid map throughout the comparison
‘test area. Uotila [1959] and Mather [1968] h,;.—lve studied.the influence bf~
mean anomaly block size on the accurécy of the numerical integration
| required for undulation computation. Uotila vconcluded that detailed anomaly
infoi'mation shéuld be used out to an angular radius of 1°2. Mather sug-
gestéd 1‘.55. These recommendations were based on the assumption that_a
- very accurate, véry detailed geoid was desired, Mather, for examplé, was
#ttempting to sﬁp‘press integration errors to an order of magnitude less thén
the error of the order of the ﬂaﬁténixig that is inherent m the spherical ap-
proximatién of Stokes' equation. If, as in the case of this study, a geoid is
contemplated covering a large area with each comp_utation point representing
an area as large as one sqﬁax"e degree, a requirement for this type of ac-
éuracy is not logically justifiable. Failure to use very detailed information
around the computation point will merely smooth the resultiﬁg geoid to some
extent. Both authors héve modified their own suggestions when doing prac-
tical 'computations. Uotila actually used no area means smaller than 1°x1°
when doing large scale geoid computations [1959]. Mather, in one study
where he wished to remove high frequency fluctuations in thé geoid, in- . '
tentionally omitté;d all anomaly information within 1°5 of the computation

point [1970].
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Uetila [1959] suggested that léx 1° anomalies be used out to a radius
| of 13 3 a.nd Mather [1968] suggested 20°. Uotiia’i»ieported nu'mex;ical tests. -
where thls radms was varied, The results showed the resulting errors to

be highly position dependent and significant when sub-meter accuracies are
sought., Such absolute aecuracies are unrealistic coﬁsidefing thé available A
gravify ‘data ahd little harm probably results in actual practice from using
somewhat smaller 1°x 1° anomaly areas than these recommendations. Both
Uotila and Mather appear to have little compunction about reporting geoids
based en less meterial. In this current investigation, however, where geoids
are to be determined from the same gravity material by two different compu-
tational methods, it would have been desirable to extend the 1°x1° field to the
theoretically recommended‘limit to remove this possible source of error.
This was not possible considering the desired barea of covereg‘e and the
available 1°x 1° set of anomalies. The outer edges of the gravimetric com-
parison geoid are therefore theoretically less reliable than the central portion.
The actual effect shopld be minor unless there were pronounced regional |
trends in the unknown 1°% 1° mean gravity anomalies in the area immediately
adjacent to the available. 1°x 1° mean anomaly‘ field. Sucﬁ trends are nef
obvious in the border regions of the knem anomaly field.

It is unlikely that the errors arising from the computational procedures
used would exceed one meter in the geoidal comparison .area. |
7. 22 Compatibility of Anomaly Data

If a worldwide gravity field is integrated to solve Stokes' Formula for
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geo1d he1ght ata pomt a constant error apphcable to all of the anomaly values

is not 31@1f10ant Integratmg Stokes' Functlon over the entire earth:

(7.2) fsw)da 0
o

If therefore an'anomaly set, Ag, is defined that consists of true anomalies
/g plus a constant Ag , then-

J'AgS(q: ydo = ﬁA g, +AgC)S(\1:)dc

g
| (7. 3) : . '-—-J'AgT S(¥)do + A‘gc.jsw)do
g ' g
o

. The geoid obtained from the anomaly sét thatv meaned to Ag; over the earth
would thus be identical to a geoid computed from the true anomalies Agr
that by définition have a zero mean value.

| Rapp has pointed out a danger, related to the above discussion, that
arises when equation (7.1) is applied [Rapp, 1967c]. If the anomaly sets
used in integrals I and TI are not part of a consistent set, i.e. with the
samé constant errof, Agc , then the cancellation of the constant érroi‘ term
e:gpressed by equation (7.3) does not occur. Great care must therefore be
taken to insure that the anomalies used in evaluating the inner zone integral
I are consistent with fhose used-in evaluatingthe_ outer zone integ"ral 1I.
Iiiconsistencieg'between theée anomaly sets can arise from sevé,ral sources.

If an outer field is computed directly from spherical harmonic coefficients,
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NAgc is zero by defmltlon since the Oth order halrmonic is éxclud,ed. ‘In this
case the inner field must not contain a constant b;as. Such a bias mlght

, arlée from the grav1ty formula used in formmg the anomalies or from the
' defm1t1on of the base station system used in obtaining the grav1ty measure-
ments.

| If an outer field of adjusted te_rrestrial anomalies is obtained from an
vadjustment ~basved on equation '(6. 1), tﬁes)e anomalies have a specified world-
wide mean value based on the zero order coefficient imposed. This technique
in essence can be ubs.ed to change the eduatorial gravity value used in the nor- |
mal graﬁty equation defining the anomalies. This zero order anomaly nﬁust be
compatible with aﬁy constant bias that effects terfestrial anomalies used as
an inner field. This condition will not normally be met by an arbitra;'y set
of terrestrial anomalies specified fér the inner area. The possible errors
arising from differenceé ‘in the anomaly definitions between the inner and

outer zone are not trivial. If area I is defined as the 25°% 40° area of 1°%x1°

mean anomalies shown in Figure 13, then:

R -
(1.4 g !S(\lf)domz. 0 meters/milligal

for points in the center of the area. This means that a constant bias that
increases only the inmer zone anomalies by one milligal would increase the
computed geoid height by two meters. A similar bias influencing only the.

" outer zone would lower the height by the same amount.
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The "reconciliation ad]ustment descr1bed in section 6.4 msures com- .
‘pat1b111ty of the inner f1eld and outer field. In add1t1on to mtroducmg the |
effect of satellite observations on the terrestrial anomaly field, this adjust—
menf removes differénces between fhe inner and outer fields that might arise
from minor inconsistencies in the definition of the anomalies. The sigﬁifi—
éanée of this reconciliation can be judgéd by reference to Figure 11; The
.reconciliation adjustment changed the area weighted mean anomaly over‘ the
inner zone by 2.6 milligals. This mean anomaly Canﬁot be used diréctly |
with the result of equation (7.4) to determine an effect on geoid height since
that relationvaSSumes a coﬁstant change over the area. It does, however,
indicate the genei'al ndagnitnde of the influence.

| 7.2.3 Computation éf The Compariéon Gravimetric Geoid

The second integi'al in equation (7.1) was evaluated using the adjusted
'5°>< 5° mean anomaly set given in Appendix C converted to the GRS 67. The
inner zone area shown in Figure 13 was excluded from this computation. The
geoid heights Were‘computed in the test area using the outer zone anomalies at |
a spacing of 2° in latitude and longitude. Linear interpolation was then used to
obtain geoid héights at each degi'ee intersection of latitude and longitude. This
procedure was used to reduce the computer tim;a requiredAand is justified sincé_
the contribution of the outer zone is a slowly v.jarying smooth function.

The first integral in equation (7.1) was evaluated at each degree inteij—

- section in the test area using the reconciled 1°x 1° GRS 67 mean anomaly set
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for the inner zone shown in Figufe 13. Th‘eAéc;;Jt‘ributions from the two zones
We‘r‘e then added to obtain the geoid heights at the grid inte'rsect.ions.- These
g‘edidlhei'ghts were used to-dréw a one meter'cbntéur interyal map of thé
comparison area which is shown as Figure 14, This geoid is the comparison
standard égainsf which a point mass geoid will be’ evaluated. It is computed |
u}s'ing conventional methods from gré.vity anomaly data that is consistent with
Rapp's (14, 14) spherical harmonic set. It can logically be considered to be
a more detailed representation of the same anomalous potential that gave rise
to the (14, 14) set of spherical harmonic coefficients. Figure 15 shows a
geoid computed by evaluating equation (3.29) with the (14, 14) set of coeffi-
cients at the same 270 grid intersections used to obtain the geoid shown in
Figure 14. Thése cominon points were used for a numerical comparison
of the two surfaces.

The ’»me‘an geoid height at the 270 poihts from the Stokes' solution Wés
0.17 .meters less than the mean height from the spherical harmonic solution,
The root meaﬁ square difference between the two solutions, determined
through the 270 grid poinfs is & 1 77 mef;ers. The seventeen centimeter
mean difference between the two surfaces is not considered significant.
The cloée agreement }of these mean differences, in fact, lends verification
to.the argument presentéd in section 5.3 regarding the equivélency of the
means of spherical harmonic representation and true functions when taken
over areas of appropriate size.

The +1.77 root mean square difference between the two surfaces is a
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- nigasure Qf-the é.dditiohal detail in the Stokes' /s:c}lution that is smoothed out in
| the sphericalv harmonic solution.
| Rapp has i’eported the resﬁlts Qf similar comparisons of geoids obtained

through Stokes' equation aﬁd spherical harmonics [Rapp, 1967b, i968b, 1969b]-
: Ail of ﬁis published coﬁlparisons exhibit much greater difference between the
‘mean geoid heights obtained by the two methods than was found in this study.
In é‘ comparable computation covering the same area, using the same basic
anomaly fields and the same spherical harnionic coefficients, he obtained

[Rapp, 1968c]

Difference in Mean Geoid Height . ~4,0 meters
(Stokes - Spherical Harmonics)

RMS Difference : v + 4,5 meters
- This root mean square difference would be reduced to +2.0 meters if the
| constaﬁt mean difference were removed. |
Rapp's prot;edures differed from thoée used in this im.zéstigation
primarilﬁr in 'tha't he did not "reconcile' his inner and outer fields. ﬁe did
insure that the gravity anomalies in the f:Wo fields were referred to the éame
normal gravity formula, but he accepted the unadjusted tgrrestrial 1°x 1° mean
anomaly Valﬁes as being compatible with the adjusted outer field. This has been
the usual method of combining terrestrial and satellite data and has been used
by Mather [1968] and Siebenhiiner{1969]. | |
The Mather data shows discrepancies similar th) those quoted by Rapp

[Rapp, 1968b]. It seems clear that these inconsistencies between the Stokes'
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and si)nericél harinenic geoids c.én be traced d{rectly to the use of inner -
zone mean anomalies that are not eonsistent with the spherical harmonic
coefficiente .
| 7.2.4 Coinparison with an Astrogeodetic Geoid

Tne gravimetric geoid described in the preéeding section is the proper
surface to use in evaluating the success of point ma.ss coniputations as a
met_"hod- of describing the geopotential field. - ﬁoth'a point mass geoid and the
conventional geoi.d obtained by Stokes' equation can be obtained ffpm identicallly
defined gravityvfields so that discrepancies between‘ the resulting geoids can |
be attributed solely to the computational method. Agreement of the two eolu—
tions reveals nothing, however, about the absolute accuracy of the geoids. It .
is_net the intent of this study to argue that the gravimetric geoid developed as
a comparison standard is the best‘ geoid for central United States. It'does
seem appropriate; however; to attempt to demonstrate that this geoid is 'not
ineonsistent with other available information on the geoid m the test area; |

An entirely independent check on the local features of the detailed
gravimetric geoid can be obtained by comparing tnis surface with the U. S.
Army Map éervice Chart "Geoid Contours in North America' (AMS SN701593).
This chart, which gives astrogeodetic contours referred to the 1927 North
American Datum, is described by Fischer et ai. [1967].

The gravimetric equipetential surface shoWn in Figure 14 is a free air
co-geoid expressed as undulations with reference to a mass centered mean

earth ellipsoid. An astrogeodetic surface in a true geoid expressed as. undula-
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- tions 'measured with respect to _a~refex4ence datum. In theory, even if the-

asvtrogeodet‘ic geoid heights are precisely transformed to heights measured

o

with respect to the ﬁeaﬁ earth ellipsoid, the grafrimetric and astrqgeodetic :

| heights at 'commbn points will differ by the ‘indirect effect that distinguishes

| the co-geoid .from the geoid. In actuality, this effect, at least in areas of
modéréte topography is too small to éignificantly influence a comparison. of
astrogeodetic and free air gravimetric undulations [Mather, 1970; Heiskanen
and Moritz, 1967, p. i46]. A comparison of a gravimetric and a.n astrogeo-
detic geoid can thefefore be accomplished if transformation parameters can
be ,fomid to relate thé-astrogeodetic and gravimetric reference ellipsoids.

Various sets of parameters can be used to accomplish this»t_raﬁ.sforma—
tion. A discussion of some of these sets is given by Badekas [v1969].‘ If we
assume that the gxes of the i'eference ellipsoid specified by the geodetic datum
are parallel fo the axes of the méan earth ellipsoid, a convenient set of
transformation. parameters is given by:
AX = XM - XAG

&Y = Ym - Yag

AZ = Zy - Zpg
Aa = 2y ~ 2ag

In these definitions, the subscripts M and AG refer to the mean earth ellipsoid
and astrogeodetic datum ellipsoid respectively, f is the ellipsoid flattening,

and a, the equato'rial radius, The subscripted Cartesian coordinates X, Y, Z




N

132
refe‘r to identical pdiﬁts _eva.luated in the two ’c;):o;'dinate syétems.
Under the assqmptidn of parallel axes, the differeﬁceé AX, AY>, and
JAV4 ai'e chstant -ﬁhroﬁghoqtuspace and are identical to the vector separating
the two ellipsoid. égnters. Using these parameters, the asfrogeodetic undu-
~ lations, Npg» referred to a given datum, may ‘be transformed to undulations,
T Aé’ referred to the mean earth ellipsoid by the relation [Rapp, 1969d]:

| (7.6) Npag

Npg +coso cosk&( +CoSeSINAAY + sineAZ
| 2pg1-fa@)

- (1-€qg sinzep)’al'Aa +E_—W©§- sin®pAf
The transformed undulations NT AG are then comparable to the gravimetric
undulations N so that an adjustment to‘determin'e the orientation parameters
can be‘based on the mathematical structure:
(1.7) Ng - Npag = O

Ideéﬂy, both Ng and N AG should be treated as stochastic quantities,
and the adjustment accomplished accordingly. In this case, covariance
matrices could not be dbtained fqr either set of data so identity weight matrices
were aésumed for both and fhe quantities (Ng - N ) were treated as simple
observations.

The comparison test area was conside;"ed to be too small to permit a’

meaningful determination of Aa and Af. ‘Current estimates of these values were

therefore held fixed in the adjustment. The Afvalue was based on the assump- -

tion that the flattening of the mean earth ellipsoid was the same as that for

" the GRS 67. Current values for the best estimate of the equatorial radius of
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"a mean earth ellipsoid are, however, éonsistéﬁtly snialler than that given for

GRS 67. Several recent estimates have clustered near 6378140, so this

o

figqre Was‘ﬁsed in determining Aa. [Veis, 1968; Moritz, A1968; Fischer, 1968;.
Rapp, 1969b]. Tt should be noted that Aa and the shifts AX, AY, and AZ are
highly correlated for small area solutions and the degree of fit of the sur-
faces is practically independent of | the choice of Aa. |

The values Npg used in the adjustment Weré -obtained by ipterpolating
spot geoid heights frbm the Army Map Service Chart "Geoid Contours m
North America' at each of the 270 points in the comparison test area where -
gravimetric geoid heights had been computed.

The results of the adjustment were as follows:

RMS Residual Difference 1.25 meters
=~ N
Ny - N1AG)
AX S : 9.6 meters
AY B} 140.2 meters
N 184.2 meters

'The astrogeodetic geoid conforming to the AMS geoid chart but oriented in -
accordance with the above listed parameters is shown in Figure 16. The 35°
pafallel and 95° meridian astrogeodetic profﬂgs that constitute the fixed
framework of this geoid are indicated on the figure. This area around these
primary( strongly determined profiles should constitute a reliably determined
portion of the North Ameriqan astro‘geodetic' geoid.

The root mean square residual difference between the astrogeodetic and
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gravimetric surfaces is surprisingly small. . This residuél{must ébs'orb. thé
ldcal effects of errors in thé'meaﬁ gravity ahémalies; approximations in -
the Stokes' integrations; ex:rors in the 1927 NAD; errors in astronomic

- observatibns; the approximations of astrogeodetic comﬁutétions; the indirect
effect between the geoid and co-geoid and effects arising from different |
"~ . degrees of 'smoothing inherent in the two computational procedures. It must
clearly be nobed that these res.idual differences reflect only the local corr_e-'
lations of the two surfaces. The astrogeodetic geoid has been rotated and
translated into a position that yields the best least squares fit to the gravi- |
metric surface in the test area. For example, errors in the distant grév'ity
field that .changé the slope or height of the entire gravimetric surface Would‘
| sip;xbly result in éhahges in the orientation pafameters AX, AY, and AZ without
increasing root mean square residual difference. For this re#son, the
standard errors of tﬁese parametérs, based on the unsophisticated weighting |
system used would be meaningless. (The standard errors based solely on ‘
internal consistency were: Opx = 0 9 meters, Opy = >0.3 meters, o Az~ 0.5
meters.)
It is difficult to compare the datum shifts obtained in this solution with
"other published datum shifts for the 1927 North American Datum; The shifts
obtained in this study 'give a best fit for a portion of the datum in the éentral
United States. Other solutions attempt to define mean shifts that apply t.o the
entire datuxﬁ. The internal discrepancies in the 192;7 NAD are large enough

that a best fit for a specific area could deviate very significantly from a mean
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fit [Mueller, Reilly and Schwarz, 1969]. Typiéal examples of mean datum

shifts as given by Veis [1968] and Fischer [1968] are shown in Table 14.

o

Table 15

Mean 1927 NAD Datum Shifts

Investigator AX

AY AZ Remarks
Fischer (1) + 8 +172 +183 Based on Doppler
data. a = 6378145
Fischer (2) .43 +106 +165 Based on Rapp's -
‘ ' data. a = 6378160.
Veis : -26 +155° +185 Based on Baker

Nunn positions.

‘a = 6378142

The. Fischer solutions are based on 303 data points spaced throughout the

extent of the 1927 NAD. The Veis solution was based on comparison of the

1997 NAD and satellite positions of stations in New Mexico, Florida, and

Alberta, Canada. Considering the spread of these mean datum shift solutions,

the results of the solution presented here for the central U. S. are certainly

reasonable possibilities.

By converting AX, AY, and AZ datum shifts to deflections by means

of Molodenskii's abridged equations [Lerch et al., 1969], the solutions pre-

viously discussed may be compared in terms of deflections at thé origin,
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“Table 16 - *

Comparison of Deflections at 1927 NAD Origin

In\}estigator.u £ " .n
Needham .o ' +.4"

+ Veis | - 2 ' +.6"
Fischer (1)“ - 6 | + ., 6"
Fischer (2) 1.4 . +1.9

It is interesting to note that if a solution of the type designated as
Fischer (2) (based on Rapp's (14, 14) geoid) 1s re-accomplished considering
only data points m the test area, the deﬂec,tions change to £ = ~0.1" and
7 =0.0". The deflection valﬁes seem to be as correlated with the portion
- of the datum cons_idere‘d as they are with the ‘method of determinatioﬁ.

These results indicate that the gravimetric comparison gedid agrees
remarkably well in detail with an astrogeodetic geoid. The low root mean
square difference between the two surfaoes is an indication of high correla-
tion between the local features of the two surfaces. This is also evident
from a comparison of Figures 14 and 16. The agreement between the gross
features of the surfaces is fnore difficult to establish but the relationship
found between the two surfaces does not seem to be controverted by external
evidence from other solutions. A consideration of the various datum shift
solutions does raise the possibility that inean datum shifts defined for all .

parts of large datums may be less useful than regional datum shifts.




7.3 The Gravity Disturbance Component Standard

7

'7‘.3.'1 General
Tﬁe coinput’atiox;. of gravity dismrbance' components at high elevations
isa relafiw}ely new facet of geodesy that has become iinportant because'of
néi‘ss ile a.nci spa;ce application-s. Several methods for such computations are
availaﬁale. Reviews of these methods are given by Mueller [1966] and Heiskanen.

and Moritz [1967]. The three primary methods are:

a) Direct integration method;
b) Coating method; .

c) Upward continuation method.

The input data required for the three methods are different. The direct '
‘_nqethod requires free air anomalies; the coating method requires free air :
angmg}i@s and free air co-geoid hieghts; é:nd the upward éontinuation method
requires anomalies and the deflections of the vertical on the reference surface.
The direct method is computationally most complicated; the coating method
less compliéated and the upward continuation method, the least complicated. : .
Analysis of truncation errors, carried out in the manner diécussed in

Chapter 4, shéw that the dqta _fields must extend the furthest for the direct
method, a lesser distance for the coating method, and the least distance

- for the upward continuation method to attain a specified root mean square
accuracy. These latfer observations on computation complexity and field

truncation are somewhat illusory since they pre-suppose the existence of

undulation and deflection values in the data area. In practice, these values

would only be available as a result of additional computatioﬁs using anomalies

over a much wider area, In essence, the coating and upward continuation
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| methods are two step methods and the- d1rect‘1ntegrat1on method is a one .

step method. All three methods u1t1mate1y depend ona WorldW1de knowledge

of the free air grav1ty anomaly f1e1d The direct mtegratlon approach seems to

" be the most straightforward method of using the available data to establish a

comparison standard, and was therefore adopted for this computation.
7.3.2 The Direct Integration Method -

The direct integration method of computing the disturbance components

- of gravity has been discussed thoroughly by Hirvonen and Moritz [1963,]. The

procedure followed in this investigation is based: d1rect1y on their work. The
detaﬂs of the method Wﬂl not be repeated here except to outline the derlvatmn
of the basic equations. |

The anomalous potential Tp at a point P in the space external to the

equipotential surface ¢ is given by the formula of Pizzetti.

7 T, =F, g8, T )do
: o

In this equation, R is the mean radius of the earth, rP is the geocentric

radius to the computation point P and the kernel is the extended Stokes' Func-

tion.
ZR R 3R. R® rp-Reosy +4
(7.8) SEpy) = 2+ B 3B LB cosy5e3m
| P’ P Tp  Tp 2Tp
where: 4 = (rp° +R? —ZRrPcos%'
{ = geocentric angle between P and do

Expression (7.7) can be differentiated with respect to length units

in orthogonal spherical coordinates at point P to obtain the gravity disturbance
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“."‘éomp_ohehts."._ - -
(1.9) & = E‘HAg BS(ral;,, }lf)do
o
, R 38,1
(7.10) &g = 4nijg_§%__do
‘ g
“ _ R S f
(7.11) O = - 4r coscp HAg 3\ do

(o
" Using the chain rule of differentiation and the identities [Heiskanen and Moritz,

1967, p. 113]:

A .
(7.12) | -a—c’;' = - cosa
(7.13) 38-7‘1{ = -cosg'sing

where ¢ is the azimuth from p to do, these expressmns can be transformed to:

(7.14) Or = —-ﬂég aS(rP’ L

(7.15) 6cp - BS(rP, ¥)

- BS(rPs ‘I’) .
(7.16) 5)\.=4’-—m—"PU‘ AgTsde ,

Differentiating (7.8):

3 2 3
| or rPZ er rP I‘P

(.17 9S5°p.¥) _ -RuZ-R})  4R_ R, 6RY

2
R cos¢r<13 + 6 0n IpTiCOSYTA RCOS‘V“W)
tp
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S )
L (719) _M- 2RTp  6R® |, 8R?

= siny| -
P) . o)
v 2 rodo rp
2  rp-Rcosy-£ . r~-Rcos{+ 4
+3R2(P“.2w + o B v )}
T 4sin®{¢ 2r

| P P
Equations (7.14) through (7.18) form tﬁe basis for the computation of
gravity ‘disturbance components. A well-documented camputer program
"‘exists for the practical evaiuation of these equations. The quite iﬁtricate
devbails of efficiently émd economically ac,(compl‘ishing the required numerical
mtegratioﬁs are fully described by Rapp [1966]. This program was us‘ed with-
out modification to eStablish the co;mparison standard for the gravity disturb-—
ance computations.
| 7.3.3 Computation of the Gravitvaisturbance Component Standard
levonenand Moritz ”suggéstted regions surrounding the computation
point in .whvich mean anomaly blocks of various sizes should be used to insure
‘thatvinteegration errors are minimized [1963]. These recommendations were -
- discussed 1n Chapter 5 and shown in Table 10.  The aﬁoinaly sets available-
for this investigation, which are shown in Table 12, satisfy these recommend-
ations for computations carried out in a degree square centered on 37°N, .
260°5W. For the comparison standard, verticai trajectory origins were
established at nine evenly spaced points within this area. The »components ' _
of the gravity disturbance were computed at points along these trajectories
using all of the‘ GRS 67 mean anomaly data shown in Table 12, The elevatiops

of the 65 points computed ranged from 20 to-1500 kilometers. With thév

exception of substituting 30 minute for 20 minute mean anomalies, these
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computations met or exceeded the recommendations of Hirvonen and Moritz

and should be acceptable for defini'ng conventional comparison standards.

a




CHAPTER 8
POINT MASS COMPUTATIONS AND COMPARISONS
8.1 'Computatioﬁ of a Point Mass Set to Describe the Potential Fielﬁ in the
Central United States
The 1000 >1°>< 1° mean free air Spherop 14 anomalies described in Chap- |
ter 6 were used to detérminé a point mass set modeling the anomalous poten-
tiai field'in the comparison test area. This computation waé‘ done in accor-
da;ncé With the general procedures outlined in Chapter 5. Details of the com~ |
 putation are given in the following paragraphs.
As wéé disicﬁs'sed in Chapter 4, the root miean square error in the
determination of geoid height or anomalous potential is an asymptotically
decieasing funétion of the size of the anomaly fieldAconsidered in that deter-
mina‘tion.v When the anomalieé are based on a Spherop 14 system, this
decrease is rapid until the aﬁgular radius of the anomaly field around the

| computation point reaches about 13°. The entire 25°% 40° block of mean
anomalies should therefore be used to determine a point mass set suitable
for represen't'ingAthe anomalous potential in the comparison test area. It
would in fact be very desirablé to have a larger érea of anomalies so that a
more extensive point mass set could be déveloped. Reference to Figures 13

and 6 will show that we can expect significantly larger errors caused by

143
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truncation in the periphefal areas of the comparison test area than in the cen-
' . -.‘ter‘ of the -‘ai'ea'. . This is unfortunate but unavoidable Wifh‘the evailable data.
It is e siwetion that could bue expected in most practical applications. |
~ An optimum sized set of point masses te represent 1000 1°%1° anomé-
lies cannot be determined siinultaneeusly by the computer program'written :
for this investigation. The 25% 40° anomaly area was therefore broken up
inte eegments and the point masses were. determined as coﬁtiguous hlass sets
in accordance with the system outlined in section 5.5. Two independent solu—
‘ tions were first accomplished;r One fit 320 masses at e depth of _100 kil'oﬁ;eters
in the western half of the anomaly area; the second ﬁt'e similar set of messes
“in the eastern half of the area.‘ The western half of the first mass set and
.. the eastern half of the second mass set were then used as predefined masses
in a solution that determined 320 masses in the central half of the anomaly -
area. These solutions were identical to the hypothetical solutions outlined in
vsectidn 5.5 and the arrangement of the areas was as shown in Figure 10. The
‘comparison test area fell entirely within the third, centrally located, soiutioﬁ
area.

Statistics and descriptive parameters concerning these solut.ions. are
shown in ;I‘able 17. The combined point mass set from these solutions is given
in Appendix F. This set, taken in conjunction with Rapp's (14, 14) coefficients
(Appendix B), .defines a detailed potential field for the central United States.
Using the approximations of section 5.3, which relate the number of defining

parameters to mean surface integrals, this set of point masses can be com-
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puted to be equivalent in detail to a set of spherical harmonic coefficients - _

extending to about 180th degree and order.

. Table 17

Point Mass Solutions Using 1% 1° Mean Anomalies

West Half East Half Central
of Area of Area Area
Latitude limits 25°N - 50°N  25°N - 50°N  25°N - 50°N
Longitude limits 240°E - 260°E  260°E - 280°E  250°E - 270°E
No. anomalies | 500 500 500
used in solution : :
 ‘Mass depth (km) 100 100 100
' No. of pre-defined |
masses - ' - _ - 320
No. of unknown , : 320P » 320P 320
masses determined
Mean input
anomaly (mgal) : 1.20 1.50 1.782
RMS input -
anomaly (mgal) 17.89 - 15,99 17.622
Mean residual anomaly _
after fitting masses (mgal) 1.02 1.41 1.282
RMS residual anomaly :
after fitting masses (mgal) 7.57 6.23 7.06

2 Input anomalies have been corrected for predefined masses.

b One half of these mass sets were included in the final composite set.
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Some effects of the mathematical model used in vthe léaét square‘
;djustment can be seen in the statistics of Table 16. It Was not poséible to
define a set of point masse; mégnitudes in the specified mass locations
that would comﬁletely satisfy the observed anomalies, The residual root
m'e}an. squafe gravity anomalies after adjustment represent the portioﬁ of
the gravity anomalies that arise from actual mass anomalies that were
excluded by the mathematical model. The ratios of the magnitude of input
anomalies to residual anomalies shown inv Table 16 were characteristic of
a number of solutions based on similar geometry that were accomplished
during this investigation.

It was also characteristic of all of the solutions that the mean input
anomaly and the mean residual anomaly agreed within a fraction of a milligal.
This is a logicai result of the conditions imposed on the point mass solﬁfion;
A residual anomaly could be considered as an anomaly defined by subtracting
a normal gravity field consisting of the Spherop 14 grévity field based on the
GRS 67 supplemented by the field generated by the point masses. The condi-
tions imposed on the solution have maintained a constant mass and nearly con-
' stant shape and volume for the earth during the addition of the point masses.
| The new "mormal’ field that includes the point maés contributions will there-

fore have nearly,the.same mean value over the area as aid the original
Spherop 14 normal field. A notewortﬁy consequence of thesé conditions is
that even if the input anomalies havé a non-z‘ero; mean a.nomaiy over the solu-

tion area, the model anomalies or potentials generated from the pomt mass
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- set found from these anomalies will not contain zero‘order comi)onents.
Theé magnitude ovf the masses shown inh Appendix F can be made more -
. , meaningftﬁ if we consider the ‘inﬂue.nce of a single vniass on the geoﬁotential
field. For a computation point on the earth's éurface 100 kilometers directly
abqve a mass M,, the geoid undulation value will be affected by that mass by
1072 kM, meters. The gravity dié‘mrbance at this point would be affected
by 107 kM, milligals. |
8.2 A Point Mass Geoid foi' the Comparison Test Area
The 640 pémt masses obtained as described in the preceding section
were used to determine a geoid for the comparison test area. Geoid heights
above the mean earth ellipsoid were cbmputed at the same 270 points that Were |
used to compute the comparison standard 'geoid.‘ This computation was done |
aé described in section 5. 6. 8 using equation (5.22). -The resulting geoid |
heights were contbured to produce Figure 17. } ,
The geoid shown in Figure 17 is referred to a mean earth ellipsoid
with the flattening of the GRS 67. As can be seen from equation (5.22), the
geoid is computed by adding the undulatiéns resulting from point masses to
the undulations defined by the (14,14) spherical harmonic coefficients used as
a basis for these computations. The point mass contribution is the detail that -
is added to the sphéricai harmonic field. This detail constitutes the dif-
ference between the geoid computed from the (14, 14) coefficient set, shown
in _Figuré 15, and the point mass geoid shown in Figure 17. The difference

between these two figures is so prdnounced as to obscure the nature of this
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149 |
détail.‘ It can ‘Abe"'seen more clearly in Figure 18 which shows the contours
‘of thé diﬁefences between the sphericél halé'monic and point mass geoids..
© This figure demonstrates how muc;h of t}ie,detaﬂ. shbwn in Figure 17 is attri- |
butable to the inclusion of point masses in the geopotential model.

The vpoint mass geoid was compgred to the stahdard cqmputed by Stokes'
equation in several Wéys to estimate the success of the technique developed |
in this investigation..

The differences between the geoid‘ heights computed by the Stokes'
equatioh and pbint ﬁaass technique were formed at the 270 computafion points
in the comﬁarison area. The mean value of these differences in the sense
'(Stokes' minus ~poinf mass) was 24vceﬁtimeters_. | The root mean square dif-
ference was 59 centimeters. .This 1s a threefold improvement over the 1.77 .
- meter root mean square difference between the (14, 14) geoid and the Stokes'

" comparison geoid, and proves the reality of the detail added by the point mass
model.

The maximurﬁ différence between the two geoids at any of the points
in the area was 2.04 vmeters. Less than 9 percent of the difference values
exceeded 1 meter. The differences are shown éraphica]ly in Figure 19. It
is apparent that the differences are systematic but the cause‘is not clear,
There may be an impéx;fect reiationship fo the absoluté geoid height or to the
magnitude of the éontribution of the point ﬁass set to the anomalous potential.
' Either functional reiationship could produce a pattern of the general type

shoWn. It is entirely possible that no such relationship exists at all and the
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ldiffereﬁcés betWeeﬁ the two geoids are merely an expression of a position.
- dependent truﬁéétion error in thé point mass geoid;« The differences are
cerf;ainly compétible with the erroi's which might be expected from this source. -
| The distribution of the lai'gér ‘magnitude differences within the area is
“ espééially n‘otewo‘rthy. Practically without excei)tion, the larger discrepancies
‘occur on the very border of the comparison test area. In these aréas, the
avexf.age truncation angle to the edge of the anomaly field used to obtain the
point masses is significantly less than the truncation angle for the center of
the area. As shown in Figure 6, the' errors in the point mass solution in these
marginal régions should be expected to be larger than in the centei' of the area.
Thé agreéinent between the theoretical statistical error estiﬁlates of Figure 6.
and the actual discrepancies shown in Figuré 19 is so g@éd that it must be
considered merely fortuitous. It is doubtful if the comparison standard can
be considefed accurate enough to show that these minor discrepané ies have
any significant interpretation. This is especially trux;, in the border regions
where the area of the available 1°% 1° mean anomalies was too restricted to
allow use of the most desirable block sizes in the numerical integration of
the Stokes' equation.
A different approach to the coﬁparison of the point'mass and Stokesi'
" geoid was investigated by assuming that both methods estimated the true geoid -
: bﬁt were subje'ct to error. The stéttistical relationship between the two methods
of computatioﬁ was im.festigated by assuming a linear relationship between the :

~ point mass geoidal undulations Npjy and the undulations, Ng, computed using
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: ‘Stok:es" equetiorl. This r'elal;ionship may be expressed as:
| | (8.1) NPM = ',Sc,+,6l Ngr |
Fo]lowmg procedures glven by Natrella [1963], the computation points used in
- the compar1son area Were used to evaluate the coefficients of this equation Wlth

the results:

it

Bo - .240 meters og, = 165
Bl .

The correlation coefficient between Npy and Ngr was 0.989. On the

1,000 . | og = .009
basis of thie data, it would not be possible to demonstrate any statlsfioally
significant differenoes related to geoid height between the‘ two solutione even
though One ‘might suspect a systematic differenoe from an examination of
Fivguvr,e 19
A last \evaluation of these results was made by comparing geoid pro-
files along the 35th parallel of latitude. ' This oarallel was selected to take
advantage of the data provided by the 35th parallel ge01d section [Rice, 1967],
and because both the pomt mass and Stokes' solutwn should be reliable in
this central area. The profiles from the Stokes! solution, the point mass solu-
tion, and Rapp's (14,14) solution al'e shown in Fig‘dre 20. The astrogeodetic
spot heights shown are compatible Wlth Figure 16 and were obtained by rotating
the astrogeodetic geoid to fit the Stokes' geoid as described in section 7.2.4.
The egreement between these profiles is considered to be entirely
satisfactory; 'The point mass profile fits the astrogeodetic points sliéhtly :

better than does the Stokes' profile. This may be an indication that the Stokes' -
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profﬂe is more heavily smoethed‘.' than the point mass;;and'astrqgeodef;ic profiles
but’ tvhedata is not extensive 'enough to draw any firm conclusioﬁs'. As might
be e#pecbed,. both gravimetric geoids have smoothed the de‘tail in the vicinity
-of the vefy localized geoid lowvshow‘rvn at 265°E on the astrogeodetic profile.

It is'epceuraging that all of the geoids agree so closely in an area
Where the predictable errors in each method may be expected to be small.

On the basis of all of the available evidence, I conclude that it is pos-
sible..to form a geopotential model for an area like the central U. S., based on
point rﬁasses, that is essentially equivalent to one based on 1°x1° mean
anomalies, The differences between the two models is insignificant when com—"
pared to absolute errors arisin.g from deficiencies in the Woﬂdwide gravity
data set. |

8.3 Computation of Point Mass Sets for Gravity Disturbance Component
Computation '

Point mass sets providing the detail desired for the gravity disturbance
component computation were develeped by superimposing shallower point mass
sets on the 640 point mass set obtained from the 1°x 1° mean anomalies. A
set of point masses at 50 kilometer depth was first determined in the area of
the 30'X 30’ mean anomalies described in Table 12, A set ef point masses ata
depth of 10 kilometers was then determined using the 5'x 5’ anomalies in an
area 2° on a side that was centered on the point 37°N, 260%5E. The procedures

used are described in'section 5.4, Table 18 summarizes these solutions. The

mass sets are listed in Appendix G.
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The areaé ‘represented by these mass sets are shown m relation to -
 the testftraj'ec;ory foot points in Figure 21. The background contours in this | S i
fig’uré represent a geoid computed from the 1201 mass points: that make up
'the superposed mass sets. This geoid area has the same mean geoid height
aé, the comparablg area shown in Figure 17. The root mean square difference
in the geoid .héight between the two surfaées, compared at 323 points, was
- 0. 29 meters. This difference represents the additional defaii added by the
superposed‘mass sets.

8.4 Computatidn of Gravity Disturbance Components from Point Masses

The anomalous potential of a spherical harmonic and point mass model

such as has been developed is given by:

14 n D
6.2 T, = %‘ﬁ [Z (5151) z (Cify c0S M + S, sin 1) Py, (Sing’) |
n=2  m=0 |
N Z KM,
4,

t
The gravity disturbance components equivalent to those determined for -

the comparison standard are found by differentiating this equation With'_respect
to length units in orthogonal directions at the point P just as equation (7.7) was
differentiated. The derivatives of the s‘pherical harmonic term in equation
(8.2) are: |

K 14 n n ’
(8.3) Orgy = ;134‘2 (n+1) (%g) Z (Ci cos mA
n=2 =0

+ §,, sin m\) B,, (sing)
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(8.4) bo'sy = kMz (2@) Z (('fg;vcos mX\ + S, sin m}\) @m%@si)_

n=2 m=0

3

T
n=2 m=0

The notation conforms to that of Chapter 3.

Table 18

14 n D : o
~kM ?ﬁ_) ) K. @i -3 — N
m : ( Z m(C#; sin mA - S, cos mA) Ppy(sing’).

Summary of Superimposed Point Mass Set Solutions

Depth of Masses (km)
Mean Anoimaly‘Block Size
Laﬁtude -Limité
Longitude Limits

" No. of Anomalies

50
30'x 30’
33°N - 41°N

256°E - 265°E

288

Used in Solution

No. of Predefined Masses 640

No. of Unknown Masses

Determined 255

Mean Input Anomaly 0.56

RMS Iput Anomaly | 9.40

Mean Residual Anomaly ‘

After Fitting Masses (mgal) 0.64
" RMS Residual Anomaly

After Fitting Masses (mgal) 1.86

10
) 5IX 51 ‘
36°N - 38°N

259°5E - 261°5E

576

895

306
-0.11

7.10
-0.21

1.77

In the notation defined in section 2.2 and Figure 2, the derivatives of -
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L the point mass term in equation (8. 2) are: '

. o 2 ;o -
.6) 6 _ N B -Fidpy
_(8 %) _rPM - g Rylyy® el
. 2 ‘
T S (XX + YiY3)%s = Z3Py :l
(87) : 6CPIPM Z [ RP 40 KM,
3
68 Sipy - -3 ( N ene
. PM Piﬂlias , |

!
The total disturbance coxﬁ?onents are formed by afiding the cbmponents found
from thé ‘spherical hérmonic term and from.the poiht mass ‘te’rm. ,

The éomputation péint is defined as a point’ at a height H, measuréd

- along the normal to the ellipsoid that passes through a foot point sp‘ec’ified
in texfmé ‘of geodetic 1eititude and longitude. These coordinateé aré uéed to
determine the X, Y,Z coordinateé and the geocentric latitude cp', at the ele-
vated point. Thesé latter coordinates are then used to evalﬁate equations
(8_.'3) through (8. 8). |

A compufcer program for the above outlined computation is given in
Appendix D. It uses point mass sets in the card format produced by the point
mass solution program and a set of spherical ha;monic coefficients as input -
data. It computes and prints out the three disturbance components at pointé
spec ified by géodetic latitude, longiﬁde, and height. In addition, it prints

~ the individual contributions to these compoﬁénté from the spherical ham’:ﬁonio

~ model and from each distinct point mass set included.
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" 8.5 Computation of Gravity Diémrbances at the Test Points

The three mass sets described in Tables 17 and 18 were used to

3

" determine the anomalous graﬁty cbmponents of the same points used in the
previously described comparison standard c_dmputations. Computation points‘
were éstablished at a total of »65 points on the ellipsoidal normals to the foot
poht positions shown on Figure 21. Results of these co_mputationsA are shown
in Appendix E. These computations are summarized togetiier with the com-
paﬁéon standard compufations in ’i‘ablé 19. - This table is xﬁoét explanatory
when comparing variations between the solutioﬁs along a single vertical tra-
jectory. Figure 22 presents the data more clearly when comparing the solu-
tions on all trajeétories at a given height. |

Table 19 and Figuré 22 show that the absolute differénce between the
~ two methods of solution is small. The maximum component difference is
1.7 milligals and occurs at the lowest elevation. The differences and the dis-
turbances decrease in a regular manner with elevation. The magnitude of.the
discrepancies does not seem to be directly related to the magnitude of the
disturbance, however, at a given elevation. This is evident from Figure 22.
The 8, component varies over the area by over 250%, but the discrepémcy
between the two methods of computing the component varies 6n1y by about
20%. Evidently both solutions depict the loc_atl detail in the same manner, but
regional bias exists between the solutions. A similar s:';tuation is found with‘
the 5<P, componenf. At 20 kilometers, the differences between the solutions

is position dependent, but this position dependence ceases with elevation and
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Table 19

Gravity Disturbance Component Computations

Comparison of Point Mass and Direct Integration




Figure 22

Gravity Disturbance Components at 20 km Elew}ation

Arranged in Geographic Location
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the difference bécomes a constant bias. The 8y component embits position
depeﬁdent differences at low elve;r'ations. These differences are smaller thaﬁ
in the other components anc; little constant bias ié apparent at lﬁgher elevaﬁoﬁs.

From Figure 8 we can estimate the possible effect 'of the areal tﬁm-
catién of th'e.point mass solution on the horizontal components; At low eleva-
tions, the root meaﬁ square error for a g of 13° is éomewhat less than 2
milligals. Such an error, since it is caused by the neglect of distant anomalies,
Would'vary slowly with position. The apparent constant discrepancies between
the horizontal comi)dnents ch' and 0) computed by the two méthods are smaller

than the predicfced Worldwide root mean square truncation error. ' These dis-
crepancies can therefore easily be explained as truncation error. 'fhe minor
variations from' a mean difference that ére associated with positioﬁ at low
elevations reflect the differences bétween the point mass model and the ‘direct
integration procedure if truncation errors were removed.

The constant bias in the 0, compohent is not so easily explained. It
does not appear reasonable to attribute this disci'epancy to truncation errors.
We have argued that gravity anomalies are determined almost entirely by
the nearby mass distribution so that truncation effects would not be signifi-
cant in the determination of Ag at the center of the point mass array. This
argument also holds f;)r 6y since:

(8.9) 6r = Ag+.3086N
‘and the theoretical and actual errors fouﬁd for N in the test area would result

_in a trivial contribution to the error in by.
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Teble 20.,shoW:s‘ the mean difference between the two methodsof compu-

. tation for eaoh oomponent-in the sense (Direct Integration-Point Mass). The
- bies‘ in the 6, component fails off much moi'e rapidly than does the bias in the
' GCP' ooniponent. Assuming that the decay in the ‘er.t'or follows an inverse square
law With respect to the distance to an incorrectly modelled mass distribution,
this would indicate that the sources of the 0, discrepancy were nearer than
the sources of the Oy’ bias. This lends weight to the truncation error explana-
tion for the 6 / dlfference. Since the 6 difference would seem to be of more
local origin, it was suspected that it nnght be related to the fact that a much
smaller area of 5'X 5' mean anomalvies‘vwas used for the point mase solution
than was ueed for the direct integration solution. |

To test thie hypothesis, the direct integfation method was repeated

| but the ai'ea of 5'x 5’ mean anomalies was reduced to an area extending 2°
in latitude and 3° in longitude. The results are shown in Table 21. The
results differ only slightly from those shown in Table 18. The agreement
| between the two types of solutions is slightly improved but the systematlc dif-
ferences remain. This result verifies the legitimacy of reducing the size of
 the 5'x 5’ anomaly field used in the point mass solution, as‘ discussed in
- section 6.3, but does not resolve the difference in the Oy component determina-

t10ns This matter remains a subject of conjecture.

While considerable emphasis has been placed on the differences between
the two solutions, it should be noted that these differences are primarily

remarkable becanse the two solutions agree so well that small constant biases
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Table 20

Mean Difference Between Comparison Standard
and Point Mass Gravity Components

Eleva tion | o Comé)cinent 5
Kilometers mgal mgal meal
20 -1.6 1.2 .

30 -1.4 1.2 .1

50 - -1.1 1.1 .1
100 -0.7 1.0 .0
200 -0.3 .8 .0
300 -0.1 T «0
500 .1 .6 .1
1000 o2 .4 .2
1500 - .3 .3 .1

can bé cléarlydistinguished. :

The;'é is little in the literature that affords a basis of compérison to judge
the success of the point mass solution relative to other methods. Compari-
. son; 'haire been made between accurately computed anomalous gravity éom—
ponents with thoée computed‘ solely from spherical.ha;'monics [deWitte, 1966b]. |
A review of Appendik E which gives the contribution of the spherical harmeonic
coefficients and the various mass sets shows that a pure spherical harmonic
solution is a totally inadequate approach at lower elevations. The published
comparison bears out this ob\.rious vconclus"ion.

Only oﬁe paper Wasl. found that compared gravity disturbance components
comﬁuted 5y'two'methods designed to achieve high accuracy [Orlin, 19 59].
Orlin computed comﬁonents of the disturba'née vector for points above two

stations by the coating method and by a ring intégration variant of the direct inte~




Table 21

ison of Point Mass and Direct Integration Gravity Disturbance Components

Compar

1000 km

- 3.7

0.2

- 3.9

003
~0.1°

0.6
0.5
- 3.9

0.4
- 8.7

0.2
0.3
-0.1

0.6

0.9

0.6

0.5
- 3.8

0.2

4.0

0.3
=0.2

0.5

@

0.8

0.6
-~ 3.9

0.4
- 3.7

0.2

0.3
-0.2

0.6

0.9

0.8
- 4.0

0.6
- 3.8

~0,2

0.4
-0.2

0.4

0.8

0.7
- 4.0

0.5
- 3.8

0.2

0.3
-0,2

0.4

0.7

0.6

0.4
= 3.7

0.2

3.9

0.4
-0.2

0.4
0.8
- 4.0

0.8

0.6
- 3.8

0.2

0.3
-0.2

0.4
0.7
- 4.0

0.7

0.5
v- 3.8

0.2

0.4
~0,2

0.3
.018

0.7

0.6

500 km
- 5,0

0

- 5.0

0.6
-0.2

1.1

- 1.0
- 5.0

1.7
- 1.2
- 4,9

0.1

0.5
—002

1.1
- 0.8-
- 5.2

1.6
-~ 1.0
- 5.2

.

0.8 0.6

- 0.9

1.4

0.1

1.0
- 4.8

0.1

- 4.9

0.6
-0,2

1.0
- 0.7
- 5.1

1.6
- 0,9
- 5.1

0

0.6
-0.2

1.4
- 0.9

0.8
- 0.7

0.1

- 5.4

005
-0.1

0-6 :

-~ 0.8
- 5.0

1.1
- 0.9
- 5,0

0.8 0.5

1.3

- 5.3 0.1

~ 5.2

0.6

0.5

- 0.8
- 5.2

1.1
- 0.7

0.1
0

- 5.2

0.6
-0.2

0.5

- 0.4

1.1
- 0.6

200 km

- 83 -0.3

- 8.6

0.8
~0.1

2.5
- 3.1

3.3
- 3.2

- 8.5 =-0.3

3.2
- 3.0
- 9.0

0.8
~0.1

2.4
- 2.9

~0.3

8,7

0.8
0.0
-0.4

1.8
- 2.7
- 8.6

2.6

- 2.7
9.0

2.3
- 2.7
- 8.8

0.7
- ~-0,2

3.0
= 2.9
- 9.2

~-0.4

0.8

1.7
- 2.4
- 8.9

0.0
-0.3

- 2.4
- 9.2

0.8

1.1
- 2,2
- 8.9

1.9
- 2.1
- 9.3

0.1
-0.4

1.6 0.7

2.3

- 9.0 -0.4

- 9.4

0.8
-0.1

0.9

- - 1.8

1.7
- 1.9

-0.4

- 9,0

9.4
.1.6
- 1.7

0.8
~0.1

0.8
- 1.6

(Reduced Field of 5'x 5’ Mean Anomalies)
50 km

-1.0

-10.0

~11.0

1.2
0.0
-1.0

8.0
- 3.9
~-12.9

9.2
-~ 3.9
~-13.9

1.0
-0.2
~1.1

8.0

- 3.1
-13.4

9.0
~ 3.3

-14.5.

1.1

7.7
~ 3.4
-16..3

6.6
- 3.5
-15.3

0.1
-1.0

0.9
0.4
~-1.2

6.8
- 2.8
~15.6

7.7
- 3.2
~-16.8

1.0
0.1
-1.0

5.7
- 2.3

6.7
- 2.4
-16.7

-15.7

3.2 1.0

- 1.8

4.2
- 1-4

0.4
"100

~17.1

-18.1

4.4 0.8

5.2

-1.1

-16.8

~17.9

0.8

2.3
- 0.4
-17.7

3.1
- 0.3
~18,7

0,1
-1.0

0.7
-0.1

1.5

0.3

0.2

20 km

- 7.8 ~l1.4

- 9.2
13,6

1.5
~0.1

12,1
- 4.6
~-13.9

"4.7

-1.6

~-15.5

1.2
-0.4
-1.7

12,9

~ 3.3

14.1
- 3.7

~14. %

16.1

11.0 1.2

12,2
- 4.5
-19.2

0.3
1.4

4.8
-17.8

0.9

-0.7
-1.7

9.0
- 3.2
-19.9

9.9
- 3.0

-21.6

0.9
-0.1
~1.5

8.8
- 2.5
-20,0

9.7
- 2.6

-21.5

1.0
0.6
-1.6

4,6
- 2.5
-20.3

5.6
- 1.9

-21.9

5.9

6.5
- 3.3

2.8
-21.6

~1.7

-23.3

0.7
0.3
~1.4

3.0

3.7

0.4
-21.9

0.7
-23.3

0.4
-0.2

1.7

2.1

1.0

0.8

260.5

260.0

260.5

261.0

260.5

37.5

37.25 | 260.25

37.25 | 260.75

37.0

37.0

37.0

36.75 { 260,25

36.75 | 260.75

36.50
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Entries in blocks conform to key for Table 19.
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| gratibﬁ method. His results are ‘prese_,nted. here in Table 22 for comparison
pﬁfposes. |
_ | : The déﬂeption coml;onents may be .roughly converted to nﬁlligél units |
by ﬁmltiplying b.y. five. The 6 resulvts ‘shown by Orlin are much less accurate
than those obtained in this investigation. Orlin suggests that the discrepancies
can be attributed to é, dﬁference in the size of the anomaly fields uséd in the
two methods of integration. The coating method used anomaly fields truncated
at abradiu;s of 5.5° froin station PAD and 7.0° from station EGG. The direct
integration method used fields extendiné 516 kilometers from the computgtion
points. Reference to Figure 4 and equation (8.9) shows that the différence
found in the 6, component should not be unexpected under these circumstances.’

The field used for the direct integration method is inadequate for a high accuf—

acy computation. The use of independent geoid heights in the coating method e

would diminish the importance of the distant fields so that quite different
Table 22

Orlin's Computation of Gravity Disturbance Vector Components

Station | Elev. Oy (mg) g (sec) 1 (sec)
Kmg Coating | Direct | Coating | Direct |Coating | Direct
Int. | Int, Int,
Egg 0 +11.6 +17.0 -11.1 - 1.1 -0.6 -0.9
32 + 2.8 + 8.2 - 0.3 + 0.1 -1.8 -1.7
64 - 1.1 +13.8 + 0.1 + 0.4 -1.5 -1.8
Pad 0 +21. 7 +30.0 +16.6 +16. 6 +0.2 -0.1
32 -21.4 -13.2 + 6.8 + 6.8 -4.1 -4,2
64 -20.8 | -12.3 | + 3.5 + 3.5 -4.6 -4.2
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' ‘re:sulyts c‘oulé be obﬁta}ined from the btwo methods under theéé conditions. Errors -
_'may exist in .§A and 7) in both of Orlin's ‘methods that are caused by truncation,
but theée would compensaté and not be fully reflected in the differences
reported.

We are therefore left with no known published data that provides a
meaningful standafd of comparison; ’fhe point maés determination of the
compbneﬁts of the gravity dismr‘bance vector agree much better with a stan-
dard baséd on direct anomaly integration than any other method we have found

: m the iiterature.
8.6 Comparison of Computer Time Requireinents

| Much of the interest in point masses has arisen because a point mass
model is‘f'sﬁ_irhiolg and sﬁpuld offer distinct computational advantages when
compared to the use of gravity anomalies and complex surface integrals. This
investigation was not concerned with measuring the extent of this advantage -
under a specific sét of circumstances, but rather was concerned with the
validity of the point mass model. The computer programs written in the course
of the study were not "production‘ type" programs. Features were included.
for flexibility and diagnostic purposes that would not be needed for routine
applications and simplicity in programming was emphasized at the expense'of
efficiency during program execution. The programs used for establishing
comparison standards were, conversely, adapted from production programs -
written By highly skilled programmers and were definitely designed for

efficiency. A further difference was that the comparison standard programs
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were Writtén for the IBM 7094 computer.Syste‘m while those prepared for this
'study were wﬁttéh for the IBM 360. It is obvious that it is difficult to use
these progra-n;l.s fo compare; the- coﬁputa‘tional efficiency of the diff;arent
methods. Some comparative figures on computation time will nevertheless
 be given simply to illustrate the general magnitudes of the required computa-
tional éfforts using ébint mass.es and anomalies. |

| Table 23 shows the approximate IBM 360 computer time required to
evaluate 1000 geoid' heights using the two methods. The Stokes' method refers
to the use of equation (7.1) with 1000 1°x 1° mean anomalies for an inner zone
and worldwide ,5°?< 5° mean anomalies for an outer zone. The point maés method
refgrs to the use of equation (5.22) with a (14, 14) spherical harmonic coef-
ficient set and 6'4-0 point masses. In all cases, it was assumed. that the pro-
cessing included compilation of the program and. loading Qf the data. The
Stokes' program was actually accomplished on the IBM 7094, The time
required on this computer was divided by five to give é time which would be
roughly comparable to that required on an IBM 360. (The relationship between
time reqﬁiremeﬁts on the two machines is actually too complex to characterize
accu.rvately with a single number, but factors between three and five are com-
monly used as approximations.) Similar‘ comparisons for the computation '
of the components of the gravity disturbance vector are shown in ‘Table 24, In
this case the times apply to computation of the 45 points shown in Table 21.
The point mass method refers to equations (8. 3) through (8.8), and was baéed

on 1201 masses. The direct integration method refers to equations (7.14)
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' '.'i ‘ "throqgh“ (7 16) | As expected, t?xe'pomt mass éomputations Were:‘significénﬂy-

faster. This is.offse;c, however; by the fact that extensive computations are: |
required to bform' the poinf xané.ss set.A The.time required to form tﬂé méss

" sets used in this study are shown in Table 25.

Table 23 }

Comparison of Time Required |
To Compute 1000 Geoid Heights

Equivalent IBM 360  Ratioto
Method ' Time (Seconds) Stokes' Method .
Stokes' | 624 | S 1a
Point Mass 86 _ . 1:7.3
Table 24

Comparison of Time Required _ ‘
To Compute Gravity Disturbance Components at 45 Points

Equivalent IBM 360 Ratio to direct

Method Time (Seconds) Integration Method
Direct Integration ' 72 ' 1.1

Point Mass 20 1:3.6.
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'.TbaEle 25- :

Time Required to Form Point Mass. Sets-

IBM 360 Time

Set : ' . B (Minutes)
640 Masses at 100 km Depth B o 49
‘255 Masses at 50 km Depth - : s | 9
306 Masses at 10 km Depth- ' 20
Total - 1201 Masses 71

It is obvious that a purely economic justification for point mass computations
using a given computer could be sustained only if the costs incurred in form-
ing the mass sets could be amortized against a great many. computations which

subsequently used these masses.




CHAPTER 9
' CONCLUSIONS AND RECOMMENDATIONS
9.1 Summary and Conclusions -

This invest_igation has showh that it. is possible to form a complex and
accurate model of t_ﬁe geopotential that is based on a spherop reference sys-
vtem and p‘ointv masses. The point mass technique provides a simple method
§f using localized areas of detailed gravity information toiadd fine structure
to?t géopdtential model that is based on spherical harmonic coefficients. The‘ |
use of "reconciled" anomalies in this procedure results ‘in.ba true densifica-
tidn of the detail in the model without distorting the long’ wavelength features
of the original inociel. |

Comparison of the anomalous geopotential computed from péint masses
with a standard based on Stokes' equation shows that the difference between the
two methods is of the order of aééuracy of the Stokes' comparison standafd
and is small when compared to the absolute error attributable to uncertainties
in the knowledge of the gravity field. Similar conclusions are reached when
compénen‘ts of the anomalous gravity vector computed fron;p,oint masses are
-compared to those computed by more conventional means. In this case,
however,. there is evidence of small systémétic differences between the two

methods of computation.
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“ The point mass téchnique can be used to model fine detail in localized
' afeés tﬁat Woﬁld _be’ completely impractical to représent by an ordinary
spherical harm‘oﬁic .model. Such finel detail could be represented by anomaly
data but computéfions based on point mass sets are far more simple and
* efficient than comparable computations based directly on gravity anomalies,
T'he;point mass techniques do, however, have disadvantages. A
primary diéadvaﬁtage in the large amount of computational effort entailed
in forming the point mass set. More efficient methods for this purpose could
be devised than those reported here, but it is inescapable that forming and
solfrin'g the large systems of equations iixvolved will require extensive compu-
: tations.

. A second disadvantage is that point mass "theory" is relatively ill-
défined when compared to the ’bases of classical gravimetric geodesy. Bbth,
approaches require appx;oximations and assumptions but the point mass method
has the additional ciisadva:ntage that a given set of gra\‘rity observations could
be used to develop a theoretically unlimited number of different point mass
modeis. of the geopotential. There seems to be no difficulty in establishing a
model that is accurate enough for practical applications, but it would be diffi-
cult to defend a specific model as the optiﬁmm for use in theoretical studieé.
Point masses therefore seem more suited to solving practical problems thé.n

~ for theoretical scientific studies. |
The usefulness of the techniques disc.uss‘edin this sﬁxdy can only be

evaluated in terms of speéific proposed applications. In general, the decision
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‘ ﬁvi]_l not depend on the accuracy ;df the method ‘since the ‘differencies 'fouxid be-—

tween the point méss methods é;nd the conventional computations are sﬁlall. .

The, g,reétest, advantage of ﬁéint masses would be realized in a Situatién’ where

huge numbers of computations Wérg to be made on a routine basis. For

example, a point mass set might be-c'onsidere-d as a means of modelling the |
geopotential in a missile test area where gravitational acceleration componentsb
were desired alonémissﬂe trajectories. The simplicity of a point ‘mass model
as gompared toa médel based on anomalies could speed cbmputations, reduce |
the requiremeﬁts for computer capability and perhapsv permit in-flight compu-

" tations that would not otherwise be feasible. In such a situation 'Where pfo-— |
longed use would be madé of the model, the computations’ fequired to form ‘fhe '
point mass set W;)uld not be an important consideration.

The apparent systematic errors in the point mass model noted in this
study, although small, are a mattér of some conéern. Foi- a limited 'area;

| it would be practical to compare the point mass ﬁmdel with a standard based |
on the direct integration approach, as was done in this Study , to deterndine
the nature and magnitude of any discrepancies. If significant systematic
discrepancies were found, simple empirical corrections could be added to
the 'model to achieve agreemeﬁt with the comparison standard. This approach
would retain the operé.tional simplicity of the point mass model while yielding
results that were practically equivalent to the direct integration method.

From the evidenée obtained in this investigation, it appears thata

point mass set would be a highly satisfactory means of forming geopotential
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'modéls néeded to meet operational requirements generated by missile and
'space activities. | ‘
9.2. Possibilities for Furéher InVestigétioﬁ'

The variations possible in forming a point mass geopotential model
: ovffér an unlimited field for additional investigation. The general geomefries of
the solutions described in this study appear satisfactory, but it is pqssiﬁle
that‘further éxperimentati’on could discover combinations of the vérious para-
| meters such as the depth/side ratio and theovér—deterndinationratio that
would give even better fesults.

Improved modelé could undoubtedly be evoived if a capability Wefe
déveloped to"obtain larger point mass sets. This would permit ‘the.use' of
smallér mean anomalies in forming the model, ihe description of finer struct- |
ure in the field, and the elimination of more truncation error. |

| An allied problem that will become significant if more preciée .methods
are to be deVelqped is the definition of the comparison standards. It was
assumed, for exampie, in this study that the direct integration method of
determining the coinponents of the anomélous gravity vector was withou;t
error at all alﬁtudes. This assumption should be examined critically if all
discrepancies between methods are to be regarded as errors in the point
mass model.

Some expérimentation, not reported here, was conducted in which
point masses were used to prediqt gravity anomaly fields based on evenly

distributed observation points. This subject was not pursued to the point
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‘that firm recommendations can be made, but the results obtained did indicate

' that a more thorough study might be justified.

e
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POINT MASS SOLUTION COMPUTER PROGRAM LISTING

177




fonmOn000

oo

OO0 O0 00O O00O0

o0

178

- THE NORMAL UNITS USED IN THIS PROGRAM ARE METERS, DEGREES, MILLIGALS

THE DINENSIUNING PERMITS THE FCLLOWING PROGRAM SIZE®
324 UNKNOWN POINT MASSES
2000 PREDETERMINED MASSES
1000 GRAVITY ANOMALY OBSERVATIONS : 4
A (14»[4) SET OF SPHERICAL HARMONIC COEFFIENTS

IMPLICIT REAL*8(A-H,0-Z)

REAL*E MB(324),ML(324), XM(BZQ)yYM(BZh),ZM(324),A(324) C(326),
*MAS(326) yN{53301),U(326),B(1000), AL(1000),RES(1000)1G(1000)0-
%UN(40940) yCNI4(15415) ySNM{15515)4P(15+15),C(155151),
*LpLZ;MIN;MDZ,LEX(?OOO),EEY(ZOOO).EEZ(ZOOO)aEEM(ZOOO)

EQUIVALENCE (W (1)4B(1)),(N(LO0OL)4ALIL))4{N(200L),RESIL)),
#(N(300L),Gl1))s(N{4COL), CNM{1)),(N{450L1) ySNM(1)),
*(N(SOOL);P(l))y(N(SbOl)1&(1))y(N(6001)sUN(1))1
*(N(lOOOI)gEEN(l))y(N(lSOOl)yEEX(l))a(N(ZOOOl):hEY(l)):

' *(N(ZSOOI)-EEZ(I))

BUILT IN GEGMETRIC PARAMETERS OF THE GRS~ 67

’Aszaavatbo.no
' E2=.00669460532856

READ IN PROGRAM CONTRCL PARAMETERS

BOT, TGP, WEST, FAST ARE LATITUDE AND LONGITUDE LIMITS OF THE AREA -

~TQ wHICH MASSES ARE FITTED.

NML IS THE APPRUXIMATE NUMBER OF MASSES DESIRED

"SIDE 1S THE SIDE LENGYH OF A MEAN ANOMALY BLOCK IN DEGREES

MIN [S THE GRID SPACING. IN MINUTES FOR COMPUTING GEOGID HE{GHTS .
DEEP IS THE ASSIGNED MASS DEPTH
1COEF, IGECID AND INITS ARE CONTROL PARAMETERS EQUAL TO 1 OR O
IF ICOEF =1, CORRELATION COEFFICIENTS CF MASSES ARE PRINTED
IF IGECOID=1, A GEOQID IS CCMPUTED
IF INITS=1l, PRECETERMINED MASSES WILL BE USED IN FORMING CONDITIONS

~NAMEL[ST/INPUT/BDT,TOP,NEST,EAST'NMLyDEEPyMINrSIDE
REAC(5, INPUT)

NAMELTST/CGNTRL/ICCEF, IGEDID, INITS

- READ{5,CCNTRL)

CCMPUTATICN OF BEST FIT OF TRAPEZOIDAL ARRAY OF MASSES TO AREA

CALL NUMASL(#M1,BCT, TOP,WEST,EAST,SIDE/NMMLsMB)
[F(NM.GT.324)STOP2

CALL MASLZ (MB,ML,NM,XM,YM,y)ZIM4AE, E21DEEP)
N2=NM%(NM+1) /2
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N4=NM+2
N3=N2+2+NM+3
NPL=15 .
K=0 ' °
TOTMAS=0.DO
0O 2 I=1,N3
2 N(1)=0.D0"
DO 3 I=1,N4
3 utli)=0.D0
IC=0
.C READ PREDETERMINED MASSES
' . .
713 READ(5,211,END=622)1Z,EM,EX,EY,EZ
IF(INITS.EQ.0)GOTO 9
UIN4)=U (N4 )—-EM¥1.D~20
9 CONTINUE
 [C=1C+1 . .
WRITE (2) EMyEX,EY,EZ
60710713
622 REWIND 2
1 IF(SIDE.EQ.1.D0)GATOLO001 ]
C ' ~
C " READ GRAVITY ANOMALIES AND ASSOCIATED DATA. SELECT THOSE IN AREA
C ,
. READ(5'117)PHI.ALAM,X;Y,Z,R,GG
Co ~ GOTO 1002
1001 CONTINUE
1002 CONTINUE . .
117 FORVAT(2F5.311X13F10.21F7.2v22XvF5.l)‘
101 FORMAT(Z2F3.145Xy3FL0424FT742922XsF5.1)
IF{PHI.GT.90.DC)GOTOL3
IF(PHI.LT.BOT)GOTOL
IF{PHI.GT.TOP)GOTOL
IFLALAN.LT.WEST-200.00)G0OTOL
IF{ALAM.GT.EAST-200,D0)GOTO1

[zEsNeYeXxl

K=K+1
- FGRM OBSERVATION EQUATION COEFFICIENTS AND SIMULTANEQUSLY FORM AREA
WEIGHTED NORMALS AND CONDITION EQUATIONS. STORE OBSERVATION EQUATION
CCEFFICIENTS AND ANOMALY DATA FOR LATER USE
R=R+63C0C00.00
R2=R*R , .
W=DSQRT{X%#X+Y*Y)} /R
C
C IF PREDETERMINED MASSES ARE USED, CONVERT ANOMALIES BY SUBTRACTING
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. € MASS EFFECT
c L :
IF{IC.EQ.0)GOTC 72
. DC 714 J=1,1C ’
READL2) EM,EX,EY,EZ. v
EF=X*EX+YHEY+I%EZ ‘
EL2=(X~EX) % (X~EX}+(VY=EY)¥(Y-EY)+(Z~ EZ)*(Z EZ)
. EL=DSQRT(ELZ2)
GG=CGG—({R2-EF) /{R*EL2*EL)~2. DO/(EL*R))* IDO%EM
IF{INITS.EC.0)GOTO 4
. UINM#1)=U(NM+1)-W*EM/{1.D1S%*EL)
4 CONTINUE
714 CONTINUE |,
REWIND 2
72 CONTINUE
: M=0 '
po 12 1= L,NM
F=XXM{L)+YRYM(L)+2%ZM(])
L2=(X=XM{D) ) { X=XMIT ) Y+ (Y=YMCI) )& (Y-YM{L) }+(Z~ZM( L) )= {Z~2M (1))
L=DSQRT(L2)
ALI)=(R2-F ) /{L2%L#R)=2.D0/ {L*R) - Lo :
ALIY=A(1)*0.100 :
NIN2+I)=N{NZ2+1)+UW/(L%1.D15) o
TEMP=A{1) %W
ULT)=ULI)+TENP%GG
DO 12 J=1,1
, M=M+1
12 N{M)=N(M)+TENP*A{J) »
© WRITE(L) {A(I)sI=1,NM)yWsGG,PHI,ALAM
6aT0l ‘ :
"13 CONTINUE
: DO 67 KL=1,NM
67 N{N2+NNM+1+KL)=1.D~20

TURING N NUMBER CCMPUTATIONS

[zXeR gl

J=1
SSN=0.D0 v
, 00 5 I=1,N3
5 SSN=SSN+N{I)*N{I[)*2.D0
M=0
DO 6 I=1,N4
M=M+]
SSN=SSN-N{M)IEN(M)
6 CUNTINUE .
IF(NM.GT.K)STOPS
C .
C TwO STEP MATRIX INVERSION. FIRST INVERT OBSERVATION EQUATION
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PARTITION -AND THEN- ADD CONDITION EQUATION PARTITION SEQUENTIALLY.

CALL DSINV{NyNV,1.D0-12,IER)

IF(IERLTLO)STOP 1°

IF(IER.NELOIWRITE(6,202) IER
" CALL BINVINsNMyN4,C). '

TURING N NUMBER COMPUTATIONS

$S1=0.00
DO 7 [=1,N3
7 SSI=SSI+N{I)®N{L[)*2.D0
M=0 '
DO 8 I[=1,N4
M=M+]
8 SSI=SSI-N{M)IEN(M)
TUR=DSGRT(SSN*SSI)/DFLOAT{N4)

COMPUTATION OF CORRELATION COEFFICIENTS

IF(ICOEF.EQ.L)CALL DSCORRINM,1.D0yN,C)

PULL THE FOLLOWING CARD TO WRITE THE INVERSE MATRIX

GOT0513
813 KK=0 :
D0 500 LL=1.+N4
KK=KK+LL
J=J+il-1
WRITE(6,220)(N{I)41=d,4KK)
500 CONTINUE -
513 CONTINUE~
22C FORMATI/{1X,10ELL.4))

CCMPUTATICN OF MASS MAGNITUDES

DO 10 I=1,N4
10 MAS(I)=0.D0

M=0
DO 20 I=1,N4
DO 20 J=1,1
M=M+1

20 MAS(J)=MAS(J)+N(MI%UL L)
M=0 :
DO 30 1=2,N4
M=M+1 :

DO 30 J=2,1
M=M+1




-G ‘ .
" C COMPUTATION OF ANOMALY MISCLOSURES AND ADJUSTMENT STATISTICS

c

c

30

MAS{I}=MAS(I)+N(MI*U(J-1)
REWIND 1 o

$GG2=0.D0
VPv=0.00

 YV=0.D0

41

4C

571

SGG=0.D0

Sv=0.00

DO 40 I=1,K
REACIL)(A{J) 9 J=14NM) W, GGs PHI;ALAM

- 666=0.00

0O 41 J=1,NM

GGG=GGG+A(J)*MAS(J)

RES{I)=G6—~GGG

VV=RES(I}*RES([)+VV
VPV=RES(I)*RES{I)*W+VPV )
glI)=PHI . : Tre
AL{1)=ALAN+200.00 » ‘
G(I)=GG

SGG=SGG+GG

$GG2=SGG2+GG*GG

SV=SV+RES{I)

CONTINUE

FK=K

FN=NM

RMSV=DSQRT{VV/FK)
RMSGG=CSGRTISGG2/FK)
MO2=VPV/{FK~FN+1.00)

- AVEV=SV/FK-

AVEGG=SGG/FK

DO 571 JIK=1,NM
TOTMAS=TOTMAS+MAS(JIK)
CONTINUE
TOTVAS=TOTMAS-U(N4)

C OQUTPUT GF INPUT -PARAMETERS AND RESULTS OF COMPUTATIONS

c

WRITE(64207)
WRITE(6,203)B0T,TCP,WEST,EAST
WRITE{6,214)1C
WRITE{6,204)K,NM
WRITE(6,205)DEEP
WRITE(6,212)AVEGG,RMSGG
WRITE(6,213)AVEV,RHSV
WRITE(6,206) TUR
WRITE(6,210)M02
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WRITE(6,210) TOTMAS

"WRITE(6,201)

"-NRITE(b'?OZ)(I,B(I) ALUT),GUI),RES(I),1=1,K)

WRITE(6,207)

WRITE{6,208) ' -
WRITF16+5209) {1 sMASCL) s XMIL), YM(I) ZM(I).MB(I).ML(I), I=1,NM)
WRETE LT 2L LV Lo MASCEY o XMOE) s YMUL) , ZM (1), 1= 1,NM) L
1F(IGECID.EQ.0)STOPS

IF(IC.EQ.0)GOTO572

Do 573 I=1,I1C

 REAC{2)EM,EX,EY,EZ

573

572

EEM(1)=EM,
EEX(I}=EX
EEVII)=EY

EEZ{1)=EZ

CUNTINUE
REWIND 2
CONTINUE

CCMPUTATION OF GEGID BASED ON NEW AND PREDETERMINED MASSES

201
202
203
204
205
206
207
208
209
210

.211

212
213
214

CALL GEGHZ2 (BOT ,WEST,TOP,EAST,MAS s XMy YMaZMUN,NM,E2,AE, MIN, IC,

*EEMJEEX,EEYEEZ,P 03 NPL,SNM;CNM)

FORMAT('1', 13Xy "B¥38X, *AL" 48X 'DG" 47X, 'RES®)

FORMAT(I%,4F10.1) - o
FORMAT(1Xs'LAT LIMITS"3F5.1," TO"9yF5.1,' LONG',F6.1,°'T0O",F6.1)
FORMAT(I5,2X, "ANGMALIES USED TO FIT?',14,* MASSES') ~ :
FORMAT(1X,*DEPTH OF MASSES',F10.0)

FORMAT (1X, 'TURINGS N',E15.4)

FORMATI('1") o ' ‘

FORMAT (15X 4 "MASS g 14Xy "X 911X, 'Y 11Xy "2, 10Xy "B 45X, L) "

FORMATU{ISs5X+D1547492X4F11.2924X9F11e292XsF11. 2-2X,F5 ly2X1F5 1)

FORMAT{D15.6)
FORMAT(IZ,D24.16,D17.10,D017.104D17. 10)
FORMAT (1X, *MEAN INPUT ANOMALY',F6.2,' RMS INPUT ANOMALY',F6.2)

FORMAT(L1Xy 'MEAN RESID ANOMALY'3F6.2,' RMS RESID ANOMALY',F6.2)
FORMAT(I4y* A PRICRI MASSES APPLIED TO ANOMALILIES BEFORE ADJUST')

sTap
END
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SUBROUTINE GfUHZ(Bl:ALlyBZvALZvTM.TX:TY,TZ.UN.NMTDT,EZ,AE,MIN.ICr '
*EEM)EEX,EEYHEEZ,PyCyNP1ySNM, CNM) '

Bl AND B2 ARE THE SCUTH AND NCORTH LATITUDES CF AREA

AL1 AND AL2 ARE THE WESTERN AND EASTERN LONGITUDES OF AREA

TV IS THE NEwW MASS MAGNITUDE ARRAY; TX, TY, TZ ARE THE NEW MASS
CGURDINATE ARRAYS,ALL OF LENGTH NMTOT. EEM, EEX, EEY, EEZ ARE THE
SEMILAR ARRAYS OF LENGTH 1C FOR THE PRE-DETERMINED MASSES.

REFER TGO THF MAIN PRUGRAM AND TO SUBROUTINE NONLY FOR OTHER
VAR[ABLE DEFINITIONS AND THE -MANNER OF STORAGE [N ARRAYS

IMPLICIT REAL*8(A-H,0~Z)
REAL#8 TH(1)+TX{1),TY(1),TZ(L),MIN,UN(40,40) ,CNMINPL,NP1),
(#SNMINPL,NPL) P INPL,NPLY p@(NPL,NPL) JEEN(1) JEEX (1) yEEY(1),EEZ(1)
RAD=57.2957795131
STEP=MIN/60.00C
NB=(B2~BL)/STEP+1.00100
NL=(AL2-ALL)/STEP+1.00100
DOl I=1,NB
B=B2-DFLOAT(1-1)#STEP o
GB=DATAN((1.00-E2)*DTAN(B /RAD))*RAD
CALL PANG(GBsNP1,P,G,CNM,SNM)
SB=USIN(B/RAD)
CB=0COS (B/RAD)
AN=AE/DSCRT (1.0-E2%$B*SB)
DO 1 J=14HL
AL=AL1+DFLOAT (J-1)*STEP
CALL NCNLY(P,Q,CNM,SNMsAE,298. 247167.978031 8456, NPl;AL,H)
SL=DSIN{AL/RAD)
CL=DCOS(AL/RAD)
- X=(AN+H) #CB*CL
Y=(AN+H) #CB*SL
Z={AN*(1:0-E2)+H)%SB
UN(IsJ)=H
DO 2 K=1,RAMTOT
CUN(E9d)=UNCT,J)#THIK)/(DSQGRTUIX=TX (K) J#(X=TX{K) )+ (Y=TYIK) ) *
#(Y=TY(K) )+ (Z-TZ(K) )% (Z=-TZ(K)))*9798000.0D0)
2 CONTINUE
IF(IC.EG.0)GOTO3
DO 4 KK=1,IC
4 UN(1,J)=UNTI,J)+EEM(KK)/(DSORT( (X-EEX (KK ) )% (X—=EEX(KK))+{Y=EEY (KK))
#%(Y-EEY (KK) )+ (Z-EEZ(KK) ) #(Z=EEZ{(KK)))*9798000.00)
3 CONTINUE
WRITE(7,600)1,J,BsAL,UNLT,J)
600 FORMAT(213,2F10.5,024.8)
1 CONTINUE
WRITE(6,60L)MIN
601 FORMAT('l GEQID HEIGHT AT ",F5.2,' MINUTE INTERSECTIONS')




D8 5 I=1,NB
CWRITE(6, 602)(UN(I:J):J lyNL)

602 FORMAT(L1HO,10F1042/(1X, 10F10.2)) -

5 CONTINUE
RETURN -
END
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- SUBROUTINE NONLY(P,Q,CNM,SNMyA,RF,GAME,NP1,AL,UND)
PyQsCNN,ySNMy ARE STORED wITH INDICES RAISED BY ONE
NP1 1S THE ORDER' PLUS ONE. GAME IS ECUATDR[AL GRAVITY
IMPLICIT. REAL%8 (A<H,0-2)

"REAL*Y P(NP[,NP[)yQ(NPl,NPI).CNM(NP[,NP[)ySNM(NPl,NPl).v

CML{37)ySMLI37)
F=1.D0/RF .
FM=0.531749433120-8%A/GAME*10.D4
C20=-DSQRT(.2D0)%((2.D0/3.00)%F*(1l. DO*.SDO*F)’(FM/3 00)

 C#{1.D0~L1500%F¥~(2.D0/7.D0)%F))
- C40=(4.00/L05.C0)*F*(7.00%F~5.D0%FM) -
CNMI3,1)=CNM(3,1)~-C20 Co
CNM(541)=CNM(5,1)~-C40
ALR=AL/57.2957795131
CL=DCOS (ALR)

- SL=DSIN(ALR)
CML{1)=1.DO
cuML(2)=CL
SML{1)=0.00
SML(2)=SL
DC 1 M=3,NPlL
CML(M)=2.D0*CL%*CML(M-1)-CHML{M-2)
SML(M)=2.D0%CL*SML{M~1)-SML(M—2)
CONTINUE
UND=0.00
DO 2 N=3,NP1
DO 2 M=14N
HARM={CNM(N, M)*CML(M)+SNM(N1M)*SML(M))*Q(NyM)*P(NoM)

. UND=UND+6371L.D3%HARM
- CONTINUE :

CCNM{3,1)=CNM(3,1)+C20
CNNM(5,1)=CNM(5,1)+C40
RETURN
END
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SUBRGUTINE PANG(PHI,NP1,P,QyCNM,SNM)
IMPLICIT REAL*8 [A-H,0-2)
REAL%B P(NPL,NPL), Q(NP[,NP[).CNM(NPl,NPl).SNM(NP[,NP[)
INTEGER FST :
- DATA FST/0/
T IF(NPl.LE.FST)GOTO 10
~ FST=NP1
113 REAL(S,1LVINN,MM,C,S
L1l FORMAT(212,1X,2F10.5)
- vN NN+1 :
=MM+] v
SNM(N:V)ﬁs*l.D—b
CNM(N,M)=C*1.D-6
IFIN+M.LT.2%NP1)GOTOL13
SNM{3,2)=0.D0
~ CNM(3,2)=0.D0
. NMAX=NP1-1
DO 2 N=2,NMAX
CON=DSGRT{DFLOAT(2%N+1))
QIN+L,1)=CON%1.D15
 CON=CON%DSCRT(2.L0)
DO 2 M=1,N
[A=N+M~1
IB=N-M+]
AC=DSQRT(DFLOAT{IA+1))*1.D~ 15
. b0 1 I=IB,I1A
1 AC=AC*DSGRT(DFLOATI(I))
2 GIN+LsM+1)=CON/AC
~ DO 101 I=1,4NP1
DO 101 J=1,NP1
P(1,J)=0.D0
101 CONTINUE
P(l,1)=1.D-15
10 CONTINUE
PHR=PHI/57.2957795131
'§8=0SIN(FHR)
CB=DCOS(PHR)
P(2,1)=SBsP(1,1)
P{2,2)=CBxP(1,1)
FN=1.00 '
FN2M1=1.D0
DU 402 N=2,NMAX
FN=FN+1.D0
FN2M1=FN2M1+2.00
PIN+LyL)=(FN2 ML#*SB%*P{N,1)}~(FN-1.D0)%P{N-1,1)}/FN
DO 401 M=2,N
401 P{N+1sM)=PIN-LyM)+FN2ZML%CBRP (N, M-1)
402 P{N+1,N+1)=FN2ML*CB*P (N,yN)
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RETURN
ENUD.
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SUBROUTINE DSCCRR (N, FMU,R,H)
REAL#8 RIL)sW(l) -
C COMPUTATIGN AND CUTPUT GF CORRELATION 'COEF FRGM PACKED SYM MATRICES
c’ N SIZE OF MATRIX .
c FMO MO TO BE USED IN COMPUTING STANDARD ERROR (REAL#8) .
€ R PACKED SYMMETRIC MATRIX (REAL*8)
c W WORK VECTUR OF LENGTH N (REAL*8)
J=0
DO 330 K=14N
[=J+1
J=J+K
W(1)=R(JFEFMO
Jd=J-1
M=0
DO 320 L=1,44
M=M+1
C ONN=(ME(M1)) /2
320 W(M+1)=R(L)/DSERT(R(NN)*R(J))
330 WRITE(6+500)Ky (WINN) yNN=1,K)
900 FORMAT(I5,E12.4/(15F844))
. RETURN
END




SUBRDUTINE NUHASL(NF[yBlyBZ:Ll:LZ'SIDE NM AL:B)
‘REAL*B Bl,B2,L1,L2,AL{1),B1(1)

REAL*4 LINT

FML=NML

NB=DSQRT(FML*( (B2~ BL)/(L2- Ll)*DCUS((BZ+Bl)1114 6DO)))+-5 '

NL=FML/FLOAT(NB)+.5
LINT={L2-L1-SIDE)/FLOAT(NL-1)
BINT={B2-B1-SICE)/FLCAT(NB~1]}
DG 1 J=1,NB

DO 1 I=LsNL

K=(J-1)ENL+T ,
ALIK)=L1+SIDE/2.0+FLOAT(I-1)%LINT
B{K)=B1+SI0E/2.0+FLOAT(J-1)*BINT
CONTINUE

NM=K

RETURN

END
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B

‘SUBRDUTXNE MASL2(MB, MLoNM,XM,YM IMy AE, EZvQ)

IMPLICIT REAL*8 (A-H,C-Z) .

REAL*8 MBUL)oMLUL}XM{1),YM(L), lM(l)vN L
RAD=57.2357795131 . |

DOL I=14NM

B=MB(I)/RAD

L=ML{I)/RAD

CB=pCOS(B) .~

SB=DSINI(B)

CL=DCOS(L)

SL=DSIN(L)
N=AE/DSQRT(1.0D0-E2%SB¥*S58B)
XM{I)={(N-G)}*CB*CL
YH{I)=(N-Q)*CB*SL
IMUD)=(N*{1.0D0-E2)-Q)*SB
CONTINUE

RETURN

END
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. SUBROUTINE DBINV. (AyNIyN2,B)
- INVERSE CF A SYMMETRIC MATRIX BY BORDERING

OO A0 OOOOoNa0O0O00

20

- 30

40 .

50
60

10

FOR EXAMPLE,

A- FIRST WURD OF UPPER TRIANGULAR PART OF MATRIX PACKED BY COLUMN’

WILL BE INVERSE ON RETURN
N1 ~ SIZE OF KNCWN INVERSE TO BE MODIFIED
N2 = SIZE OF DESIRED INVERSE - -
B. — WURK VECTER AT LEAST N2 LUONG

FITINITELIINL

A
I N I C I
I - 11
IITEIIIEITICT
1 I 1
I C'1 0 I
'R I
TLLLELITLITT

THE PARTITIUNED MATRIX

"IF N IS A.5X5 MATRIX AND THE INVERSE IS
KNOWN AND C 1S A 5X2 MATRIXs THEN THE
CGMPLETE MATRIX CAN BE OBTAINED BY

CALL BINV (Ny547,8B)

IF N1=0, THE COMPLETE INVERSE WILL BE

COMPUTED BY BORDERING.
INVERSE IS KNOWN)

REAL*8 A(1).B(1),0,C0/0.000/,4C1/1.0D0/
REAL*4  Al1),8(1),0,C0/0.0/,C1/1.0/

C N=N1+1
IF(N-1) 99,10,20

N=2

CALL)=CL/A(L)

b0 90 N=N,N2
ME=(N*(N~-1))/2

B(l)=A(1)*A(M1+1)

IF(NJEGY2) 6O TO 50

M2=1

DO 40 I=3,N
BlI-1)=C0O
DO 30 J=3,1
M2=M2+1

BlJ=2)=B(J-2)+A(M2)*A(M1+I~1)
BOI-1)=8(1-1)+A(M2)%A(MLI+J-2)

M2=M2+1

BUI-L)=BlI-1)+A(N2

D=A(M1+N)
DO 60 I=2,N

J¥A(MLI+1-1)

D=D-A(ML+I-1)%B(I-1)

D0 70 [=2,4N

A(MI+I-1)=-B{1~-1)/D

A(ML+N)=CL1/D
M2=0

U0 80 I=2,N

D=A(M1+[-1)

{(NO PORTION OF
CALL BINV (A40,7,8)

FOR SINGLE PRECISICON THE FOLLOWING STATEMENT SHOULD BE CHANGED




80

© 99

DO B0 J=2,1

o M2=pM2+1

A(M2)=A(N2)-BlJ-1)*
CONTINUE : .
RETURN

ENC
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DD DDA A AdAdL AL NODONAIOANATANDDDIDED WWRWNN Z
W=~ OdOUPDN~ONULEWN—~ORPAWN~ORWN=~O0WN—=ONO X

APPENDIX

RAPPS SPHERICAL HARMONIC

ADJUSTED

VALUE

—48441750

23706
03365
18556
Qe713D
06331
05522
-0e55173
De2971

08729

00936
. De895
-0eNB16

De5228
~0e 3560

-0 eDAI2

0eNB59
~0.1366
~0e0647
00283
~0.0535
-0e0259
—0.29056
~0e0N87
00702
De1289
Oe 3065
0e17956
-0.1931
0.0704
~0.1654
Qe NE7
DeN46D
~0.04737
D040l
~0.0044

EJECT

STANDARD

ERROR

0eC120
00551
DeC314
00497

00491

Ne 653
NeN197

Ce456
00479
00523
DeN297
Ne0261
000396
Cel411
00507
00332
NeNB46
0e 327
004893
N.C372
NeCa3C
NeN430
De0a50Q
NeN44 1
NeN464
e 0345
NeN716H
De 44

- 00388
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ADJUSTED

VALUE

-1e3422

0eZ2434
-Ce54856
1e5234

-Dadd70
DeS8B44
-De 1975
Ce2741

~0e 0635
062134
D00273
De 0744
-0 e5689

-0.0194
—Ce2835

Ce602
-0e4123
~-Ne45093
~-0e1843

Ce 1060
Gel372
Ce Q092

-~ e 0906
De 0355
D.0917

-0e 0298

. 'POTENTIAL COSFFICIENTS AND THEIR ACCURACY TO (14s14)

STANDARD

ERROR
00551

Ne0531
0e0460
De 0687

Ne2272
De0441
000271
0800

20390

Ne0392
NDe0461
020460
00600

0.0226
De¢0396
00373
0.0518
NeDZ216
De 0540

00480
Qe0354
De0D433
NeD415
060461
004256
Ne0464

De0343
00439
D.0379
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'ﬂ(ﬁm-bw!vﬁ(3H<3®(D4(}thufoﬂ(DO\Dm-J@iﬂb(dN*‘O\0m~4®iﬂb(AN**O(DQ()mJ>3-

APPENDIX 8 CONTINUED

ADJUSTED STANDARD
VALUE
=0.0922°

—~0e 0630

- =0.10790

040256

. =0s1041 -

0.0248
01325
00125

-0,0753

040400
—0eN465

T =0e0102

0.0421
Ce2C74
0s0129

T=0.0127

0.N788
~0.0402
-0e0499

~0e0N31D

~0.0046
~0.0622
0.0745
0.n439
DeN924

D078 .

~040880
0.0244
0.0304
~-0N04%
~0.0196
Oen8B7
00339
0.n088
DeNaNT
0.N324
~0eN14D
NeN752
~0.N068
~-0e0N643
~0.M"1824
0.0683

—0,0176

Qen318
D«0733

S =0DeN423
EJECT

ERROR

" 0e0N422

0e¢04C5
QeN423
00348

00412

e 341
0e0405

0.C328

0eN411
DeN4l6
N.N3G9
0.0391
00373
0e0D377
0.0382
060290
NeR326
NeN3E9
Ne0D371
0e 03322

- Qe 0364

Ne0363
0.0352
DeN337
Ne0344
Ne0347
NDe0218
0eN329
00313
0eN317
De032C
DeD313
Ne0310
Ne0Q308
Ne0297
GeN289
OeN294
De0N297
DeN236
0eN302
DeN299
00286
nNe0292
NeD286
Ne0281
DeN280

ADJUSTED
VALUE
00188
00818
062869
e 0300

-De 0168

~-00B72 "
2. 0000
~0e0303
-De0154
D0,.,0258
0e0aZ2
0.0181
-0.0032
-060345

~-0.0645
-0e0706
-0e1314
~C 0866

00037
-D0.0202
-040160
-0 1039
~0e¢0026

~00690

Ce0120
-0e0245
~Ne 0049
~0e0597
—0e0615
0eC098
-Ge0801
Ce0106
040080
-5e0109
00167

-00596
De 0865
-0eC065
~De 3169
~-Ce0677
Ce 0346
040270

S

195

STANDARD
ERROR
00431
00403
Qe 0424
00370
060402

N.0388
0.0327
De0412
260400
Ne0405
060393
Ce038C
0e0378
00384

Ne0311
060362
00370
N« 0356
20369
0.0366
2.0352
060343
0e¢0341
Ne0348

0403179
00315
00318
00318
Ne0317
00311
0e03C9
060297
Ne 0233
00295
00298

0.0283
060305
00287
Ce0287
060290
0.0283
040279




12
12

12

12

12
13

13
13
12
13
13

13

13
13

12

13
13
13
13
14
14
14
14

14

14
14
14
14
14
14
14
14
14
14

O o=

-
N =

ks [ A .
VO ~NOOAPLPWNN=O0WN=-00ONOUP»WUN—-O

[y
* O

APPENDIX B CONTINUED

ADJUSTED
VAILUE
Ne0101°

-De0112

~0e0033

—=0e01772

0.0255
00462
-0,0028 "

-0e0N08

0.0198
00092
0eN516
~040353
0.N278
-0e0460
DeNN14
0eN162
-0.0434
-0e0137
~0,0203

=-0,01073

-0.0177
-0.0523
00179
0.0218
040745
OeNl44
060571
-0.0159
00346
0.,05456
02120
0.0254 .
00145
~-0¢N308

STANDARD

ERROR
NeC275

Ne 0263

0o 0263

De 0267

0e 0272
00258
Oe 3240

DeD233

NeD225
0e D238

00236

NDeN233
Ne0230
Cel220

Ned224 -

02219
Ne0218
00222
NeD225
Ce0222
NeD243
De0202
NeN203
nz2ne=

I'e

L]
De 204
CeD2202
NDe0199

I

Le¢02195

0,C193
0.0191
Ds0187
00,0192
D¢0197
NeC197
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ADJUSTED STANDARD

VALUE
00507
0e¢ 0627
Qe 0027
000239
~-0.0313

-060172

0.0061
De 05325
-0e0293
~0e0476
0.0308
0e0228
~0e0033
N'e 0520
-0 0575
~Ce G011
Je 0544

Oe 0465.

30057
02.0006

NeD149

-0.0038
~0e0631
-0e0374
060310
~-0.0208
De0720
-0e0461
—0.0lcé
-N,0073
60171
-0e0075

“RROR
De0275
De 0267
50263
NeD269
D.0272

J0e0239

060235

00231
00229
De0227
100219
002290
00225
Ce0226

0.0232
040206
00227 -
Ne0203"
0.0206
00203
00198
Ne0195
0.0193
Ce0191
2.0187
0,0192
De0197
0.0197




APPENDIX C
~ 5°x5° MEAN FREE AIR ANOMALIES,

INTERNATIONAL REFERENCE SYSTEM
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~ DISTURBANCE COMPONENT COMPUTER PROGRAM LISTING |
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THI'S PRCGRAM COMPUTES THE COMPONENTS OF THE GRAVITY. DISTURBANCE .
VECTOR BASED GN A MCDEL CCONSISTING CF THE GRS~67 ELLIPSDID SUPPLE-
FENTED BY:

1) A (l4,14) SET OF POTENTIAL COEFFICIENTS

2) UP TO 725 PCINT MASSES BASED CN'1 DEGREE ANOMALIES

3}  UP TO 325 PCINT MASSES BASED CN 30 MINUTE ANOMALIES

4) UP TG-32% PCINT MASSES BASED CN 5 MINUTE ANOMALIES
UNTTS ARE METERS, MILLIGALS.DEGREES AND CM3/5EC2

IMPLICIT REAL*8{A- H,D—Z) ' ’

REAL#*8 P(lSylS)'C(IS.IS)'DP(IS:15):CKM(15115)9SNM!15115),Nt
HNLLT25) ¢ X1{T725),YL(T25),21(725),M3(325),X3(325), Y3(325)yZ3(325)v
#N6(325),X5(325),Y5(325),25(325),H{15)

101 FORMAT(2124i1X,42F1C.5)

C & S ARE SPHERICAL HARMONIC POTENTIAL COEFFICIENTS. THEY ARE STORED
INTERNALLY AS THE ARRAYS CNM AND SK¥ IN WHICH THE INDICES ARE RAISED
BY CNE ' -
1 READ(5,10LINNyMM,CyS
M=MV+
N=NN+1
SNV (NyM)=S%1.D-6
CNM(N,M)=C*1.D-6
CIF(N+V.LT.30)60TCL
NPL=15
SNM(3,2)=0.D0
~ CNM(3,2)=0.D0

PARAMETERS OF THE GRS-67

RF=268.247167
F=1.CO0/RF
E2=2.,00%F~F%F
.CAME=978031.8456 ‘
CFKM=3,98603020 ; . ;
AE=6378160.D0 ' . : :
RAD=57.2957795131
Fr=4531749433120-8%AE/GANE*1C.D4
C20==DSGRT{.200)¥{{2.D0/3.00)*F*(1.D0-.500%F}—-{(FM/3.00)
"%%(1.C0-1.500%FM~-(2.00/7.C0)%F))
C4C=14.DC/105.00)1%F%{T7.DO*F~5.0C%FM)
CNM(3,1)=CNM(3,1)-C20
CNM(5,1)=CAM(5,1)-C40
MAX1=C
MAX3=C
VAX5=0
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REAB NASS SET DERIVED FRGM 1 DEGREE- ANGNALIES

7 READ(S.IO#)! Vl(NAXl+l)yXl(MAX1+1)1Y1(MAX1+1):ZI(MAX1+1)
IF(1.LT.0)GOTO59 -
MAX1=NAX1+1
GOTO7

READ MASS SET DERIVED FROM 30 NINUTE ANOMALIES

59 READ{S,1043T,M3(1),X3(1),Y3(1),23(1)
IFIVAX3. LT 1 IVMAX3=] :
IF{I.LT. O)GDTUéO
GOT059

READ MASS SET. DERIVED FRDﬂ 5 NINUTE‘ANDNALIES

60 REAC(5,104)1,M5(1),X5(1),Y5(1),25(1)
IF{MAXS.LT.TIMAXS=]
IF{I1.LT.0)GOTO61
- GOTO60.

"REAC NUMBER OF ELEVATIONS ON VERTICAL TRAJECTORY

61 READ(5,102)NCEL
IF(NCEL.EG.O)STOP2
WRITE{6,303)

102 FCRMAT(IZ)

REAC LATITUDE LCNGITUDE OF TRAJECTCRY FCOT POINT AND ELEVATIONS OF
COMPUTATICN PCINTS CN TRAJECTORY

READ(5,103)8,ALy (H{1),1=1,NOEL)
BR=B/RAD
103 FORMAT(2F10.5,6F10.0/(8F10.0))
104 FORMAT(13,N24.16,3017.10)
SB=DSIN(BR) -
. CB=DCCS{BR)
N=AE/DS5SGRT (1.00-E2%SB*SB)
SL=DSIN(AL/RAD)
CL=DCCS(AL/RAD)
Lo 51 I=1,NCEL
X={N+H(1))*CB*CL
Y=(N+H(1))*CB*SL
Z=(N#(1.,D0-E2)+H([))*SB
CR2=XHX+YRYH IR
R=DSGRT(R2)
GB=DATAN(Z/DSQRT [X£X+Y#Y))#RAD
CALL LEGI(GB,15,P,QsDP)
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COMPUTE THE CONTRIBUTION TO THE DfSTURBANCE COMPONENTS FROM THE
SPHERICAL HARNOAIC COEFFICIENT SET

CALL SHDIS(P,Q, DPyNPL,CNY 5 SNMyR o FKMy AE AL GB DBS,DLS;DRS)
*cnupure_ccwramaumnmh.FROM I DEGREE SET OF MASSES
CALL PMDIS(X,Y,ZsRyR2y¥1,X1sY1s2Z15DB1sDLL,DRL,MAXL)
COMPUTE CONTRIBUTION FROM 30 MINUTE SET OF MASSES
 CALL PMDISIX,Y,Z,RyR24¥3,X3,Y3,23,D83,DL3,DR3,MAX3)
CCMPUTE CONTRIBUTION FROM 5 MINUTE SET OF MASSES

CALL PMDIS(X,Y,ZsR4R24M5,X5,Y5,25,0B5,DL54DR5,;MAXS)
TOB=CBS+DB1+LB3+LBS
. TDL=CLS+DL1+DL3+CLS

TOR=CRS+DRL+DR3I+LRS
WRITE(649201)ByAL,H(T),CRSyOR1,0R3,DR5,TOR
WRITE[6,202)8,AL,4{1)},08S,081,DE3,DB5,TDB
WRITE(6,203)85AL,H(T1),DLS,0LL1,DL3,DLS5,TDL

201 FORMATILX,'ON'y2F9.2,F11.0+45F8.2)

202 FORMAT(1Xs'DM',2F9.2yF114045F8.2)

" 203 FORMAT(LIX,'DL'y2F9.25F11.0,5F8.2)

303 FDRNAT('lDIST'.4X1'LAT',SX,'LGNC'yGXy'ELEV',SX,'HARM 100 KM
KM 10 KV TOTAL'/* CCMP?',31X,5("DIST 1)/ /)
WRITEL6,204)
204 FORMAT{1HQ}
51 CONTINUE
GOT0€1
END

50
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’ SUBRCUTINE PNDIS(X:Y:Z:R:RZ,V XVy YM.ZM DM,DL.DR'MAX)

CALLING PARANETER DEFINITIDNS"

10

X9Yr2Z ARE CARTESIAN CCORDINATES OF COMPUTATION POINT

R AND R2 ARE GEOCENTRIC RADILS AND RADIUS SQUARED TD
CCMPUTATICN PCINT

My XMy YM,ZM ARE VECTORS DEFINING THE MASS SET MAGNITUDES AND:
PCSITICNS IN CARTESIAN COORCINATES. ALL ARE OF LENGTH MAX
D¥,DL,DR ARE THE ORTHCGONAL CISTURBANCE- COMPONENTS IN THE
MERIDIAN PRIME VERTICAL AND RADIAL-DIRECTIONS

IMPLICIT REAL%8( A=H,0—-2) )
REAL%8 XMU1),YM{1),ZM{L) M(1),4P,P2,L,L2,L3
P2=X¥EX+Y %Y

P=DSCRT{P2)

CM=0.00

CL=0.00

CR=0.00 ‘

CO 1C I=1,MAX

T=XEXV{T)+Y%YM(])

F=T+2Z*ZM(I)

L2= (X—XM(I))*(X—XN(I))+(Y—YM(I))*(Y—YM(I))+(Z—ZM(I))*(Z-ZM(I))
L=DSCRT(L2)

L3=L2%L

ON=DV=({T*Z —ZM{I)%P2)/(R*P*L3) )*M(I)*,100
DL=DL-{ {XNM{T)&Y=YM{I)%X)/(P*L3))+M(])*.1D0
DR=DR+{{R2—F)/(R*L3} )} *#M(I)*.1D0

CONTINUE

RETURN

END
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aUBRCUTINE SHDIS(P,C,DPyNPLyCNM;SNM,RM, FKM,AEM,AL GByGAMB;GAML,
: *CANR) v

CALLING PARANETER DEFINITIONSS -
P IS THE ARRAY OF LEGENCRE ASSOCIATED CCEFFICIENTS
Q 1S THE ARRAY CF NORFMALIZINC COEFFICIENTS
CANM & SNM ARE PCTENTIAL COEFFICIENTS COF DEGREE AND ORDER
C{NP1-1). ALL ARRAYS HAVE INLICES RATSED BY ONE FOR STORAGE
FKM IS KM OF REFERENCE SYSTENM (CM3/SEC2). AEM IS EQUATORIAL
RADIUS (METERS). : : .
AL 1S LCNGITULCE, GB 1S GECCENTRIC LATITUDE, AND RM IS THE
GECCENTRIC RACIUS OF THE COMPUTATICN POINT :
GAMR,GAMB, ANUC GAML ARE RADIAL, MERIDIAN AND PRIME VERTICAL:
DISTURBANCE CCMPONENTS.

IMPLICIT REAL#8 (A—H,0-2)

P,Q, 0P CNV,SNM, ARE STORED WITH THE INDICES RAISED ONE
NP1 IS ONE MORE THAN THE ORDER, FKM IS KM IN CM3/SEC2, ,

PSI AND ETA ARE IN SECONCS, AL ANC GB (LONG AND GEOCENTRIC LAT)

ARE IN DEGREES. AEM IS ECUATCRIAL RACIUS IN METERS.RM 1S THE

GEQOCENTRIC RADIUS TO THE COMPUTATION POINT

REAL#*8 P(NPL, NPl).C(NPl.APl),DP(NPI,NPI)yCNM(NPl,NPl),
%SNV{NPL,NP1) ,CML(37),SMLI3T)

AE=AEN#100.00

R=10C.DO*RY

RAD=57.2957795131

ALR=AL/RAD

GBR=GRB/RAD

CGB=CCOSI(GBR)

CL=DCCS{ALR)

SL=CSIN(ALR)

CHL{1)=1.DO

CML(2)=CL

SML(1)=0.00

SML(2)=SL . A :

£C 1 M=3,NPL .

CRLIM) =2, DCECLECHL (M=1)=CHL (M-2)
1 SML(V)=2.00%CLESNL(M=1)}=SML{NM-2)

SUM1=C.DO

SUM2=0.D0

SUM3=C.DO

CO 5 N=3,NPL

FARM3=0.DO0

HARM2=0.00

FARM1=0.D0

L0 6 M=1,N

FM=DFLCAT(M-1)

EARMI=HARNML+(CNM (NyM)%CML M) +SNM (N, M)=SML (M) Y%2Q{N, M) #P (N4 M)
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FARM2=HARM2+ (CNM (Ny M) #CML (M) +SNNMIN, M) ESML (M) ) %C(NM)*DP (N, M)
HARMI=HARMI+FME(CNM (N M)HSMLIM)~SNM{NyM}HCMLIM) }EQ(N,M)EP(N,M)
FNPL=DFLQATI(N} : :
ARNTH={AE/R)%%(N-1) :

SUM1=SUML+FNPL1*ARNTH*HARNML

SUM2=SUMZ+ARNTH®FARM2

‘5 SUN3=SUM3+ARNTHHFARM3

A1

“Tl= FKM/(R#R)%*SUM1
DUCB=(FKV/R)#SUM2
CUBL=—(FKNM/R)%SUM3
T2=DUDB/R
CAML=DUDL/ (R*CGB)
GAMB=T2#1CC0.DO
CAML=GAML%10C0.DC
CANMR=T1#1CC0O.00
RETURN -

END




&

 'SUBRCUTINE LEG(PHTyNPL,P,Q,DP)

‘CATA FST/0/7

IMPLICIT REAL*8 (A-H,0-Z)

REAL#8 P(NPL1,NP1),G(NPL,NP1),DP(NP1,NPL)
INTEGER FST A

o

 YF(NPL.LE.FST)GOTO 10

FST=APL | —_— -

“NMAX=NPL-1

-.CO 2 N=2,NMAX

CON=CSCRT(CFLCAT (2%N+1))
CIN+1,1)=CCN*1.015
CON=CCN#CSCRT (2.C0)

- CC 2 M=14N

101

401
402

[A=N+NM~-1

IB=N-FM+1
AC=DSGRT(DFLCAT(TA+1)}*1.D~15
€O 1 [=IB,IA
AC=AC*DSCRT(DFLOAT(I))
CIN+1,M+1)=CGN/AC

CONTINUE

€0 101 I=1.,NP1

CO 1Cl J=13NP1

-PlI,4)=0.C0C

CPlI,J)=0.C0

CONTINUE

P{ly1)=1.D-15

PHR=PHI/57. 2957795131

S8=DSIN(PHR)

CB=DCCS{PHR)

P(2,1)=5SB%P(1,y1)

P(2,2)=C8B% P(lvl)

FN=1.D0O

FN2M1=1.DG

CO 4C2 N=2,NVAX-

FN=FN+1.00

FN2M1=FN2M1+2.D0

P{N+1,y1)={FN2 Ml*SB*P(N;l)—(FN 1.D0)*P(N-1,1))/FN
0O 4C1 M=2,N
PIN+19M)=P(N~14M)+FN2MLI*CB*P{N,N~1)

"PIN+14N+1)=FNZML#CB*P{NyN])

FN=1.D0
FN2M1=1.D0
£P(1,1)=0.00
OP(2,1)=P(2,2)
CP(2,2)==P(2,1)
CO 5C2 N=2,NVAX
FN=FN+1.0C
FN2M1=FN2V1+2.D0

207
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CP(N*lvl)—(FhZNl/FN)*(SB*DP(No1)+CB*P(Ny1))—((FN~1 DO)/FN) %
#CP(N—~1,1)
CC 5C1 M=2,yN
501 EP(N+1'M)-DP(N—1yV)+FN2M1*(CB*DP(N,M—1) SB*P(N:M‘l))
502 CP{N+1yN+1}=FN2M1*(CB*CP (N, N)‘SE*P(NvN)) '
RETURN
END
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<3

DIST

LAT

comp

DN
DM

. DL

ON
DM
oL~

DN
DM
oL

DN
DM

DL

DN

-DM

oL

DN

DM

DL

DN
DM
DU

DN
DM
DL

DN
OM
oL

36475

36.75
36.75

36,75

36.75
36.75

36.75

36.75

. 36.75

3675

36.75
36.75

36.75
36.75
36.75

36,75
36.75
36.75

36.75
36.75
36.75

36.75
36,75
36475

 36.75

364175
36.75

LANG

260,75
260.75

260,75

260.75 "
C260.75

260.75

260.75
260.75
260.75

260.75
260.75

260.75.

260.75

26C.75

260.75

260.75
260.75
260.75

260.75°

260.75
260.75

260.75
260.75
260.75

260.75
260.75
260.75

ELEV:

2CC00.
2CC00.
2CC00.

3CC00.
3CCO00.
3CC00.

5CC00.
5C000.
5CC00.

1CCCOO0.
1CCCO0.
1CCCO0.

. 2€CCOO0.

2€C000.
2cccoo.

3CCC00.
3CCCO0.
3CCCO0.

5CGC00.
5CCG00.
5CCCO0.

. 1CCCCO0.

10CCC0Q0.
106CC000.

15CCC00..

15CCE00.

15CC000. -

HARM
DIST

""llolfl
3.20
"3.76

f4037
3,13
-3¢ 611

" 4,29

2,99
”3.41

“4111
2.68

—2.87

-3.89
2.17
‘loqg

-3.76 -

1.77
-1.32

-3068
1.24
—O‘l’l

-3.66

4'0067

O. 51

—~3.45
0.51
0.68

100 KM

CIST

“15003
"'1.30

4,20

—13.65
—-1.26 -

3,75

-11.52

-1.23
2.99

‘8022
—1Q22
1.63

"5'05
“1407
0.28

“3.37
-0.90
"0- 12

_1060
“0064
“0-09

—-0.33
"0031
0.19

-0.10

'“OQIT

0.20

50 KM
DIST

“0074
*O.QO
“0091

-0.74
-0.13
-0.38

~0 .64 .

0.37
0.03

' -0.30

"0.17
0.02

~0.04
”0.11
-0.13

-0.00
‘0.11
-0.13

0.00
-0.06
"0.08

0.00
-0.01
"O 102

0.00
-0.00
-0.01

10 KM
DIST.

‘1044
1.99
0.93

~0.88
1.01
0.34

017

“0-02
"0012
’0-06

0.01
;0005
—0.0[

0.00
-0.02
-0.00

0,00
~0.00
—-0.00

0.00
-0.00
—0.00

0.CO
—0‘00
~-0.00
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TOTAL.
DIST

=21.62
2.99
0.45

—19064
2.74
0.08

2.30

-12.66
1.51
—1.28

"8.97
0.94
-1.85

"'7¢ 13
0.75
"1.57

-5427
0.54
"0.58

“3-98
0.35
0.67

“3.55
0.33
0.87




X9

oL

DLST

caMe =

DN~

DL

DN

DL

DN

- DL

DN

DL

ON
oM
DL

ON
DM
DL

DN
DM
DL

DN

DN

DM
DL

LAT

37.25

'37.25
- 37.25

37.25

37.25
- 37.25

0 37.25

37.25
37.25

37.25

37.25

37,25

37.25

37.25

37.25

37.25
37.25
37.25

37.25
37.25
37.25

37.25
37.25
37.25

37.25
37.25
37.25

LONG

260475
26075
260.75

260.75
260,75
260.75

260.75

260.75
260.75

260,75
260.75
260.75

260.75
260.75
260.75

260.75
260.75
260.75

260.75
260.75
260.75

2A0.75

260.75
260.75

260.75

260.75
260.75

ELEV

2CC00.
2CCO0.
2CC00.

3CC00.
130C00.
3CCO0.

5CC00.
5C000.
5CC00.

1CCCn0.
1CCCO0.
1CCCO0.

2CC000. .

2€CC00.
2€CC00.

3CCCO0.
3CC000.

3CCCO00.

5CCCO0.
5CCG00.
5¢CCO0.

1CCCCOO0.
16CCCO0.
1CCCCO0.

15CCC00.
15CCC00.
15CCCO0.

 HARM

DIST

"'li. CZ

3.56

—4,49

”"3o 98
3.48
"4. 36

-3,62
3.33
-4.09

—3' 79
2.98
""3. 49

-3.¢€3
2.42
""20 50

~3.57
1.98
""11710

"'3. 56
1.39
""00 70

—30 62
0.75
0.39

0.57
0.63

100 KM
DIST

-11.82
4.82
2.98

-11.05
3.81
2.64%

-9,78
2.35
2,05

"7'60
0.50
1.00

"5001

0.02

—0.58
_'0022

—0.50
"O. 11

"0035
—-0,28
0.19

‘“0-11
-0.16

0.20

50 KM
DIST

3.08
-3 35

"'O 080
2.16
""2 -40

—0.22

1.13

0.07
0.26

-0.41

0.00
-0.07
"“0‘17

"'0 001
-0 ¢O9
-0.13

""0 .Ol
-0.05

—-0.00

""0.01
~0.02

-0.00
-0.00
"O 001

10 KM
DIST

2.7¢
0.11

1.57
-0.32
-0.10

0.54

0.01
—0.08

~0.04%

~0.01

- —0.02

-0.C0

-N.C0
-0¢00

-0.00
~-0.00
"OQOO

-0.00
""0000
”O-CO
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TOTAL
DIST

-14.43
10.96
-4,76

—14.26
9.13
by 22

6.65
-3.52

3.66
"’2.96

"'8.66
1.85
_2.66

-6.99°
1.30
-2.10

-5.21
0.83
"0.8")

-3,97
0.46
0.55

-3.56
0.41
0.82




DIST .
caMp -

DN

S DL

DN

oM
DL

. DN
- DM

DL

DN

oM
bL -

DN
oM

-BL

DN
oM
DL
DN

DL

- LAY

37.25
37.25
37.25

37.25

37.25
37.25

37.25
37.25
37.25

37.25

37.25

" 37.25

37.25

37.25
37.25

37425
37.25

37.25

37425

37.25
3725

37.25
37.25
37.25

317.25
37.25
37.25

LONG

260.25
260.25
260,25

260,25
260.25
260425

260.25
260.25
260425

260.25
260.25
260.25

260.25
260.25
260.25

- 260.25

260.25
260.25

260.25
260.25
260.25

260.25
260.25
260.25

260.25
260.25

. 260.25

ELEV

9

2CC00,

3CCO0.
3CCO0.
3CC00.

5C000.
5CC00.
5C000.

1CCCO0.

1CCCQ0.

10CCO0. .

2CCC00.

2CCCO0.
2CCCO0.

30CCO0.
3CCCO0.
3CCCO0.

5CCCO0.
5CCC00.
5CCCCO.

10CCCO0.
1CCCCOO.

10CCCO00.

15CC000.
15CCC00.
15CCC00.

2€C00.
2CC00. -

HARM
DISY

“3-42
4.11
_4033

’304d
4.C2
-4 19

~3.37
3.85
—3092

-3.30
3.46
-3.31

“3.25
2. 80
72032

—3v27‘

2.30
"‘.056

-3.38

l.61
-0.53

-3057
0.85
0.50

‘3q43
0.€2
0.€9

100 KM
CIST

—13.44
5.42

2«75

"12555
4.39
2.36

~-11.05
2.86
1.69

~8.35
-0.85
0.52

’5022,

-0.30
‘0.41

“3.42

‘0.5[

‘0q53

’1058
*0049
-0024

“0034
-0.28
0.17

“0012
-0.16

0.19

50 KM"
DIST
2.02°
3.88

*1.72

1.72
2.69
'1'43

1.18
142
-0.91

0.37
0.38
‘0032

0.03
-0.04
’0-15

0.00
-0.08
-0.12

0.C0
"0.05

’ _0007

0.00
‘0-01
~0.02

0.00
’O-CO
~0.01

10 KM

DIST

0.94

-0.53
0.02

0.71
-0.38
0.11

0.35
~0.18
0.08

0.03
-0.08
0.00

’0.01
—0004
_0.00

-0.00

-0.02

~0. co

‘0000
-0.00
~0.00

-0.G0
-0.00
-0.00

-0.C0
-0.00
—0000

212

TOTAL:
DIST

-13.90

12.88
‘_3.28

~-13.52
10.72
;3-15

-12.88
795
”3.07

c=11.26

4461
"‘3-11

*8.46
2.42
‘2088

“6.69
1.69
»‘2.21

“6.96
1.06
-0,85

“3.91
0.56
. 065

,—3'55
0.45
0.87




©y

DL

DM
DL

DIST.

-COMP

ON

‘DM

DL
DN
oM
DL

DN

oL

DN

DL

ON

DN

DM

DL

DN
DL

DN

DN

DM

DL

- LAT

36.75
36.75

36.75

36.75
36.75
36.75

36.75
16,75

36,75

36.75

36.75

- 36.75

36.75

. 36,75

36.75

36.75
36.75

36.75

36.75
36.175
36.75

16475
36.75

36.75

36.75
36.75
36.75

LCNG

260,25
260.25
260.25

260.25
260.25
260,25

260425

260.25
260.25

260.25

v~260.25

260425

260425

260.25

260.25

260525

..260.25

260.25

260.25
260.25
260.25

260.25
260.25

260.25 -

260.25
260425
260.25

ELEV

2CC00.

2C600.
2CQ00.

" 3C000.
3CCO0,
3CC00.

5CCCO0.
5C000.
5C000.

1¢CC00.
1CCCO0.
Lcccoo.

2CCCO0.
2CGCCO00.

2CCCO0. -

3€0C00.
3C6C00.
3¢CC00.

5CCCO0.
5CCC00.

5CC000. -

16CCCO0.
1CCCCOO0.
10CCCO0.

15CC000..

15CCCO0O0.

© 15CCC00.

HARY
DIST

-3,.88
3.78

3.69
“3-47

~3.79

3.54
‘3.23

-3.68
. 3.17

. ‘3054
2.57

-1 gl

“3;50
2. 11
—1.13

‘3.52
1.47
—0 21’

. ‘3061

C.177
0.62

“3‘44
0.56
0.75

100 KM’

CIST

-16.55

-1003
2.76

“15.13

“0093
2.47

-12.84
"0585
1.92

—9010
"0085
0.81

”5-34
-0.89
f0.25

~3.42
—0‘ 83

“0047

"1.54
70063
’OQZW

‘_0032
"'0' 3].
0017

—0011
*0117
0.19

50 KM

DIST

1.06
1.08
‘0.61

0.47
1.59
-0.55

1.54
-0 034

"'0 032
0.52
"0-12

‘0.05
‘0007
-0.12

0.01
-0%10
'0011

0.01
—0-06
—0007

0.00

~0.01

~0.02

0.00
~0.00
-0.01

10. KM

DIST

-0.89
2.07
’1-40

"'0.68
1.07
-0.64

-0.28
0.21
—0112

—0000
-0011

0.01.

0.01
"0-05
~-0.C0

-0302
—0.00

0.C0
-0.00

~”Q‘00

0.00
—~0.00
-0.00

0.00
—OQOO
-0.00

213

TOTAL
DIST

-20.26
5,89
-2.84

-19.19
5.42
~2.18

-17.07
4045
‘1077

”13.11
274
~199

. —8.93
1.56
—-2.17

”6690
1.16
“1571

'—5.05
0.78
“OQSS

”3093
0.45
0.77

“3.55
0.38
0.93




‘DIST
comMp

DN

. DM

DL

ON-
DM

- DL

ON
DM
DL

DN
DM
oL

. DN

DM

. DL

DN
DM
DL

DN
- DM
oL

DN
DM
oL

DN
OM
DL

LAT

. 37.00

37.C0
27.00

37.00
-37.00

37.00

37.00

37.G0

" 37.00-

37.00
37.C0

37.00°

37.00
37.00
37.00

37.00

37.60

. 37.00

37.00

37.C0
37.00

37.00
37.00
37.00

37.00
37.00
37.00

LONG

260.50
260.50
260.50

260.50
260.50
260.50

260.50

260.50
260.50

260.50
260.50

260,50 .

260.50
260.50
260.50

260.50

260.50
260.50

260,50
260.50
260.50

260.50
260,50
260450

260.50
260.50
260,50

 ELEV

2CE00.
2€C00.

2C000.

3CCO00.

3€C00.
3ccao.

5C000.
5CC00.
5C000.

1cccaoa.
1cccao.
1¢Cccoo.

2€CCo0.

2CQ0C00.

'2C0CC00.

3CCCO0.
3CCQ00.
3CCCO0.

5CCC00.
5CCC00.
5CCC00.

1¢CCCO0.

1CCCCO0

1CCCCO00.

15C0C00.
15CCC00.
15CGC00.

HARM
DIST

°30§4

3.67
"'10. 05

"'3.g1
3.59
"’3.q2

-3.85
3.43
“3.67

“3073
3.C8
‘3110

”1058
2449
_2016

.’3052

2.04
~1e.44

‘3053
l.43
—0.47

“'3‘62
0.76
0.50

~3e44
0.56
0.9

100 KM

OIST

-15.16

2.38
3.22

~13.83
l1.82

2.87

-11.75
0.98
2.23

—8.49
"O. 1.1

1.04.

"5.20
~0,67

~-0.07

—-0. 70"

~0433

-~1.60
~-0.17

=0.33

_On 29
0.18

-0.11
—'Oo 1.7
0.19

50 KM
DIST

-1.06

1.30

“2-00

"‘O 062
1.27

.P;losl

~0.20

1-0!’

—0.85

”0-05
0.38
—-0.26

>>‘0002
‘0106

-0.14

~0.00 -
-0 .09

0.C0
"'O 005

" —0.08

0.C0
-0.01

~0.02

—-0.00
"0001

DIST

0.30
lot2
0.35

0.36
0.89
0.12

0.21
0.28

-0.03

0.02
~O~07

-0.03"°

~0.00

~0.04:

~0.01

_0000
‘0002
“0.00

-0.00
-0.00
-0.00

- —=0.00

-0.C0
-0.00

—OCCO
"'Oo CO
"0.00

214

10 KM  TOTAL

DIST

. -19.86
8477
"20108

T7.57
—2145

-15.59
S.74
“2032

-12.25
3.28
—2e 35

—8080
1.72
-2.38

"6095
1.23
—'1.89

-5.13
0.80
~0.72

—3095
0.45
0.66

—3055
0.39
0.87




DN

oL

DN

oM

DL

DN
DM
DL

37.50

37.50.

37.50

37.50

37.50-

37.50

37.50

"37.50

37.50

37.50

37.50
37.50

37.50

' 37.50
37.50

LONG

260.50

260.50
260,50

260.50
260.50
260.50

260.50

. 260.50

260.50

260.50
260.50
260.50

 260.50

260.50
260.50

ELEV

2cco0.
2CC00.

2CC00. - .

5CC00.
SCC00.
5C000.

2CCCC0.
2cccoo.
2cccoo.

5CCCO0.

' 5CCC00.
5CCCO0.,

1CCCCO0.
1CCCCO0.
16CCCO0.

HARM
DIST

- ~3.50

3.59
-4, 78

- =3.44

3.73
"4-35

2.11
~2.€6

-3, 40
1.56
-0.76

0.84

- 0.38

100 KM

DIST

—'9'06
6.74
257

—-8.47
3.70
1.64

—4.98
~0.09
~0.26

"1.62
—-0.42
"'00’.8

~0.35
0.18

50 KM

DIsT

4416
243

- —2464

1.64
0.96

‘1‘15

0.04
-0.06
-0.17

-*0.01

- —0.05

"'O 308

-0 000
-~0.01
-0.02

10 KM
DIST

0.59
0.19

0.21
"0037

-0.03
"0.01

"'0. 00
-0.00
-0.C0

215

‘TOTAL
DIST

—7Q80
12.08
—4065

8.03
"3091

—-8.26
. 253
"‘34 10

"5.03
1.09
"'1'02

"‘3.93
0.56 .
0.54




3

DIST

comp

DN
DM
DL

DN
DM
DL

DN
oM

‘DL

DN

(1

DN

DM
DL

LAT

-37.00

37.00
37.CO

37.00
37.00
37.C0

37.00

37.C0

.37.00

37.00,

37.C0
37.C0

37.00
37.C0
37.00

LONG

261.00
- 261.00
. 261.00

261.00
261.00
261.00

261.00
261.00

261.00

261.00
261.00
261.00

261.00

261.00

. ELEV

. 2CC00.
2CC00.
2CC00.

5C000.
5CC00.
$CC00.

2¢CCo0.
2CCC00.
2C0CC00.

5CCC00.
5CCC0C0.
5CCCOC.

1CCCCO0.
1CCCCO0.
1CCCCO0.

HARWM
DIST

-4, 50
3.11
-4, 20

"‘4037
2.61

-3.94
2.10
"'2- 33

““3. 71

1..20 -

—0. €4

"3.67
0. €6
0.39

100 KM
- Cl1sT

~-13.23
- 1.36
3.97

0.20
2.76

-4.92
~0.88
0.33

“0.03

-Oo 34
"0. 29

0.20

50 KM
DIST

"40118
"'0.60
"0.70

-1.17

-0.31

“"0 .02

-0.16

-0 001
-0 .05
-0.08

~0.00
-0.01

10 KM
DIST

2.22
0.74
"'1.56

0.21
0.16
"0. 39

"000‘.
“0004
*0001

""00 00
-0.00
-0.00

-0.00
-0.00

216

TOTAL
DIST

4ab1
‘2049

~15.69
3.24
—1a77

“’8090

1.08
—-2.18

-5.36
0.56
~0.75

"4001
0.36
0.57

LA 1 inah A )




217

DLST  LAT ~ LONG  ELEV HARM 100 KM 50 KM 10 KM  TOTAL

camp . ‘ - DIST  BIST  DIST  DIST " DIST !
DN 36.50 260.50  2CC00. —4.34 =—14.96  0.85 —3.48 -21.94
oM 36.50. 260.50 2CC00.. - '3.29 -3.81 4443 —2.23 1.68
oL 36.50 260.50 . 2CC00. -3.31 3.52 0.69 - 0.14 1.04
DN 16.50 260,50 5CCQ0. ~4,22 —11.82 ~1.21 —=0.47 =-17.72-
DM - 36450 260.50 5C000. 3.08 ~2.66 1.78 - ~0.74 1.46
DN 36.50  260.50 2€CC00. ~ ~3.84. =-5.15 —0.07 0.02 -9.04 .
DM 36.50 260,50 2CCC00. 2424 —-1.25 —~0.14 " -0.05 0.80
DL 36.50 260.50 2CCCO0. ~1.¢€4 0.15 -0.10 ~-0.01 —-1.60
DN 36450 260.50 5CCCCQ. -3.66 -1.54 0.01 0.00 ~5.19
DM 36.50 260.50 5CCC0O0. 1.27 ~-0.70 .- —-0.06 -~0.00 0.51
DL 36.50 260.50 - 5(CCCQ0. -~0.18 -0.16 -0.07 —-0.00 ~0.42

DN 36.50 260.50 - 10C¢C000. -3.65 —b.31 0.C0 0.00 -3.96
DM - 36.50 260.50 1CCCCOO0. 0.€67 ~0.32 -0.01 -0.00 0.34
bL - 36.50 260.50 10CCCO0. = '0.¢€2 0.18 -0.02 ~-0.00 0.78




- DN

. DM

DL

DN
DM
OL

DN
DM
oL

37.00

" 37.00

37.C0

37.C0

37.C0
37.00

37.00

37.00
37.00

" 37.00

37.C0
37.00

37.00
37.00

- 37.00

LONG

260.00

260.00

260,00

© 260.00

260.00
260.00

260.00
260.00

260.00

260.00
260.00
260,00

260.00

260.00
260.00

ELEV

3

2CC00.

2CC00.
2CCO0.

5CC00.
5CC00.
5CCQ0.

2CCCO0.
2CCcO0.
2CCCO0.

5CCCO0.
5CCC00.
5CCCO0.

1€CCCO0.
1€CCCO0.
10¢CCO0.

HARM
DIST

"30 37
4o 24
-3.87

"‘"‘o 32
" 3.67
-3.48

-3.22
2.89
_1’96

"‘3. 36
1.66
-0.30

-3.57
0.86
0.61

100 KM
CIST

~16.77

2.47.

2.40

-13.06

1.21
1.30

“501’0
—0.55
“'0064

—0.56
-0.31

_0-32
"'0129

50 KM

DIST

"'0.29
2.17
-1 n‘l9

0.63

1.51 -

-0.66

"'0 001
—0.04
-0.13

”

0001
—~0.05
~0.07

0.C0
-0.01
“'O 002

218

10 KM  TOTAL
DIST DIST

2066 —17076
0.10 8.97
-0.21  =-3.17

0.41 -15.34
0.10 6.78
0.07 —2076

-0.00 —-8.63
-0'Cl| 2.27
0.C0 ~2+73

~0.C0 1.04
-0.00 -0.68

"’0-00 0055
-0.00 0.76




APPENDIX F

POINT "MASS S=T DERIVED FROM CONE DEGREZE ANOMALIES
: (expressed as mass times the gravitation constant)
Kv IN UNITS OF CMe

CUBED PER. SEC.

=0 e3259460D
—0.6385534D
0e1612857D
De8242778D
~-Me1150218D
Ne3612684D
~0 62853490
De1558346D
NetD26446D
7e5438947D
De&t 1423240
 —D.5588601D
DelaT73504D
Ne2460673D
 0e1402149D
© £0e2908337D
0e3478204D
—Ne6H694252D
-0 e22953°38D
Ne2971680D
Ne7006522D
-Ne1133521D
053865010
Ne5762145D
Ne2977237D
Ne265017SD
M e60INR44D
~Ne2441826D
—Ne1083n27D
~0 96303980
~0e1315819D
De2681218D
—Ne2712710D
—M e 4755718D
Nel311531D
—N.2826543D
Ne3817996D
~Ne7227643D
EJECT

12
13

1=

12
17
12
12
1R
12
13
13
13
13
12
17
13
13
13
13
13
13
13
12
12
12
13
12
12
13
11

12

12

SQARD .

13

17
12
173

1t
12

GEOCENTRIC COORDINATES

X

62675
187995
313223

4387298

563153
687744
811933
I25845

62074
185383
3098372
432508

672598
794229
2157371
608773
18152

RO2720
423601
54427=
5645873
7347AHF
N4 4RT
29813
179412
298022
418287
S7448
656345

219

Y

~-5662813
-R55667047

~-2661306 .

~5653199
~-5642128
-5628301
-5611722
-5592401
~5609158
-5605417

-5600035

-5581765
-5568085
-5551684
-5532570
-5545776
~55432065
-5537646
-5529520
-5518692
-5505167
-54889%1
~5470053
~5472700
-5477022
-5471657
~5462638

-5408718
-54072030

-53Q=122,

~-5R84=37
-=371341

METERS
4

2686058
2686058
2686058,
2686058
2686058
2686053
2686058
2686058
2809713
2809715
2809715
2809715
2809715
2809715

2932027
2932027
2022027
2022027
2932027
3n52934
2N52934
2152934
3In52534
3n52934
2152234
3052924
ans2934
3172379
2172379
31723279
3172379
2172379

3172279




220 -
APPENDIX F CONTe

Kv' I'N UNITS OF CVMoe GEOCENTRIC COORDINATES -~ METERS

EJECT

=49207350

CUBED PER SECs SORDe X \4 ~ Z
Del1755955D 173 774921 ~-5355519 3172379
' D0e5034768D 12 893119 -53370890 3172379
Ne2930443D 173 59024 -53395%4 3290302
L. 0e3319325D 12 177045 -5336985 3290302
NeS466739D 12 294920¢ ~5321757 3290302
T De2321089D 173 4127792 -5323943 3290302
014902200 13, - 530359 -5313517 . ... 3290322 .
| £e1899452D 13 647688 —-5302495 3290302
T =Del1201257D 13 764700 -5284882 2290302
 NeBB1TLTTID 12 881339 ~S266687 2290302
~Ne6119016D 12 58207 ~B265629 3406647
—0e2895043D 13 174593 ~5263055 3406647
-Ne8617721D 12 290894 -5257910 3406647
~-0e1676718D 172 407052 -5257125 3406647
-Ne89563718D 11 522012 -5239213 3406647
Ne3531302D 13 628716 ~3227071 3406647
~Ne17409219D 17 754108 -5211675 3406647
N.2834%Q7D 12 859131 -5193731 3406647
Nel762822D 12 273561 ~5189101 3=21357
0e2954539D 13 172955 ~51856346% 3521357
Ne4971894D 11 2855656 -5181494 3521357
-Ne3482156D 12 401137 -5173891 3521357
DeH114547D 12 215411 -5163759 3521357
~0e19275390 173 6294323 ~5151104 3521357
Nel5472441D 173 742148 ~-5135931 3521357
Nel451956D 13 BE6439 -5118249 3521357
Ne2851326D 12 56487 -5110047 35634375
C—NL1N91NE2D 17 169434 -5107549 3534375
Ne1397231D 13 282299 -5102556 3634375
Nel1200531D 13 295025 -3095NA8 /3437
-0e3101647D 173 CBNTEG9 ~5085091 3534375
. 0e5830344D 173 6519844 -=5072622 2634373
~0e5529201D 173 731825 -30575687 3534375
N e 29653260 17 8473451 -5047274 /R4 RTS
019947030 13 Slattsls ~-5028503 2745643
—Ne32235374D 12 166730 -5026045 3745648
Meldd44n3D 12 277794 -5021131 3745648
~De32312180N 17 B/R722 -30137A4 ITLE648
Ne71727342D 173 499479 -3003945 3745648
—NeH543627°D 17 5099573 ~4301 682 3745643
0e/TTERIZD 171 720148 . -4976279 3745643
~NeB9019790 17 629591 -4250284 3 1745648
n.8287%9°D 12 544657 -4944523 1855119
Oel324n44D 17 163243 -4942091 3855119
~Nel1639737D 173 273154 -4937259 - 3855119
~Ne103295928D 12 282229 -49372013 3855119
~Ne3258523D 13 491117 3855119




EJECT -

kM IN UNITS OF €M

APPENDIX F CONT e

GEOCENTRIC

CUSED PER S5Cs SQRDe X
024225010 13 599764
~Ne3019799D 13 708119
046296230 13 816127
0a3272215D 12 53702

" =0el1364739D 173 161080
" Nel7191356D 13 26833C
-NelB744740 17 275549
Ne5280606D 12 482534
NDel6137240CD 1R 5327873
~Ne3652717D 17 695744
Nel916K48D 172 801845
-Nel1557177D 12 52720
Ne2770521D 173 158137
-Ne2375113D 13 263475
-De1171313D 173 262886
" Ne2077131D 13 47327156
~DNe2647336D 13 =78514
CNe&S297344D 173 5830130
—0e230547038D 13 787212
~Ne5970738D 11 51713
L =Ne434182230 10 155116
S =0e1271824D 12 258443
' Ne1655181D 173 361643
~0e5549% 31D 12 464667
~0e2844758D 13 557463
NDel4I16567D 12 669202
10630794910 12 772174
~Nel473403D 173 50681
NDel1381469D 173 152019
-Ne20044100D 13 253283
Ne2740835D 13 354424
NeBFITNANED 12 4552931
ne1000757D 13 =E61 35
Rel174972220 173 AS56NT
~Ne1828243D 17 7E67SD
~De4115722D 13 49674
~Ne0405596D0 12 148248
—N.6847205D 12 248000
Ne3187773D 17 347021
~Na1348225D 17 443892
" Nel1343=87D 17 TB44EAR
~"el1234A/97D 17 642911
Ne5219A418D 12 740974
ne2518F27D 17 48=a?
~Me2263447D 173 145505
“Oel159731D 173 Pazs"5
Ne7823227D 12 33G468

221

COORDINATES - METERE

Y

~-4908302
-489384¢4
-4876995
-48%8101
-4855727
-4850973
48417861
~48343786
-4822529
-4808323
-47317A48
~47693273
-4766932
-4762332
—-4758344
-47460731
-4734400
-4 720455

C=4704222

-4678216
~4675230

—4671339
~4664504

-4655370
-4643950
-4630281
-4614340
-4584824
~-4582584
-4378103
-4371385
~45624734
—4RE] 232
~4537346
~-4522227
-4489190
~-4485337
~4482610
-44760732
-4467257
~4456319
~4443192
-4427895
-4291759

-43892173

—-473849222
-4379488

z

3855119
3855119
3855119
3962735
39627325
3962735
3962735
3962735
30627235
3062735
2062735
4N68444
4nBB8444
4168444
4868444
4ang8a4a
4N68444
4068444
4naBaay
4172193
4172193
4172193
41721932
4172193
4172193
4172193
4172193 .
4273932
4273932
4273932
4273932
4273932
42739232
42733732
4273932
4273609
43735729
4373609

4373809

4373609
4373609

CA4RTRE09

47373609
4471176
4471175
4471176
4471176
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APPENDIX F CONTo .

KM IN UNITS OF CMe ‘ GEOCFENTRIC COOQDIN!\TES - METERS .

CU3ED PER SECs. SQRDe X Y Z
De7305570D 12 476175 -4369914 4471176
-0e3349367D 173 5325658 -4359204 4471176
0658595220 11 6289201 —-42463564 4471176
0e1330038D 17 724826 -4331359 4471176
Ne2860829D 113 g 47437 "—4291380 4566584
NeS5105720 12 142290 -42892873 4566584
Ne2517168D 17 227072 L =-4285089 4566584
-Nel016191D 13 231722 -42788301 4566584
"e5728023D 12 u26244 —-4270422 4566584
~Ne1018220D 13 520540 —4259957 4566584
Ne3528272D 173 614582 -4247409 4566534
~Ne136613G0 13 708324 -4232783 4566584
—~0e5124303D 17 46309 -41892359 4659785
 =Ne3566228D 13 1238975 -4187251 4659785
Nel185353%6D 13 231433 -4183158 4659785
~Ne2640521D 13 323848 -4177019 4659785
Ne&973INTD 12 416105 -4168840 4659785
Ne5011814D 12 508153 ~4158623 4659785
~0e16924523D 173 529943 -4146373 4659785
De2868414D -12 . 591474 -4132098 4659785
Ne202026%D 13 . 45158 - -4085154 4750734
~-0.184606210 11 135452 -4083158 - 4750734
0eT766944GD 12 2255890 -4079175 4750734
~Ne7332741D 12 . 215758 -4073192 4750734
~Ne5269734D 12 405762 -4065214 4750734
Ne1083204D 13 495527 -4035251 4750724
Nel1785349D 12 5350459. -4043306 4750734
~Ne1408471D. 12 674285 -4029385 4750734
0e40B6129D 12 —-2792122 -4935050 2686058
Ne6T762H50GD 12 -26827347 —4995575 26826058
~M 463568480 12 -2571251 ~-5053650 2686058
0656167720 12 -2458913 ~-5109255 2686058
-Ne 10662660 173 —23457273 ~-=1627252 2686058
~DeH3221860 13 -22306/873 -5212947 2685058
DeS631505D 13 . -2114902 -5262984 2686059
~Ne2353543D 173 -1998087 -52064350 2686058
Ne7Q4D277D 12 ~-2762250 -4BB2251 ‘ 2809715
Ne5194417D 12 -2653649 -4542129 2809713
-Nel213975D 13 -2543752 -4999582 2809715
Ne2D53156D 173 -2432611 ~-5054592 2809715
Nel1653770D 173 -2720281 =5107131 2809715
Nelas2253D 17 ~22N6817 ~-5157175 2809715
—Nel16791 340 17 -2022275 . ~-52N4638 2809715
~Ne3198227D0 13 -1976710 -5245577 2RC9715
Ne30Q3SANH 12 -2731N0737 —-4R27092 2022027
Me10225094D 172 -2623644 -48RA284 2032027
N.7033032N 12 | =25152"8 -4943083 2032027

EJECT




K™ IN UNITS OF CM.
CUBED PER 'SECe

~Ne&4Q20263D
De3147773D
—-0e.2089128D
~DeP611248D
=N 1066257D
De5291268D
I Ne4519024D
~Ne2125232D
Nel902257D
T NeS206244D
—Ne707782%D
L Me2335470D
-0e1297474D
-Ne1618267D
- De7122837D
~-Ne 20835530
~ne28802828D
M 3ONBR14D
. Ne9197736D
-Ne2185175D
Nel1191484D
-0 e3707722D
Del1143326D
=Ne1233316D
£e3423287D
=N 1023556350
—-D0e2753894D
-Ne1810662D
Ne27776 310D
Nel127118D
-0e4962526D
DeB032N44D
-0 653442370
~Ne6600719D
Dell45687D
—Ne 29204250
—NeHF48211D
De2772153D
-De&229262D
NeaN20927D
022695290
-0 e2432509D
7012284490
037141570
Nel2723473D
-0 e 54801730
Ne7015644D
EJECT

APPENDIX F CONT.

223

GEOCENTRIC COORDINATES - MZTERS

X

-2405123
-2294062
-21818831
-2068413
~1254374
-2628498
-2392404
-2485042
-2375487
-2266720
-2155883
-2043986

—-1921088

—-26564648
-255R98384
-245387D
-23466%5

—=22382937%

-2128841
~-20183246
-19068565
-2629502
-2326121
-2421504
-231570%
-2208773
~-2100762
-1921725
-18821714
-Z2533078
—-2431128
-23879351
-228Re27
-2178177
-20715652

—-10641 3%

- 1555648

|
V]

AV IS - BB}

[
EVINAY I V]

—-1235539
-1228A79
-P516441

-2417=24

Y

—-4997476

-5049422

-30328300
~-514%5886

519063587

-4769580

~4828066
-4884193 -

-4937933
~-4989250
-=028149
-5084575
-5128516
-4709750
~4767503
-4822926
-48753902
—4926675
~4974250
~-5020794
~=064184
~46476320
-4704621
-4759313
-4811679
-48615694
-4909332
—49%54572
-4997389
~45R3250
-4630452
-4693386
-4745027
Y VeV -]
~4841327
-4287040
-4928154
—~4516640
-4%72025
-4625175

~-4676065.

4724670
=47T7T0IA6
-482149730
4856541
4447830
-45027371

Z.

2932027
2932027
2932027
2932027
2932027
3722934
3N52934
3INS2934
3NS2934
3752934

3n52934

3N=2934

3052934

3172379
3172379
3172379
3172379
3172379
3172379
3172379
3172379
3290302
3290302
3290302
3290302

3290302

3290302
3290372
3290322

3406647

3406647
3406647
3406647
3406647
2406647
3406647
3406647
3521357
3521357
35212357
3521357
3521357
3=21357
3521337
3521357

BE34RTS

3634375
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APBENDIX F CONTe

GEFOCENTRIC COORDINATES -

EJECT

KM IN UNITS OF CM, METERS
CYUBED PER SECe SORDe - X Y 4 Z
-Na7103846D 13 -2317405 -4554712 3634375
fe3379376D 17 -7216153 -4604827 3634375
~0e2257713D 13 ~2113819 -4652691 3534375
Ne3775783D 12 -20104%1 -4698232 36242375
Ne2N15229D 12 -1906101 —-47415756 ‘3634375
—-Ne92232632D 12 -1809822 -4782553 3634375
-Ne6854356D 13 24767204 ~4376853 3745648
De10214136D 14 -2378945 -4430524 2745648
—-MNe7869351D 13 -220042°5 -4482030 3745648
Ne6596267D 173 -218078R2 ~4821 7345 2745643
~NeT73VFETED 173 -2080087 -4578445 3745648
De3424748D 17 ~-1378352 -4623309 3745648
-Ne5158%04D 13 —-1875658% ~45/%91 2 3745648
Cels201350 13 -1772787. L —4T706235 3745648
De6223835D 13 -24724941 -43032743 2855119
~Ne&41516290 17 ~-2329208 -4356518 3885119
Ne45625674D 173 -22423373 -44071A3 2855119
-Ne4911703D 17 ~-2144751 —L4SEETY 3855119
Ne&4 1575690 17 —20452342 ~-45019568 3855119
~Ne267B4RED 13 ~-1945223 ~4546082 3855119
NeB558717D0 173 -184423873 ~4587974 38551172
~Ne4449775D 17 —-1742482 -4627623 2855119
Ne33656%22D 12 -23927289 -4228534 3962735
-Ne22937123D 17 ~-2298330 -42807286 3962735
Ne1795116D 17 ~-2203147 -4330146 39562735
Ne3341780N0 12 -2106888 —-4277720 3962735
Ne9534230D 12 -2309599 4423295 3962735
—Ne4286n02D 13 -19112328 —-4466638 . 3962735
7425617450 13 -1812123 —-4507797 3962733
Nel34T7BEID 12 -17120n32 -4546754 2962735
024753790 12 —-2348670 -4151251 4r68444
~Ne30T73ENSD 12 -2256330 -4202166 4an68444
-Ne168447070 13 -2162887 -4251017 4n68444
NedT7S72NEAD 12 -203587285 —-4297790 468444
Ne5149151D 12 -19272875 L —4242453 4ne8a4a4
~D 26419970 173 -1876400 ~4388014 4168444
~Ne30BRNARD 17 ~1773018 4425421 4n”84a44
NeB5363N28D 13 ~1680745 —4462666 4168444
Nel10427320D 17 —-2203R0 -4071961 4172193
~Ne25002138D 12 -p2123228 -4121893 4172193
Nel756221D 17 -212157N0 -4169811 4172197
-Ne214735470 12 -2028R7% -4215631 4172193
NeTHTRMRAD 12 -19351838 -4259510 41721923
-Ns2126711D 12 -18405%5 -42212489 4172193
~NeBBAARFID 12 -1745024 —-43400204 41721973
-NelD1136D 17 -1648439 -41787398 4172193
Ne3354R130D 12 7257317 -2990672 4273932




XM IN UNITS OF CMe
CU3ED PER SECe SGRD.

-0e1478167D
~Ne6381547D
-0e1706281D
020842250
-NeB8247781D
~NeBT746710D
Ne3725421D
NeSB72875D
0014834550
-Nel7614340D
Del340244D
Nel1339872D
De1828199D
De35297032D
Ne2583237D
-0e37C1352D
Nel1249059D
Ne3207534D
~Ne6H848I6ED
N e256261332D
~N e 30GYERED
DeS4248370D
Nel1657548D
~0e1868303D
-0e2626741D
~0e62069232D
~Ne6H62068CD
~-Ne3602128D
Ne4283987D
-0 B3P4TRTD
Ne&114712D0
~Nel846114D
1 e9599147D
~Ne2NIT7R2EN
Ne2318718D
~Ne2BRAZEID

NeB315% 12D

-0e253672070D .

-Ne 13072180
-Nel1773277D
De243473730
Nel1212457D
—-Ne241 13030
Ne28041180
~-Ne31321556D
- e 527023720
-0 24035720
EJECT

12
12
173
12
12
12
12
12
12
1

[y

[V IEAVERE AV IAY]

T T S T T =y
FURRPS IEPC RN INETC JENEN AN BAV JENUY N

[ASIERV]

L% S BN |

)

bbb 1k el gk ek bt ik d §e bt bk bbb e Jad fed et fed md ek s

[95 2R V IR DN IS N RV TRV WA

IVIRAVIRNVERN I S

APPENPIX F CONTS..

GEORENTRIC
X .

T =2169045 .

-2079215
-1288772
-1895555
-18C32812
-1710188
-1615727
-2210718
-2123801
—-2035847 .
-1946897
-18356995
-1766187 °
-1674513
-1582025
-2162541
-2077518
-19291487
-1904469
-1816%27
-1727597
-1638023
-1547549
-21137205
-2020219
-1946140
-1861109
-1775170
-1688362
-16007232
-1512215
~-206307353
-1981225
~1892845
-1816823
-1732%47>
-16482100
~-15625652
-1475741
-2011754
-1932540
-1852621
-1771677
-168%R57
-1607231
-1523309
~147294473

225

COORDINATES ~ METERS

Y

-4032607
~-4086568
-4131532
—-4174477
~-4215381

—-4254226
-42920921

~-3907431

-3VERILE
-4001327
~-404%52353
-4087402
-41274%54
-4165488
-4201487
-2822278
-13869149
-3914128
-29357195
-3998327
4037306
~4074711

-4109925
—-373525%
-2781059
-3825014
-3867100
-290)72956
~2945533
-2981941

-4016353
~35464073
-2691117
-724025
-2775111
-38143%51
-2851727
-2857221

-2Q20814
-3BEETE53
~ATPIREE
-2641209
-26812773
-27192527
~T7ERE4
-3A707R3S
-3B27354

z

4273932
4273932
4273932
4273932
4273932 .
49273932
4273932
4373609
47273609
4373609
4373609
4373609
4373607
4373605
4373609
4471176
4471176
44711756
4471175
4471175
4471176
4471175
4371176
4E66584
4566584
4566584
4566584
4566584
4566584
4566584
45566584
4659785
4659785
4A=2T7BS
4659785
4A=9785
4A5GTES
4459785
4659785
4750724
4750734
4750724
4750734
4750724

4TENTRY

4750734
4750734
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APPENDIX F. CONTe

KM IN UNITS CF CM. ‘GZOCENTRIC COORDINATES - MSTERS

LN e5578702D

NeI95H443TD

-1035083

-1&18441

-5513175

~-5324719

CUSED PER SECs SQRD. - X Y o z
—0e63417134D 12 -1822739 ~5344932 26860583
; De35139429D. 11 -1774123 -5385466 2686058
U 0e889242486D 12 -16545640 -5423368 2686058
—Ne2417299D 173 ~15343249 ~5458520 2686058
Ne70441732D 13 -1413397 -5491204 2686058
N e2542584D 13 -1221575 -=5521104 2686058
. 0eT7435433D 13 ~1169211 -5548307 2686058
~0e4122991D 173 -1046276 -5372727 2686058
-Ne2N84182D 13 -9228730 -5594564 2586058
~-0e10235660D 17 -7989137 ~5617597 2586053
1 De2983407D 13 -674545 ~-5629885 2686058
=0 e1549970D 173 -550028 ~=643424 25686058
—Del279368D 13 -425142 ~-5654207 2686058 -
-Ned 74370250 173 -200048 -5662220 2686058
~Ne2974788D0 12 ~174808 —5667469 2686053
D e3TRORSID 12 -49482 5662248 2686058
_De3383785D 12 -1872489 -=287748 2R09715
Ne1340984D 173 -1755147 ~5227849 28097153
=N e2A37853D ~-1672569358 -5265745 2809715
N e4764705D ~1517933 -5400220 2809715
611357260 -1393187 5432455 2809715
N e36582n=D -1277757 -S46207256 2809715 -
~Ne4322534D -11567072 ~-54889247 2809715

28039715

~Ne1905266D -2129%7 C=-B534709 2809715
-0 6223752860 -7901285 -5553538 2809715
S Ne46922 38D —-66T42T ~-5559553 2809715

f =N e3251428D -5441473 -=583046 2809715
=M e3TRT74TED -420593 -5503711 2809715
Ne2011184D -2268728 -5601641 2809715
—M e 3T7T7BLTND -172937 ~-=6NA3724 2809715
~Ne2776354D -48953 -5602237 2809715
"e 10702430 -16%11331 —~=P27298 29222027

" e 357979840 —-17357310 —-R2ETE4S 2032027

2932027

-Ne 19827720 —-1320731 ~5320193 29222227
T NelT714n57D -128272237 -=771070 2932727
CNel141128560 -126372193 -=40377315 2032027

Ne18497790 -1143672 -=426927 2032127
-N 25072460 -10237235  —~54F0877 2Qz2n27
-Ne204132272D -a02441 -=4721583. 2032027
-Me192651 180 -7R1454 -=490734 2932027

nNe11267SRD 17 -559A094 ~-5R"06717 20322027
-0 26897330 17 -537204 -3319939 2a32n27
Ne2992817D 17 -41=840 C =EE308E03 2032027
' NL13G87217D 17 -273434 —-55723344 2032127
Nell45=24D 17 -55472478 2Q32127

EJECT

S e T T T T e o I T
S T T S TS TR0 TS Y TSN, IS % DN TG TR TN TR IROY IS IR N IRPOV TN B T AV IR V]

~1739873
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APDENNIX F CONT.

v IN UNITS OF M. GEOCENTRIC COCRDINATES — METERS

TJECT

CUYRED PER SEC. SORDe X Y z
Ne3096218D 13 -487299 ~-55459073 2032027
De13223731D 13 -1829273 -5165708 3052934

—0e23535°32D 13 —-1714674 -5204883 3052934
M e394332312D 13 -15991=8 ~-5241515 3n52934

T —Ne10327~59D 123 -1482900 -5275584 3052934
Nel18935519D 13 -1265917 -=307076 3052924
Ne18935229D 13 -1248246 ~-5325973 3752934
NDe13377670 13 -11320n06 -53622563 3N52934
063539740070 12 -1011197 ~-31859373 3nN52934
Ne15104870° 17 -8n1835 -=406970 3IN52924

L —0.9953801D 12 -772143 ~-5425364 2052934

—Ne8859747D 12 -5520273 -5441107 3IN%2934
Ne2032726%0 12 -5315R4 -5454191 3052934
—0e9048r90D 11 -410R85 -5464609 3IN52924
~0,.3859234D 12 -2899287 -5472357 3452934
Nel1941725D 17 -1568946 -5477420 AIN52924
~Ne34R4157D 12 -47823 ~S472826 3N52934
-0 1357721D 172 -18067325 ~510C909 3172379
De4520590D 173 -1693125 -5129593 3172379
—Ne1667578D 13 —-1579n0783 -51757565 2172379
Ne1DCO=/AED 1R -1464295 -5202407 3172373
Ne20TT76£47D 172 -1248723 ~-5240503 3172379
Ce1820184D 173 -12226"78 ~-52692039 3172379
~Ne2B12481D 173 T -1115331 ~-5224799 3172372
Neld62371D 17 -998509 -5318371 3172379
De3522538D 13 -880408 ~5329144 3172379
ne19202210 17 -762458 -5357308 21723792

—0e1192496D 13 -643844 -5372853 3172379
~Ne10242347D 173 -5249156 -52383773 3172373
-",.13818090 17 -4057322 -5395061 3172379
—Ne16507 32D 173 -2867249 -5403711 3172379

—N 27074850 12 -166827 -5408721 3172372
-1 1139665D 17 -47222 -5411087 3172379
~Ne24427E8D 172 -1732%72 -5031639 2297372
Ne2624%17D 12 -1670724 ~5071824 3290302
~-0e35225240 13 -1558272 ~5107439 3290302
NeS114728D 12 -1444293 -5140697 3297302
~0 477347830 12 -1230293 -5171383 3290302
—Ne4BEDTTED 13 -121672%0 -5190=42 2290302
Ne2457=nal 17 1171114 ~=2P5140 32907302
-N.1864826D0 17 -285222 -5248224 3290302
ne107207°72D 17 -8621a2 -5263723 3290302
—Ne4263297D 17 -732401 -52856647 3290302
Ae202728230 13 -5 -5320103A 2290302
1,88%845°D 11 ~-5179093 -5714737 2290302
~1e 1773 AID 17 —40nnRan -53248289 2290302
Ne2552747D 173 -282=72 ~-5332439 3200302




Kwm

CUBED PER SEC.

Ne599418%5D
Ne21992361D
-0 e 27453420
0286818330
~0e35417728D
N e 7RETTR3D
=N e4129752D
L D eB3921S30D
—~N 46791750
L 0e10973222D
~"Ne32566589D
~0e3271382D
Ne1840852D
n"e1840243D
NDel&RT234D
~NeB232734D
L NeS3404233
=M e3336531D
-0e12144172D
NeP142772D
=N e2T771274D
. Ae19723n29D
~0 328822270
Nel2583425880
 -nNe1682A68D
~Cel742425D
-0 e B5259293D
Ne3515412D
ne3272437D
~N 450N Q6D
~Ne2056377D

ne20037868D
5el1280774D
N e 26741 TN
—Me2514"ASD
Nel1887571D
—Ne3722727AD
N e35222320D
—"eB1098ATD

~Nel11271472N
D e 223%T4N77D
=JSCT

T A e N I I e T e A e T e T e e i

(Y]

[AVIAV]

S IRV RN RS |

VI AV A BN |

2

)

9N IR0 TS TRRUS T BN JDON TN % N TR U% IV I 3 IREDY B I AV i\) N w o

AV IR AU TS TN RS TEON BN B A BT ISV S V)

IN UNITS OF CM.
SORD .

L3

- GEOCENTRILC COORDINATES -

X

-1645626
~4660D
-1757810
~-164745C

~-1525685

~1424968
—-1321 25585

-11925801

-1085361
-97162C
-887044
-T74127%2
5626531
-510817
~2348734
-2785/%53
-1623456

-45934

-17732267

-162237724

~-15143%1

—14042%9

-1293487°

-1182068

-1070079
~-287=68

~-8445538

-721195
-617445
~503294
-289194
—-274503
-153934

-452837

-17050773

-1538947

-14721791

-1164752
-1083777
- P79
-9217721
720056
-6030292
—ganTRa

~757149

APBDENDIX F CONTe.

Y

~-3337382
-5339717
-4963503
-5001548
~-5N35748
-5069487
~-5099748
-5127517
~-5152780
~-F7ES24
-519%57490
-5213415
-5228544

-3241116

-=5251128
-5258572
-=263447

-=265750 .

-48917561
-402829582
4963547
—-4005810
-3025621
~20852995
~-50377832
-210202326
-5120228
-R137647
-31E52555
~-3516434%5
-=174811
-5182147
-31862591
-=189220

T —4817235

~48537572
~43R7323
-4919790
—-443F0AT
-4376015
~5000832

-=022505

-=042227
-[{NRNTA
—-=QT74N3T
-=205253
-5083774

228

METERS
7

2406647
3406647
2406647
3406647
2406647
3406647
2406647
2406647
3406647
2406647
34n6647
3IR213F7
3521357,
3521357
3521357
3521337
3521257
2521357

2521357
3521357
3521357
3521337
3=21357
352135

3R21357
3=21257
=21 RE7
2534375
3534375
2634275
36342375
3634375
35347275
2434375
3524375
2574375

3874727 R
RR3R473T7S
3A243TS




kM IN UNITS OF CM.
L CUBED PE5 SEC. SORD.

~Ne38295120
Ne9I3833710
~Je 2263382D

Ne2621%539D .

=0 e4440224D
0615432270
ne2408270D
0615245190
N.32197240
—Ne26722730
-0414632220
-Ne1181711D
 —0.7924527ED
| Ne923855ED
-1.88561248D
Ne2291177D
Ne22459430

Ne12573370

~NeB5818827°D
—N e 3S3ETNTD
Ne31384A%D
Ne3022607D
DeS227020D
-3 eA370403D
-Nel1420728D
CeS57555839D
—=Ne1852213D
Ne10212n80

Nel609535D

-Ne 16487040
-NeP9503203D
=N 18212820
—~De 136956560
—-"e 804672 110
DeI2664730
~1.1902101D
Nel0NO=27D

-De168C40ED

Me438745620
-~Ne102Y32S2D
NelN42D7ED
~Ne2227%472
-Ne 13222970
-NeHBRITRITH
MNelda307 37D

~-Na25557150

S =DeB674226D

ZJECT

[AVIAY]

b= ek ped b A ped b
NIRELY BN BTV B Y]

W v

IV

b bt bbb bed b B bbb BSh . feb b ek ped peb d bed fed bd b bbb f
SRRV AV ISV I RV TN B T A IS B BN A BN

b ped et s
ATV IR B VIRV ]

[ = T T P Ry —
[RCFIVIINRD JERV IS ROV B B

v

[y

GEOLSENTRIC COORNINATES -

~1678551
-1573452

—14587487

-13602798
-1253447
-1145484
-1726751
-227332

!
Laali A8 WY B
. » oy N
OV D0~ DUy 4
)
a
Y

D oD e L
52 N I
[S10E511

{
JU P

it (M
N

1
S R e e
R AV IR oY
LIRS IR B te e
G N Oy e

[N LUV I S

-62673%
-=88241
~472556
-270755
—-251654
-1=244%
-431572
-1621765
-1=221722
-1417754
-1314584
-12109272
-11064/67
-12021322
-826437
-720714

-5834554.

-=78050
-4712287

ABPENDIX F CCNTs

Y

~5103199

-5107930
-=110164
-4740255
~4776314
~4800929
-4841194
~48771092
489651 1
4921725
-4942455
—42561751
-4578641
-4993088
-5015794
5014455
-=021754
-5026420
-5028619
-46561183
4729585
-4750327
~47887473
-4814818
-4R38541
-4859893
~4378881
~489%5479
-4909684
-4921490
~4937891
-49237822
—aDN DY
~4042521
~4579727
~4514458
~45457734
-45771739
-4705078
~4730678
-47539856
—4774970
-4797621
-4809229
-4823885
~482%48%5

229

2434375
3745648
3745648
2745648
3745648
27456483
A74RE64R
37455648
2745648
3745648
3745648
2745643
3745648
37456453
27456483
2745649

3745648

38551173
2885119
3855112
3855119
3855119

3855119 .

3855119
2855119
3855119
2855119
2855119
2853119
ARES119
2985117
R2G62735
3062735
2062733
20E2733
3062735
3962735
2062725
2962735
20627325
2952735
19262735
2962735




“ne1832199D
Ne3027429D
N+ 38RDEIFD

-0s1019855D

-Nel1517524D

~0e2156701D
De2612426D
Ne3455742D

-Ne57421260

Ne24121420

 _M.1073941D
—0.9728854D

~0e 186084350
~Ne 267245570
D2e33304359D
-0e2361443D
~D11119272D
Ne2447264D

-Ne 10825030

-0el434806D
=N 46505190
0e42127C7D
~Ce4982224D
NeBET74285D
~Ne2317261D
~Ne3912086D
7e3309947D
Nel168368D
Ne3122372D
Ne36282223D
Ne3213314D
-0e33231775D
Ne3026754D
-Ne 31772530
~Ne1626N0LTED
£ eI0IVETID
Ne7617238D
“Ne7ETRTRID
DedILTHELD
—~Ne7723111D
Del771ASTD
Del1210A12D
neB83839T41D
~N e 287497480
T =Ne293777ED
=T 223B0N210

Nell1351450D

EJZCT

13
12

12

APPENDIX F CCONT.

kv IN UNITS OF 9.
CU3ZO-PER S50,

SQRDe

.0

13

13
17
12
172
17
12
13
12
12
132
173
13
13
12
13
12
13
13
13
12
.17
13
172
172
13
12
13
13
12
1=
12
12
13
13
1
17
13
173
12
17
1’2
12
13

230

" GEDEENTRAIC COORDINATES - METERS

S X Y Z
~264276 -4844722 2962733
-257092 -4851591 3962735
-143781 -4855088 2962735,
. —42798 ~-48%8213 3962735

-15221392 ~442960736 4068444

—-14922333 ~-4520133 4068444

-1321R246 -4562015 4068444

-1220659 -4591668 4068444

~1188842 -4619077 4n68444

-1086444 —-4644229 468444
-383514 -4667111 4nB8444
-880104 -45687711 4168444
-T776264 -4706021 4n68444
-672044 -4722031 4nN6844L4
-567495 -4 735733 4068444
-452A71 —-4747121 4168444
-357619 -47361892 4ne8444
-2527293 -4762932 4168444
-147044 -4 767347 4068444

-41623 -4769433 4068444

-1561716 -4410150 4172193

-1463645 —-4443595 4172193

~-13565258 —-4474869 4172193

~-1266004 —4503955 4172163

-1166132 ~-4535841 4172193

-1065690 4535512 4172193
-964725 —-4577956 4172193
-863292 4598164 4172193
-761435 45615124 4172193
-659206 -4631828 4172193
-5556%56 46452568 4172193
~4538373 ~4655438 4172193
-250788 —-466=333 4172193
—-247572 -4671347 4172193
~-14423% -4676278 4172193

-40823 -4678324 4172193

- 1533539 -4322110 4273932

1434622 -4 354887 4273932

~-1233003 -42385536 4273232

-12407731 -4 /14047 42739732

~-1142832 ~44477391 4273932

-1044415 ~8 46465 4273932
-2454587 -4486566 4273332
-B46038 ~43067370 4273932

~-646G047
—=R4TT[43

4273932

4272932
42737232




. 231
APPENDIX F CONTe

KM IN UNITS OF C'e GEOCENTQIC COORDINATES - MIZTERS
X

EJECT

CUBED PER SECe SQRDs Y -z
T wNe 72279570 12 -444773 —-45672481 4273932
0e6116753D 12 -243785 -4372198 4273932
~Ne72222352D 12 -242630 -4573680 4273932
Ne3326204D 173 - =141356 -43E82925 4273932
- =NelB32769D -40013 —4384G30 4273932
N e3492429D -1498514 —42319256 4373609
~De6415297D -1404697 —-4264049 4373609
DeG506783D -13120%4 -4294059 43735609
~Ne6552247D ~12142351 -4321%71 4273609
NeB379107D -1112014 -4347770 4373609
-0e6298122D -1022637 -4271444 4373609
-Ne1375£31D 525746 -4392G682 4373609
-0e1693539D -828410 —4412372 4372603
Ne70364 36D -730669 —-4425637 4373609
—Ne4775283D -632571 —-44445706 4373609
De21624440 ~BR4154 —-445T5T74 4373609
~Ne1622°77D -435495 4468222 43273609
De 79774570 -335614 ~4476227 4373609
' De3981145D -237569 -4483173 4373609
~0e3939351D -138407 -4487331 4373629
—~0e3RB7147D -39178 ~4483234 4373609
~0e7921270D -1463955 ~-4139730 4471176
NeB4822562D -1374035 —-417112% 4471176
~5e423857 33D ~-1231544 -4200451 4471176
Nel536762D -1188275 —-4227784 4471176
Nell33443D -10924623 -4233021 4471175
24175092470 -10007244 -4276179 4471176
~-Nel1413277D -I05572 -4297247 4471176
0e5019717D -310357 -4316215 4471176
Ne7761728D -714745 ~4333074 44711758
-Ne22211256D -£13785 -4347315 4471176
~Nel11727540D —-=p2%23 —-4267437 4471176
N e2008827D —4250703 -4 7370917 4471175
~Ne78569212D -329273 ~4379256 4471176
Ne 24547520 -2323G2 -4285475 44711756
~Ne1619428D -1337371 ~4289540 4471176
Ne107Q=R2D -78324 —422148670 4471176
~Ne12513%4D -1432577 —-4045480 4566584
Ne22221 319D ~-1242801 ~4076150 4566534
Ne13928A3D —-1232757 ~4104847 4266584
—-Ne17124%392 -1161370 —~4131%23 4566534
ne 72247870 -1069795 -41561721 466584
nNe2129788D —RTTRAD -4178822 45656384
~-Ne8161778D -8340%4 ~41929410 4366534
-1 e1836377D -721927 “4217547 4565584
Ne1267793D -6784773 ~42244272 4566284
~Ne7521716D -A634607 ~4Z42827 4566334




< IN UNITS OF Cwe
CUBED PER SEC.

~-0e2690709D
Q15002740
NeF448L48D
=~Ne 29205260
Ve7416842D

-0e22%22 32D

=N e30723240
-0 e 47607870

© -Nel11887132

Ne2113327D
-0 e 190737320
Ne5419771D
. Del1723528D
~ e 87527740
Nel7721026D0
-0 e 55545770
-7« 894552020
Nel1217255D
~NeH1F2222D
Ne 76262930
—0e4B373520
Ne7153278
-N 3455738
Ne4310471D
ne3R691790
~MNe 278772 35D
Nel0325537D
DeI767216D
De&&21186D
-0el1281728D
Nel195A314D
0679122470
~Ne2321772D
Ne27HRTFOND

O

12
12

12

13
132
13
12
12
13
17
12
12
13
12
12
12
12
173
11
12
13
13

12

12
17
173
13
11
12

13

13
12
1
13
12
1732
13
17

APPENDIX

=

CONT e

232

GEOCENTRIC COORDINATES - MZTERS

SARD . X

|

—

[N

n

R t
ot DD O 3O

|
J
~
‘4
O
W O = 0L

-1363729
-127827%
-11221856

-425089

395701

-0/ G

-2151823

-125951

~-356%2

Y
~-4261156
-4271403
-4279552
-423%629
-428963
-4291477
-2949248
-3979198
-4007203
-4023250
~4057325
~4079418
-4099517
-4117612
-4133633
—-4147753
—-4152754
—-4162727
-4177752
-4183563%
-418B7552
“41892325
-3851031
-38872356
-2907595

-RP32394

-3956471
-3378015
-333975614
-40135269
-4030343
—43446%6H
-405467273
-40665147
-40732214
-4079690
-40832472
—408%5233

43566584
45665384
4566324
45656584
4566584
45656584
45659785
4659785
4659785
4659785
46539785
4653785
4659765
4652783
4559783
4659785
4650783
4659735
45659783
4659785
4659785
4559785
4730734
4750734
47507324
4730734
4750734
4750734
4750734
4750734
4730734

4780734

4750734
4750734
4770724
4783734
4750734
4730734




APPENDIX G

SHINT VASS SIT DERIVED FROYW THIRTY MINUTE ANOMALIES
(expressed as mass times the gravitation constant)
‘K™ IN UNITS OF CMe GEOCENTRIC ‘CCORDINATES - METERS

TJECT .

233

CUBED PER SECe SQGRDe - X ‘ Y z
Del624%22D 12 -1259153 ~5145733 3449692
-Ne29728380 12 -1211328 -5157187 34492692
~NeS412927D 11 -1162518 -3168197 3449672
-Del1512737D 12 -1115542 ~5178763 3449692
De5636833D 11 -1067484 ~-5188334 3449632
Ne3703734D 12 -10197227 ~-5198558 449632
Ne2225257D 12 2712873 -5207786 3449692
~-0e7091529D 12 -322755 -5216566 3449692
Ne4N243780 12 ~874343 -5224828 3449692
~-0e1939347D 12 -825863 ~-5232780 2449692
NeHBLITRNRED 12 -777312 -5240212 34495692
0el18680702D 12 -728671 -3247194 3449692
-De4881625D 12 -680028 -3233725 2449692
S Nel17317180 12 -521247 -5259804" 3449692
Mel1842747D 12 -332471 -5265431 3449692
~-7.7283184D 11 ~-533526 ~-5270605 3449692
-Ne4B893204D 12 —-484734 ~-5275327 3449692
Nel564400D 11 -1251415 -3114114 3438839
1e94815390 11 -1223244 -5125498 3498833
~N,e7825383D 11 —~11363269 -51364490 3498832
0edda39744D 092 ~-1128695 -35146941 3498839
0414196710 11 -1062925 -5157C20 3458639
0e2602358D 12 —-1813054 ~-5166615 3498832
N.28452050 12 -965116 -5173786 3498829
Ne2429382D 12 -921708% -5184512 3498839
~Ne9319149D 11 -8368275 -5192792 3498839
NeBN51421D 12 ~322793 -520N6256 3438832
~0eB425217D 12 ~77253% -=208013 3458833
—-0e1777171D 11 -724214 -[2142%2 3458839
Ne7116122D0 12 -675833 -52214473 3498832
-0 46ABAZAD 12 -62773553 -3227484 - 34988239
Ne9878757D 11 -5728332 -32323077 34988633
Ne2nB8723D 12 5757247 ~-5%238219 3498839
Ne33460086D 12 -431735 ~-5242511 2435839
Ne27494£3D 12 ~1242563 ~-3082048 3547684
Ne15052510 12 -1192632973 -5093260 A[47684
~Ne26417CED 12 -11491153- ~3104224 2547684
Nelg?5=CAD 12 -1101747 ~-=114659 3547684




KM IN UNITS OF CMe

234
APPENDIX. G CONTe

. GEOCENTRIC. COORDINATES = METERS

CUSED PER SECe SGRDe X Y z
De1122803D 12 -1054273 ~5124664 3547684
-Ne35711844D 12 -13086712 ~5134219 3547684
-Nel1209719D 12 -2359064 -5142332 3547684
Ne1188165D 11 -311334 -5152004 3547684
-0 e3627427D 12 -8635256 -5160232 3547684
-0 130223520 13 -815544 -5168017 3547684
NDe6896244D 172 -7676%1 -5175357 3547684
Ne2196872ND 12 -7195773 ~5182253 3547684
—0eB759639D 12 -671592 ~5188703 3547684
NeB8628539ND 11 -623454 ~-51947C7 3547684
Ne36391028D 12 -37352562 -Z200264 2547684
—Ne6EB4T42TD 12 -527021 -=205374 3547684
nNeS531328D0 11 -478735 -5210037 33547684
~Ne1389231D 12 -1235613 ~-5049536 3596223
Nell196416D 12 -1188741 ~-=060775 3596223
—-Ne28%2195D 12 -1141757 -5071580 3596223
~"e9881401D 11 -1294494 -=5081948 3596223
025908250 12 ~12475238 ~50%51332 2526223
~Ne 203542390 12 -1020271 -5101373 3596223
De7973162D 10 -952929 -5110429 3556223
~0e&T7RI3TED 12 ~-205504 =5119044 3556223
-Ne4230107D 12 -558002 ~51272290 3596223
Ne2617298D 13 -8104726 -513495%5 3556223
~Ne63141323D 12 -762782 ~-5142249 3595223
~Ne3719904D 12 -715CA9 -5149100 2596223
Ne3480A/S2D 12 -55672356 -3155509 3596223
NeB5790233D 12 -619465 ~5161474 3596222
~Ne4953231D 12 -571582 -51669956 3596223
Ne2350n460 12 -523650 ~5172074 3596223
~Ne5159324D 12 -4735672 ~-5176727 3596223
—Ne&422677D 12 -1227549 -5016582 3644450
—Ne2707490D 12 -1180983 -50277483 3644458
Ne5460412D. 12 -1134316 -3033482 3644450
Ce1372106D 12 -1287550 -=048783 3644450
De2636820D 11 -1040692 - =5058649 RE4445
Ne2644264D 12 -323743 -3068CR1 2644457
Ne9188215D 12 -94671 02 -5077077 364445
NeB4F2T44D 12 -5399523 -50855637 3644450
Ne8B118n27D 12 -352403 ~E0R3759 3644457
~Ne8ITHRTED 12 ~-305137 -5101443 3544450
—~Ne3249717D 12 -757372 ~510R8639 3544450,
-Nel4427211D 12 ~710402 -511%425 RB44450
Ne7411496D 11 -5662941 -3121857 L RBA4450
~0e3339213D 11 -A1354273 -5127793 3644457

Ne14C29571D 12 -ZHT72=R2 -"B1327275 2644450
-Ne24921440D 11 -525222 ~-51287329 Re444505
~-N«1806107D 12 —-472558 -2142922 3644450

EJECT




Kv IN UNITS OF  CMa
CUBED PER SECe SGRD.

Ne3485210D
0.62320287D
—Ne7192757D
—0e2930124D
-0 e2992328D
Ne2154458D
~N.e10953838D
—"e7188777D
—0e¢9982% 32D
—N 17624690
Ne9632117D
013772670
NeP6C8S21D

L =Ne32517570

Ne3078351%2D
-Ne23144 370

Ce30=8229D -

ne64812550
-Ne1047722D
‘Ne2612779D
0eS012227D
Ne1027871D
~Ne1118263D
0e3491174D
0e417176CD
Ce4307717D
Nel276771D
~0e1987206D
Ne4524242D
~1.6372217D
097292490
De684056D
—De2973554D
-Ce1267287D
Nel422062D
017233340
~Ne6366847D

Ne3194144D

Nel1712267D
-0e15C4753D
Ne2273287D
—0 e 4TO=82D
Naa776114D
—M e 44RTDAAN
Deld402755D
£ e 293910900
Nel1446710D
EJECT

VIRV RVERV BNV IEAVERV

1 b b b e b ek b b b i bh eed b et e
[AVERAVIRRV JRAV]

SRS WAV

—
W

—
v

{

e
RV V)

-
]

-
[\V]

12
12

12

1

P

o

APPENDIX

GEOCENTRIC COORDINATES

X

-1219278
-1173122
-1126756%
-10807211
~1033764
-987128
-9404C8
-893507
-846728
-723777
-752758
~-705673
-638528
-5117225
~-564072
-31676%9
~468422
-1211192

~-1165158

-1112115
-1272977
-1026745
-280a427
—-934024
-88754°2
-540¢82
~-7243248
-747547
-702882
-654N057
-8607176
-5602473
-212251
4662735
-12C2715
-11587C31

-1111768
~10565549

-10125728
-373539
~327R57
-2311295
-8331%8
~758R48
-742£71
-696222
-£49529

~
L~

CONTe

Y

-4383188
-4994280
-5004942
=5C15174
-5024975

-3014344

- ~5043281
-3051783
~5059852
~-506743%
-5074682
~5081444
-5C87758
-30235%6
~5099105
-51041156
-510868385
-43497358
~4360374
—4370964
4381127
-4922361
-30001567
-5009042
-5017487
-3502550
~-=033082
-5040231
-5046946
~-5023228
-8053075
-53264437
-5062464
-R207400%3
—4315093
-42256C34
—493657D
—49456473
—4356310
—49655751
—49747°67
-4282731
-4390739
—-43283°38
-3C0%337
-5012035
~-5018245

235

METERS

4

3692363
2692363
3692363
3592363
RpIZ23573
36923673

32692363

3692363 -

3622363
3552363
3735936
3739936
3739958
37362
37399
cidcieloot.
37363¢
37399°
3739936

O Ut 01
0000

Ul

3729956

3739536
3739956
3739936
3729936
2739956
3739955
3729936
2787226
3TBT2E6
3787226
3787226
3787226
3787226
37872264
3787226
3787226
27’7226
3787225
3787226
3787226




236

APPENDIX G CONTs

KM IN UNITS OF CMo- GEOCENTRIC COORDINATES -~ METERS
X

Me2RN24780
Del1572~17D
De2421104D
~M 21267870
" NeB89397199
—0 980207270
NeB8712546D
~0e38242 30D
-0 eBB7473704D
NeS344826D
- e 226N 48D
Ne23384880D
~Nel1849561D
74169562270
~Ne4182757D
EJECT

[AVERAV}

88

=

L I e T T I o e e I )
QU r—

VIRV

—

i

—
VIRV IR V)

-H26143
-5437303
-R34407
—-F484561
-8502467
~4564230
-11759732
—-1122286
-12837=43

-1042708

~4940311
49456951
4352685
4937933
~4262853
-43267701
~4809726
-48204732
-4837°7223
~4B40599
~48F0059
-4859102
-4867727
-4875934

—a8813721

CU3EN PER STCe SQRDe Y _ z

 ~D.6083572D 12 -602973 -5024051 3787226
0e28239723D 12 -556364 ~5029426 3787226
Ne83402432D 11 -509708 -50343563 2787226
De4402338D0 11 -463007 -5038878 3787226
~0e3767242D 12 -1194225 -4883398 3834169
Ne2558564D 12 -1148923 -4891251 3834169
Ne24726731D 12 -1123523 —4901703 38341569
De6419725D 11 ~-1088027 -4911725 28341692
~Ne4237163D 11 -101244% -4921323 3824169
~Ne&4BI172402D 12 ~P66767 -4930499 3834169
Ne2134597°D 12 -921012 -493%9251 2834165
0e3299%43D 12 -875174 -4947573 3834169
NDe2454256D 12 -8232563 -4555480 30341569
—-0e70719%7D 11 -783280 -4962956 38341693
~Ne 16306070 12 -737230 —-4970005 3834169
—-Ne4098848D 12 -691117 -4975627 38341563
Ne8554803D 11 -644544 ~-4982821 3834169
Ne2887539ND 12 -398716 -4988537 28341569
~Ne4781872D 12 -552437 -4333924 3834169
~0e7250863D 11 -506110 -43$983731 3824169
—NeP6637310 11 -45372G ~-5003309 3834169
0«8960809D 11 -1185671 -4845275 28807380
-Te1593752D 12 -1140A35 —-4BE6059 3880782
0e5137492D 11 -1095531 ~-4866427 3880787
~Ne1949162D 12 -10382%412 -4876276 3880733
-0e1968441D 12 -1005154 ~488%59035 2880780
Ne4D54746D0 12 -353803 -4333015 3880783
~De1773868C 12 -3141331 -4903704 3880780
Ne3335344D 11 -2688375 -4911971 3380730
~0e3453231D 12 -823294 -4919815 3880787
Ne78B18755D 12 ~-7776473 ~-4927238 3880787
-Ne55687372D 12 -721924 -49342737 3880782

38807870
2885780
2882730
3880780
3380787°
3927055

322710525
3227055
3227033
30270
35270

Ui W

[STIRSIINS]
(91}

Ul



APPENDIX G CCNTe

KM IN UNITS OF CM.
CURED PER SZCe

De2673004D
031282510
Ne3669895D
—Ne1190119D
Ne4423350D
'0e1851483D
—0e1495530D
Ne1073347D
0639267320
Nel149148D
—0e2782524D
Ne1353745D
0e5734268D
0e2965867D
~0e72193C0D
—Ne 10655160
—Ne1518379D
NellaS2R7D
—Ne9961138D
—Ne1028245D
Nel847571D
-N.131C223D
~Ne1242253D

Nel6BERB777D

-Ne 19332020
~0e229140GD
~0,4300872D
~Ne1398744D
De6592449D
-De20673%4D
-Na356720260
Nel138%216D
Ne375D7600
NeFDAHT4ED
-N 32624730
Ne 267267010
~N 36744 318D
0e1613527D

HMF‘H)—AH—-—I!——“Q—#»—‘V-D—-‘M
R A N AV TV I AV VA BN B VU )

SARDo

°

12

12
12
1732
12
12
12
12

12

12
12
11
11
11
11

—
(V]

Q
O

[ I T = T o = g
AVARAVERIV IR

Y]

i

12
12
12

12

11
12
11
12
12
12

237

GEOCENTRIC COORDINATES - METERS

X

-771938
-726555
~-681109
-6354805
-530046
-544437
-4938781
~-4353082
-116811C
-1123818
~10724032
-102342083
-990317
-A485£42
-3C0R8n
-B356050
-811142
~7665164
-721121
-6T76015
-630852
~-585/734
-S40 245
~495051
-44946Q3
-1159226
-11182%1
-1071181
-1027019
-9827A8
~-938433
-~824017
~B849525
-904c83
-767324
~-7154/24
-673852
-626043
-5811469
-2257245
-421277
—-445263
—-1150227
-1176537
-10623879
—-1019047°
-9751 273

Y

-4891089
~4898036
-4904562

 =4310666

-4916348
-4921608
—4925444
-49328%7
—4T7T73T7TE6
-4784331
-47354596
-~48043378
-4813787
-4822762
-4831323
-4839458
-4847197
—-4854510

' —-4861405

-4357882
—-4873941
-48792580
-4884801
~-488960 1
-4893981
~4T7R73566
—-4747911
-4738047
-47867775
-4777092
-4783999
~-4794494
-4802578
-4317248

T =4817505

—-4824347
—4BANTTS
-4836738
-4842334
4847355
-483527328
—-4BR6675
-4700561
-4711024
-4721031
—-47307733
-4739978

Z.

3927055
3927055
39270535
3927055
3927055

- 3927055

3927055
3927055
3972989
3272989
39272937
2972989
3972989
3972989
2972989
3972989
39729389
2972289
3972989
3972989
3972289
2272989
3972989
3972989
2372989
4018580
4118380
4018580
4018589
4018580
4018580
4118589
4018580
4118382
4118580
4718332
418585
49018580
4n1858C
4118530
4118%8C




APPENDIX G CONTe

S KM IN UNITS OF CMe

CUBED PER SECe SQRDe

Nel1012062D
~Ne8783249D
~-Ne1876746D
-Ne15653C9D
 =Ne22735116D
~0e6440327D

Ne2021102D
—~Ne3241334D

Nel372914D

7160856070
-De1815752D

Nel1669705D

Ne3302244D
-0e2025103D
~-Ne2596113D

0el1862364D
-De3434144D

D e8586762D

N e 29805350

Ne7722484D
—De2179277D

Ne3461233D

0e1391824D

Ne67360738D
- e 1460753D

Ne3267619D

Ne8662153D
~-Ne2247808D
—NeH64643T4D

EJECT

12
11
11
12
12
19
12
12
11
12
12
12
12
12
11
12
11
11
11
11
12
12
12
12
13
12
12
12
12

GEOCENTRIC

X

-931142
-887072
~-842925
~-733870%
~-734417
-710064
-6656%0

621179

-5764654
-532089
-487452
-442798
1141112
1097825
10544473
1010271
-257412
-923772
-882048
-836250
-792381
-748444
-724447
-660282
-516260
~-572088

—S27857

-483670
-439292

COORDINATES -

Y

-4748816

4757245
47652656
~4772876
~-4780077
~4786866
-4792244
4729210
~4804753
-4B09903
-4814630
~4818%43
4663343
~4673723
4683701
4693275
-4702448
-4711216
-4719578
—-4727535
-4733036
-4742229
~4748955
4735292
47561211
4766720

C=4771819

4776509
-4787°787

-238

MEZTERS
Z

4063823
40632823
4163823
4063823

4NnHR823

40563823
4063823
4163823
4063823
4n638273
4n62823
40563823
4108714
4108714
4108714
4108714
4108714
4108714
4108714
4108714
4108714
4108714

4108714,

4108714
4108714
4108714

4108714
4108714

4108714
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APPENDIX G CONTs-

POINT YMASS SET DERIVED FROW FIVE MINUTE ANOMALISS
, (expressed as mass times the gravitation constant)
Kv IN UNITS OF CMe GEOCENTRIC COORDINATES - METERS

EJECT

~-5056019

CUBED PER SECe' SQRDo X Y z
~Ne24198158D 10 ~935781 -5069594 3725972
083737890 10 -925802 -5071426 3725572
Ne&4124169D 10 -915822 ~5073238 3725972
Ne8469107D 10 -905837 -5075030 3725372
NDe4824191D 10 -395849 -5076803 3725972
~Ne2052248D 10 -383857 ~-3078556 3725972
0.39202118D 10 -875862 ~-5080239 3725372
0e5647984D 10 -BA58673 _ =350820073 3725972
De2049514D 11 -855851 -5083697 3725972
Ne1007813D 11 -845855 -5085371 3725972
~Ne4394411D 10 -835848 -5087026 2725972
N+.28088990 10 -3258236 -5088661 3725972
-0e4769257D 10 -815821 -5092275 3725972
~De7289145D 10 -825873 -5091871 3725972
Ne281123290 10 -795782 -8093447 3725972
Ne6457112D 10 ~-735758 -5095023 3725972

. NeTH24285D 1N -775730 -5096540 3725972
-Nel1256481320 11 -765700 -5098056 3725972
Nela54nN3D 19 -934351  =-5061905 37356695
Ne642RF29D 10 -924399 -35063734 3736695
0e56241356D 29 -914433 -50655473 3736695
Nel1840185D 10 -904463 ~-35067332 3736695
0.88267244D 10 -824492 -5069102 27326695
Ne3903147D 19 -884513 -5070852 3736695
£e6860998D 10 -874%133 -5072583 3726695
051722580 10 -864550 ~-3CT742%4 37266295
Ne1669%02D 11 -854553 -3075285 3736695
NeSR195/TD 10 -844573 T =5077658 3736695
Nel609=04D 11 -8345R30 -507G310 37356695
NeS542578D 10 -324583 -5080942 3726695
Ne3610675=D 27 -814=84 ~-50823555 37IE695
Ne&t3427231D 10 -304581 -5084148 373665
—N 45535280 219 —-794575 ~3085721 2736635
Ne3481048D 19 -734%56 -5087275 3736695
Ne55035476D 10 -774554 -59888309 37326695
Ne6571200D 02 ~764539 -50932273 2736695
—0e1147737%D 11 -932923 -5054123 3747402
~0e2422502D 19 ~-92299C 3747402




APPENDIX G CONTo

KM IN UNITS OF CMe

. CU3IED PER ST

-Ne2166501D
-0 e d44IAN2 123D

=D B2644550

-0 470D RAED
~Nel189262392D
~Ne5903195D
" De56235669D

Nel2252%2D
-Nel2465615D

~De2412545D.

~-Dela24867°D
NeH321206D0
Nel274865D

295093710
-"e1341377D

—0eS5661154D
~Ne7875418D
=N e 59391600
-Ne3856519D
—N e 250084860
-1 e2268355D
~-Ne176%287D
-0e958815%D
-Nel1NQ1481D

7e1062947D
—Ne4432885D

T -Ne 75111460

-Ne 768973120
0el4902460
-Ne 37427 13D
-0.1845375D
—-0e74712319D
-Ne4113798D
NeHN2G2480
~0e 74898590
—-0e209771700D
~0NeB10A82ND
Ne22736032D
-0 e 352045840
~Ne3362319D
~D e 24348770
~NeBNIAONT7ED
-NeB57TNSED
-Me9132297D
-Nel123256481D
Ne4NBR=1AD
Ne51199640
=JECT

Coe

12

SQRD e

19

1o
12
19
19
10
10
10
10
19
co
10
10
na
19
29
09
1n
12
19
"G
11
19
12
10
19
10
10
19
17
19
10
10
19
19
10
19
10
19
10
19
1N
19
10
19

GEOCENTRIC
X

-913039
-923n85
-893127
-882156
~-873201
-862233
-853261
-843787
-833208
-823327
-813343
-803353
-793764
-7833790
-773374
-763374
-931510
-921578
-911642
-9017403
-891743
-881814
-871855
-861G12
-851256
-8419%6
-832033
-822057
-812098
-802126
-792150
-782172
-772190
-762205
-230778
-310241
-200317
-89C397
-8804%9
-870525
-860587
-850646
-240702
-830754
-820874
-810850

COORDINATES
Y

=5037825

-5039612
-5061379
-5063127
-5064855
-5065%64

-5068252

~-3069922
-50715871
-50723201
-5074811
-3076402
-5077973
-3079524
-5081056
-350825568
-5046459
-5048282
-3050085
-5051870
-3053634
-50355379

-5037105

-50%8811
-E060437
-5262154
-5262811

-5065438
~-5067046
-B068634
-5070203
-5071752
-=073281

—B074721

-50338703
-=0405272
-Z042724
-5044105
~50478487
-3047610
-5042332
~5051036
-5082719
-5054383
-50=ZA028
-50576%732

-5059258

240

METERS
Z

3747402
3747402
3747402

3747402

3747402
3747452
3747402
3747402
3747402
3747402
3747402
3747402
3747402
3747402
3747402
3747402
3758092
2758092
3758092
3758092
3758092
3758092
3758092
3758092
3758092
3758022
3758092
3758092
3758092
3758092
3758092
3738292
3738092
3758092
3768766
3768766
3758756
2768766
3768765
37687656
3768766
3768766
3765766
2768766
3762766

- 3768765
3768766 ¢




APDENDIX G CONTe

Kv IN UNITS OF CMe

CURED PER &

L =0eB91256%0D

T =QeHT707543D

Ne2014116D
Ne21961°93D
N 85708470
-N,e5358922D
Nel067345D
C=Ne2426M27D
~Ne 13943650
N 656665620
=N, 90734739D
-0e2623839D
—0 39953820
Nel2431561D
-Na23327333D
-Ne12389590
-0 e43456% 33D
~De4631997D
-0e2481403D
09532283950
=D e 4527RE5D
Ne4396990D
-0.88%4459D
-Ne17937329D
-0 e2666831D
Ne5120119D
~0+3804821D
De34155675D
Ne2844536D
Ne58384614D
~Ne7674N0T1D
~Ne3581376D
~-Ne1038236D
0e24456332D
-0e3672717D
0.28832827D
De6514227D
—Ne44383927D
-0e2634419D
-7 e551 372790
-7.1408127D
Ne2313831D
Ne67382830
| 0.3988578D
Ne424293090
0.4007812D
EJECT

ECoe

10
10
19
10

10

12
10

SQRDe

o

na’

10
aqQ
12
o0
1N

12

10

19
10
10
19
19
2Q

10
10
19
oo
10
10
09
19
10
09
10

10
11
10
19
10
10
19
19
1
10
10
19
19
19

12

GEJCENTRIC COORDINATES -

X

-800893

-780970
~771003
-761034
-928643
-218741
-203835
-398927
-889015
-879100
-8691821

-859259"

-849233
~-BR2Q404
~-82%472
-819537
-8009598

L =T799657

~-789712
-T772764
-769213
-7598532

927203
-317317"°

-907427
-897534
-887637
~877737
-867823
-857925
-8487216
-8281n3
-828185
-818245
-3n37241
-728417
-738487
-778555
-762419
-753431
—02575G
-215838
-2n6014
-896176
-886255
-87867702

Y

‘5060844

=5062410
-5063957
~-5065484
-5066991
-5030924
-5032742
-5034540
-5036317
-5026078
-5039818
~-3041538
-5043238
-50449173
-50463581

-5048223

~-=0498473
-5051445
-30533031
~3054595
~2056137
-5057654
~-5059169
-3023124
-5024939
-5026734
~-5C28510
-5030257
~-3032003
-3032721
-5035419
~-30270G7
~-5038756
-30473%5

- =5042016

-3043516
-50451%7
~5046758

-2024157

1241

METERS
z

3768766
3768766
3768766
3768766
2768766
3779424
3779424
3779424
3779424
3779424
3779424
3779424
3779424

‘3779424

3772424
3779424
2779424
3779424

3779424

3773424

3779424

3775424
3772424
3790065
3790265
37300065
3790065
3792065
3790065
3790065
3790065
379006
3730063
37909265
37300265
3730065
373900635

37907065

37320565
3729065

3820637

2800693
"3BRCO690

380069
AR00697
3800692,




kv IN UNITS OF CMe
" CUSED PER SEC.

NDe7851219D
~Ne5815918D
Ned571749D
011892390
~Ne81586831D

Ne3036413D

Ne&47356N1D
NeB3T70786D
Ne&051106D
~Nel1349227D
Ne3303574D
-Ne9BIA3143D
—Ne3911Nn22D
De5473500D
~-NeS8203143D
Ne7475713D
0e2180%541D
Ne3013216D
~Ne1487925D
Ne3343K/50D
-0e1558174D
-0 6438359730
nNeS918681D
Ne4N283808D
nNe1050A18N
N e2068897D
0612565310
T =0 e2225249D
~De 22417860
-Nel1130N71D
-0,10087110D
Ne3301201D
~Ne 285567260
Ne2915322D
—Ne8674231D
~Cel1B2RB7E50
NeB432426D
De4462R43D
~NeS540453D
—-0e 76824330
ne1228871D
Cel796277D
DeHaN2247D
~0e31722622D
~7e1337% 311D
Ne43020NSD
Ne3612428D
EJECT

k=30

GEOCINTRIC

X

-8664832

-8556590
-8466%56
-836728
-826896
-516992
-807084
-797173
-7872%9
—-7773473
-7674273
757500
-9247211

-Q14455°

—-304597
-854734

-88B48569

-874999
-8565127
-855251

-845771

-235439
-8256772
-815714
-873822
~7925927
-7860283
-776127
~766222
-736315
-G228%9
-213019
-203175
-R03226

—-233478

-8324178
-8247306
~81447273
-804556
-794575
-784793
~7743907
-755019

APDENDIX G CONT.

COORDINATES
Y

~-5025882
-5027577
-5029253
~5032910

T =5032546

~-5024164
~-5035762
-S0373490
-=038897
-5040438
~50419%78

—5043459

-5007457
-3009267
-5011036
~-5012827
-5014578
~-5016309
-3018021
-5019714
-35021387
-302467%3
-5026290
~-5027385
-[0294561
-5031018
-5032555
-5034072
-3035579
—-4909591
-3001398
-=001185
-5024552
-5026770
-5008429
-5010138
-5011828

-50123499
~501%150

-3015782
-3018394
~-5019987
-5021561
-3023115
~50245647
-5026164

242

METERS
Z

3800690
380069C
3800690
3800690
3800690
32006390
38006S0
3800690
3800690
3800680
3800692
3I8NNE9D
3R11299
3811293
3811299
2811299
3811299
3811293
2811299

3811262

3811299
3811299

2811299
3811299
3811292 .
3811299
3811299

3811299

3811299
3811299
3821891
3821891
821871
3IR21891
3821891
3821891
2821891
3821891
3821891
3r21891
3221891

‘3821891

3821891

3821891,
2821891
3821891
3321891
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APPENDIX G CONT.

S KwM IN UNITS OF CMme GEOCENTRIC COORDINATES - METERS

EJECT

—-810217

CUBED PER SFCe. SGRDe X ‘ v z
—0e5121775D 1IN -755127 ~-5027650 3821891
De2516373D 10 -921403 -4991703 3822467
015158020 19 ~-211579 -4333507 3832467
0e3492885D 19 -901751 -4995291 3832467
~-Ne249T7457D 09 -891919 —-4997055 3832467
~0e25712700 10 -882085 -4998801 3832467
D¢3095285D 10 ~8722456 -3000527 3832467
-0e3913641D 09 -862405 -5002234 3832467
—-C.890874CD N9 ~-852860 -5003921 3832467
. Ne9079432D 29 L -B42717 -5005589 3832467
~De4&19S35D 10 -822860 -3007237 3832467
Ne8556105D 10 -823005 . -5008857 3832467
Ne1370n57D 10 -813148 -50120476 3832467
Nel10442393D 11 -803286 -5012067 3822467

=D e2040506D 10 -732422 -35012533 3832457
. De7909~17D 19 ~-783535 -5013189 3832467
~0e39123519D 10 ~-772685 -5016722 3832467
. Ne63747247°D 12 -763312 -=018234 3832467
=Me7918413D 190 ~-75393% -5012728 3822467
Nel925268D 19 -919943 ~-49837773 3R43026
Del1167813D 10 -910124 —-4987594 2843026
-0 53552650 10 ~-900322 -4987375 3843726
Ce4155118D 10 -290506 -4589137 3842026
—Ne1976628D 10 -880587 -4997880 3843026
Ce7480428D 10 -870864 -4292603 3843026
De1015815D 10 -861028 -4994307 3843026
~0e1233221D 10 ~351209 -4995992 3843026
Ne2612223D 12 -841376 -4937657 3843026
-D0e17485657D 10 -8231547 ~4999303 3843026
Ne74159223D 10 -821701 -3007929 3843026
-0.1187568D 17 -811859 ~-5002537. 3R43026
De5679632D 10 -802014 -5004125 3B43026
~Ne8305191D 19 -722165 ~-501556973 3R4ZN2H
—MNe3127257D 10 T -782713 -50072472 3843026
~-N,903155620 10 ~T7724%3 -5008772 38430256

Nel210599D 17 -7625671 -3501 282 2843026 .
~Ne2061548D 10 ~752741 -3011773 3843026
~Ne31405RSD 10 -218479 -49753851 38535568
~De3706138D 129 ~-208685 -4377637 28535568
—-"e9134577D 10 -898889 . —-49279437 3853568
—-0e2178726D 10 -839989 ~4981196 3853568
-Ne1981737D 10 -B79285 L —4982935 2853568
~NeR440126N 08 ~-869478 —-£Q84657 2IR53S6R
-Ne22426710 10 -BR9568 ~4935358 3853368
—0 45THE5TD 0D -R498=4 -4938040 3853558
-Ne 15022150 27 -8400727 -4989703 T2852558
—-Ne52560133D 79 —-4991246 2a533593




KM IN UNITS OF CM..
CU3SD PER SECe SQRD.

Ne2574455D
T =Ne12417393D
-Ne1581160D
-Ne2941332D

006791138D

De1905492D
~0e9273417D
-0 1034653D
—-N 66777250
—-Ne4891209D

—"e4291507D,

Ne 320324750
~Ne3466748D
Ne3062380D
~0e 292872670
De3EF2658D
-0 e 20264580
- e2442137D
—-Nel143473825D
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GEOCENTRIC COORDINATES -

X

-820394
~-8105567

. -800737

-7903904
-781068
-771229
-761387
-751%473
-217210C
-Q072232
-8974%2
~887667
-877330
-8680868
-228224

~848476

-338694
-828390
-8519082
-859271

-729457

-7896472
-773820%
-7699327
-760170C
~7501341

-315%38 -

-905776
-896011

~826242
~-876470
-866695
-856916
-847133
-837345
~B2T7==3
-817767
~807972
-738174
-738372
-778558

-768767

~738950
-749137
-914062
-a74715
-324566

APPENDIX G CONT.

Y

~4992970

| ~4994575

-49961690
-4G97726

T =4999273

-5000830
-5002308
-5003797
-4967337
-495639722
-4371478
-4973234

=-a274971

-4376689
-4976788
-4287067
-4981727
-4982358
-4984989%
-4985591
-4988174
~4989737
-4291282
-4992807
-4994312
-4995798
-4G57932
-4961724
-4962497
-4965250
-4966284
-4968700
~4970795
4972072
-4973727
-UTTRRAT
-49767936
-4978586
~4980156
-4381727
—-4RIPHT
-4984791
-4986294

T =4287778

-49%193%

L —4ART724

47955494
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4

3853368
3353568
31853563
3852563
38535683
3853568
3853568
38513568
32640294
3B640I4L
3864024
2864094
2864004
38564094
3864C94
3364094
3864094
3864094
3854094
3864094
3864094
2R64094
3864094
3864034
3BB4ND4
3R64094
2874603
3874603
3074603
38746073
2874603
38746013
3874603
374603
3RT4603
2RT7460R
3874603
3374603
38746723
38746073
38746023
3RT460R
1874603
38745603
3RRSFI IS
3885095
28850195
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APPENDEX G. CONTw

kKM IN UNITS OF CMe. GEOCFNTRIC COORDINATES - METERS

- CUBED PER SECe SQRDe. X o \ z
Ne6264178D 1D -884813 —-4957244 3885095
~“Ne1770211D 10 -875057 -4958976 3885095
~-Ne 28271890 1n ~-865297 -4960688 3885095
0377610550 12 -855534 ~4962381 3885095
NeQ4a2425D D9 -845768 -4984055 3885095
038786070 10 -835998 —-4265710 2[RFNIT
Cel764238BD 10 -826225 -4967345 3885095
-Ne19975923D 10 -816449 ~-4968961 38835095
-0Ne2159731D 19 ~-80656% -4970558 388517395
-Ne3078323D 12 -7736837 -4272136 3885095
-Ne3231152D 10 -787101 ~-4573695 2885993
~Ne40681456D C7 -7773173 -4975234 3885095
Nel278416D 17 -767521 ~-43T76T7S4 38859795
NeBI71IZLIHED 10 757726 -43278254 3885095
Pe495C144D 10 ~-747929 -49792736 3883095
~MNeB277999D 190 -912582 -4942915 3895571
De207077CD 10 -902852 -4945702 3895571
De2543221D 03 -892118 -432474569 3895571
Nell22687D 11 -283381 ~4349217 3895571
-0e20388220 13 -8735640 -4 BEOTLS 38%5571
~Ne1154505D 10 -B63235 ~4952655 3895571
~Ne 32242960 17 -854149 —-43FL4S 3895571
Ne9923114D 720 ~-8441333 -4955016 3895571
He3533G11D 19 -8345644 ~-49=T7558 2895571
Ne6260768D 772 -824887 L —-4959301 3895371
Ne3436518D0 17 -813126 -4960915 3895571
-Ce5512994D 10 -80572573 -4962509 3895571
—-Ne7628971D 10 -795%G6 -4964084 3895571
~Ne6282648D 10 -735827 —-4965640 3895571
-NeBBOT7430D 10 —-776N=4 —-49Q67177 299=571
Do T7OIC2ARD 10 -765278 -436B594 2Q98R8R7]
Ned4Z4481D 17 -756459 ~-49771%73 ARPF571
Ne325572830 28 -746718 ~49T71672 3895571
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