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SUMMARY

A world-wide geodetic system which will best serve the present needs
of geodesy is defined by four groups of components. These are geocentric
coordinates and associate variances of physical points, spherical harmonic
coefficients of the geopotential, a mean earth ellipsoid, and a group of seven
transformation parameters for each datum which connect the geocentric
coordinates with the geodetic coordinates of that datum. The method of
determination of that system is given, based on all types of presently available
geodetic observations, namely, terrestrial triangulation, astronomic observations,
terrestrial gravity observations, and geometric and dynamic satellite observations.
For all these observations, proper mathematical models are given. In addition,
all the constraints which will guarantee a unique mean earth ellipsoid are
introduced. Using the specified geodetic observations in the mathematical
models developed, groups of observation equations and then normal equations
may be formed. The solution for the components of the world geodetic system
will be the solution of the summation of these normals, properly scaled to
account for different model or weighting errors in each group. Finally, the
contribution of each type of data to the determination of the components of the
world geodetic system as well as the overall accuracy achieved is

investigated.
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1. INTRODUCTION

The recent development of civilization brought together different
local activities and created the present international community. The needs
and the aims of the new community have grown rapidly in various aspects.

In geodesy it has been realized for some years that the long-established
different datums, which served the local needs very well and were consistent
with the means of their times, could not satisfy the geodetic needs of the
new community.

First an attempt was made to tie together some of the different
datums using terrestrial techniques. But then it became evident that even
if the local datums would be brought together this would not have solved the
whole problem as the need for geocentric coordinates and knowledge of the
gravity field came into the picture. The need for the establishment of a
world-wide geocentric coordinate system became evident; it is the purpose of
this project as it is spelled out in its objectives to develop an analytical proce-
dure for the establishment of a world geodetic system and to investigate the
existing and the required data to achieve a satisfactory solution.

Any world-wide or universal representation is to be constructed by
piecing together, so to speak, the local views defined by the different groups
of data. We cannot make a universal representation from all data of all
groups, so a selection or an estimation must be made; this estimation will
be done according to the principle of least squares for correlated observations
[ Brown, 19557.

The way, however, in which the data will be treated and the selection
of the mathematical models which will be used take different interpretations.
It is to this subject that the word "ideal" refers. The treatment of the data
and the selection of the mathematical models will be such that the minimum

bias will be introduced in the determination of the parameters defining the



world geodetic system, while the maximum amount of information contained in
the data will be used.

It is fair to ask in what respects this determination, when done, is
going to serve better than the individual datums or the solutions from individual
groups. When geocentric coordinates or coordinates referring to a single
reference frame are needed, it is obviously much more desireable to use
coordinates in a world geodetic system than to use the coordinates on the
various datums. It is also intuitively obvious and may be proven that an
estimate based on a combination of two or more groups of data will always
have a smaller standard error, and consequently must be considered better
than the estimates from the individual groups.

However, because the systematic errors dominate some of the present
mathematical models and consequently the present solutions [Kohnlein, 1966b],
we actually have a change in the definition of the involved parameters from one
model to another. The combined solution then, although it is an improvement
toward the true values of the parameters, may not be a better estimate of the
same parameters as they are defined in each particular model. Consequently,
functions similar to or the same as the ones expressed by a mathematical
model are better served by values obtained through that model and the same
kind of observations. We have indications of the truth of this idea first from
the gravity model comparisons [ Lerch et al., 1967]. There it is demonstrated
that a set of harmonic coefficients describing the gravity field which has been
derived by 'optical observations gives better predictions for an orbit established
with optical observations than a gravity field derived from Doppler observations.
Another example is given in [Mancini, 1968] in which the SAO gravity model of
121 coefficients, derived from satellite observations only, is reported to give
better predictions for the orbit of the GEOS-A satellite than Mancini's model of
251 coefficients derived from a combination of satellite and terrestrial data.

It seems then that a general combination solution can serve more general

purposes, increase the knowledge of the true values of the parameters defining



the size and shape of the earth, and will be used in other fields besides geodesy,
for example, in geophysics.

Another problem which arises after such a combination solution, in
which all the existing data has been used, is that there is not any way to check
it. This problem is complicated even more by the fact that the precisions
obtained by least squares solutions of the individual groups are not reliable as
accuracy figures, for example, satellite solutions [ Gaposchkin, 1966b]. The
precision is a measure of the consistency of the estimation of a parameter and
describes the effect of the random errors on that estimation; this effect
decreases with the number of observations. As the number of observations is
very large, the precisions obtained are very small. The effect of the existing
systematic errors, on the other hand, do not decrease with the number of
observations; thus they cannot be described by the precision figures obtained,
and these figures cannot be used as accuracy figures. Only by combining the
data in different combinations of groups can we get an idea of the accuracy of
the solution.

As this topic contains the main scope of geodesy, that is, the determina-
tion of the size and shape of the earth, to cover all problems completely and
provide definite answers to all the questions involved would be impossible.

The complexities of the problems involved in getting solutions from individual
groups of data or from a combination of them is indicated by the amount of
work that prominent scientists have devoted to them. The study of such an
extended and divergent bibliography and the attempt to make a contribution on
the subject appear to be a more suitable task for a group or an organization
than for the efforts of an individual who is limited by means and time.

This study the.a is mainly concerned with the formulation of a consistent
and exhaustive group of mathematical models which will constitute the basis of
the determination of the world geodetic system. No attempt was made to
bring the system into a computational working stage or to collect and use in
that system the existing data. Whenever some preliminary computations were

necessary, existing programs were used, after limited modifications.
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Although no attempt was made for the determination of the values of
the parameters of the world geodetic system, we did make an attempt to
estimate the accuracy with which these parameters can be determined with the
present data. For this estimation approximate procedures were used for

obtaining estimates.



2. DEFINITION OF THE WORLD GEODETIC SYSTEM

For some years now it has been realized that the use of an ellipsoid as
a geometric reference surface and a level ellipsoid as a dynamic reference
model could not serve the more complicated functions of modern geodesy. The
need for the introduction of a new kind of reference frame has become apparent
with the development of satellite geodesy. Already individuals and organizations
working in satellite geodesy use more sophisticated models to define a reference
coordinate system or to describe the gravity field of the earth. To preserve
the notion of the elljpsoid used for the different datums and in astronomic com-
putations and to provide the details of the gravity field needed in the computa-
tions of trajectories, we formulated another reference system to be used as a
world geodetic system which is composed of the following four components.

(1) The geocentric Cartesian coordinates of a set of physical points,
with their variances and covariances. As these are points where geocentric
coordinates will be computed and as today the most accurate method for
geocentric poisition determinations is the observation of satellite orbits, these
must be points from which orbits have been observed. The geocentric coordi-
nate system that will constitute the base of the world geodetic system, and to
which these points will be referred, is fixed with respect to the carth and is
often called the average terrestrial coordinate system. Its origin is at the
geocenter with its Z axis through the average terrestrial pole of 1900-05 as
adopted by the TUGG lGarland, 1967, Resolution No. 19] and was designated
Conventional International Origin (CIO). The X axis is parallel to the plane of
the mean Greenwich astronomic meridian as defined by the Bureau International

de 1'Heure [ BIH,19687. This coordinate system is also called System BIH 1968.



(2) A set of constants with their variances and covariances describing
the gravity field of the earth, consistent with the above coordinates. This
set could be a set of mean values of gravity, a set of mean gravity anomalies,
or a set of spherical harmonic coefficients. As the most efficient way of
orbit computations today is through spherical harmonic coefficients, we
decided to accept such a set of constants to describe the gravity field of the
earth. The spherical harmonic coefficients will be used in the fully normalized
form C and § [Mueller, 1964]. The spherical harmonics will refer to the
average terrestrial coordinate system, which is a geocentric coordinate system.
Therefore, the first-degree, and the second-degree, first-order harmonics will
not be present [Heiskanen and Moritz, 1967]. The zero-degree harmonic will
not be used, but it will be determined from the rest of the parameters. The
spherical harmonic coefficients are determined from satellites together with
station coordinates and are correlated with them. Thus the adoption of the
set of harmonics is not independent of the set of adopted station coordinates.
These two sets then must be consistent and they must be determined simul-
taneously through the same adjustment.

(3) A mean earth ellipsoid consistent with the components of the above
gravity field and the rate of rotation of the earth, with its center at the
geocenter. The mean earth ellipsoid is defined by four parameters. In our

system these parameters will be

w the rate of rotation of the earth
Cx  the second-degree zonal harmonic
a the semidiameter

GM the gravitation constant times the mass of the earth and

its atmosphere

This surface, which best approximates the geoid in a world-wide sense, can
be used as a simple reference surface and can serve in astronomic computa-

tions.



(4) The parameters defining the positions in the geocentric system of
the existing major geodetic datums, established through the geodetic coordinates
of the points of group (1). If the existing geodetic datums are to be preserved,
either because they may better approximate the geoid in their domain or
because of the amount of work related to them, then the determination of a
world geodetic system must contain the determination of the positions of the
existing datums relative to the geocentric system. As every geodetic datum
defines a three-dimensional coordinate system, the position of this coordinate
system relative to the geocentric system can be expressed by six parameters;
these parameters are three shifts and three rotations. Because there is also a
possible difference in scale between a geodetic and the geocentric system, one
more parameter has been introduced to account for such differences. Thus
finally the relative position of a geodetic system defined by a datum with
respect to the geocentric system is expressed by seven parameters. The
zero-degree harmonic of the gravity anomalies Ag, is not a parameter of
the world geodetic system, but a quantity which may be derived from them.

We will carry it, however, through the formation of the whole system for
mathematical convenience. After the normal equations have been formed,
Ago, may be eliminated from the system.

There are many underlying assumptions in that definition: as the
average terrestrial coordinate system is materialized through the observations
of stars; therefore, a certain star catalog, a certain theory of the motion of
the earth (including time), and a certain ephemeris of polar motion are
implied in the definition of the world geodetic system. The polar motion used
in our system is that determined by the International Polar Motion Service;
the value for the rate of rotation of the earth (w) in our system is as defined

in the "Explanatory Supplement to the Ephemeris."



3. THE ADJUSTMENT SYSTEM

3.1 Observations for the World Geodetic System

For the establishment of an analytical adjustment system to determine
the parameters of the world geodetic system, the basic idea was to use every
kind of observation which could contribute to such a determination, together
with all the constraints on the parameters implied by the definition of the
world geodetic system. The selection of the observed quantities is a basic
step; it must be done in such a way that a maximum of information concerning
the parameters is extracted, with minimum correlations introduced, especially
between different groups. The different groups of observations and the
observed quantities for each group are shown in Fig. 3.1-1.

Observation equations for all these groups will be formulated in the
following sections together with estimates of covariance matrices f) associated
with the different types of observations. These variance-covariance matrices
will be used to form the weight matrices P = i'l. The weights in this adjust-
ment will necessarily have dimensions since in the quadratic form VPV,
which is minimized, V's of different dimensions have been included [Kaula,
1959b].

The triangulation and leveling which constitute the first group of
observations refer to the necessary operations for the determination of the
geodetic coordinates X, y, z of the points where geocentric coordinates will be
determined. To achieve this, classical triangulation can be supported by
satellite observations used in geometric or short-arc mode, accurate traverses,
and some first-order astronomic observations; all of the above and especially
the satellite triangulation will be excluded from the same observations of the
next groups, in order to avoid correlation between observations of different

groups.
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Fig. 3.1-1 Observations for the World Geodetic System
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The gravity observations are used as free-air gravity anomalies; thus,
besides the gravity observations, leveling is required.

The next group is composed basically of the astronomic observations,
spaced approximately every 50 km and at triangulation points. From these,
the astrogeodetic deflections of the vertical can be computed. Finally, the
astrogeodetic undulations, which will be observed quantities for that group,
may be computed.

Satellite observations treated in a geometric mode are simultaneous or
quasi-simultaneous topocentric right ascension o, declination §, topocentric
range p, and range difference D. The topocentric ranges and range differences
could come from SECOR, laser, C-Band radar, or Goddard Space Flight
Center range and range-rate observation systems. The justification for the
use of the simultaneous observations in a geometric mode, in addition to the
dynamic mode (where they have also been used), is that there are many more
modeling errors in the dynamic mode than in the geometric mode, which may
be viewed as giving more weight to the geometric mode against the dynamic.
The types of satellite observations treated in a dynamic mode are those used in
geometric mode, as well as Minitrack and range-rate observations g.

There are certainly types of observations which could be used in the
determination of the parameters of the world geodetic system, but which have
been omitted from the above list and consequently from the following discussion.
Some of these types, such as solar eclipses, are omitted because their contri-
bution is considered very poor today. Others, such as the very high accuracy
absolute measurements of gravity [ Sakuma, 19687 or observations with the
radio interferometer [ Gold, 1967] are omitted because they are still in an
experimental stage. There can also be some special cases; e.g., if a set
of astronomic observations has been made in an extended area of a datum,
but has not been connected with the main network of astrogeodetic observations
on the same datum, then undulations computed from this set cannot refer to the

same origin. This case can be handled by introducing an additional parameter N
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which will bring the independent astrogeodetic undulations onto the same origin
and which can be eliminated before the solution. Thus no effort was made to
cover all possible special cases.

Besides the observation equations, the parameters must satisfy the
definition of the world geodetic system, that is, the ellipsoid provided by the
solution must be the mean earth ellipsoid; thus some constraints are introduced
into the system.

The observation equations are often of the mixed type, that is, they
contain parameters and observed quantities on the same side of the equation.
As we are seeking a solution for the parameters of the world geodetic system
which are never observed directly, the adjustment system is finally reduced
to a simple adjustment of estimation of parameters only. This is done by
eliminating the correlates in the cases of mixed condition equations. The
additional constraints, when they are simple mathematical expressions, are
used to eliminate some of the unknowns; otherwise they are treated either as
observation equations by heavily weighting the misclosures, or according to
the method for constraints described in [ Uotila, 1967b].

Kalman-Schmidt filtering [Schwarz, 1967], although it has been
considered, has not been found necessary, as the solution, once found, is not
likely to change with a small number of observations. Kalman's approach is
advantageous for a small number of observations and a large number of
unknowns. The solution for the world geodetic system is not likely to change
with a small number of observations, and it will be repeated after a consider-
able number of observations are collected for which an ordinary least squares
technique is adequate. Thus the adjustment system will be solved by standard

least squares techniques.
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3.2 Triangulation

3.21 Mathematical Model for Terrestrial Triangulation

By triangulation we mean the whole groups of observations and
processes which are necessary to provide geodetic coordinates ¢,\ and the
geometrical height above the ellipsoid h. The coordinates © and A are the
adjusted geodetic coordinates of a point of a triangulation which has been
computed according to the projective method, and the ellipsoid height has

been computed as

h = H + Ny
where
H is the orthometric height
Nae is the astrogeodetic undulation

The above equation implies that a systematic error in the order of a fraction of
a millimeter has been neglected. In establishing a geodetic datum, a three-
dimensional rectangular coordinate system (x) is also defined. The geodetic

coordinates in this rectangular system are related too,A and h = H + Ny; by

x = (N+ H+ Ny) cosp cosA
y = (N+ H+ Ny) coso sini (3.2-1)
z = [N1-¢€°)+H+ N,]sino
where
N is the radius of curvature of the datum ellipsoid in the prime

vertical at the point

e is the first eccentricity of that ellipsoid

This coordinate system differs from the average terrestrial (X) (Fig. 3.2-1).
The adoption of erroneous deflections of the vertical at the datum origin, errors
in the astronomic latitude and longitude, and the adoption of the nonproper
parameters for the reference ellipsoid introduce a shift of the origin of the

geodetic system away from the geocenter. Errors in the astronomic azimuth
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Fig. 3.2 -1 Geocentric and geodetic coordinate systems
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used for the definition of the datum and improper application of the Laplace
condition introduce a rotation between the two systems. Furthermore, as
every datum is scaled by geodetic baselines, errors in measurements or in
the definition of scale introduce a discrepancy in scale between the average
terrestrial and the geodetic systems. Though the geodetic coordinate system
implied by a datum is clearly defined by the definition of the datum, it is
materialized and its position relative to the average terrestrial system is
determined by the coordinates of the points that lie on it. Because these
coordinates may have systematic errors the determined transformation
parameters reflect not only the errors made in the definition of the datum, but
also all the systematic errors committed over the datum.

The average terrestrial and geodetic coordinate systems can be

related by the following equation:

X dxo Xo X -Xo X - Xo

Y|{= |dyo| * |Yo| * My -Yo| * €]y - Yo (3.2-2)

Z dze Zg Z - Zg Z - Zo

where

X,Y,Z are the coordinates of any point in the average terrestrial
coordinate system

X,V,2Z are the geodetic coordinates of the same point

M is the matrix of three rotations necessary to make the
geodetic system parallel to the average terrestrial

€ is a scale correction

dxo,dyq,dze  are the coordinates of the origin of the geodetic system
(x,) after it has been rotated and has become parallel to
the average terrestrial system

Xo, Yos Zo are the geodetic coordinates of the point P which is kept

fixed during rotations
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Now at point P we select arbitrarily a Cartesian coordinate system (xz). We
want to apply three rotations around the axes of this system to make the
geodetic system (x) parallel to the average terrestrial system (X). To express
the relation between the two systems elementary rotation matrices R,(6) will be
used. The matrix R,(8) rotates a Cartesian coordinate system around its axis i
through an angle 8. Expressions for the rotation matrices are given in
[Mueller, 1969, p. 43].

In Fig. 3.2-1 we suppose first that the origin o of the geodetic system (x)
after a parallel translation has been brought to point P. Second, we suppose
that the three rotations which rotate the geodetic coordinate system (x) and
bring it into coincidence with the coordinate system (xz) are R;(8,), Ra(6s), and
Ro(z). The first rotation (8,) makes the axis Py, lie on the plane x; Py. The
second rotation (85) makes the rotated y, axis coincide with axis y. The third
rotation (8z) makes the rotated zp axis coincide with z and thus the coordinate
system (x) coincides with (xz).

Third, we suppose that the rotations that must be applied to the coordi-
nate system (x) to make it parallel to the average terrestrial are very small,
so that we can substitute their cosines by 1 and their sines by the angles without
appreciable error. We call the rotation angles around the respective axes
da,, da,, das and the matrix of the three rotations, whose sequence is now

irrelevent, is

1 da, -da;
R,(da;) Rz (dag) Ra(das) = |-das 1 da
da, -da 1

After the above, the matrix M of equation (3.2 -2) is
M = R{(8:) Rs(8s) R2(3z) Ri(day) Ra(dag) Ra(das) Ra(Bz) Ra(fa) Ru(6r)

where R; is the transpose of the matrix R;. Equation (3.2 - 2) becomes
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X dx, Xo
Y| = |dyo| + Yo |+
Z dz, Zo
(3.2-2a)
X - Xo X - Xo
+R{(8,) R5(82) R5(82) Ry (d2) Ro(dag) Ro(dac)Ra(82) Re(@a) Bu(61) | ¥ - Yo |+ €|y - ¥o
zZ - Zg Z - Zg

The above is a general equation relating two coordinate systems with seven
parameters. By keeping different points fixed during rotations and by selecting
different directions for the axes of the coordinate system (x5), around which
the rotations are made, different investigators have given different forms to the
equation (3.2 - 2a).

First is the form given by Wolf [1963] and Bursa [1965]. They have
accepted the geodetic coordinate system as coordinate system (xz). Thus

point P is now the origin o and

91 = 62 63

X = Yo = %2 = 0

i
o

Eq{lation (3.2 - 2a) then gives

X dxg 1 da, -day | |x X
Y| = |dyo| + | -das 1 da | |y | *+ €]y (3.2 -2b)
Z dzq da, -da 1 z zZ

The second form is the one given by Molodensky et al. [1962]. He
defines the point P around which the rotation will be made as the datum origin
with geodetic coordinates (Xq, Yo, Zo). The coordinate system (x;) is defined as

one with axes parallel to the axes of the geodetic system (x) (Fig. 3.2-2). Thus
61 = 62 = 63 =0
and equation (3.2 -2a) gives
X dxo Xo 1 dag -dag| |x - xo X - Xg
Y| = |dyo| * |Yo| * |-das 1 day | |y -yo |+ €]y -VYo

Z dz, Zg |. da, -da; 1 Z - Zg Z - Zg

16



This can be further simplified to

X dxo X 0 da; -daz| |X-Xo X - Xo
Y|= [dyol + |y [*]-das 0 daj ly-Yo|* €y Vo (g5 3¢
Z dze z da, -da 0 Z - Zg zZ - Zo
22
4 ]

Fig. 3.2-2 Fixed point and axes of rotations in Molodensky system

Third, we have the form given by Veis [1960]. He retains the datum
origin as point P, but his (x;) coordinate system has the x, axis tangent to
geodetic meridian with positive direction toward the south; the y; axis is
perpendicular to the meridian plane and it is positive eastward; finally the z;
axis is along the geodetic normal with its positive direction upward, forming a
right-handed system with x; and y, (Fig. 3.2-3). For this (xz) coordinate

system we have

17



g, =0
B8s = Xo
B2 = 90 - ¢
where
®o,A\o are the geodetic coordinates of the point P, now being the datum
origin

Equation (3.2 - 2a) now gives

X dxo Xo
Y|=|dyo| * |yo| *
(3.2 -2d)
Z dzq Zo
X - Xp X = Xo

+ R (o) R(90 - o) Ry (da;) Ro(dag) Ro(dag) Ra(90 -0} Ra(Aa) | = Yo | * €] ¥ = Yo

Z - Zo Z - 2o

geodetic
meridian

Fig. 3.2-3 TFixed point and axes of rotation in Veis system
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All three forms of transformations are mathematically equivalent and a
selection among them must be based on other considerations. First we notice
that although all forms are mathematically equivalent it is not clear whether
they are completely equivalent when used as mathematical models in an adjust-
ment for the determination of the transformation parameters. As a shiftis a
rotation around an origin at infinity, the more the rotation axes move away
from the area which is rotated, the more these rotations become similar to
shifts, and therefore more difficult to separate in an adjustment. - It appears
then that Molodensky's or Veis' form may serve better than Bursa's form as a
mathematical model in an adjustment for the determination of shifts and rota-
tions. The selection between Molodensky's and Veis' form is completely
irrelevant and depends only on what kind of physical quantities we prefer to
express by the parameters used and to have at our immediate disposal.

We decided to use in our formulation and for our computer program
Veis' parameters. This was because Veis' relations are closer to the general
form and therefore we can shift to Bursa's or Molodensky's parameters by

simply substituting zero for some of the parameters involved.

We denote
da, = dv
da; = du
da; = dA

Then the M matrix is written

M = RA (o) RS (90 -¢0) Ry(dv) Rz (dp) Ra(dA) Rz2(90-¢0) Ra(o)  (3.2-3)

Making the substitutions and multiplications we have
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1 sinvydA - coswodv

M =| - sinvpdA + cosv,dy 1

CcOS®p SinAgdA+cosdodu+sinoysindodv  -cos®pcosAqdA+sinqdu-sinogcosiody

-CcOS W SinAgdA - coshqdu - sineg sinkedv
€08y c0sA\odA-sinAodu+ sincpcosiody (3.2-4)

1
We put
M = Ml + 1
which gives
0 singg dA - cosog dv

M, =| -sinopydA+coseg dv 0

cosp sindodA+cosddutsinvesindodV  -cosvgcosddA+sind qdu-singgcosedy

-COSWp SinAodA - cosAodu - sinvg sindodv
€08, CcoSAodA - sin\odu+ sincngcosiody (3.2-5)

0

and equation (3.2 - 2) becomes

X dx, X X - Xg X - X,
Y| = Idyo| + |y |+ My|y-yo|+e Yy - Yo (3.2-6)
V/ dz0 z Z'Zo Z-Zo

We also denote

X - Xo Dx
y-Yo| = |Ly
Z - Zg Az
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After substitution, equation (3.2 - 6) yields the following three equations:
X = x + dxo + €bx
+ (sinwp By - cos¢psinkoAz)dA - (cosioAz)du

(3.2-7)
- (coswp Ay + sinwg sinkg Az) dy

Y =y +dyo + €Ay
+ (-sin @ AX +c08QCoSko A2z) dA - (sin Ao AZ) du
+ (cos (o AX + sinpcosio Az) dy

Z =z+dz,t ez
+ (COS @ Sin Ao AX - COSQ COSA, Ay) dA
+ (cos Ao Ax + sin Ag Ay) du

+ (sin @ sin Ao AX - sin Qo COS Ao Ay) dv

We want to separate the shifts in two terms. The first dxq, is due to the
adopted geodetic coordinates and undulation at the initial point; the second dxqs
is due to the change in the parameters of the adopted ellipsoid when the

adopted coordinates and undulation at the initial point are kept fixed. Thus

dxo dxo, dXez
dyo | = |dya | + |dYee (3.2-8)

dzq dzq, dz

Since dx. is the change of the geodetic coordinates due to a change in a and

2

e, it is given by

oX 2.4

dxoz da de®
o) o)

dye| = gﬁ da + 3%2 de® (3.2-9)
oz dZ

dze 'a_a '5_62

Evaluating the partial derivatives of equation (3.2 -1) at the datum origin

we have
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X COS(q COSAg

doa Wo
% B = Wsomx (3.2-10)
dz (1-€) singg
da Wo
and
3x \ a sin®p, COS5(LCOS Ay
de® - 2W3
éy'a _ a 'sin®o, cos 0o Sin)g (3.2-11)
oe 2Wq
3z (M_o sin%p, - Np) sin g
5 :
where
Wo = J1 - € sinco
Mo, No are the radii of curvature in the meridian and the prime
vertical of the datum ellipsoid at the initial point
Using
e® = of - £2 (3.2-12)
where
f is the flattening of the ellipsoid
we have
_2%2 = 2(1 - f) (3.2-13)

From [Heiskanen and Moritz, p. 78], we have

2 1 1 2
= —=f - = _ = f= + —_ 92-
Jda 3 3 m 3 f o1 fm (3.2-14)
where
Jdz is the second-degree zonal harmonic
By differentiation we get
2 2 2
S _ 2 4 =
dJ, 3 df 3 fdf 1 mdf

22



from which
_ 3/ _m > _
df = 2 \1 + f T dd. (3.2 -14a)

The quantity f - % is less than the flattening and by neglecting it we make an

error of the order of the flattening in the correction for the second-degree
harmonic. As the correction to the second-degree harmonic is small and as we
make an error of the order of the flattening in subsequent models anyway, we

can safely neglect this term and use

Substituting - Cg for Jy in equation (3.2 - 14), we get
3
af = - ) dCx (3.2-15)
For a fully normalized coefficient the above will be

af = - %J‘s‘ dCqp (3.2-16)

We write equation (3.2 -9) as

_2X dx_de®df
e = 35~ T3¢ of 30, IC= (3.2-17)

which, after substitution, gives

eyain? 3 (3.2-17b)
dxg s = COS (B COS Ay da - 3./5 a (1-f)sin 0pCOS o COSAg dCap

Wo 2W3

d cos@oSindy .. _ 3./5 a (1-f)sin®0g cos o cOS A
Yoz W, 2W3

dCx

(1-€?) sin ¢ Mo —
dze, 1-e wsm da - 3.5 (1-f) -?O sin®¢p - No , singo dCxo

o]

Substituting (3.2 -17b) into (3.2 -7), we have
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X = x +dxg + (sin ©g Ay - cos@gsin Ao Az)dA (3.2-18)
- (cos A\, Az) du - (cos®y Ay + sin ¢ sin Ao £z) W
, cos cos\ da - 3J5a(1-f)siniwocosmo cOS\g oy + € X
Wo 2Wq
Y =y +dyq + (-Sin @y A% + €OS @ COSAy AzZ)dA - (sindo £Z) du

+ (oS Ax + sin@ycosio Az) dv

, €oSQq sin)g da - 3./5 a (1-f)sin®0, oS o COS g
Wo ) 2W3

dCop + €£:X
7 = z + dzg, + (COSQg SinAp &X - COSwp cos)p Ay) dA
+ (coBAo A + 8in)o Ay) du + (singp sin\oAx - singg cosioDy)dr

+(_1_'_‘i)_Si_n_“’9 da - 3.5 (1-f) (Mﬁ’ sin®g - No> singg dCqxp + €£6X
Wo 2

Equations (3.2 - 18) will be used as the mathematical model relating the
geocentric and the geodetic coordinates. This mathematical model will be used
to form observation equations in which the observed quantities are the rectangu-
lar geodetic coordinates given by equation (3.2-1). Although equations (3.2 -18)
are linear with respect to the parameters involved, it is still necessary to
introduce approximate values, X°, Y°, Z°, of the geocentric coordinates X,Y,Z
and to solve for corrections to the approximations, This will allow the unknown
parameters in the triangulation observation equations to be consistent with the
unknowns ip the other models to be derived.

The corrections da and df (or dCy) are different for each datum
because they are the differences between the elements of the average terres-
trial ellipsoid and the ellipsoid of the datum in question. In order to make
these corrections always to refer to the same approximate values, we select
an approximate reference ellipsoid with semidiameter a and flattening f,
and we change the ellipsoids of all datums to that one. We effect this change

by introducing the approximate values
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dag
df, = f - f,

a_ai

where

a,,f, are the semidiameter and flattening of the ith datum

The unknowns da and df are then interpreted as the differences between the
average terrestrial ellipsoid and the ellipsoid selected to approximate it.
This allows us to enforce the condition that the semidiameter and flattening
of the mean earth ellipsoid computed from data of different datums will be
unique.

The observation equations now have the form

dX - dxo; - (Singe Ay - coS@p SinkoAz) dA + (cosho Az)du (3.2-19)
+ (cos@p Ay t+ singg sin)oAz)dv- eAx

COS¢o COSAo 4. 4 3./6a(1-f)sin®¢p, cos@ coSo
W W3

dCxp

- x - X0+ 8080 COSAg 4 -, A(1-D) sin®uw, cosEycosig
Wo

Wg dfO + Vx

dY - dyo, - (-sin@p AX + cOS@p COSAoAZ)dA + (sin)oAz)du

- (cosp AXx + singp cosdo Az)dV - €Ay

COS(p Sinkg da+ 3\/5_a(1-f)sin2%005(p0 sin)q

dc
W 2W3 =

oY+ cosp Sin)g dag + a(1 - f) sin®g, cos(yp sink,

- A W3 dfo *+ Vy

dZ - dzg - (cos¢p SindoAX - COS® COSAoAY) dA
- (COSAoAX + sindoAy)du - (Singo sindoBx - singo cosioAy) dv

1- 2 . M —
- eDz - (___fW)_ofln_‘pﬁdaﬂA/g(l-f) \—2—0 sin®py - No sing, dCyp
(1-¢€% singy
= z-72%+ ewsm dag +2(1 -f)\%g sin®@, - Ny singp df, + V,
o /
where
VoV, V, are the errors assigned to geodetic coordinates x,y,z
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The above observation equations can be easily modified to include the case in
which we have known triangulation points on two different datums. The
mathematical model for this case will be derived by subtracting equation

(3.2 - 6) formed for one point on one datum from the same equation formed for
the same point on the second datum. The geocentric coordinates are

eliminated and the observation equation is

dxoy Ax, Ax, dXoy Bx, Ax,
dyos | + My |Ay,| + & | By | - |dyoy| - My | Bys| - & | Bys | =
dzo Dz, Dz, dzq Lz, Az,
X,y Xy Vy
=lyg|- |y} |Vy
Z Zy v,

where the subscripts i and j are denoted the first and second datum
respectively.
After the formation of the observation equations, normal equations

can be formed. They will be of the form

dX
dx
da
dC

Z
I
A

(3.2 - 20)

where

are corrections to the geocentric coordinates

5 &

are datum transformation parameters, namely, the three shifts

of the origins, three rotations, and the correction of the scale .

da are corrections to the elements of the reference ellipsoid. In
this group we will consider two parameters, the correction to the
semidiameter da and to the constant GM, Only the correction to
the semidiameter is involved in this particular set of normal
equations.

dc are corrections to the harmonic coefficients. In this case only

dCy is involved.
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It is immediately seen that these normal equations cannot be solved. The
number of unknowns is 3n + 7d + 2 where n is the number of stations and d is
the number of datums. However, the number of equations is 3n. As the
number of unknowns is always greater than the number of equations, the
matrix of the coefficients of the normal equations will be singular. This

should be expected as it is well known that triangulation alone cannot provide
geocentric positions. The normal equations are also singular for another
reason. Even if we treat the geocentric céordinates as known quantities,

thus eliminating the corrections dX to the geocentric coordinates, and we limit
the unknowns to the 7 d datum transformation parameters plus da and dCxy so
that there will be more equations than unknowns, the system cannot be solved.
This is because we make the adjustment between three-dimensional coordinates
where changes of the reference ellipsoid have the same effect as datum shifts
and thus cannot be separated by the adjustment. We can see this by examining
the coefficients of the shifts and of the changes of the ellipsoid in equations
(3.2-18). These coefficients are independent of the station coordinates and
thus constant throughout a datum so that the normal equations generated by
such observation equations are again singular. From such an adjustment

only the total shifts can be recovered, not corrections for the semidiameter
and the flattening. Only by combining the above normals with those of another
type of information can we have a solution in which the triangulation has its own

contribution.

3.22 Weighting of the Geodetic Coordinates

As has been already stated, the weights which are going to be applied
through all of the system will basically be the inverse of the variance-covariance

matrix of the observed quantities. For this case the weight matrix P, will be

P, = T} (3.2 -21)
where
Ty is the variance-covariance matrix of the rectangular geodetic
coordinates
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Our problem then is to determine the variance-covariance matrix Ty

When the geodetic coordinates ¢ and A are determined by rigorous
unified adjustment for every datum, the variance-covariance matrix for o and
X is available. To these the uncertainty of the height above the ellipsoid must
be added. The latter depends mainly on the uncertainty of the astrogeodetic
undulations and the estimation of that uncertainty will be investigated in the
next chapter. It depends also on the uncertainty of the orthometric height.
This uncertainty is usually very small and is provided by the adjustment of
leveling. If T is the variance-covariance matrix of the geodetic coordinates,
properly modified to include the covariance of astrogeodetic undulations and

orthometric heights, T, will be

T, = GIopG (3.2 -22)
where
G is the matrix which transforms the variables involved to the

rectangular geodetic system (x)

In practice we do not have a variance-covariance matrix for ¢ and A as
the triangulation is adjusted in parts. Instead, variances for these are computed
by methods such as those described by [ Bomford, 1962]. They may also be
estimated, as in [Kaula, 1959al, which is based on discussions such as those
by [Simmons, 19517, [Whitten, 19527, and [Ross, 1957]. In all these cases
the covariance between ¢ and )\ of the same point as well as the covariances
between different points were considered negligible. Thus the matrix Zo
becomes a diagonal matrix and for every point the variance of the horizontal
position, in linear units, in the meridian V(p) and the prime vertical V(A) are

taken equal. Thus the Zyp for every point is

Vi) 0 0
Lo =| O V(N 0 (3.2 -23)
0 0 V(h)

and the corresponding error ellipsoid is an ellipsoid of revolution with the one
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axis in the direction of the normal. If the geodetic coordinates of a point are

o and A (Fig. 3.2-4), then the G matrix with a spherical approximation will be

-1 0 o0
G = Ra(-A) Ro[-(90-¢)7{ 0 1 0 (3.2 - 24)
0 0 1
or
cosh ~-sin) O. singo 0 coso -1 0 0
G = [sinA cosA 0 0 1 0 0 1 0
0 0 1 -cosp 0 sincpi 0 0 1
or
-singp cosA  -sin A COS( COSA
G = | -sing sin A cosA cos¢ sin A (3.2 - 25)
cos ¢ 0 sin @

Finally, the terms of the Z, of one point are

S,, = sinfp cos®\ V(o) + sin®\ VQ) + cos®p cos®X V(h)

S;» = sin®p cos) sin\ V) - sinX cosA VQ\) + cos®p cos) sin) V(h)

S,a =-sin¢ cosg cos\ V{p) + sinp coso cosi V(h)

S, = sinp sin®\ V(g) + cos®\ V() + sin®X cos®o V(h) (3.2 - 26)
S, =-sing cosep sini V() + coso sing sin) V(h)

Sa = cos®p V(o) + sin’p V(h)

Thus we see that even if we neglect the correlation between o, ,h of a point, of
between different points, there is still correlation between the rectangular
geodetic coordinates, and the whole T, matrix is composed of 3 x 3 submatrices
along the diagonal.

For an approximate estimation of thie horizontal uncertainty of a triangu-
lation point, Simmons' equations has been used [ Brown, 1968. p. 22]. This

equation [ Simmons, 19517 can be written

k2/3
23.4 (3.2 -27)

T =
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where

o is the standard deviation of a geodetic position on the horizontal
plane in meters. It is the same in all directions.

k is the distance from the datum origin in kilometers

V() V(h)

v(x)

Fig. 3.2-4 Uncertainties of the triangulation and geodetic coordinate
svstem
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3.3 Gravity Observations

The terrestrial gravity observations will be used in the form of gravity
anomalies. This information will be used for determination of spherical
harmonic coefficients and geocentric coordinates. The spherical harmonic
coefficients will be determined by least squares from the mean gravity
anomalies and the geocentric positions will be determined from gravimetric
deflections of the vertical, computed by Vening—Meinegz's equation [Heiskanen

and Moritz, 1967 from the gravity anomalies.

3.31 Gravity Anomalies

3.311 Modeling the gravity anomalies

The gravimetric observations in the form of gravity anomalies Ag will
provide valuable information in the determination of the harmonic coefficients
of the gravity field. For such a determination the conventional method, which
involves summation of gravity anomalies over the earth's surface which is
considered to be a sphere, has been applied by various investigators. The
method of estimation by least squares has also been used. According to the

first method, the harmonic coefficients are given in general by

- 1 =
B =5 [[100 Ryo 6.0 do
o
(3.3-1)
b = -;—T [[ £©,)) 8wz (6,2) do
(o]
where
£6,\) is an arbitrary function on the sphere ¢ which is to be
expanded in spherical harmonics
Ap, Dyg are fully normalized harmonic coefficients of n degree

and m order
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R (0,))
S (8,)) =

P,, (cosh) cosm)

P,, (cosh) sinm\

and

P,, is the fully normalized Legendre function of degree n
and order m

8 = 90° -¢

Thus the coefficients are the average products of the values of the function

f(0, \) and the corresponding harmonics R,, or S... To perform this integration
we need to have the function, or values of it, all over the sphere; this means
complete coverage of the earth with gravity observations or with estimates of
gravity anomalies. In addition we can see that equation (3.3 - 1) can be derived
from a least squares fit of the harmonic series to the function £(8, A) [ Parzen,
1967). To understand this, consider uncorrelated values of f(6, A) with

variances v(8,)\) all over the sphereg. The least squares minimization will be

&= [[v 0N 100 -5 T @R Bom Suo ¥ 40 =mi
Jg”v € 0N -Z T @neFow @) +boeSuu @A) | do=mim .

The normal equations for the harmonic coefficients will be found by equating to
zero the partial derivatives of the function ¢ with respect to the harmonic

coefficients. Thus we have

L -5 R BueS Rus, 0,0)d0 = 0
- Za‘znmj B j(‘;'rv (e,)) f(e’l) anO mgo (a-nm an (e’)\)-*-bnmsnm(e’kl)_aanl( ’ )
(3.3-3)
o P ® P - _— = — B
g = [V 6N 10X -Z T @ Rue @A)+ oS 6,2) S, ©,\do = 0
! g

where the solution is

- 1
Appy = ]irv-l (‘D!X)ﬁﬁmi ((.D)\)
g

- Ve £6,)) Rom (8, 2)d0 (3.3-4)
Y
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-a-nm J‘J’V‘l(e,x) Enm (G’A-) -R—nmi (esx) d) +;nmij‘ I‘V-l(e:k)ﬁnami dO'
° o o

1
5 8
M:

o

% Dra fjv ®,)) S;a 8,0) Ruw 0, A)doJ

n=0 m=0

by = . [71v' 6.0 16,0 B @, do

[[v@.0 8% 6@.0d "o
(a3

%z anmj'_fv 6,0) Ry 0,0) 5ot 6.1) do

n=0 @=0

_z 0z b,,,,,Hv ©,)) Suo (6,)) Sue B,)) do + by fjv ©.,)) Sun, 6, )\)dc_)

n=0 ©w=0

When v(f, A) is constant all over the sphere, equations (3.3 -4) reduce to
equations (3.3 -1) with the help of the orthogonal relations [Heiskanen and
Moritz, 1967, pp. 29-30]

.,”' _R'-nm(e,x) Enni(ﬂ,l) do =0
o
[] Saa®:)) 5y 6,1 do = 0 6.5-5)
o
=0

IJ‘ ﬁnlﬂ 6,2 —S-nmi ©,A)do
0' .

and the property

[[ B2, @0 do = [[5a @) do = o
o o

Since the existing gravity data does not cover the entire earth and since
the gravity anomalies do not have the same variance, a least squares estimation

is preferable as indicated by Rapp in an earlier report [Rapp, 1968].
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In another paper the same investigator also gave the following equation
relating gravity anomalies and harmonic coefficients [Rapp, 1967b].

GM , 2(Wo-Up) . GM S
BAg, = - =+ 2 ‘; a , 2 "(n—l)[%:l ZJ (C:; cosml + (3.3-86)
2

n

I~ /"8

=0

+ S0 sinm)) By, ()
where

Dg, is a terrestrial gravity anomaly

al

nwsSpn are the fully normalized harmonic coefficients of the gravity field
denotes the difference between the actual and the reference fields

P.u(u) is the fully normalized Legendre polynomial of degree n and
order m

GM is the gravitational constant times the mass of the earth

AGM s the difference between the constant GM of the geoid and the
reference ellipsoid

a, is the equatorial radius of the reference ellipsoid

r is the radius vector from the origin of the coordinate system to
the point in question

Wo is the potential of the geoid

Uo is the potential at the surface of the reference ellipsoid

By making the approximations

GM _ -
2 Y
2 -1

2 -U AGM
pg, = 2Mazla) _ AGH
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and by carrying the summation up to Nu, degree, equation (3.3 - 6) becomes

me n
bg; = Dgoty | (n-1), (CX cosm\ + Ssinm)) Pa(p) (3.3-17)
n=0 m=0

The gravity anomalies considered in this equation are free-air gravity anomalies
on a sphere of radius a,. This is the extended mathematical formula given by
Rapp for the determination of the harmonic coefficients and the zero-degree
harmonic of the anomalies from terrestrial gravity anomalies. As the gravity
anomalies are determined on the surface of the earth, some corrections and
some assumptions must be made. If the gravity anomalies were referred to
sea level, then the substitution of the reference ellipsoid, by a sphere, would
have produced an error proportional to the flattening (spherical approximation)
in the determination of the harmonic coefficients through equation (3.3 - 6)
[ Moritz, 1967a, Section 9]. Pellinen and Ostrach showed that this error
actually increases with the degree of the determined coefficient. The
proportional error is n* f, where n is the degree and f is the flattening
[ Ostrach and Pellinen, 19661. For n =15, the above error amounts to
5 percent of the value of the coefficient.

The proportional error of a harmonic coefficient from a purely

terrestrial solution with the present data is Rapp, 1968al

g’— = 0.055 (n + 1) (3.3-8)
where
s is the standard error of a harmonic coefficient of order n
o] is the RMS coefficient variation

For n =15, this equation gives an estimated error for a harmonic coefficient of
83 percent of its value. Thus with the present gravimetric data and the degree
of expansion of the geopotential for which we are solving, the substitution of

the ellipsoid by a sphere is permissible. In general the above error may
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even be below the limit of round-off errors introduced by the computer and
can safely be neglected. Accepting this approximation for the gravity anomalies
we bypass the question of divergence of the harmonic series on the surface of
the earth, about which contradictory opinions exist in the literature | Molodensky
et al., 1962; Heiskanen and Moritz,1967; Morrison,1967; Brovar,1961;
Hirvonen, 1960; Moritz,1968; Molodensky et al.,1962a; Kohnlein, 19661,

Although we can replace a sphere with the mean sea level, we cannot
replace it with the physical surface because the inclination of the terrain is
not negligible [ Moritz,1967a; Molodensky et al.,1962a]. This substitution
would affect the estimate of the harmonic coefficient according to Pellinen
by 15 to 20 percent [ Pellinen,19621, Thus a reduction of the gravity anomaly
to the mean sea level or a regularization must be made.

The free-air gravity anomaly reduced to sea level Ag* is related to the
surface free-air anomaly by [ Moritz, 1967a]

Ag* = Ag - g—flg h (3.3-9)

where

Ag* is the gravity anomaly at sea level

h is the elevation of the point where Ag has been observed

In this equation higher-order terms have been neglected. The vertical gradient
at a point P can be measured directly or computed by
dbg _ R® o Lg-Ag
dh  2m IT 23 do (3.3-10)
. (o7
where 4, is the distance of the anomaly Ag from the surface element do.
Instead of an analytical continuation to some level surface, we may use the

Molodensky correction G,. In this case

*

bz = bg + G (3.3-11)
with
R® »p» h-hy
G = o ’]“6[’ g ledo (3.3-12)
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This correction is a planar approximation of the actual correction and it holds
only for low-degree harmonics, For a better approximation the above correction,
as has been modified by Pellinen, must be applied [ Pellinen,19641. The first

term of this correction, which is adequate for most practical purposes, is

‘o &2 (h‘hp)(Ag‘Agﬂ) -
G = _|“0F E do (3.3-13)

This form also has another advantage; using the assumption that there is a
linear relation between gravity anomalies and elevations, the above correction
may be shown to be essentially identical with the conventional terrain correc-
tion for deviation from the Bouguer plate. Thus it can be computed by the

topography alone as follows [Moritz,1967a; Rapp, 1967a’

G =% 4 3 (3.3-14)
where
6 is the density
k is the gravitational constant

The other change in the correct equation (3.3 -7), that is the truncation of the
series, could become a serious error if not properly handled. It is known that
because of the orthogonality between the spherical harmonics of different orders
the truncation does not have any effect when there is a complete coverage of
gravity anomalies with the same variance. However, when such complete
coverage does not exist it introduces a systematic error which cannot be
avoided will be examined later.

Because the coefficient 620 is 10° times the size of most of the other
coefficients and because in forming the gravity anomalies nominal values for
Ego, 640 have been used, it is both convenient and numerically more desireable
to solve for corrections to these coefficients than for their whole values. This

is not strictly required by the adjustment however, as the mathematical model
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(3.3-7) is linear with respect to the coefficients. The gravity anomalies which
will be used in equation (3.3 -7) can be given with respect to any ellipsoid
provided that a parameter Ag, and an approximate value for dEa, are introduced
for each different ellipsoid.

As has been pointed out by Kaula, the observed gravity anomalies at
discrete points cannot be directly used for the determination of spherical
harmonic coefficients {Kaula, 1959]. Because of the nonuniform distribution
and incomplete coverage, the effect on the higher-order terms is such that
the results are so erratic as to be useless. Instead a smoothing of the
observed anomalies has been applied. This smoothing consists of some kind of
averaging of the anomalies, usually in squares of different sizes bordered by
meridians and parallels, or sometimes in equal-area squares. The selection
of the size of the block and, consequently, the selection of the method of smooth-
ing depends on the maximum degree of the coefficients carried in the solution,
Rapp, using two criteria, determined the size of the block for which the mean
anomaly may be represented by a given set of coefficients of degree n.
Inversely, this is the size of the block where mean anomalies must be computed
for a better determination of a set of coefficients of degree n. Table 3.3 - 1

gives the values of Rapp based on the half-wave length criterion and the number

of parameters to be solved criterion [ Rapp, 1967b].
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From Table 3.3 - 1 we see that for an extension of the gravity anomalies
to the 14th degree, a smoothing in 13°x13° blocks is recommended. However,
the estimation of mean anomalies and their variances for larger blocks becomes
more uncertain. Therefore, a comparison must be made to determine whether
smaller errors will be provided by estimating mean values in larger areas, or
by using smaller areas and accepting some effect from the higher-order terms.
For an extension to the 14th degree, sizes of 5°x5° and 10°x10° have been tried.
The degree up to which the present solution can go will be examined in
Chapter 4. The effect of this smoothing on the estimated harmonic coefficients

has been studied by Kaula [19591 and Pellinen [1966].

Table 3.3 -1
Block Size from an Expansion to Degree n
From From j] From From
n | Half-wave Number of n | Half-wave Number of
Length Parameters Length Parameters
5 36° 33°8 22 8°2 8’8
8 22.5 22.6 24 7.5 8.1
9 20 20.3 | 26 6.9 7.5
10 18 18.4 28 6.4 7.0
12 15 15.6 30 6.0 6.5
14 12.8 13.5 32 5.6 6.1
16 11.2 11.8 34 5.3 5.8
18 10.0 10.6 36 5.0 5.5
20 9.0 9.7
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Many methods have been tried' or suggested for smoothing of the
anomalies, e.g., simple averaging of the anomalies, detailed development in
spherical harmonics within each square, etc. A system which provides
sufficiently accurate mean gravity anomalies in 1° x 1° blocks and which is
practical and possible has been suggested by Uotila [1967a]. In his method
Uotila estimates mean Bouguer anomalies Ag‘:fl using preselected b-values and
the mean elevation of the observation stations in 5' x 5' sub-blocks. Then a
plane which best fits the mean Bouguer anomalies of the 5' x 5' sub-blocks is

determined by using the model

Ag] = x, + Doyxp + AN X, (3.3-15)
where
Agﬁl is the mean Bouguer anomaly in a 5' X 5' sub-block
Aoy = Py - Oy
A, = Ag — Ay
©u is the latitude of the central parallel of the 1° x 1° block in
question
A is the longitude of the central meridian of the 1°x 1° block
©; is the latitude of the central parallel of the sub-block j
Ay is the longitude of the central meridian of the sub-block j
X, Xgy X3 are the parameters to be determined

Finally, the mean anomaly of a 1°x 1° block is computed by the equation

Ag = %GX+Agf,+bhm (3.3-16)
where
S is the total number of 5' x 5' sub-blocks
k k
G = |k; T A T A,
=1 =1
k is the number of observed 5' x 5' sub-blocks
Xy
X = | x5
X3
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il

Ag;

= =
™
>
9,

is the number of observations in the j sub-block
is the Bouguer coefficient computed by the local data or constant

h, is the mean elevation of the 1°x 1° block

Mean anomalies in 5° x 5°, or any other size, block are estimated by
methods developed by Kaula and Moritz [ Kaula, 1959; Heiskanen and Moritz,
1967]. The gravity anomalies have been treated as a stochastic phenomenon on
the earth's surface described by a stationary stochastic process. An estimated

mean gravity anomaly is given in general by

AT = T a; Ag,
=1

Ag are observed anomalies and, in this case, mean anomalies in
1° x 1° square
a, is a coefficient which depends on the relative position of the i

square in the 5° x 5° block

Different methods of selection of the coefficients result in different
interpolation methods. Although selection according to least squares principle
seems more accurate, the amount of work involved, especially on a world-
wide scale, led to the design of simpler expressions. When the mean values in
the 1° x 1° squares are computed by simple averaging of the observed values,

the mean anomaly of the 5°x 5° square is computed by simple averaging and

. 1
a‘ - ag = o a e a.,_ - n

where

n is the number of the observed 1° x 1° squares.

When the mean values in the 1° x 1° blocks have been computed by Uotila's

method, which also furnishes an estimate for the variance of the anomaly, the
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mean anomaly for the 5°x5° block will be the weighted mean of the anomalies in

the smaller blocks. The weights will be the inverses of the estimated variances

so that

Z p; Ag:
AF = L;l___ (3.3-17)
zp,
and
U T
' . (3.3-18)
) lpi

After the computation of mean gravity anomalies, observation equations

can be formed. The coefficients of the observation equations are

¥ (n-1) cosm\ B,, for C,,
¥ (n-1) sin m\ B,, for S,
1 for Ago

The normal equations arising from the terrestrial gravity observations
will have the form

Ago

N2 = Ug (3.3-19)
dcC

where

Ago is the zero-degree harmonic of the gravity anomalies

dC are corrections to the harmonic coefficients

By keeping the zero-degree harmonic in our system, the solution for the
equatorial gravity will be consistent with the values of the coefficients which

come out of the solution.
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3.312 Various gravity estimates for the unsurveyed areas

For a reliable expansion of the gravity field in spherical harmonics,
especially when based only on terrestrial gravity observations, a complete
coverage of the earth's surface with gravity estimates is necessary. As the
gravity observations cover only a small part of the earth's surface, estimates
of the gravity anomalies for the unsurveyed areas have been attempted by
various methods. This increase of the coverage has been effected by increas-
ing the size of the squares where mean values were estimated [Jeffreys, 19431,
by statistical predictions of the gravity anomalies in the unsurveyed ares
[Hirvonen, 1956; Kaula, 19597, by predictions based on geological and geo-
physical evidence [Woollard, 1966, and by applying isostatic theories
[Uotila, 1964; Kivioja, 19661.

The first method has only a phenomenological advantage and can be
applied only for very low-degree harmonics, since the mean values for the
new large blocks, where now the proportion of the observed area is much
smaller than before, are estimated with large uncertainties. Consequently,
the harmonic coefficients will have larger variances.

The statistical predictions are based on the study of the behavior of
the available terrestrial gravity data. Although they are very valuable for the
study of the gravity field itself, they present two difficulties in a world-wide
application, First, in order to apply the method correctly, we need the
covariance function C(s). But to find this we must know the gravity field all
over the world [{Kaula,1963]. Second, although the method gives very good
results for short distances, it cannot be applied very successfully to fill in
the unsurveyed areas which are far from observed regions.

The principal defect of predictions based on geological evidence is that
in those areas where gravity observations do not exist geologic maps are also
inadequate.

The prediction of anomalies based on isostatic models [ Prey, 1922;

Jung, 19621 gives some information which is considered important for
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higher-order harmonics. In general éll these methods give predicted gravity
anomalies with a standard error of around 20 mgals. Although there is some
evidence that the inclusion of predicted anomalies for the unsurveyed areas
contributes to the determination of the harmonic coefficients [ Rapp, 1968c],
there is no clear agreement on how much this contribution is for every type of
prediction. The question of the contribution of the predictions for the

unsurveyed areas will be investigated in a later chapter.

3.313 Weighting of gravity anomalies

To weight the gravity anomalies we need the variance of the mean

anomalies in the 5° x 5° blocks.

We start from the variance of the 1° x 1° means which can be computed

as follows [Uotila, 1967a]

Var (Ag) = GZ, G (3.3 -20)
where
z, = mi2N?
and
ng is obtained through the adjustment if there are enough

observationsor itis computed from a large number of

samples.

These variances are used in the computation of mean gravity anomalies
and their variaces in the 5° x 5° blocks. First, the variance VA of the 5°x5°

mean due to errors of the 1°x 1° blocks is computed by quadratic propagation of

the errors of 1°x 1°. We have
VAE = T a5, Var (AE),
i=1

Next, the variance Var (Ag) due to the determination of the mean from discrete

gravity observations is computed. We have from [ Heiskanen and Moritz, 1967]]

Var (AE) =Co-2 Z a5, Gy + I T apapm Cy (3.3-21)
=1

f -1k-1
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where

Co = M {Agf}

Coy = M {bg Ogy}

Cux = M {Ag; Agk}

apy = tg—i-_\
with
M meaning average over the whole sphere
N weights

Even if the gravity anomalies have the same variance, we still have to
weight our observations because of the difference between the area of a square
of 5° x 5° at the equator and at a latitude ¢. Because the area of the 5°x5°, or
other, block bordered by meridians and parallels, changes with the latitude as
cos, the expression for the weight of a mean gravity anomaly will be

coOS®
Var (A) + VA

p = (3.3-22)

We can also form estimates for the variances of the predicted gravity anomalies
by comparing the predicted values with known values. From such a comparison
Rapp estimates that the standard error of a mean model anomaly of a 5°x5°
block is of the order of 20 mgals. The accuracy of most of the statistical
predictions depends usually on the distance of the block where mean anomaly

is to be estimated from the known mean values on which the prediction is to be

based; thus it cannot be described by one number.
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3.32 Gravimetric Deflections

3.321 Modeling the gravimetric deflections of the vertical

The observation equations for the deflections of the vertical at one point
will be derived from the condition that the gravimetric and the astrogeodetic
deflections, corrected for the terrain effect, must be equal. With a spherical

approximation this is expressed as [ Hciskanen and Moritz, 1967, pp. 213-2141

£°- ¢ El‘ﬁ - é(sinw cos) dxg + sing sinA dyg, - cose dzo)

. (3.3-23)
n"-nt = r"—n - E (sin) dxg - cosA dyy)

£*,m® are the adjusted terrain-corrected astrogeodetic deflections of the
vertical in the meridian and the prime vertical planes respectively
£%,m* are the adjusted gravimetric deflections
£',m’ are the observed terrain-corrected astrogeodetic deflections
E.n are the observed gravimetric deflections
dxo, dys, dz, are the total shifts of the origin of the center of the ellipsoid
used for the computation of the astrogeodetic deflections with

respect to the center of mass

These equations in a more precise form as given by Molodensky [ Molodensky et

al., 1962, p. 15] are the following:

£ - &5 g’- £ - KI/I— (sing cos\ dx, + sine sin) dy, - cose dzp)
(3.3-24)

a

" -nt n-n- %I-(sin)\ dx, - cosA dyg)

The total shift due to the orientation, rotations, size, and shape of the

ellipsoid is derived from equation (3.2 ~-18) as
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dxo = dxp; + (singy Ay - cos¢y sin)g £Hz) dA
- (cosAg Az) du - (cosw Ay + singy sin)g Az) dv

P
4+ GOS0 CcosS)q da - 3a(l - f)sin (go COB (g COSAq dCap
Wo 2w,

dyo, = dyg + (-Sin@, Bx + cos@g coshg Bz)dA - (sindo Az)du

+ (cos@p Ax + singg cos)g Az) dv (3.3 - 25)

. s 2 .
+ C0S@y Sinlg da - 3a(l -f)sin mg COSW, Sin)g dCa
Wo 2wy

dzo = dzg, + (cosSy sin)y Bx - cosg coskg Ay) dA
+ (cosho Bx + sin)g Ay)du + (singy sinky Ax - singy cosAy Ay)dy
_ 2 . "\ _
+ il_GIS;n(g;da - 3@ -1) Mo sin®p, - Ny, singp dC
WO AN 2 /

Substituting (3.3 - 25) into (3.3 - 24), we have

EA-tf = g~k - ild-rsimo cos dxq + sine sin) dyg, - cose dzg, (3.3-26)

+ [sing cos¢p sinA-A)Az - sing singg (tsin\Ax - cosAdy)

- COS( COS(y (Sin)y Ax - cos)o Ay)] dA

- [sinw cos (A\-Ag)Az + cose (cosho, Bx + sin)yAy)]du

+ [sing singg, sinA-\y)Az + sine cosmy, (sink Ax - cos) Ay)
- cos© siny(sin), Ax - cos)gy Ay)Jdv

+ wi [sine cosg, cos(h - o) - (1 - €®)sing, cose ]da
[o]
-3./5(1- f)'—z;;lv3 sines cosy sinw cos (\ = \o)
o

My
2

sin®¢pg - No/, singg cosgp dCy
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N sinA dxo, - cos) dye,

+

Fsingg (8ink Ay + cosX Ax) - cos¢y, cos(A-Ao) Az]dA
fsin(\- o) &z ] du

[cosup (sin) Ay + cosAAx) + sing, cos(\ - Ap)Az ] dv
, €OS© Sin(A -Ag) da - 3./5 a(l -f)

3
Wq 2Wgo

sin®@, cos@, sin(A-\o)dCao

Equations (3.3 - 26) give the changes of the astrogeodetic deflections due to the
orientation, the rotation of the ellipsoid, and the changes of the semidiameter
and the flattening. The latter has been again introduced as a change in the
fully normalized second-degree zonal harmonic of the geopotential.

The above equations contain corrections for parameters of the world
geodetic system and can be used for the determination of them. The normal
equations formed will be of the same form as those produced by the use of the
terrestrial triangulation equations, except that they will not contain corrections

for geocentric coordinates. They will then be of the form

dx
Ny [ da | = Uj
dc

3.322 Weights of the observed quantities

The observed quantities in these observation equations are the differences
of the astrogeodetic minus the gravimetric deflections of the vertical. The
weight mafrix will again be the inverse of the variance-covariance matrix V,,.
This V,, matrix is found by summation of the variance-covariance matrices for

the astrogeodetic deflections V, and the gravimetric deflections V,. That is,
Vg = Vo +V,

The variance-covariance matrix V, of the astrogeodetic deflections will

be formed by first forming the matrix V' which is the summation of the
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variance-covariance matrices of the astronomic observations V_ and that of

®
the geodetic coordinates ¢ and A, V(D , and then V, is computed as

I
VvV, = | I v’
s v
(o]
where
C is a diagonal matrix whose diagonal element is the cosines of the

©
latitude of the point in question

The variance-covariance matrix of the gravimetric deflections V, will be found
from the variances of the gravity anomalies propagated through the Vening-

Meinesz equation.

3.4 Astrogeodetic Undulations

3.41 Modeling the Astrogeodetic Undulations

To use the astrogeodetic undulations for the determination of the
parameters of the world geodetic system, we need to find a mathematical
model which will relate the undulations with as many of these parameters

as possible. We start from the expression

r+l

G
a,

=

o

N = 9:_ C*, cosmA + S,a Sin mA I)-nm (7)) (3.4-1)

A

/

i

n=2 °
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where [Mueller, 19647

N is the geop-spherop separation

GM is the gravitational constant times the mass of the earth

a, is the semidiameter of the reference ellipsoid

C,S are the fully normalized harmonic coefficients of the gravity field

*

denotes differences between the actual and the reference fields

r is the radius distance of the point in question from the center of
coordinates
v is the normal gravity at the point in question

P..(u) is the fully normalized Legendre's polynomial

The separation N is measured from a reference surface defined by the values of
GM, a,, ¥, and the harmonic coefficients of this reference surface. In compu-
tations the an and 640 harmonic coefficients of a level ellipsoid are usually used
to define the reference surface. The difference between this reference surface,
which is a special kind of Helmert's spheroid [Moritz, 1967, p.81], and a level
ellipsoid is the effect of the even-degree zonal harmonics of the level ellipsoid
from degree six to infinity. This effect can be evaluated by the harmonic series
of the even-degree harmonic coefficients which is a rapidly decreasing series;
it decreases as powers of e®, where e is the first eccentricity. The first term
of this series is of the order of 4 cm, and the whole effect is not much more than
that. Thus, we can consider our undulations as measured from a level ellipsoid
without appreciable error.

The harmonic series involved in (3.4-1) is always convergent only for
r > a,, and it is considered generally divergent for r< a,, or convergent down
to the attracting masses for some special mass distributions as those discussed
by [Moritz, 19617 and [Morrison, 1966 and 1967]. It is also known that when we
substitute the mean value of gravity over the earth ¥ and put a, /r=1, in
equation (3.4 -1) we get Stokes' equation for the gravimetric undulations

[Molodensky et al., 19627. The relative error of Stokes' formula for
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undulations is well known to be of the order of 3 x 10"°N, and thus it is

considered negligible [Cook, 1953]. We then put

GM
a.y

= R
and equation (3.4 - 1) becomes

N=R ¥ [Cf cosm\ +Smusinm\] P, ). (3.4-2)
n=2

The undulations expressed by equation (3.4 - 2) are gravimetric undulations
referred to the level ellipsoid implied by the Cx used as reference but computed
with a spherical approximation. Equation (3.4 - 2) must also be further
simplified as we cannot carry the summation up to infinity, but only up to some
finite number N,,. This introduces another approximation, the effect of which
will be examined in a later discussion.

In order that the astrogeodetic undulation be comparable with the
gravimetric one, the former must be changed from the reference ellipsoid
of the particular datum to the level ellipsoid used for the gravimetric undula-
tions. The change of the undulation dN at a point P, due to shifts of the center
and to the changes of the parameters of the reference ellipsoid, is given by

Rapp [1966]

dN = cos¢ cosAdxy + cose sinA dyo + sino dzg
R ain? (3.4-3)
- Wda + a(l \fvzsm O s

where
O\ are the geodetic coordinates of P

dxo, dyo,dz,  are the total shifts of the datum center from the geocenter
da, df are the differences of the semidiameter and of the

flattening of the datum ellipsoid from the a priori mean

earth ellipsoid

a, f are the parameters of the datum ellipsoid
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In order to use the same parameters as in the triangulation model, we
again make the substitution (3.2 -17b),and equation (3.4 - 3) becomes

dN = cos @ cos A dxs, + cos @ sin A dyesy + sin o dzg:

1, . .
+ w [COS © COS A COS (0; COS Ao +COS @ sin A COS Vg SinAg +
o}
+ (1-€°) sino sinm, - WW, 1da

_r35a(1-f) sin®eq
2W 3

(coS@ cOSA COS©g COSAg +COS®Y SinA cOS®o Sin Ag) +

3./5 , R
+ _;.E(l—ﬂ sin@i(My sin®“w, - 2Ng) sin@g + g_s,\;;l_m) dCxo
or -
dN = coso cos\ dx o, + coso sinA dyg; +sin o dzo, (3.4-4)

+ L COS( COSYu COS (A -Ap) + (1-e°) sino sinp, - WWo da
]

Wo -

- 2 sin®

- §-“/——5_(1-t) a illl—g@g- COS(? COSYy COS(A -Ao) L0
2 Voo Wo W /

+sin@ sin@, Mo sin®g - 2Ny dCao
\ 7 S -

Another change, dN;, due to the rotations of the datum must be added
to equation (3.4-3). This is the change of the position of P (Fig. 3.4-1) along
the normal, due to the rotations. The coordinates x, of P after the rotations

will be

X, = x + M(x-Xo) (3.4-5)
where
X, is the vector of the coordinates of the point P’ which is the point
P after rotations
X is the vector of the coordinates of the point P
Xo is the vector of the geodetic coordinates of the datum origin
M is the rotation matrix as in equation (3.2 -2)

The change of the coordinates in the same system will again be
Xl - X = Ml(x_)(o) = M\‘AX (3.4_6)

52



Xo Yo 2 - i
0o Jo ~o0 . dv
N
dA N 97227 % Y 2
xXY2Z
iP
0 , i s |
(R {
A
Fig. 3.4-1 Effect of rotations of a datum on astrogeodetic undulations
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The change along the normal of the point P is the change of the
coordinate system whose z; axis coincides with the normal at point P. The

change of the coordinates in that system will be
Ax; = Ry(90-¢) Ra(A) M, Ax (3.4-17)

The change of the point P due to the rotation dA, which is the rotation around
the geodetic normal at the datum origin, is, with a spherical approximation,
along a line perpendicular to the axis Z and to the line DP; therefore it is a
change in a direction perpendicular to the plane DOP and thus to the normal
Pz,, so it does not have any effect on the coordinate z, of that system. By
putting zero for dA in the expression (3.2 -5) for M, and separating the change

to the coordinate z;, we find that

dz; = dN; = (cOS(p cos¢ sink dv + cos)o sing dy + singe sinkg sing dv) Ax
(- coseo cosX cosp dv + sin)g sing du - singg cos), sing dv) By
(- cos ko cose cos) dy - singp Sinko cos® cos) dv - sinkg coso sinA du +

+8ing o8k coS sin) dv) Az (5.4-8)
| ] 4 -

Separating our parameters we have

dN; = [(cosko Ox + sin)g Ay) sing - cos cos A -Xo) Dz] du
+ [(sink Ax - cos) Ay) cosgp cos@ + (sindg Ax - cos)o Ay) singg sing

+ singy cos@ sin(A -Ao) Nz ] dv (3.4-9)

Another way to derive the above equation is by projecting the change due
to the rotations of the coordinates of the point P onto the geodetic normal of
that point. The unit vector €, along the geodetic normal at point P is

COS( COSA
€, = | cose sin]\ (3.4-10)

sin ¢

The change of the coordinates dxgz, dys, dzz of the point P due to the rotations

are, for equation (3.2~-17),
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(3.4-11)

dx, = (sin g Ay - c0s g sin Ag AZ) dA - (cosko Az) du
- (cos g Ay + 8in ¢ sin Ay Az) dv '
dys = (-sin @y AX +COS@PCOSAy A2Z) dA - (sin Ao AzZ) du

+ (cos g AX + singgycosigy Az) dy
dzy = (cos @ 5in Ao AX - cos, cos A Ay) dA

+ (cos Ao Ax + 8in Ao Ay) du
+ (sin ¢ 8in Ao AX - sin g COs Ao Ay) dv

The change of the undulation dN; is then

dxq
dN; = &, * {dyq (3.4-12)
dzg

We substitute equations (3.4 -10) and (3.4-11) into equation (3.4 -12) and

after some rearrangement we obtain

dN; = [(sino coswg 8in)p - cos® sin) singg) Hx (3.4-13)
+ (coS cos) Singg - Sine cos@ coslo) Ay

+ (cos( sin\ coswg COSAp = COSO CcoS) coS(y Sin)g) Az1dA

+ [ (coshoBAx + sin)o Ay) sinoe -

- cos@ cos(\-ho) Az1du + [(sink Ax - cosA Ay) cos¢p coso

+ (sindoAx - coSAoAy) singy sing +

+ 8inmy coso sin (A-Xo) Az dv

This equation reduces to equation (3.4 - 9) when the coefficient of dA is zero.
In order that the geometric result, which indicated that the rotation dA does
not have any effect on the undulation, be in accordance with the above analytic
result the coefficient of dA must be identically zero. With a spherical

approximation we have

AX = X-Xo = I COSQ COSA - To COSOp COSAo
Ay = y-Yyo = r cososin\ - IgCOS®%p sin \q (3.4-14)
Az = z-129 = r sine - Tp sin ¢
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where

r, r, are the radius vectors of points P and D respectively.

After the substitution of equation (3.4 - 14) into equation (3.4-13), the
coefficient of dA vanishes. Therefore equation (3.4 -13) reduces to equation
(3.4-9) and both approaches give the same result.

If we had not introduced a spherical approximation in equations (3.4 - 14),

equation (3.4 -15) would have given for the coefficient of the rotation dA
€. = (Np sinwo - N sino) e®cos® coswy sin (A-Ag) dA

This is zero for
© =
A Xo

or

It is maximum, if we limit the extension of a datum within a hemisphere,

when
o = 45°
= 0°
A-Ao = 90°

For a rotation dA = 1", this is only 11 cm, which we may neglect.
With the changes dN and dN; of the astrogeodetic undulations computed

above, we can write
N = N + dN + dNg (3.4-16)

We substitute equations (3.4 - 4) and (3.4 - 9) into equation (3.4 - 16) and the
mathematical model which relates the astrogeodetic undulations with the

parameters of the world geodetic system:
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cos( cos dxq + coso sin) dyg *+ sine dzg (3.4-17)
+ [(cosho AX + sin)g Ay) sing - cos cos (A-o) Az] du
+ [(sin\ Ax - cos\ Ay) cos@p cos@ + (sinko AX - COSAo BDy) sing, sing
+ singyg cos sin A-Ao) Bz dv
+— [cosp cos@y cosA-do) + (1-e 2) sine singg -WW, ]da

<p‘) + sine sing, (Mo sin®gp- 2No) \de

_= (1 f)[ <—3— COS (Y COSPp COS(A~Xo) +
NBX

- R (C,,,m cosm\ + Ssinm)) Py (u) = = Ny Vag

n=2

In this model the observed quantities are the astrogeodetic undulations N.
The above mathematical model is already linear, thus no special linearization
is necessary; however, the normal equations can take different forms depending
on the way that we treat the parameters (parameters with weights or not).
These cases will be treated in Chapter 4.
To decrease the effect-of the neglected terms of order higher than
Ng.,,» We will not use point values of the astrogeodetic undulations but mean
values over some surface; for example, 5°x5° blocks bounded by meridians and
parallels. This way we consider some of the effect of the terms from N,,, to
infinity; roughly, we neglect a large percentage of the terms from order Ny,,
to approximately order 360°/2S° and a very small part of the effect of the terms
of order greater than 360°/2S°, where S° denotes the dimension of S°xS° blocks
in which mean undulations are evaluated. The computation of these mean
values is a complicated problem and depends on the adjustment method
applied, the form in which the undulations are given, and the size of the block.
In most existing cases, the undulations are given for discrete
nonuniformly distributed points which have not been adjusted by rigorous
methods, but summary procedures or intuitive corrections have been under-
taken [6lander, 19547, Furthermore, the undulations are very often given in

the form of an undulation map which contains more information than the initial
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discrete point but where the mathematical rigorousness has been further
distorted.

We assume that the adjustment of the astrogeodetic undulations is
carried out by rigorous adjustment procedures such as those described by
[ Fischer, 19667 and [ Thorson, 1967]. Thus we end up with the adjusted
undulations u for the intersections of meridians and parallels at 1° intervals,
and we have also estimated the variance-covariance matrix of the adjusted
undulations which actually is the variance-covariance matrix of the parameters
of the adjustment. The mean undulation of a 5°x 5° block, for example, can be

estimated by

Ne = 23— u (3.4-18)
IR
1=1
where
u is the vector of the undulations contained in the block
c is the vector of 36 elements which are 1/25, 1/50, 1/100, or 0,

depending on the position of the undulation (Fig. 3.4-2). (If an
undulation refers to the intersection of a meridian and parallel
which both lie in the block, the element is 1/25; if one of them
is on the border, it is 1/50; and if the intersection is at a corner
of the block, it is 1/100. It is 0 when the intersection has not

been determined. )

It is understood that for different sized blocks we have different ¢ vectors.
The size of the blocks where mean undulations will be computed must be
examined based on the discussions of Rapp [1967b] and Pellinen [1966]. From
the observation equations (3.4 - 10), normal equations can be formed. They

will have the form

dx

Ny {da |= U, (3.4-19)

dC
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where the parameters have the same meaning as in (3.2-20). This set of
normal equations can be solved alone, and they are actually a form of the

well-known astrogeodetic determination of the size and shape of the earth.

Fig. 3.4-2 Contribution of astrogeodetic undulations at 1° intervals
to the mean undulation of a 5°x5° block
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3.42 Weighting of the Astrogeodetic Undulations

The mean astrogeodetic undulations in 5°x 5° blocks will be computed by
equation (3.4-18), thatis, by a summation where we assume that the mean
undulation of a 1°x1° block is approximated by the undulation at the intersection
of the meridian and parallel at the middle of the square. This assumption has
been checked for twelve 5°x5° blocks taken from the Geoid Contours in North
America [Army Map Service, 1967] by comparison of the mean values com-
puted as above with the ones computed through careful estimation of means in
1°x1° blocks bordered by meridians and parallels, We tried to select blocks
of the undulation map that were as representative as possible, and the result
was that the two estimates differed usually by less than 0.1 m and only one
difference was as large as 0.3 m. Thus from this limited sample we conclude
that the representation error introduced by this assumption is negligible and
the undulations at the intersections of meridians and parallels at 1° intervals
can be treated as mean values of 1°x1° blocks.

If T, is the variance-covariance matrix of the adjusted undulations, the

variance-covariance of the mean will be

T, = GZ,G (3.4 - 20)
where
n
G is a matrix whose rows are the vectors ¢/Z ¢, of equation
1

(3.4 -11) properly expanded with zeros to match the dimension of
I,

In addition to the above, an error of omission is committed when undulations at
some intersections have not been observed. To estimate the variance of this
error first we computed the standard error with which a mean undulation of
1°x1° block represents the mean value within a 5°x5° block. Again from a
limited sample we find that an undulation of an intersection represents the
mean of the block with a variance of 16 m®, As this variance is very _small we

make the assumption that the variance of the mean undulation of a block due to
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the omission is inversely proportional to the number of the 1°x1° blocks
observed; however, a more reasonable assumption could be made after careful
investigation of the data, Thus we add another term in equation (3.4 -13) which
will account for the error of omission. The variance of the mean can now be

expressed as

Ty = E;,-+<I-§2—g x 16 (3.4-14)
where
zG is a diagonal matrix whose diagonal elements are the summatijons

of the elements of the corresponding rows of matrix G of

equation (3.4-13)

At the moment, as the adjustment of the astrogeodetic deflections has
not been performed by rigorous methods, we can have only some estimates of
the errors involved based on the discussions of [6lander, 1954] and [Rice, 1962].
The latter, using a station interval of 22 km, gives the following equations for
an estimation of the probable error arising from different sources
1. astronomic observations
a. random error £0.011./k m

b. systematic error +£0,024 /K m

9. error from linear interpolation £0.014 /k m
of deflections
3. geodetic longitude +1,89 X 107® k2 m
where

k is the distance from the origin in km

These estimates represent more or less the situation of errors in a geoidal
section of the United States to which they refer, and they cannot reasonably
hold for other areas. However, by changing the spacing between the stations so
that it will be closer to general cases, we can have an approximate idea of the

errors involved. Thus for a later application we accepted the same astronomic
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errors and the same estimate for the change of the slope of the geoid. Then
with a spacing for the astronomic stations of 50 km, which is more
representative [Thorson, 1967], and with the standard error for the triangula-
tion estimated by Simmons' equations as k¥3/23. 4 [Simmons, 19517, we have

the following estimate of standard errors:

from astronomic observations 0.035.,/k m

from linear interpolation of

deflections 0.075/k m
from geodetic position 3.88 x 1078 xk**m
where
k is the distance from the datum point in km

Combining this result with that of equation (3.4-14), we have estimates

for the standard errors of the mean undulation in a 5°x5° block due to different

sources:
astronomic observations +0.035,/K m
interpolation £0.075,/k m
geodetic position +3,88 X 107° k*3
incomplete coverage +(1-q/ 100)% X4 m
where
q is the percentage of the block that is observed.

The above estimates have been used for evaluating the variances of mean
undulations in a 5°x5° block which will be used in a later application. The

equation for estimating the variance of a mean undulation finally takes the form

S2 = 0.00685k + 15,003 x 107® + (1-q/100)x 16 (3.4-15)
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3.5 Geometric Use of Satellite Observations

3.51 Geometric Models for Satellite Observations

The satellite observations used in a geometrical sense consist of
simultaneous or quasi-simultaneous events of optical or electronic satellite
observations. The optical observations are either corrected simultaneous
topocentric right ascensions @ and declinations § obtained from properly
reduced photographic plates [Veis, 1960; Mueller, 1964; Kaula, 1966;
Hotter,1967] or corrected range observations obtained from measurements
with lasers [ Lehr et al., 1966; Williams et al.,1965]7.

The electronic satellite observations, considered here in the geometrical
sense, are corrected simultaneous ranges or range differences obtained from
SECOR, C-Band, or Doppler observations [ Mueller,1964; Peat,1967].

A mathematical model for each one of the above observation groups
or for their combination is derived from the condition that the three vectors,
formed by the geocenter and the ground station, the geocenter and the satellite
position, and the ground station and the satellite position, form a close
triangle (Fig. 3.5-1). This condition in vector notation is [Krakiwsky et al.,
19671

Fy =% -X, -X;y =0 (3.5-1)
where
X.l
X, = |y,
Zy

is a vector composed of the rectangular coordinates of an arbitrary satellite

position;
Xy
}-Ei = 1Y,
Z,

is a vector composed of the rectangular coordinates of an arbitrary ground

station;
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Fig. 3.5-1 Satellite position on the geocentric coordinate system
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Iy, cos by, cos 0y,
-
Xy = 8 Lyy 0055“ sin oy,
riJ Sin 613
where
r:oy 844, 0y are the topocentric range, declination, and right ascension

from i to j respectively

n

is a matrix which transforms the vector from the true

celestial to the average terrestrial coordinate system.

The above model contains parameters and observed quantities and can be
treated either after separation of the parameters from the observed quantities
[Veis, 1960; Mueller,1964] or by the general treatment of mixed models
(Scheffé,1959; Uotila,1967b].

According to the second treatment the linearized form of the above

model {3
AX + BV+W =0 (3.5-2)
where
are corrections to the parameters
\ are corrections to the observed quantities

A,B are matrices of partial derivatives with respect to parameters

and the observed quantities
For our case the matrices of the partial derivatives are

1 0 o0 -1 0 O

_ _oFy
A‘a—i,_gZOIOOIO

o 0 1 o0 0 1

and
— aFU — (o}
B - m_SRg(—a) Rg(-90 +6)C
where
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Finally,
W= X - X3 - X}
where

ig,i‘,’ are approximate values for the satellite and station coordinates

X?,  is evaluated with the observed values

When only directions have been observed, the first two equations from (3.5 - 2)
are used; when only ranges have been observed, only the third equation is
used; and when directions and ranges have been observed simultaneously, all
three equations are used.

When range differences have been observed, a mathematical model
can be formulated by expressing these differences D,y with respect to the
coordinates of the ground station 5(-1 and those of the satellite positions 5(.,
and X, (Fig. 3.5-1).

The model in matrix form is

1 1 )
(X-R) Ri-%p1% - (R -R)' X -%)1% - Dyy = 0 (3.5-3)

This model requires corrected range differences. In practice the range
differences are usually computed together with some error model parameters,
for example, the correction dF to the reference frequency. These kinds of
parameters can be introduced and the only change will be that in eliminating
the satellite position we will eliminate the additional parameters as well so
that we will finally obtain a form of normal equations containing only the
station coordinate unknowns.

In the case of range differences, the pertinent matrices are

A = -Xi -Xi _YI-YJ _Zi-ZJ +X1-Yk +Y1-Yk +Z1-Z‘
Tyy Tyy Tyy Ty Ty Tyy
+X1_XJ_X1'Xk ,-Y Y, -% Zi-Zy L%
Tyy Iy Ty Ty ry, Ty
B = -1
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and

i
2

-l - l
W= r®-%) & -X17 - 1R - X)X - X717 - Dy

From the above observation equations the normal equations are

o o A dx 0
0o -P B vi+io]=0
A B 0 k W

After elimination of the corrections to the observations V and the correlates k,

the normal equations become
ABP'B) AdX + A(BP'B)Y'W =0

At this stage the parameters dX are the corrections to the ground
stations and to the satellite positions. The satellite positions are not of interest
to us and can be eliminated. After this elimination we obtain equations which
contain as unknowns only corrections to the geocentric coordinates of the
ground stations.

Finally, the normal equations from geometric treatment of satellite

observations will be of the form

NsdX = Us (3.5-4)
where

dX are again corrections to the geocentric coordinates

Even if all three kinds of observations have been performed simultaneously,

no solution can be achieved. The information contained in these observations

is enough to define our space network as a solid body of determined size

and directions but whose absolute place in the geocentric coordinate system is

not defined. Thus the normal equations are singular. To remove this singularity,
it is sufficient to provide information which will fix the position of the network;
this is usually done by fixing or by providing weights for the coordinates of

one station. If now only directions have been observed, our space network is

defined only in shape and orientation but not in size or in position. Thus, in
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addition to position, three parameters defining the orientation must be provided.
A possible set of orientation parameters would be three independent direction
cosines.

In our solution for the world geodetic system where all kinds of
geometric observations exist, the normal equations contributed by the
geometric satellite observations will be singular because of lack of information
on the position. This information will be provided by the dynamical satellite
observations after their combination so that no additional information is

necessary.

3.52 Weighting of Geometric Satellite Observations

The weight for the geometric satellite observations will be the inverse
of their variance-covariance matrix. In all practical cases, however,
correlations between different satellite observations are neglected. Sometimes
the individual variance-covariances which come from the preprocessing of the
observations are substituted by one variance representative of the entire
observational system or at least of the group of observations from one station.

In general, the weights will emerge after careful analysis of the observa-
tions in comparison with some internal and external tests peculiar to different

observational systems.

3.6 Dynamic Satellite Solution

3.61 Dynamic Use of Satellite Observations

Here the two groups of satellite observations, namely the optical and
the electronic, are basically used to determine the orbits of the observed
satellites and with them or from them corrections to spherical harmonic
coefficients of the geopotential, to station coordinates, and to other physical
constants.

The method of this determination is basically that of an iteration or
perturbation approach, which uses the differences between computed and
observed satellite positions to determine corrections to the dynamical and

to the observational model.
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Thus a general dynamical solution could contain corrections for the

following parameters:

X corrections to nominal orbital parameters
dC corrections to nominal gravitational coefficients
Xp corrections to nominal GM, air drag and solar radiation

parameters, etc.
X corrections to nominal station coordinates

X corrections to nominal instrumental error model parameters

The processing of satellite data for dynamic solutions is éo complicated
that only the long experience of the people working in this field could overcome
the tremendous difficulties which arise in every step. Thus it is more
practical and more economical to assume that normal equations for dynamic
solutions from uniform or semiuniform groups of data will be prepared by
various organizations. There are many basic problems in formulating a com-
bination of normals of satellite dynamic solutions, for example, the number of
terms of the gravitational model or the method of evaluation of the partial
derivatives, etc. But there are also many details which must be solved before
a successful combination solution can be achieved. For example, the state of
iteration at which the combination is going to take place, or the fact that the
Smithsonian defines the zonal harmonics in a conventional form and the
nonzonals in a fully normalized form.

Here we will try to outline only a possible framework of a combination.
For that we choose three different types of dynamic solutions, namely the one
of the Smithsonian Astrophysical Observatory (SAO), that of the U.S. Naval
Weapons Laboratory (NWL), and that of the Jet Propulsion Laboratory (JPL);
and we will examine their individual formulations and the resulting form after

their combination.

3.62 The Smithsonian Astrophysical Observatory (SAO) Dynamic Solution

The SAO solution is actually performed in three steps:

(1) computation of orbits,
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(2) determination of zonal harmonic coefficients,
(3) computation of tesseral harmonic coefficients and station coordinates.
The first and third steps have been described by Gaposchkin [1966a and 1966b1,

and the second is given in a series of papers by Kozai [1963, 1966, 19671,

3.621 Computation of orbits

The observations and the parameters are related through the simple

geometry shown in Fig. 3.6 -1 and expressed by the vector equation in the

inertial coordinate system

T - R - B (3.6-1)
where
P(t) is the vector from the ground station to the satellite where B’
is its observed value
T (t) is the vector from the geocenter to the satellite
R (t)  is the position vector of the ground station which in this

coordinate system is a function of time

The vector T (t) can be found from the theory of the satellite motion. It is a
function of orbital elements E,, spherical harmonic coefficients C,, other
perturbing forces (air drag, radiation pressure, etc.), and time:

T = T(E, Cy t)

The vector R (t) is related to the vector X which refers to the average terrestrial

system by the relation

R(H = Ra(-8) Re(x(t) Ry(y(t)) X (3.6-2)
where
x(t), y(t) are the coordinates of the true pole, in arc, at time t
6 is the angle between the X axis of the average terrestrial

system and the direction of the mean equinox T of 1950
Then equation (3.6 - 1) becomes
T(E;,Ci; t)- Ra(-8) Ra(x () R(y()X = B(t) (3.6-3)
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Fig. 3.6-1 Satellite position on the SAO reference system
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Because ih12 observations are not actually the components of the p (t) vector,
a transformation must be applied which will transform the P (t) into the

observed quantities, and equation (3.6 - 3) becomes

==

f[T(E,Cut) - Ra(-8) Ra(x(t)R(y(t) ) X = T(B (1)

By linearizing these equations, we obtain

- -_—
ror or - g —
A o, AE, + 5C, AC, - Rs(-9) dX_i = Alp' - To (E}, C3;t) +

) (3.6 - 4)
+ R3(-6) Rz (X()R(y(t) ) X ]

where

A = 3f/op

For the determination of the orbits, the gravity model as well as other force
models are kept fixed; an option is left, however, for corrections to ground
stations. By orbit determination we shall mean, in this case, the determination
of the numerical values of constants of empirical expressions consisting of

simple polynomials, trigonometric functions, and hyperbolic terms of the form

n

1w

E () = \Lé: (t-To) + Z 5; sin(a} + By t)
J=0 j=o0
. (3.6 -5)
+ Y °H} exp ('H) (4, CH] - )]

J=o0

which are time series representations of the mean orbital elements

w = w(t)

Q = Qt)

i = i)

e = et) (3.6 - 6)
M = M(t)

n = dM/dt

To these initial mean elements, long-period and secular oblateness perturba-

z L T
tions (52:), lunar perturbations (5¢ ), and tesseral harmonic perturbations (5§ )
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may be computed and added if they have not been included in the definition of

the mean elements.

Expressions (3.6 - 6) become

o)

e

g o

=]

The computations

w (L) +
Q) +

i

(t) +

e(t) +
M(t) +

a(n, i,

dM/dt

6w’
9%
i
be’
6M?

e)

6 w"
Q"
5i"
5e*

oM*

6w’

68
61’
e’
oM’

6a’

(3.6-17)

of long-period and secular oblateness perturbations based

on Kozai's development is described in 'Gaposchkin, 1966]. According to

this description, the long-period perturbations are given as

S

60
6i%*
set
6M%
where

P(ij)

= P(1,1) cosw + P(1,2) sin 2w + P(1, 3) cos 3w

P2,1) cosw + P(2,2) sin 2w

P(3,1) sinw + P(3,2) cos2w

P@4,1) sinw + P4, 2) cos2w

P(5,1) cosw + P(5,2) sin 2w

+

+

+

+

P(2, 3) cos 3w
P(3, 3) sin 3w
P4, 3) sin 3w
P(5, 3) cos 3w

(3.6 - 8)

are functions of the even zonal harmonics when j = 2, and of the

odd zonal harmonics when j =1,3

The secular motion of the perigee and of the node are both functions of

even zonal harmonics.

of perigee has the form

1 dw

2mrn

d

t

18

n

2

%ﬁfil(i,e) + -g-?f“?a,e) + £ (i e, 1)
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The expression for the secular motion of the longitude of the ascending node

has the form

- %r 2 (i,e) + %ﬁz £ (i,e) + ¥ (i,e,n) (3.6-10)

n=2

1 do
2an dt
Explicit expressions are given in Gaposchkin, 1966, pp. 131-1357, For the
computation of these perturbations, coefficients from previous solutions of
zonal harmonics are used. Expressions based on a development by Izsak
are given for the perturbations of the orbital elements due to the moon in
[ Gaposchkin, 1966, section 10].

The short-period perturbations due to the tesseral harmonics are given
in [ Gaposchkin, 1966, section 11]. The discussion is based on Kaula's develop-
ment, the harmonic coefficients are in fully normalized form, and each

perturbation of each element is a trigonometric series of the form

e ok
551:1::: = (%"“‘\)’ Z\T 0% irq x trigonometric terms in n, m, p, q, w, M, Q
R (3.6-11)

é is a particular orbital element
6& 4, are slowly changing coefficients, functions of the mean elements

a,e,i

*
The form of the coefficients 66 is

o GM x F(i, e, a)
- = : — .6-12
O s [(n-2p)w + (n-2p+q)i + m(Q-6)]" ¢ )
k=1, 2
where
U.J, 5'2, 9 are secular variations

By examining the denominator in this equation we see that for some combina-
tions of n, m, p, q,c;),ﬁ, and Q the denominator becomes very small and the

perturbations very large. These are the so-called resonant terms. As
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w and Q are small compared to é, we can see that amplification due to a small
divisor occur when mB=n. The selection of the coefficients 66* which will
be included in the computation is made in such a way that all effects greater
than 5m on any of the satellite orbits are included.

The total perturbation on an orbital element is given by summation over

all harmonic coefficients

B \“- ; % -Gorﬂ: n meven“‘
62 {Cnm L GEnupq{i f‘ or ig}n m odd.
n= 2 n= 1 p= 0q--°°
. w 3.6-13
T T 6&’0* {ié or iC}n—m even}} ( )
+ Snm[ L L Pemrea {x(or :t(, n-m odd
p=0 q=-—

where

é_—_ énmpq w, M, Q, 0)
G = (5 e @, M, Q,0)

cos[(n-2p)w + (n-2p+q)M + m(Q2-6)]

sin[(n-2p)w + (n-2p+qgM + m(Q-6)]
with some special rule for selecting é, 6? and *.

The total perturbation in M, for example, is

n n © n-m even n-m odd

I o Y PO / \ T
om =y O T el G -4 )

n=2 m=1 p=0 q=-®
e ,n-m even n-m odd
SIS Vo I
L Me -4 - & /
| - -

p=0 q=~—-®

After the computation of the tesseral perturbations, the second harmonic

oblateness short-period perturbations are added in the form

Q =0 + 8

sini = sini + §i°cosi

cosi = cosi - §° sini

sin{ = sind + 8% cos? (3.6-14)
cos{ = cos{ - 84 sint

r = a(l—ecosE)A+ 6r®
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where

E is the eccentric anomaly
f is the true anomaly

Full expressions for all the 6F ° second harmonic oblateness short-

period perturbations are given in [ Gaposchkin, 1966, p. 146].

The observations are also reduced to the adopted coordinate system and
corrected for light travel time, diurnal aberration, and parallactic refraction,

With the corrected orbital elements, the satellite vector is computed from

r (cos{ cos§) - sin4 cosi sin Q)

rx
r) = |ry| = |[r(coslsinQ + sind cosicosQ) (3.6 -15)
r, r sind sini

Our initial model (3.6 - 4), because we keep the gravity model fixed,

becomes

OF B, 3, L BF, , af ., of 2ay,(dM
A[awAw M el e aa(3fr A(dt)

- Ry(-6) aX | = A[p'- po) (3.6-16)

where
is the vector from the station to satellite computed with the

Po
help of equation (3.6 - 15)
The matrix A which transforms our model from the adopted orbital system to

the observations system (&, 8, p) is in general given by

-cosq sind -sinc sind  cosd
A = L -sina cos o 0 (3.6-117)
° /P p,/P p./P
where
PxsPys P2 are the three components of the vector p (t)
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The partial derivatives needed in (3.6 -16) are computed from equation

(8.6-15) as follows:

oo/
S5

YA [eY]
o =

o/ jov
Elwb

ar,
w

or,

oW

dr,

ow

or,

3

ory
1Y)

or,

o

ory

oi
ary
oi

ar,

oi

ory
de

or,

de

ar,
de

dr,
oM

ary

oM

ar,
M

r(-sin{ cos) - cos4 cosi sin{d)

r(- sint sinQ + cos4 cosi cos{})

r cos{ sini

-r

r, 8in{}

-r, cos§}

r cosi sind

~[ae sin’E dTr_sinf

sin

- acos E]+

L1-e cosE ofLl1-e cosE

2 sin f
ov 8inE(1 -e cosE)

o 2maesinE @2
l1-e coskE
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As wa are not interested in cor"rections to the orbital clements, but in
corrections to the coefficients of the empirical polynomial of equations (3.6 - 5),
we substitute the corrections of the orbital elements with their differentiiuls
Thus for w we nave

from equations (3.6 -5).
+ & sinfa? + B0 )t + Y sinfad + GIt] + ...

We+ wit+wtf ..,
(3.6-19)

w.—_‘

+ o1 exp {'1f' 4, [*HY-T1) + %S oxp {*HE 4, [PH2-T7

where
t

T

is the time from the epoch cf the orbit

is the time in Modified Julian Days

and the differential
+ ASY gin[a? + BPt] + S2 cos[af + ATt] Aot

+ A°H exp (L. ) (5.8 - 20)

Mo = Awo"'Awlt +...
+ 8P cos [ + Bt1ABCE + ...

We substitute these expressions into (3.6 - 16) and obtain thc final

form of our observation equation

N Tf B + 2% kaMw—ka. Yt Ae
k
dd {>.6-21)
A . 2T My AX
+2 (am"‘ g )AMk - Ry(-0)AX | Afp'-po) = | cosbda
’ dp/p
where
is the partial derivative with respect to ihe kth coefficient of

fi
the empirical function (3.6-19)

For the determination of orbits the observations are weighted inversely to

their standard errors,
Observation equations (3.6 -21) are formed for every satellite

observation. From them normal equations are formed and solved with the
The process is iterated by recomputing the

usual methods of least squares.
elements that are affected by changes in the orbit and the observations are
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tested with a rejection criterion of three times the standard error of the
previous iteration. The numnber of parameters is arbitrary, and its selection
is based on the satellites and on the quality of the gravity model used.

A refinement of the computation of orbits, which also helped in the
determination of tesseral harmonics, was the so-called method of rotated
residuals, that is, the expression of the same observation equations in a
coordinate system defined by the orbital plane and its normal. 1In this
coordinate system, motion and residuals along the orbut u and perpendicular
to the orbit w are well separated and more clearly related to the‘ timing
errors or to the uncertainties of the tesseral harmonic coefficients. For the
SAO equations, the matrix B which transforms the first two equations of

(3.6 -21) into the above orbital coordinate system is

cos¢ - sin @ B,
B = = (3.6 - 22)
sin ¢ cos® B,
where
cosp = &, * &
singp = -8, - &
with .
—
s L
AL T
e -y
A X o
eu - eu X eA
- (sinu + e sinw)
I a cosu+ e cosw
n J1- o2
0
u=4=w+t
&, &g, & are unit vectors in the direction of the

observed satellite position, in the plane of
the equator 7 /2 from €,, and normal to
€, €.
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1zsak developed the transformation of the two equations in vector notation for
the optical observations of SAO, that is, for observations of right-ascension
and declination; these equations are given as follows in [ Gaposchkin, 1966

where the corrections to the stations have not been considered.

I S N T VAN _
o = oud, {(enxr)kaAwk + (e,xr)%kaQk (3.6 - 23)

~ < A - a SinE -
+ r sind en> fo Di + \—(e,,xr) - - a]ka Ae,
— - r A/I—EE
k K

DICTINE TS
k

idw = i éw. {(énx-;) Y"fk Ao)k + (ézx?)?fk ka

k k

~ - ~ -l a i
+ r sind e,,ka Ai, + r(e,,xr) - Sin B
[

Ao - '5]ka Dey
k

2 I (g
R ) AM“}

where
€, is unit vector normal to orbital plane
€, is unit vector in the direction of the sidereal z axis
du - B dé cospdd - sinp cosdda
dw. cosbda sin pdd + cosp cosbda

In weighting equations (3.6 - 23), for the first iteration we use the same
weighting, that is, the weights are inverses of the standard errors. But in the
second and last iteration, in order to account for timing errors, equations in
du are multiplied by the factor u:

_ [Tdw?
= T du®
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3.622 The determination of zonal harmonic coefficients

The determination of zonal harmonic coefficients is based on the
computed orbits. Specifically, for the determination of the even zonal harmonic
coefficients the secular motions for the longitude of the ascending node and the
argument of perigee are used, with equations (3.6 -10) and (3.6 - 9) serving as
observation equations.

The observation equations are formulated for conventional zonal
harmonics, but the change to fully normalized coefficients is only.a matter of
proper scaling of the terms of the equations. Luni-solar and air drag perturba-
tions must be taken into account when using these equations.

The observation equations are already linear with respect to the unknowhs;
thus a solution could be performed for correction to some nominal values or
for the values themselves of the parameters. However, for better numerical
results, and in view of simultaneous solutions with the tesseral harmonics, a
solution for corrections to a set of nominal values is preferable. The observa-
tions are weighted reciprocally proportional to their variances and solved with
the usual least squares process.

Kozai, in a recent solution, introduced another weighting approach to
account for some of the neglected higher-order terms on the estimates and on
the estimated variances [Kozai, 1967]. There he made the assumption that
the values of Jg to Jzy are 0.5 X 10~7, estimated the error committed by their
omission, and weighted the equations reciprocally proportional to the new
variances.

The determination of the odd zonal harmonic coefficients is based on
the long-period perturbations. The first four of equations (3.6 - 8) are used
as observation equations.

The above discussion concerning the even harmonics also applies to the

determination of the odd zonal harmonic coefficients.
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3.623 Determination of the tesseral harmonics and station coordinates

The determination of the tesseral harmonics and station coordinates is
also based on the computed satellite orbits. To formulate the mathematical
model for the least squares determination of tesseral harmonics, we start
from equation (3.6-16). This time we are not interested in correcting the
orbital elements but in correcting the tesseral harmonic coefficients and the

station coordinates; thus we make the following substitution:

- T df
AL, =2 ). 50 oL, BC p (3.6 - 24)

=2 z=0

i=}
a

The partial derivatives in this equation can be evaluated from equation (3.6 -13)
with which we have established the effect of the tesseral harmonic on the

orbital elements. For example,

[e%4

|

™M d6M _T"‘“ * /C‘; n-m even
= ‘B—E:: =/, EéMnmm\ é)n-m odd (3.6 -25)

o
o

nm p=0 g=-o

Equation (3.6 -16) becomes

aly V(E.a_e_+§.§-i3_+éi-al ;.2 , oF oM
v L. \dw 3C,, 3 dC,, 13 23C,, de 093C, oM 2dC, (3.6-26)

n=2 n=0
or | Y oF 3w , 3F 30
"3 ac“)dcm L E (aw dS,, 3 35,

n=2 n=0

L oF . de Lo M oT  2a
de 23S, oM 23S, oda S,

= Alp’- po)

)d§,,,, Ra(-6) dX]

Since the orbit computations have been performed in a coordinate system
defined by the orbital plane and its normal and many quantities in that system
are readily available, the solution for tesseral harmonics is also performed
in that coordinate system. To transform equation (3.6 - 26) into that coordinate
system, we have to multiply its first two rows by the matrix B, equation (3.6 - 22).

According to Izsak's derivation and his vector notation, the transformed
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equation (3.6 - 26) can be written

A -~ - \'_ aw Yol %_-)_ ~
du = e, °{(e xr)z /. <Bﬁm dCps + 35 dSnm)+ (€. XT) (3.6 -27)

3~ .20 C T o2
Y z<§6=-dcnm+asmd§nm rrsinté,) (a’c‘:,,,,dc““

4

n=2 =2

, = 3Cpy 3S,a
n=2 n=0
L Z(ga—d'é - )+ rsint ) i(%-é:dﬁ

n=2 m=0 n=2 m=0

3l - a 8Snk T (ae +
a-s-nmdsnm) +[(eu X r)r ?1 _ 82 a'J L aenm anm
n=2 p=2
AR DL L)
agnm dSnm) + (2' ﬁ_ 3 H L_, acnm danm a-s-mn dSnm
n=2 p=2
-BARs(-)dX
where
A is the first two rows of the matrix A in equation (3.6 -17)

From these observation equations normal equations are formed and
solved using standard least squares techniques. The quantity that is
minimized is the summation of the squares of the differences between the

observed quantities dU, dW and their computed values du, dw

Z[(dUi - duy)® + (AW, - dw,)®] = min
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At the starting point there are no approximate values for the corrections
of the coefficients so that du and dw are zero. The initial along-track and
across-track residuals dU and dW are provided by the differential orbit
improvement program (DOI 3), together with the instantaneous orbital
elements. The length of an orbital arc represented by a single empirical
polynomial varies between one and four weeks, and the number of satellite
observations in that interval varies from 60 to 25600. The program can
simultaneously handle up to 250 orbital arcs. The tesseral harmonics which
will be included in the solution depend on the distribution of the observations, the
number of satellites and their orbits, and the number of observing stations,
since the total number of unknowns is limited to 100.

The RMS's of the original and improved residuals are computed and
their ratio, called the respective improvement factor of the solution, is com-
puted by the program. We must remember that the SAO observations, being
only direction observations, cannot provide a solution alone. A scale must
be provided which has been introduced by defining the GM value, which is
used to determine the semimajor axes of the orbits according to Kepler's
law [Veis, 1967]. By combining simultaneous laser observations or ground
traverses, scale can be introduced and a correction for a nominal value of

GM can be obtained by the SAO solution.

3.63 Naval Weapons Laboratory (NWL) Dynamic Solution

The NWL satellite observations are mainly Doppler observations.
Frequency observations are made every four seconds during each satellite
pass. The computation process of the NWL system is described in detail
in two NWL reports [ Naval Weapons Laboratory, 1967 and 1968] on which
the following discussion is mainly based. The geodetic solution is again
based on orbit computations which in this case is done by numerical integration.
The existing NWL program has the ability to use many kinds of observation
data, but we will limit ourselves to discussion of Doppler observations, since

Doppler is the principle type of geodetic satellite observation processed by

84



the NWL. The raw observations first undergo a filtering stage for detection
of erroneous data and deletion of superfluous data [ Gross, 1968].

The received frequencies are related to the emitted ones by the

equation
f = f,[1-(p/c)] + 6f; (3.6 - 28)

where

f is the received frequency

f, is the emitted frequency

p is the rate of change of distance between satellite and

observation station
c is the velocity of light
6f, is the ionospheric refraction correction

The NWL uses the mean equinox and the mean earth's spin axis of a
date to establish an inertial coordinate system. In this system we have
again equation (3.6 -1)

-y

Bty = rt) - Rep) (3.6 - 29)
where

T(t) is the geocentric satellite position vector

p(t) is the topocentric position vector of the satellite

R (t) is the geocentric station vector

Then p,, which is the rate of change of the slant range |81, is

bl = 6 . (:1'." -ﬁ)
where

is the unit vector in the topocentric direction of the

Ee}?
I
Lo
|

satellite

is the satellite velocity in the inertial system

ok =F

is the station velocity vector in the inertial system which

can be written
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R = (NP)'& x R

where
P is the general precession
N is the nutation matrix [ Mueller, 1969
0
® =10 with w the rotation rate of the earth
w
Thus equation (3.6 - 28) becomes
~ _I'- - —ﬁ -‘
f = fs\-l -p '(—C—‘Lj + Of, (3.6 - 30)

If we linearize this equation we have

'g'i—!éfs+:ir6r +'2'%6p +giX6X =f - f; (3.6 -31)
where

of, are corrections to the emitted frequencies

Ar are corrections to satellite positions and satellite velocities

op are corrections to (a) gravity coefficients, (b) atmospheric drag
effects, (c) solar radiation effects

06X are corrections to ground station positions

f. are computed values of f

As we can see from equation (3.6 - 30), to evaluate equation (3.6 - 31) we

first need

")
|

(ry, Ty, T,) the satellite position

(1.',, fy, 112) the satellite velocity

)
|

These are provided by the equations of the satellite motion. The motion of the
satellite in an inertial coordinate system is represented by the vector

differential equation

s

= F (3.6 - 32)
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According to the force model used by the NWL, equation (3.6 - 32) becomes

.e
-

F = G+ Gy+Gs + Dy + Rp + Ty + Ty (3.6 - 33)

where

Qb

is the acceleration due to the earth's gravitational field

=

is the acceleration due to the moon's gravitational field

is the acceleration due to the sun's gravitational field

w

is the acceleration due to atmospheric drag

is the acceleration due to solar radiation pressure

o

is the acceleration due to the solar tidal bulge

Wb S T OF OF OF

is the acceleration due to the moon tidal bulge

=

The particular models for the above accelerations are described in
detail in [ Naval Weapons Laboratory, 1968, Chapter 5]. Within the computer
program "ASTRO," developed at NWL through many years, equation (3.6 - 33)
is numerically integrated to give values of r and Y'", first at equal time
intervals and then at the observation times. To perform the integration,
Cowell's formula and a prediction-corrector technique is used—of 12th order
for positions and 4th order for velocities with a 45 sec interval. Then
Lagrangian interpolation is used to get values of T and T at the observation
times.

We can also write

of _ T fofL.ew 2L, or
L ar, sp ory opd (3.6 - 34)
=

After equation (3.6 - 34), equation (3.6 - 31) becomes

g B o T (.22 B Ay
Rl I by ap)ap L6X = £- £ (3.6-35)

=xy02

The terms df/3f,, 3f/dr,, and af/al.‘J are readily available from equation

(3.6 - 30) where the ionospheric refraction correction is considered constant
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i:_fS 1 .-_'n A -_-:- ,\1
= E{\Tﬂ“? R)- (G (F-R)P)

(3.6 - 36)

o %]
-

p

!

Q/
!
0 |

From there they can be numerically evaluated with the values of T and T at

the observation times.

To evaluate the remaining partial derivatives we put

_+oT
£ pr
After differentiation we get
= ‘ dF 3F_ } . oF
£, = 2 _glji‘gu * ar, € oD (3.6 - 37)
J=x,¥,2

The partial derivatives 3F/3p, can easily be evaluated by the adopted force
model when the force model contains them explicitly, and they are otherwise
Zero.

The partial derivatives a-I:‘/ 3T and B-F.‘/ 3T are obtained by differentiation
of the force model with respect to positions and velocities after the model has
been expressed as a function of them. These partials are derived in [ Naval
Weapons Laboratory, 1968, Chapter 6]. The coefficients of equation (3.6 - 37)
are then known so that it can be integrated. The components of this equation
are also found by numerical integration at equal time intervals and interpola-
tion for the observation times.

The last group of partial derivatives are those with respect to the
ground stations. These can be found from Equation (3.6 - 30) after expression
of the station vector in the inertial coordinate system R as a function of the

position vector in earth-fixed coordinates X. For this purpose we take

R = R (-0)X (3.6 - 38)

and the partials are

of  f /AT -Bla F-R 4 nuzNp o )
aT("E\rp 1n \ B (NPY'B ) Rs (-6) (3.6 - 39)
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Thus all the terms of the observation equations have been evaluated. The
observations are weighted reciprocally proportional to their variances
obtained during the filtering stage. From the observation equations normal
equations are formed, the parameters 6f,, 6r, and the parameters of the drag
and radiation pressure force models are eliminated, and the normal equations
are stored.

Many groups of such normals summed together are solved to provide
the solution for geodetic parameters. The "ASTRO" computer program can
simultaneously provide corrections for a complete set of harmonic coefficients
of degree and order 21, plus two parameters for each satellite to account for
resonance effects, and approximately 100 stations.

Again, Doppler data alone cannot provide a solution dnd a singularity
occurs when all station longitudes and the initial right ascensions of each
orbit are considered unknowns. The longitude of one station is held fixed in
all Doppler solutions; a correction to the nominal value of GM is provided by

the Doppler solution [ Anderle et al., 1967].

3.64 Jet Propulsion Laboratory (JPL) Solution

The orbital solution of JPL has many similarities to the solution of the
NWL, but it also has some special characteristics peculiar to the type of
satellite being observed and thus to the type of information being collected.

The JPL is basically observing unmanned spacecraft, usually called
probes, travelling approximately 10,000 mi from the earth to interplanetary
distances and the edge of the solar system [Jet Propulsion Laboratory, 1968].
The main source of data at JPL is the two-way Doppler, observed by 85- or
210-ft antennas, from the so-called Deep Space Network.

The orbit determination function is basic to the JPL solution. The
equations of motion are integrated in terms of the inertial rectangular
coordinates, as is the case in the NWL solution. However, the force model is
somewhat different [Warner et al., 1964]. The equation of motion is written

as
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T = G+ Gp+Gpp+ Gop + P + Ry (3.6 - 40)

where
-(:‘rc is the acceleration of the probe due to a central body
E.B is the acceleration of the probe due to n bodies
ECB is the acceleration of the central body due to the n bodies

Gos, is the acceleration of the probe due to the oblateness of the earth

and/or moon

P is the acceleration of the probe during the powered portion of
its flight

-ﬁp is the acceleration of the probe due to the pressure of solar
radiation

Detailed equations for the above force model are given in {Warner,
1964]. We only remark that, unlike the other cases, the gravitational potential
of the earth is represented by the first three zonal harmonics only, as the
higher-order terms have a negligible effect on the probes at great distances
from the earth. However, the attraction and even the oblateness of other
bodies become important to such flights. In the program ODP (Orbit
Determination Program) the position and velocity are obtained by a stepwise
Cowell numerical integration at intervals depending on the distance of the
probe; Everett interpolation is used to obtain values at the observation or any
other times. The program can handle 13 types of observations, although two-
way Doppler is the main type processed at the JPL.

The linearized mathematical model is

Abq, + Bbx = 6f; (3.6 -41)
where
6q, are corrections to parameters unique to the ith mission, i.e.,
the initial position and velocity vectors of the probe
6x are corrections to parameters common to all missions, i.e.,

station positions, earth mass

of, is Doppler data from the ith probe
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af,
o,
o,
fo). <

Ay

B, =

The parameters common to all missions and which have geodetic significance

are
GM earth gravitational constant
3, earth radius that scales the lunar ephemeris
Y solar pressure constant

Cao» Cao» C4o  the first three zonal harmonics

Ry, By, Ly
or station coordinates shown in Fig. 3.6-2
X1 X2y Xg

Equations for the above partial derivatives are given in [Warner et al., 1964].

EARTH
SPIN AXIS

Fig. 3.6-2 R, B, L and x,, X;, x3 coordinate systems
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Weights P, are assigned to the data, based on the preprocessing phase,
and to the parameters which will be estimated, based on the estimated reliability
of their a priori value.

From the observation equations, normal equations are formed:

6q;
ox,

We call the solution from the ith mission

AIPA,
BiPA,

AI PiBi AIP16f1

BIP,5f,

3.6-42
BIP,B, ( )

q; + 8q,

X, = Xt 0%y

2
I

We form the difference of the ith solution X, and a standard value x,

From each experiment we also form the matrix
M, = BJP,B; - (A[P,By)" (AIP,A)" A{PB, (3.6 -43)

Then the least squares estimate x* of the common parameters over all

missions and thus over all groups of observations f,, f5, ..., f, is given by
<5 = %o + 5x*
where
* < N A
ox = (L M, z M; b x4 (3.6 - 44)
1=1 1=1

Thé characteristics of the JPL solution for the parameters important
for the world geodetic system are:
(a) The JPL has provided the best solution for the gravitational
constant GM,
(b) The recovery of the zonal harmonics is not of geodetic significance
because of the great distance of the probes.
(c) The coordinates of the stations are not all determined with the

same accuré.cy; the estimates of longitudes are stronger than those
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of latitudes. More specifically, it has been demonstrated that the
estimation of x, is better than x,, and there is no information at

all affecting x, [Vegos et al., 1968].

3.65 Combination o_f Satellite Dynamics

From what we have said so far, an outline of a possible solution of the
problem of combination of satellite dynamics could be as follows. Considering
the number of ground stations, the number of satellites, and the total number
of observations, together with the final required accuracies, the degree of a
basic gravity model could be decided [Guier et al., 1965). At present, however,
the high-degree harmonic coefficients are in general better determined by
terrestrial methods than by satellites. Therefore, the degree of this basic
gravity model will be decided by the accuracies of the terrestrial solutions.
This question will be examined again in Chapter 4. In addition to this basic
model, allowance must be provided for additional terms for possible resonance
effects. Beyond this, force models for the gravitational potential of the moon
and the sun, atmospheric drag, solar radiation pressure, and luni-solar tidal
effects must be agreed upon and used by all participating agencies.

Then agencies like SAO and NWL, using the same values of the various
constants, will prepare normal equations for corrections to ground stations, to
harmonic coefficients, and to the constant GM. The NWL normal equations
are already in this system; the SAO normals will be formed from the summation
of the normals of the tesseral harmonic and zonal harmonic solutions where the
coefficient _éao will also be carried as an unknown.

Systems like JPL that have only a few stations, and in a different
coordinate system, a few significant harmonics, and a few very significant
constants can be combined in two ways. When the corrections to JPL ground
station coordinates are expressed as X,, X, X3 and when polar motion has
been included, their relations with the coordinates of the world geodetic
system are simple, linear, and separate for each coordinate. We can then

substitute and change the JPL system to make it consistent with the definitions

93



of the parameters of the other two groups. For that we must also eliminate
the parameters used by JPL which are not of geodetic interest. When the
corrections to the coordinates of JPL ground stations are in the form of
geocentric latitude, longitude, and radius, we can use the solution vector
and its covariance matrix to form a set of observation equations and then

normal equations. A mathematical model on which we can base this solution

is the following:

F, = - - sinB = 0
(X2+Y2+Z2)_§

X—tanL =0

Fa

X
2,3
Fs = X*+Y°+Z%)° -R =0 (3.6 - 45)
GM, - GM, =
F, E:a:s - Ea:u =

_C-:aos - 630J

0
0
0
Cuos - Caou 0

where the subscript S denotes a value of a parameter from the satellite
solution and the subscript J denotes the value from a JPL solution. Equations
similar to the last can be formed for every parameter for which we want to
force the value from the JPL solution to be equal to the value from the
satellite solution. This model will give observation equations of the mixed
type
AX + BV +W =0

The partial derivatives with respect to the parameters are

oF, _

oX

oF,
oY

3F, _ R®-7
d7Z R

(3.6 - 46)

B B

[~
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3F,
oX
aFy _
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3F;
dZ

N < X

Derivatives with respect to the observed quantities are

3F,
3B

3F 1

oL cos®L

3F,
3R

- cosB (3.6 -47)

= -1

The partial derivatives of the equations of group F, with respect to the
parameters are zero or 1 and those with respect to the observed quantities
are zero or -1.

We form normal equations and then eliminate the correlates. The
normal equations obtained can now be added to the normal equations of the
other satellite solutions.

Again we will have the problem of relative weighting which must be
solved according to the discussion in Section 3.8.

The normal equations will be of the form -

daX
Ne [dC | = Us (3.6 - 48)

da
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That is, they will contain corrections for the geocentric coordinates, the
spherical harmonics, and the elements of the general terrestrial ellipsoid. It
will not be necessary to fix any direction or scale because the direction will be

provided by the optical observations and the scale by the strong determination

of GM,

3.7 Some Additional Constraints

We are seeking a solution which will provide the level ellipsoid to be
used as a reference surface, as well as the geocentric coordinates of some
physical points and the harmonic coefficients of the gravity field of the earth.
This reference ellipsoid will have its center at the center of mass of the
earth and will have the same angular velocity w, the same difference of
moments of inertia C —X, the same mass M, and the same potential Wq as the
geoid; this means that it will be the mean earth ellipsoid.

To assure the above, some constraints between the unknown parameters
must be applied. The coincidence of the center of the ellipsoid with the center
of mass of the earth has been achieved by forcing to zero all the first-degree
and second-degree, first-order harmonic coefficients of the geopotential.

The rotation velocity w is the one defined in [ Explanatory Supplement, 1961,
p. 76] which is well beyond the noise of the observations; thus it can be con-
sidered constant and without errors [Rapp, 1967c]. For the remaining

parameters the following three equations will be used to constrain the values

of the unknowns. From [Moritz, 1967, p. 1117:

i = 2ag, = - idc,ao = - Mdﬁm (3.7-1)
2 2 2
dy. = Ago * lgvedf = bgo - */25«/ dCx (3.7-2)
From [Rapp, 1967c]: o
GM = y, a®(1-f) + waas(l—f);I +%lq§> (3.7 - 3)
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where

e is the second eccentricity of the ellipsoid
% = Tag - 3 cotag(l - cotag)]
’ _3(- ao cotog)
= 1
do sin® ag
Qo = tan’e’

The first two equations have been used to eliminate two unknowns, df and dy,,

from previous models. Only the third equation will actually be used as an

additional constraint in the adjustment process. After linearization, equation

(3.7 - 3) takes the form

a%(l-f) dy, + l-_2a-y,(1 -f) + 3a%03(1 -f) (1 + %(—%)Qﬂ da

-[x a® +wa® (1

From the relation

2 _ e*
© 1-¢e®
we have
r d82
de = ST -)
and from the relation
e = of - {2

we have already derived that
de® = - 3,5 (1-f) dCgp

Substituting (3.7 -2), (3.7-5), and (3.7-6) into (3.7 -4), we have

a®(1-f) Ago + a(l-f) 2y + 3au® (L+ e—‘h)] da
6qc,

’

!
.3 Jsrﬁi%a+ as/H_gQ

(3.7 - 4)

/7 7 '
e%)] 2.3 9o ’ ;-

+ df + w<a*(1-f)— de’ - d(GM) + W 0
5% ( )qu (GM)

(3.7-5)

(3.7-6)

(3.7-7T)

- —_qo__ﬂ C. - -
\ 6o 6goe’ (1 - e?) dCx - d(@GM) + W =
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where
w is the misclosure of equation (3.7 - 3) estimated with the
approximate values of the parameters GM, w, 2, Y., £, e of

the approximate level ellipsoid

The simplest way to introduce this constraint into our system is to consider it
as an observation equation and give proper weight to the misclosure W, We
can also treat it as a constraint following the method described by [Uotila,

1967b]. In this case we write equation (3.7 -7) in matrix form:
CX+W =20
and the normal equations from previous models
NX = U
These can be combined in the system
N c'l | x U
C 0 -k -W

The solution of this system is usually given as a correction 6X to the solution
X* obtained by the adjustment of the previous models. The correction is given
by

X = NPC'TCN'C']* [-W - CX*] (3.7-8)

If we use this constraint as an observation equation and we form normal equa-

tions, they will have the form

Dgo
N, | da| = U, (3.7-9)
dc

That is, they will contain unknowns related to the parameters of the terrestrial

ellipsoid, to the spherical harmonic, and to Ago.
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3.8 Combination of Normal Equations

We summarize in Table 3.8 - 1 the groups of normal equations arising

from all groups of observations and the kind of parameters that each group

contains. We separated the parameters into four groups, and we indicate

Table 3.8 -1

Type of Observation and Parameters Involved

. . General Datum Shifts
Type of Geocentric Harmonic .
. . . . Terrestrial and
Observation Coordinates | Coefficients . . .
Ellipsoid Rotations
Triangulation dX dC da dx
Undulations dC da dx
Deflections dC da dx
Geometric Satellites dx
Satellite Dynamics dX dC da
Gravity Anomalies dC da
Additional Conditions dC da

with dX when the group contains geocentric coordinates as unknowns, with dC
when the group contains harmonic coefficients, with da when it contains
elements of the mean earth ellipsoid, and with dx when it contains the shifts
of the origins, the rotations of the geodetic systems, and the differences in
scale, The parameter Ag, is not considered here because it has been
eliminated by that stage. The simultaneous solutions of all these groups of
normal equations will provide the four groups of parameters.

We suppose that in the formation of these normals, the same a priori
variance of unit weight was used. Also, if correct weights have been assigned
to the observations, the solution of the sum of all reduced normal equations is
the same as the solution of all observations together [ Bjerhammar, 1967]. If

the separate solutions of the reduced normals indicate that incorrect weights
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have been assigned so that the existing variances of unit weight are not
homogeneous, a scaling of the normals can be applied [Kdhnlein, 1965;
Krakiwsky et al., 1967].

First the validity of the individual solutions must be tested; if the
a priori variance is consistent with the assigned variance-covariance matrix
and the model is free of model errors, the quantity nSa/o5 should be distributed

as a chi-square distribution with n degrees of freedom, X (n)

where
n are the degrees of freedom of the quadratic form of the
residuals
a5 is the a priori variance of unit weight
sz is the same quantity estimated by the adjustment in question

We can then establish an interval (a,b) such that

f, .08 _ Y _
Pr La< og <bJ’ 0.95

We accept the hypothesis that S2 is an unbiased estimate of o3 if nS3/o03 is
between these limits and reject this hypothesis otherwise. This confidence

interval for S is

2 2
a0y . g2 . bog (3.8-1)
n n

Because the number of degrees of freedom with which we are usually
working is very large, we may use the fact that for large degrees of freedom

the variable

J2x® - J2n-1

is approximately distributed as the standard normal distribution N(0,1)

[Selby, 19681. Thus xZ may be computed by

X2 = Blx +J/E-T P
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where

X, is a point of the cumulative normal distribution N(0,1) with

probability 1 - a/2

For different degrees of freedom and o= = 1, the confidence intervals are

shown below,

n _a/n_ b/n_
30 0.560 1.567
100 0.738 1.291
500 0.879 1.127
1000 0.914 1.089
2000 0.939 1. 063
10000 0.972 1,028

If, {from a group of normals, the estimated variance of unit weight is
accepted as an unbiased estimate of the a priori variance of unit weight,
these normals are added to the other unchanged; if the test indicated that the
estimated variance of unit weight differs significantly from the a priori one,

this group of normals is multiplied by a factor P,, given as

and then the normals are added to the other grouns,

After the solution of the combined system, the homogeneity of the
variances of unit weight can be tested by applying the same test on the new
estimate of the variance of unit weight.,

The above discussion holds as long as only random errors are
involved in these individual adjustments and the normals sre free of systematic
errore. We must realize, however, that the systematic errors in our models
are sometimes significant and that these errors are not usually decreased hy
increasing the number of ohservations. The estimated variances of the

parameters are then too small and the combination results in an overweighting
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of the most numerous relative to the least numerous [Kaula, 1966b]. Then,
instead of the above method, a more reasonable approach would be to
determine more realistic variances of the estimated parameters. From these
we could form a fictitious variance of unit weight so that the weight coefficient
matrix would create these variances [Rapp, 1967]. Another approach
followed by some investigators is the trial of many combinations of weights
basing the decision for the selection on the behavior and properties of the
different solutions. A detailed error analysis and a careful evaluation of the

systematic errors involved helps to make more proper decisions at that stage.
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4. ERROR ESTIMATES FOR THE PRESENT DETERMINATION OF THE
COMPONENTS OF THE WORLD GEODETIC SYSTEM

Today there are no general solutions in the sense of Chapter 3; there
are, however, many separate solutions and interesting combinations in groups
of two where we can see the uncertainties of the present determinations and
make some estimates of the uncertainties that would result from a combined
solution.

The uncertainties presented here were obtained by procedures which
approximate the actual combinations. In these procedures only the main
effects, so to speak, were considered in a combination, while secondary
effects were ignored. For example, in combining terrestri‘al and satellite
results for the determination of spherical harmonic coefficients, we have
neglected the effect of the improvement of the station coordinates on the
harmonic coefficients resulting from the same combination.

Although we do not believe that this approximate procedure constitutes,
by any means, a method for the determination of variances of the components
of the world geodetic system, we were forced to use them by lack of real

data.

4.1 Accuracy of the Present Determination of Geocentric Coordinates

and Shifts, Rotations, and Scale of Datums

The first component of the world geodetic system consists of the
geocentric coordinates of a set of physical points and their variances. The
best way of determining these geocentric coordinates is through satellite

observations; consequently the existing satellite solutions can be utilized as
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the basic step in the determination of the accuracy of that set. We consider the
SAO and the NWL solutions which have provided geocentric coordinates for
approximately 60 stations shown in Fig. 4.1-1.

The SAO station coordinates are part of a set of geodetic parameters
called a 1966 SAO Standard Earth [ Lundquist et al., 1966]. They are based on
optical satellite observations, and they have been determined together with the
tesseral harmonics, essentially up to the 8th degree and order, with 45 .
additional selected coefficients from degree 9 to 15. For the computation of
perturbations, zonal harmonics up to 14th degree were used. The SAO
coordinates refer to a geocentric coordinate system with its z axis through the
Conventional International Origin and its X axis implicitly determined by the
defined longitude of the U.S. Naval Observatory (77°03'55'194) to which tabula-
tions of Universal Time correspond [ Lundquist et al., 1966). The coordinates
have an estimated standard deviation approaching 10 m [ Lundquist, 1966, p.6].

The NWL stations are part of the NW L-8 geodetic parameters. They
are based on Doppler satellite observations and have been determined simul-
taneously with all gravity coefficients up to the 12th degree and order together
with zonal harmonics up to the 19th degree. Gravity coefficients for six
degrees for each of three orders have also been selected for each satellite to
account for the dominant resonance effects. The NWL station coordinates also
refer to a geocentric system with its Z axis through the Conventional Interna-
tional Origin. The X axis, however, is defined by the longitude of the one
station which is kept fixed in the NWL solution. The coordinates have an
estimated standard deviation of 8 m [ Anderle et al., 1967].

There is also some information for the geocentric coordinates contained
in the geodetic coordinates of th: same points established by the triangulation,
which information can be used through equation (3.2-18). 1In a rigorous
combination of satellite and terrestrial data for station coordinates, we could
form normal equations of type (3.2 - 20) using as a model equations (3.2 -18)
where the observed quantities are the geodetic coordinates. Then we could
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add these ncrrmals to the normnzls of the other groups of observations of the
world georletic system. The solution of the new system would provide
improved geocentric coordinates and would recover the values of the datum
transformation parameters as well as other parameters. Because we do not
have the data to perform such a rigorous combination, we will examine what
information may be obtained frocm a combination of coordinates obtained from
satellite observations and coordinates obtained from terrestrial triangulation.

Using the geocentric coordinates provided by satellite solutions and
the geodetic coordinates provided by the triangulation, an adjustment can be
made which will furnish improved geocentric coordinates, and it will
recover the values of the datuin transformation parameters.

To examine this determination we consider 15 stations, the coordinates
of which have been determined from satellite observations and triangulation.
Of the 15 stations shown in Fig, 4.1-2, four are SAO stations and eleven are
NWL stations.

The geocentric coordinites of the NWL stations are published only as
©, X, h coordinates, where h is the geometric height above the ellipsoid
[Anderle et al., 1967, table 10]. These coordinates refer to a geocentric
ellipsoid of the Mercury datum [ NASA, 1968]. These coordinates are given
in Table 4.1 - 1. From them geocentric Cartesian coordinates have been
computed.

The geocentric coordinates of the SAO stations are given in [ Lundquist
et al., 1966]. Cartesian geocentric coordinates for all stations with their
variances are given in Table 4.1 - 2. Covariances are not available and have
not been considered.

The geodetic coordinates ¢,A, h of the same stations on the North
American Datum are taken from [ NASA, 1968] with the exception of station
No. 2200 which has been taken from [Anderle et al., 1967, table 127 and its

astrogeodetic undulation from the Geoid Charts of North and Central America

1967 published by the Army Map Service. These coordinates are given in
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Table 4.1 - 1

Coordinates of NWL Stations Referred to an Ellipsoid

of a=6378166m, 1/f=298.3

®
o 1 n
61165959
32164409
39094829
34064095
442460122
64294747
32252467
39013993
33253191
41080010

47563863

A
21.1.578
253144471
265061080
24530814
292010985
194360097
253264663
263102703
269050874
255075351

262370727

Name h

ANCHOR  44e m

LACRES1145.
APLMND 80w
PUIMUC =T1..
WINHMA =35
NUMEAL -11.
NEWMEX1603.
BELTSV -16.
STNVIL -16.
WARAFB1838.

GRANDF 217.
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Table 4.1 - 3. The accuracy of the triangulation can be estimated by a combi-

nation of Simmons' equation (3.2 - 27), which gives the standard error on the

horizontal plane, and equation (3.4 - 15), which gives the standard error of the

astrogeodetic undulations, and thus accounts for the vertical displacement.

Table 4.1 - 3

Geodetic Coordinates on the North American Datum

Code

No, © Py

9001 _3Z2v2456 258265117,
9007 -, -=1628U509 286302284
9009 12052161 291094255 '
_9p1g . _ 27011288 279531301
2014 61170198 210103746
2103 . 32164375 253144825

2111 . 39094783 - 283061107
4%Qg__4 34064082 240531253
24u0 . 44242091 292010917
_QL64295029 1943(?1234
2741 | 322v2440 253265202
p7ap | 39013946 283102725
o745 | 33253157 269051070
_274'7 ; 41080008 255075721
_z.J_ém___.,_ 47563860 262370991

. —0431URGAN16513

Orthometric
Undula- Height
tion Name H
m m

165, 1QUIRA24519 .

) 509__ICURAC Te&

~11e41JUPTR 1541

 —6+2ANCHOR 68,

~1.8LACRES1203,

Le2APLMND 145,

-30,POIMUC 3.

(BeWINHMA 21,
-21.9NCMEAL 14
~1¢3NEWMEX16554

. Le2BELTSV 50,

Go 95TN_VI L 44,
_8.3WARAF’b1882.

_3.GRANDF 277
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The errors of orthometric heights have been neglected because they are con-
sidered very small in comparison with the standard errors of the astrogeodetic
undulations.

The North American Datum has been computed according to the
development method; therefore the coordinates given cannot be used in equations
(3.2 -19) which have been derived with the assumption that the triangulation has
been computed according to the projective method. To change the coordinates
of a triangulation from coordinates computed with the development method to
approximate coordinates computed in the projective method, the Molodensky
correction must be applied [ Bomford, 1962, p. 135]. The Molodensky
correction is computed by integration along the triangulation chain and thus
requires knowledge of both the triangulation chain and the astrogeodetic undula-
tions. This information is not available to us. For most of the NWL stations
a correction has been computed to approximate projective station ¢oordinates
based on the agsumption of a linear change in geoid height along a great circle
from datum origin to the station [Anderle et al., 1967, table 21]. We tried tq
verify these corrections, but as details on the equations and the data used were
not given we were unable to do so. We decided therefore to use the geodetic
coordinates as they are. Thus the transformation parameters determined this
way are those connecting the realization of the present North American datum,
as it is defined by the coordinates of the triangulation stations and their
variances and the geocentric coordinate system, defined by the geocentric
coordinates and associated variances of the same stations computed by satellite
observations. Using the coordinates from Table 4.1 - 3, Cartesian coordinates
have been computed by equation (3.2 -1). They are given in Table 4.1 - 4. The
variance of the horizontal position has been computed by Simmons' equation
for each point. This variance was assumed to be the same in all azimuths.

The components in the meridian and the prime vertical planes are given in the
first two columns under the heading ''variances." The third column contains

the variance in the vertical direction computed by equation (3.2 - 15).
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Covariances in this horizon system have not been considered. Using Tables

4.1 - 2 and 4.1 - 4, two types of adjustments have been performed. We have

used equation (3.2 - 6) as a mathematical model to determine two sets of trans-

formation parameters.

The first transforms the North American coordinate

system to the SAO system and the second transforms the North American

system to the NWL coordinate system.

Table 4.1 - 4

Geodetic Cartesian Coordinates of the Points Used

Code X y zZ Name Variances
No. m. m m m>
9003 ~loaul20,9=slbllbley 340udboet LURGAN 18, 18 1]'[
9007 1942779.4-58V421940-1797U9342 . _._I.Q.L_JI.RAaﬁs_._aB 'L
9009 2251841.7-3817v89.7 132699649 ICURACI24.124s 4Ta
;‘pj;i'i{ 97631149-56U1550,6 288uUb4,] [JUPTR 52. 52 1‘4;'
_go_ug - =2656168,4=1544504,2 55704682 __qu_c_ug_mzs,lzs,-aﬁf»
2003, ~1556191,8-5169591s7 33870724 LACRES 194 194 « T4
_g;“ 1122667 ,7-64823204,9 4U06284,1 APLMND 43, 23. ML!:
_;zonm ~2572VU49,43-4618251,7 355647746 _  POIMUC 42, 3'2, 14—
)__4;50_'__ 171119543-4231271e2 44423492 _WINHMA 66, 66. 22.1‘
2740  =2664799,9 =69429 145 21336yl e3 NOMEAL 158,158 ég

274)  ~15357Ubau=5167L2vaY ﬁ&gngbJY._“

NEWMEX_ 1 B_-__l.a.-_.__'n,

2742  1130BV4,9-483098<%a3 )9_94595 9. _,_JiE;l.I_&\L_‘b:}_._é+..’i._.1._‘_+_._1
2745_ —84974,6=232811val 34932THal SINVIL 174 17a .‘ji
2741 i .A'AR.AEB___B_;__B_._‘L..‘_

S
- o

+

._.__j.:l.2,3 4T8T4U-46513UDa5 417465249

b49891,5-4245194,u 47127152, . GRANDE 18, 18. Ta
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By using equation (3.2 - 6), we have determined total shifts, because, as
has already been explained, when only coordinates in the two systems are
available, the two parts of the total shift cannot be separated and corrections
for the semidiameter and the flattening cannot both be recovered. In deter-
mining the transformation parameters, the geocentric and the geodetic
coordinates have both been considered as observed quantities with variances
implied by the variances of Tables 4.1 - 2 and 4.1 - 4 respectively. The
covariances generated when the computed variances in the horizon system are
transformed to variances in rectangular coordinates have been carried through
all the adjustments.

We initially determined the transformation parameters using the four
SAO stations. The results of these determinations are shown in Table 4.1 - 5.
First, an adjustment was performed using only the three total shifts, the
results of which are shown in the first part of Table 4.1 - 5. Second, we made
the same adjustment using all the seven transformation parameters. This time
we computed the angular transformation parameters according to the definitions
of Veis, Molodensky and Bursa. By comparing equations (3.2 -5) with (3.2 - 2b)
or (3.2-2c), we have the relations between Veis' rotations and Molodensky's

and Bursa's. These are

dag; = sin@y, dA - cosgy dv
da, = coswy Ao dA + cos)kg du + singg sinio dv (4.1-1)
da, = co8¢o cosAy dA - sin)odu + singp cosio dv

We were then able to transform Veis' parameters to Molodensky's and show
that Veis' rotations and Molodensky's or Bursa's are equivalent.

In Table 4.1 - 5a, we give the correlation matrices of the parameters of
these adjustments. First, the correlation matrix of the three shifts is given.
Then three correlation matrices corresponding to the transformation parameters
of Veis, Molodensky and Bursa are given. We also tested the significance of

several parameters by applying an F test. The F test [ Scheffe, 1959] uses
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Table 4.1-5

North American Datum Shifts, and Shifts, Rotations
and Scale Corrections from SAO Stations

Solution with Three Parameters

dxo = -27.0m 6.9
dyo = 157.7Tm *6.3
dzg = 167.2m £6.9
0o = 1. m VPV = 9.9
0o = 1.05m d.o.f.= 9

Solution with Seven Parameters

Parameter Veis Molodensky Bursa
dx, -37.9m £7.2 -37.9m £7.2 -75.6 m +24.2
dyo 164,1 +£7.2 164.1 +7.2 173.0 +16.2
dz, 174.8 +7.1 174.8 +7.1 120.8 +20.6
dA, da, -1"M7 +0.6 -1'70 +0.8 -1!'"70 + 0.8
du, dag 1.29 +0.8 -0.08 0.5 -0.08 =+ 0.5
dy, da, 1.24 +0.7 1.29 +0.8 1.29 + 0.8
€ 5.73x107%+2.1 5.73x107%+2.1 5.73x107%+2.1

g0 = 1 V'PV = 3.0

oo = 0.77 d.o.f.= 5
VPV = 7.3 3 shifts+3 rotations
d.o.f.= 6

From equation (4.1 - 1)

da; = -1!70 da, = -0!'07 da, = 1!29
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Table 4.1-5a

Correlation Matrices of Datum Transformation Parameters
from SAO Stations

Solution with Three Parameters

1.000 0.047
1.000

-0.002
0.051
1.000

Solution with Veis' Seven Parameters

1.000 -0.009 0.021 0.492
1.000 0.022 0.010

1.000 0.309

1.000

-0. 046
-0.489
-0.191
0.545
1.000

-0.023
-0.057
-0.025
-0.555
-0. 656
1.000

Solution with Molodensky's Seven Parameters

1.000 -0.009 0.021 0.218
1.000 0.022 0.042

1.000 0.130

1.000

-0.526
-0.075
-0. 300
0.181
1.000

-0.095
0.495
-0.223
-0.689
-0.226
1.000

Solution with Bursa's Seven Parameters

1.000 0.426 0.654 0.952
1.000 0.396 0.460

1.000 0.657

1.000

-0.363
0.134
0.176
0.181
1.000

-0.684
-0.593
-0.943
-0.689
-0.226

1.000

. 347
.189
.575
.013
. 049
. 005
. 000

. 347
.189
.575
. 003
. 006
. 051
.000

.038
.T73
.175
. 003
. 006
. 051
. 000

115




the statistic defined hy

7 Cn- VPV - VPV 1
© T4 VBV, (4.1-2)
where
n is the number of observations
u is the number of parameters in the unrestricted model
q is the number of parameters to be tested

V'PVQ is the quadratic form of the residuals in the unrestricted model
V'PVw is the quadratic form of the residuals under the hypothesis to be
tested

When the hypothesis to be tested is that a set of q parameters are equal to

zero, the statistic/Z is distributed as Fq, n-u. The test consists of

.

selecting a significance level o and rejecting the hypothesis if and only if
~—

.7~ >TFg q,n-u. Based on Table 4.1 - 5 and the table of values of F for
a = 0.05 given in [ Scheffe, 1959, pp. 426-4277, we computed the following

tests.

For the adjustment with three rotations and the scale

5 9.0 - 3.0
f =7 2——97(—)‘— = 2.88 Fo.gq4,8 = 9.19

For the adjustment with three rotations

6 7.3 - 3.0
F = 5 30 - 2.86 Fo.gs3e = 4.76

For the scale only

/5 9.3-1.3
. R

1.78 Fo.s,1,6 = 6.61
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From the above we conclude that when datum parameters were determined
from SAO stations, the scale correction and the rotations were not significant.
The insignificance of the rotations and of the scale probably means that the
data is not able to detect these very small corrections. The above tests are
the same for all three groups of parameters as the residuals and their
quadratic forms are identical for all three.

We also determined the same parameters using the NWL stations. The
results are given in Tables 4.1 - 6 and 4.1 - 6a. Now using Table 4.1 - 6, we
made the same tests as above with the following results.

For the three rotations and the scale

26 15.1 - 7.9 _
Jf "% T as T % Tomes T AW

For the three rotations

g

27 9.7 - 1.9
f 3 79 21 Fo.sa,2n = 2.96

For the scale

_—

26 15.1 - 9.7
/ =2 2 - 145 F = 4.3
\ 1 9.7 0,05y 1,38

From the above test we conclude that when the datum transformation parameters
are determined from the NWL stations, the rotations are not significant but
the scale correction is.

By observing Tables 4.1 - 5, 4.1 - 5a, 4.1 - 6, 4.1 - 6a, we also notice
that Bursa's parameters provide a weaker determination of shifts and
generally larger correlations. Thus Molodensky's parameters are preferable
when rotations around the axis of the geodetic system are desired.

Another group of adjustments was performed using equation (3.2 - 6).

This time only the geodetic coordinates of Table 4.1 - 4 were considered to be
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Table 4.1 - 6

North American Datum Shifts, and Shifts, Rotations,
and Scale Correction from NWL Stations

Solution with Three Parameters

dxg = -40.2 m +2.1
dy, = 161.8 m £2.0
dzo = 182.1m £2.0

0o = 1. m VPV = 15.1

Co = 0.71m d.o.f.= 30

Solution with Seven Parameters

Parameter Veis Molodensky Bursa
dxo -42.2m +1.7 -42.2m +1.7 -23.9m £6.5
dy, 162.8 1.6 162.8 +1.6 152.0 m +6.0
dz, 182.2 +1.7 182.2 +1.7 194.7 m +6.8
dA, dag 0''45 +0.2 0'"78 +0.2 0''78 +0.2
dy, day -0.15 +0.2 0.08 +0.2 0.08 0.2
dv, da, -0.64 +0.2 -0.14 +0.2 -0.14 +0.2
€ -2.21x107%+0.9 -2.21x107%+0.9 -2.21x107%+0.9

oo = 1. VPV = 7.9

0o = 0.55 d.o.f.= 26
VPV = 9.7 3 shifts + 3 rotations
d.o.f.= 27

From equation (4.1 - 1)
dag = 0178 da, = 0!08 da, = -0!"14
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Table 4.1-6a

Correlation Matrices of Datum Transformation Parameters
from NWL Stations

Solution with Three Parameters

1.000 -0.006 0.021
1.000 0.094

1. 000

Solution with Veis' Seven Parameters

1.000 -0.016 0.017 -0.120 0.013 0.212 0.005
1.000 0.086 -0.006 -0.046 -0.044 -0.182
1.000 0.022 0.360 0.071 -0.053
1.000 0.131 0.160 0.005
1.000 0.295 0.091
1.000 -0.014
1.000
Solution with Molodensky's Seven Parameters

1.000 -0.016 0.017 -0.263 0.048 0,007 0.005
1.000 0.08 0.035 0.037 0.043 -0.182
1.000 -0.048 -0.114 0.363 -0.053
1.000 0.141 -0.161 0.016
1.000 -0.301 -0.010
1.000 0.094
1.000

Solution with Bursa's Seven Parameters
1.000 0.233 0.253 0.703 0.750 -0.299 0.103
1.000 0.231 0.034 0.220 -0.700 0.586
1.000 0.128 0.340 -0.812 -0.598
1.000 0.141 -0.161 0.016
1.000 -0.301 -0.010
1.000 0.094
1.000
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observed quantities. To the previous observation equations we added the ones

formed from the following simple model:

X L,
Y= L,
Z L,
where
L, L, L, are adjusted values of X,Y,Z

The linearization of this gives the following observation equations

dx L Xo Vv,
ay | = |- |Yo |+ |Vy
dz LY Zo v,

In these equations the observed quantities were the coordinates provided by
satellite solutions with their variances. Covariances were not available and
were neglected. The unknowns for this adjustment were the datum transforma-
tion parameters and the geocentric coordinates. It is understood and has been
verified by the solutions that the datum transformation parameters are
identical with the ones given by the previous adjustment. The corrections to
geocentric coordinates given by this adjustment represent the effect of the
terrestrial triangulation on the geocentric coordinates determined from
satellites. We performed two separate determinations; one using only the SAO
stations and one using only the NWL stations. The adjusted geocentric coordi-
nates and their standard errors are given in Table 4.1 - 7. The coordinates of
the SAO stations have been determined by an adjustment with the SAO stations
only. Thus they refer to the SAO geocentric coordinate system. The
coordinates of the NWL stations have been determined by an adjustment using
only the NWL stations and therefore they refer to the NWL geocentric
coordinate system.

In the adjustments performed we noticed that the variances of unit

weight were in all cases within the tolerance limits of the a priori variance.

120



Adjusted Geocentric Coordinates

Table 4.1 - 7

Coordinate: X G Y a Z g
2 IORGAN |-1,535765m|+6.8m [-5,166 996 m| +7.5m | 3,401 042 m| +6.8 m
% IQUIPA 1,942 767 +7.2 -5,804 076 +7.6 -1,796 957 | +7.2
g ICURAC 2,251 824 | +6.4 -5,816 921 £6.5 1,327 163 [+6.5
% ILJUPITER 976 287 £5.8 -5,601 384 +6.2 2,880 238 [ 5.7
ANCHOR |[-2,656189 |+3.7 -1, 544 346 | +3.8 5,570 649 |[+3.6
LACRES |-1,556 235 |[+2.6 -5, 169 425 | £2.4 3,387 254 [+2.7
APLMND | 1,122 623 |+3.1 -4, 823 047 | +2.8 4,006 469 | £3.0
POIMUC |-2,572 081 |+3.0 -4, 618 382 | £3.0 3,556 661 |+3.1
§ WINHMA 1,711 149 [ +£3.4 -4, 231116 |+3.3 4,440 420 |[+3.4
§ NOMEAL [-2,664 813 [+£3.9 - 694 143 3.9 5,733 784 | +3.8
E NEWMEX |-1,535 748 +£2.6 -5,166 993 2.4 3,401 048 |[+2.6
BELTSV 1,130 760 £3.1 -4, 830 825 +2.8 3,994 721 [%3.0
STNVIL - 85020 [+2.6 -5,327 975 +2.3 3,493 460 (2.5
WARAFB |-1,234 828 |+2.1 -4,651 141 +£2.0 4,174 815 [+2.1
GRANDF |- 549931 |+2.5 -4,245 033 | £2.3 4,712 897 | £2.2
SAO Gy = 0.77Tm
NWL g, = 0.55 m

This implies that we reject the hypothesis that the variance of unit weight is
significantly different from unit. From Table 4.1 - 7 it is evident that the
existing ground connections supported by the astrogeodetic undulations improve
the present solutions for station coordinates, and it is worthwhile to include
them in the solution.

The above adjustment approximates a regular combination of satellite

‘and survey observations; this approximation suffers from the neglect of the
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covariances between the satellite coordinates and between the survey coordinates.
The omission of satellite covariances does not appear to be very serious as

the correlations among the components of one station are very small and those
among the coordinates of different stations are entirely negligible [ Gaposchkin,
1966al. The correlations among triangulation stations and astrogeodetic undula-
tions have been omitted because of a lack of information on that subject, and
nothing can be said until the studies now under way are concluded [ Pope, 19697.
Intuitively, however, the correlation between geodetic coordinates of such

widely separated stations must be small, and thus the fact that they have been

excluded will not invalidate the above results.

4,2 Accuracy of Present Determination of Spherical Harmonic

Coefficients of the Potential

The next component of the world geodetic system to be examined is
the set of spherical harmonic coefficients of the geopotential. As we have
seen, there are three main sources of information for the harmonics,
namely, satellites, terrestrial gravity, and astrogeodetic undulations; and
we will examine the accuracy obtained from each source as well as from

their combination.

4.21 Determination of Harmonic Coefficients from Satellites

First we examine the determination of spherical harmonic coefficients
from satellites. Since the zonals and tesserals are determined separately,
we will first examine the determination of the zonal harmonics.

The zonal harmonics, according to Section 3.6, are determined from the
secular motions of the node and perigee and from the long periodic perturbations.
Every such determination is always a determination of a limited number of
coefficients, and it is effected by the neglected higher-order terms to such an
extent that the estimation by least squares is questionable. A further problem
is that only a limited number of satellite orbits on which to base the analysis

are available. Thus the analyst must make a choice [King-Hele, 19627. He
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may either compute the greatest possible number of coefficients and thus
account for the effects of as many of them as possible, or he may allow some
redundancy by estimating a smaller set of coefficients. In the former case
the accuracy of the estimates is decreased because the adjustment does not
contain any redundancy, while in the latter case the effect of neglected higher-
order terms may degrade the solution. King-Hele [1965] solves for a
moderate number of coefficients by least squares or by minimizing the
maximum residual (mini-max), and he increases the estimates of the uncer-
tainties to account for the effect of the neglected higher-order terms; Kozai
[1967] solves for a large number of unknowns retaining at the same time the
least squares process and the uncertainty estimates which come from it; and
Smith [19657] solves for as many of the coefficients as there are equations and
obtains accuracy estimates by propagating the observational errors into the
solution vector. There is also a difference in the method of assigning weights
among the above investigators. King-Hele and Smith use a kind of scaling of
the observation equations by making the coefficient of Jo, by 1.5 or 1,
respectively, and use the resultant observation equations with equal weights.
Kozai does not perform any scaling and assigns weights according to the
observational variances increased by the squares of the effects of the
coefficients of order 22 to 27 on the assumption that their values are 0.5 x 107,
In addition, Kozai, in all his determinations of the even zonal harmonics uses
the secular motions both of the node and the perigee [Kozai, 1967], though
King-Hele in [King-Hele et al., 1963 and 19651 and Smith [1965] use only the
motion of the node. Furthermore, it has been argued that data from the perigee
motions are not compatible with that from the nodal motion and must not be
used as they are much more sensitive to th: neglected higher-order harmonics
[Cook, 1965].

The three more recent sets of even zonal harmonics with their uncer-
tainties are given in Table 4.2 - 1. 1In the last two columns the estimated

" accuracies of the coefficients are given for conventional and fully normalized
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coefficients. We also give the correlation matrices associated with these
solutions in Table 4.2 - 2 to illustrate how large the correlations are in these
solutions.

The above discussion shows that there is not full agreement about the
method of computation, the values of the parameters, or their uncertainties.
King-Hele has compared three groups of zonal harmonic coefficients by
comparing the secular motions of the longitude of the ascending node which
each set would produce in satellite orbits of specified semi-major axis and
various inclinations [King-Hele et al., 1966]. One set of coefficients was
given by King-Hele [et al., 1965], another by Kozai [1964], and the last one
by Smith [1965]. He found that all three sets represent equally well the
gravitational field for inclinations greater than 26°, and thus all sets must
be of approximately the same accuracy. In Table 4.2 - 1 are given accuracy
estimates for a set of King-Hele's solutions. Another accuracy estimate is
given by Rapp [1967]. Basing his analysis on some precision estimates
published by Kéhnlein [ 1966a] and a comparison with terrestrial gravity
anomalies, he concluded that the standard errors of the SAO 1966 coefficients
should be multiplied by a factor of four to give standard deviations.

If we may apply this rule to the standard errors given by Kozai and
listed in Table 4.2 - 1, we obtain values similar to the ones given by King-
Hele. We therefore decided to adopt as standard deviations the mean values of
King-Hele's values and the one found with Rapp's estimates.

The situation is a little better for the odd zonal harmonics, for which
the three more recent solutions of King-Hele et al., 19677, King-Hele [et al.,
19687, and Kozai [1967] are listed in Table 4.2 - 3. From this table it
appears that Kozai's standard errors are more reasonable, and we list them
in the last two columns of Table 4.2 - 3 for conventional and fully normalized
harmonics.

Satellite determinations for the nonzonal harmonics are that of SAO,

of degree and order 8 with 45 additional coefficients of degree 9 through 15,
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Table 4,2-2

Correlation Matrices

From King-Hele's Solutions

J2 Jde. Jds  Js J2 Ja Je Js Jio  Jdiz
1.00 -0.,14 0.14 0,27 1.000 0.977 0.977 0.979 0.986 0.968
1.00 0.45 0.61 1.000 0,988 0.993 0.994 0.982
1.00 0.50 1.000 0,988 0.998 0.970
1.00 1.000 0.989 0,981
1.000 0,978
1,000
From Smith's Solution
Ja da Jg da do din Jdia
1,000 0,990 0,989 0,993 0.989 0.784 0.069
1.000 0.989 0,993 0,991 0,788 0.040
1,000 0,993 0.988 0,783 0.051
1.000 0.997 0.804 0,014
1.000 0.373 0.075
1.000 0.479
1.000
From Kozai's Solution
da da Js Jg Jio diz Jd1a Jig dis Jd2o
1.000 -0.968 0.976 -0.950 0.913 -0.823 0,715 -0.537 0,386 -0.152
1.000 -0.986 0.977 -0.944 0.853 -0.765 0.568 -0.453 0.170
1.000 -0.988 0.966 -0.889 0.802 -0.628 0.501 -0.215
1.000 -0.987 0.932 -0.865 0,707 -0.594 0.303
1.000 -0.968 0.923 -0,787 0,693 -0.392
1.000 -0.971 0.905 -0.805 0.577
1.000 -0.932 0.896 -0.614
1.000 -0.912 0.797
1.000 -0,716
1.000
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and the NWL general solution for zonals and nonzonals of degree and order 12
with additional resonant parameters. The standard errors from the SAO least
squares solution for tesseral coefficients are given in [ Gaposchkin, 1966b,
pp. 200-201, 238]. These standard errors are a measure of the internal
consistency, but they are too small to be accepted as accuracy figures. There
are then only Rapp's estimates which can be considered to be reliable accuracy
figures. Although the relation between the variances provided by the least
squares process and the true variances of the solution is more complicated
than a scale factor, it is reasonable to assume that a set of scaled variances
can provide a better estimate than the one given by the least squares process.
We decided then to use Rapp's accuracy estimates (1967, pp. 37-38]
for the tesseral harmonics to estimate mean standard deviations of a harmonic
coefficient in a given degree. The SAO coefficients with Rapp's estimates up

to 14 x14 are given in Table 4.2 - 4.
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Table 4.2 - 4

SAO Coefficients and Rapp's Accuracy Estimates

c )

INPUT STANDARD INPUT STANDARD
N M COEFFICIENT ERROR COEFFICIENT ERROR
2 0 =-484,41735 0.012
2 2 20379 0,056 =1351 .00056
3 0 0.9623 0,032
3 1 le936 0,052 06266 0.056
3 2 0,734 0,052 -0538 0,048
3 3 0.561 Je072 1620 0076
4 O 065497 0,020
4 1 ~0e¢572 0,032 -0e469 0+028
4 2 0330 0,048 0661 0048
4 3 0,851 0,032 -06190 0028
4 4 ~0,053 _ 0.108 0.230 06120
s O 0,0633 0,030
S 1 -0,079 06044 -06103 00044
S 2 0.631 0,048 -0e232 0044
5 3 ~0,520 0,056 06007 0056
5 4 -0,265 0,063 0064 04056
S 5 0,156 0,088 =-0+592 0«088
6 O =0e]1792 0.033
6 1 ~0,047 0,028 -06027 D024
6 2 0,069 0.048 =0e366 0.048
6 3 =0,054 0e052 04031 0¢044
6 4 -0,04¢ 0,080 -0.518 J.088
6 S ~04312 0,040 -0.,458 0036
6 6 ~04,040 0,096 =06155 0096
7 O 0+ 0860 0,040
7 1 0,197 0.084 0,156 0092
7 2 0.364 0,048 O0e163 0e¢044
7 3 0.250 0,064 0,018 0064
7 4 -00152 00064 -00102 0.060
7 5 0,076 0,084 0.054 0.084
7 o6 -0,209 D076 04063 0068
7 7 0,055 0,088 04096 0084
8 O 0.0655 0,048
8 1 -0,075 0,052 0.065 0,048
8 2 0,026 0,088 0.039 0084
8 3 “00037 0‘060 00004 D056
8 4 -0,212 0,076 -0.012 0.084
8 S -0,053 0,072 Oes118 0.,068
8 6 -06017 Ge1GC 06318 0096
8 7 -0.,7087 0,052 0031 0.060
8 8 -00248 0,080 0102 0.076
9 0 060122 D, 255
9 1 Oe117 UeN92 0.012 0,088
9. 2 =J,43040 0.048 0035 De 048
9 3 Oel 0.095 0e0 04095
9 4 Ve 0,095 0.0 06095
o 6 0.G 0,095 040 04095
9 7 060 0,095 0.0 0095
9 8 0.0 04095 D40 04095
[=] Q 040 0,095 Q60 00095
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Table 4.2 - 4 (continued)

10

10
10

10
10
10
10
10
10
11

11

11

11

11

11

11

11

11

11

11

11

12
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13

ndH>WhNe= O

\Om\lG‘LﬂbUN—.'O'—O\OCD\IO\UI&*UN'-‘OO\OCD\IO\

=Ce'.31

cCcoocoo0o0CCOo

coecCcLCcooOoCcoa

[§)]
9

[0}
o}

JeVs 4
0,056
0,088

06096,

0,072
0,101
00101
0121
O0e1C1
0,1C1
Os121
0,028
008U
0,067
0,067
04067
0.067
0,067
0,067
0,067
04067
OesCH7
0067
UeU36
04C8HBC
Oe124
JeU6BS
Je06S
06065
0,065
0,065
06065
0,065
0065
0065
CeN6S
0,064
0e041
Je041
0.041
Jev4l
0,041
04041
0.041
0,041
0.041]
0,041
0041
3004{
JeUa1

-0.126
~06042
0030
~0el11
060
Oe0
0.0
060
0.0

04015
OeV
0.0
060
00
Je0
0.0
0.0
0.0
0.0
0.0

-0071

-0+005
040
0.0
0e0
Oe0

0.C

0,052
0.088
0088
0076
0.101
06101
0101
0.101
0,101
Oel01

0.080
0,067
06067
0067
0067
0067
0067
0e¢ 067
06067
06067

0067

0072
0.108
0065
0065
0065
0065
0065
06065
Je 065
0,065
06065
0065

0041
De¢041
06041
0041
04041
0041
06041
0.041
06041
0e¢041
0041
0+041
0041
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Table 4.2 - 4 (continued)

14 (0] -Ce0332 T 0,048

14 1 -Cer15 D060 00035 D060
14 2 Vel 0034 0«0 0034
14 3 Del) D¢03¢ 060 0034
14 4 040 0,034 0e0 0034
14 5 060 0,034 Oe0 0034
14 6 Qe 0e 034 0«0 D¢034
14 7 O D Ce034 OeC 06034
14 8 060 0+C34 Oe0 0034
14 9 060 J.U34 060 06034
14 10 OeU 0,034 0e2 0034
14 11 Oeu02 0034 -0000 0«¢034
14 12 Oe 094 06034 -0.028 0034
14 13 O,u 0,034 Oe¥) 0e034
14 14 -0eC1l4 JoVU34 =003 QV¢334

The computed mean standard deviations for tesseral harmonics only and for all
coefficients in a degree, according to Rapp's standard deviations, are given in

Table 4.2 - 5.

Table 4.2 - 5

« Mean Accuracy of Harmonic Coefficients
(in units of 107%)

Degree Tesseral Only All Coefficients
2 56 41
3 59 55
4 56 52
5 58 56
6 57 55
7 72 70
8 72 71
9 89 88

10 91 89
11 68 66
12 69 71
13 41 42
14 36 36

131



The recent NWL set of spherical harmonic coefficients and their
variances are not available to us. The only information about its accuracy has
been obtained from Rapp [1967b]. Rapp performed a series of tests concerning
the accuracy of different sets of harmonic coefficients, but the results concern-
ing the NWL set were inconclusive. There were instances where the NWL solu-
tion exhibited a better behavior than the SAO set of coefficients and vice versa.
We then decided to consider both sets as being of approximately the same
accuracy. Next we tried to estimate the accuracy of the harmonics from the
combined SAO and NWL data.

In Fig. 4.2-1 we plotted the mean standard deviations from all coefficients
of a degree for the satellite coefficients that were used by Rapp in his combi-
nation solutions. We also plotted the mean standard errors of his terrestrial
and of his combination solutions, both of which are given in [Rapp, 1967].

This figure also shows the mean standard errors of harmonic coefficients

according to the equation

_0.34x10°°
o = — (4.2-1)

which is a model given by Rapp [1968a] for the standard errors of harmonic
coefficients obtained from terrestrial determinations when model anomalies
are used.

We made the assumption that the standard errors of all coefficients
within a degree are the same and equal to the mean standard error of that
degree. We also made the assumption that the coefficients are independent.
As the combination solution is actually the multivariate mean of the combined
quantities, the standard error of each degree of the combination solution
coefficients can be computed from the equation for the variance’of a weighted

mean

0w = T 1 (4.2 -2)
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where
O.uw 1S the standard error of the combination solution coefficients

0,0; are again the satellite and the terrestrial solution coefficient

standard errors

From the terrestrial and satellite standard errors we computed the mean
standard errors in each degree of the combination solution up to degree 8 by the
above equation. These results are plotted in Fig. 4.2-1. We noted that the
mean standard errors found by error propagation are very close to the actual
mean standard errors found from the combination solution. From degree 9 to
14 we made the same assumptions but we tried to find the mean standard error
of the coefficients of a terrestrial solution which, when combined with the
mean standard error of the satellite coefficients, will yield the mean standard
errors of the combination solution. We again plotted the results and found
that the mean standard errors produced by error propagation are very close
to the standard errors given by Rapp's model. We conclude then that within the
limitations of Rapp's combination solution the uncertainties of a combination
solution can very well be approximated by a simple error propagation of the
starting standard errors using equation (4.2 - 2),

Similarly, a very rough estimate of the accuracy of the spherical
harmonic coefficients of the combination of SAO and NWL data will be found
by a simple error propagation. If in this case we consider the accuracies of
the two determinations to be the same, the resulting accuracy will be obtained
by dividing the accuracy of one satellite determination by /2. The results are
averaged with the accuracies of zonal harmonics to give the mean accuracy of
a combined satellite determination in each degree.

The standard errors of the zonal harmonic determination of NWL were
omitted because they are not available. Even if they had been available, it is
belie.ved that their contribution would be very small, since the zonal harmonics

are already well determined.
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In Fig. 4.2-2 we plotted the mean standard deviations for the zonals and
tesserals of the SAO satellite determination and the results of the combination

of the SAO and NWL data,

4,22 Determination of Harmonic Coefficients from Terrestrial Gravity

Anomalies

Another very valuable source for the determination of the gravity field
is the terrestrial gravity observations. The Department of Geodetic Science
at The Ohio State University has been engaged in the collection, evaluation, and
reduction of gravity observations on a world-wide scale [Uotila et al., 1966a].
The distribution of the surface gravity observations existing in 1964 has been
published in [Uotila, 1966). From the observations that have been collected
at The Ohio State University, Uotila computed mean gravity anomalies for
5°x5° blocks [Uotila, 19627, Rapp used 805 mean anomalies from Uotila's
computations and computed mean anomalies for another 621 5°x5° blocks
[Rapp, 1967]. These 1426 5°x5° blocks constitute the observed or surveyed
part of the earth's surface and the remaining 1166 constitute the unobserved
or the unsurveyed part. For all the computed mean anomalies, Rapp estimated
standard errors using statistical methods developed in [Kaula, 1959; Heiskanen
and Moritz, 1967). The distribution of the observed 5°x5° blocks, together
with a code for their standard errors according to Rapp [1968e], are shown
in Fig. 4.2-3.

From these mean anomalies, Rapp [1969], applying the approach of a
weighted least squares adjustment, computed a set of harmonic coefficients of
8th degree and order and their standard errors. These coefficients, given in
Table 4.2 - 6, show a much better agreement with the satellite solutions than
older terrestrial solutions do. To further refine his terrestrial solution, Rapp
[1968c1 used model terrestrial anomalies for which he estimated a standard
error of 20 mgal; with these anomalies he filled the remaining 1166 5°x5°

.blocks. This new set of data can also be represented by Fig. 4.2-3, if we
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Table 4.2 - 6

Rapp's Harmonic Coefficients from Terrestrial Gravity Data

Coefficient Observed Anomalies Only Observed + Model Anomalies
Degree and
Order 5 5 3 5 T o 3 5

20 -484,.21 +,83 -485.36 +.36
22 4,98 £.96 -0.43 +.74 2.19 £,33 - -1.22 +£.32
30 -0.30 +.43 0.25 +,17
31 0.85 £.43 -1.32 £.45 0.79 +.18 0.06 £.17
32 -0.59 £.63 -1,08 £.52 0.59 +£,17 -0.46 +,17
33 0.81 £.37 -0.33 £.51 1.00 £.16 0.96 +£,17
40 0.64 +£.25 0.68 +.11
41 0.01 £.36 1,33 £.36 -0.18 £,12 -0.05 +.12
42 0.40 +.41 1.03 £.40 0.20 +,12 0.38 +.12
43 1.10 £.28 0.52 +.41 1.02 £.11 -0.21 +.11
44 -0.72 +,31 0.93 .28 0.18 +.11 0.31 £.11
50 0.44 +.20 -0.20 +.09
51 -0.34 £.24 -0.57 £.23 -0.32 £,09 -0.02 £.,09
52 0.51 £.28 -0.77 £.33 0.02 £.09 -0.03 £.09
53 0.15 £.21 0.02 +£.31 0.00 +.08 0.07 +£.09
54 0.67 £.25 -0.45 +£.23 0.23 +.08 0,08 £.08
55 0.86 .20 -0.08 .21 0.13 £.08 -0.44 +,08
60 -0.41 +.18 -0.01 +,07
61 -0.44 .16 -0.13 .15 -0.29 +,07 0.06 +.07
62 -0.49 +£.18 0.30 £.24 -0.15 £.07 -0.09 +.07
63 -0.50 £,21 -0.01 £.26 0.02 £.07 0.17 +,07
64 -0.29 £.17 -0.17 £.17 -0,13 £.07 -0.30 £.06
65 =0, 78 +,18 -0.84 .17 -0.21 +.06 -0.58 +.06
66 0.08 £.14 -0.22 £.15 0.01 £.06 -0.24 +.06
70 0.05 £.12 0.05 +,06
71 0.27 +£.13 0.66 +.13 0.14 +.06 0,24 £,05
72 0.26 +,13 0.13 +.14 0.13 £.06 0.14 +,06
73 0.71 £.16 0.19 .19 0.29 +.06 0.01 +.06
74 -0.39 £.13 0.02 £.13 -0.28 £.,06 -0.09 +.06
75 0.32 £,13 - 0.16 £.11 0.06 £.05 0.15 £.05
76 -0.17 £.12 0.53 +.12 -0.14 +.05 0.13 £.05
77 -0.18 +.11 0.21 +£.09 0.03 £.05 0.04 +£.05
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Table 4.2 - 6 (continued)

80 0.22 £,09 0.09 +£.05

81 -0.01 £,10 -0.19 +.09 -0.05 +.05 0.03 £.04
82 0.02 £.08 -0.09 +£.09 0.04 £.05 0.05 £.05
83 -0.21 £.10 =-0.06 +.11 -0.03 +£.05 0.06 +.06
84 0.03 £,09 -0.07 £.09 -0,01 +£,04 0.05 .04
85 -0.12 £.08 0.18 +.08 -0.11 £.04 0.17 £.04
86 0.02 £.07 0.13 +.08 -0.00 +£.04 0.19 +£.04
87 0.13 +£.08 -0.15 +.07 0.01 £.04 -0.04 £.04
88 0.14 £.07 0.04 +.07 0.00 +.04 0.01 +.,04

assume that the blank blocks have a standard error of 20 mgal. From this data
Rapp computed a second set of 8th degree and order harmonic coefficients and
their standard errors, and it is this set of data that he used to combine
terrestrial and satellite results for harmonic coefficients. The second set of
harmonics and their standard errors are given in Table 4.2 - 6. We could

test the consistency of the SAO satellite solution (Table 4.2 - 4), Rapp's
terrestrial solution with model anomalies (Table 4.2 - 6), and their standard
errors by forming a multivariate confidence region [ Hamilton, 1964, pp. 139-
1427. This would require the full variance-covariance matrices of these
solutions. As full variance-covariance matrices are not available, we test each
pair of parameters by examining the estimated marginal variances. The
difference of any pair of coefficients of the same degree and order would have

a distribution which could be approximate by the N(0, 02+07) distribution,
where o, and g, are the standard errors of the harmonic coefficients from the
terrestrial and satellite solutions. This is the case because g; and g5 have
been determined with such a large number of degrees of freedom that it will not
make any numerical difference if we use a normal distribution instead of
student's t distribution. With a significance level of 95%, the interval
*,-%o-1.96./0°+02, X,-%,+1.96./05+02), where %,, %, are satellite and

" terrestrial estimates of a harmonic, must include zero, otherwise the
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hypothesis of the equality of the two means is rejected. This test can be written
as |X,-%:|< 1.96 . /a%+a2.

In Table 4.2 - 7 we give the absolute values of the differences between
Rapp's terrestrial solution in which model anomalies have been included and the
SAO satellite solution, together with the quantities 1. 96 W . Only the terms
where the hypothesis of the equality of means is rejected by the test are listed.
Out of the 75 coefficients, 22 are formally rejected. The percentage is too high,
and it suggests, under the limitation of the above assumptions, two hypotheses:
(a) The satellite uncertainties should be larger, (b) The terrestrial uncertainties
should be larger. We want to change the standard errors of a group by a scale
factor to bring them into agreement.

We have accepted the hypothesis that the least squares estimates of the
variances for the SAO satellite solutions were only precision figures, and we have
modified them to obtain accuracy figures. It is also reasonable to assume that
the uncertainty estimates of the terrestrial solution, estimated after such a long
and approximate process, could also be too small and must be scaled. We first
see that among the rejected differences some are for zonal harmonics of both even
and odd degrees, like the Em, which are determined with high accuracy from
satellites. It would require a factor of 40 if we were to justify the difference
between the Cx's by scaling the satellite standard errors. In general, because
the standard errors of the satellite coefficients are very small it would require
unreasonably large scale factors to justify the existing differences by scaling the
satellite standard errors. Nor would the simultaneous scaling of the standard
errors of the satellite and terrestrial coefficients help very much, especially in
the case of the low-order harmonics. We conclude then that the variances of the
harmonic coefficients from the terrestrial solution must be increased to give more
reliable accuracy estimates. We noticed that if we daible the given standard
errors of the coefficients of the terrestrial solution then only four differences are

rejected which gives a more reasonable percentage of rejected differences for
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Table 4.2 - 7
Differences Between SAO Satellite and Rapp's Terrestrial Coefficients

and Their Confidence Levels

Degx('iee C Degree g
an : 2 2 and 3 342
Ordey Difference 1.96 NCERRE Order Difference 1.96 ,/a?+02
20 1.19 0.71 (1.70)
30 0.71 0.34 (2.08)
31 1.15 0.37 (3.20)
33 0.44 0.34 (1.30) 33 0.66 0.36 (1.89)
41 0.39 0.24 (1.60) 41 0.42 0.24 (2.08)
42 0.28 0.25 (1.10)
50 0.26 0.21 (1.41)
51 0.24 0.20 (1.24)
52 0.61 0.20 (3.30) 52 0.202 0.197 (1.10)
53 0.52 0.19 (3.20)
54 0.50 0.20 (3.03)
60 0.17 0.15 (1.10)
61 0.24 0.17 (1.67)
62 0.22 0.17 (1.41) 62 0.28 0.17 (1.88)
64 0.22 0.21 (1.10)
72 0.23 0.15 (1.49)
84 0.20 0.17 (1.62)
88 0.25 0.18 (2.40)

the 75 coefficients. The factors by which the given standard errors of the
terrestrial solution should be multiplied so that the differences would not have
been rejected are given in parentheses in Table 4.2 - 7.

Again, although we believe that the relation between the standard errors
of the harmonic coefficients of this terrestrial solution and their standard
deviations is more complicated than a simple scale factor, still a scaling of
these standard errors will provide better accuracy figures. We then decided to

" multiply the standard errors by 2 to get more realistic accuracy figures.
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By multiplying the standard errors by 2, equation (4.2 - 3) becomes

+0.68 x 10°°
Os) = — (4.2-3)

The above result raises the question of the cause of this low accuracy. If we
attributed all this to the assigned weights we will have to double the estimated
standard errors for the observed and the model anomalies, and this is
difficult to justify. In order to investigate this question a little further we used
the adjusted gravity anomaly field given in [Rapp, 1968, pp. 26-27]. Based
on this and the variances of the anomalies given in Fig. 4.2-3, we generated
observed and model mean gravity anomalies having the adopted anomalies as
their mean values and the variances of the observed or the model anomalies as
their variances. For this purpose we used an IBM 7094 computer subroutine
which generated normally distributed random numbers n(0,1), with mean zero
and variance 1.

We know that )i;—g is distributed as n(0,1). Thus we found any

generated mean anomaly

x = n0,1)x g+
where
o is the standard error of the mean anomalies

Y are the adjusted anomalies

Thus we generated three sets of anomalies which had the adjusted anomalies as
their means and the standard errors of the mean anomalies given by Rapp as
their standard errors.

Next we determined, by least squares, harmonic coefficients of degree
and order 8 from the adjusted anomaly field with a uniform standard error of
10 mgal. This set of coefficients is given in Table 4.2-8. We also determined
harmonic coefficients from the three generated anomaly fields, using as stan-
dard errors those of Rapp. These sets of coefficients are given in Tables 4.2 -9,

4,2-10, and 4.2 -11.
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From the adjusted anomalies, harmonic coefficients have also been
computed by summation, using a program written by Uotila. The differences
between the coefficients computed by least squares and those computed by
summation were not of any significance for our experiment.

The differences between the coefficients computed from the adjusted
field and those computed by the generatedfields give a measure of the accuracy
with which anomaly fields similar to the generated ones can determine the

harmonic coefficients. The RMS differences in each degree are given below:

RMS Differences
Degree | Field No.1 | Field No.2 | Field No. 3
2 0.56 0.53 0.46
3 0.35 0.20 0.20
4 0.20 0.11 0.14
5 0.15 0.10 0.13
6 0.12 0.14 0.12
7 0.08 0.10 0.10
8 0.09 0.09 0. 09

The above RMS differences are actually the standard errors of the determined
coefficients in each degree and give coefficients for equation (4.2 - 3) of 0. 60,
0.52, and 0.51 respectively. The mean of these values is 0.54. Thus we can
say that if the assigned standard errors of the presently predicted mean
anomalies in 5°x5° blocks are correct, then the set of harmonic coefficients
that we obtain by least squares solutions has standard errors described by the
equation

_0.54 x 10°°
Oc,s) © n-1
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We know, however, that the assigned standard errors are not correct but are
only estimates, and this further affects the accuracy of the determined coef-
ficients. The amount of this effect is not known, but a change from 0.54 to
0. 68 cannot be ruled out. We decided then to accept equation (4.2 - 3) which
has been indicated by the comparison of coefficients computed from gravity
anomalies and the SAO 1966 set of harmonic coefficients as expressing the
standard errors of the harmonic coefficients computed from terrestrial

gravity.

4.23 Determination of Harmonic Coefficients from Astrogeodetic Undulations

Another source for the determination of the spherical harmonic
coefficients of the gravity field is the astrogeodetic undulations. The present
extent of the astrogeodetic undulations has been published in [ Fischer, 1968].

From there and from the Geoid Charts of North and Central America 1967

published by the Army Map Service, we estimated mean astrogeodetic undula-
tions in 5°x5° blocks and standard errors applying the procedure described in
Section 3.4. The distribution of the observed blocks, with a code for their
standard errors, is shown in Fig. 4.2-4.

With this data and using the model (3.4-17) for astrogeodetic undula-
tions, observation equations were formed in different combinations of number
of coefficients, of approximate values, and of weights. Then normal equations
were formed and solved using standard least square techniques. First an
8 x 8 solution from astrogeodetic undulations only was attempted. This attempt
resulted in very unrealistic results.

Next we attempted another 8 x8 solution in which the rotations of the

datums were constrained to be zero, but the results were again unreasonable.
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From a solution only for the shifts and the semidiameter shown in Table
4.2-12, it is evident that the shifts and the semidiameter were determined
with very poor accuracy and consequently the harmonic coefficients were
also poorly determined. This is shown by the 'standard errors given in the last
column of Table 4.2-12. The standard errors listed in this table and the
following tables are computed with an a priori variance of unit weight of 1.
The estimate of the standard error of unit weight obtained from each adjust-
ment is listed at the bottom of each table. We'then weighted the shifts, the
rotations, and the semidiameter (Table 4.2-13) using as a priori values the
latest values for the modified Mercury datum [ Fischer, 19687.

We remark that the approximate values introduced in the solution
and given in the column "Original Value" are the differences between the
values of the shifts for the modified Mercury Datum and the shifts that have
already been introduced in the solution by changing the element of the

ellipsoid of the datum to an ellipsoid with

a 6378150m

1/f

298.3

as is explained below:

Modified Mercury Shifts Introduced by Changing Differences Used As

Datum 1968 the Ellipsoid of the Datum Approximate Value
= -18m 17.5 m - 35.5m
g 9 g'
553 145 116.7 28.3
Z £ Q
< 183 208 - 25.0
g - 81 -176.8 95.8
2§
§4§ -104 - 41.0 - 63.0
A
a -121 - 85.9 - 35.1
g -105 6.8 -111.8
Ei § - 44 - 6.4 - 37.6
w S '
a
=1 4 1.9 .
E: 9 92.1
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Table 4.2 - 12

Determination of Shifts and Semidiameter from

Astrogeodetic Undulations

European North American

Australian

Datum

Datum

Datum

C

CRIGINAL AUJUSTED
VAL UF CORRECTICN VALUF
dxo - 0. —164.7497 - 164.74G7
dyo -Ce -79.4507 ~79.,45C7
T dzy, -0, —45.9269 =45.9269
dA 0. C. C.
du 0. 0.0026 0.0026
€ Ce 0. 0.
d.)(ol 'Cn 15(108()(13 1360806’%
dYOl -Co 7(0.6486 74.6486
dzq, -Co. -118.,0177 -118,0177
dA Co -Oo -Oo
du C. -0.0010 -0.0010
dv Ce 0.0000 0.0000
€ C. O 0.
dxq, ~C. -138.4206 -138.4206
dYOl 'Co 5038(16 5.3865
d201 - 175.‘07:"3 l?bo4138
dA 0. —O- —O.
du 0. -C.0010 -0.C010
___dl/ Co —0.0C(U —0000()0
¢ 0. 0. 0.
semidiameter O. —6G.2004 -69.2604
i 2 0 -484.2029 - C.NO00 ~-484,2029
ORTGNAL
LPL (VvPV) ND.488025E 04
STD ERR (UNIT WFIGHT) 0.356497E 01
UNIT WLTGHT RMS CFV 0.334563F 0Ol
KMS CISCREPANCY 0.356710F 02

Standard
Error
22,3915
24,1651
19,5702
0.
0.0316
0.0316
O.

17.28249

39.1229

20,3563
O.
0.0316
0.0316
o.

49,8832

43,7994

37.1469
0.
0.0316
0.0316

0.
28.8219

C.0000

PRESENT

0.1534380
0.203164t¢
0e190€064F

0.118887F

0l

0l

02
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Table 4,2 - 13

Astrogeodetic Solution with Weighted Shifts, Rotations, and Semidiameter
But Not Weighted Harmonic Coefficients

URIGINAL
VALUE
g dxg =3%.4000

—= & dyn.. ?8.3000
55 dm -25.0000
E8 aa 0.

5 dp [
g dv 0.
z € GC.

e e DXL 9H L0000
5 dys =-€3,060C
S E dzg -35.1000
§'§ dA G.

58 du . 0.
“ dv C.

U S Y

dxg, -111.8000

g dya. -37.6C00

2 dz, $2.1000
3 gvdA 0.
8@ o
—— - dv  _ C.
€ 0.

T DXMMOOETD I~~~

~N >

—OWN~O RN

m\'O'\ﬂ.‘wN'r-'QNO*UlJ‘UN—OD\J\#W\D—‘GWI‘\JN—'O-\'UNI

0.7025

C
AGJUSTCOD
CORPECTICN vALLC
GC.0619 =35,44%P1
-0.2940 28.006C
0.3974  -24.5026
0. C.
-0.C61% -C.00615
-0.083¢6 -0.061%6
-0. -0.
~U.0046 05,7154
-0.2416 =£3.2616
—(.2906 -=3%.3906
C. 0.
“0.1687 ~0.LEn¢
0.6613 C.G413
=0 =0
C. 1083 =111.6717
0.1314 <=-37.4660
~-0.0440 G2.051C
Q. 0.
0.0549 0.0%49
0.0177 o.ot??
=0. -C.
=-U,794%9 ~04 1959
~0.9217 =606, 9635
~1.2292 -1.22nr?
3.9201 1.9201
=27,94F0 =2.14P0
1.4377 teddti?
1,5450 l.%8n0
=1.49222 -1.13917
1.72001 AN
11243 1o l2H3
-h, 1603 -2.10661
0.2731 C.V7TN
1.6108 1.6108
7.7503 T.75C)
-2.49272% =2.922H
1.5289 1.592a%
Teh215 1.6271%
~5.2005 -5.,202%
7.9713 T.47171%
~h.E93Y ~b,1135
-3.5130 =-1.5110
4.0476 4,0K16
-h. 6704 —h h NG
=-3.091) -3,
S5.1843 f. 1863
=1.1040G =7.10nC
-G.0u22 ~C.un2?
4.9171% 4,013
-1u.90%8 ~C.0%H
=-1.271 -1.2161
4, 00940 HoUntis
-1.49013 -1.90%
=2.4R10 =2.4700
1.493%2 1.41132
1.5676 14674
-l.11H2 -1.11a2
-N.A%¢6 —-0.H%06
(B 1YY 0.5L4%0
~1.091% -1.0913
0.0072 00,0072
L.3773 0.3773
0.6596 0.6956
LPL (VPV)
ST0 LRA {URTY WFIGHT)

UNTT wLIGHT

ArS UISCRLPANCY

vS LEV

Standard
Error
3.15%0
ATREL 3
1.1322
0.
0.413%
V.3702
0.
3.1274
3.1230
At
0.
0.¥84%
0. 3821
0.
3.1604
1. 1582
3.1617
[
0. 3993
U, Y9H2
0.
G ASH S
Lol 1o
Z.CLLS
Teulls
2.9%40%
Yo Aot
1.hnn2
A 6210
H uhng
ARYLA1Y]
2ol
2abnnd
L6105
G KT
2.2204
2000
2.0604
Z2.d6n)
3.9 04940
J.ri23
19421
1.83ny
1oulal
20655
[ E-L R
1.5607
P T
1. 46450
1.1904
1.2341
[{ U TV
ball4t
0.H204

03744

1. 34190

G.%043

0. 3045

Uett354
IR EGNAL
V. ER2TTE 0%
0. 1642941 C1
Uso0298L U1

[ TI/S I LY N (P
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vaLte CUPPECTION

0.
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0.
Je
U
Q.
9.
Je
0.
.
e
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V.
e
U
U.
G
o,
J.
.
0.
.
Ue.
U
G
0.
U
Oe
0.
0.
U.
e
u.
U.
J.
Q.
u.
'R

U

PRLSENT
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Sh00Y

=650
1. luty
2301
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[TV
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~7.7P87
5. 1909
2.%294

~4.4540
-H.onul
3. 1460

21214

=94 4419
=0 .t TVO

[N A
Yeh?243
3.3604]
-3.3054
-1.0337
“. 2315
=l.n312

(AL
U AR
~3.2001

U660

Lonn2i
“1a1827

sl 1269

2.30u8

ADJUSTED
VALUE

V.uB62

1.6308
~6.6971
Se5009

-6.45h3
R A A 1Y ¢
L2901

" ~6.%0064

09995
11894

~1.7887"

9. 199
2.82496

=h.6540
=R.AuH1

3.3400
S 2.121n
~h,1%17
=0.4T00

[EPLYiNAY
H.4243
Je061
ERTELEY]
-1.01437
4.231%
~l.nidte

Lotz
~e T1HO
L=¥. 21407
Daftal}y
L4821
~1.1%27
Czle1269
7.%088

20872

_.0.6ub54 A

11166 2 2

1.68079_ 3 )
2.66307 7372
2.3207 _3 3

100008 4
AT
_3.9336
1857

4,413 5
h.320% 5
2.4u78 S
__3.u3l0 5
10286 5 %
Y. B4t4
3.7034
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1

NN NN s OO
' .

1.0357
L.%281]

lovha
LeT042
1.047263
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lelran
0.m%217
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NI SN -

0.4793" Th
0.5706 @
0.4179 9
0.4470 A
0.3921  ®
U.4AS6__ B __
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In the Mercury datum it is supposed that the existing datums are not rotated,
thus we used zero as the a priori value for the rotations. The variances

used to weight the shifts and the rotations are the ones found in Section 4.1

to be the most probable for a datum oriented by satellite observations. The
variance for the semidiameter is the one found from a combination of satellite
survey and astrogeodetic solutions, as will be explained in Section 4.3. The

a priori variances assigned to the parameters were as follows:

Parameters Variances
dxo1, dyo1, dzo 10 m®
du, dv 0.16 sec®
da 36 m®

The new solutions were still unsatisfactory. From all the above we came to
the conclusion that the distortions in the solution were primarily due to the
incomplete coverage of our astrogeodetic undulations. To help the solution in
that respect we decided to use some kind of predictions for the astrogeodetic
undulations in the vast unsurveyed areas.

The fact that the astrogeodetic undulations lie on different datums
complicates any statistical treatment of them so much that no statistical
predictions for undulations in the unobserved areas can be established. On the
other hand, we can assign zero undulations to the unobserved blocks and use
the RMS variation of the mean astrogeodetic or gravimetric undulation of
5° x 5° blocks as the standard errors. However, the undulations still must be
referred to some reference surface. They can be referred either to the
initial datum or to the approximate ellipsoid used. In both cases, in addition
to the possible effect on the harmonics, the estimated undulations will
invalidate the solution as far as the shifts and the semidiameter are concerned
because these values will contribute and take part in that determination,

‘pulling the true solution from the geocenter.
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We decided then to use zero as the a priori value for the coefficients and
to use the RMS coefficient variations to compute a priori weights. The RMS

coefficient variation determined by Rapp [1968a] is

6.2 x 10°°
c == -
n

We first tried a solution with no rotations and without approximate values for
the shifts and the semidiameter (Table 4.2 - 14). We see that the shifts are
still determined poorly and that the solution does not resemble other estimates
of the harmonic coefficients. This poor determination of shifts and harmonics
is improved slightly if we use a weighted approximate value for the semi-
diameter only (Table 4.2 - 15),

The solution was improved considerably when we used weighted
approximate values for the shifts, the rotations, and the semidiameter. The
solution from this data is given in Table 4.2 - 16. This solution approximates
the combination of dynamic and geometric determinations of stations and an
astrogeodetic solution for shifts and spherical harmonics.

We now compare this solution with the harmonic coefficients and
uncertainties of Table 4.2 - 4. We first notice the remarkable agreement of
Cx Of this solution with that determined from satellite data. We again form the
absolute difference of the coefficients and the confidence interval 1. 96 m— .
as was done for Table 4.2 - 7. In Table 4.2 - 17 we give the difference and
the confidence intervals for the coefficients for which the hypothesis of
equality of means is rejected. The factors by which the present standard errors
must be multiplied so that the above hypothesis will not be rejected are given
in parentheses. The degree variances computed with the coefficients of this
solution are also given in the same table. From Table 4.2 - 17 it appears that
the estimated standard errors should be multiplied by approximately 1.5 —1.6
to give better accuracy estimates.

We have to remember, however, that the shifts, the rotations, and the

semidiameter used, probably do not have the assigned accuracy of 3m, 0'4,

154



Table 4.2 - 14

Astrogeodetic Solution with Weighted Coefficients, But not Weighted
Approximate Values for Shifts, Rotations, and Semidiameter

ORIGINAL
VALUE

dxa -0,
dym.-0.
dzgy -9,
dA.. o.
du o,
dv 0o
€ 0.
dxg -0,
dyo -0,
dzg -o.
dA o,
dp. o.
& 9.
——-f .. 0O

~0.
dya ~0.
dzgy -0.
dA 0.
dg 0.
0.
0.
semidiameter0.

1hnn

up

Dat

North Ame:

|

E| op?an
g;nnm

.,

l!lwwDQ&ENGNNN#H##*DOO‘@O&O‘U‘-U!»'i\)J‘JJ‘&J‘J’J‘UUJUN&D
BAO NS WN~ONCVMIWN~OOVS FNONS WA~ OPrPWNFOWN—ON
o
.

0 -484.0358

c
ADJUSTED
CORRECTION  VALUE
-77.3781 -77,3781
=40.6074 =~40.607¢
=40,3659 =60.3659
-0. -0,
0.0021 0.0021
0.0000 0.0000
-0. -0.
98,4382 98.4382
39.1686 39,1686
-72.2819 =72.2819
0. 0.
-0.0000 ~-0.0000
-0.,0000 -0.0000
-0. -0.
~36.0165 =-36,0165
25.6859  25.6859
89.7897 89,7897
0. [\
0.0003 0.0003
-0.0000 -0.0000
-0, -0.
~54,7T184 =5¢.71B4
~0.7103 ~404,7461
~1.5447  =1.5647
~0.5611  =0.5611
0.7171 0.7171
1.0410 1.0410
0.1951 0.1951
=0.1945 0.5080
-0.,3513 =0.3513
0.5745 0.5745
0.1554 0.1558
0.066R 0.0668
0.0295 0.0295
-0.2411  =0,2411
Vel 29" Ve by
-0.3504  ~0.3506
-0.1637  =0.1637
-0.2200 -0.2200
0.0973 0.0973
-0.0141 ~0.016l
0.1828 0.1028
0.0859 0.08%9
. =0.0135 -0.033%
=0.3745  =0.37645
0.1029 0.1029
0.0912 0.0712
0.058% 0.0585
-0.0522 =0.0522
0.2060 0.2060
-0.2126 =0.2126
-0.1094  =0.1094
=0.0265 =0.0245
0.095¢6 0.0956
0.0567 0.0567
0.1020 0.1020
-0.0079 -0.0079
~0.0756 =0.07%6
-0,0745 ~0.0765
-0.1812 =0.1812
0.0122 0.0122
0.0263 0.0263
-0.0558 ~0.0558
LPL (VPV)

STD ERR {UNLIT WEIGHT)
UNIT WEIGHT RMS DEV

RMS DISCREPANCY

Standard
Errer
18.0906
19.6A17
14,1668

0.
0.0216
0.0316
0.
11.8357
26.5228
13.9909
0.
0.03106
0.0316
0.
2R.8691
28,7255
27.5%34
0,
0.031¢6
0.0%106
0.
10,9758
0.9094
1.01068
0.4716
0.6090
0.3813
0.3958
0.2786
0. 2747
0.2512
0.2653
0.2430
0.1823
0.1223
Ue LBIUL
0.1633
0.171¢
0.1771
0.1311
0.1324
0.1308
0.1288
0.1221
0.1204
0.1337
0.1000
0.1006
0.0971
0.0982
0.0998
0.0933
0.0963
0.0296
0.0762
0.075%
0.0701
0.0704
0.0700
0.0676
0.0722
0.0753
0.081%

ORIGNAL
0.491421E 04
0.380729€ Ol

0.335725€ 01
0.359525E 02
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s
OR 1GINAL
VALUE  CORRECTION
0.
0. 0.5008
0.
0. -0.2106
0. 0.0560
0. 2.1156
0.
0. -0.3771
0. 0.3578
0. -0.1821
0. 0.3152
0.
0. 0.0676
a -Ue U9l
0. -0.0587
0. -0.3596
0. ~0.4667
v.
0. 0.3082
0. -0.0627
0. -0.0847
0. -0.1726
0. -0.3262
0. -0.3403
0.
0. 0.4732
0. 0.0391
0. -0.1579
0. -0.0181
0. 0.1217
0. 0.0612
0. ~0.1001
0.
0. 0.3475
0. -0.0267
0. -0.257t
0. 0.0202
0. 0.1569
0. 0.0218
0. 0.0086
0. 0.1236
PRESENT
0.390538E 03
0.107333€ 01
0.946430E 00
0.711881E 01

ADJUSTED
VALUE

0.5008

-0.21006
0.0560
2.11%6

-0.3771
0.3b78
-0.1821
0.3152

0.0n076
=04
-0.05a7
-0.3578
~0.60667

0.3002
-0.0627
=0.0847
«0.1726
~0.3242
=0.3403

0.4732
0.0391
-0 1579
=0.0l8l
0.1277
0.0612
-0.1001

0.34175
-0.0269
-0.2571

0.0202

0.1569

0.02186

0.0086

0.1236

B TS WA

0.9651

0.3502
0.3959
0.4116

0.2%930
0.2656
0.2553
0.2688
0.1778

0.1697

0.1830 ...

0.1810

0.1262
0.1254
0.1233
0.1267
0.1290
0.1290

0.0944
0.0%63
0.094H
0.0938
0.0951
0.0973
0.1021

0.0712
0.0723
0.0694
0.0680
0.0699
0.0711
0.0751..
0.0807
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Table 4.2 - 15

Astrogeodetic Solution with Weighted Harmonic Coefficients and Semidiameter

c
ORIGINAL ADJUSTED
VALUE CORRECTION  VALUE

§ da -o. -54.9011 =54.9011
.;_g_.dyu -0, 1.4593 1.4593
e 3 dzgy o, _ =17.8403 =17.8403
E8.aa o, -o. -o.
£ dg o. 0.0005 . 0.0005
L. dv o, 0.0000 0.0000
z ¢ 0. -0. -0.

- -SXa -0, 93.3151 93,3151
g dya -0. .. =25.4T766 =25.4766

. § dzq -0, 49,7903 =49,7903
§‘ dA 0. 0. - 0.
H0 du. 0. -0.0005 =0.0005

W dy 0. 0.0000 0.0000
_..E.. 0. -0. -0.

- =0. . _=54.0469 =-54.0469
g dyer =0e 46,7412 4.T412
= dryy —0. Th.64T6 T 4416
38 an o o. o.

-] a4 o 0.0002 0.0002
35 a. o. -0.0000 -0.0C00
€ 0. . .~0. . -0,
semidiameter 0. ~-4.9718 -4,9718
2 0 -684.0358 0.2657 -483,7701
2 2 0. 0.0812 0.0812
3 0 0. «0.0926  -0.0926
31 0. 0.5028 0.5028
3 2 0. 1.2103 1.2103
3 3 0. 0.2292 0.2292
4 0 0.7825 =0.20HR 0.5737
6 1 0. -0.2877 -0.2877
6 2 0. 0.7284 0.7284
4 3 0. 0.2162 0.2162
L4, 4 0. . 0.0614 0.0616
5 0 0. 0.0605 0.0605%
s n. ~0.2942 =0.2942
5 2 Ve 0.5444 Q.5444
5 3 o. -0.3870 =~0.3870
5 4 0. -0.1986 -0.1986

_5_5_ ..0e ._..._=0.2949  -0.2949

6 0 0. 0.1284 0.1284
6 1 0. ~0.00%4  -0.0064%
6 2 0. 0.2127 0.2127
6 3 0. 0.0680 0.06R0
6 4 0. -0.0420 =0.0420
_6.5 Oe.__ . _=043395 .. =0.3395
6 6 0. 0.0754 0.0754
7 C 0. 0.0950 0.0950
71 0. 0.0768 0.0768
T 2 0. =-0.0372 -0.0372
7 3 0. 0.1952 0.1952
T 4 0. -0.2161 . -0.2161
7 5 0. -0.1226 -0.1226
7 6 0. -0.0297 -0.0297
71 0. 0.0948 0.0948
8 0 0. 0.0643 0.0663
8 1 0. 0.1000 0.1000
8 2 _ Oe_..__ 0.0025 0.0025
8 3 0. -0.0873 -0.0873
8 4 0. -0.0700 -0.0700
8 5 0. -0.1962 -0.1962
8 6 0. -0.0021 =-0.0021
8 1 0. 0.0077 0.0077
8 _8.__.0.. -0.0626 -Q.0626
LPL (VPV}

" TSTD ERR (UNIT WEIGHT)
UNIT WEIGHT RMS DEV
RMS DISCREPANCY

Standard
Error
16.1320
12.3752
11.5548

0.
0.0316
0.0316
0.
11.6886
12.2552
11.3428
0.
0.0316
0.0316
0, .
268.1233
27.7104
26.9773
0.
0.0316
0.0316
0. . =
5.7209
0.8371
0.8278
0.4398
0.4015
0.3761
0.3956
0.2786
0.27317
0.24%0
0.2644
0.2630
0.1R20
0.1913
O.1778
0.1628
0.1710
0.1750
0.130%
0.132¢4
0.1303
0.1286
0.1220
0.1257 .
0.1333
0.1000
0.1004
0.0969
0.0981
0.0958
0.0932
0.0962
0.0996
0.0761
0.07%4
0.,0700
0.0702
0.0699
0.0674
0.0720
0.0749
0.0814

ORIGNAL

0.491421E 04
0,380739E 01
0.335725E 01
0.359525€ 02
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ORIGINAL
VALUE

PRESENT

0.393746E 03
0.107773€ 01
0.950309€ 00
0.712358E 01

S
ADJUSTED .

CORRECTION  VALUE N M
-0.9675 =0.9675 0.8039 2 2
-0.2621 -0.2621 0.3497 3 1
-0.313% =0.313% 0.3725 3 2

1.8172 1.8172 0.3970 3 3
-0.4%34 =0.453% 0.257% & 1
0.2338 0.2338 0.2617 4 2
-0.1555 =0.1555 0.2552 & 3
0.1729 0.1729 0.2638 4 &
0.03462 n.na62 n.1777 LI o
-0.1500 -0.,1%00 0.1758 5 2
-0.0529 ~0.0529 0.1697 S5 3
-0.4603 ~0.4603 0.1855 5 &
-0.4777  =0.64777 0.1815 5.5 __
0.2935 0.2935 ' 0.l1241 6 1
~0.0876 -0.0876 0.1251 6 2
~0.1151 «-0.1151 0.1228 6 3
-0.1780 -0.1788 0.1267 6 &
-0.3905 =0.3905 0.1266 - 6 5.
-0.35%52 =0.3552 0.1289 6 6
044634 0.4630 0.0943 7 1
0.0326 0.0326 0.0963 7 2
-0.1567  =0.1567 0.0948 7 3
-0.0503 ~0.0503 0.0930 7 &
0.1318 0.1318 0.0951 T 5
0.057¢ 0.0574 0.0973 7 6
-0.0806 =-0.0806 0.1019 7 7
0030627 0.3627 0.0712 8 1
-0.062% =0.0425 0,072 .. 8 2.__
-0.2626 =0.2626 0.069¢ 8 3
0.0006 0.0004 0.0676 B &
0.1401 0.1401 0.06906 8 5
0.0205 0.0205 0.0711 8 6
-0.0141 -0.0141 0.0746 8 7
0.1304 0.130¢ 0.0806.. 8. 8 ..



Astrogeodetic Solution with Weighted Shifts, Rotations, Semidiameter

ceiIni-aL

Table 4.2 - 16

and Harmonic Coefficients

ADGUSTED

3 v/ZLu CORUECTINN g
8  dxa-35.5700 0201 =38,2904
_-‘é_.g. ¥m, 26.30C0__ =3.7022 _24.5%74
© dzg - 25, 0000 3.46946 21,5500
B8 a4 o, -0. -0.
5 du o, c.0530 C. 0480
L. W [ ~0.1H66 =0, LH6
2 € Ce C. u.
e Gxe $5.8000__1.4295___127.2/649
g dya - 63,0000 L.y =6],60CT
B dzq-315.1000 0.6650 =344.455%)
§-§ dA C. -0. -0.
. q5a du €. -0.24C0  -0.2%00
=] dv C. AT 24 06124
——— . Ce 0. I I8 o
dxg 111.8000 0.3276 <111.4114
=47, 600 01017 =21.4283
"8 dzg 92.1000  -5.1223  S1:6777
d dA Ca -0, =0
EE d €. €. 20075 V. 200y
E] dy _Ce_ . _ ___.0.061%__ C.0%13
- T e . 0.
semidiameter C+ S.H321 S. 8321
? € =486,0353 —G.13722 =4B4, 1461
2 2 [L8 2.51 2.345%17
3 0 Co 0,1785 0.1785
e 3 A Ce o _lal%85_ _ 1.19585
3 2 0. 1.2235 1.223%
3 03 tH “0.01C3  _=0,110a
4 u 0.7825 =u.l193 €. 7632
_4 1 0. =0.3519 =0.73519
“ 2 ' 0.6554 N.675¢%
A3 Ge 02063 __ 0,2063
4 4 C. 0.171) 6.1710
B u Le Lelnit Ua il
5 1 < G ~0,43573 =0 3074
5 2 [N DI L 0.4054
5 3 0. ~0.4606  -0.466h
LB b Ce =019 _ 0. 1697
§ 5 [ ~0,2076 -0.2476
6 0 0. 0.1324 0.132%
6 1 0. “0.0436 -C.0430
L6 ? 0. 0.2178 0.2173
6 3 0. 0.1368 0.11469
——h_.4 Qe __=0.01%6 _=0.0136__
6 S 0. “0.A91  =0.3944
66 0.. 0.9758 0,075y
70 0. C.tanl 0.1001
7T 1. C.. Qa8 Ce G AY
7 2 C. -0.W27  -0.0027
7 03 0. 0.2540 0.2550
7 4 0. “0.19%2 -0.1992
7 s 0. =0.1364  =0.1%64
7T 6 C. -0.10C5 =-0.100%
o1 7 0. UL0HLY  G.CALY
8 0 T oo, 0,071 T OLCTty”
L8 1 0. _.h.lnck C. 10004
am (' R Y S Y IR T
43 O, ~0.0734 -0.0l4u
T4 0. T =C.VMB1 -0.CT81 .
4 s o, ~0.2119  -n.2119
ER G -0.0205  =€.02C%
3 RO ' T L & 1 0.017%
Ao [ T -a.0101 TT=conrod
e LBL fvbva_ |

STD ERK {UNIT WEIGHT)
UNIT WEIGHT RMS CFv

PMS_DISCRFPANCY

Standard

Error
J.uTuA
2.821%0
2.9404
0.
D212
Vel T6H
9.

L 2.97%R%
2.9212
2.8251
Q.
De24974
0.2782
0.

3.0727
J.lt6d
0.

V3747
AR Y 1)
(}e

b h 312
Useh 54
Ve 055
Ue 3963

L0.3955 _

V. 3004

0. 214

0.24061

0.2635

0.21354

0.2769 _
0.2224
Ual i~
N. 1787
U 11751
0. 1547
O. 166y
0.1702
[/ PAN]
Ua1299
0.1¢097
U.l242
V. LKA
0. 1205
[P 3N
0.0987
0,092
0.0961

N.0962
Ve U967
0, 0913
V. 0942
Q.04992
0.0753
0.074)

V. 00695
V6Nl
0.0t b3
0.0713
0,074

1.0929

0.0693

n.eey T

UR1GNAL
0.187797F
0. 744294 F

Ue065627RE

0.306134F

ol
o1

02,

157

bk S

U 3964607 _ 03
041041638 91
G.9535576F CU

0

-

0700621

sz .9 SN
URIGINAL ADJUSTED
VALUE  CURRFCTION - VALUE N M
0.
0. ~1.8352 <1,3152 _ 0.3678 _2_2_ _
0.
. I PR 0.0132___0.0132 __0,3099___3_t_
0. =0.4777  =0.37177 0.,2608 3 2
Ce 1.6183 1.0143 0.25349 3 .3
-0.5067 -0.5007 0.2370 _ 4.1 .
0.1349 0.1339 02177 & 2
e =0e2752_ 20,2152 ___0,2000___% 3 ____
«0.057% =C.0515 0.2246 4 &
Ve N
0, 0.1074 0.1074 del7ld 5 1
0. =0.1376  -n.1374 0 1899 5 2 .
0. =0.03490 =0.,0398 0.1993 5 3
e 0 =0LATh =G AT 0 N eSS h_
0. ~0.50064  =0,5064 0.176%5 % S
0.
0, Ua234 C.d9t4 . 0.1228 6 |
0. “0.0930  =0,0930 N1229 62
0. =C.1168 =-U.1164 D.1209 & 3
e O =0.2363 ___~C.23068 __0.1193__6._4. _
v, ~0.1920  -0.3720 0,124 & 5
0, =0.3954 =0.3134 __ 0.1257_ 6 6 .
0.
U Catb04 0.6%63 0.€936, . 7 1
0. CoOn Tk 0.0073 0.0956 7 2
0. =C. 1371 =C.1371L 0.0960 7 3
0. “00%76 =0,0576 0.00t8 T 4
0. C.1292 0.1292 0.0931 7 S
0, 0.061) 0.0615 N.0%34 16
. 0. -0.073 _ -0.073%6  0.l01e 77
Ce
e Oe __ 03520 0.3%21_ _ 0.0705_ _R__1
0. <C.0640" TSCL0048 0.0 T8 2T
. =0.2640 =n,2519 0.0nRA B 3
' =0.0862 =0.07262 N.NbLey B 4§
0, 01172 naLTe D.CLRG H §
0. C.n25y D258 0.0673 8 6
o 0. _ . ___=C.0033 _ -0.0033 _ 0.0731 & 7
0. 0.1215 Cot2ic v.0n02 " 8T8
PRESFENT



Table 4.2 - 17

Differences of Satellite and Astrogeodetic Coefficients

and Their Confidence Intervals

Order Difference 1.96./0%+0%2

Order Difference

1.96./ Zige

oT+75

30
31
33

43

60

72

0.31

0. 36

0.71 1.1)
0.62 (1.2 )
0.58 (1.17)

0.56 (1.40)

54 0.46
0.27 (1.8 )
61 0.32
71 0.30
0.21 (1.8 )
81 0.285
83 0.26
86 0.29

o

. 366

.25

.26

.17
.18
.23

(1.28)

(1.29)

(1.26)

(1.90)
(1.68)
(1.63)

Anomaly Degree Variances from Coefficients

Computed from Astrogeodetic Undulations

Degree Degree Variance

7.
22.

8.
18.
17,
14.
14.

0 13O s W
=N Wk oo
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and 6 m which will be the case in the actual combination solution. The solution
that we have now performed is of poorer accuracy than the one that the
accuracy shows. We estimated then that the present standard errors must be
multiplied by 1.3 to yield more reliable accuracy figures.

With the above considerations, it appears that the accuracies that can
be obtained for harmonic coefficients from the present astrogeodetic data,
properly supported by dynamic, geometric, and survey determinations which
will assure the above accuracies in shifts, rotations, and semidiameter, can

be represented by the following model:

0.75 x 10°®
I (*:2-9)
where
o] is the standard deviation of harmonic coefficient of n degree

4.24 Determination of Harmonic Coefficients from a Combination of Satellite,

Terrestrial, and Astrogeodetic Data

We will try to see now what the approximate results of the combination
of the above data and methods for determination of spherical harmonic
coefficients will be.

According to the discussion in Section 4.21, the accuracy of a combination
solution of terrestrial gravity and satellite data can be approximated by a
quadratic propagation of the variances of the individual solutions. This means
that the accuracy of higher-order harmonics are not significantly increased
when we combine a truncated satellite set with terrestrial data. The accuracy
of the higher harmonics remains almost the same as in the terrestrial solu-
tion. Thus the degree up to which we solve in a combination solution like this
is usually determined by the accuracy of the terrestrial or the astrogeodetic
solutions.

The accuracy of the higher-order harmonics is increased, however,

when combining the terrestrial gravity and the astrogeodetic undulations since
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the quadratic propagation of variances will yield a standard deviation of

0.50 x 107°

o= "1 (4.2-5)

As an accuracy criterion, we require that the harmonic coefficients
obtained have a standard error smaller than or at least equal to the root mean
square of coefficient variation. The use of harmonics beyond that limit would
decrease the accuracy of the determined quantities for ex-geoid height com-
putations. We can then determine the degree up to which we can solve by
equating the accuracy of the coefficients for terrestrial gravity (equation(4.2 - 3))
and for astrogeodetic undulations (equation (4.2 - 4)) with the; root mean square

coefficient variationg. The RMS coefficient variation is given by Rapp [1968a]

as
6.2 x 10°°
g = ———5— (4.2 - 6)
n
and by Kaula [1967] as
107°
c = —/=z
n

This result was also verified by Anderle fet al., 1968]. Pellinen has recently

estimated the degree variance of gravity anomalies as [ Pellinen, 1969
A
Ohn = < (4.2-1)

with A = 120 mgal and & = 1.13. As the degree variance for gravity anomalies
is
n

T =
cfsn = Vz(n_l)a - (C§m+-s-3m) (4'2-8)
o}

and as there are 2n+1 terms in each degree, the summation can be expressed

by the root mean square coefficient variation as
02, = ¥*(n-1)° (2n+1) 0 (4.2 -9)
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then

2 _ A
y2(n-1)2 2n+1)n"*

o (4.2-10)

or

11.2

O = w-n Janr e -t

We then have the following results:

Highest Degree Harmonic to Be Solve?
Source of Information Rapp Konla Pollinen
Terrestrial gravity 8 13 10
Astrogeodetic undulations 7 12 9
Terrestrlzfl gravity -and astro- 1 19 13-14
geodetic undulations

The above results are also readily available from Fig. 4.2-5. The highest
degree harmonic up to which we can solve from every group of data or from a
combination of them withthe restriction that the standard deviation is equal to
the coefficient variation, is represented by the intersection of the particular
coefficient variation curve and the one representing the accuracy of a group or
a combination of groups of data. We see that we have a considerable improve-
ment, as far as the highest degree up to which we can solve, by combining
terrestrial gravity data and astrogeodetic undulations. In Fig. 4.2-5, we
plotted the line which approximately represents the expected accuracies from
a combination of satellite, terrestrial gravity and astrogeodetic undulations.
The mean standard error of harmonic coefficients of all degrees from
a combination of satellite, terrestrial gravity, and astrogeodetic undulations

is approximately 0.035 x 107°
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It is obvious that it makes quite a difference whether we accept Rapp's
or Kaula's model for the coefficient variation. It appears that Pellinen's
model, which gives values very close to the mean of those of Rapp and Kaula,
can be used as a reasonable base for such computations. According to
Pellinen's model a combination of terrestrial gravimetric data, astrogeodetic
undulations, and satellite solutions could go up to degree and order 14. The
standard deviations of the coefficients up to degree 14 from a combination
solution are given in Fig. 4.2-5. With these the mean standard deviation of

geoid undulations can be determined

o2 = of + of (4.2-12)
where
oN is the mean standard error fo geoid undulation
Oc is the standard error of undulations due to the errors of the
coefficients
o is the standard error of undulations due to the neglected

higher-order terms

If we consider the coefficients independent, the mean standard error of
" undulation due to the errors of the coefficients is

ch = R® p?nm.‘.o;m) (4.2-13)

o]

Rl

o]
TI |:\/’} E

where

Ocnos Os o are the standard deviations of the C,, and S,, coefficients
With the uncertainties of Fig. 4.2-5, we get
0? = 13.2m®

The truncation error for geoid undulations is given in [Rapp, 1967b]. For
sets of spherical harmonics truncated at degree and order 14, the truncation

error is
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02 = 11.6 m®
Thus the total mean standard deviation of a geoid undulation is

On = 50m

4.3 Accuracy of a Determination of the Components of the

Mean Earth Ellipsoid

The last component of the world geodetic system is composed of the
four parameters defining the general terrestrial ellipsoid; in our system
these parameters are the rate of rotation w, the second-degree harmonic
(_33,, the semidiameter a, and the gravitational constant times the mass of the
earth GM. From these the rate of rotation of the earth is known with such a
high accuracy that it can be considered constant. The determination of Caxo
has been examined before, and its accuracy has been found to be approximately

0.03 x 10”6, From this and the equation

daf = gﬁ dCap,

the accuracy of the flattening can be determined. It is
o, == 0.1 x 107°

and that of the inverse flattening is
g/ = 0.01

The gravitational constant times the mass of the earth GM is determined
from observations of the moon which are not considered here, range or Doppler
observations of satellites, and radar observations of lunar probes. From
optical satellite observations and triangulation, GM can be found with an
accuracy of 1.2 km® sec™2 [Kaula, 1963]. If we consider the analysis made
by Guier [1964] and the value given in the recent Doppler solution, GM =
398600 km®sec™® [ Anderle et al., 1967], it appears that the accuracy of the

determination of GM from Doppler satellite observations is better than
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1.0 km®sec” 2. The best determination of GM at present is from radar

observation of lunar probes. A recent solution where data from several

missions was combined gives an accuracy of 0.7 km®sec™? [Vegos et al., 1967 ).
If we approximate the result of the combination of the above observa-

tions with their weighted mean, we will find an accuracy for GM of
o = 0.52km®sec™

The semidiameter of the general terrestrial ellipsoid will be recovered
in the world geodetic system by the combination of a kind of astrogeodetic
method where the astrogeodetic undulations are used, the adjustment of
dynamic coordinates with the survey coordinates, and by the constraint (equa-
tion (3.7 - 3)) first used for such a solution in [Rapp, 1967c]. The determina-
tion of the semidiameter from the constraint is affected by the errors of the

various parameters involved as follows

1
da=5adf
_la -
da 2, v, (4.3-1)
1 a
da = — — 4d(GM
a = 3 gm 4™

The uncertainty of v, is composed of the uncertainty of y. in the Potsdam
system plus the uncertainty of the connection of the Potsdam system to the
absolute one. The uncertainty of v, will be found from equation (3.7 - 2).

As dCg, is determined with high accuracy, the uncertainty of v, is practically
equal to the uncertainty of Ag,. O go and its accuracy are found from the
development of gravity anomalies into spherical harmonics. Some prelim-
inary runs with simulated data indicate that Ag, is determined better than

+ 1 mgal. In [Kaula, 1961] Ag, was determined with an accuracy of 1.2 mgal.
A standard deviation of 1.5 mgal, also adopted in [Veis, 19671, seems,
however, more appropriate in view of the systematic differences that exist

between the absolute gravity measurements in Europe and the United States
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[Cook, 1965a]. To this we have to add quadratically the uncertainty with
which the Potsdam system is connected to the new absolute measurements.
The adopted value for the Geodetic Reference System 1967 for the conversion
of the Potsdam system to the absolute one is - 14 mgal [Garland, 1967, p. 146,
Resolution No. 227. This value was based on the measurements of two groups:
the mean value from the first group was -12.7 + 0.6 mgal; and from the
second, -13.8 £0.04 mgal. For the adopted value, an accuracy of 0.5 mgal
seems reasonable., Thus the standard deviation of ¥, is £1.58 mgal. With
the above accuracies, the effects on the semidiameter from various param-
eters are

from the flattening £0.32 m

from 7y, +5,15m

from GM +4.16 m
Their quadratic sum gives for the accuracy of the semidiameter
g, = £6.6m

The astrogeodetic determination alone of the semidiameter gives an accuracy of
about +20 m. If supported by weighted shifts, rotations, and semidiameter, it
gives a precision of 6.3 m. This is obtained from the solution given in Table
4.2 - where the a priori standard error of 6 m for the semidiameter has
been decreased to 4.4 m. We have estimated that the standard error of that
adjustment should be multiplied by 1.3 to give accuracy estimates; thus the
standard error of 6.3 m becomes 8.2 m which, when combined quadratically
with the previous result of 6.6 m, gives the standard deviation for the
semidiameter

g, = 5.1m

Thus we have obtained error estimates for the present determination for all

the components of the world geodetic system.
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5. SUMMARY AND CONCLUSIONS

Having accepted that the existing geodetic datums cannot adequately
serve the present complex geodetic requirements, we sought a new geocentric
and world-wide geodetic system. That system is an improvement over the
old frames because in addition to the potential of a level ellipsoid, a more
detailed gravity field, consistent with the potential of the mean earth
ellipsoid, is available and can be used when required. Also a unification of
the geometric notion of the datum with the dynamic model of the normal gravity
field was introduced. This was achieved by placing at the geocenter the mean
earth ellipsoid, for which the rate of rotation, shape, size, and gravitational
potential are defined.

For the establishment of this world-wide geodetic system, we tried to
find a way to most effectively use various types of data. Mathematical models
were developed to represent each of these groups. The world-wide system is
to be found from the simultaneous solution of all the observation equations
formed with these models. As normal equations are first formed from groups
of observations, it is possible to combine the normal equations of all groups
instead of combining all observations. The combination of normal equations
was discussed, and the existing difficulties were emphasized. If we had the
normals from eqch groups of existing observations, we could have combined
them to get the values and the present uncertainties for the components of the
world geodetic system. As we could have collected observations for
approximately 80 stations which could have been included in a dynamical and
geometrical satellite network, for five major geodetic datums, and for

harmonic coefficients up to 14 x14, the combined system would have had
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approximately 500 unknowns, that is, of a size which is within the capability of
any medium-sized computer. As we did not have the normal equations and as
we considered the above task beyond the scope of this study, we tried to
analyze the accuracy to be expected of such a combination solution, For this
determination the available solutions were used. In cases where no such
solutions were available, as in the case of astrogeodetic undulation, we
performed our own determinations.

First the accuracy of the seven datum transformation parameters was
examined. Related to this was the question of the accuracy of the geocentric
positions of the stations and the contribution of triangulation to the geocentric
coordinates. We found that by using seven parameters in this adjustment,
differences in rotations and scale were well separated, thus the shifts of the
datum were better determined so that the determinations from different
observing systems were in better agreement, The contribution of the
triangulation was significant and from fifteen well-distributed stations, the
standard deviation of 10 m of the satellite determination decreased to 4 m
for stations close to the datum origin.

In regard to the spherical harmonic coefficients of the geopotential, we
showed that there was a very good determination of the lower-degree terms
from satellites and that around degree 12 the coefficients were determined with
a standard deviation of the order of their size. For the higher degrees even the
well-determined resonant harmonics were not better than their size, which did
not make them very useful for general use. The accuracies of spherical
harmonic coefficients determined from terrestrial gravity, although lower than
usually thought, still made their contribution to the determination of higher-
degree coefficients.

The astrogeodetic undulations alone are almost useless for determination
of spherical harmonic coefficients because the datum transformation parameters
cannot be determined very well by astrogeodetic methods. Properly supported

by satellite orientation of the datum, however, they provide a determination
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very similar in accuracy to that from terrestrial gravity.

The combination of present satellite solutions and terrestrial data for
harmonic coefficients does not permit the determination of terms higher than
the terrestrial data alone allows. Thus only by combining terrestrial gravity
and astrogeodetic undulations with satellites can we have a meaningful determi-
nation of the gravitational field up to the 14th degree and order.

From the present accuracies of the components of the world geodetic
system and from the manner in which each group contributes to that determina-
tion, we can form a better idea of the data that is required to increase the
present accuracy of some of these components. This knowledge will help us
decide what data must be gathered to increase the accuracies of these parameters
to specified levels, a question which is a natural continuation of the present

study.
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