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Introduction

This document is based on notes taken by Kyle Snow in Geodetic Science adjustments courses GS650
and GS651 taught by Burkhard Schaffrin at The Ohio State University in 1997 and 1998. The
appendix contains several matrix properties and identities used throughout the text. A bibliography
at the end includes referenced material and material for suggested reading.

Notation

A few comments about the notation used in this document may be helpful. Matrices are displayed
in uppercase. Vectors are lowercase and are set in bold-face type (bold face is not used for any other
symbols). Scalar variables are generally lower-case. Greek letters are used for unknown, non-random
parameters, while Latin letters are used for unknown, random variables. Symbols denoting estimates
of non-random variables use Greek letters with a hat on top, while predictions of random variables
are shown as Latin letters with tildes on top. Tables 1 and 2 list variables, mathematical operators,
and abbreviations used herein.

Table 1: Variables and mathematical operators

Symbol Description
A coefficient (design) matrix in the Gauss-Markov Model
B coefficient matrix in the Condition Equations Model

c right-side vector in the system of normal equations N ξ̂ = c
C{·} covariance operator
D{·} dispersion operator
diag[·] denotes a diagonal matrix with diagonal elements comprised of [·]
dim denotes the dimension of a matrix
e unknown random error vector for the observations
ẽ predicted random error (residual) vector for the observations
e0 unknown random error vector associated with stochastic constraints
ẽ0 predicted random error (residual) vector for e0

E{·} expectation operator
Continued on next page
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Symbol Description
H0 null hypothesis
HA alternative hypothesis
K constraint matrix
m number of unknown parameters
MSE{·} mean squared error operator
n number of observations

N normal-equations matrix in the system of normal equations N ξ̂ = c
N (·) stands for the nullspace (kernel) of a matrix or the normal distribution,

depending on the context
P weight matrix for the observations
P0 weight matrix for stochastic constraints
q rank of the coefficient (design) matrix A
Q cofactor matrix for the observations
Qẽ cofactor matrix for the predicted random errors (residuals)
r redundancy of data model
R(·) stands for the range (column) space of a matrix
rk stands for the rank of a matrix
tr stands for the trace of a matrix
U matrix of eigenvectors
w constant vector in the Condition Equations Model
y vector of observations (possibly in linearized form)
ỹ vector of adjusted observations
α significance level for statistical tests
α observation coefficient vector in the Model of Direct Observations
β a quantity associated with the power of a statistical test
χ2 chi-square statistical distribution
δ denotes small deviation or non-random error, as in δP meaning a non-

random error in P
Φ Lagrange target function
η unit vector used in the Outlier Detection Model
κ0 vector of constraints
λ vector of Lagrange multipliers

λ̂ estimated vector of Lagrange multipliers
µ, µ the expected value of a random variable, could be a scalar or vector
µ̂, µ̂ the estimate of a random variable
ν statistical degrees of freedom
θ the orientation of a confidence ellipse
σ2

0 variance component
σ̂2

0 estimated variance component
Σ dispersion (or covariance) matrix for the observations
τ vector of ones (summation vector)
Ω (weighted) sum of squared residuals (unconstrained case)
ξ vector of unknown parameters

ξ̂ estimated parameter vector
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Table 2: List of abbreviations

BLUUE Best Linear Uniformly Unbiased Estimate
BLIP Best LInear Prediction
cdf cumulative distribution function
GMM Gauss-Markov Model
LESS LEast-Squares Solution
MSE Mean Squared Error
pdf probability density function
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Chapter 1
Observations and Random Errors

1.1 Univariate Case

Let us introduce the univariate random variable e with a given probability density function (pdf)
f(t) (see Chapter 10 for more about pdf’s). The probabilistic mean (or average) is the value that
we expect e to take on. We denote the expectation of e as E{e} and define it as follows:

E{e} = µe =

∞∫
t=−∞

e(t)f(t)dt. (1.1)

Equation (1.1) is called the first moment of e. If the random variable e represents measurement
error, then, ideally, E{e} = 0. If E{e} 6= 0, we say that the measurement error is biased.

The dispersion, or variance, of e is denoted by σ2
e and is defined by

σ2
e = E{(e− µe)2} =

∞∫
t=−∞

(e− µe)2f(t)dt. (1.2)

Equation (1.2) is called the second centralized moment of e. The symbol D{e} is also used to denote
the dispersion (variance) of e, but often this notation is reserved for the multivariate case. The
terms dispersion and variance are used interchangeably throughout these notes. The square root of
the variance is called standard deviation.

Variance is an indicator of how closely the values taken on by the random variable e are to the ex-
pected value of e. It is reflective of measurement precision; a small variance indicates high precision.
A succinct expression for the expectation and variance of the random variable e is

e ∼ (0, σ2
e). (1.3)

The expression (1.3) is read as “e is distributed with zero mean and σ2
e variance.”
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1.1.1 Expectation and Variance Propagation

Consider the observation equation

y = µ+ e, e ∼ (0, σ2
e), (1.4)

where y is an observation, µ is an unknown observable, and e accounts for the random error inherent
in the observation y.

We want to find the expectation and variance of y. In other words, we want to know how the
expectation and variance propagate from the random variable e to the random variable y. Note
that µ is a constant, or nonrandom, variable. The expectation of a constant is the constant itself;
for example, E{µ} = µ.

For the expectation of y, we have

E{y} =

∞∫
t=−∞

(µ+ e(t))f(t)dt.

The expectation operator is linear, so the expectation of a sum is the sum of expectations. And, as
noted already, µ is a constant variable. Therefore

E{y} = µ

�
�
�
�
��>

1
∞∫

t=−∞

f(t)dt+

∞∫
t=−∞

e(t)f(t)dt = µ+ E{e} = µ+ 0 = µ. (1.5)

For the dispersion, or variance, of y we have

D{y} =

∞∫
t=−∞

(y − E{y})2f(t)dt =

∞∫
t=−∞

(µ+ e(t)− µ)2f(t)dt =

∞∫
t=−∞

e(t)2f(t)dt = σ2
e . (1.6)

Given constants α and γ, the above formulas for expectation and dispersion can be summarized in
the following properties:

E{αy + γ} = αE{y}+ γ, (1.7a)

D{αy + γ} = α2D{y}. (1.7b)

Equation (1.7b) is the law of error propagation in its simplest form. It shows that, in contrast to
the expectation, the dispersion operator is not linear. Also, it shows that dispersion is not affected
by a constant offset.

5



Another useful formula for the dispersion is derived as follows:

D{y} = E{(y − E{y})2} = (1.8a)

= E{y2 − 2yE{y}+ E{y}2} =

= E{y2 − 2yµ+ µ2} =

= E{y2} − 2µE{y}+ E{µ2} =

= E{y2} − 2µ2 + µ2 =

= E{y2} − µ2 = σ2
y (1.8b)

1.1.2 Mean Squared Error

The mean squared error, or MSE, of y is the expectation of the square of the difference of y and its
true value µ (compare to (1.8a)).

MSE{y} = E{(y − µ)2} (1.9)

It is useful to express the MSE as a combination of the dispersion and a (squared) bias term. This
is done as follows:

MSE{y} = E{(y − µ)2} = E{[(y − E{y})− (µ− E{y})]2} =

= E{(y − E{y})2 − 2(y − E{y})(µ− E{y}) + (µ− E{y})2} =

= E{(y − E{y})2} − 2E{(y − E{y})(µ− E{y})}+ E{(µ− E{y})2}.

Note that while y is a random variable, E{y} is not. So in the middle term, the expectation operator
only applies to y. Thus, we may continue with

MSE{y} = D{y} − 2(E{y} − E{y})(µ− E{y}) + (µ− E{y})2 = D{y}+ β2, (1.10)

where bias is defined formally as

β := E{µ− y} = µ− E{y}. (1.11)

Thus, we see that the dispersion of y and the MSE of y are only equal in the absence of bias. Or in
other words, only if indeed µ = E{y}.

We noted previously that dispersion (variance) is an indicator of precision. In contrast, MSE is a
measure of accuracy; it includes both dispersion and bias terms. In general, it is harder to meet
accuracy standards than precision standards. We can typically increase our precision by making
more observations (though this may come with additional costs in time and money); however it may
be very difficult to determine the origin of the bias.

Finally, we note that the square root of MSE is commonly called rms (root mean square). Thus,
standard deviation and rms are only equivalent in the absence of bias.
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1.2 Multivariate Case

The multivariate case deals with multiple random variables. These variables are typically collected
in a column vector. For example, multiple observations of the observable µ in (1.4) can be expressed
in the following system of equations:

y =

y1
...
yn

 = τµ+ e =

1
...
1

µ+

e1
...
en

 , (1.12)

where τ is the summation vector defined as τ := [1, . . . , 1]T . In the case of unbiased observations,
the expectation of the random error vector e is written as

E{

e1
...
en

} =

E{e1}
...

E{en}

 =

0
...
0

 . (1.13)

And, for the dispersion of each element ej of e we have

D{ej} = E{
(
ej − E{ej}

)2} = E{e2
j} = σ2

j . (1.14)

For the multivariate case, we introduce the concept of covariance, which is a measure of similar
behavior between random variables, e.g., between elements ej and ek of e. Formally, the definition
of covariance is

C{ej , ek} = σjk := E{
(
ej − E{ej}

)(
ek − E{ek}

)
}. (1.15a)

Obviously,
C{ej , ek} = C{ek, ej}. (1.15b)

For a random error vector e having zero expectation, the covariance reduces to

C{ej , ek} = E{ejek}, (1.15c)

since E{ej} = E{ek} = 0. Even though we see from the definition of the covariance (1.15a) that it
does not depend on bias, in practice we often find that bias appears as positive correlation.

Two random variables are said to be independent if their joint probability distribution is equal to
the product of their individual probability distributions. Mathematically, this is written as

f{ej , ek} = f(ej)f(ek)⇔ ej and ek are independent. (1.16)

If two random variables are independent, their covariance is zero. The converse is not true unless
the random variables are normally distributed.

In light of the concept of covariance, the dispersion of a vector of random variables is represented by
a matrix. The jth diagonal element of the matrix is denoted by σ2

j and the j, k off-diagonal term is
written as σjk. The matrix is called a covariance matrix and is represented by Σ. Due to (1.15b),
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the covariance matrix is symmetrical. An explicit representation of the covariance matrix Σ is given
by

D{ y
n×1
} = Σ

n×n
:=


σ2

1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ2
n

 = ΣT . (1.17)

Obviously, if the random variables are uncorrelated, the covariance matrix is diagonal.

An important property of a covariance matrix is that it must be at least positive semidefinite. A
matrix is positive semidefinite if, and only if, all of its eigenvalues are non-negative. For many
applications in geodetic science, the covariance matrix is positive definite, which means that all its
eigenvalues are greater than zero. The following statements hold for any positive definite matrix Σ:

• αTΣα = 0⇒ α = 0.

• Σ is a non-singular matrix (also called a regular matrix).

• All eigenvalues of Σ are positive and non-zero.

• All principle submatrices of Σ are also positive definite.

In the following chapters, we usually factor out of the covariance matrix Σ a scalar term denoted
by σ2

0 , called a variance component, with the resulting matrix called the cofactor matrix. We label
the cofactor matrix as Q; its inverse is labeled P and is called the weight matrix. The relations
between these terms are written mathematically as

Σ = σ2
0Q = σ2

0P
−1. (1.18)

For the remainder of this chapter, we only concern ourselves with the covariance matrix Σ.

1.2.1 The Cauchy-Schwartz Inequality and the Correlation Matrix

We omit the independent-variable argument t from the random variables in the following Cauchy-
Schwartz inequality:

C{ej , ek} =

∫∫
ejekf(ej , ek)dtjdtk = σjk ≤

√∫
e2
jf
(
ej
)
dtj

∫
e2
kf
(
ek
)
dtk =

√
σ2
jσ

2
k. (1.19)

The above inequality leads to the notion of a correlation coefficient, defined as

ρjk :=
σjk√
σ2
jσ

2
k

for all j 6= k, with − 1 ≤ ρjk ≤ 1. (1.20)

Analogous to the covariance matrix, we may form a matrix of correlation coefficients. Such a matrix
is called a correlation matrix and is defined as

R
n×n

:=


1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n
...

...
. . .

...
ρn1 ρn2 . . . 1

 = RT . (1.21)
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Given a covariance matrix Σ, the correlation matrix can easily be generated by

R = diag
([

1/σ1, . . . , 1/σn
])
· Σ · diag

([
1/σ1, . . . , 1/σn

])
. (1.22)
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Chapter 2
The Model of Direct Observations

When an unknown parameter can be observed directly, the Model of Direct Observations can be
formed by

y =

y1
...
yn

 =

µ+ e1
...

µ+ en

 = τµ+ e, (2.1a)

e ∼
(
0, σ2

0Q
)
, Q := P−1. (2.1b)

The terms in the observational model are defined as follows:

y is an n× 1 vector of observations.

µ is an unknown, non-random parameter to estimate.

τ is an n× 1 vector of ones, i.e., τ = [1, . . . , 1]T .

e is an n× 1 vector of unknown, random errors.

Q is an n× n cofactor matrix associated with e.

P is an n× n positive-definite weight matrix.

σ2
0 is an unknown variance component.

2.1 The Least-Squares Solution

We wish to minimize the quadratic form eTPe (weighted sum of squared errors) subject to the
observation equation y = τµ+ e. This minimization leads to a LEast-Squares Solution (LESS) for
the unknown parameter µ.
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The Lagrange target function (or Lagrangian function)

Φ(e,λ, µ) := eTPe+ 2λT (y − τµ− e) = stationary (2.2)

is formed to minimize eTPe and is said to be stationary with respect to e, λ, and µ. Thus its
first partial derivatives are set equivalent to zero, leading to the following Euler-Lagrange necessary
conditions (also called first-order conditions):

1

2

∂Φ

∂e
=

1

2

[
∂Φ

∂ej

]
n×1

= P ẽ− λ̂ .
= 0, (2.3a)

1

2

∂Φ

∂λ
=

1

2

[
∂Φ

∂λj

]
n×1

= y − τ µ̂− ẽ .
= 0, (2.3b)

1

2

∂Φ

∂µ
= τT λ̂

.
= 0. (2.3c)

The sufficient condition for minimization is satisfied by the fact that the second partial derivative of Φ
is ∂Φ2/∂e∂eT = 2P , where the weight matrix P is positive definite according to (2.1). Therefore,
the solution to the system of equations (2.3) yields the minimum of Φ, and thus the weighted sum
of squared residuals ẽTP ẽ (weighted SSR) is also minimized. See Appendix A for comments on
derivatives of quadratic functions with respect to column vectors.

Note that hat and tilde marks are used to denote that variables are associated with a particular
solution, i.e., the solution to the first-order condition equations (2.3), which is a least-squares solution
(LESS). Throughout these notes, we use a hat for an estimate of a non-random variable, whereas
a tilde denotes a prediction of a random variable. Note that for the vector ẽ we use synonymously
the terms residual and predicted error.

Now we must solve the system of equations (2.3) to obtain a least-squares solution.

λ̂ = P ẽ = P
(
y − τ µ̂

)
using (2.3a) and (2.3b) (2.4a)

τT λ̂ = τTPy −
(
τTPτ

)
µ̂ = 0 using the previous result and (2.3c) (2.4b)

Equations (2.4a) and (2.4b) lead to

µ̂ =
τTPy

τTPτ
(2.5)

for the estimate of the unknown parameter µ. And, from (2.3b), we have

ẽ = y − τ µ̂ (2.6)

for the prediction of the random error vector e. The prediction ẽ is also called residual vector.

We say that the quantities µ̂, ẽ, and λ̂ belong to a LEast-Squares Solution (LESS) within the
Model of Direct Observations (2.1).

The vectors τ and ẽ are said to be P -orthogonal since

τTP ẽ = τTP
[
In − τ

(
τTPτ

)−1
τTP

]
y = τTPy − τTPτ

(
τTPτ

)−1
τTPy = 0. (2.7)
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The vector τ µ̂ on the right side of (2.6) is called the vector of adjusted observations. Obviously,
since τTP ẽ = 0, we also have (

τ µ̂
)T
P ẽ = 0. (2.8)

Equation (2.8) is an important characteristic of LESS; viz., the vectors of adjusted observations and
P -weighted residuals are orthogonal to one another.

In addition to solving for the estimated parameter µ̂ and the predicted random error vector ẽ, we
are typically interested in their dispersions (variances), which is an indicator of their precision. To
compute their dispersions, we apply the law of covariance propagation.

First, for the dispersion of the estimated parameter µ̂ we have

D{µ̂} =
τTP

τTPτ
D{y} Pτ

τTPτ
=
τTP

(
σ2

0P
−1
)
Pτ

τTPτ τTPτ
=

σ2
0

τTPτ
. (2.9)

The n× n dispersion matrix for the residual vector ẽ is derived by

D{ẽ} = D{
[
In − τ

(
τTPτ

)−1
τTP

]
y} =

=
[
In − τ

(
τTPτ

)−1
τTP

]
D{y}

[
In − Pτ

(
τTPτ

)−1
τT
]

=

= σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT
][
In − Pτ

(
τTPτ

)−1
τT
]

=

= σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT
]
− σ2

0τ
(
τTPτ

)−1
τT + σ2

0τ
(
τTPτ

)−1
τTPτ

(
τTPτ

)−1
τT =

= σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT
]
. (2.10)

Formally, neither (2.9) nor (2.10) can be computed, since the variance component σ2
0 is unknown,

though it can be replaced by its estimate shown in (2.16). From (2.10) we see that the dispersion
(variance) of the jth element of ẽ is

σ2
ẽj = σ2

0

(
σ2
jj −

1

τTPτ

)
, (2.11)

where σ2
jj is the jth diagonal element of P−1, and σ2

0 is the variance component from the model
(2.1). Thus it is apparent that the variance of the jth element of the residual vector ẽ is smaller
than the variance of the corresponding jth element of the true, but unknown, random error vector e.

2.2 Best Linear Uniformly Unbiased Estimate

Here we take a statistical approach to estimating the unknown parameter µ. We want to find an
estimate for µ, expressed as a linear combination of the observations y, that extracts the “best”
information from the data. The estimate is denoted by µ̂ and is characterized as the Best Linear
Uniformly Unbiased Estimate (BLUUE) of µ.

1. Linear criterion:
µ̂ = αTy, with α to be determined.
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2. Uniformly Unbiased criterion:

µ = E{µ̂} = E{αTy} = αTE{y} = αTE {τµ+ e} = αT τµ, for any µ ∈ R⇔ αT τ = 1.

Requiring this condition to hold for any µ ∈ R satisfies the “uniform” criterion, whereas the
requirement that αT τ = 1 satisfies the “unbiased” criterion.

3. Best criterion: The best criterion requires minimum MSE(µ̂), or, equivalently, minimum dis-
persion, since µ̂ is unbiased. Mathematically, the criterion reads

minD{µ̂} = D{αTy} = αTD{y}α = σ2
0α

TQα subject to τTα = 1.

A Lagrange target function is formed by

Φ(α, λ) := αTQα+ 2λ
(
τTα− 1

)
= stationary. (2.12)

And the Euler-Lagrange necessary conditions result in

1

2

∂Φ

∂α
= Qα̂+ τ λ̂

.
= 0, (2.13a)

1

2

∂Φ

∂λ
= τT α̂− 1

.
= 0. (2.13b)

The sufficient condition for minimization is satisfied by ∂Φ2/(∂α∂αT ) = 2Q, which is a positive
definite matrix according to (2.1).

Solving (2.13a) and (2.13b) simultaneously yields

α̂ = −Q−1τ λ̂ = −Pτ λ̂ using (2.13a), (2.14a)

1 = τT α̂ = −τTPτ λ̂⇒ λ̂ =
−1

τTPτ
using (2.13b) and (2.14a). (2.14b)

Substituting (2.14b) into (2.14a) we get

α̂ =
Pτ

τTPτ
. (2.14c)

Finally, substituting the transpose of (2.14c) into the linear requirement µ̂ = αTy yields the BLUUE
of µ as

µ̂ =
τTP

τTPτ
y. (2.15)

Equation (2.15) agrees with (2.5) derived for LESS. Thus we see that the LESS and the BLUUE are
equivalent within the Model of Direct Observations.

We may also prove mathematically that (2.15) fulfills the weighted LESS principle by showing that
the P -weighted residual norm for any other solution is larger than that obtained via BLUUE, which
we do in the following:
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Suppose ˆ̂µ is any other estimate for µ, then

˜̃eTP ˜̃e =
(
y − τ ˆ̂µ

)T
P
(
y − τ ˆ̂µ

)
=

=
[(
y − τ µ̂

)
− τ

(
ˆ̂µ− µ̂

)]T
P
[(
y − τ µ̂

)
− τ

(
ˆ̂µ− µ̂

)]
=

=
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
−2
(
ˆ̂µ− µ̂

)
τTP

(
y − τ µ̂

)
+
(
τTPτ

)(
ˆ̂µ− µ̂

)2
=

=
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
+
(
τTPτ

)(
ˆ̂µ− µ̂

)2 ≥
≥
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
Q.E.D

We have used the P -orthogonality relation (2.7) in the third line of the proof.

2.3 Estimated Variance Component

The variance component σ2
0 is an unknown quantity in model (2.1), though in practice its expected

value is often one. The variance component can be estimated as a function of the P -weighted norm
of the residual vector ẽ and the degrees of freedom n−1. Its formula is given here without derivation.
Later, in Section 3.2, it is derived within the Gauss-Markov Model.

σ̂2
0 :=

ẽTP ẽ

n− 1
(2.16)

2.4 Effect of Wrongly Chosen Weight Matrix in the Model
of Direct Observations

Assume that the weight matrix P has been wrongly chosen by δP , where δP is assumed to be small,
positive semi-definite, and uncorrelated with P . Consequently, we have

P → (P + δ)⇒ µ̂→ (µ̂+ δµ̂) and D{µ̂} → D{µ̂+ δµ̂} and σ̂2
0 → σ̂2

0 + δσ̂2
0 .
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2.4.1 Effect on the Parameter Estimate

The following shows the effect of a wrongly chosen weight matrix on the estimated parameter µ̂:

(
µ̂+ δµ̂

)
=
τT (P + δP )y

τT (P + δP )τ
⇒

δµ̂ =
τT (P + δP )y

τT (P + δP )τ
− µ̂ =

τT (P + δP )y

τT (P + δP )τ
· τ

TPτ

τTPτ
−
(τTPy
τTPτ

)
· τ

T
(
P + δP

)
τ

τT (P + δP )τ
=

=
((((

((
τTPyτTPτ + τT δPyτTPτ −((((((τTPyτTPτ − τTPyτT δPτ

(τTPτ )τT (P + δP )τ
=

=
τT δPy

τT
(
P + δP

)
τ
− τT δPτ µ̂

τT (P + δP )τ
=
τT δP

(
y − τ µ̂

)
τT (P + δP )τ

Finally, we arrive at

δµ̂ =
τT δP

τT (P + δP )τ
ẽ. (2.17)

2.4.2 Effect on the Cofactor Matrix for the Estimated Parameter

The following shows the effect of a wrongly chosen weight matrix on the cofactor matrix Qµ̂ for the
estimated parameter µ̂, where D{µ̂} = σ2

0Qµ̂ is the dispersion of µ̂:

δQµ̂ =
(
Qµ̂ + δQµ̂

)
−Qµ̂ =

1

τT (P + δP )τ
− 1

τTPτ
=

=
τTPτ − τT (P + δP )τ(
τTPτ

)
τT (P + δP )τ

=
−τT δPτ(

τTPτ
)
τT (P + δP )τ

.

Thus we have

δQµ̂ = − τT δPτ

τT (P + δP )τ
Qµ̂. (2.18)

2.4.3 Effect on the Estimated Variance Component

The following shows the effect of a wrongly chosen weight matrix on the estimated variance compo-
nent:

First note that

ẽTP ẽ =
(
yT − µ̂τT

)
P (y − τ µ̂) =

= yTP (y − τ µ̂)− µ̂
��

���
���

���(
τTPy − τTPτ τ

TPy

τTPτ

)
=

= yTPy − yTPτ µ̂ = yTPy − τTPyµ̂ = yTPy − µ̂2τTPτ .
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Following the above logic, we have

(n− 1)
(
σ̂2

0 + δσ̂2
0

)
= yT (P + δP )y − τT (P + δP )y

(
µ̂+ δµ̂

)
⇒

⇒ (n− 1)δσ̂2
0 = yT (�P + δP )y − τT (P + δP )y(µ̂+ δµ̂)−��

�
yTPy + (τTPy)µ̂ =

(Note: the last term will cancel one of the four terms in the binomial product.)

= yT
(
δP
)
y − τT

)
δP
)
y
(
µ̂+ δµ̂

)
−
(
τTPy

)
δµ̂ =

= yT (δP )y − µ̂τT (δP )y − τT (P + δP )yδµ̂ =

=
(
yT − µ̂τT

)
(δP )y − τT (P + δP )yδµ̂ =

= ẽT (δP )y − τ
T (P + δP )y

τT (P + δP )τ
τT (δP )ẽ =

(Where the previous results for δµ̂ have been substituted in the line above.)

= yT (δP )ẽ−
(
µ̂+ δµ̂

)
τT (δP )ẽ =

(Using yT (δP )ẽ =
(
µ̂τT + ẽT

)
δP ẽ = ẽT δP ẽ+ µ̂τT δP ẽ)

= ẽT (δP )ẽ− δµ̂τT (δP )ẽ =

= ẽT (δP )ẽ−
(
δµ̂
)2
τT (P + δP )τ

Finally, we arrive at

δσ̂2
0 =

1

n− 1

[
ẽT (δP )ẽ−

(
δµ̂
)2
τT (P + δP )τ

]
. (2.19)

2.4.4 Effect on the Estimated Dispersion

The the effect of a wrongly chosen weight matrix on the estimated dispersion of µ̂ is obviously given
by

D̂{µ̂+ δµ̂} =
(
σ̂2

0 + δσ̂2
0

)
D{µ̂+ δµ̂} =

(
σ̂2

0 + δσ̂2
0

)(
Qµ̂ + δQµ̂

)
. (2.20)
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Chapter 3
The Gauss-Markov Model

The Gauss-Markov Model (GMM) is the underlying observational model for many of the topics
that follow. In presentation of the model, it is assumed that the observation equations have been
linearized, if necessary. The model is written as follows:

y
n×1

= A
n×m

ξ + e, rkA =: q ≤ {m,n}, (3.1a)

e ∼
(
0, σ2

0P
−1
)
. (3.1b)

Equation (3.1a) shows the general case, where the coefficient matrix A may or may not be of full
column rank. Because of linearization, y is a vector of observations minus “zeroth-order” terms;
A is the (known) n × m coefficient matrix (also called design or information matrix, or Jacobian
matrix if partial derivatives are involved) containing first-order derivatives of the observations with
respect to the m unknown parameters; ξ is a vector of unknown parameters to estimate (corrections
to initial values), and e is a vector of random observation errors, having zero expectation.

The n×n matrix P is symmetric. It contains weights of the observations, which may be correlated.
The inverse of P shown in (3.1) implies that P is a positive-definite matrix; this inverse matrix is
called the cofactor matrix and is denoted by Q. The symbol σ2

0 represents a variance component,
which is considered unknown but can be estimated. The dispersion matrix D{e} = σ2

0P
−1 is called

the variance-covariance matrix, or simply the covariance matrix, and is denoted as Σ. In summary,
we have the following relation between the dispersion, weight, and cofactor matrices of the unknown,
random error vector e:

D{e} = Σ = σ2
0Q = σ2

0P
−1. (3.2)

The letter q denotes the rank of matrix A. The redundancy r of the system of equations in (3.1a)
is defined as

r := n− rkA = n− q. (3.3)

Redundancy is also called the degrees of freedom in the context of statistical testing discussed in
Chapter 10.
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The observational model (3.1) has two main components. The first component, (3.1a), shows the
functional relation between the observations, and their random errors, to the unknown parameters
that are to be estimated. The second component, (3.1b) expresses the expectation and dispersion
of the observations due to their random errors, which are called the first and second moments,
respectively, of the random error vector e.

If the rank of matrix A, namely q, is less than the number of unknown parameters to estimate,
m, we say that the problem is rank deficient. It cannot be solved based on the observations alone;
additional information about the unknown parameters must be provided. The problem of rank
deficiency is covered in Chapter 6 and more thoroughly in the notes for the advanced adjustments
course.

3.1 The Least-Squares Solution Within the Gauss-Markov
Model

We now derive the LEast-Squares Solution (LESS) for the parameter estimate ξ̂ and the predicted
random error (residual) vector ẽ with their associated dispersion matrices under the (more re-
strictive) assumption that rkA = m, i.e., the coefficient matrix A has full column rank. For conve-
nience, we define the m×m matrix N and the m× 1 vector c as[

N, c
]

:= ATP
[
A, y

]
. (3.4)

To obtain a least-squares solution for ξ, the Lagrange target function

Φ(ξ) := (y −Aξ)TP (y −Aξ) = stationary (3.5)

must to be minimized.

Forming the The Euler-Lagrange necessary conditions (or first-order conditions) leads directly to
the least-squares normal equations

1

2

∂Φ

∂ξ
=
(
ATPA

)
ξ̂ −ATPy = N ξ̂ − c .

= 0. (3.6)

The sufficient condition is satisfied by (1/2)·(∂2Φ/∂ξ∂ξT ) = N , which is positive definite since
matrix A has full column rank. Equation (3.6) leads to the least-squares solution (LESS)

ξ̂ = N−1c, (3.7)

for the unknown parameter vector ξ, with its expectation computed by

E{ξ̂} = N−1E{c} = N−1ATPE{y} = N−1ATPAξ = ξ. (3.8)

The predicted random error vector (also called residual vector) is then given by

ẽ = y −Aξ̂ =
(
In −AN−1ATP

)
y, (3.9)
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with expectation

E{ẽ} =
(
In −AN−1ATP

)
E{y} =

(
In −AN−1ATP

)
Aξ = Aξ −Aξ = 0. (3.10)

The adjusted observation vector (also called vector of predicted observations) is given by

ỹ = y − ẽ = Aξ̂, (3.11)

with expectation
E{ỹ} = AE{ξ̂} = Aξ. (3.12)

Equations (3.8), (3.10) and (3.12) show that the estimated parameters, the residuals, and the ad-
justed observations, respectively, are unbiased.

The corresponding dispersion matrices are computed by using the law of variance propagation. The
dispersion of the estimated parameters is computed by

D{ξ̂} = D{N−1ATPy} =
(
N−1ATP

)
D{y}

(
PAN−1

)
=

= N−1ATP
(
σ2

0P
−1
)
PAN−1 = σ2

0N
−1. (3.13)

And, the dispersion of the residual vector ẽ is

D{ẽ} =
(
In −AN−1ATP

)
D{y}

(
In − PAN−1AT

)
=

=
(
In −AN−1ATP

)(
σ2

0P
−1
)(
In − PAN−1AT

)
=

= σ2
0

(
In −AN−1ATP

)(
P−1 −AN−1AT

)
=

= σ2
0

(
P−1 −AN−1AT

)
=

= D{y} −D{Aξ̂} = σ2
0Qẽ, (3.14)

where the matrix Qẽ := P−1 − AN−1AT is the cofactor matrix of the residual vector ẽ. Equa-
tion (3.14) reveals that the variances of the residuals are smaller than the corresponding variances
of the observations.

Finally, the dispersion of the residual vector is computed by

D{ỹ} = AD{ξ̂}AT = σ2
0AN

−1AT . (3.15)

Summarizing the above equations, the respective distributions for the estimated parameter vector,
the residual vector, and the vector of adjusted observations are succinctly expressed by

ξ̂ ∼
(
ξ, σ2

0N
−1
)
, (3.16a)

ẽ ∼
(
0, σ2

0

[
P−1 −AN−1AT

])
, (3.16b)

ỹ ∼
(
Aξ, σ2

0AN
−1AT

)
. (3.16c)

Since the variance component σ2
0 is an unknown quantity, the dispersions shown in (3.16) cannot be

computed unless either σ2
0 is estimated or a value is assigned to it. See Section 3.2 for the derivation

of the variance component estimate σ̂2
0 .
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3.1.1 Correlation of Adjusted Observations and Predicted Residuals

Equation (3.14) implies that the covariance between the vector of adjusted observations Aξ̂ and the
vector of residuals ẽ is zero. Considering that both vectors are a function of the random vector y,
this can also be shown by the following:

C{Aξ̂, ẽ} = AN−1ATP ·D{y} ·
(
In −AN−1ATP

)T
=

= σ2
0

[
AN−1AT −AN−1

(
ATPA

)
N−1AT

]
=

= σ2
0

[
AN−1AT −AN−1AT

]
= 0. (3.17)

Also, we have the following covariance between the adjusted and original observations:

C{Aξ̂,y} = AN−1ATPD{y} = σ2
0AN

−1ATPP−1 = σ2
0AN

−1AT = D{Aξ̂}. (3.18)

Zero correlation does not necessarily imply statistical independence, though the converse does hold.
Analogous to (10.9a), the adjusted observations and predicted residuals are not statistically inde-
pendent unless the expectation of their product is equal to the product of their expectations. The
following shows that this property is not satisfied: Since the trace of a scalar product is the scalar
product itself, we start with

E{(Aξ̂)T ẽ} = E{tr ξ̂TAT
(
In −AN−1ATP

)
y}.

But the trace is invariant to a cyclic transformation. Thus,

E{(Aξ̂)T ẽ} = E{tr
(
AT −ATAN−1ATP

)
yξ̂T } =

= tr
(
AT −ATAN−1ATP

)
E{yξ̂T } 6= 0 = E{(Aξ̂)T }E{ẽ}, since E{ẽ} = 0.

3.1.2 P -Weighted Norm of the Residual Vector

The P -weighted norm of the residual vector ẽ is an important quantity that can be used to check
the overall (“global”) fit of the adjustment. The norm is defined as

Ω := ẽTP ẽ. (3.19)

In the special case where P = In, the quadratic form Ω is often called the sum of squared residuals,
or SSR, in the statistical literature.

Substituting (3.9) into (3.19) leads to some commonly used alternative forms for Ω.

ẽTP ẽ = (y −Aξ̂)TP (y −Aξ̂) = (3.20a)

= yTPy − yTPAξ̂ − ξ̂TATPy + ξ̂TATPAξ̂ =

= yTPy − 2cT ξ̂ + cT ξ̂ =

= yTPy − cT ξ̂ = (3.20b)

= yTPy − cTN−1c = (3.20c)

= yTPy − (N ξ̂)TN−1N ξ̂ =

= yTPy − ξ̂TN ξ̂ = (3.20d)

= yT (P − PAN−1ATP )y (3.20e)
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Note that the target function (3.5) could have been written explicitly as a function of the random
error vector e with the introduction of a vector of Lagrange multipliers λ as follows:

Φ(e, ξ,λ) = eTPe− 2λT (y −Aξ − e) = stationary. (3.21)

This approach leads to the estimate of Lagrange multipliers as −λ̂ = P ẽ and thus leads to yet
another expression for the P -weighted norm

Ω = ẽTP ẽ = −ẽT λ̂ = λ̂TP−1λ̂. (3.22)

3.2 Estimated Variance Component within the Gauss-Markov
Model

As stated in Section 2.3, the variance component σ2
0 is an unknown quantity in the GMM. We now

present the derivation of the estimated variance component σ̂2
0 . As defined in (3.1), the dispersion

matrix for the random error vector e is D{e} = σ2
0Q. Also, by definition of dispersion we have

D{e} = E{(e − E{e})(e − E{e})T }, but for the error vector E{e} = 0. Therefore D{e} =
E{eeT } = σ2

0Q = σ2
0P
−1.

The following steps lead to an expression for the variance component σ2
0 in terms of the quadratic

product eTPe.

E{eeT } = σ2
0Q (by definition)

PE{eeT } = σ2
0In (multiply both sides by P )

trPE{eeT } = σ2
0 tr In = nσ2

0 (apply the trace operator)

trE{PeeT } = nσ2
0 (move the constant matrix P into the expectation)

E{trPeeT } = nσ2
0 (interchange the trace and expectation operators—both linear)

E{tr eTPe} = nσ2
0 (the trace is invariant to a cyclic transformation)

E{eTPe} = nσ2
0 (a quadratic product is a scalar; trace of scalar is scalar itself)

σ2
0 = E{e

TPe

n
} (dividing through by n and placing n inside E{·})

σ̄2
0 :=

eTPe

n
(define a symbol for the term inside E{·})

E{σ̄2
0} = σ2

0 (by substitution)

Thus we can say that
(
eTPe

)
/n is an unbiased estimate of σ2

0 . However, we do not actually know
the true random error vector e, but we do know its predicted value ẽ.

We now work with the residual vector ẽ to find an unbiased estimate of σ2
0 . Combining steps similar

to those explained above, we can write

E{ẽTP ẽ} = trE{ẽTP ẽ} = trE{ẽẽT }P = trD{ẽ}P. (3.23)

21



According to (3.14), the dispersion of the residual vector is D{ẽ} = σ2
0

(
P−1 − AN−1AT

)
, since N

is full rank. Substituting this result into (3.23) gives

E{ẽTP ẽ} = trσ2
0

(
P−1 −AN−1AT

)
P =

= σ2
0

(
tr In − trAN−1ATP

)
=

= σ2
0

(
tr In − trN−1ATPA

)
= (using (A.5))

= σ2
0(n− rkN) = σ2

0(n− rkA)⇒ (using (A.4))

Finally, we arrive at

E{ ẽ
TP ẽ

n− rkA
} = σ2

0 . (3.24)

Now, we simply label the argument of the expectation operator on the lest side of (3.24) as σ̂2
0 ,

which allows us to write the expression for the estimated variance component as

σ̂2
0 =

ẽTP ẽ

n− rkA
. (3.25)

Obviously, σ̂2
0 is an uniformly unbiased estimate of σ2

0 , since E{σ̂2
0} = σ2

0 . In the case of the model of
direct observations, we replace A with τ , which has rank of 1, and thus we have σ̂2

0 := ẽTP ẽ/(n−1),
which verifies (2.16). Alternative expressions for σ̂2

0 can be reached by use of (3.20) and (3.22).

The above derivations imply the following relationship between E{eTPe} and E{ẽTP ẽ}:

E{eTPe}
n

=
E{ẽTP ẽ}
n− rkA

= σ2
0 ⇒ (3.26a)

⇒ E{ẽTP ẽ} < E{eTPe} (3.26b)

According Grafarend and Schaffrin (1993), pg. 103, and Schaffrin (1997b), the dispersion, and esti-
mated dispersion, respectively, of σ̂2

0 are given by

D{σ̂2
0} = (n−m)−1 · 2

(
σ2

0

)2
(3.27)

and

D̂{σ̂2
0} = (n−m)−1 · 2

(
σ̂2

0

)2
, (3.28)

where it is assumed that m = rkA.
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Chapter 4
Adjustment by Condition Equations

In the adjustment by condition equations, the unknown parameters ξ are not estimated directly,
rather the residual vector ẽ is predicted. This approach might be taken if the parameters are of
no particular interest, or it might be done to make the problem easier to formulate. An example
of the latter is the adjustment of leveling networks, where the parameters (heights of the stations)
are of primary interest, but because closed “level loops” within the network sum to zero (a neces-
sary condition), it is convenient to difference the observations along these loops before performing
the adjustment (see level loop example in Chapter 9). Another motivation for forming condition
equations is that the size of the matrix to invert in the least-squares solution may become smaller.

Let the r × n matrix B represent a difference operator such that when it is applied to the n × 1
observation equations y = Aξ+e, the parameters are eliminated. More specifically, we require that
BA = 0, which implies that By = B(Aξ + e) = Be. Therefore, by applying the difference operator
B, the Gauss-Markov Model (GMM) is transformed to the following model of condition equations:

w := By = Be, (4.1a)

e ∼ (0, σ2
0P
−1), (4.1b)

rkA = q ≤ m < n, (4.1c)

r := n− q = rkB, (4.1d)

where the variable r denotes the redundancy of the model.

The least-squares criteria is then written as

min eTPe subject to w = Be, (4.2)

from which the Lagrange target function

Φ(e,λ) := eTPe+ 2λT (w −Be) (4.3)

can be written, which is stationary with respect to e and λ. Taking the first partial derivatives of
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(4.3) leads to the Euler-Lagrange necessary conditions

1

2

∂Φ

∂e
= P ẽ−BT λ̂ .

= 0, (4.4a)

1

2

∂Φ

∂λ
= w −Bẽ .

= 0. (4.4b)

The sufficient condition, required to ensure a minimum is reached, is satisfied by ∂Φ2/∂e∂eT = 2P ,
which is positive definite since the weight matrix P is invertible. The simultaneous solution of
(4.4a) and (4.4b) leads to the Best LInear Prediction (BLIP) of e as derived in the following:
Equation (4.4a) leads to

ẽ = P−1BT λ̂. (4.5a)

Then, (4.4b) and (4.5a) allows

w = Bẽ =
(
BP−1BT

)
λ̂⇒ (4.5b)

λ̂ =
(
BP−1BT

)−1
w ⇒ (4.5c)

ẽ = P−1BT
(
BP−1BT

)−1
w, (4.5d)

finally leading to the predicted random error vector

ẽ = P−1BT
(
BP−1BT

)−1
By. (4.5e)

Note that BP−1BT is a symmetric, positive definite matrix of size r × r. The predicted random
error vector ẽ is also called the residual vector. The vector of adjusted observations follows as

ỹ = y − ẽ. (4.6)

The estimated variance component is given by

σ̂2
0 =

ẽTP ẽ

rkB
=
ẽTBT λ̂

r
=
wT λ̂

r
=
wT (BP−1BT )−1w

r
. (4.7)

In words it is described as the P -weighted residual norm divided by the degrees of freedom of the
model.

Note that B is not a unique matrix, but regardless of how B is chosen the results will be the same,
assuming the following necessary conditions for B are satisfied:

(i) Dimensionality: rkB = n− rkA = n− q = r, which means that rkB+ rkA = (n− q) + q = n.

(ii) Orthogonality: BA = 0.

As we did earlier within the GMM (Section 3.1.1), we compute the covariance between the residual
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vector ẽ and the vector adjusted observations y − ẽ as follows:

C{y − ẽ, ẽ} = C{
[
I − P−1BT

(
BP−1BT

)−1
B
]
y, P−1BT

(
BP−1BT

)
By} =

=
[
I − P−1BT

(
BP−1BT

)−1
B
]
·D{y} ·

[
P−1BT

(
BP−1BT

)−1
B
]T

=

=
[
I − P−1BT

(
BP−1BT

)−1
B
]
· σ2

0P
−1 ·BT

(
BP−1BT

)−1
BP−1 =

= σ2
0

[
P−1BT

(
BP−1BT

)−1
BP−1 − P−1BT

(
BP−1BT

)−1
BP−1BT

(
BP−1BT

)−1
BP−1

]
= 0
(4.8)

Thus it has been shown that the residuals and adjusted observations are uncorrelated.

4.1 Equivalence Between Least-Solutions Within the GMM
and the Model of Condition Equations

To show the equivalence between the least-squares adjustments within the GMM and the model
of condition equations, it must be shown that the predicted random error vectors (residuals) from
both adjustments are equivalent. The residual vector ẽ from each adjustment can be expressed as
a projection matrix times the true random error vector e (or equivalently, times the observation
vector y) as shown below.

Recall that the residual vector within the GMM can be written as

ẽ =
[
In −AN−1ATP

]
e. (4.9)

And the residual vector from within the model of condition equations can be written as

ẽ =
[
P−1BT

(
BP−1BT

)−1
B
]
e. (4.10)

Note that the right sides of (4.9) and (4.10) cannot be computed since e is unknown, but the
equations do hold since, for the GMM,

ẽ =
[
In −AN−1ATP

]
y =

=
[
In −AN−1ATP

]
(Aξ + e) =

=
[
Aξ −AN−1(ATPA)ξ

]
+
[
In −AN−1ATP

]
e =

=
[
In −AN−1ATP

]
e,

and, for the model of condition equations,

ẽ = P−1BT
(
BP−1BT

)−1
By =

= P−1BT
(
BP−1BT

)−1
B(Aξ + e) =

=
[
P−1BT

(
BP−1BT

)−1
B
]
e,

using the fact that BA = 0.

To show that (4.9) and (4.10) are equivalent, it must be shown that the range spaces and the nullspa-
ces are equivalent for their respective projection matrices [In−AN−1ATP ] and [P−1BT (BP−1BT )−1B].
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(i) Equivalent range spaces: Show that R
[
In −AN−1ATP

]
= R

[
P−1BT

(
BP−1BT

)−1
B
]
.

Proof: Since ATPP−1BT = ATBT = 0, then[
In −AN−1ATP

][
P−1BT

(
BP−1BT

)−1
B
]
z =

=
[
P−1BT

(
BP−1BT

)−1
B
]
z − 0 for any z ∈ Rn,

which, with the help of (A.6), implies that

R
[
P−1BT

(
BP−1BT

)−1
B
]
⊂ R

[
In −AN−1ATP

]
.

Also:

dimR
[
P−1BT

(
BP−1BT

)−1
B
]

=

= rk
[
P−1BT

(
BP−1BT

)−1
B
]

=

= tr
[
P−1BT

(
BP−1BT

)−1
B
]

= using (A.12)

= tr
[
BP−1BT

(
BP−1BT

)−1]
= using (A.5)

= tr
(
Ir
)

= r.

Furthermore:

dimR
[
In −AN−1ATP

]
=

= rk
(
In −AN−1ATP

)
=

= tr
(
In −AN−1ATP

)
= using (A.12)

= tr
(
In
)
− tr

(
N−1ATPA

)
=

= n− rkN = n− rkA =

= n− q = r,

which implies that

R
[
In −AN−1ATP

]
= R

[
P−1BT

(
BP−1BT

)−1
B
]
. (4.11)

(ii) Equivalent Nullspaces: Show that

N
[
In −AN−1ATP

]
= N

[
P−1BT

(
BP−1BT

)−1
B
]
.

Proof:

First show that N
[
In −AN−1ATP

]
= R(A).[

In −AN−1ATP
]
Aα = 0 for all α

⇒ R(A) ⊂ N
[
In −AN−1ATP

]
Also:

dimR(A) = rkA = q

and

dimN
[
In −AN−1ATP

]
=

= n− dimR
[
In −AN−1ATP

]
= n− r = q
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(See dimension of nullspace in Appendix.)

⇒ N
[
In −AN−1ATP

]
= R(A)[

P−1BT
(
BP−1BT

)−1
B
]
A = 0,

since BA = 0. The preceding development implies that

R(A) = N
[
In −AN−1ATP

]
⊂ N

[
P−1BT

(
BP−1BT

)−1
B
]
.

We showed in part (i) that the dimensions of the range spaces of the respective projection matrices
are equivalent. And, since dimN (·) = n− dimR(·), it follows that the dimension of the nullspaces
of the respective projection matrices are also equivalent. If one space is a subset of another and
both spaces have the same dimension, the subspaces are equivalent.

We have showed that the range spaces and nullspaces of the projections matrices in (4.9) and (4.10)
are the same. Therefore, the projections are the same, and thus the adjustments are equivalent.
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Chapter 5
The Gauss-Markov Model with Constraints

The Gauss-Markov Model (GMM) with constraints is written as:

y
n×1

= A
n×m

ξ + e, e ∼ (0, σ2
0P
−1), rkA =: q ≤ {m,n}, (5.1a)

κ0 = K
l×m

ξ, rkK =: l ≥ m− q, rk
[
AT , KT

]
= m. (5.1b)

The variables are as defined on page 17, but now with the addition of the l×m constraint matrix K
and the l × 1 vector of constrains κ0. Symbols for the normal equations were introduced in (3.4)
and are repeated here:

[N, c] = ATP [A, y]. (5.2)

The given rank conditions imply that (N+KTK)−1 exists, and, if N−1 exists, so does (KN−1KT )−1.
The range space of [AT , KT ] spans Rm as is evident from (5.1b). The redundancy of the system is
computed by

r := n− rkA+ rkK = n− q + l. (5.3)

The Lagrange target function to minimize is

Φ(ξ,λ) := (y −Aξ)TP (y −Aξ)− 2λT
(
κ0 −Kξ

)
= stationary. (5.4)

Its first partial derivates are taken to form the following Euler-Lagrange necessary conditions:

1

2

∂Φ

∂ξ
= N ξ̂ − c+KT λ̂

.
= 0, (5.5a)

1

2

∂Φ

∂λ
= −κ0 +Kξ̂

.
= 0. (5.5b)

In matrix form (5.5a) and (5.5b) are expressed as[
N KT

K 0

] [
ξ̂

λ̂

]
=

[
c
κ0

]
. (5.6)
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The sufficient condition, required for minimization, is satisfied by (1/2)
(
∂2Φ/∂ξ∂ξT

)
= N , which is

positive (semi) definite. We refer to the matrix on the left side of (5.6) as the least-squares normal
equation matrix. It is invertible if, and only if, rk

[
AT , KT

]
= m. This rank condition means that

for the normal equation matrix:

• among the first m columns, m− l must be linearly independent, and

• the additional l columns are complementary.

We consider two cases: (1) N is invertible, and (2) N is singular.

Case 1: N is invertible (also said to be regular)
Equations (5.5a) and (5.5b) imply

ξ̂ = N−1
(
c−KT λ̂

)
(5.7a)

κ0 = Kξ̂ = KN−1c−KN−1KT λ̂ (5.7b)

⇒ λ̂ = −
(
KN−1KT

)−1(
κ0 −KN−1c

)
⇒ (5.7c)

ξ̂ = N−1c+N−1KT
(
KN−1KT

)−1(
κ0 −KN−1c

)
. (5.7d)

The vector difference κ0−KN−1c in (5.7d) is a vector of discrepancies. It shows the mismatch
between the vector of constraint values κ0 and a linear combination (as generated by the
matrix K) of the solution without constraints (i.e., N−1c).

Case 2: N is singular (i.e., not invertible)
Multiply equation (5.5b) by KT and add the result to (5.5a), leading to(

N +KTK
)
ξ̂ = c+KT

(
κ0 − λ̂

)
⇒

ξ̂ =
(
N +KTK

)−1
c+

(
N +KTK

)−1
KT
(
κ0 − λ̂

)
. (5.8)

Then from (5.5b) and (5.8) we have

κ0 = Kξ̂ = K
(
N +KTK

)−1
c+K

(
N +KTK

)−1
KT
(
κ0 − λ̂

)
⇒(

κ0 − λ̂
)

=
[
K
(
N +KTK

)−1
KT
]−1[

κ0 −K
(
N +KTK

)−1
c
]
. (5.9)

Substituting (5.9) into (5.8) leads to the solution

ξ̂ =
(
N +KTK

)−1
c

+
(
N +KTK

)−1
KT
[
K
(
N +KTK

)−1
KT
]−1[

κ0 −K
(
N +KTK

)−1
c
]
. (5.10)

The form of (5.10) is identical to (5.7d) except that all occurrences of matrix N in (5.7d) have
been replaced by N +KTK in (5.10).

We now compute the formal dispersion of ξ̂ for both cases. From (5.6) we have[
ξ̂

λ̂

]
=

[
N KT

K 0

]−1 [
c
κ0

]
, (5.11)
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which, from the law of covariance propagation, implies that

D{
[
ξ̂

λ̂

]
} =

[
N KT

K 0

]−1

D{
[
c
κ0

]
}
[
N KT

K 0

]−1

=

= σ2
0

[
N KT

K 0

]−1 [
N 0
0 0

] [
N KT

K 0

]−1

. (5.12)

Here, the symmetry of the normal-equation matrix and the fact that κ0 is a non-random vector
have been applied. Upon algebraic reduction of (5.12), we find that[

D{ξ̂} X

X −D{λ̂}

]
= σ2

0

[
N KT

K 0

]−1

. (5.13)

Here, the symbol X represents a term of no particular interest. Note that X 6= C{ξ̂, λ̂} = 0.
The inverse on the right side of (5.13) reveals the following dispersion matrices for cases 1 and 2,
respectively:

Case 1:

D{ξ̂} = σ2
0

[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1

]
(5.14)

Case 2:

D{ξ̂} = σ2
0

(
N +KTK

)−1 − σ2
0

(
N +KTK

)−1
KT
[
K
(
N +KTK

)−1

KT
]−1

K
(
N +KTK

)−1

(5.15)

As with the parameter estimates, the dispersion matrices for both cases have a similar form, with
every occurrence of N in Case 1 being replaced by N+KTK in Case 2. Also note that the dispersions
in (5.14) and (5.15) are nothing more than the coefficient matrices multiplying the vector c in (5.7d)
and (5.10), respectively, multiplied by the (unknown) variance component σ2

0 . Finally, it is clear

from the above that the constraints reduce the dispersion matrix of ξ̂ compared to the corresponding
dispersion matrix of the solution within the GMM (without constraints) derived in Chapter 3.

5.1 Estimated Variance Component

The estimated variance component for the GMM with constraints is derived similar to that for the
GMM without constraints as shown in Section 3.2. The estimation is based on the principle

σ̂2
0

ẽTP ẽ
=

σ2
0

E{ẽTP ẽ} . (5.16)

Furthermore, for the purpose of validating the constraints, we wish to decompose the quadratic form
ẽTP ẽ into the sum ẽTP ẽ = Ω + R. In the following, we derive these components for both cases I
and II.
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5.1.1 Case I - Matrix N is invertible

ẽTP ẽ =
(
y −Aξ̂

)T
P
(
y −Aξ̂

)
=

=
[(
y −AN−1c

)
−AN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)]T
P

×
[(
y −AN−1c

)
−AN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)]
=

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
−
(
y −AN−1c

)T
PAN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)
−
(
κ0 −KN−1c

)T (
KN−1KT

)−1
KN−1ATP

(
y −AN−1c

)
+
(
κ0 −KN−1c

)T (
KN−1KT

)−1
KN−1

(
ATPA

)
N−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)
=

(Note that ATP
(
y −AN−1c

)
= 0.)

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
+
(
κ0 −KN−1c

)T (
KN−1KT

)−1(
κ0 −KN−1c

)
=

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
+ λ̂T

(
KN−1KT

)
λ̂ = Ω +R (5.17)

The scalars Ω and R defined as

Ω :=
(
y −AN−1c

)T
P
(
y −AN−1c

)
(5.18a)

R :=
(
κ0 −KN−1c

)T (
KN−1KT

)−1(
κ0 −KN−1c

)
. (5.18b)

Thus we have decomposed the quadratic form ẽTP ẽ into components Ω and R. Obviously, both Ω
and R are random numbers since the vector c is random. It turns out that they are also uncorrelated.
The variable Ω is associated with the LESS with the GMM without constraints, and R is due to the
constraints κ0 = Kξ. From (5.18b) we see that R is always positive, and thus the constraints will
increase the value of ẽTP ẽ. The variables Ω and R are used for hypothesis testing as discussed in
Chapter 10.

We now derive the expectation of ẽTP ẽ.

E{ẽTP ẽ} = E{Ω}+ E{R} =

= (n−m)σ2
0 + E{λ̂T

(
KN−1KT

)
λ̂} = E{Ω} using (3.24) for

= (n−m)σ2
0 + tr

[(
KN−1KT

)
E{λ̂ λ̂T }

]
=

= (n−m)σ2
0 + tr

[(
KN−1KT

)(
D{λ̂}+ E{λ̂}E{λ̂}T

)]
=

(with E{λ̂} = 0 and D{λ̂} = σ2
0

(
KN−1KT

)−1
)

= (n−m)σ2
0 + tr

[(
KN−1KT

)
σ2

0

(
KN−1KT

)−1]
=

= (n−m+ l)σ2
0 (5.19)

Substitution of (5.17) and (5.19) into (5.16) yields the following formula for the estimated variance
component:

σ̂2
0 =

(
y −AN−1c

)T
P
(
y −AN−1c

)
+
(
κ0 −KN−1c

)T (
KN−1KT

)−1(
κ0 −KN−1c

)
n−m+ l

. (5.20)
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Other useful forms of ẽTP ẽ are derived below starting with the line above (5.17).

ẽTP ẽ =
(
y −AN−1c

)T
P
(
y −AN−1c

)
+ λ̂T

(
KN−1KT

)
λ̂ =

= yTPy − cTN−1c−
(
κT0 − cTN−1KT

)
λ̂ = using (5.7c)

= yTPy − cTN−1
(
c−KT λ̂

)
− κT0 λ̂ = using (5.7a)

= yTPy − cT ξ̂ − κT0 λ̂ =

= yTP
(
y −Aξ̂

)
− κT0 λ̂ =

= yTP ẽ− κT0 λ̂ (5.21)

5.1.2 Case II - Matrix N is singular

ẽTP ẽ =

=
{
y −A

(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]}T
P
{
y −A

(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]}
=

= yTPy − yTPA
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−
[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1
ATPy+

+
[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1(
ATPA+KTK −KTK

)(
N +KTK

)−1×
×
[
c+KT

(
κ0 − λ̂

)]
=

= yTPy − cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−
[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1
c+

+
[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−

−
[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1
KTK

(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
=

= yTPy −
(((

((((
(((

((((
((

cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−

− cT
(
N +KTK

)−1
c−
hhhhhhhhhhhhh

(
κ0 − λ̂

)T
K
(
N +KTK

)−1
c+

+
((((

(((
((((

(((
((

cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
+

hhhhhhhhhhhhh

(
κ0 − λ̂

)T
K
(
N +KTK

)−1
c+

+
(
κ0 − λ̂

)T
K
(
N +KTK

)−1
KT
(
κ0 − λ̂

)
− ξ̂TKTKξ̂ =

= yTPy − cT
(
N +KTK

)−1
c+

(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT
](
κ0 − λ̂

)
− κT0 κ0 (5.22)

Now we compute the expectation for ẽTP ẽ.

E{ẽTP ẽ} =

= E{yTP
[
y −A

(
N +KTK

)−1
c
]
− κT0 κ0}+ E{

(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT
](
κ0 − λ̂

)
} =

= trPE{
[
In −A

(
N +KTK

)−1
ATP

]
yyT }+ trK

(
N +KTK

)−1
KT · E{

(
κ0 − λ̂

)(
κ0 − λ̂

)T } =

(Note that E{
(
κ0− λ̂

)(
κ0− λ̂

)T } = D{κ0− λ̂}+E{κ0− λ̂}E{κ0− λ̂}T and D{κ0− λ̂} = D{λ̂})

= tr
[
P − PA

(
N +KTK

)−1
ATP

](
σ2

0P
−1 +AξT ξAT

)
+

+ tr
[
K
(
N +KTK

)−1
KT
[
K
(
N +KTK

)−1 − Il
]
σ2

0 + E{κ0 − λ̂}E{κ0 − λ̂}T
]

=

= σ2
0

[
tr In − tr

(
N +KTK

)
N + tr Il − tr

(
N +KTK

)
N
]

+ 0 =
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(using E{κ0 − λ̂ = 0)

E{ẽTP ẽ} = σ2
0(n−m+ l) (5.23)

Finally, substituting (5.22) and (5.23) into (5.16) yields

σ̂2
0 =

yTPy − cT
(
N +KTK

)−1
c+

(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT
](
κ0 − λ̂

)
− κT0 κ0

(n−m+ l)
. (5.24)

We cannot directly identify Ω and R in (5.22) as we could in case I. Therefore, we define Ω as

Ω =
(
y −AN−1c

)T
P
(
y −AN−1c

)
, (5.25)

and R as

R = ẽTP ẽ− Ω, (5.26)

where ẽTP ẽ is given in (5.22).

The following ratio is formed (for both cases I and II) for the purposes of hypothesis testing (see
Chapter 10 for more details on hypothesis testing):

T :=
R/(l −m+ q)

Ω/(n− q) ∼ F (l −m+ q, n− q), with q := rk(A). (5.27)

The hypothesis test is then

H0 : Kξ = κ0 versus HA : Kξ 6= κ0. (5.28)

For some chosen significance level α,

Accept H0 : if T ≤ Fα,l−m+q,n−q

Reject H0 : if T > Fα,l−m+q,n−q,

where Fα,l−m+q,n−q is the critical value from the F -distribution table. Note that the redundancy
r2 := n − q represents the degrees of freedom for the system of equations if no constraints were
applied, whereas the redundancy r1 := l−m+q represents the increase in degrees of freedom due to
the constraints. In the case that A has full column rank (i.e., rkA = q = m), then the redundancies
reduce to r1 := l and r2 := n−m, respectively.
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Chapter 6
Introduction of a Datum to Treat the
Rank-Deficient Gauss-Markov Model

Consider the following linearized Gauss-Markov Model (GMM) with rank-deficient matrix A:

y = Aξ + e, e ∼
(
0, σ2

0P
−1
)
, rkA =: q < m. (6.1)

We can partition the matrix A as

A
n×m

=

[
A1
n×q

A2
n×(m−q)

]
, with rkA1 = q = rkA. (6.2)

A similar partitioning of the parameter vector ξ̂ leads to the following system of partitioned normal
equations: [

AT1
AT2

]
P
[
A1, A2

] [ξ̂1

ξ̂2

]
=

[
AT1
AT2

]
Py =

[
AT1 PA1 AT1 PA2

AT2 PA1 AT2 PA2

][
ξ̂1

ξ̂2

]
=

[
AT1 Py
AT2 Py

]
=

=

[
N11 N12

N21 N22

] [
ξ̂1

ξ̂2

]
=

[
c1

c2

]
. (6.3)

The subscripted terms in (6.3) may be defined more succinctly as[
Nij , ci

]
:= ATi P

[
Aj , y

]
. (6.4)

Defining a datum for m − q parameters means that ξ̂2 → ξ0
2, where ξ0

2 is known. The rank of A1

given in (6.2) implies that the inverse of the q × q matrix N11 exists. Therefore, from the top row

of (6.3) and with a given datum ξ0
2 substituted for ξ̂2, we can write

N11ξ̂1 = c1 −N12ξ
0
2 ⇒ (6.5a)

ξ̂1 = N−1
11

(
c1 −N12ξ

0
2

)
. (6.5b)
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Equation (6.5b) shows that the datum can be chosen after adjustment of the observations. Moreover,
since the only random component in (6.5b) is c1, we have

D{ξ̂1} = σ2
0N
−1
11 (6.6)

for the dispersion of the vector of estimated parameters ξ̂1.

The predicted random error (residual) vector and its dispersion are then defined as follows:

ẽ = y −Aξ̂ = y −
[
A1 A2

] [ξ̂1

ξ0
2

]
= y −A1ξ̂1 −A2ξ

0
2, (6.7a)

D{ẽ} = D{y} −D{A1ξ̂1} = σ2
0

(
P−1 −A1N

−1
11 A

T
1

)
. (6.7b)

Note that C{y, ξ̂1} = 0, which is implied by (6.7b).

Substituting (6.7a) into the quadratic product ẽTP ẽ, and considering (6.5a), leads to

σ̂2
0 =

ẽTP ẽ

n− rkA
=
yTPy − cT1 ξ̂1 − cT2 ξ0

2

n− q (6.8)

as an estimate for the unknown variance component σ2
0 . Here, the relation ξ̂T1 N11ξ̂1 + ξ̂T1 N12ξ̂2 =

ξ̂T1 c1 has been used. However, since rkA1 = rkA = q, the n× (m− q) submatrix A2 must be in the
column space of the n× q matrix A1 so that A2 = A1L for some q × (m− q) matrix L. Therefore,

N12 = AT1 PA2 = AT1 PA1L = N11L⇒ (6.9a)

N−1
11 N12 = L. (6.9b)

With this result, and using (6.5a), we have

cT1 ξ̂1 + cT2 ξ
0
2 = yTPA1

(
N−1

11 c1 −N−1
11 N12ξ

0
2

)
+ yTPA2ξ

0
2 =

= yTPA1

(
N−1

11 c1 − Lξ0
2

)
+ yTPA2ξ

0
2 =

= yTPA1N
−1
11 c1 − yTP

(
A1L

)
ξ0

2 + yTPA2ξ
0
2 =

= yTPA1N
−1
11 c1 = cT1 N

−1
11 c1, (6.10)

which upon substitution into (6.8) yields

σ̂2
0 =

yTPy − cT1 N−1
11 c1

n− q (6.11)

as an alternative form for the estimated variance component.

It is instructive to compare the dispersion of ξ̂1 shown in (6.6) with the corresponding dispersion
in the case that matrix A has full row rank, i.e., rkA = m. In this full-rank case, we could invert
the coefficient matrix of (6.3) and find the upper q × q block of the inverse, scaled by σ2

0 , to be the

dispersion of ξ̂1. Referring to (A.14) for the inverse of the partitioned matrix N , we find

D{ξ̂1}︸ ︷︷ ︸
no datum

= σ2
0

[
N−1

11 +N−1
11 N12

(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

]
=

= σ2
0

(
N11 −N12N

−1
22 N21

)−1
> σ2

0N
−1
11 = D{ξ̂1}︸ ︷︷ ︸

datum supplied

.
(6.12)

35



The smaller dispersion in the last line of (6.12) shows that if a datum is introduced (increase in
information), the unknown parameters ξ are estimated with smaller variance.

6.1 Generation of Equivalent Condition Equations

We may also wish to transform the rank-deficient model of (6.1) to a model of condition equations.
To do so, consider the further splitting of the rank-deficient matrix A defined in (6.2) as follows:

A
n×m

=
[
A1 A2

]
=

[
A11 A12

A21 A22

]
, (6.13a)

with dim(A11) = q × q and dim(A22) = (n− q)× (m− q). (6.13b)

Also, we have rkA11 = q = rkA. And, based on the definition of L in the preceding section, we may
write

A2 =

[
A12

A22

]
= A1L =

[
A11

A21

]
L. (6.14)

The matrix B within the model of condition equations could be defined as

B
r×n

:=
[
A21A

−1
11 −In−q

]
, (6.15)

with
r := n− q (6.16)

as the system redundancy.

As discussed in Chapter 4, two conditions must be satisfied in order to reach an equivalent model
of condition equations:

i. dimensionality condition,

ii. orthogonality condition.

The first condition requires that the dimensions of the column spaces of A and B sum to n. The
second condition requires that the rows of matrix B are orthogonal to the columns of A, i.e., BA = 0.
Taken together, these conditions mean that A and BT are orthogonal complements in n-dimensional
space, or, stated more succinctly,

R(A)
⊥
⊕R(BT ) = RN . (6.17)

Both conditions i and ii are satisfied for (6.15) as shown below.

i. Dimensionality condition:

rkB = n− q = n− rkA⇒ rkA+ rkB = n (6.18a)
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ii. Orthogonality condition:

BA = B
[
A1 A2

]
= BA1

[
Iq L

]
, (6.18b)

but BA1 =
[
A21A

−1
11 −In−q

] [A11

A21

]
= A21A

−1
11 A11 −A21 = 0⇒ (6.18c)

BA = 0 (6.18d)

Note that as long as the rank of matrix A is known, we can always generate a splitting of A as
shown in (6.13a); however, we may need to reorder the columns of A (tantamount to reordering the
elements of the parameter vector) to ensure that A11 has full column rank.
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Chapter 7
The Gauss-Markov Model with Stochastic
Constraints

The Gauss-Markov model (GMM) with stochastic constraints is similar in form to the GMM with
fixed constraints, with one important difference. The constraints in the stochastic case are specified
with some level of uncertainty, expressed in the form of a given weight matrix P0, or an associated
cofactor matrix Q0 := P−1

0 . The model reads

y
n×1

= A
n×m

ξ + e, (7.1a)

z0 = K
l×m

ξ + e0, (7.1b)[
e
e0

]
∼ (

[
0
0

]
, σ2

0

[
P−1 0

0 P−1
0

]
). (7.1c)

Note that in this model there is no correlation between the random error vectors e and e0. Also,
the unknown variance component σ2

0 is common to both cofactor matrices P−1 and P−1
0 . However,

there may be correlations within one or both of the cofactor matrices, just not between them.
Depending on the application, the data in the vector y can be thought of as new information, while
the constraints in the vector κ0 can be thought of as prior information (for example, coordinates
estimated from a previous adjustment as prior information).

The ranks of the coefficient matrices A and K are expressed as

rkA =: q ≤ {m,n}, rkK =: l ≥ m− q, rk
[
AT , KT

]
= m. (7.2)

The least-squares solution (LESS) for ξ within model (7.1) may be derived by minimizing the
Lagrange target function

Φ(ξ,λ) = eTPe+ 2λT
(
Kξ − z0

)
− λTP−1

0 λ = stationary. (7.3)
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Here we simply consider (7.1) as an extended GMM and apply the addition theory of normal equations
as follows: [

AT KT
] [P 0

0 P0

] [
A
K

]
· ξ̂ =

[
AT KT

] [P 0
0 P0

] [
y
z0

]
=

=
(
N +KTP0K

)
ξ̂ = c+KTP0z0, (7.4)

where

[N, c] := ATP [A,y]. (7.5)

In the case where the matrix N is invertible, the Sherman-Morrison-Woodbury-Schur formula (A.7)
may be used to invert the matrix on the left side of (7.4) as in the following:

ξ̂ =
(
N +KTP0K

)−1(
c+KTP0z0

)
= (7.6a)

=
[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
](
c+KTP0z0

)
=

= N−1c+N−1KTP0z0 +N−1KT
(
P−1

0 +KN−1KT
)−1(−KN−1c−KN−1KTP0z0

)
=

= N−1c+N−1KT
(
P−1

0 +KN−1KT
)−1×

×
[(
P−1

0 +KN−1KT
)
P0z0 −KN−1c−KN−1KTP0z0

]
=

= N−1c+N−1KT
(
P−1

0 +KN−1KT
)−1(

z0 −KN−1c
)
. (7.6b)

Thus, the LESS (7.6b) can be viewed as a weighted average between the prior and the new infor-
mation. The vector z0 −KN−1c is referred to as the vector of discrepancies. The solution can also
be recognized as an update to the solution ξ̂ = N−1c within the GMM (3.1). It is also interesting
to express it as an update to the LESS within the GMM with fixed constraints (5.1). This can be

done by changing the symbols ξ̂ and κ0 in (5.7d) to ξ̂K and z0, respectively, solving for N−1c in
terms of these renamed variables, and substituting into (7.6b), which yields the following:

ξ̂ = ξ̂K +N−1KT
[(
P−1

0 +KN−1KT
)−1 −

(
KN−1KT

)−1](
z0 −KN−1c

)
. (7.7)

Applying the laws of variance propagation to (7.6a), the dispersion of the vector of estimated para-

meters ξ̂ is computed as follows:

D{ξ̂} =
(
N +KTP0K

)−1
D{c+KTP0z0}

(
N +KTP0K

)−1
=

= σ2
0

(
N +KTP0K

)−1(
N +KTP0K

)(
N +KTP0K

)−1
=

= σ2
0

(
N +KTP0K

)−1
= σ2

0

[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
. (7.8)

The subtraction in (7.8) implies that our knowledge of the parameters has improved by supplying
the additional prior information, provided the estimated variance component σ̂2

0 does not change
much. Indeed, if the new data is consistent with the old, σ̂2

0 is not expected to change very much. In
contrast, σ̂2

0 is expected to increase if there is inconsistency between the old and new information.

Let us now determine the residual vectors ẽ and ẽ0 (also called predicted random error vectors).
The residual vector ẽ for the observations y is

ẽ = y −Aξ̂. (7.9)
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The residual vector ẽ0 associated with the prior information z0 is

ẽ0 = z0 −Kξ̂ = (7.10a)

=
(
z0 −KN−1c

)
−
(
KN−1KT + P−1

0 − P−1
0

)
×

×
(
P−1

0 +KN−1KT
)−1(

z0 −KN−1c
)

=

=
(
z0 −KN−1c

)
−
[(
KN−1KT + P−1

0

)(
P−1

0 +KN−1KT
)−1−

− P−1
0

(
P−1

0 +KN−1KT
)−1
](
z0 −KN−1c

)
=

=
{
I −

[
I − P−1

0

(
P−1

0 +KN−1KT
)−1]}(

z0 −KN−1c
)

=

= P−1
0

(
P−1

0 +KN−1KT
)−1(

z0 −KN−1c
)

=

=
(
Il +KN−1KTP0

)−1(
z0 −KN−1c

)
. (7.10b)

The dispersion matrix of the residual vectors is derived as follows:

D{
[
ẽ
ẽ0

]
} = D{

[
y
z0

]
} −D{

[
A
K

]
ξ̂} =

= σ2
0

[
P−1 0

0 P−1
0

]
− σ2

0

[
A
K

] [
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
] [
AT KT

]
=

= σ2
0

[
P−1 −AN−1AT −AN−1KT

−KN−1AT P−1
0 −KN−1KT

]
+

+ σ2
0

[
AN−1KT

KN−1KT

] (
P−1

0 +KN−1KT
)−1 [

KN−1AT KN−1KT
]
. (7.11)

From (7.11) we can write the dispersion matrices for the residual vectors individually as

D{ẽ} = σ2
0

(
P−1 −AN−1AT

)
+ σ2

0AN
−1KT

(
P−1

0 +KN−1KT
)−1

KN−1AT = (7.12a)

= σ2
0

[
P−1 −A

(
N +KTP0K

)−1
AT
]
, (7.12b)

and

D{ẽ0} = σ2
0P
−1
0 − σ2

0KN
−1KT + σ2

0KN
−1KT

(
P−1

0 +KN−1KT
)−1

KN−1KT =

= σ2
0P
−1
0 − σ2

0KN
−1KT

(
P−1

0 +KN−1KT
)−1(

P−1
0 +KN−1KT −KN−1KT

)
=

= σ2
0P
−1
0 − σ2

0KN
−1KT

(
Il + P0KN

−1KT
)−1

=

= σ2
0P
−1
0

(
Il + P0KN

−1KT
)(
Il + P0KN

−1KT
)−1 − σ2

0KN
−1KT

(
Il + P0KN

−1KT
)−1

=

= σ2
0P
−1
0

(
Il + P0KN

−1KT
)−1

+ σ2
0KN

−1KT
(
Il + P0KN

−1KT
)−1−

− σ2
0KN

−1KT
(
Il + P0KN

−1KT
)−1

=

= σ2
0P
−1
0

(
Il + P0KN

−1KT
)−1

.
(7.13)
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We summarize by listing a few equivalent formulas for D{ẽ0}.

D{ẽ0} = σ2
0P
−1
0

(
Il + P0KN

−1KT
)−1

= (7.14a)

= σ2
0

(
Il +KN−1KTP0

)−1
P−1

0 = (7.14b)

= σ2
0P
−1
0

(
P−1

0 +KN−1KT
)−1

P−1
0 = (7.14c)

= σ2
0

(
P0 + P0KN

−1KTP0

)−1
= (7.14d)

= σ2
0

[
P−1

0 −K
(
N +KTP0K

)−1
KT
]

(7.14e)

The symmetry of D{ẽ0} has been exploited to get from (7.14a) to (7.14b), using the rule for the
transpose of a matrix product (A.1) and the rule for the transpose of an inverse (A.2). Also (A.3)
has been used in the above.

Now it remains to write a succinct form for the covariance matrix C{ẽ, ẽ0}, beginning with the
off-diagonal element of (7.11).

C{ẽ, ẽ0} = −σ2
0AN

−1KT + σ2
0AN

−1KT
(
P−1

0 +KN−1KT
)−1

KN−1KT = (7.15a)

= −σ2
0AN

−1KT
(
P−1

0 +KN−1KT
)−1(

P−1
0 +KN−1KT −KN−1KT

)
= (7.15b)

= −σ2
0AN

−1KT
(
Il + P0KN

−1KT
)−1

= (7.15c)

= −σ2
0A
(
Im +N−1KTP0K

)−1
N−1KT = (7.15d)

= −σ2
0A
(
N +KTP0K

)−1
KT (7.15e)

The line following (7.15c) is based on relations shown in equations (A.9). To see how these equations
are used, compare what follows the term −σ2

0A in (7.15c) and (7.15d), with the first and last lines
in (A.9).

Further insight may be gained by minimizing a Lagrange target function, as in the MS thesis by
K. Snow (OSU Report 465). This leads to the following system of normal equations, which includes

an estimated vector of Lagrange multipliers λ̂:[
N KT

K −P−1
0

][
ξ̂

λ̂

]
=

[
c
z0

]
. (7.16)

Using (7.1b) and (7.16), we can express the predicted residual vector ẽ0 as a function of the vector

of Lagrange multipliers λ̂ as follows:

z0 = Kξ̂ + ẽ0 = Kξ̂ − P−1
0 λ̂⇒ ẽ0 = −P−1

0 λ̂. (7.17)

Therefore, the dispersion of ẽ0 is given by

D{ẽ0} = P−1
0 D{λ̂}P−1

0 . (7.18)
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Assuming matrix N is invertible, from (7.16) we see that the dispersion of λ̂ can be found from

D{
[
ξ̂

λ̂

]
} =

[
N KT

K −P−1
0

]−1

D{
[
c
z0

]
}
[
N KT

K −P−1
0

]−1

=

= σ2
0

[
N KT

K −P−1
0

]−1 [
N 0
0 P−1

0

] [
N KT

K −P−1
0

]−1

=

= σ2
0

[
N KT

K −P−1
0

]−1 [
N−1 0

0 P0

]−1 [
N KT

K −P−1
0

]−1

=

= σ2
0

[
N +KTP0K 0

0 P−1
0 +KN−1KT

]−1

. (7.19)

The last line was reached by successively applying the rule for the product of two inverses (A.3).
From (7.19) we see that

D{λ̂} = σ2
0

(
P−1

0 +KN−1KT
)−1

= σ2
0

[
P0 − P0K

(
N +KTP0K

)−1
KTP0

]
. (7.20)

Finally, applying the product-of-inverses rule to (7.18), we can write

D{ẽ0} = σ2
0P
−1
0

(
P−1

0 +KN−1KT
)−1

P−1
0 = σ2

0

(
P0 + P0KN

−1KTP0

)−1
. (7.21)

Also, we see from (7.19) that

C(ξ̂, λ̂) = 0. (7.22)

We also note that in the GMM with stochastic constraints, the predicted residual vector ẽ = y−Aξ̂
by itself is no longer a projection of y. However, the vector

[
ẽT , ẽT0

]T
does represent a projection

of
[
yT , zT0

]T
since[

ẽ
ẽ0

]
=

[
y −Aξ̂
z0 −Kξ̂

]
=

([
In 0
0 Il

]
−
[
A
K

] (
N +KTP0K

)−1 [
ATP KTP0

]) [ y
z0

]
, (7.23)

and the matrix in parenthesis is idempotent, which can be verified by application of (A.11).

7.1 Variance Component Estimate

The derivation of the variance component estimate is shown here in detail. The trace operator is
employed analogously to what was done in Section 3.2. We also make use of the following expectation
and dispersion relationships:

E{c+KTP0z0} =
[
ATP KTP0

]
E{
[
y
z0

]
} =

=
[
ATP KTP0

] [A
K

]
ξ =

(
N +KTP0K

)
ξ, (7.24a)
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D{c+KTP0z0} = D{
[
ATP KTP0

] [ y
z0

]
} =

= σ2
0

[
ATP KTP0

] [P−1 0
0 P−1

0

] [
PA
P0K

]
= σ2

0

(
N +KTP0K

)
. (7.25a)

The following expectation and dispersion relationships are employed as well:

E{
(
c+KTP0z0

)(
c+KTP0z0

)T } = D{c+KTP0z0}+ E{c+KTP0z0}E{c+KTP0z0}T ,
(7.26a)

E{yyT } = D{y}+ E{y}E{y}T = σ2
0P
−1 +AξξTAT , (7.26b)

E{z0z
T
0 } = D{z0}+ E{z0}E{z0}T = σ2

0P
−1
0 +KξξTKT . (7.26c)

Then, the estimated variance component is computed from the expectation of the combined quadratic
forms of the residual vectors: ẽTP ẽ+ ẽT0 P0ẽ0.

E{ẽTP ẽ+ ẽT0 P0ẽ0} =

= E{
([ y
z0

]
−
[
A
K

]
ξ̂
)T [P 0

0 P0

] ([ y
z0

]
−
[
A
K

]
ξ̂
)
} =

= E{yTPy + zT0 P0z0 − 2ξ̂T
(
c+KTP0z0

)
+ ξ̂T

(
N +KTP0K

)
ξ̂} =

= E{yTPy + zT0 P0z0 − 2ξ̂T
(
c+KTP0z0

)
+ ξ̂T

(
c+KTP0z0

)
} =

= E{yTPy + zT0 P0z0 − ξ̂T
(
c+KTP0z0

)
} =

= E{yTPy + zT0 P0z0 −
(
c+KTP0z0

)T (
N +KTP0K

)−1(
c+KTP0z0

)
} =

= E{tr
(
yTPy

)
+ tr

(
zT0 P0z0

)
− tr

[(
c+KTP0z0

)T (
N +KTP0K

)−1(
c+KTP0z0

)]
} =

= E{tr
(
PyyT

)
+ tr

(
P0z0z

T
0

)
− tr

[(
N +KTP0K

)−1(
c+KTP0z0

)(
c+KTP0z0

)T ]} =

= tr
(
PE{yyT }

)
+ tr

(
P0E

{
z0z

T
0

})
− tr

[(
N +KTP0K

)−1
E{
(
c+KTP0z0

)(
c+KTP0z0

)T }] =

= tr
[
P
(
σ2

0P
−1 +AξξTAT

)]
+ tr

[
P0

(
σ2

0P
−1
0 +KξξTKT

)]
−

− σ2
0 tr
[(
N +KTP0K

)−1(
N +KTP0K

)]
−

− tr
[(
N +KTP0K

)−1(
N +KTP0K

)
ξξT

(
N +KTP0K

)]
=

= σ2
0 tr
(
PP−1

)
+ tr

(
PAξξTAT

)
+ σ2

0 tr
(
P0P

−1
0

)
+ tr

(
P0Kξξ

TKT
)
−

− σ2
0 tr
(
Im
)
− tr

(
ξξTN + ξξTKTP0K

)
=

= σ2
0 tr
(
In
)

+ tr
(
ξTNξ

)
+ σ2

0 tr
(
Il
)

+ tr
(
ξTKTP0Kξ

)
−

− σ2
0 tr
(
Im
)
− tr

(
ξTNξ

)
− tr

(
ξTKTP0Kξ

)
=

= σ2
0(n+ l −m) = E{ẽTP ẽ+ ẽT0 P0ẽ0}

From the preceding derivation, it follows that

σ̂2
0 =

ẽTP ẽ+ ẽT0 P0ẽ0

(n−m+ l)
(7.27)

represents the estimated variance component.
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7.2 Hypothesis Test for the Estimated Variance Component

Hypothesis testing can be used to validate that the least-squares solution satisfies the stochastic
constraints in the model (7.1). The test statistic to be computed is comprised of a ratio of two
estimated, and therefore random, variances and thus has an F -distribution (see Section 10.4). The
idea is to extract from the sum of the quadratic products in (7.27) the associated sum of squared
residuals that would have been computed for the LESS within the unconstrained GMM solution,
i.e., ξ̂u = N−1c, had it been estimated. We label this quantity Ω. What remains after extracting Ω
from the numerator of (7.27) is a quantity that depends on the weight matrix P0. We denote this
quantity as R(P0) to indicate that it is a function of P0. Both Ω and R(P0) are scalars, and both
have random properties. These two variables, which are used to form the test statistic, are defined
as follows:

Ω :=
(
y −AN−1c

)T
P
(
y −AN−1c

)
= yTPy − cTN−1c, (7.28a)

R(P0) := ẽTP ẽ+ ẽT0 P0ẽ0 − Ω. (7.28b)

Again we note that ξ̂u = N−1c represents the least-squares solution within model (7.1) had the
stochastic constraints been omitted. In the following derivations, we also make use of (7.6b), (7.10a),

(7.10b), (7.17), and (7.18) to write formulas for ẽ0 and ξ̂ in terms of ξ̂u as follows:

ẽ0 = z0 −Kξ̂ = −P−1
0 λ̂ =

(
Il +KN−1KTP0

)−1(
z0 −Kξ̂u

)
, (7.29)

ξ̂ = ξ̂u +N−1KTP0ẽ0 = ξ̂u −N−1KT λ̂. (7.30)

We now begin with the quadratic form for the full predicted residual vector appearing in (7.27) (also
called sum of squared residuals, SSR) and decompose it into Ω and R(P0). The crossed-out vector
in the first line below is neglected since its contribution vanishes in the quadratic product.

ẽTP ẽ+ ẽT0 P0ẽ0 =
([ y
z0

]
−
�
�
�

[
A
K

]
ξ̂
)T [P 0

0 P0

] ([ y
z0

]
−
[
A
K

]
ξ̂
)

=

= yTPy − yTPAξ̂ + zT0 P0z0 − zT0 P0Kξ̂ =

= yTPy − yTPA
(
ξ̂u +N−1KTP0ẽ0

)
+ zT0 P0z0 − zT0 P0K

(
ξ̂u +N−1KTP0ẽ0

)
=

=
(
yTPy − yTPAξ̂u

)︸ ︷︷ ︸
Ω

+zT0 P0

(
z0 −Kξ̂u

)︸ ︷︷ ︸(
Il+KN−1KTP0

)
ẽ0

−
(
c+KTP0z0

)T︸ ︷︷ ︸(
N+KTP0K

)
ξ̂

N−1KTP0ẽ0 =

= Ω + zT0 P0

(
Il +KN−1KTP0

)
ẽ0 − ξ̂T

(
N +KTP0K

)
N−1KTP0ẽ0 =

= Ω + zT0
(
Il + P0KN

−1KT
)
P0ẽ0 −

(
Kξ̂
)T (

Il + P0KN
−1KT

)
P0ẽ0 =

= Ω +
(
z0 −Kξ̂

)T (
Il + P0KN

−1KT
)
P0ẽ0 =

= Ω +
(
z0 −Kξ̂u

)T (
Il + P0KN

−1KT
)−1(

Il + P0KN
−1KT

)(
P−1

0 +KN−1KT
)−1(

z0 −Kξ̂u
)

=

= Ω +
(
z0 −Kξ̂u

)T (
P−1

0 +KN−1KT
)−1(

z0 −Kξ̂u
)

=

= Ω +R(P0)

Thus, R(P0) is defined as

R(P0) :=
(
z0 −Kξ̂u

)T (
P−1

0 +KN−1KT
)−1(

z0 −Kξ̂u
)
. (7.31)
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Finally, the test statistic t can be expressed as a ratio of R(P0) to Ω, viz.

t =
(ẽTP ẽ+ ẽT0 P0ẽ0 − Ω)/(l −m+ q)

Ω/(n− q) =
R
(
P0

)
/(l −m+ q)

Ω/(n− q) ∼ F (l −m+ q, n− q). (7.32)

Recall from (7.2) that l := rk(K) and q := rk(A).

The following hypothesis test can now be performed, where N stands for the normal distribution
and κ0 is an unknown quantity:

H0 : z0 ∼ N
(
Kξ, σ2

0P
−1
0

)
against Ha : z0 ∼ N

(
κ0 6= Kξ, σ2

0P
−1
0

)
. (7.33)

The term H0 is called the null hypothesis, and Ha is the alternative hypothesis.

After taking Fα,l−m+q,n−q from a table of critical values for the F -distribution, and choosing a level
of significance α, the following logic can be applied:

If t ≤ Fα,l−m+q,n−q accept H0; else reject H0. (7.34)

7.3 Some Comments on Reproducing Estimators

In this section we briefly discuss two estimators within the Gauss-Markov model with stochastic
constraints (7.1) that leave the constrained parameters unchanged. Such estimators are called re-
producing estimators. For simplicity, we restrict the discussion to full rank models, i.e., rkA = m,
where m is the number of columns of matrix A and also the number of parameters to estimate.

One possible choice for a reproducing estimator is the estimator within the Gauss-Markov model
with fixed constraints shown in (5.7d), which is optimal for that model. Two points should be made
regarding the use of this estimator within the model (7.1). First, it is not an optimal estimator within
model (7.1), and, second, its dispersion matrix shown in (5.14) and (5.15) is not correct within model
(7.1). In the following, we show the proper dispersion matrix for the reproducing estimator within
model (7.1). First, we introduce different subscripts to denote various linear estimators for ξ.

ξ̂u denotes the unconstrained estimator ξ̂u = N−1c, which is not optimal within model (7.1).

ξ̂K denotes the reproducing estimator from equation (5.7d), which is not optimal within model
(7.1).

ξ̂S denotes the optimal estimator within the Gauss-Markov model with stochastic constraints shown
in (7.1).

First we express the estimator ξ̂K as a function of the optimal estimator ξ̂S . Using (7.4), we can
write (

N +KTP0K
)−1

c = ξ̂S −
(
N +KTP0K

)−1
KTP0z0. (7.35)
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We then repeat (5.7d) for the estimator ξ̂K with N replaced by
(
N + KTP0K

)
and κ0 replaced

by z0 according to the model (7.1). This is our starting point.

ξ̂K =
(
N +KTP0K

)−1
c+

+
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1[

z0 −K
(
N +KTP0K

)−1
c
]

(7.36)

Now using (7.35) in (7.36):

ξ̂K = ξ̂S −
(
N +KTP0K

)−1
KTP0z0+

+
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1[

z0 −K
(
N +KTP0K

)−1
c
]
.

Factoring out −
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1

yields

ξ̂K = ξ̂S −
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1×

×
{[
K
(
N +KTP0K

)−1
KT
]
P0z0 − z0 +K

(
N +KTP0K

)−1
c
}
.

Now, from (7.6a) we recognize Kξ̂S in the above line; thus we write:

ξ̂K = ξ̂S +
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1(

z0 −Kξ̂S
)
. (7.37)

We now have the fixed-constraint estimator ξ̂K expressed as a function of the optimal estimator for

model (7.1), namely ξ̂S . Using a familiar formula for
(
N +KTP0K

)−1
and noting that(

N +KTP0K
)−1

KTP0 = N−1KT
(
P−1

0 +KN−1KT
)−1

,

we can rewrite (7.37) as:

ξ̂K = ξ̂S +
[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
KT×

×
[
KN−1KT

(
P−1

0 +KN−1KT
)−1

P−1
0

]−1(
z0 −Kξ̂S

)
. (7.38)

Note the following useful relations:[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
KT = N−1KT

(
P−1

0 +KN−1KT
)−1

P−1
0 (7.39)

and (
KN−1KT

(
P−1

0 +KN−1KT
)−1

P−1
0

)−1
= P0

(
P−1

0 +KN−1KT
)(
KN−1KT

)−1
. (7.40)

Equation (7.39) is derived as follows:[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
KT =

= N−1KT −N−1KT
(
P−1

0 +KN−1KT
)−1(

P−1
0 +KN−1KT − P−1

0

)
=

= N−1KT −N−1KT
(
P−1

0 +KN−1KT
)−1(

P−1
0 +KN−1KT

)
−

−N−1KT
(
P−1

0 +KN−1KT
)−1(−P−1

0

)
=

= N−1KT −N−1KT +N−1KT
(
P−1

0 +KN−1KT
)−1

P−1
0 =

= N−1KT
(
P−1

0 +KN−1KT
)−1

P−1
0 .
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Successive application of the rule for the product of inverted matrices was used in equation (7.40).
Substituting (7.39) and (7.40) into (7.38) yields:

ξ̂K = ξ̂S +N−1KT
(
P−1

0 +KN−1KT
)−1

P−1
0 P0

(
P−1

0 +KN−1KT
)(
KN−1KT

)−1(
z0 −Kξ̂S

)
=

= ξ̂S +N−1KT
(
KN−1KT

)−1(
z0 −Kξ̂S

)
. (7.41)

Equation (7.41) gives an elegant expression of the fixed-constraint estimator ξ̂K in terms of the

optimal estimator ξ̂S . Realizing that the model with stochastic constraints (7.1) becomes the model
with fixed constraints (5.1) when P−1

0 is replaced by zero, we can replace (7.41) with (7.42) below,
which is also obvious from our starting equation (7.36). This also makes the appropriate dispersion

matrix D{ξ̂K} under model (7.1) easier to compute.

ξ̂K = ξ̂u +N−1KT
(
KN−1KT

)−1(
z0 −Kξ̂u

)
(7.42)

Note that C{z0,y} = 0, which allows us to apply the dispersion operator to (7.42) as follows:

D{ξ̂K} = D{ξ̂u −N−1KT
(
KN−1KT

)−1
Kξ̂u}+D{N−1KT

(
KN−1KT

)−1
z0} =

D{ξ̂S → ξ̂K} = σ2
0N
−1 − σ2

0N
−1KT

(
KN−1KT

)−1
KN−1+

+ σ2
0N
−1KT

(
KN−1KTP0KN

−1KT
)−1

KN−1. (7.43)

Compare (7.43) to (5.12) to see that D{ξ̂K} increases by
[
σ2

0N
−1KT

(
KN−1KTP0KN

−1KT
)−1·

·KN−1
]

when the estimator ξ̂K is used for the model with stochastic constraints (7.1).

We already noted that ξ̂K is a sub-optimal (reproducing) estimator within model (7.1). We now
give the optimal reproducing estimator without derivation (for details see Schaffrin (1997a)).

ξ̂opt/rep = ξ̂S +KT
(
KKT

)−1(
z0 −Kξ̂S

)
(7.44)

The symbol ξ̂S on the right side of (7.44) represents the optimal (“non-reproducing”) estimator.
Equation (7.44) is identical to (7.41) when N−1 is replaced by I.

The dispersion is given by

D{ξ̂opt/rep} = D{ξ̂S}+D{KT
(
KKT

)−1(
z0 −Kξ̂S

)
} =

= σ2
0N
−1 − σ2

0N
−1KT

(
P−1

0 +KN−1KT
)−1

KN−1+

+ σ2
0K

T
(
KKT

)−1
P−1

0

(
P−1

0 +KN−1KT
)−1

P−1
0

(
KKT

)−1
K. (7.45)

Also note that

E{ξ̂opt/rep} = ξ, (7.46a)

z0 −Kξopt/rep = 0, (7.46b)

D{Kξ̂opt/rep} = D{z0} = σ2
0P
−1
0 . (7.46c)
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Chapter 8
Sequential Adjustments

The data model for sequential adjustments is based on two data sets, denoted by subscripts 1 and 2.
The first data set is comprised of n1 observations, and the second is comprised of n2. It is assumed
that the observations from the first data set, y1, are uncorrelated with those from the second, y2,
i.e., C{y1,y2} = 0. The data model is written as

y1
n1×1

= A1
n1×m

ξ + e1, (8.1a)

y2
n2×1

= A2
n2×m

ξ + e2, (8.1b)[
e1

e2

]
∼
([0

0

]
, σ2

0

[
P−1

1 0
0 P−1

2

])
. (8.1c)

The ranks of the coefficient (design) matrices A1 and A2 are

rkA1 = rk

[
A1

A2

]
= m. (8.2)

Note that the coefficient matrix A1 has full column rank, that there is no correlation between the
random error vectors e1 and e2, and that both data sets share a common variance component σ2

0 .
Also, the total number of observations from both data sets is defined as n := n1 + n2.

The following notation is adopted for variables used in the subsequent least-squares normal equations:

[Nii, ci] = ATi Pi [Ai, yi] and Nij = ATi PiAi +ATj PjAj for i 6= j. (8.3)

We use a single hat to denote that estimates are based only on the first data set and a double hat
to denote that they are based on both data sets. This makes it convenient to show estimates based
on both data sets as an update to estimates based on only the first data set. For example, the

estimate ξ̂ is based only on the first data set, while the estimate
ˆ̂
ξ is based on both data sets.
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We recognize a structural similarity between the data model shown in (8.1) and the Gauss-Markov
Model with stochastic constraints shown in (7.1). Given this similarity, we may immediately write
down a least-squares solution for ξ, and its dispersion matrix, in the form of (7.6b) and (7.8),
respectively, viewing the second data set as “stochastic constraints.”

ˆ̂
ξ = ξ̂ +N−1

11 A
T
2

(
P−1

2 +A2N
−1
11 A

T
2

)−1(
y2 −A2ξ̂

)
= (8.4a)

= ξ̂ +
(
N11 +AT2 P2A2

)−1
AT2 P2

(
y2 −A2ξ̂

)
(8.4b)

D{ˆ̂ξ} = D{ξ̂} − σ2
0N
−1
11 A

T
2

(
P−1

2 +A2N
−1
11 A

T
2

)−1
A2N

−1
11 (8.4c)

Equation (A.9a) was used in going from (8.4a) to (8.4b). It is important to note that the matrix(
P−1

2 +A2N
−1
11 A

T
2

)
is of size n2×n2; whereas the size of matrix

(
N11+AT2 P2A2

)
is m×m. Therefore,

if the second data set has only one observation, then n2 = 1, and the update is very fast! This may
be the case in a real-time application where one new observation is added at each epoch in time.

8.1 Verification of the Sequential Adjustment

In this section we discuss verification of the sequential adjustment, the aim of which is to confirm
that the adjustment based on both data sets is consistent with an adjustment based only on the first
data set. We can make use of the work done in Chapter 7 to write the estimated variance component
in a form composed of the sum of squared residuals Ω, based on adjustment of the first data set
only, and an update R(P2) for the inclusion of the second data set, analogous to the derivation of
(7.31). This facilitates hypothesis testing for the purpose of determining if the combined adjustment
is consistent with an adjustment based only on the first data set.

ˆ̂σ2
0(n−m) = Ω +R(P2) with Ω = σ̂2

0(n1 −m) (8.5a)

R(P2) = −
(
y2 −A2ξ̂

)T ˆ̂
λ with

ˆ̂
λ = −

(
P−1

2 +A2N
−1
11 A

T
2

)−1(
y2 −A2ξ̂

)
⇒ (8.5b)

ˆ̂σ2
0(n−m) = Ω +

(
y2 −A2ξ̂

)T (
P−1

2 +A2N
−1
11 A

T
2

)−1(
y2 −A2ξ̂

)
(8.5c)

Then, the test statistic

t =
R/n2

Ω/(n1 −m)
∼ F (n2, n1 −m) (8.6)

can be computed to verify the sequential adjustment. It has an F -distribution with n2 and n1 −m
degrees for freedom. For some specified significance level α, we claim that the observations from the
second data set are consistent with those from the first if t ≤ Fα,n2,n1−m. See Chapter 10 for more
on hypothesis testing.

8.2 Alternative Solution for the Normal Equations

Using the addition theory of normal equations, we may find a matrix representation of the normal
equations as follows, where again the double hats refer to a solution based on both data sets:(

N11 +N22

)ˆ̂
ξ =

(
c1 + c2

)
(8.7)
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These normal equations lead to

N11
ˆ̂
ξ +N22

ˆ̂
ξ − c2 = c1 ⇒ (8.8a)

N11
ˆ̂
ξ +AT2

ˆ̂
λ2 = c1, with

ˆ̂
λ = P2

(
A2

ˆ̂
ξ − y2

)
⇒ (8.8b)

y2 = A2
ˆ̂
ξ − P−1

2
ˆ̂
λ. (8.8c)

Then, from (8.8b) and (8.8c), we can write the following system of least-squares normal equations:

[
N11 AT2
A2 −P−1

2

] ˆ̂
ξ
ˆ̂
λ

 =

[
c1

y2

]
. (8.9)

From the first row of (8.9) we get

ˆ̂
ξ = N−1

11 c1 −N−1
11 A

T
2

ˆ̂
λ = (8.10a)

= ξ̂ −N−1
11 A

T
2

ˆ̂
λ. (8.10b)

Equation (8.10b) is the update formula as a function of the vector of estimated Lagrange multi-

pliers
ˆ̂
λ. Without further derivation, we can compare (8.10b) to (8.4a) to get an expression for the

estimated vector of Lagrange-multiplier as

ˆ̂
λ = −

(
P−1

2 +A2N
−1
11 A

T
2

)−1(
y2 −A2ξ̂

)
. (8.11)

Applying covariance propagation to (8.10b), we find the dispersion matrix of
ˆ̂
ξ to be

D{ˆ̂ξ} = D{ξ̂} − σ2
0N
−1
11 A

T
2

(
P−1

2 +A2N
−1
11 A

T
2

)−1
A2N

−1
11 , (8.12)

where we used the fact that C{y2, ξ̂} = 0, which indicates that the observations from the second
data set are uncorrelated with the estimated parameters based on the first data set only.

8.3 Sequential Adjustment, Rank-Deficient Case

Given rkA1 =: q1 < m, we may introduce a datum by splitting the system as was done in Section 6.1.
We split A1 into an n1 × q1 part denoted A11 and an n1 × (m− q1) part denoted A12. We also split
the parameter vector ξ into q1 × 1 part ξ1 and a (m− q1)× 1 part ξ2. Thus, we have

A1 = [A11, A12] , rkA11 = q1 and ξ =
[
ξT1 , ξ

T
2

]T
. (8.13)

Next we introduce a datum ξ0
2 such that ξ2 → ξ0

2, where the subscript 2 now refers to the datum,
rather than a second data set, for this symbol. The solution and dispersion formulas based on
the first data set only can be copied from (6.5b) and (6.6), respectively. The estimated variance
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component is nearly identical to (6.8) and (6.11), except for the splitting of the observation vector y.

ξ̂1 = N−1
11

(
c1 −N12ξ

0
2

)
(8.14a)

D{ξ̂1} = σ2
0N
−1
11 (8.14b)

σ̂2
0 =

yT1 P
(
y1 −A11ξ̂1 −A12ξ

0
2

)(
n1 − q1

) = (8.14c)

=

(
yT1 Py1 − cT1 N−1

11 c1

)(
n1 − q1

) (8.14d)

Note that the steps from (6.8) to (6.11) can be used to go from (8.14c) to (8.14d). Now we introduce
the second data set with a splitting analogous to the first.

y2 = A21ξ1 +A22ξ2 + e2, e2 ∼
(
0, σ2

0P
−1
2

)
(8.15)

The matrix A21 is of size n2 × q1, and A22 is of size n2 × (m − q1). No information in the second
data set refers to the datum choice; it only adds to the redundancy provided by the first data set.
The rank of the normal equation matrix is unchanged and is expressed as

rk

[
A11 A12

A21 A22

]
=: q = q1 (8.16)

The full least-squares normal equations are then written as[
AT11P1A11 +AT21P2A21 AT11P1A12 +AT21P2A22

AT12P1A11 +AT22P2A21 AT12P1A12 +AT22P2A22

][
ξ̂1

ξ0
2

]
=

[
AT11P1 AT21P2

AT12P1 AT22P2

] [
y1

y2

]
.

(8.17)

From the first row of (8.17), we may write the least-squares solution for
ˆ̂
ξ1 directly, followed by its

dispersion matrix, as

ˆ̂
ξ1 =

(
AT11P1A11 +AT21P2A21

)−1[(
AT11P1y1 +AT21P2y2

)
−
(
AT11P1A12 +AT21P2A22

)
ξ0

2

]
, (8.18a)

D{ˆ̂ξ1} = σ2
0

(
AT11P1A11 +AT21P2A21

)−1
. (8.19)

In order to derive update formulas, it is helpful to introduce an alternative expression for the normal
equations analogous to what was done in (8.8a) through (8.9).(

AT11P1A11

)
ξ̂1 =

(
AT11P1y1

)
−
(
AT11P1A12

)
ξ0

2 ⇒ (8.20a)

N11ξ̂1 = c1 −N12ξ
0
2 (8.20b)(

AT21P2A21

)
ξ̂1 =

(
AT21P2y2

)
−
(
AT21P2A22

)
ξ0

2 ⇒ (8.20c)

N21ξ̂1 = c2 −N22ξ
0
2 (8.20d)

Here we have used the symbols N12 and N21 differently than defined in (8.3). Together, (8.20b)
and (8.20d) comprise the first row of (8.17). Recombining (8.20b) and (8.20d) gives(

N11 +N21

)ˆ̂
ξ1 = c1 + c2 −

(
N12 +N22

)
ξ0

2 ⇒ (8.21a)

N11
ˆ̂
ξ1 +AT21

ˆ̂
λ = c1 −N12ξ

0
2, with

ˆ̂
λ = P2

(
A21

ˆ̂
ξ1 − y2 +A22ξ

0
2

)
. (8.21b)
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Note that in (8.20b) and (8.20d) a single hat was used for the estimate of ξ1 since each respective
equation represents only one set of data. The double hat in (8.21a) denotes the estimate of ξ1 based
on both data sets. From (8.21b) we can write the system of normal equations in matrix form as
follows: [

N11 AT21

A21 −P−1
2

]ˆ̂
ξ1
ˆ̂
λ

 =

[
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
. (8.22)

The solution of (8.22) can be obtained by applying the inversion formula for a partitioned matrix
as shown in (A.14).ˆ̂
ξ1
ˆ̂
λ

 =

[
N11 AT21

A21 −P−1
2

]−1 [
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
=

[
N−1

11 −N−1
11 A

T
21S2A21N

−1
11 N−1

11 A
T
21S2

S2A21N
−1
11 −S2

] [
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
,

(8.23)

with

S2 :=
(
P−1

2 +A21N
−1
11 A

T
21

)−1
. (8.24)

Finally, the estimated parameters and Lagrange multipliers are expressed as

ˆ̂
ξ1 = N−1

11

(
c1 −N12ξ

0
2

)
+

+N−1
11 A

T
21

(
P−1

2 +A21N
−1
11 A

T
21

)−1[
A21N

−1
11

(
−c1 +N12ξ

0
2

)
+ y2 −A22ξ

0
2

]
=

(8.25a)

= ξ̂1 +N−1
11 A

T
21

(
P−1

2 +A21N
−1
11 A

T
21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
, (8.25b)

ˆ̂
λ = −

(
P−1

2 +A21N
−1
11 A

T
21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
. (8.25c)

The dispersion matrix of the estimated vector of Lagrange multipliers is

D{ ˆ̂λ} =
(
P−1

2 +A21N
−1
11 A

T
21

)−1
D{y −A21ξ̂1}

(
P−1

2 +A21N
−1
11 A

T
21

)−1
, (8.26)

since D{ξ0
2} = 0. The following relations also hold:

C{y2, ξ̂1} = 0, (8.27a)

D{y −A21ξ̂1} = σ2
0

(
P−1

2 +A21N
−1
11 A

T
21

)
, (8.27b)

D{ ˆ̂λ} = σ2
0

(
P−1

2 +A21N
−1
11 A

T
21

)−1
, (8.27c)

D{ˆ̂ξ1} = D{ξ̂1} − σ2
0N
−1
11 A

T
21

(
P−1

2 +A21N
−1
11 A

T
21

)−1
A21N

−1
11 . (8.27d)

The estimated variance component is expressed as follows:

ˆ̂σ2
0(n− q) = σ̂2

0

(
n1 − q1

)
+
(
y2 −A21ξ̂1 −A22ξ

0
2

)T (
P−1

2 +A21N
−1
11 A

T
21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
=

(8.28a)

= σ̂2
0

(
n1 − q1

)
− ˆ̂
λT
(
y2 −A21ξ̂1 −A22ξ

0
2

)
. (8.28b)

Once again, from (8.20b) to (8.28b), we have used N11 = AT11P1A11.
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8.4 Sequential Adjustment with New Parameters

In this section we consider the case where the second data set refers to all the parameters of the first
data set, plus some additional new parameters. Thus we speak of m1 parameters associated with
the first data set and m2 with the second, with m2 > m1. In the double subscripts used below, the
first one refers to the data set, and the second subscript refers to the matrix splitting. For example,
A21 is that part of the design matrix from the second data set that refers to the original parameters,
whereas A22 is associated with the new parameters observed in the second data set. The original
lecture used ȳ to denote a preprocessed observation vector that included the datum choice. However,
we leave the bar off here and simply note that y could include both datum information as well as
observations. The observation equations that follow imply that we have assumed that there are no
correlations between the observations of data set one and those of data set two; they also imply that
both sets of observations share a common variance component.[

y1

y2

]
=

[
A11 0
A21 A22

] [
ξ1

ξ2

]
+

[
e1

e2

]
,

[
e1

e2

]
∼ (

[
0
0

]
, σ2

0

[
P−1

1 0
0 P−1

2

]
) (8.29)

The size of the system of equations is described as follows:

y1 ∈ Rn1 , ξ1 ∈ Rm1 , y2 ∈ Rn2 , ξ2 ∈ Rm2−m1 , n = n1 + n2, m2 > m1. (8.30)

Now, using the addition theory of normal equations, we can write[
AT11 AT21

0 AT22

] [
P1 0
0 P2

] [
A11 0
A21 A22

]ˆ̂
ξ1
ˆ̂
ξ2

 =

[
AT11P1 AT21P2

0 AT22P2

] [
y1

y2

]
⇒ (8.31a)

[
AT11P1A11 +AT21P2A21 AT21P2A22

AT22P2A21 AT22P2A22

]ˆ̂
ξ1
ˆ̂
ξ2

 =

[
AT11P1y1 +AT21P2y2

AT22P2y2

]
. (8.31b)

Here again, the double-hats refer to estimates based on both data sets.

Now, the first data set may no longer be available, rather we may be given only the estimates from
the first adjustment. In this case we can use the bottom row of (8.31b) to solve for the estimates of
the new parameters in terms of only the second data set, leading to

ˆ̂
ξ2 =

(
AT22P2A22

)−1
AT22P2

(
y2 −A21

ˆ̂
ξ1

)
(8.32)

Then, from the normal equations based solely on the first data set, we may substitute

AT11P1y1 =
(
AT11P1A11

)
ξ̂1 (8.33)

into the top row of the right side of (8.31b) and invert the normal-equation matrix on the left to
solve for the parameter estimates. For convenience, we introduce the following symbols to use in
the inverted matrix:

S1 := AT11P1A11 +AT21P2A21 −AT21P2A22

(
AT22P2A22

)−1
AT22P2A21 = (8.34a)

= AT11P1A11 +AT21P̄2A21, (8.34b)

P̄2 := P2 − P2A22

(
AT22P2A22

)−1
AT22P2, (8.34c)

N22 = AT22P2A22. (8.34d)
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We refer to P̄2 as a reduced weight matrix. Upon inverting the normal-equations matrix (see (A.14)

for the inverse of a partitioned matrix), we find the following solution for
ˆ̂
ξ1 and

ˆ̂
ξ2:ˆ̂

ξ1
ˆ̂
ξ2

 =

[
S−1

1 −S−1
1

(
AT21P2A22

)
N−1

22

−N−1
22

(
AT22P2A21

)
S−1

1 N−1
22 +N−1

22

(
AT22P2A21

)
S−1

1

(
AT21P2A22

)
N−1

22

]
×

×
[(
AT11P1A11

)
ξ̂1 +AT21P2y2

AT22P2y2

]
. (8.35)

We can continue by using (8.33), (8.34b) and (8.34c) with the first row of (8.35) to arrive at

ˆ̂
ξ1 = S−1

1

[(
AT11P1A11

)
ξ̂1 +AT21P2y2 −

(
AT21P2A22

)
N−1

22 A
T
22P2y2

]
= (8.36a)

= S−1
1

{[(
AT11P1A11

)
ξ̂1 +AT21P̄2y2

]
+
[(
AT21P̄2A21

)
−
(
AT21P̄2A21

)]
ξ̂1

}
= (8.36b)

= S−1
1 AT21P̄2

(
y2 −A21ξ̂1

)
+ S−1

1

(
AT11P1A11 +AT21P̄2A21

)
ξ̂1 = (8.36c)

= S−1
1 AT21P̄2

(
y2 −A21ξ̂1

)
+ ξ̂1 ⇒ (8.36d)

ˆ̂
ξ1 − ξ̂1 = S−1

1 AT21P̄2

(
y2 −A21ξ̂1

)
, (8.36e)

where (8.36e) is in the form of an update formula.

We assume that P2 is invertible, as implied in the given model (8.29). We now wish to check the
rank of the reduced weight matrix P̄2. It is easy to check that the product P−1

2 P̄2 is idempotent.
Then using (A.4) and (A.12) we find

rk P̄2 = rk
(
P−1

2 P̄2

)
= tr

(
P−1

2 P̄2

)
= tr

(
In2 −A22

(
AT22P2A22

)−1
AT22P2

)
= (8.37a)

= n2 − tr
[
A22

(
AT22P2A22

)−1
AT22P2

]
= n2 − tr

[(
AT22P2A22

)−1
AT22P2A22

]
= (8.37b)

= n2 −m2 < n2. (8.37c)

Thus we reduce the rank by modifying the original weight matrix P2 to obtain P̄2. Moreover, we
find that matrix P̄2 is singular.

The parameter dispersion matrices, D{ˆ̂ξ1} and D{ˆ̂ξ2}, are shown at the end of the next section.

8.5 Sequential Adjustment with New Parameters and Small
Second Data Set

In (8.36e) we must invert the m1 × m1 matrix S1 to solve the system of equations. However, in
some applications, the number of observations n2 in the second data set may be significantly less
than m1. In this case we would like to reformulate the solution in (8.36e) so that only a matrix of
size n2 × n2 needs to be inverted.
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We have an alternative expression for matrix S1 in (8.34b), the inverse of which can also be derived
as follows:

S−1
1 =

[(
AT11P1A11

)
+
(
AT21P̄2A21

)]−1
= (8.38a)

=
{[
Im1 +

(
AT21P̄2A21

)(
AT11P1A11

)−1](
AT11P1A11

)}−1
= (8.38b)

=
(
AT11P1A11

)−1[
Im1

+
(
AT21P̄2A21

)(
AT11P1A11

)−1]−1
. (8.38c)

Using (8.38c) we may rewrite (8.36e) as

ˆ̂
ξ1 − ξ̂1 =

(
AT11P1A11

)−1[
Im1 +

(
AT21P̄2A21

)(
AT11P1A11

)−1]−1
AT21P̄2

(
y2 −A21ξ̂1

)
= (8.39a)

=
(
AT11P1A11

)−1
AT21P̄2

[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)
. (8.39b)

Here, we have made use of (A.9) in the step from (8.39a) to (8.39b), with two of the matrices in
(A.9) set to identity. Note that the matrix to invert inside the square brackets is of size m1×m1 in
(8.39a) but is size n2×n2 in (8.39b). The choice of which equation to use will usually be determined
by the smaller of m1 and n2. Also, we have the relation

− ˆ̂
λ =

[
In2 +A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)
, (8.40)

which means that the solution for the first subset of parameters may also be expressed as

ˆ̂
ξ1 − ξ̂1 = −

(
AT11P1A11

)−1
AT21P̄2

ˆ̂
λ. (8.41)

Now we begin with (8.32) to find a solution for the parameters
ˆ̂
ξ2 in terms of the Lagrange multi-

pliers
ˆ̂
λ:

ˆ̂
ξ2 =

(
AT22P2A22

)−1
AT22P2

(
y2 −A21

ˆ̂
ξ1

)
= (8.42a)

=
(
AT22P2A22

)−1
AT22P2 ·

{(
y2 −A21ξ̂1

)
−A21

(
AT11P1A11

)−1
AT21P̄2×

×
[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)}
= (8.42b)

=
(
AT22P2A22

)−1
AT22P2

[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)
= (8.42c)

= −
(
AT22P2A22

)−1
AT22P2

ˆ̂
λ. (8.42d)

The inverse formula of (A.7) was used in the last step to reach (8.42c), with matrices T , W , and V
in (A.7) set to identity.

To facilitate computing the parameter dispersion matrix we write the following system of normal
equations, noting that the second line, (8.43b), is in the form of an update solution:[

AT11P1A11 +AT21P2A21 AT21P2A22

AT22P2A21 AT22P2A22

]ˆ̂
ξ1
ˆ̂
ξ2

 =

[(
AT11P1A11

)
ξ̂1 +AT21P2y2

AT22P2y2

]
⇒ (8.43a)

[
AT11P1A11 +AT21P2A21 AT21P2A22

AT22P2A21 AT22P2A22

]ˆ̂
ξ1 − ξ̂1

ˆ̂
ξ2

 =

[
AT21P2

(
y2 −A21ξ̂1

)
AT22P2

(
y2 −A21ξ̂1

)] (8.43b)
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Note that (8.43a) is equivalent to (8.31b) shown earlier.

We have already inverted the normal-equation matrix in (8.35). Taking elements from (8.35), we
may write the parameter dispersion and covariance matrices as follows:

D{ˆ̂ξ1} = σ2
0S
−1
1 = σ2

0

(
AT11P1A11 +AT21P̄2A21

)−1
, (8.44a)

C{ˆ̂ξ1,
ˆ̂
ξ2} = −D{ˆ̂ξ1}

(
AT21P2A22

)(
AT22P2A22

)−1
, (8.44b)

D{ˆ̂ξ2} = σ2
0

(
AT22P2A22

)−1 −
(
AT22P2A22

)−1(
AT22P2A21

)
C{ˆ̂ξ1,

ˆ̂
ξ2}. (8.44c)

Each of the above covariance matrices (8.44a) through (8.44c) include the matrix S−1
1 , which implies

that a matrix of size m1×m1 must be inverted. However, with the insertion of In2 into (8.44a), and
with appropriate matrix groupings, we may apply the inversion formula (A.7) to find an inverse of
smaller dimension as shown in the following:

D{ˆ̂ξ1} = σ2
0

[(
AT11P1A11

)
+
(
AT21P̄2

)
In2A21

]−1
= (8.45a)

= σ2
0N
−1
11 − σ2

0N
−1
11 A

T
21P̄2

(
In2

+A21N
−1
11 A

T
21P̄2

)−1
A21N

−1
11 = (8.45b)

= σ2
0N
−1
11 − σ2

0N
−1
11 A

T
21P̄2

ˆ̂
λ. (8.45c)

Here, we have used N11 := AT11P1A11 for compactness. The parenthetical term that must be inverted
in equation (8.45b) is an n2×n2 matrix, which, again, may be much smaller than an m1×m1 matrix,
depending on the application. Of course, the matrix (AT11P1A11)−1 is also size m1 ×m1, but it is
assumed that this inverse has been performed and saved in the first adjustment.

The estimated variance component is expressed as

ˆ̂σ2
0

(
n−m2

)
= σ̂2

0

(
n1 −m1

)
−
(
y2 −A21ξ̂1

)T
P̄2

ˆ̂
λ. (8.46a)

Then, substituting (8.40) leads to:

ˆ̂σ2
0

(
n−m2

)
= σ̂2

0

(
n1 −m1

)
+

+
(
y2 −A21ξ̂1

)T
P̄2

[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)
= (8.46b)

= σ̂2
0

(
n1 −m1

)
+
(
y2 −A21ξ̂1

)T
P̄2

(
y2 −A21ξ̂1

)
(8.46c)
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Chapter 9
Condition Equations with Parameters —
the Gauss-Helmert Model

Data models introduced prior to this chapter have treated parameters and condition equations
separately. The Gauss-Helmert model (GHM) combines condition equations and parameters into
a single model. In some cases the GHM might be useful for dealing with complicated observation
equations.

We begin our discussion with a leveling-network example in order to contrast the Gauss-Markov
model (GMM) with the model of condition equations presented in Chapter 4 and to show how the
Gauss-Helmert model combines the information used in these two models. The diagram in Figure 9.1
shows a leveling network with four points (P1, P2, P3, P4) that has been observed in two closed loops
comprised of a total of five observations (y1, y2, y3, y4, y5). The general form of the observation
equations is

y = A1ξ1 +A2ξ2 + e, (9.1a)

rkA1 = rk
[
A1, A2

]
=: q < m, (9.1b)

e ∼
(
0, σ2

0P
−1
)
, (9.1c)

where the coefficient matrix A and the vector of unknown parameters ξ have been partitioned,
respectively, as

A =

[
A1
n×q

A2
n×(m−q)

]
and ξ =

[
ξT1
1×q

ξT2
1×(m−q)

]T
. (9.2)

In this example, m = 4 (four heights). Since leveled height-differences supply no information about
the height datum, we can only estimate the heights of three of the points (m − 1 = q = 3) with
respect to the remaining one (m− q = 1). Thus, the model has been partitioned so that ξ1 contains
three estimable heights, and ξ2 contains a non-estimable height, which could be assigned a datum
value. In this example, we arbitrarily chose point P4 for the non-estimable height. As was stated
in Chapter 6, we have the relationship A2 = A1L, for some q × (m − q) matrix L, which means
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that matrix A2 is a linear combination of the columns of matrix A1, reflecting the rank deficiency
of matrix A.

The problem could also be solved within the model of condition equations introduced in Chapter 4,
which reads

By = Be, (9.3a)

with conditions

i. B
[
A1 A2

]
= 0, (9.3b)

and

ii. rkB = r = n− rkA1. (9.3c)

These two conditions ensure equivalent solutions within the models of (9.1) and (9.3a) as discussed
in Section 4.1.

We have the following design matrices and parameter vector for the example leveling network, for
which it is easy to verify that conditions i and ii are satisfied:

A1 =


−1 1 0
−1 0 1
0 −1 1
0 −1 0
0 0 −1

 , A2 =


0
0
0
1
1

 , B =

[
1 −1 1 0 0
0 0 1 −1 1

]
, ξ1 =

h1

h2

h3

 , ξ2 =
[
h4

]
, (9.4)

where hi is the height of point Pi.

P1

P3

P4

P2

y1

y2

y3

y4

y5

Figure 9.1: Leveling network. Arrows point in the direction of the level runs.

Now we wish to introduce a new coefficient matrix B that does not contain matrix A in its nullspace,
so that we are left with a model of condition equations with parameters. For now we use the symbol
B̄ in order to distinguish from the coefficient matrix used in the model of condition equations (which
does contain matrix A in its nullspace). Similarly, we introduce other bar-terms as follows:

ȳ = B̄y = w̄ = B̄A1ξ1 + B̄A2ξ2 + B̄e, (9.5a)

rk
(
B̄
)

=: r̄, (9.5b)

B̄e ∼
(
0, σ2

0B̄P
−1B̄T

)
. (9.5c)
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The size of B̄ is r̄ × n. The model in (9.5) is equivalent to (9.1), if and only if,

iii) B̄A1 has n− r̄ columns of zeros, and

iv) rk(B̄A1) + r = r̄ ⇔ n = r̄ + q − rk(B̄A1) = rk B̄ + rkA− rk(B̄A1)

Note that, through the matrix B̄, one observation is eliminated for each eliminated parameter.
Referring to the level network example, we may wish to eliminate the height of point P3 from the
parameter list (perhaps it is a temporary benchmark of no particular interest). This can be done by
introducing the following example matrix B̄:

B̄ =


1 0 0 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 1 0 1

⇒ B̄A2 =


0
0
1
1

 , B̄A1 =


−1 1 0
−1 1 0
0 −1 0
0 −1 0

 .
With these example matrices we have n = 5, r̄ = rk B̄ = 4, q = rkA1 = 3, and rk(B̄A1) = 2. Since
n − r̄ = 1, the single column of zeros in B̄A1 satisfies condition iii. Also, condition iv is satisfied
since 5 = 4 + 3− 2.

As an aside, we note that it is also possible to remove l estimable parameters via the splitting of
the constraint equation introduced in (5.1).

κ0 = K
l×m

ξ =
[
K1, K2

] [ξ1

ξ2

]
⇒ (9.6a)

ξ1 = K−1
1 κ0 −K−1

1 K2ξ2 (9.6b)

Here K1 is a l × l invertible matrix, and K2 is of size l × (m − l). Upon substitution for ξ1 of
(9.6b) into (9.1) we find the following modified system of observation equations with l parameters
eliminated:

y = A1ξ1 +A2ξ2 + e = A1K
−1
1 κ0 + (A2 −A1K

−1
1 K2)ξ2 + e. (9.7)

The l × 1 vector ξ1 has vanished on the right side of (9.7). While this technique is possible, it
might not be used frequently in practice.

We could derive the solution for ξ within (9.5) from statistical principles via BLUUE (Best Linear
Uniformly Unbiased Estimate), but here we use the equivalent principle of LESS (LEast-Squares
Solution) shown in Section 4.1. In the following, we recombine coefficient matrices A1 and A2

back into the single matrix A and recombine the partitioned parameter vector back into a single
vector ξ = [ξT1 , ξ

T
2 ]T . Therefore, we can rewrite (9.5) as

w̄ = B̄A1ξ1 + B̄A2ξ2 + B̄e = Āξ + B̄e. (9.8)

Our target function should minimize a quadratic form in the random error vector e. That is, we
minimize eTPe rather than (B̄e)T (B̄P−1B̄T )−1(B̄e).

For convenience, another bar-symbol is introduced at this point: Ā := B̄A. Then, the Lagrange
Target function is written as

Φ(e, ξ,λ) =: eTPe+ 2λT
(
B̄e+ Āξ − w̄

)
, (9.9)
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which is stationary with respect to the unknown vectors e, ξ, and λ.

The Euler-Lagrange necessary conditions result in the following system of equations:

1

2

∂Φ

∂e
= P ẽ+ B̄T λ̂

.
= 0, (9.10a)

1

2

∂Φ

∂ξ
= ĀT λ̂

.
= 0, (9.10b)

1

2

∂Φ

∂λ
= B̄ẽ+ Āξ̂ − w̄ .

= 0. (9.10c)

The predicted error and estimated parameter vectors are then solved for as follows:

ẽ = −
(
P−1B̄T

)
λ̂⇒ from equation (9.10a)

−
(
B̄P−1B̄T

)
λ̂ = w̄ − Āξ̂ ⇒ multiplying by B̄ and using (9.10c)

− λ̂ =
(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
⇒

(
B̄P−1B̄T

)
is invertible

− ĀT λ̂ = ĀT
(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
= 0⇒ multiplying by ĀT and using (9.10b)

ĀT
(
B̄P−1B̄T

)−1
Āξ̂ = ĀT

(
B̄P−1B̄T

)−1
w̄

(9.11)

Finally, we arrive at

ξ̂ =
[
ĀT
(
B̄P−1B̄T

)−1
Ā
]−1

ĀT
(
B̄P−1B̄T

)−1
w̄, (9.12a)

ẽ =
(
P−1B̄T

)(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
. (9.12b)

for the estimated parameters and predicted residuals, respectively. Equation (9.12a) has the same

form as the normal equations derived within the GMM. The dispersion of the estimate ξ̂ is expressed
by

D{ξ̂} = σ2
0

[
ĀT
(
B̄P−1B̄T

)−1
Ā
]−1

. (9.13)

Notation change: For the remainder of the discussion we drop the bars from the symbols as a matter
of convenience. Recall that the bars were introduced in the first place to distinguish between the
matrix B introduced in (9.5) and that used in Chapter 4 for the model of condition equations.
Dropping the bars means that B := B̄, w := w̄, BA := Ā. With this simplified notation, we rewrite
the solution (9.12a) as follows:

ξ̂ =
[
(BA)T

(
BP−1BT

)−1
BA
]−1

(BA)T
(
BP−1BT

)−1
w. (9.14)

The dispersion of ξ is derived in parts as follows:

D{(BA)T
(
BP−1BT

)−1
w} = (BA)T

(
BP−1BT

)−1
D{w}

(
BP−1BT

)−1
BA =

= σ2
0(BA)T

(
BP−1BT

)−1(
BP−1BT

)(
BP−1BT

)−1
BA = σ2

0(BA)T
(
BP−1BT

)−1
BA,

therefore

D{ξ̂} =
[
(BA)T

(
BP−1BT

)−1
BA
]−1

D{(BA)T
(
BP−1BT

)−1
w}
[
(BA)T

(
BP−1BT

)−1
BA
]−1

=

=
[
(BA)T

(
BP−1BT

)−1
BA
]−1

σ2
0(BA)T

(
BP−1BT

)−1
BA
[
(BA)T

(
BP−1BT

)−1
BA
]−1

=

D{ξ̂} = σ2
0

[
(BA)T

(
BP−1BT

)−1
BA
]−1

. (9.15)

60



9.1 Estimated Variance Component

The P -weighted norm of the residual vector ẽ is defined as

Ω := ẽTP ẽ = (9.16a)

=
(
λ̂TBP−1

)
P
(
P−1BT λ̂

)
= (9.16b)

=
[(
w −BAξ̂

)T (
BP−1BT

)−1](
BP−1BT

)
λ̂ = (9.16c)

=
(
w −BAξ̂

)T (
BP−1BT

)−1(
w −BAξ̂

)
= (9.16d)

=
(
Bẽ
)T (

BP−1BT
)−1(

Bẽ
)
. (9.16e)

Thus is follows that, the uniformly unbiased estimate of the variance component σ2
0 is given by

σ̂2
0 =

(
Bẽ
)T (

BP−1BT
)−1(

Bẽ
)

r
=
ẽTP ẽ

r
=
−wT λ̂

r
, (9.17)

where, using the recombined matrix A, the redundancy r is defined as r := rkB − rk(BA).

9.2 Equivalent Normal Equations

From (9.10b) and the second equation following (9.10c), we can recognize the following system of
normal equations:[

BP−1BT −BA
−(BA)T 0

] [
λ̂

ξ̂

]
=

[
−w
0

]
⇒
[
λ̂

ξ̂

]
=

[
BP−1BT −BA
−(BA)T 0

]−1 [
−w
0

]
. (9.18)

We want to show that the solution to this system yields the same ξ̂ as that of (9.14). The formula
for the inverse of a partitioned matrix (see (A.14)) leads to the following solution:[

λ̂

ξ̂

]
= X1 X2

−
[
(BA)T (BP−1BT )−1BA

]−1
(BA)T (BP−1BT )−1

[
0− (BA)T (BP−1BT )−1BA

]−1

[−w
0

]
,

and finally to [
λ̂

ξ̂

]
=

[
−X1w[

(BA)T (BP−1BT )−1BA
]−1

(BA)T (BP−1BT )−1w

]
. (9.19)

Here the symbols X1 and X2 represent quantities of no interest. We see that the solution for the
parameters ξ̂ is the same in (9.14).
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Chapter 10
Statistical Testing and Confidence Ellipses

Consider a normally distributed random (univariate) variable y with the following first through
fourth moments:

E{y} = µ, (10.1a)

E{(y − µ)2} = D{y} = σ2, (10.1b)

E{(y − µ)3} = 0, (10.1c)

E{(y − µ)4} = 3(σ2)2. (10.1d)

The third moment being zero in (10.1c) means there is no skewness in the distribution of the random
variable. The right side of (10.1d) indicates that there is no kurtosis (peak) in the distribution.

If (10.1c) or (10.1d) are not satisfied, the variable is not normally distributed and can be characte-
rized as follows:

E{(y − µ)3} > 0⇔ the distribution is skewed to the positive side. (10.2a)

E{(y − µ)3} < 0⇔ the distribution is skewed to the negative side. (10.2b)

E{(y − µ)4} − 3(σ2)2 > 0⇔ the distribution has positive kurtosis. (10.2c)

E{(y − µ)4} − 3(σ2)2 < 0⇔ the distribution has negative kurtosis. (10.2d)

Skewness appears in a graph of a sample of the random variable (e.g., a histogram) as a shift in
the peak value from center. Positive kurtosis shows higher probability near the expected value µ,
which results in a taller, narrower graph. Negative kurtosis shows higher probability in the tails of
the graph; thus the graph appears flatter than that of a normally distributed variable.

The pdf (probability density function, or density function) of a normally distributed random (uni-
variate) variable y is

f(y) =
1√

2πσ2
e−(y−µ)2/2σ2

, (10.3)
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where µ is the expectation of the distribution, σ is standard deviation, and σ2 is variance. Note
that the term 1/

√
2πσ2 ≈ 0.4/σ denotes the amplitude of the graph of the curve, µ shows the offset

of the peak from center, and σ is the distance from the center to the inflection points of the curve.

The cdf (cumulative distribution function, or distribution function) of a normally distributed random
variable is expressed as:

F (y) =

y∫
−∞

f(t)dt =

y∫
−∞

1√
2πσ2

e−(t−µ)2/2σ2

dt. (10.4)

Figure 10.1 shows pdf and cdf plots for the normal distribution using various values for µ and σ2
0 .

Line colors and types match between the pdf and cdf plots. The solid, green line represents the
respective standard-normal pdf and cdf curves.
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Figure 10.1: pdf and cdf for the normal distribution with matching line types and colors

Note that, in geodetic-science applications, the random variable y might be an observation, an
adjusted observation, a predicted residual, etc. We can standardize the random variable y with the
following transformation, which subtracts out the mean and divides by the standard deviation:

z =
y − µ
σ

. (10.5)

The standardized random variable z has the following moments and probability functions:

E{z} = 0, (10.6a)

D{z} = 1, (10.6b)

pdf : f(z) =
1√
2π

e−z
2/2, (10.6c)

cdf : F (z) =

z∫
−∞

f(t)dt =

z∫
−∞

1√
2π

e−t
2/2dt. (10.6d)

A plot of the pdf of z is shown in Figure 10.2, along with example Student’s-t distribution curves
(discussed below).
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In the multivariate case, the random variable y is an n × 1 vector, with dispersion (covariance)
matrix Σ and expectation µ, which is also size n× 1. The pdf is then written as

f(y) =
1

(2π)n/2
√

det Σ
e−(y−µ)T Σ−1(y−µ)/2. (10.7)

And the cdf is written as

F (y1, . . . , yn) =

yn∫
−∞

. . .

y1∫
−∞

f(t1, . . . , tn)dt1, . . . , dtn. (10.8)

The elements of y, i.e. y1, . . . , yn, are statistically independent if, and only if,

f(t1, . . . , tn) = f(t1) · f(t2) . . . f(tn), (10.9a)

which implies

C{yi, yj} = 0 for i 6= j. (10.9b)

Equation (10.9b) states that there is no covariance between the elements of random vector y.

The third and fourth moments for the multivariate case are given in (10.10a) and (10.10b), respecti-
vely.

E{(yi − µi)(yj − µj)(yk − µk)} = 0 for i, j, k = {1, . . . , n} (10.10a)

E{(yi − µi)(yj − µj)(yk − µk)(yl − µl)} = 3(σ2
i )δijkl for i, j, k, l = {1, . . . , n} (10.10b)

In the following, we discuss studentized residuals, which have a t-distribution (or Student’s t-
distribution). The pdf for a (univariate) variable having a t-distribution and having ν = n − 1
degrees of freedom is defined as follows:

f(t) =
1√

(n− 1)π
· Γ(n/2)

Γ
(
n−1

2

) · 1(
1 + t2

n−1

)n/2 , (10.11)

where the gamma function is defined by

Γ(n) := (n− 1)Γ(n− 1) =

∞∫
0

e−ttn−1dt = (n− 1)! for n ∈ N. (10.12)

As is known from introductory statistics texts, the pdf for the Student’s t-distribution converges
to the pdf of the normal distribution as n approaches 30. A plot of the pdf for the Student’s t-
distribution, with ν = 2, 4, together with the pdf for the normal distribution, is shown in Figure 10.2.

10.1 Standardized and Studentized Residuals

We begin this section by restating the (full rank) Gauss-Markov model and writing the predicted
vector of random errors within the model.

y = Aξ + e, e ∼
(
0, σ2

0P
−1
)
, rkA = m (10.13a)

ẽ =
(
In −AN−1ATP

)
y =

(
In −AN−1ATP

)
e (10.13b)
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Figure 10.2: Student’s t and normal distributions for a standardized random variable z

As usual, the observation vector y is of size n × 1, and the coefficient matrix A is of size n ×
m. Obviously, the far-right side of (10.13b) cannot be computed since e is an unknown variable.
However, the expression is useful for analytical purposes.

The so-called standardized residual is a function of the residual vector ẽ and its dispersion matrix
D {ẽ} as shown below.

D{ẽ} = σ2
0

(
P−1 −AN−1AT

)
, (10.14a)

ηj :=
[
0, . . . , 0, 1

jth
, 0, . . . , 0

]T
, (10.14b)

σ2
ẽj = ηTj D{ẽ}ηj = E{ẽ2

j}, (10.14c)

Then, the jth standardized residual is defined as

ẽj/σẽj . (10.15)

Since the variance component σ2
0 is considered unknown in the model (10.13a), we typically replace

it with its estimate σ̂2
0 . This replacement leads to the following analogous set of equations for the

studentized residual :

σ̂2
0 =

ẽTP ẽ

n− rk(A)
=
yTPy − cTN−1c

n−m , (10.16a)

D̂{ẽ} = σ̂2
0

(
P−1 −AN−1AT

)
, (10.16b)

σ̂2
ẽj = ηTj D̂{ẽ}ηj = Ê{ẽ2

j}. (10.16c)

Then the studentized residual is defined as

ẽj/σ̂ẽj . (10.17)

Note that the denominator in (10.15) is constant (due to the unknown but constant variance compo-
nent σ2

0), whereas the denominator of (10.17) is random due to the introduction of the estimate σ̂2
0 ,
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which is random. Of course the numerator is random in both cases. Using Q to represent cofactor
matrices, we can rewrite the standardized/studentized residuals in the following alternative form:

standardized residual: ẽj

/√
σ2

0

(
Qẽ
)
jj
∼ N (0, 1), (10.18a)

studentized residual: ẽj

/√
σ̂2

0

(
Qẽ
)
jj
∼ t(n− 1). (10.18b)

Here D{ẽ} = σ2
0Qẽ, and (Qẽ)jj denotes the jth diagonal element of the residual cofactor matrix Qẽ.

Standardized residuals are normally distributed, whereas Studentized residuals follow the student t-
distribution. Again, it is noted that (10.18a) cannot be computed unless the variance component σ2

0

is known.

Example: Direct observations of a single parameter µ with weight matrix P = In.

y = τµ+ e, e ∼ N
(
0, σ2

0In
)
, with τ = [1, . . . , 1]T

µ̂ =
τTy

τT τ
=

1

n

(
y1 + . . .+ yn

)
∼ N

(
µ, σ2

0/n
)

ẽ = y − τ µ̂ ∼ N (0, σ2
0

[
In −

ττT

n

]
)

Qẽ = In −
ττT

n

σ̂2
0 =

ẽT ẽ

(n− 1)

The formula for Qẽ in the above example means that (Qẽ)jj = (n− 1)/n, which shows that the
more observations we have (i.e., the larger n is), the more the dispersion of the predicted random er-
ror D{ẽ} approaches the dispersion of the true random error D{e}. In this example the standardized
and studentized residuals are written as follows:

standardized:
ẽj√

σ2
0(Qẽ)jj

=
ẽj
√
n

σ0

√
n− 1

∼ N (0, 1) (10.19a)

or alternatively:
ẽj√

(Qẽ)jj
=

ẽj
√
n√

n− 1
∼ N (0, σ2

0) (10.19b)

studentized:
ẽj√

σ̂2
0(Qẽ)jj

=
ẽj√
ẽT ẽ

√
n ∼ t(n− 1) (10.19c)

We extend the example by including a hypothesis test for the parameter estimate µ̂ against a specified
value µ0 at a significance level α (see Section 10.2 for a more complete discussion of hypothesis
testing).

Hypothesis test: H0 : E{µ̂} = µ0 against HA : E{µ̂} 6= µ0.

Test statistic: t =
µ̂− µ0√

σ̂2
0

√
n ∼ t(n− 1).

We accept the null hypothesis H0 if t−α/2 ≤ t ≤ tα/2; otherwise we reject H0. We may perform a
similar test H0 : E{ẽj} = 0 for the jth residual. In this case the test statistic is the studentized
residual computed by (10.19c).
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10.2 Hypothesis Testing Within the Gauss-Markov Model

The hypothesis test introduced in Section 10.1 for direct observations of a single parameter is now
extended to the Gauss-Markov Model (GMM). In introducing the GMM in Chapter 3, a probability
density function was not given for the random observation errors; only the first and second moments
of the errors were specified. This is indeed all that is necessary to formulate and solve the least-
squares estimation problem within the GMM. However, in order to perform hypothesis testing
after the least-squares estimate has been computed, the probability distribution must be specified.
Typically, we assume that the observation errors have a normal distribution. Then, the (full rank)
GMM is succinctly written as

y
n×1

= A
n×m

ξ + e, rk(A) = m, e ∼ N
(
0, σ2

0P
−1
)
. (10.20)

Minimization of the observation errors via a least-squares adjustment leads to the following pa-
rameter estimate and predicted-error vectors, shown with their corresponding (assumed) normal
distributions:

ξ̂ = N−1c ∼ N
(
ξ, σ2

0N
−1
)
, (10.21a)

ẽ =
(
In −AN−1ATP

)
y ∼ N

(
0, σ2

0

[
P−1 −AN−1AT

])
. (10.21b)

Or equivalently, we could write for the predicted residual vector

ẽ =
(
In −AN−1ATP

)
e = QẽPy ∼ N

(
0, σ2

0Qẽ
)
, (10.22a)

with

Qẽ := P−1 −AN−1AT . (10.22b)

The jth standardized and studentized residuals are then written as follows:

jth standardized residual: ẽj

/√
σ2

0(Qẽ)jj ∼ N (0, 1), (10.23)

jth studentized residual: ẽj

/√
σ̂2

0(Qẽ)jj ∼ t(n− rkA). (10.24)

As shown in Chapter 3, we compute the estimated reference variance within this model by

σ̂2
0 =

ẽTP ẽ

n− rkA
. (10.25)

The hypothesis test for the jth studentized residual then becomes

H0 : E{ẽj} = 0 versus HA : E{ẽj} 6= 0. (10.26)

Likewise, we may test individual elements of the estimated parameter vector ξ̂. For example, we

may want to compare the jth element of the parameter vector, ξ̂j , against some specified value ξ
(0)
j .

In this case, the null hypothesis and computed test statistic are defined as follows:

H0 : E{ξ̂j} = ξ
(0)
j versus HA : E{ξ̂j} 6= ξ

(0)
j , (10.27a)

tj =
ξ̂j − ξ(0)

j√
σ̂2

0

(
N−1

)
jj

∼ t(n− rkA) or t2j ∼ F (1, n− rkA). (10.27b)
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Note that from (10.27b) we see that the square of a test statistic having a Student’s t-distribution
has a Fisher distribution (also called F -distribution). For a given significance level α, we accept H0

if t−α/2 ≤ tj ≤ tα/2; otherwise we reject H0. We can use a cdf table for the t-distribution to find
the value of tα/2(n − rkA). Note that α is the probability of making a Type I error (also called
the significance level of the test), and n− rkA is the degrees of freedom, often denoted by ν in the
statistical literature.

10.3 Confidence Intervals for Ellipses, Ellipsoids, and Hype-
rellipsoids

Confidence intervals specify the statistical probability that a univariate random variableX lies within
a certain range of values. Confidence ellipses, ellipsoids, and hyperellipsoids are the respective 2-D,
3-D, and n-D analog to confidence intervals.

10.3.1 Confidence Intervals (univariate case)

By definition, the cdf (cumulative distribution function) of X is

FX(x) = P (X ≤ x), −∞ < x <∞. (10.28)

It follows from (10.28) that the probability the random variable X lies within a given range is
computed by

P (a < X ≤ b) = FX(b)− FX(a). (10.29)

Applying (10.29) to the normalized random variable z of (10.5), we can write the following probabi-
lities for confidence intervals bounded by ±1σ, ±2σ, ±3σ, respectively, from the mean, where σ = 1
since z ∼ N (0, 1) according to (10.6a) and (10.6b).

P (−1 < z ≤ 1) = P (µ− σ < y ≤ µ+ σ) = 68.3% (10.30a)

P (−2 < z ≤ 2) = P (µ− 2σ < y ≤ µ+ 2σ) = 95.5% (10.30b)

P (−3 < z ≤ 3) = P (µ− 3σ < y ≤ µ+ 3σ) = 99.7% (10.30c)

Often we speak of a confidence interval in terms of percent and wish to find the range of values the
random variable can take on in this interval. Some common intervals for a normally distributed
random (univariate) variable z are

90% = P (−1.645 < z ≤ 1.645), (10.31a)

95% = P (−1.960 < z ≤ 1.960), (10.31b)

99% = P (−2.576 < z ≤ 2.576). (10.31c)
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10.3.2 Confidence Ellipses — Bivariate Case

Analogous to the univariate case, we write the probability for the standard (“1-sigma”) confidence
ellipse as follows:

P
(
(y − µ)TΣ−1(y − µ) < 1

)
= 19.9%. (10.32)

We are using vector notation again: y is a random 2-D vector and µ is the expected value of y.
Also, we have a 2× 2 dispersion matrix for y, namely Σ. More specifically we have

y =

[
y1

y2

]
, µ =

[
µ1

µ2

]
, Σ := D{y} =

[
σ2

1 σ12

σ21 σ2
2

]
, σ12 = σ21. (10.33)

When speaking of the elements of the vectors and matrix in (10.33), we say that µ1 is the expected
value of y1; σ2

1 is the variance of y1 (with σ1 called standard deviation), and σ12 is the covariance
between y1 and y2.

Using the above definitions, together with equation (10.7), we can write the pdf of y explicitly as

f(y) =
1

2π
√
σ2

1σ
2
2 − σ2

12

×

× exp

{
− σ2

1σ
2
2

2(σ2
1σ

2
2 − σ2

12)

[
(y1 − µ1)2

σ2
1

−
(

2σ12
(y1 − µ1)

σ2
1

(y2 − µ2)

σ2
2

)
+

(y2 − µ2)2

σ2
2

]}
, (10.34)

where exp stands for the exponential function, i.e., exp{x} = ex.

Each element of the vector y may be normalized according to (10.5), so that the jth element
of the normalized vector z is expressed in terms of the corresponding jth element of y; that is
zj = (yj − µj)/σj , j = 1, 2. Also, we define the correlation coefficient as

ρ12 =
σ12

σ1σ2
. (10.35)

Substituting zj and ρ12 into (10.34) we can write the following pdf for the vector z:

f(z1, z2) =
1

2πσ1σ2

√
1− ρ2

12

· exp

{
− 1

2
(
1− ρ2

12

)(z2
1 − 2ρ12z1z2 + z2

2

)}
. (10.36)

Setting the quadratic form in (10.32) equal to 1 gives the equation for the standard confidence ellipse
(also called standard error ellipse by Mikhail). From (10.36) we see that the standard confidence
ellipse can also be described by (

z2
1 − 2ρ12z1z2 + z2

2

)
= 1− ρ2

12. (10.37)

The size, shape, and orientation of the confidence ellipse is described by the eigenvalues and eigen-
vectors of Σ.

The eigenvector-eigenvalue decomposition of the 2× 2 matrix Σ is described as follows: Denote the
eigenvectors of Σ as uj and the eigenvalues as λj , j = 1, 2. Then we have the relation

Σuj = λuj , (10.38)
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for which we write the following characteristic equation:

det
(
Σ− λI2

)
=
(
σ2

1 − λ
)(
σ2

2 − λ
)
− σ2

12 = λ2 −
(
σ2

1 + σ2
2

)
λ+

(
σ2

1σ
2
2 − σ2

12

)
= 0. (10.39)

In (10.39) λ has been used in general to represent either eigenvalue λ1 or λ2. We require λ1 ≥ λ2 > 0
and write the following solution for the roots of the characteristic equation (10.39):

λ1 or 2 =
σ2

1 + σ2
2

2
±
√(

σ2
1 + σ2

2

2

)2

− 1

4
4σ2

1σ
2
2 +

4σ2
12

4
= (10.40a)

= λ1 or 2 =
σ2

1 + σ2
2

2
± 1

2

√(
σ2

1 − σ2
2

)2
+ 4σ2

12 > 0, (10.40b)

which shows that the eigenvalues must be greater than zero, since Σ is positive definite.

Now we must find the two corresponding eigenvectors. Let the matrix U be comprised of the two
eigenvectors u1 and u2 such that U := [u1, u2]. Also define a diagonal matrix comprised of the
corresponding eigenvalues Λ := diag(λ1, λ2). Then according to (10.38) we have

ΣU = UΛ = (10.41a)

=

[
σ2

1 σ12

σ12 σ2
2

] [
u11 u12

u21 u22

]
=

[
u11 u12

u21 u22

] [
λ1 0
0 λ2

]
= (10.41b)

=

[
σ2

1u11 + σ12u21 σ2
1u12 + σ12u22

σ12u11 + σ2
2u21 σ12u12 + σ2

2u22

]
=

[
λ1 · u11 λ2 · u12

λ1 · u21 λ2 · u22

]
. (10.41c)

From (10.41c) we can write the following four equations in the four unknowns u11, u12, u21, and
u22:

u21 =

(
λ1 − σ2

1

)
u11

σ12
, u21 =

σ12u11

λ1 − σ2
2

, u12 =
σ12u22

λ2 − σ2
1

, u12 =

(
λ2 − σ2

2

)
u22

σ12
. (10.42)

The eigenvector u1 defines the direction of the semimajor axis of the confidence ellipse, while the
eigenvector u2, orthogonal to u1, defines the semiminor axis direction. The square root of the
eigenvalue λ1 gives the semimajor-axis length, and the square root of the eigenvalue λ2 gives the
semiminor-axis length. Also, if θ is the angle measured counter clockwise from the positive z1-axis
to the semimajor axis of the confidence ellipse, then we can write the matrix U as

U = [u1, u2] =

[
cos θ − sin θ
sin θ cos θ

]
. (10.43)

Using (10.42) and (10.43), the angle θ is derived as follows:

tan θ =
sin θ

cos θ
=
u21

u11
=
λ1 − σ2

1

σ12
=

σ12

λ1 − σ2
2

= −u12

u22
=
σ2

2 − λ2

σ12
=

σ12

σ2
1 − λ2

and (10.44a)

tan(2θ) = tan(θ + θ) =
2 tan θ

1− tan2 θ
=

(
2σ12

λ1 − σ2
2

)
1

1− σ2
12

(λ1−σ2
2)

2

(
λ1 − σ2

2

λ1 − σ2
2

)
= (10.44b)

= tan (2θ) =
2σ12

(
λ1 − σ2

2

)(
λ1 − σ2

2

)2 − σ2
12

=
2σ12

(
λ1 − σ2

2

)
4[

2
(
λ1 − σ2

2

)]2 − 4σ2
12

. (10.44c)
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By manipulating (10.40b), we have

2
(
λ1 − σ2

2

)
=
(
σ2

1 − σ2
2

)
±
√(

σ2
1 − σ2

2

)2
+ 4σ2

12 ⇒ (10.45a)[
2
(
λ1 − σ2

2

)]2
= 2
(
σ2

1 − σ2
2

)2 ± 2
(
σ2

1 − σ2
2

)√(
σ2

1 − σ2
2

)2
+ 4σ2

12 + 4σ2
12. (10.45b)

Substituting (10.45a) and (10.45b) into (10.44c) gives

tan(2θ) =

4σ12

[(
σ2

1 − σ2
2

)
±
√(

σ2
1 − σ2

2

)2
+ 4σ2

12

]
2
(
σ2

1 − σ2
2

) [(
σ2

1 − σ2
2

)
±
√(

σ2
1 − σ2

2

)2
+ 4σ2

12

] = (10.46a)

= tan(2θ) =
2σ12

σ2
1 − σ2

2

. (10.46b)

The sign of the numerical value of the right side of (10.46b) tells which quadrant the positive axis
falls in.

An empirical error ellipse differs from the confidence ellipse in that the matrix Σ is replaced by the
estimated matrix Σ̂ such that Σ̂−1 = σ̂−2

0 P , where σ̂2
0 is the estimated variance component. In this

case, the empirical error ellipse is described by

(y − µ̂)TP (y − µ̂)

σ̂2
0

= 1. (10.47)

If we are evaluating n/2 number of 2-D points, so that P is of size n × n, we may simply work
with each of the (n/2 number of) 2× 2 block diagonal matrices of σ̂−2

0 P independently to form the
empirical error ellipses. However, we must bear in mind that these block diagonal matrices do not
tell the whole story since the off-block-diagonal elements have been ignored. In any case, it may be
prudent to verify that the associated correlation-coefficients of the off-block-diagonal elements are
relatively small in magnitude.

The following two examples apply to the Gauss-Markov model (GMM):

1. Consider the GMM (10.20), with an associated least-squares solution and dispersion given in
(10.21a). Assume that the parameter vector ξ is comprised of successive 2-D point coordinates

such that (ξ̂2i−1, ξ̂2i) represents the coordinate estimates of the ith point. Now, also assume
that we wish to compare the estimates with given (fixed) values (ξ0

2i−1, ξ
0
2i), perhaps from

published results of a previous adjustment. Then we may write the following equations for the
null hypothesis and the error ellipse (for convenience, let k = 2i and j = k − 1):

H0 : E{
[
ξ̂j , ξ̂k

]T } =
[
ξ0
j , ξ

0
k

]T
, (10.48a)

1

σ̂2
0

[
ξ̂j − ξ0

j

ξ̂k − ξ0
k

]T [
Nj,j Nj,k
Nk,j Nk,k

] [
ξ̂j − ξ0

j

ξ̂k − ξ0
k

]
= 1. (10.48b)

Here we have formed the sub-blocks of N before inverting N .
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2. Suppose that instead of comparing the solution to given, fixed values we want to compare the
results (2-D coordinate estimates) of two adjustments. Using the previously defined indices,

let the estimates of the ith point of the second adjustment be represented by (
ˆ̂
ξj ,

ˆ̂
ξk). We

ask the question: is the outcome of the second adjustment statistically equivalent to the first?
Unless there is statistically significant overlap of the respective error ellipses, the answer is no.
The null hypothesis H0 and the test statistic f are defined as follows:

H0 : E{
[
ξ̂j , ξ̂k

]T } = E{
[ ˆ̂
ξj ,

ˆ̂
ξk
]T } (10.49a)

f :=
1

2

1

σ̂2
0/σ

2
0

 ξ̂j − ˆ̂
ξj

ξ̂k − ˆ̂
ξk

T D{
 ξ̂j − ˆ̂

ξj

ξ̂k − ˆ̂
ξk

}−1

 ξ̂j − ˆ̂
ξj

ξ̂k − ˆ̂
ξk

 ∼ F (2, n− rkA) (10.49b)

In computing the test statistic f shown in (10.49b), it is assumed that the estimated variance
component σ̂2

0 is common to both adjustments. This assumption is based on the homogeneity

test H0 : E{σ̂2
0} = E{ˆ̂σ2

0}, which is discussed in Section 10.4. Note that in the case that the
two adjustments are uncorrelated, we could replace the differences of parameters in the inverted
dispersion matrix with their sums.

10.3.3 Confidence Ellipsoids and Hyperellipsoids — Multivariate Case

In the 3-D case, confidence ellipses are extended to confidence ellipsoids. But, in our general formu-
lation of the GMM we may be working with any arbitrary higher-dimensional space, and thus we
speak of confidence hyperellipsoids. Since 3-D and higher dimensions are natural extensions of the
2-D case, no further discussion is necessary.

10.4 χ2-distribution, Variance Testing, and F -distribution

This section includes the statistical topics of χ2- and F -distributions as well as the topic of variance
testing.

10.4.1 χ2-distribution (F.R. Helmert, 1876)

If we claim that the (unknown) random error vector e from the GMM is distributed as e ∼
N (0, σ2

0P
−1), this leads to a quadratic product in e that has a χ2-distribution with ν := rkP = n

degrees of freedom, expressed by
eTPe

σ2
0

∼ χ2(ν). (10.50)

Now, define x := eTPe/σ2
0 (which cannot actually be computed since both e and σ2

0 are unknown).
Nevertheless, the pdf of x is written as

f(x) =


1

2ν/2Γ(ν/2)
x(ν−2)/2e−x/2 for x > 0

0 for x ≤ 0,

(10.51)
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where e is mathematical constant 2.718 . . . The gamma function Γ(·) was defined in (10.12). Fi-
gure 10.3 shows plots of the χ2-distribution for ν = {1, 3, 5, 8, 10, 30} with respective colors: black,
magenta, cyan, red, green, blue. Note that the peaks of the curves move to the right as ν increases
and that the curves appear to approximate the normal-distribution curve as ν grows to 10 and
larger. This agrees with our expectation that the χ2-distribution is asymptotically normal, due to
the central limit theorem.

From the variance component derivations in Section 3.2, we can write

E{eTPe/σ2
0} = tr

(
P · E{eeT }

)
= tr In = n, (10.52a)

E{ẽTP ẽ/σ2
0} = tr

(
P · E{ẽẽT }

)
= tr

(
In −AN−1ATP

)
= n− rkA = n−m. (10.52b)

Equations (10.25) and (10.52b) lead to

ẽTP ẽ/σ2
0 = νσ̂2

0/σ
2
0 ∼ χ2(ν), (10.53a)

with

ν := n− rk(A) (10.53b)

as the degrees of freedom.

Note that though we have been discussing the random error vector e and the predicted residual ẽ,
the relations expressed in (10.53a) apply to all quadratic forms in normally distributed variables.
Thus, when we have a vector of normally distributed variables, the corresponding quadratic form
will have a χ2-distribution.

10.4.2 Variance Testing

Suppose we want to compare the estimated variance component σ̂2
0 to a given quantity σ2 (here the

0-subscript is not used so as not to confuse the given value with the “true value”). We do so by
performing the following hypothesis test at a chosen significance level α:

H0 : E{σ̂2
0} ≤ σ2 vs. HA : E{σ̂2

0} > σ2 (10.54a)

t := (n− rkA) ·
(
σ̂2

0/σ
2
)
∼ χ2(n− rkA) (10.54b)

If t ≤ χ2
α accept H0, else if t > χ2

α rejectH0. (10.54c)

Note that we could have constructed a two-tailed hypothesis test, rather than a one-tailed test. In
that case we would have used an equality sign in the null hypothesis H0 and a non-equality sign
in the alternative hypothesis. Generally speaking, if the estimate σ̂2

0 proves statistically to be less
than the given value σ2, we deem our measurements to be more precise than that reflected in the
weight matrix P . On the other hand, if σ̂2

0 proves statistically to be greater than the given value,
we deem our measurements to be less precise. Usually our main concern is that σ̂2

0 reflects that our
measurements are at least as precise as what is specified in P , thus the use of a single-tail hypothesis
may be more commonly used in practice.

In the case where we need to compare two estimated reference variances σ̂2
0,1 and σ̂2

0,2 from inde-
pendent adjustments, we must compute a ratio of test statistics, which has a Fisher distribution
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Figure 10.3: χ2-distribution with various degrees of freedom ν

(assuming both the numerator and denominator have χ2 distributions). Let t1 and t2 be the test
statistics from the respective adjustments; then we can write

t1/(n1 −m1)

t2/(n2 −m2)
= σ̂2

0,1/σ̂
2
0,2 ∼ F (n1 −m1, n2 −m2), (10.55)

where ni −mi, i = 1, 2, are the respective degrees of freedom of the two independent data sets.

10.4.3 F -distribution (R.A. Fisher and Snedacor, 1925)

The ratio of two mutually independent χ2-distributed variables has an F -distribution. The pdf for
the F -distribution with degrees of freedom v1 := m and v2 := n−m is given by

f(w) =
Γ
(
m
2 + n−m

2

)
mm/2(n−m)(n−m)/2w(m/2)−1

Γ(m2 )Γ
(
n−m

2

)
(n−m+mw)(m/2+(n−m)/2)

= (10.56a)

=
(v1/v2)v1/2Γ

(
(v1 + v2)/2

)
w(v1/2)−1

Γ(v1/2)Γ(v2/2)
(
1 + v1w/v2

)(v1+v2)/2
. (10.56b)

As n becomes large compared to m, the curve of the F -distribution pdf approaches the normal
distribution pdf curve.
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10.5 Hypothesis Testing on the Estimated Parameters

In the GMM, we may wish to perform a global model check by comparing a specified parameter
vector ξ0 to the estimated vector ξ̂. In such a case, we may use as the test statistic the ratio of
weighted norms of the difference vector ξ̂ − ξ0 and the predicted residual vector ẽ as follows:

w :=
(ξ̂ − ξ0)TATPA(ξ̂ − ξ0)

σ2
0 rkA

· σ
2
0(n− rkA)

ẽTP ẽ
∼ F (m,n−m). (10.57)

Assuming that matrix A has full rank, i.e., rkA = m, the numerator and denominator both have
χ2-distributions with m and n − m degrees of freedom, respectively. Since the numerator and
denominator are statistically independent of one another, the test statistic w has an F -distribution
with m and n −m degrees of freedom, as shown in (10.57). Therefore, our global model check is
made by the following hypothesis test:

H0 : E{ξ̂} = ξ0 vs. HA : E{ξ̂} 6= ξ0 (10.58a)

If w ≤ Fα,m,n−m accept H0; else w > Fα,m,n−m therefore reject H0. (10.58b)

We now show that the numerator and denominator of w are indeed independent, as required for use
of the F -distribution. To do so, we only need to show that

C{ẽTP ẽ, (ξ̂ − ξ)T (ATPA)(ξ̂ − ξ)} = 0. (10.59)

Note that, without loss of generality, we have replaced ξ0 with ξ. From (4.5e) we have ẽ = [In −
AN−1ATP ]e. Therefore,

ẽTP ẽ = eT
[
In − PAN−1AT

]
P
[
In −AN−1ATP

]
e = eT

[
P − PAN−1ATP

]
e = eTM1e. (10.60a)

Also

A(ξ̂ − ξ) = e− ẽ =
(
AN−1ATP

)
e⇒ (10.60b)

(ξ̂ − ξ)T
(
ATPA

)
(ξ̂ − ξ) = eT

(
PAN−1AT

)
P
(
AN−1ATP

)
e = (10.60c)

= eT
(
PAN−1ATP

)
e = eTM2e. (10.60d)

By substitution of (10.60a) and (10.60d), the condition (10.59) is equivalent to the condition that
eTM1e and eTM2e are independent, which holds if, and only if,

eTM1D{e}M2e = eT
(
P − PAN−1ATP

)(
σ2

0P
−1
)(
PAN−1ATP

)
e = 0, (10.60e)

which is obviously true.

10.6 Checking an Individual Element (or 2-D or 3-D Point)
in the Parameter Vector

We may use the l × m matrix K, with rkK = l, to select a subset of the parameter vector for
hypothesis testing as follows:

H0 : E{Kξ̂} = Kξ0 = κ0, (10.61a)

HA : E{Kξ̂} = Kξ0 6= κ0. (10.61b)
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If l = 1, K is a unit row vector that extracts the relevant element from the parameter vector, in
which case κ0 is simply a scalar quantity. The following examples show the matrix K used for
extracting a single element, a 2-D point, and a 3-D point, respectively:

K :=
[
0, . . . , 0, 1, 0, . . . , 0

]
, where 1 appears at the jth element; (10.62a)

K :=
[
02, . . . , 02, I2, 02, . . . , 02

]
, where K is size 2×m; (10.62b)

K :=
[
03, . . . , 03, I3, 03, . . . , 03

]
, where K is size 3×m. (10.62c)

For the 2-D and 3-D points, the subscripts denote the dimension of the square sub-matrices (zero
matrix or identity matrix), and In (n =∈ {2, 3}) is the jth sub-matrix, which means it “selects” the
jth point from ξ.

The test statistic is then defined as

w : =

[
K
(
ξ̂ − ξ0

)]T
D{K

(
ξ̂ − ξ0

)
}−1
[
K
(
ξ̂ − ξ0

)]
/ rkK

1/σ2
0

= (10.63a)

=

[
Kξ̂ − κ0

]T [
KN−1KT

]−1[
Kξ̂ − κ0

]
/l

σ̂2
0

=:
R/l

Ω/(n−m)
, (10.63b)

where σ2
0 is assumed to be 1, and thus omitted from (10.63b). Note that since ξ0 is a chosen (and

therefore non-random) quantity to test against, the dispersion is not affected by the constant shift,
i.e.,

D{K(ξ̂ − ξ0)} = D{Kξ̂} = σ̂2
0KN

−1KT . (10.64)

The symbols R and Ω are used for convenience and are analogous to the symbols introduced in
Sections 5.1 and 7.2, respectively. They are statistically independent of one another and have the
following distributions:

R ∼ χ2(l), Ω ∼ χ2(n−m). (10.65)

The statistical independence means that the joint pdf is equivalent to the product of the individual
pdf’s: f(R,Ω) = f(R)·f(Ω). Independence can be shown by following the same line of thought
as that used at the end of the previous section, where M1 remains unchanged and M2 is now

PAN−1KT
[
KN−1KT

]−1
KN−1ATP . Therefore, the test statistic (10.63b) has an F -distribution

represented by
w ∼ F (l, n−m). (10.66)

An alternative, more compact, form for w when l = 1 is given by

w =
(ξ̂j − (κ0)j)

2

σ̂2
0

(
N−1

)
jj

∼ F (1, n−m). (10.67)

The decision to accept or reject the null hypothesis is made analogous to (10.58b).

10.6.1 Non-central F -distribution

If the null hypothesis H0 is false, the test statistic w is said to have a non-central F -distribution
(denoted here as F ′), which requires a non-centrality parameter θ so that w ∼ F ′

(
v1, v2, θ

)
under HA,
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where v1 and v2 have been used to denote the degrees of freedom, in general. The qualification
“under HA” implies that we must pose a specific alternative hypothesis HA in this case, rather than
just the negation of H0. For a one-tailed test, the area under the non-central F -distribution curve
and to the right of Fα (from the F -distribution table) is denoted as β. The value of β is also the
probability of making an error of the second kind, namely to accept the null hypothesis H0 when
the specified alternative hypothesis HA is actually true. The quantity 1− β is known as the power
of the test. As the value of θ increases, so does the value 1− β. Below we have rewritten (10.66) for
the non-central case, with the theoretical formula for 2θ following.

w ∼ F ′(l, n−m, θ) (10.68a)

2θ =
(
Kξ − κ0

)T (
KN−1KT

)−1(
Kξ̂ − κ0

)
(10.68b)

Note that the non-centrality property is reflected in (10.68b) by using both the true (unknown) ξ

and the estimated ξ̂ in a bilinear form.

10.7 Detection of a Single Outlier in the Gauss-Markov Mo-
del

An outlier in the jth observation can be modeled by

yj = aTj ξ
(j) + ξ

(j)
0 + ej . (10.69)

The symbol j is being used as both a vector index and as an indicator of a particular vector.
The following explanation should make this clear. The variable yj is the jth element of the n × 1
observation vector y. The symbol aj is an m× 1 column vector that is comprised of the m elements
of the jth row of matrix A so that [a1,a2, . . . ,an]T := A. We have used ξ(j) to denote the m × 1
estimated parameter vector associated with that set of observations that contains an outlier in the
jth observation, as opposed to using ξ, which is associated with the same set of observations except
that the jth observation would not contain an outlier. The variable ej is the jth element of the true

(but unknown) random error vector e. The symbol ξ
(j)
0 is a scalar that accounts for the effect of the

outlier. The formula for its estimate is developed below.

The following example may be illustrative: The observation yj should have been 100 m but only a

value of 10 m was recorded, then ξ
(j)
0 accounts for a 90 m blunder.

The full system of equations for the GMM with a single outlier in the jth observation is expressed
as

y
n×1

= A
n×m

ξ(j) + ηj
n×1

ξ
(j)
0 + e, ηj :=

[
0, . . . , 0, 1, 0, . . . , 0

]T
, (10.70a)

e ∼ N (0, σ2
0P
−1). (10.70b)

Note that the number 1 in ηj appears at the jth element; all other elements are 0. We must compare
the model in (10.70) with the original GMM (3.1) that does not include an outlier. Since the model
(10.70) assumes only one outlier in the data set, n comparisons of the two models are necessary in
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order to test all yi observations independently, i.e., i = 1, . . . , n. For each comparison we introduce
the following constraint:

ξ
(j)
0 = K

[
ξ(j)

ξ
(j)
0

]
= κ0 = 0. (10.71)

Here K := [0, 0, . . . , 1] is of size 1× (m+ 1). When we impose the constraint (10.71) upon the model
(10.70), we obtain a model equivalent to the original GMM (3.1) that does not include a parameter
for an outlier.

Note: For the remainder of this section, we will assume that the weight matrix P is diagonal:
P = diag(p1, . . . , pn), where pi is the weight of the ith observation. See Schaffrin (1997) for a
treatment of outlier detection with correlated observations.

Now, we begin with following Lagrange target function to derive a least-squares estimator in the
unconstrained model (10.70):

Φ
(
ξ(j), ξ

(j)
0

)
=
(
y −Aξ(j) − ηjξ(j)

0

)T
P
(
y −Aξ(j) − ηjξ(j)

0

)
, (10.72)

which is stationary with respect to ξ(j) and ξ
(j)
0 . Setting the first partial derivatives of (10.72) to

zero results in the following Euler-Lagrange necessary conditions:

1

2

[
∂Φ

∂ξ(j)

]T
= −ATPy +ATPηj ξ̂

(j)
0 +ATPAξ̂(j) .

= 0, (10.73a)

1

2

∂Φ

∂ξ
(j)
0

= −ηTj Py + ηTj PAξ̂
(j) + ηTj Pηj ξ̂

(j)
0

.
= 0. (10.73b)

Of course the second partial derivatives are functions of P , which is positive-definite by definition,
thereby satisfying the sufficient condition required for obtaining the minimum of (10.72). In matrix
form we have [

N ATPηj
ηTj PA ηTj Pηj

][
ξ̂(j)

ξ̂
(j)
0

]
=

[
c

ηTj Py

]
, (10.74a)

or, because P was assumed to be diagonal,[
N ajpj
pja

T
j pj

][
ξ̂(j)

ξ̂
(j)
0

]
=

[
c

pjyj

]
. (10.74b)

Here, as in previous chapters, we have used the definition [N, c] := ATP [A, y].

Using (A.14) for the inverse of a partitioned matrix, and decomposing the resulting inverse into a
sum of two matrices, results in[

ξ̂(j)

ξ̂
(j)
0

]
=

[
N−1 0

0 0

] [
c

pjyj

]
+

[
N−1ajpj
−1

] (
pj − pjaTj N−1ajpj

)−1
[
pja

T
j N
−1 −1

] [
c

pjyj

]
,

(10.75a)
or [

ξ̂(j)

ξ̂
(j)
0

]
=

[
N−1 0

0 0

] [
c

pjyj

]
−
[
N−1ajpj
−1

] (
pj − p2

ja
T
j N
−1aj

)−1
pj
(
yj − aTj N−1c

)
. (10.75b)
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From (10.75b), and recalling that ξ̂ = N−1c is based on a data set assumed to have no outliers, we
can write the following difference between estimations:

ξ̂(j) − ξ̂ = −N−1aj

(
yj − aTj ξ̂

p−1
j − aTj N−1aj

)
= −N−1aj

ẽj
(Qẽ)jj

, (10.76)

where (Qẽ)jj is the jth diagonal element of the cofactor matrix for the residual vector ẽ. For the
estimated outlier itself we have

ξ̂
(j)
0 =

yj − aTj ξ̂
1− pjaTj N−1aj

=
ẽj

(QẽP )jj
=

ẽj/pj
(Qẽ)jj

. (10.77)

The hypothesis test for an outlier in the jth observation is then written as

H0 : E{ξ̂(j)
0 } = 0 versus HA : E{ξ̂(j)

0 } 6= 0. (10.78)

The test statistic has an F -distribution and is computed by

Tj =
Rj/1

(Ω−Rj)/(n−m− 1)
∼ F (1, n−m− 1). (10.79)

The definition of Rj , in terms of ξ̂
(j)
0 , is

Rj :=

(
ξ̂

(j)
0 − 0

)2
KN−1

1 KT
=

(
ξ̂

(j)
0

)2(
pj − p2

ja
T
j N
−1aj

)−1 =
ẽ2
j

(QẽP )2
jj

pj(QẽP )jj =
ẽ2
j

(Qẽ)jj
. (10.80)

It is important to note that the symbols ẽ and Qẽ represent the residual vector and its cofactor
matrix, respectively, as predicted within the GMM model (3.1). As was already mentioned, when
we impose the constraint (10.71) on model (10.70b) we reach a solution identical to the LESS
within model (3.1). It is also important to to understand the denominator of (10.79). As stated
previously, the symbol R is used to account for that portion of the P -weighted residual norm due
to the constraints. The parenthetical term in the denominator accounts for that part of the norm
coming from the unconstrained solution. Here we have used Ω := ẽTP ẽ, with ẽ belonging to the
constrained solution (determined within the model (3.1)). Therefore, we must subtract R from Ω,
as it is defined here, to arrive at the portion of the norm coming from the unconstrained LESS
computed within model (10.70).

We note again that the equations from (10.74b) to (10.80) hold only in the case of a diagonal weight
matrix P . Regardless of whether or not P is diagonal, the quantity

rj := (QẽP )jj (10.81)

is the jth so-called redundancy number, for the unconstrained solution in this case. The following
properties hold for rj :

0 < rj ≤ 1 for i = {1, . . . , n} and
∑
j

rj = n− rkA. (10.82)

Note that (QẽP )jj = (Qẽ)jj pj for the case that matrix P is diagonal.
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Finally, the matrix N1 in (10.80) is defined as

N1 =

[
N ajpj
pja

T
j pj

]
, (10.83)

which appears in (10.74b). Pre- and post-multiplying N−1
1 by K extracts only its last diagonal

element, which, according to the formula for inverting a partitioned matrix, turns out to be the
scalar quantity (pj − p2

ja
T
j N
−1aj)

−1, also appearing in (10.80).

We comment that outlier detection at the 2-D and 3-D level can also be performed, for example,
in testing outliers in observations of 2-D and 3-D points. The 3-D case is also appropriate for GPS
baseline adjustments, and its development is shown by Snow (2002); see also Snow and Schaffrin
(2003).
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Appendix A
Useful Matrix Relations and Identities

Product of transposes:
ATBT = (BA)T (A.1)

Transpose of inverse:
(AT )−1 = (A−1)T (A.2)

Product of inverses:
A−1B−1 = (BA)−1 (A.3)

Rank of triple product: Given: A(m× n), B(m×m), C(n× n):

B,C nonsingular⇒ rk(BAC) = rk(A) or rk(BA) = rk(A) if C = I (A.4)

Trace invariant with respect to a cyclic permutation of factors: If the product ABC is square, then
the following trace operations are equivalent:

tr(ABC) = tr(BCA) = tr(CAB). (A.5)

Column space and nullspace: The column space of A is denoted by R(A) and is also called the range
of A. Its dimension equals the rank of A. The nullspace of A is denoted by N (A) and is also called
the kernel of A. The dimension of the nullspace is m − rkA, where m is the number of columns
of A; the dimension is also called the nullity.

The column space of AB is contained in the column space of A. (A.6)

Sherman-Morrison-Woodbury-Schur formula:

(T − UW−1V )−1 = T−1 + T−1U(W − V T−1U)−1V T−1 (A.7)
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As a consequence of (A.7), we also have:

(I ±W−1V )−1 = I ∓ (W ± V )−1V, (A.8a)

(I ± V )−1 = I ∓ (I ± V )−1V, (A.8b)

(I ±W−1)−1 = I ∓ (W ± I)−1. (A.8c)

Equations (39–43) of “Useful Matrix Equalities” (handout from Prof. Schaffrin, possibly originating
from Urho A. Uotila).

DC(A+BDC)−1 = (D−1 + CA−1B)−1CA−1 = (A.9a)

= D(I + CA−1BD)−1CA−1 = (A.9b)

= DC(I +A−1BDC)−1A−1 = (A.9c)

= DCA−1(I +BDCA−1)−1 = (A.9d)

= (I +DCA−1B)−1DCA−1 (A.9e)

Suppose the matrices A and B in (A.9) are identity matrices, then we have

DC(I +DC)−1 = (D−1 + C)−1C = (A.10a)

= D(I + CD)−1C = (A.10b)

= (I +DC)−1DC. (A.10c)

Definition of idempotent:

The matrix P is idempotent if PP = P . Projection matrices are idempotent. (A.11)

If P is idempotent, trP = rkP. (A.12)

Inverse of the partitioned normal equation matrix: Assume the matrix N is of full rank and is
partitioned as follows:

N =

[
N11 N12

N21 N22

]
. (A.13)

The following steps lead to the inverse of N expressed in terms of the partitioned blocks:[
N11 N12 I 0
N21 N22 0 I

]
→
[

I N−1
11 N12 N−1

11 0

N21 N22 0 I

]
→[

I N−1
11 N12 N−1

11 0

0 N22 −N21N
−1
11 N12 −N21N

−1
11 I

]
→[

I N−1
11 N12 N−1

11 0

0 I −
(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

(
N22 −N21N

−1
11 N12

)−1

]
→ I 0

0 I

∣∣∣∣ N−1
11 +N−1

11 N12

(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11 −N−1

11 N12

(
N22 −N21N

−1
11 N12

)−1

−
(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

(
N22 −N21N

−1
11 N12

)−1

 .
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Finally we may write[
N11 N12

N21 N22

]−1

= N−1
11 +N−1

11 N12

(
N22 −N21N

−1
11 N12

)−1

N21N
−1
11 −N−1

11 N12

(
N22 −N21N

−1
11 N12

)−1

−
(
N22 −N21N

−1
11 N12

)−1

N21N
−1
11

(
N22 −N21N

−1
11 N12

)−1

 .
(A.14)

Note that other equivalent representations of this inverse exist. Taking directly from the Useful
Matrix Equalities handout mentioned above, we write some additional expressions for the inverse.[

N11 N12

N21 N22

]−1

=

[
Q11 Q12

Q21 Q22

]
(A.15)

Q11 =
(
N11 −N12N

−1
22 N21

)−1
= (A.16a)

= N−1
11 +N−1

11 N12

(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11 = (A.16b)

= N−1
11 +N−1

11 N12Q22N21N
−1
11 (A.16c)

Q22 =
(
N22 −N21N

−1
11 N12

)−1
= (A.17a)

= N−1
22 +N−1

22 N21

(
N11 −N12N

−1
22 N21

)−1
N12N

−1
22 = (A.17b)

= N−1
22 +N−1

22 N21Q11N12N
−1
22 (A.17c)

Q12 = −
(
N11 −N12N

−1
22 N21

)−1

N12N
−1
22 = −Q11N12N

−1
22 = (A.18a)

= −N−1
11 N12

(
N22 −N21N

−1
11 N12

)−1

= −N−1
11 N12Q22 (A.18b)

Q21 = −N−1
22 N21

(
N11 −N12N

−1
22 N21

)−1
= −N−1

22 N21Q11 = (A.19a)

= −
(
N22 −N21N

−1
11 N12

)−1

N21N
−1
11 = −Q22N21N

−1
11 (A.19b)

In the case that N22 = 0, we have:

Q22 = −
(
N21N

−1
11 N12

)−1
(A.20a)

Q11 = N−1
11 +N−1

11 N12Q22N21N
−1
11 (A.20b)

Q12 = −N−1
11 N12Q22 (A.20c)

Q21 = −Q22N21N
−1
11 (A.20d)
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Schur Complement: the parenthetical term
(
N22 − N21N

−1
11 N12

)
shown above is called the Schur

Complement of N11.

Derivative of quadratic form:
While some authors write the derivative of a quadratic form (a scalar-valued vector function) with
respect to a column vector as a row vector, we write such a derivative as a column vector. This is
in agreement with the following authors: Grafarend and Schaffrin, pg. 443, (1993); Harville (1997),
pg. 295; Koch (1999), pg. 69; Lüetkepohl (1996), pg. 175; Strang and Boore (1997), pg. 300. For
example, given x ∈ Rn and Q ∈ Rn×n, we have

Φ(x) = xTQx⇒ ∂Φ

∂x
= 2Qx. (A.21)
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