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Abstract 
 

Inferring seafloor topography from gravity anomaly currently is the dominant method to 
obtain a global view of the oceans. This study deals with the methods of inferring this 
topography from gravity gradients, which is more sensitive to topography at short 
wavelengths than gravity anomaly. Two methods, one in the spectral domain and the 
other in the spatial domain, were developed and tested using vertical gravity gradients 
derived from satellite altimetry. 

The spectral domain method is based on the linear approximation to the Parker’s infinite 
series, which is for the convenience of inversion the admittance that relates topography 
and gravity gradient. Only 15-160 km wavelength topography was estimated from the 
vertical gravity gradient, for which the inversion was stable. The long wavelengths were 
obtained by low-pass filtering existing bathymetric depths, and the wavelengths shorter 
than 15 km were omitted. This method was tested in a 2°×2° area in the West Pacific 
Ocean centered at (21° N, 157° E). There, the seafloor topography estimation has a root 
mean square error of ±268 m. 

Through a numerical test, it was found that the nonlinear terrain effect was not negligible 
in rugged areas. Algorithmic analysis through the coherency showed that estimation 
accuracy at high frequencies cannot be improved by refining the resolution of gravity 
gradients, due to the linear approximation. 

To remove the linear approximation in the modeled relationship between gravity 
gradients and topography, the simulated annealing, a global optimization technique that 
can process nonlinear inverse problems, was used to estimate the seafloor topography 
parameters in a forward model by minimizing the difference between the observed and 
forward-computed vertical gravity gradients. Careful treatments like conducting 
truncation error analysis, and padding the vicinity of the study area with a known 
topography model, were required for successful estimation. A numerical test for the same 
study area generated an estimation with root mean square error of ±236 m. This improves 
the results from the spectral domain method by 12%. Compared with the global 
topography model version 18 as released by the Scripps Institution of Oceanography, the 
estimation accuracy is improved by 22% over the study area. 

The simulated annealing approach developed in this study may be used to update the 
global seafloor model, especially in rugged areas. Besides, this approach has no 
restrictions on data distribution, as required in Parker’s infinite series model, thus 
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enabling the use of data from an airborne gravity gradiometer, whose resolution is high 
but flight trajectory may be irregular. This method is developed under uniform density 
assumption. Therefore, its performance at places of complex sub-surface geology would 
be poor, in general. 
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Chapter 1: Introduction 

1.1 Background 

The ocean covers 71 percent of the Earth’s surface. However, our knowledge about the 
topography of the seafloor in some areas is even less than that of Mars because it is difficult to 
observe directly [Smith, 1993]. Searching for the recently missing Malaysia Airlines flight 
MH370 shows the difficulty in viewing the ocean bottom and how little we know about it. The 
ocean bottom requires more detailed mapping in order to exploit its ample natural resources and 
to obtain information for improved understanding in geodynamics, ocean circulation, submarine 
and ship navigation, geophysics, fishing, marine biology, boundary delineation, Earth’s climate, 
earthquakes and volcanoes. 

1.2 Previous Studies 

Since the 1950s, the seafloor depth was measured by ship using single-beam echo sounders, and 
later in the 1980s the multi-beam swath-mapping systems came into use [Smith and Sandwell, 
1997]. Although the ship sounding provides high resolution mapping, it is slow and expensive. A 
systematic mapping of the global ocean by this method would take more than 200 years [Smith 
and Sandwell, 2004; Sandwell et al., 2006; Weatherall et al., 2015]. The publicly available ship 
sounding data are unevenly distributed. It is dense at ports and tectonic features while sparse in 
deep ocean areas, and is denser in the northern hemisphere than in the southern hemisphere. In 
the southern Pacific Ocean, the surveying tracks are as sparse as the United States Interstate 
Highway system, and thus make these ship sounding data alone inadequate to show detailed 
features of the seafloor [Smith and Sandwell, 2004]. Bathymetry data collected before GPS 
availability are usually poorly positioned and sometimes contain gross errors [Smith, 1993]. 

The fact that the gravity anomaly is correlated with topography is recognized already for over 
150 years [Lewis and Dorman, 1970; McKenzie and Bowin, 1976; Watts, 1978; McNutt, 1979; 
Ribe, 1982]. The large density difference between water and the seafloor topography makes the 
latter contribute most to the short to medium wavelength components of the gravity anomaly 
while the long wavelength components are partially isostatically compensated. That is to say, 
except for ship sounding, it is also possible to estimate the seafloor topography using gravity 
anomaly data. The satellite altimetry missions provide a way to measure the sea surface height, 
which approximates the geoid and can be transformed into free-air gravity anomaly data that 
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cover the global ocean with uniform accuracy and resolution (except for polar areas). Dixon et al. 
[1983] was one of the first to demonstrate the feasibility of inferring the seafloor topography 
through altimetry data [Sailor and Okal, 1983; White et al., 1983]. Based on an elastic plate 
regional isostatic compensation model, a theoretical response function was derived, which 
convolved with the detrended and band-pass-filtered one dimensional altimetry sea height tracks, 
transformed estimated gravity anomalies to seafloor topography. The prediction strongly 
depends on and is sensitive to the choice of a priori geologic parameters in the isostatic 
compensation model, such as effective flexural rigidity, depth of compensation, and topographic 
density. 

Inspired by Dixon et al.’s research, Smith and Sandwell [1994; 1997] estimated the seafloor 
topography based on gravity anomalies derived with ±(3-5) mGal accuracy from the Seasat, 
Geosat, and ERS 1 satellite altimetry missions [Sandwell and Smith, 1992; 1997], and thus filled 
previously poorly charted waters. Smith and Sandwell [1994] downward continued the band-
pass-filtered gravity anomaly at the sea surface to the mean seafloor depth, and then multiplied it 
with a scale factor (topography-to-gravity ratio) to represent the 15-160 km wavelength local 
component of seafloor topography. Finally, they added the long wavelength regional topography 
obtained by low-pass-filtering ship sounding data to get the final estimates. After incorporating 
the CryoSat-2 and Jason-1 altimetry data [Wingham et al., 2006; Sandwell et al., 2013; Garcia et 
al., 2014], a new global marine gravity model with accuracy of ±2 mGal was released and the 
improvement on gravity accuracy also benefited the topography prediction [Smith et al., 2005; 
Sandwell et al., 2014]. 

Theoretical analysis shows that the shorter wavelength component of the gravity field is 
attenuated in the upward continuation from the seafloor to the sea surface while the longer 
wavelength component of gravity is partially compensated by the flexure of the lithospheric plate 
at the Mohorovicic discontinuity. So, the seafloor topography and the gravity anomaly at sea 
level are correlated only in a limited band of wavelengths (about 15-160 km). Guided by the 
elastic plate regional isostatic compensation theory, Smith and Sandwell [1994; 1997] designed a 
high-pass filter to remove the long wavelengths affected by the isostatic compensation. And, 
according to Wiener optimization theory [Wiener, 1949], a low-pass filter was also designed to 
remove the very short wavelengths, likely due to estimation error, for the purpose of minimizing 
the mean square error of downward continued gravity anomaly [Sandwell and McAdoo, 1990; 
Smith and Sandwell, 1994]. To accommodate the variation of sediment thickness and density of 
the seafloor, a topography-to-gravity ratio was defined and adapted to 2.5 degree by 1.25 degree 
local areas using ship sounding and corresponding gravity anomaly data through an inversion 
procedure [Nettleton, 1939]. Compared with the method by Dixon et al. [1983], the band-pass 
filtering and reliance on the longer wavelength signal from ship sounding data avoids the 
complex assumption about the isostatic model. 
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The Smith and Sandwell gravimetric grid is widely adopted and extensively discussed by 
researchers in different disciplines. It is the dataset upon which most publicly available global 
bathymetric grids are built, such as DBDB2, ETOPO2, GINA, and GEBCO, etc. [Marks and 
Smith, 2006; Marks et al., 2010]. The method above is based on Parker’s formula (1973), and are 
conducted in the frequency domain using Fast Fourier Transforms (FFT). A number of 
shortcomings may be considered in the linear relation, that is, in using only the first term of 
Parker’s infinite series [Parker, 1973, equation 4] as an approximation to the admittance in areas 
of rugged topography and tall sea mounts where the local topography is significant compared 
with the regional topography. The missing 0-15 km wavelength components cause inaccuracy in 
these areas since they are needed to fit the sharply varying topography. The processing in the 
frequency domain makes it impossible to exploit sparse data since the FFT technique requires 
regularly gridded data. Moreover, it does not deal with the noise in the gravity and sounding data. 

Several researchers have studied another method, the gravity-geologic method (GGM), for 
seafloor topography prediction using altimetry-derived free-air gravity anomalies and ship 
sounding data [J W Kim et al., 2010a; K B Kim et al., 2010b; Hsiao et al., 2011; Ouyang et al., 
2014]. In the GGM method, the gravity anomaly is divided into a residual component and a 
regional component. The residual gravity is attributed to topography and is modeled by the 
Bouguer slab formula. The regional gravity is attributed to deeper mass variations. At control 
points where both ship sounding depth and gravity anomaly are known, the regional gravity is 
computed by subtracting the residual gravity from the total gravity anomaly. At prediction points 
where only the total gravity anomaly is known, the regional gravity is interpolated from the 
values at the control points. Subtracting it from the total gravity anomaly gives the residual 
gravity, which then gives the seafloor topography by inversely applying the Bouguer slab 
formula. In this procedure, the tuning density contrast parameter   in the Bouguer slab 

formula is an empirical parameter and differs from the water-rock density difference. Its value is 
determined in advance using all the control points. In [J W Kim et al., 2010a], two thirds of the 
control points were used to estimate the topography at the remaining third. The RMS (root mean 

square) error was computed at these points and plotted as a function of increasing  . The   

at which the RMS difference becomes comparatively stable was chosen as the tuning density 

contrast. The selected value of   was 9 g/cm3. A problem with this procedure is that it does not 

consider the downward continuation effect. Therefore, the tuning density contrast is essentially 
the mean real density contrast scaled by a downward continuation factor in the spatial domain. 

Like the algorithm in [Smith and Sandwell, 1994], the GGM method also divides topography into 
a local component and a regional one, although the division is conducted in the spatial domain 
using the Bouguer slab formula rather than in the frequency domain. Moreover, both methods 
predict topography by multiplying the gravity anomaly by an empirical scaling factor based on 
the use of control points. To some extent the GGM method is a simplified Smith and Sandwell 
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[1994]’s algorithm without applying the downward continuation and conducting the isostatic 
compensation analysis. 

In recent years, new methods have been investigated for gravity based seafloor topography 
estimation. 

Least-squares inversion to estimate the seafloor topography in the spatial domain was 
investigated by Calmant [1994], Ramillien and Wright [2000], Wang [2000], and Calmant et al. 
[2002]. This method allows the computation of uncertainty of the predicted bathymetry. 

Jena et al. [2012] estimated the topography using an artificial neural network (ANN) model 
approach based on radial basis functions. Half of the gravity anomaly and sounding data were 
used to train the model, 25% were used to determine the architecture of the ANN, and the 
remaining 25% were used for validation of the predicted results. The results showed that the 
correlation between the ANN-predicted bathymetry and echo sounding data was 0.9. Then the 
ANN model was tested near two seamounts and, compared to three global bathymetry models 
SIO V13.1, ETOPO1, and GEBCO V2.0, gave improved predicted topography. In their study, 
although comparison between the predicted bathymetry results and ship sounding showed 
reasonable estimation capability, its theoretical base was not clearly elaborated. Besides, the 
authors pointed out that the prediction works better at regions similar to the trained region. 

Li and Ma [2014] verified the feasibility of estimating seafloor topography by the simulated 
annealing method using gravity gradient data, which is a nonlinear form of least-squares 
estimation. Comparison between the predicted bathymetry result and ship sounding showed 
reasonable estimation capability. Regions with different geology setting may generate similar 
gravity gradients, so the accuracy of this method at regions with different morphological 
characteristics and sub-topography geologic structures should be investigated further. The 
authors adopted Parker’s series as forward computation formula, which requires regularly 
gridded data. The estimation accuracy at the grid margins might be low since an assumption in 
applying discrete Fourier transform techniques is periodic extension of the data grid. 

Hu et al. [2014a] and Hu et al. [2014b] estimated global seafloor topography using vertical 
gravity gradients derived from satellite altimetry and NGDC ship sounding data. Their method is 
similar to Smith and Sandwell’s algorithm. The long wavelength topography was obtained by 
low-pass-filtering the ship sounding data. The 20-200 km wavelength seafloor topography was 
estimated by multiplying the gravity gradients with a topography-to-gradient ratio. Combining 
the gravity anomaly and gravity gradient data was also considered, as was isostatic compensation, 
but the authors did not analyze the selection of cut-off wavelength, and the validity of their 
method of combining gravity anomaly and gravity gradient is not effectively clarified. 

In addition to the prediction methods, the need to launch a new altimetry satellite to improve the 
spatial resolution has also been discussed by several scholars [Raney et al., 2003; Smith and 
Sandwell, 2004; Smith et al., 2005; Sandwell et al., 2006; Shum et al., 2009]. The resulting 
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inferred high resolution gravity data may improve the accuracy of topography estimation at 
shallow areas by reducing the omitted 0-15 km short wavelength band. 

1.3 Objective 

Inferring seafloor topography from gravity currently is the best way to obtain a global view, 
provided one has global gravity coverage. The only alternative, radar sounding, only covers 
about 10% of the ocean floor. It would take about 200 ship-years and cost billions of dollars for 
ship carrying multibeam echo sounders to map the global ocean floor [Sandwell et al., 2006]. 
Therefore, it is worthwhile to improve on the indirect gravimetric method [Hwang et al., 2006]. 

Standard techniques rely on an approximate, linear relationship between topography and gravity. 
In fact, it is a first term approximation to Parker’s theory [Parker, 1973], which is valid only if 
the local topography is small compared with the regional topography. Numerical analysis in 
section 3.2 will show that in rugged areas (topography ranges from -1000 m to -5000 m over a 
200 km by 200 km rectangular area), the nonlinear terrain effect for the vertical gravity gradient 
can be as much as 49 Eötvös. At wavelengths shorter than 5 km, more than half of the vertical 
gravity gradient was from the nonlinear terms of Parker’s infinite series. Therefore, it is 
important to consider nonlinear terms in the inversion process and this requires new algorithms 
that can handle tens of thousands of parameters in nonlinear models. 

Current methods have used altimetry-derived gravity anomalies to indirectly infer seafloor 
topography. Gravity gradients are more sensitive to the short wavelength topography than 
gravity anomalies, so the corresponding performance in topography prediction is expected to be 
better and thus is in need of demonstration. Airborne gravity gradiometry is a more direct 
measure of the Earth’s gravity field at shorter wavelengths. Besides, airborne gravity gradient 
surveys can be deployed in polar areas that satellite altimetry usually does not cover. However, 
because it is as yet scarcely available in ocean areas, the estimation algorithm developed in this 
study is tested mainly using altimetry-derived gravity gradients as a proxy, although one set of 
airborne gravity gradiometry data is also considered. Altimetry-derived vertical gravity gradients 
are publicly available, but the spatial resolution in gravity gradient estimation from altimetry is 
limited in any case (about 2.5 km for Cryosat-2, and 7.5 km for Jason-1’s geodetic mission phase 
[Marks, 1996; Sandwell et al., 2014]). When using airborne gravity gradiometry, not only the 
accuracy but also the spatial resolution of the gravity field may be improved for better inference 
of seafloor topography. 

It is the objective of this research to improve current methods by 1) removing the linear 
approximation in the modeled relationship between gravity and topography, and 2) by using 
another type of gravimetry that is more sensitive to short wavelength topography, i.e., gravity 
gradiometry. The former is extremely important in rugged areas. These improvements are 
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important in updating the global seafloor model to achieve higher accuracy and resolution, which 
has not seen major improvement for more than 20 years. 
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Chapter 2: Relationship between Topography and Gravity 

2.1 Relationship in the Frequency Domain 

2.1.1 Parker’s Theory 

Using Fourier transformation, Parker [1973] gave the formulas to calculate the gravitational 
acceleration caused by a non-uniform volume of material, which provided a clue to correlate the 
topography with gravity anomaly in the frequency domain. The detailed derivation is provided 
below. These formulas are generalized to incorporate the gravitational gradient. 

The 2-D Fourier transform pair of a function, g , is: 

      1 22
1 2, , i f x f y

y x

g f f g x y e dxdy
 

 

 

  


 (2.1) 

      1 2

2 1

2
1 2 1 2, , i f x f y

f f

g x y g f f e df df
 



 

  


 (2.2) 

where x , y  are space domain arguments of g , and 1f , 2f  are cycle-frequencies. 

Assume the lower boundary of a volume of material is the plane 0z  , and the upper boundary 

is defined by the equation  ,z b x y . Further assumptions are: i) the volume is constrained in a 

certain area, i.e.   2 2, 0,b x y x y Constant   ; ii)  ,b x y  and all its powers,  ,nb x y , are 

bounded and integrable. 

The gravitational potential at point  , ,x y z  caused by the mass of this volume is: 
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 
     

     

 

2 2 2

,

2 2 2
0

1
, ,

1
b

V x y z G d d d
x y z

G d d d
x y z

 

 

   
  

   
  






    


    



 
 (2.3) 

where G  is the gravitational constant,  , ,    are the coordinates of a mass element,   

represents the volume of material,   is the x-y plane, and density   is assumed constant for the 

moment. 

Confine all the evaluations of gravitational potential on the plane 0z z , which is above all the 

topography. i.e.   0 max ,z b x y . Take the Fourier transform of (2.3): 

  

   
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2
0

,
2

2 2 2
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, 2

2 2 2
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, ,

, ,

1

i f x f y

x y

b
i f x f y

x y

b i f x f y

x y

V x y z

V x y z e dxdy

G d d d e dxdy
x y z

e
G dxdyd d d

x y z



 


 

  

 

   
  
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  

 
 

 

 
 

  

   

  



 
    


    

 

   

   

F

 (2.4) 

According to equation (1.153) in Jekeli’s Fourier Geodesy [2013b] 

 
2 2

1 22

2 2 2 2 2
1 2

1 1 a f fe
x y a f f

 
 
  
    

F  (2.5) 

Applying (2.5) to (2.4) and changing the integration variable, we have 



9 

 

  
     

     
   

 

   

     
   

 
 

1 2 1 2

1 2

1 2

1

0

, 2 2

2 2 2
0 0

, 2
2

2 2 2
0 0

2

, ,

b i f x f y i f f

x y

b i f x f y
i f f

x y

i f

V x y z

e
G d x d y d d d

x y z

e
G d x d y e d d d

x y z

e
G

       

   

    
  

   



     
  

     
  



         

    

       
 

    



  
    

   
    



   

   

F

     2 2
2 1 2 0

, 2

2 2
0 1 2

b f f f z

d d d
f f

     

 

  
   

 
 

 (2.6) 

Performing the last integral gives 

   
    2 2 2 2

1 2 1 2 0 1 22 2 2 ,

0 2 2
1 2

1
, ,

2

i f f f f z f f be eG
V x y z d d

f f

      



  


     


F  (2.7) 

Expanding the second exponential function into Taylor series and rearranging the equation, we 
have 

 

  
    

      

 
    

1 2 0

1 20

0

2 2

1
0 2

22

1

2

2

2

1

2 ,

!
, ,

2

2
,

!
2

2

2
2 ,

!

n

i f f fz

n

n

n i f ffz

n

n

fz n

n

fb
e

G n
V x y z d d

f

f
e b e d d

n
G

f

f
G e b x y

n

   



  





  
  



   

 



 


  




 



















 



F

F

 (2.8) 

where we define the radial frequency 2 2
1 2f f f  . 

When b  lies entirely below the evaluation plane 0z z , (2.8) is uniformly convergent [Parker, 

1973]. Note that   0, ,V x y zF  does not exist at 0f   due to the 1f   in the n=1 term. 

V  satisfies Laplace’s equation outside the mass body, thus according to equation (1.89) in 
Jekeli’s Fourier Geodesy [2013b], the Fourier transform of the vertical derivative is: 
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    , ,

2 , ,
V x y z

f V x y z
z


 

   
F F  (2.9) 

The vertical component of gravitation  , ,g x y z  caused by the source volume is 

    , ,
, ,

V x y z
g x y z

z





 (2.10) 

It is valid only for planar approximation, since 
V V

z r

 


 
 if z  is not along the radial direction. 

Substituting (2.8) and (2.10) into (2.9), we have 

        0

1

2
0

1

2
, , 2 ,

!

n

fz n

n

f
g x y z G e b x y

n



 








  F F  (2.11) 

If the lower boundary is  ,z k x y  rather than 0z  , and the density   varies with x and y 

coordinates, equation (2.11) is generalized to 

 

  
         0

0

1

2

1

, ,

2
2 , , ,

!

n

fz n n

n

g x y z

f
Ge x y b x y k x y

n



 








  

F

F
 (2.12) 

The gravitational gradient tensor element 
2

2zz

V

z


 


 is the second derivative of the gravitational 

potential. Similar to (2.11) we have 

 

    

    0

2

0 02

2

1

, , , ,

2
2 ,

!

zz

n

fz n

n

V
x y z x y z

z

f
G e b x y

n



 






 
    

 

F F

F

 (2.13) 

For the other elements of the gravity gradient tensor, we need the differentiation theorem [Jekeli, 
2017]: 

         1 2

, ,
2 2 , ,

m l
m l

m l

V x y z
i f i f V x y z

x y
 

 
 

  
F F  (2.14) 
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Applying (2.14) and (2.9) to (2.8) gives: 

 

 

          0

0

2

2
1 2

1

, ,

2
2 2 2 2 ,

!

m l k

m l k

n

km l fz n

n

V x y z

x y z

f
i f i f f G e b x y

n



    

 








 
 

   

 

F

F

 (2.15) 

2.1.2 Forsberg’s Method 

Like Parker’s theory, Forsberg’s method [Forsberg, 1985] also relates the topography and the 
gravity gradient. Parker’s theory performs the vertical derivative in the frequency domain, 
whereas Forsberg’s method performs the vertical derivative in the space domain. This led to 
different approximations in the practical implementation, i.e., Parker’s theory has to truncate in 
the frequency domain, while Forsberg’s method would truncate in the space domain. While the 
two methods are the same in theory, Forsberg’s method allows an easier way to formulate the 
truncation error in subsection 2.3.1, and therefore, is described here. 

The formula for the vertical gravity gradient (VGG) generated by the topography relative to a 
reference plane is 

 

 
 

  

 

,2

2

2,

5 3

,

1
, ,

3 1

b

zz

b

b

b

b

zz

b

x y z G d d
z r

z
G d d

r r

G F d d

 

 

 

 

 

 

  


  

  







 
   

   
 

  
 
 



 

 

 

,  (2.16) 

where      2 2 2
r x y z         is the distance between the observation point,  , ,x y z , 

and the integration element,  , ,   , G  is Newton’s gravitational constant,   is the density of 

the topography which is supposed to be constant,  ,b    is the elevation of topography, the 

constant b  is the elevation of the reference plane,   is the x-y plane, and zzF  is given by 

 
 2

5 3

3 1
zz

z
F

r r


  .  (2.17) 
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Expand zzF  into a Taylor series with respect to   evaluated at b  , we have 

      
0

, , , , ,1
, , , , ,

!

n
nzz

zz n
n

F x y z b
F x y z b

n

 
   








 

 .  (2.18) 

Substituting (2.18) into (2.16), we have 

 

 
 

 
   

,

1

0

, ,

, , , , ,1
,

1 !

b

zz zz

b

n
nzz

n
n

x y z G F d d

F x y z b
G b b d

n

 

 



  

 
   





 



 


    

 

 
.  (2.19) 

Its first term approximation gives 

 

     

   

, , , , , , , ,

,

zz zz

zz

x y z G F x y z b b b d

G F s b b d





     

   

    

    




,  (2.20) 

where    2 2
s x y     , and the abbreviation of  , , , , ,zzF x y z b  ,  zzF s , is given by 

 

   

   
 

           

2

5 3
2 22 22 2

2

5 3
2 22 2 2 22 2

3 1

3 1

zz

z b
F s

s z b s z b

z b

x y z b x y z b   


  

            


 
                  

. (2.21) 

In the present analysis, we assume the evaluation point lies on a plane 0zz  . The equation (2.20) 

is a convolution on the plane. Applying the convolution theorem to (2.20) gives 

          1 2 1 2, , 0zz zz zzf f G F f b f f G bF f     
 

,  (2.22) 

where  f  is the 2-D Dirac delta function. Note that  zzF f


 is isotropic due to the isotropy of 

 zzF s , and is given by the Hankel transform [Jekeli, 2017] 
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   

   
 

   0

2

0

05 3
2 20 2 22 2

0 0

2 2

3 1
2 2

2

zz

s

z b f

z b
F f J fs s ds

s z b s z b

fe


 







 

 
 
     
                






,  (2.23) 

where 2 2s x y   , 0 0z b  , and 0J  is the zero-order Bessel function of the first kind. 

Substituting (2.23) into (2.22) and setting the elevation of the reference plane, b , to zero, we 
have 

    022
1 2 1 2, 4 ,fz

zz f f fG e b f f   


  (2.24) 

which is the same as the first term of equation (2.13). 

2.1.3 Relationships of Gravity Anomaly and Gravity Gradient to Topography 

The equation (2.11) is a formula to compute the gravitational acceleration caused by topography 
above sea level under certain assumptions (constant density, planar approximation, convergent 
series, constant-height measurement surface above all masses). Conversely, we could invert 
given free-air gravity anomaly to obtain seafloor topography if the only source of gravity 
anomaly is the anomalous topography. But in fact the free-air gravity anomaly is the 
combination of the topographic effect described by (2.11), isostatic compensation at the 
Mohorovicic discontinuity, and density variations within the Earth. So, in order to correctly 
relate gravity anomaly with topography, it is necessary to analyze the sources of gravity anomaly 
and remove the non-terrain components. 

The observed gravity is usually written as 

 P Q T C Gg F A A A      (2.25) 

where Pg  is the observed gravity at point P, Q  is normal gravity referred to the ellipsoid, F  is 

the free-air reduction to the geoid, TA  is the attraction of constant density topography, CA  is the 

attraction of the compensation as a response to TA , and GA  is the attraction due to the variations 

in density from an assumed constant, in the crust and possibly in the upper mantle [Banks et al., 
1977; Hofmann-Wellenhof and Moritz, 2005]. 
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In ocean areas, when one makes the flat-Earth approximation, the gravity anomaly is 
approximated by the gravity disturbance [Sandwell and Smith, 1997]. The usual practice of this 
approximation is followed because only the short-to-intermediate wavelength topography is 
predicted from gravity (the reason is discussed in subsection 2.1.4), which is much shorter than 
the radius of Earth [Tapley, 1997]. 

The components of the free-air gravity anomaly are 

 F P Q T C Gg g F A A A        (2.26) 

Firstly we analyze the attraction of topography TA , which is the combined effect of a Bouguer 

plate and terrain correction. On land it is the attraction of the mass between the Earth’s surface 
and the geoid. In the ocean, we treat it as the effect of mass deficiency caused by the sea water 

between the sea surface and the seafloor 'b . Another view treats TA  as the attraction of the 

seafloor topography deviating from the mean sea depth d , but having (positive) density, 

c w     , i.e., the density difference between the crust and sea water. This topography is 

denoted as b  in the Figure 2.1, and refers to a reference level at depth, d  (the coordinate origin 
for z is still sea level). From Figure 2.1 we find that 

    , ,b x y b x y d  ,  (2.27) 

with the following definitions: the depth, 'b , is always negative and the topography, b , could be 
positive or negative, while, the mean depth, d , is defined to be positive. Hereinafter, given the 
mean sea depth, the depth can always be related to the topography through equation (2.27). The 
difference between the gravitational acceleration computed through the two methods is just a 

constant, 2 Gd  . It is a long wavelength effect and will not affect the topography estimation. 

For the former view, replace  , 0z , b , k  by  , 0 , 0 , b  in (2.12) to get 

 

         

    

1

2 0

1

1

2 0

1

2
, ,0 2 0 ,

!

2
2 ,

!

n

f n
T

n

n

f n

n

f
A x y G e b x y

n

f
G e b x y

n






 


 















   

  





F F

F

,  (2.28) 

which is the formula to compute the gravitational effect of the seafloor depths at sea level. 
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For the latter view, replace  , 0z , b , k  by  , 0 , b , d  in (2.12) to get 

          
1

2 0

1

2
, ,0 2 ,

!

n

nf n
T

n

f
A x y G e b x y d

n



 








    F F .  (2.29) 

Translate the z-axis a distance d  downward ( 0z  in the original coordinate system becomes 

0z d  in the new system, b  becomes b , d  becomes 0 , and 2 0fe   becomes 2 fde  ). Then one 

obtains the formula 

        
1

2

1

2
, , 2 ,

!

n

fd n
T

n

f
A x y d G e b x y

n



 








   F F .  (2.30) 

In this study the latter view is adopted. 
 

 

 

 

 

Figure 2.1: The variables used to denote depth, the mean depth, and the seafloor topography. 
 

 

 

Formula (2.30) computes the gravitational effect of the seafloor topography on the sea surface 
that is due to its deviation from the mean water depth. The reason to use (2.30) rather than (2.28)

is discussed in subsection 3.2.1. In short, the purpose is to minimize max /b d  so that Parker’s 

series concentrates on the n=1 term. If the local topography is small compared with the regional 
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topography, the first term of the right-hand side of the infinite series is the dominant term 
[Parker, 1973]: 

        2, , 2 ,fd
T c wA x y d G e b x y     F F  (2.31) 

With the above substitutions applied to (2.15), the gravitational gradient effect of the seafloor 
topography is given by 

 

 

            
2

2
1 2

1

, ,

2
2 2 2 2 ,

!

T

m l k
A

m l k

n

km l fd n
c w

n

V x y d

x y z

f
i f i f f G e b x y

n



     

 








 
     

   

F

F

 (2.32) 

where m , l , and k  are non-negative integers, and 2m l k   . 

Its first term approximation gives: 

 

          1 2
1 2

, ,

2 2 2 2 ,

T

m l k
A

m l k

km l fd
c w

V x y d

x y z

i f i f f G e b x y     

 

 

 
     

   

F

F

  (2.33) 

Now consider the gravitational effect of the isostatic compensation. The regional isostatic 
compensation mechanism treats the lithosphere as a thin elastic plate that floats on a viscous 

liquid, that flexes under the load, and causes CA  by perturbing the density around the interface of 

layers [McKenzie and Bowin, 1976; Banks et al., 1977; Watts, 2001]. The flexure  ,u x y  

(Figure 2.2) and the load  ,b x y  are related by 

        , , c w
e

m c

u x y b x y f
 
 


  


F F  (2.34) 

where m  is the density of the mantle, and  e f  is given by (2.37). 

Seafloor topography  ,b x y  is the density interface between the seabed and water, and the 

flexure  ,u x y  is the density interface between the crust and mantle. So, with another translation 
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of the z  origin, substitute b  by u , and substitute the mean depth of topography, d , by the mean 
depth of flexure, d t , in (2.31), and one obtains the gravitational effect of the flexure on the sea 
surface that is due to its deviation from the mean depth d t , when one makes the first term 
approximation, 

         22 ,f d t
C m cA G e u x y      F F  (2.35) 

where t  is the mean thickness of the crust. 

Substituting (2.34) into (2.35) gives 

           22 ,f d t
C c w eA G f e b x y      F F   (2.36) 

where  e f  is the frequency domain function that modifies the Airy response so as to produce 

the flexure. 

    

1
4 416

1e
m c

D f
f

g


 


 

    
 (2.37) 

In this model, g  is the gravitational acceleration, and D  is the flexural rigidity of the plate given 

by 

 
 

3

212 1
eET

D





 (2.38) 

where E  is Young’s modulus,   is Poisson’s ratio, and eT  is the elastic thickness of the plate. 
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Figure 2.2: The simple elastic plate model of isostatic compensation. 
 

 

 

Combining (2.32) and (2.34) gives the gravitational gradient effect of the isostatic compensation 
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 (2.39) 

Note that  
CAVF  does not exist at 0f  , but 

 , ,
C

m l k
A

m l k

V x y d t

x y z

   
     

F  is well defined at 

0f   and equals to zero. 

Its first term approximation gives: 



19 

 

 

 

              
              

12
1 2

1 2
1 2

, ,

2 2 2 2 2 ,

2 2 2 2 ,

C

m l k
A

m l k

km l f d t
m c

km l f d t
c w e

V x y d t

x y z

i f i f f G e f u x y

i f i f f G e f b x y





      

     

 

 

  

  
     

  

   

F

F

F

 (2.40) 

Now back to equation (2.26). The TA  can be computed using topography, and the CA  is 

approximately computed by the elastic plate model. If the density of the crust is assumed 

uniform, that is to say, 0GA   [Barnes and Lumley, 2011], and the isostatic compensation effect 

is removed or correctly computed, the topography could be estimated using free-air gravity 
anomaly. 

2.1.4 Admittance Theory 

Combining the first term approximation (2.31), (2.35) with (2.26) and assuming the density of 
crust is uniform, we have 

          2 22 1 ,fd ft
F c w eg G e f e b x y         F F   (2.41) 

In equation (2.41) the frequency parameter that modifies the seafloor topography so as to 

produce the free-air gravity anomaly is called the gravitational admittance  Z f . It contains 

information about the compensation scheme. The theoretical gravitational admittance is 
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    2 22 1

F

fd ft
c w e

g
Z f

b
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
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F

F   (2.42) 

Then (2.41) can be written as 

       ,Fg Z f b x y F F   (2.43) 

Similarly, the admittance that modifies the free-air gravity anomaly so as to produce the seafloor 
topography is 

    
     1

F

b
Q f Z f

g


 


F

F
  (2.44) 
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The equation (2.43) provides a way to estimate the seafloor topography based upon the 
theoretical admittance if the geologic parameters in the admittance are well known. 

       , Fb x y Q f g F F   (2.45) 

However, the uncertainty in the isostatic compensation scheme and the attenuation of the 
admittance at short and long wavelengths suggest that it is impractical, as analyzed below. 

The compensation scheme affects the admittance function mainly in the long wavelengths. As 
seen in the top panel of Figure 2.3 which is computed using values from Table 2.1, at long 
wavelengths, the admittance function depends on and is sensitive to the choice of the effective 

elastic thickness of the plate eT . That is to say, the estimated topography would severely deviate 

from reality if eT  contains an error, which in fact is uncertain to a large extent. But at short 

wavelengths, the differences between the compensated admittances and the uncompensated 
admittance are very small. Therefore, Smith and Sandwell [1994] confined the estimation within 
the uncompensated wavelength band to avoid modeling errors associated with the isostatic 
compensation. As shown in the bottom panel of Figure 2.3, the gradient admittance is less 

sensitive to the isostatic compensation parameter eT . In this study, also only the uncompensated 

wavelengths of topography are to be estimated, which is even more justified when using gravity 
gradients as observations. 

Figure 2.3 also shows that at long wavelengths the gravitational admittance  Z f  approaches 

zero because the long wavelength component of gravity generated by seafloor topography is 
canceled out by isostatic compensation, which means the gravity anomaly and topography are no 
longer correlated. At short wavelengths it also approaches zero due to the upward continuation 

operator 2 fde   [Forsberg and Kenyon, 1995]. This operator attenuates the short wavelength 

component of gravity anomaly at the sea surface generated by the topography at the seafloor, so 
the signal-to-noise ratio is small and the short-wavelength gravity anomaly is less sensitive to the 

seafloor topography. As a result,  Q f  approaches infinity at both short and long wavelengths. 

At these wavelengths, a slight error in the gravity anomaly would be greatly enlarged and bring 
huge error to the predicted topography. In a word, estimating topography using gravity anomaly 
is stable only in a certain short-to-medium wavelength band (about 15-160 km). A detailed 
selection process for the cut-off frequencies can be found in [Smith and Sandwell, 1994]. In short, 
wavelengths longer than 160 km were suppressed so that the prediction is constrained to 
uncompensated bands. Wavelengths shorter than 15 km were removed to make the downward 
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continuation stable which, in any case, is achieved by minimizing the mean square error of the 
downward continued gravity anomaly. Rearranging equation (2.31), multiplying both sides by 
the band-pass filter, and omitting the isostatic compensation, we have 

           1 2, 2 fd
c w Fb x y W f G e g W f  


     F F   (2.46) 

where  W f  is the band-pass filter. This is the linear approximation to the relation between 

topography and gravity anomaly at uncompensated wavelengths. 
 

 

 

Table 2.1: Parameters used to calculate the admittances in Figure 2.3. 
 

Parameter Value 

w , density of sea water 31030 k /g m  

c , density of the crust 32800 k /g m  

m , density of the mantle 33330 k /g m  

d , mean depth of sea water 4500 m  

t , mean thickness of the crust 6000 m  

E , Young’s modulus 10 1 27*10 kg m s 
 

 , Poisson’s ratio 0.27  
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Figure 2.3: (top) The theoretical gravitational admittance. (bottom) The theoretical gravity 
gradient admittance. Scale at bottom in frequency and at top in wavelength. The solid curve is 
for the isostatically uncompensated model. The dashed curves are for the regionally isostatically 
compensated model with respect to different effective elastic thickness of the plate eT . 
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Note that if 0eT   the compensation model becomes local (Airy model) rather than regional. If 

eT   there is no compensation (   0e f  ). 

Now let us discuss the gravity gradient admittance. Combining (2.33) (2.40) and assuming that 
the measured gravity gradient is only caused by the topography and isostatic compensation, we 
have: 
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F

F

 (2.47) 

According to (2.47), the compensated gravity gradient admittances with respect to each tensor 
element are: 
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  (2.48) 

where   | , , ,ij i j x y z   represent the gravity gradient tensor elements. 

The gravity gradient admittances calculated using parameters in Table 2.1 are shown in Figure 
2.4. 
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Figure 2.4: The theoretical gravity gradient admittances for combined seafloor topography and 
isostatic compensation. 
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Like the gravitational admittance, the gravity gradient admittance for the component zz  is 

isotropic. After removing the short and long wavelengths at which the gradient admittance 
zz

Z  

approximates zero (see the bottom panel of Figure 2.3), as well as the compensated wavelengths, 

estimating seafloor topography using zz  is stable: 
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fG e b W f  


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   

  

F F

F
  (2.49) 

where  W f  is a band-pass filter. 

Rearrange equation (2.49) and take the inverse Fourier Transform on both sides to obtain 

            111 1 22 2 fd
c w zzb W f G f e W f   

              
F F F F  (2.50) 

Note that the gravity gradient admittances for the other elements of the gravity gradient tensor 
are anisotropic and thus require anisotropic filters. But the combinations of tensor elements could 

yield quantities that have isotropic admittances (e.g. 2 2
xz yz  ). Combining independent 

gravity gradient tensor elements incorporates more data and thus may improve the accuracy of 

topography estimation. This study only uses the vertical gravity gradient zz  derived from 

satellite altimetry to estimate the seafloor topography. 

2.1.5 Advantages and Limitations of Using the Gravity Gradient 

By comparing the two panels in Figure 2.3, the isostatic compensation was found to have smaller 
effect on the gravity gradient admittance than on the gravitational admittance. This is due to the 

2 f  factor in the gradient admittance, which makes the vertical gravity gradient less sensitive 

to the long wavelength topography. 

On the other hand, the gravity gradient admittance reaches its maximum at wavelength 75 km, 
whereas the peak of the gravitational admittance is at the longer wavelength of 200 km. This 
difference is even larger if we use a smaller mean sea depth. This indicates that, compared to the 
gravity anomaly, the gravity gradient is more sensitive to short wavelength topography. We may 
conclude that the gravity gradient is superior to the gravity anomaly at short wavelengths when 
predicting topography. 
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One should note that the gravity gradient diminishes with the cube of distance between the mass 
element and the attracted point, while gravity attenuates with the square of distance. So for deep 
ocean areas the magnitude of the gravity gradient at the sea surface may be small, which then 
also implies a small signal-to-noise ratio. For these areas the superiority of the gravity gradient at 
short wavelengths may be cancelled by the low signal-to-noise ratio because the attenuation rate 
of gravity anomaly is slower. 
 

 

 

 

Figure 2.5: The gravitational admittance and gravity gradient admittance with respect to mean 
sea depth d . 
 

 

 

The variation of admittance with respect to mean sea depth is shown in Figure 2.5. As the mean 
sea depth increases, the gravity gradient admittance decreases fast, and the peak of the 
admittance gradually moves to longer wavelengths. Although the gravitational admittance also 
decreases when mean sea depth increases, the change rate is comparatively slower. 
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2.2 Relationship in the Spatial Domain 

2.2.1 The Gravitational Gradients Due to a Right Rectangular Prism 

The last section serves as the theoretical basis for the Parker FFT-based seafloor topography 
estimation method developed in section 3.1. Except for the frequency domain, the gravity 
gradient can be related to the topography in the space domain. The seafloor topography can be 
modeled using adjacent right rectangular prisms as illustrated in Figure 2.6. 
 

 

 

 
Figure 2.6: Model the seafloor topography using right rectangular prisms. 
 

 

 

The gravitational gradients due to a right rectangular prism can be computed using [Zhu, 2007] 

    
       2 2 2
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 (2.51) 
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where  i comp
zz jb  is the vertical gravity gradient at i  due to prism j , G  is Newton’s 

gravitational constant,   is the density difference between sea water and seafloor topography, 

 , ,x y z  are the coordinates of the location of observation point i ,  , ,    are the variables of 

integration over the right rectangular prism, xw j , xe j , ys j , yn j  are the X-axis and Y-axis 

boundaries for the jth  prism, jmd is the Z-coordinate of mean depth at j , and jb  is the Z-

coordinate of seafloor at j . 

The forward computation formula (2.51) is used in the simulated annealing method developed in 
section 3.3 for seafloor topography estimation. 

2.3 Errors Associated with Gradient Inversion Techniques 

2.3.1 Truncation and Resolution Errors in the Forward Computation 

In practice, the gravity gradient is forward computed from a discrete digital topography model 
(Figure 2.6) within a preset near zone. For each computation point, its near zone is defined as the 
area in which the horizontal distance between a prism and the computation point is within a 
preset truncation distance. Area outside the near zone is defined as far zone. The truncation error 
is defined as the error at one point caused by neglecting the far zone effect in the forward 
computation. In this analysis, the truncation error was assumed as long-wavelength and was 
approximated by a constant. In order to validate this assumption, one can compute the relative 
truncation error, which is the difference between truncation errors of two points both in the 
study area but separated by a horizontal distance l . If the relative truncation error is small, then 
we could use just one parameter to represent the truncation errors in the entire area, see formula 
(3.42). If the relative truncation error is large, then our assumption that the truncation error is a 
constant is not tenable. In addition, the forward computation uses discrete topography with finite 
resolution, and thus causes an error called the resolution error. Jekeli [2013a] developed a 
systematic and algorithmic approach to estimate the relative truncation error and resolution error. 
This subsection analyzes the errors in the forward computation associated with a numerical 
implementation. 

The equation (2.20) can be rewritten as 

        , , , 0zz zz zzx y z G F s b d G bF


       


.  (2.52) 
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Suppose the near zone is defined as 

         2 2

0 0,s x y s          ;  (2.53) 

then the truncation error is given by a convolution 

      , ,trunc
zz zzx y G s b d


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Take the Fourier transform on both sides of (2.54) and we have 
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 (2.57) 

Next, assume the topography is an ergodic stochastic process, then its power spectral density is 
related to its Fourier transform through [Bendat and Piersol, 2010] 

      *
1 2 , 1 2 , 1 2
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x y x y
x y
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x y
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   
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 
,  (2.58) 

where the asterisk denotes complex conjugate, E  is the expectation, and  , 1 2,
x yT Tb f f


 is the 

Fourier transform of the topography in the finite interval xT , yT  along the X  and Y  axis, 

respectively. Note that xT  and yT  are limits for the entire topography model. They are not to be 

confused with the truncation distance. Each computation point has a near zone. Truncation 
distance is the limit for the near zone. 
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The power spectral density (2.58) was azimuthally averaged to form an isotropic function in 
order to simplify the analysis. 

    
2

0

1
cos , sin

2b bf f f d
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  
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     (2.59) 

Neglecting the limits and expectation in (2.58) gives a practical way to evaluate the power 
spectral density. It is called the periodogram method. The periodogram of the truncation error 
derived from (2.56) is given by 

        22
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zz bf G f f
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.  (2.60) 

The inverse Hankel transform of (2.60) gives the covariance function, 
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And, the variance of the truncation error for points separated by distance, l , is 
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The variance of the relative truncation error is 
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If the topography is given on a grid    , ,x yb x y b l x l y   , 0,1, , 1x xl N  , 

0,1, , 1y yl N  , then its discrete Fourier transform is given by 

 

21

1 2

1 1
22 2

, ,

2 2

yx
yx

x y

x y

x y
x y

NN k lk l
i

N N

k k l l
N N

l l

b x y b e

       
 

 

    


  (2.64) 



31 

 

where the indices 1k , 2k  count off frequencies, 
1

1
k

x

k
f

xN



 and 
2

2
k

y

k
f

yN



, respectively. If xN  

is even, 1 1
2 2

x xN N
k    , and if xN  is odd, 1

1 1

2 2
x xN N

k
 

   , and similarly for 
2kf . 

The power spectral density of topography  b f  in (2.63) can be computed by azimuthally 

averaging the periodogram, 
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where kM  is the number of discrete frequencies pairs 
1kf , 

2kf  whose corresponding radial 

frequency lies in the interval  1,k kf f  . Note that 
1 1

min ,
2 2Mf x y

 
    

. 

The quantity    zz zz kk
f  

 can be numerically computed from (2.57). In summary, the 

variance of the relative truncation error (2.63) can be estimated by 
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where 1 constantk kf f f     . 

Similarly, the variance of the truncation error 
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can be numerically estimated by 
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The topography grid does not contain spectral components higher than the Nyquist frequencies, 
which are determined by the sampling intervals x  and y . The error thus introduced is called 

the resolution error. Its Fourier transform is given by 

  
 

1 2

1 2

1 2

1 1
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,

res
zz

zz

f f
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   (2.69) 

With equation (2.22), the power spectral density of the resolution error is 
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where we assume x y   , and approximate the “radial” Nyquist frequency by 

22
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2 2Nf
x y

          
. 

Analogous to (2.62), the variance of the resolution error is given by 
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If the power spectral density of the topography is approximated by a power law [Jekeli, 2013a] 

  b f Cf   , (2.72) 

then (2.71) becomes 
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where  ,uigf p z  represents the upper incomplete gamma function [Abramowitz and Stegun, 

1972]. 
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2.3.2 Summary of Other Error Sources 

The density of the seafloor topography is assumed uniform throughout this study. In reality, the 
sub-topography density anomaly is large in some areas, and may contribute to more than 50% of 
the gravity gradient observations (see section 5.1). 

In this study, the planar approximation is made when using the altimetry derived gravity 
gradients, whereas local Cartesian coordinates are used without any approximation when using 
the airborne gravity gradients. 

Subtracting (2.33) from (2.32) gives the nonlinear approximation error for zz  

         2

2

2
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f
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
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   






    F   (2.74) 

This error is discussed in section 3.2. Numerical analysis in subsection 3.2.1 showed that in 
rugged areas (topography ranges from -1000 m to -5000 m over a 200 km by 200 km rectangular 
area), the nonlinear approximation error can be as much as 49 Eötvös. 

The depths measured by ship sounding do not come with accuracy information. They are treated 
as errorless (true) values, because an analysis of 2253 cruises surveys shows that the median 
absolute value of the crossover errors at intersecting ship tracks is 26 m [Smith, 1993], which is 
much smaller than the accuracy of gravity predicted seafloor topography. The accuracy of the 
altimetry-derived gravity anomaly released by Scripps Institution of Oceanography is ±2 mGal 
[Sandwell et al., 2014]. The accuracy of the vertical gravity gradient derived from the same 
altimetry data sets is not reported. A rough analysis by applying the law of error propagation to 
equation (A6) in [Sandwell and Smith, 1997], with the derivatives of the vertical deflections 
substituted by a numerical differentiation formula, shows that the accuracy of vertical gravity 
gradient released by SIO is about ±4 Eötvös. 



34 

 

Chapter 3: Estimation Methodology 

3.1 Seafloor Topography Estimation Based on Fourier Transform 

Equation (2.50) indicates that, when band-pass filtered and multiplied by   1 22 fdf e 


, the 

vertical gravity gradient becomes what may be called an “equivalent gravity anomaly” that is 
proportional to the topography in both the frequency and the spatial domains. In other words, 
multiplying the equivalent gravity anomaly by a scaling factor gives the intermediate wavelength 

component of the topography. The constant,   1
2 c wS G  


     in (2.50), is defined as the 

theoretical value of the “topography-to-gradient admittance scale”. It describes the 
uncompensated relation between topography and gravity gradient under a constant density 
assumption. But equation (2.50) is just a first-term approximation to Parker’s infinite series. The 
error caused by neglecting the nonlinear terms is affected by the roughness of the seafloor 
topography. In addition, it is assumed that the density of the crust is uniform. Due to these two 
location dependent factors, the topography-to-gradient admittance scale deviates from its 
theoretical value and varies from place to place, therefore the empirical rather than the 
theoretical S  is used in the prediction to enable local dependency. The scale S  is computed 
using gravity gradient and topography pairs at places constrained by ship soundings. 

In summary, the short-to-intermediate wavelength seafloor topography ŝib  is estimated from the 

gravity gradient: 

    11 2ˆ 2 fd
si zzb S f e W

       
F F   (3.1) 

Note that the prediction band is the same as the one for the gravity anomaly (15-160 km) [Smith 
and Sandwell, 1994] because the derived gradients do not have higher resolution. 

The long wavelength topography l̂b  is computed from ship sounding b : 

  1
l̂ lb b W   F F   (3.2) 
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where lW  is the low-pass filter. 

The sum of ŝib  and l̂b  gives the total predicted topography.  

 ˆ ˆ ˆ
l sib b b    (3.3) 

The short wavelengths are omitted. They could only be obtained through multi-beam swath-
mapping system. 

3.2 Analysis to the Nonlinear Terms 

3.2.1 Validity of the Linear Approximation 

The algorithm developed in the last section is based on the assumption that the seafloor 
topography and the vertical gravity gradient are related by the first-term approximation in 
Parker’s theory. In this section, the validity of this assumption is analyzed. 

To be specific, equation (2.32) describes the nonlinear relation between gravity gradient and 
seafloor topography. It is rewritten here as 
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where  , , ,j k x y z  and 
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The linear term (n=1 term) in (3.4) was assumed to be dominant in the frequency domain 
inversion method (section 3.1), and the nonlinear terms (n>1 terms) negligible. Note that 

 
TAVF  does not exist at 0f   due to the 1f   in the 1n   term. But  jkF  is well defined at 

0f   since
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 ,b x y  is the deviation of the actual topography from the reference plane z d  , as shown in 

Figure 2.1. The selection of this reference plane is entirely arbitrary because the vertical gravity 
gradient effect due to an infinite horizontal slab with uniform density is zero. As long as 

maxd b , the series (3.4) converges [Parker, 1973]. Moreover, Parker (1973) shows that the 

rate of convergence depends on the ratio, max /b d , where a smaller value leads to a faster rate. 

Thus, one should choose the mean seafloor depth as the reference plane to obtain the fastest rate 
of convergence, i.e. to let the series concentrate on the n=1 term. 

The last paragraph indicates why the error introduced by neglecting the nonlinear terms is larger 
in rough areas. Let us consider two areas with the same mean seafloor depth d : one smooth area 

with smaller max b , and one rugged area with larger max b . More percentage of the infinite 

series value is concentrated on the 1n   term in the smooth area than in the rough area, because 

in the smooth area smaller max /b d  leads to a faster convergence rate. This conclusion is 

illustrated in the following example. 

The digital elevation models (DEM) of one smooth and one rugged area were synthesized to 
analyze the dominance of the 1n   term. The bathymetric depth grid (refer to subsection 4.2.1 
for detailed description of the data) in Figure 4.3 was used to construct the simulated DEM for 
the rugged area. Depth at each grid point remains unchanged but was assigned a new X and Y 
coordinates as if the topography was sampled from Cartesian coordinates with interval of 1713.8 
m along the west-east direction and 1839.4 m along the south-north direction. In this way, the 
roughness of the simulated DEM is in the same order as the study area of section 4.1. Then the Z 
axis origin was translated from sea level to the mean depth and this model was treated as the 
rugged area (lower panel of Figure 3.1). The purpose of the translation is to let Parker’s series 
concentrate on the n=1 term. The DEM of the smooth area was built in the same way, except that 
the magnitude of bathymetric depth was divided by 10 (upper panel of Figure 3.1). The vertical 

gravitational gradients at constant altitude 4530.3z m  and above the center of each area were 

computed through formula (3.4). It can be seen that every parameter in (3.4) for the two areas is 
the same except the topography b . The computation results are shown in Figure 3.2. 
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Figure 3.1: The simulated digital elevation models of two areas. The units of the color bars are 
meter. The black lines are the locations where the gravitational gradients were computed. 
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Figure 3.2: The first 5 terms of series (3.4) for the vertical gravitational gradient zz  of the two 
areas. 
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Similar results were obtained for the other elements of the gravitational gradient tensor. Figure 
3.2 clearly shows that in the smooth area, the 1n   term of Parker’s series is dominant and the 
nonlinear terms are negligible, whereas in the rugged area the nonlinear terms are not negligible 
compared to the 1n   term. A nonlinear term is artificially defined as “negligible” if its mean 
value is smaller than 1.5% of the mean of the linear term. In the smooth area the mean of the 
largest nonlinear term is 1.02% of the mean of the linear term, whereas in the rugged area this 
number is 10.24%. 

The total vertical gravity gradient is computed through formula (3.4), using the first 16 terms for 
the smooth area and the first 49 terms for the rugged area. Higher order terms are neglected 
because they are smaller than the computer precision. The largest difference between the total 
VGG and the linear term is 0.3 Eötvös in the smooth area, whereas it is as large as 48.9 Eötvös in 
the rugged area. To show the convergence of (3.4), the total gravity gradient is also computed 
through the right rectangular prisms method using formula (2.51). The detailed algorithm for this 
forward computation method can be found in section 2.2 or [Zhu, 2007]. Figure 3.3 shows that 
the series (3.4) converges to the gradient computed by the right rectangular prism method in both 
smooth and rugged areas, because the observation points are on the plane that is above all the 
topography. 
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Figure 3.3: The vertical gravity gradients computed from the right rectangular prisms (RRP) 
method and from formula (3.4) using the fast Fourier transform (FFT). The green line is the 
difference between the two methods. 
 

 

 

For gravity and gravity gradient measurements, usually it is not easy to significantly improve the 
measurement accuracy. Therefore, it is important to study how to make use of the nonlinear 
terms before we seek more precise gravity gradient measurements to improve the estimation 
accuracy, and this requires new algorithms that can handle tens of thousands of parameters in 
nonlinear models. 

There exist several methods to make use of the nonlinear terms, such as iteration, like Newton’s 
method. Another idea is to rearrange (3.4), which gives 
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Its right-hand side can be computed from measurements. Its left-hand side contains the only 
unknown parameter b . If we could find a way to solve this equation, one more method to solve 
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for the seafloor topography is obtained. The author leaves this discussion open, and in the next 
section concentrates on the method of simulated annealing, an optimization algorithm that is 
specifically designed to solve for parameters (seafloor topography) in highly nonlinear models. 

3.2.2 Introduction to the Coherency 

The analysis of the nonlinear effect in the last subsection relies on numerical computation. In this 
subsection, an algorithmic approach to analyze the linearity between gravity gradient and 
topography called coherency is developed. 

Assume that the signals (e.g. gravity anomaly g , gravity gradient  , topography b ) are 

ergodic zero-mean stochastic processes. Let us discuss the one-dimensional signals first. 
Generalizing signals to higher Cartesian dimensions is straightforward. The cross-correlation 
function for them is: 

      ,b x x x x b x x x xE b b p b d db    
 

     
 

         (3.7) 

where E  is the expectation operator, bp  is the joint probability density function of the two 

random variables,  u u   and  vb b v . The Fourier transform of the cross-correlation 

function is the cross-Power-Spectral-Density (PSD) of   and b. The units of this particular 
cross-correlation function are Eotvos m  , and then the cross-PSD has units 

 / /Eotvos m cycle m  . If the two signals in (3.7) are the same, one obtains the auto-correlation 

and auto-PSD: 

     2i f
b b bf e d   


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  
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   F   (3.8) 

The coherency, also called magnitude squared coherence (MSC), is defined as the normalized 
cross-PSD so that it is in the interval between zero and unity for all frequencies. The coherency 
defined by 
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is real-valued where the auto-PSDs  f  and  bb f  are real-valued even functions of f  

and the cross-PSD  b f  is a complex-valued function of f  [Carter et al., 1973; Bendat and 

Piersol, 2010]. 

The coherency is a frequency-domain analogue of the correlation coefficient. It indicates the 
linearity between the two data sets in the frequency domain regardless of their amplitude. 
Equation (2.48) suggests that under a first-term approximation the relationship between 
topography and gravity gradient can be described through a linear system, in which the 
topography b  is treated as input, and the gravity gradient   is treated as output, 

    1b Z b
  F ,  (3.10) 

where * denotes convolution. This system is linear because it satisfies the additive and 
homogeneous properties: 

      1 1
1 2 1 2b b Z b Z b 

      F F   (3.11) 

    1c b c Z b
    F  (3.12) 

where c  is an arbitrary constant, and 1b , 2b  are two inputs. 

In fact, in addition to  1 Z b
 F ,   when observed may also contain noise w : 

  1 Z b w
   F   (3.13) 

The w  and the input b  are assumed independent from each other. Let us denote the power 

spectral density of the topography and noise as bb  and ww , respectively. Then the PSD b  

and   are: 

    b bbf Z f
      (3.14) 

      2

bb wwf Z f f       (3.15) 

where the asterisk in (3.14) denotes the complex conjugate. 

The coherency between b  and   is: 
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  (3.16) 

The ratio of spectral density of  1 Z b
 F  to the spectral density of the noise,

 
 

2

bb

ww

Z f

f
 


, is 

treated as the signal-to-noise ratio (SNR). In the ideal case of a single input/single output linear 

system without noise (where  ww f is zero), the coherency should be 1 for all frequencies 

according to (3.16). If the coherency is greater than zero but less than unity, one possible reason 

is that the measurement contains noise (i.e.,  ww f  is not zero). In other words, the coherency 

tells us how much of   can be described as a filtered version of b . Except for noise, there are 
two other causes that can make the coherency deviate from one. Firstly, the topography and 
gravity gradient are not linearly related as the admittance theory suggests. In fact, Parker’s theory 
says that (2.48) is only approximately true. Secondly, the gravity gradient may be generated due 
to the topography as well as to other inputs, e.g. the underground density anomaly. Coherency 
close to one means   is generated mostly as the convolution of b  and a filter function. 
Coherency close to zero means that the gravity gradient   and the topography b  are 
independent. 

In summary, at wavelength bands where the coherency between the gravity gradient and the 
topography is large, we could use the admittance to estimate the topography since the relation 
between them is well represented by a linear system. At wavelength bands where the coherency 
is small, we cannot estimate the topography from gravity gradients using a linear system due to 
noises, significant nonlinear terms, and/or other sources that falsify the relationship described in 
(2.48). 
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3.2.3 Coherency for finite power signals 

The PSD in (3.9) is computed as follows. Equations (3.7) and (3.8) provide one way to compute 
the coherency: taking Fourier transform of the estimated correlation function. This is called the 
correlogram method. The second method is based on the relationship between PSD and the 
Fourier transforms of the original data records. This is called the periodogram method and will 
be discussed in the following. 

The realization of the stationary random process cannot be a finite-energy signal since the 
stationary data theoretically persist forever. We assume that it is a finite-power signal. In practice 
both topography and gravity gradient data are available only in the finite interval T . The 

truncated data  T x  and  Tb x  are square-integrable and thus both have a Fourier transform 

 T f


 and  Tb f
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If the data are discrete, we identify them by adding a subscript to the spatial variable: 

0x , 1x , , 1Nx  , where N  is the total number of the data, x  is the constant sampling interval, 

and T N x  . Then the discrete Fourier transforms of the data are: 
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where k

k
f

N x



, 1

2 2

N N
k     if k  is even, 

1 1

2 2

N N
k

 
    if k  is odd. 

The Fourier transform of the correlation function can be shown to be related to the signals by 
(3.19) [Bendat and Piersol, 2010]: 

      *1
limb T T
T

f E f b f
T 

        


  (3.19) 

where E  is the expectation operator and the asterisk denotes the complex conjugate. 
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Omitting the limit and expectation gives a simple way to estimate the PSD: 
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  (3.20) 

This estimator is not a consistent estimator and generally biased. In addition, the standard 

deviation of the estimate  ˆ
b f  is as large as the true value, which is unacceptable in most 

cases (see subsection 6.5.5 in [Bendat and Piersol, 1971]). What’s more, this estimate would 
cause failure when computing the coherency: 
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Equation (3.21) shows that the coherency calculated using (3.20) always gives unity, even if the 
two signals are totally incoherent. So, in practice, the PSD estimated by (3.20) should be 
smoothed. In this procedure the smoothing operation approximates and replaces the expectation 
operator in (3.19). It is usually done in one of the following two ways. The first way is to 
compute individual estimates from several independent sample records or several overlapping 
segments split from one sample record, and then these estimates are averaged at each frequency. 
The second way is to average the adjacent spectral components in the estimate from a single 
sample record. A generalization of the second method is to average the estimates computed from 
one sample record windowed with different orthogonal tapers. 

Nowadays Welch’s averaged, modified periodogram method [Welch, 1967] is a common way to 
estimate the PSD. But this method is inappropriate for short signals since it splits the signal into 
segments. As a result the long wavelengths are not kept since the longest resolvable wavelength 
equals the length of the data. In the appendix A, the Thomson’s [1982] Multiple-Slepian-Taper 
method is introduced, which does not segment signals. 

3.2.4 Radially Symmetric Coherency 

The formula (2.48) suggests that the gravity gradient zz  and topography are related through a 

radially symmetric operator, so their 2-D periodograms are azimuthally averaged to obtain the 
radially symmetric coherency, which is a function of radial frequency [Marks and Smith, 2012]. 
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Firstly, the discrete Fourier transform of the vertical gravity gradient and topography grids were 
computed. Next, the periodograms for the auto- and cross-PSD were calculated. Then the radial 
frequency was evenly divided into several frequency bands. Next, the elements of the 
periodogram whose radial frequencies fall into the same band were averaged, and treated as the 
PSD at the frequency band center. Finally, the radially symmetric coherency was computed by 
normalizing the azimuthally averaged cross-PSD, 
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where  is the average operator. 

The radially symmetric coherency between topography and vertical gravity gradient for the 
smooth and the rugged areas, shown in Figure 3.1, were computed using (3.22). The synthetic 
vertical gravity gradients (with no random error) were calculated through the theoretical formula 
(3.4) from topography data. 

In smooth area where topography and vertical gravity gradient are almost linearly related (see 
upper panel of Figure 3.2), the coherency is large at all frequencies. In the rugged area where the 
nonlinearity is significant (see lower panel of Figure 3.2), the coherency is large only at low 
frequencies. As frequency increases from 2e-5 to 2e-4 cy/m, the coherency quickly decreases 
from 0.95 to 0.5. At wavelengths shorter than 5 km, more than half of the vertical gravity 
gradient is from the nonlinear terms of Parker’s infinite series. In other words, if the topography 
is estimated through the linear approximation based FFT method as described in section 3.1, the 
short wavelengths cannot be improved no matter how accurate the vertical gravity gradient 
measurements are. 
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Figure 3.4: Radially symmetric coherencies for the smooth and the rugged areas. The 
topographies were synthesized data, and the simulated vertical gravity gradients were computed 
from the synthesized topographies using Parker’s infinite series. 
 

 

 

3.2.5 Coherency for Signals on the Sphere 

The coherency analysis for the local data above is conducted in flat-Earth approximation. Instead 
of concentrating on a small area where one has depth and gradient data, it would be beneficial to 
look at the coherency between gradients and topography in general, using global models like 
EGM2008. The coherency analysis for the global gravity and topography data should be 
conducted in spherical approximation. That is, the Fourier-Legendre transform rather than the 
Fourier transform is used to estimate the PSD. 

The Legendre transform pair is defined as: 
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where   is co-latitude,   is longitude, ,
g
n mC  and ,

g
n mS  are called the Legendre transform of g , 

and  , cosn mP  is the fully normalized, associated Legendre function of the first kind of degree 

n  and order m , with 0 m n   and 0n  . The definition of the associated Legendre function 
can be found in [Hofmann-Wellenhof and Moritz, 2005]. 

If assumed isotropic, the correlation function for signals on the sphere is given by (3.25) [Jekeli, 
2010]: 
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where   is the spherical distance between  ,   and  ', '  ,   is the azimuth of  ', '   at 

 ,  . 

Applying the direct Legendre transform to (3.25), we obtain the spectrum of the correlation 

function,  gb n
 . It is also called the cross-PSD of g  and b  on the sphere or degree-and-order 

variance, and can be computed in terms of ,
g
n mC , ,

g
n mS , ,

b
n mC , and ,

b
n mS , the Legendre transforms 

of the functions being correlated. 
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The Legendre transform of the gravity anomaly can be obtained from the EGM2008 model and 
one reference ellipsoid (see Appendix B). The Legendre transform of topography can be 
obtained from the spherical harmonics of topography. 

The topography in spherical harmonics is: 
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where the ,
b
n mC and ,

b
n mS are the spherical harmonic coefficients. 

Substituting (B.6) and (3.27) into (3.26), we have 
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For the auto-PSD, we have 
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Analogous to (3.9), the coherency is defined as: 
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The spatial resolution corresponding to n  is computed using the formula (3.32) [Barthelmes, 
2009]: 
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 
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  (3.32) 

where   is the spherical distance. 

The auto- and cross-PSDs of the global gravity anomaly and global topography were computed 
using the EGM2008 tide-free model, DTM2006.0 [Pavlis et al., 2012], and EARTH2012 [Hirt 
and Kuhn, 2012]. The former model is for gravity and the latter two are for topography. In the 
computation, the GM  and a  associated with EGM2008 were adopted for the three models above, 
and the r  was set to a . The WGS84 was chosen to compute the spherical harmonics for the 
normal gravitational potential. 

Results from the two global topography models are similar. Figure 3.8 displays the coherency 
between the topography and gravity anomaly over the globe. Because the Legendre transform is 
computed using global data and we are not able to tell the “location” of a Legendre transform, 
the Figure 3.8 can be interpreted as a kind of globally averaged coherency, which provides 
information about the general relation between topography and gravity field over the globe. 
Between the degree 130 and 930 the coherency is larger than 0.5. According to equation (3.32), 
this band is about [24.4 km, 194.5 km]. Within this wavelength band, the assumption of the 
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linear relationship between gravity and topography is a good one, and the estimation algorithm in 
section 3.1 is eligible. This band is close to the 15-160 km band chosen in [Smith and Sandwell, 
1994], which predicts seafloor topography only over the southern oceans. At longer wavelengths, 
the coherency is low because isostatic compensation cancels most of the gravity anomaly. At 
shorter wavelengths, the coherency is low due to both the nonlinear effects of rugged topography 
on gravity and the underground density anomaly. At these wavelengths the performance of the 
estimation algorithm in section 3.1 is poor. Because the EGM2008 model is developed based on 
5ˊ×5ˊ free-air gravity anomaly data, Figure 3.8 does not provide information about coherency for 
wavelengths shorter than 10 km. The analysis in this subsection is not specific to gravity 
anomaly or gravity gradients. It holds for any vertical derivative of the gravity potential. 
 
 
 

 
Figure 3.5: The Degree-and-order variance of the gravity anomaly computed by EGM2008. 
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Figure 3.6: The Degree-and-order variance of the DTM2006.0 and EARTH2012 global 
topography models. 
 

 

 

 
Figure 3.7: The cross-PSD between EGM2008 gravity anomaly and each of the two global 
topography models. 
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Figure 3.8: The coherency between EGM2008 gravity anomaly and each of the two global 
topography models. 
 

 

 

3.3 Seafloor Topography Estimation Using Simulated Annealing 

3.3.1 Introduction to the Simulated Annealing 

As shown in Figure 3.2 and Figure 3.4, the nonlinear effect is nonnegligible in rugged areas like 
the one shown in Figure 4.2. Simulated annealing (SA) is a candidate for a global optimization 
technique that can process nonlinear inverse problems. The vector containing the parameters to 
be determined is called the state of the system. The SA algorithm asymptotically finds an optimal 
state vector with probability 1, for which its cost function, a quality indicator that measures the 
discrepancy between the observations and the corresponding computed forward model, is at a 
global minimum [Kirkpatrick et al., 1983; Laarhoven and Aarts, 1987]. In this section the SA 
method to estimate the seafloor topography is developed, for the purpose of improving the 
accuracy by employing a direct nonlinear model that relates topography and the gravity field. 

The invention of SA is generally credited to Metropolis and his coworkers, who established an 
algorithm to simulate the process of annealing in thermal dynamics [Metropolis et al., 1953]. 
Thirty years later, Kirkpatrick et al. [1983] found the connection between statistical mechanics 
and multivariate optimization, and developed an algorithm called “simulated annealing” to 
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minimize the cost function of a multivariate optimization problem by applying the Metropolis 
criterion. The simulated annealing algorithm was also independently developed by other 
scientists [Černý, 1985] during the same period. Since then, an increasing number of papers have 
been published for the refinement of the SA algorithm and its applications [Laarhoven and Aarts, 
1987; Szu and Hartley, 1987; Ingber, 1989]. 

The SA algorithm starts with an arbitrary initial state 0b  whose cost function is  0E b . Then a 

new state is generated with the probability  ka b  controlled by a parameter called 

“temperature”, where k  is the iteration step number. In the initial algorithm [Kirkpatrick et al., 

1983], the new state is generated through  1
i i i i i
k kb b y B A    ,  1,2,i D   subject to 

i i i
kA b B  , where D  is the number of elements in the state vector, iy  is a random number 

generated from a uniform distribution in the interval [-1,1], and [ , ]i iA B  is the allowed range of 

ib  [Uzun, 2013]. The next step is to compute the cost function of the new state  kE b , and then 

use the Metropolis criterion to determine whether to accept the new state or not. That is, if 

   1 0k kE E E    b b , the new state is accepted; and, if 0E  , the new state is accepted 

with the probability   1/ 1 exp / kE T  . Next, the temperature is decreased according to a 

cooling schedule, and a new state is generated to start another iteration cycle. This process is 
iterated until there is no change in the cost function. It has been verified (see pp. 27-38 in 
[Laarhoven and Aarts, 1987]) that if the cooling schedule is not faster than 
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the probability distribution of the state  ka b  is given by the Boltzmann distribution 
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Note that the initial temperature 0T  is set sufficiently high so that almost every state transition is 

accepted at the beginning. As the temperature decreases, the probability to reject the transitions 
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that increases the cost function gradually approaches one. That is why the simulated annealing 
can jump out of a local minimum of the cost function at the beginning, and ultimately land on the 
global minimum cost. 

As the temperature decreases, the Boltzmann distribution concentrates on the states with lowest 
cost, in other words, the state asymptotically converges to an optimal value with probability 1, 

  
0

lim lim Pr 1k optimal
kT  

 b R   (3.35) 

where optimalR  is the set of global minimal states. 

Ingber [1989] improved the SA algorithm and named his new algorithm the adaptive simulated 
annealing (ASA), which is also known as the very fast simulated annealing. In his algorithm, 
each element of the state vector is assigned a temperature, so that different elements can be 
assigned different cooling schedules. The new state is generated through 
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where iu  is generated from a uniform distribution 

  1,1iu U    (3.38) 

As a consequence, the temperature is allowed to decrease no faster than 
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where  exp /i i ic m n D  , and im , in  are “free” parameters to help tune the adaptive 

simulated annealing, so that at the ne -th iteration the temperature becomes 0
mT e . This cooling 

schedule is much faster than 0

lnk

T
T

k
  used in the initial simulated annealing algorithm. 

It can be seen from equation (3.39) that, if the parameter dimension D  is large, the increase of 
1

Dk  becomes exponentially slow, which will slow the speed of temperature decrease and require 
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prohibitively large computation resources. The adaptive simulated annealing turns to the next 

best choice by adding a quenching parameter Q  

 0 exp
Q

i i i D
kT T c k

 
  
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  (3.40) 

 exp
in Q

i i Dc m


   (3.41) 

The quenching parameter is of the same order as D  and makes the simulated annealing lose its 
property of statistical convergence to the global minimum, although in practice it might still be 
among the best algorithms for a given system [Ingber and Rosen, 1992]. Indeed, it has been 
successfully applied to a number of complex problems with large dimension [Harri and Kimmo, 
1990; Griff, 1991; Roy et al., 2005; Liu et al., 2008; Li and Ma, 2014]. 

The state transition may be best described by a Markov chain. A Markov chain is a discrete state-
space stochastic process where the subsequent state only depends on the current state, and not on 
the previous states [Uzun, 2013]. A Markov chain is called homogeneous if, 

 1Pr |k j k i   b b , the probability of moving from one state i  to another state j , is 

independent of the index k . 

The adaptive simulated annealing method [Ingber, 1989; 1993; 1996] is adopted. It is described 
by a single inhomogeneous Markov chain, and thus is an inhomogeneous algorithm. This is 
because the temperature T  is decreased between every state transition, so the probability density 

function of iy  in (3.36) depends on the index k . A pseudo-code for the adaptive simulated 

annealing is given in the Appendix C. 

3.3.2 Seafloor Topography Estimation from Gravity Gradients 

The seafloor topography parameters in a forward model can be estimated through simulated 
annealing by minimizing the difference between the observed and forward-computed gravity 
gradients. Compared to the standard frequency-domain method, SA only needs forward 
computation formulas, so that the linearization of Parker’s infinite series for the convenience of 
inversion can be avoided and nonlinear topographic effects can be included. SA also has no 
restrictions on data distribution, as required in Parker’s infinite series model, thus enabling more 
flexibility in airborne gravity gradient trajectories. 

The practical implementation of the simulated annealing technique for seafloor topography 
estimation is described in the following. A local Cartesian coordinate system is set up with the 
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origin located at the center of a study area and on the surface of the reference ellipsoid, and with 
X, Y and Z axes pointing to east, north, and up respectively. Then the seafloor of the study area 
is modeled as a set of adjacent right rectangular prisms with edges parallel to the coordinate axes. 
The X and Y coordinates of the right rectangular prisms are known. The Z coordinate of the 
lower faces is the mean depth of the study area. The Z coordinates of the upper faces represent 
the seafloor heights. They are the unknown parameters and are part of the state vector for 
simulated annealing. 

The vertical gravity gradients at the sea surface, caused by the mass-density of the seafloor 
topography, are computed using the aforementioned right rectangular prism model. Only the 
“near zone” effect is considered. That is, for each computation point, only the prisms within a 
preset distance are included. The vertical gravity gradient is computed at the evaluation point at 
sea level due to each prism and then summed. The “far zone” effect is of long-wavelength type 
and approximated by a constant for the entire study area (the validity of this assumption is 
discussed in the subsection 4.3.1). This parameter (far zone effect) is unknown and added to the 
state vector b  to be determined. The density difference between the sea water and seabed is 
assumed to be constant. In summary, the state vector to be determined contains the seafloor 
topography parameters and the gravity gradient off-set due to mass outside the near zone. The 
vertical gravity gradient at each computation point is the sum of vertical gravitation gradients 
caused by the near zone prisms and the off-set due to the far zone mass, with the density of the 
prism assumed constant, 
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where  i comp
zz b  is the computed vertical gravity gradient at i ,  1 2, , , ,Mb b b b   is the state 

vector, M  is the number of right rectangular prisms within the near zone, and  is the vertical 
gravity gradient due to the far zone mass. 

The data used to estimate the topography are vertical gravity gradients derived from satellite 
altimetry using derivatives of the vertical deflections, and called the “observed” gravity gradients 
[Rummel and Haagmans, 1990; Sandwell and Smith, 1997]. There are differences between the 
computed and observed vertical gravity gradients. The objective is to find the optimal state 
vector by using the SA that minimizes these differences. The cost function is defined as the 
average of squared differences between the computed and the observed vertical gravity gradients, 
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where N  is the number of observation points, i obs
zz  is the vertical-vertical gravity gradient 

observed at i . 
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Chapter 4: Numerical Experiment 

4.1 Study Area Description 

The Parker’s FFT-based method and the simulated annealing technique developed in the last 
chapter for seafloor topography estimation were tested in this chapter using data sets for a 2°×2° 
area. 

The study area is located in the West Pacific Ocean. It lies between latitudes 20° and 22° north, 
and longitudes 156° and 158° east. The 1’×1’ vertical gravity gradient model version 24.1 was 
downloaded from the website of the Scripps Institution of Oceanography (SIO) [Sandwell et al., 
2014]. The VGG is calculated using the derivatives of the vertical deflections (refer to Appendix 
B in [Sandwell and Smith, 1997] for details). In [Sandwell and Smith, 1997], it is reported that all 
the along-track data were filtered with the same filter to ensure a common bandwidth (0.5 gain at 
18 km wavelength). No such description is found in [Sandwell et al., 2014], which updates the 
SIO gravity model using the Cryosat-2 and Jason-1 data. The two missions have nominal track 
spacing of 2.5 km and 7.5 km respectively. The ship sounding depths were downloaded from the 
National Centers for Environment Information (NCEI). The spatial resolution in 2-D is not 
uniform due to nonuniform ship tracks. No accuracy information comes with these depths. The 
ship sounding depths are treated as true values, as analyzed in subsection 2.3.2. This study also 
uses the global topography model version 18.1 released by the SIO [Smith and Sandwell, 1997]. 
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Figure 4.1: The 1ˊ×1ˊ vertical gravity gradients of the study area. The units of the colorbar are 
Eötvös. The dashed red line is the ship track of the vessel JOIDES Resolution. It was not used in 
the experiment and was reserved for the accuracy test. All other ship tracks are shown in the 
upper panel of Figure 4.2. 
 

 

 

4.2 Estimation Using Parker’s Formulation 

4.2.1 Data Preparation 

For Parker’s method, the bathymetry data that were downloaded from the NCEI cover an extra 
0.5° on each side of the research area to reduce the edge effects. Each of the bathymetric depths 
was assigned to its nearest node of the VGG mesh. For mesh nodes with more than one depth, 
the weighted average was retained (see the bottom panel of Figure 4.2). The weight assigned to 
each bathymetric depth is based on its distance from the mesh node using a cosine window, and 
is given by 
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max

cos
2

l
P

l

 
  

 
,  (4.1) 

where P  is the weight, l  is the distance between the bathymetric depth and the mesh node, and 

maxl  is maximum value that l  can achieve, namely 2  times the sampling interval. 

In the mesh displayed in the bottom panel of Figure 4.2, the mesh nodes constrained by ship 
sounding were marked for determination of the topography-to-gradient admittance scale. The 
mesh nodes without constraining data were interpolated through the biharmonic spline 
interpolation method [Sandwell, 1987], see Figure 4.3. 
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Figure 4.2: (top) Single-beam ship sounding data downloaded from NCEI’s website. (bottom) 
The ship sounding data were assigned to the nearest mesh nodes on the basis of weighted 
averaging. The units are meter. 
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Figure 4.3: The seafloor depths interpolated from the bottom panel of Figure 4.2 through 
biharmonic spline interpolation. The units are meter. 
 

 

 

The mean sea depth, 4828.8d   m, is the average value of the single-beam ship soundings. It 
relates the seafloor depth and the topography through equation (2.27). 

4.2.2 Data Filtering 

Parker’s theory was developed in the Cartesian coordinate system whereas the data prepared in 
the last section were given in geodetic coordinates. Therefore, a flat-Earth approximation was 
used in this section. This approximation is acceptable because its effect is of long-wavelength 
character, whereas our prediction band is in the short-to-intermediate wavelengths (15-160 km), 
which are much shorter than the radius of the Earth [Tapley, 1997]. Although the data grids are 
equally spaced along meridians, the distance of the sampling interval along the parallel circle 
varies with latitude. Nevertheless, since the experiment area is small, in the Fast Fourier 
Transform the data grids were used as if they were sampled with constant intervals. These 
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constant intervals are 1729.8 m (mean value of the actual sampling intervals) along west-east 
direction, and 1729.9 m along south-north direction. 

In the uncompensated 15-160 km wavelength band, the seafloor topography was estimated from 
the gravity gradients. The wavelengths longer than 160 km were obtained by low-pass filtering 
the ship sounding data. The filters used in this section are Gaussian. The cut-off frequency is 
defined as the radial frequency where the frequency response of the filter is 0.5. 

The low-pass filter (blue line in Figure 4.4) 

  242 2.9983 10

l

f
W e

  
 , (4.2) 

was applied to the interpolated ship sounding grid (see Figure 4.3) to obtain the long-wavelength 

regional seafloor topography l̂b . Note that 0.5lW   when 1 160f km  . 

 

 

 

 
Figure 4.4: The Gaussian low-pass filter (4.2) and the Gaussian band-pass filter (4.3). 
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Figure 4.5: The long wavelength regional depths l̂b  computed by low-pass filtering the 
interpolated ship sounding data. The units are meter. 
 

 

 

The band-pass filter (red line in Figure 4.4) 

    2 24 32 2.9983 10 2 2.8109 10
1

f f
W e e

          
  (4.3) 

was also applied to the interpolated ship sounding (Figure 4.3) to obtain the 15-160 km local 

wavelengths. The vertical gravity gradient (Figure 4.1) was multiplied by   1 22 fdf e 


 in the 

frequency domain to obtain the equivalent gravity anomaly, and then was filtered using the same 

band-pass filter. For this band-pass filter, 0.5W   when 1 160f km   or 1 15f km  . After the 

filtering above, we have all the quantities needed by (3.3) for the topography estimation except 
the topography-to-gradient admittance scale. 
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Figure 4.6: The 15-160 km wavelength local seafloor topography obtained by band-pass filtering 
the interpolated ship sounding (Figure 4.3). Note that only the grid points originally constrained 
by ship sounding (shown in the bottom panel of Figure 4.2) were used to compute the 
topography-to-gradient admittance scale. The units are meter. 
 

 

 

 
Figure 4.7: The band-pass filtered equivalent gravity anomaly. The units are mGal . 
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4.2.3 Determination of Topography-to-Gradient Admittance Scale 

The 15-160 km wavelength local topography and equivalent gravity anomaly (Figure 4.6, Figure 
4.7) at places originally constrained by ship soundings (see bottom panel of Figure 4.2) were 
used to determine the topography-to-gradient admittance scale. The scatter plot of local 
topography versus equivalent gravity anomaly is shown in Figure 4.8. 

Equation (2.50) suggests that the band-pass filtered equivalent gravity anomaly is proportional to 
the topography in the spatial domain. This is generally true over our study area as Figure 4.8 

shows. The correlation coefficient, corrcoef , between the local topography and the equivalent 

gravity anomaly is computed according to 
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
 

          
   (4.4) 

where N  is the number of topography and gravity gradient pairs, b  and b  are the mean and 

standard deviation, respectively, of the band-pass filtered topography ib ; and, eg
  and eg

  are 

the mean and standard deviation of the band-pass filtered equivalent gravity anomaly e
ig . The 

value of the correlation coefficient is 0.9689. 

In some other areas where the ocean bedrock is buried by thick sediments, the local topography 
and equivalent gravity anomaly may not be linearly related because the observed topography is 
smooth but the gravity gradient is generated by sub-topography structures. 

The scatter plot in Figure 4.8 does not strictly follow a single straight line. When the equivalent 
gravity anomaly increases, the slope of the scatter plot gradually becomes smaller and could lead 
to an overestimated topography. As discussed in the last paragraph, sub-seafloor density anomaly 
may be one cause. Another possible reason is that equation (2.50) is just a first term 
approximation to Parker’s infinite series. This approximation is good only at places where the 
local topography is small compared with the regional topography. 
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Figure 4.8: Local topography versus local equivalent gravity anomaly at places originally 
constrained by ship sounding. The red line passes through the coordinate origin. Its slope is 
topography-to-gradient admittance scale computed through formula (4.5), with standard 
deviation substituted by median absolute deviation, which is defined by (4.6). 
 

 

 

The topography-to-gradient admittance scale S  can be found from the slope of the line that best 
fits the local topography and equivalent gravity anomaly pairs according to the least-squares 
method. But, because both topography and equivalent gravity anomaly data contain errors, Smith 
and Sandwell [1994] suggest using the standard deviation to calculate the topography-to-gradient 
admittance scale [Bendat and Piersol, 2010]: 

 b

g

S



   (4.5) 

where b , g  are standard deviations for the local topography and the equivalent gravity 

anomaly, respectively. 

Because the distributions of the local topography and equivalent gravity anomaly were not 
normal, as shown in Figure 4.9, in practice the standard deviation is substituted by the median 
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absolute deviation (MAD) MAD , a robust measurement of dispersion [Rousseeuw and Leroy, 
2005]. The MAD of the topography b  is defined as 

 [ ( ) ]MAD
b i imedian b median b     (4.6) 

The topography-to-gradient admittance scale corresponding to (4.6) is 13.5 m/mGal. Since the 
long wavelengths have been removed, the local topography and the equivalent gravity anomaly 
in the study area should be distributed around zero. This constraint is applied, that is, their 
medians are set to zero. The topography-to-gradient admittance scale computed in this way is 
reduced to 11.6 m/mGal. It is the slope of the red dashed line in Figure 4.8. This indicates that 
the S  is not stable. It varies when different computation methods are used. 
 

 

 

 

Figure 4.9: Histograms of the local equivalent gravity anomaly and the local topography at 
places originally constrained by ship sounding. 
 

 

 

4.2.4 Results and Evaluation 

The band-pass filtered equivalent gravity anomaly (Figure 4.7) multiplied by the topography-to-
gradient admittance scale gives the predicted short-to-intermediate wavelength topography. 
Combining it with the long wavelength regional topography obtained by low-pass filtering of 
ship sounding (Figure 4.5) gives the total seafloor depth estimation (shown in Figure 4.10), as 
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indicated by equation (3.3). Since wavelengths shorter than 15 km are omitted, the topography 
estimation is smooth. Estimation based on the Forsberg method gives the same result, because 
the first term approximation of Parker’s series and Forsberg method are the same, as formula 
(2.24) shows. 
 

 

 

 

Figure 4.10: The total seafloor depths estimation. The units are meter. The red dashed line is the 
ship track reserved for quality evaluation. 
 

 

 

Figure 4.11 is the profile of depths along the ship track of the vessel JOIDES Resolution. The 
blue cross is the observed depth while the solid line represents the estimated seafloor depth. It 
shows that the estimation resolved most of the seafloor topography. But the estimation was 
smooth and did not recover some short wavelength details. Besides, the topography was 
overestimated at very rugged places. One reason is that wavelengths shorter than 15 km had been 
suppressed to make the inversion stable; so, some short wavelengths that the ship measurement 
contains were not estimated. Another contributing factor is the first-term approximation. Along 
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this ship track the topography varies severely, but the linear approximation of Parker’s series that 
relates topography and gravity gradients is good only at places where the local topography is 
small compared to the regional topography, provided the sub-topography density is uniform. As 
discussed in subsection 3.2.1, in a synthesized area similar to the study area, the nonlinear terms 
can be as large as 48.9 Eötvös. As shown in Figure 4.8, the topography is generally proportional 
to the equivalent gravity anomaly when the topography is within ± 1000 m. But the topography-
to-gradient admittance scale gradually becomes smaller and deviates from the red dashed line 
when the topography is larger than 1500 m, where the neglected nonlinear terms may bring 
errors to the estimation. 
 

 

 

 
Figure 4.11: The blue crosses are observed depths from JOIDES Resolution. The solid line is the 
estimated depth at corresponding location. 
 

 

 

The topography-to-gradient admittance scale S  is location dependent. That is to say, the S  
determined in one area cannot be used in other areas and still provide as good results. Therefore, 
if the estimation area is large, it should be divided into several small regions each with an 
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independent S  determined from regional gravity gradient and ship sounding pairs. To show the 
sensitivity of the estimation to the topography-to-gradient admittance scale, the estimation was 
recalculated using different S . The results are shown in Figure 4.12. 
 

 

 

 

Figure 4.12: The seafloor depth estimations along the ship track of JOIDES Resolution with 
respect to different topography-to-gradient admittance scale S . 
 

 

 

The difference between the ship soundings and the estimation at mesh nodes originally 
constrained by ship data (bottom panel of Figure 4.2) was calculated. Table 4.1 summarizes the 
statistics of this difference. The histogram is shown in Figure 4.13. The distribution of the 
difference is not normal, because the normal distribution is symmetric about zero, whereas the 
skewness of the difference is 0.57. The difference concentrates on small values. The distribution 
shows that the peak is sharp, and the tails are longer than those for the normal distribution. 
Therefore, the cumulative distribution of the absolute difference is also computed (shown in 
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Figure 4.14) to provide another perspective, which shows half of the differences are smaller than 
133.66 m, and less than 20% are larger than 300 m. 
 

 

 

Table 4.1: The statistics of the difference between ship soundings and estimated seafloor depths 
at constrained grid nodes. The units are meter. 
 

Max Absolute Mean STD RMS 

1378.32 72.81 258.21 268.28 

 

 

 

 
Figure 4.13: The histogram of the difference between ship soundings and estimation. The 
difference is spread out more to the right of the mean than to the left. The red line is the 
probability density function of a normal distribution for comparison. 
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Figure 4.14: The cumulative distribution of the absolute difference between ship sounding and 
estimation. 
 

 

 

The seafloor depth estimations with respect different S  are also compared with the ship 
soundings. The statistics of the differences are shown in Table 4.2. It indicates that the Parker’s 
method is sensitive to the topography-to-gradient admittance scale S . 
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Table 4.2: The statistics of the difference between ship soundings and estimated seafloor depths 
with respect to different S  shown in Figure 4.12. 
 

S    [m/mGal] Max Absolute 
[m] 

Mean     [m] STD      [m] RMS      [m] 

9 1522.68 115.71 302.21 323.60 

10 1466.51 99.02 270.90 288.43 

11 1410.35 82.33 257.06 269.92 

12 1370.79 65.64 263.45 271.50 

13 1406.18 48.95 288.73 292.85 

14 1441.57 32.26 328.57 330.15 

 

 

 

4.2.5 Results after Including Shorter Wavelengths 

The prediction band of the gravity gradient is set to 15-160 km. It is the same as the one for the 
gravity anomaly used by Smith and Sandwell [1994;1997] in order to make the results from the 
two methods comparable in subsection 4.4.1. To test the effect of including shorter wavelengths, 
the shorter cut-off wavelength of the band pass filter (4.3) is reduced, and the corresponding 
estimation results are shown in Table 4.3. 
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Table 4.3: The statistics of the differences between ship soundings and estimated seafloor 
topography at constrained grid nodes for different shorter cut-off wavelengths. The units of the 
cut-off wavelengths are km, and the units of other values are meter. 
 

Shorter Cut-off 
Wavelength 

Max 
Absolute 

Mean STD RMS 

15 1378.32 72.81 258.21 268.28 

14 1360.43 72.02 258.76 268.60 

13 1340.81 71.45 259.56 269.21 

12 1326.12 71.35 260.38 269.98 

11 1312.73 71.90 261.03 270.75 

10 1298.79 72.21 262.19 271.95 

9 1282.42 73.13 263.22 273.19 

8 1264.73 73.77 264.83 274.92 

7 1245.01 74.05 267.15 277.23 

6 1219.22 76.11 268.72 279.29 

5 1223.26 77.26 272.39 283.13 

 

 

 

Table 4.3 shows that, as the shorter cut-off wavelength decreases, the STD and RMS of the 
estimation error increases. One reason is that a low-pass filter (0.5 gain at 18 km wavelength) 
was applied to all the along-track altimetry data to ensure a common bandwidth [Sandwell and 
Smith, 1997]; so, the altimetry derived vertical gravity gradient does not contain sufficient short 
wavelength information. 
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4.3 Estimation Using Simulated Annealing 

4.3.1 Analysis of the Forward Computation in the SA 

The truncation theory developed in the subsection 2.3.1 needs rudimentary knowledge of the 
topography in the study area, i.e., a power-law model that approximates the power spectral 
density of the topography. The power spectral density of the study area (ranging from E156° to 
E158° and from N20° to N22°) was computed through formula (2.65) from the global 
topography model version 18.1 released by SIO. Then a power-law model whose log-log plot (a 
straight line) best fits the log-log plot of the PSD in a least-squares sense (see Figure 4.15) is 
given by 

   3.43190.0043b f C f f 
     .  (4.7) 

 

 

 

 
Figure 4.15: The power spectral density of the SIO topography model in the study area, and the 
power-law model (4.7) that fits the PSD. 
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Based on this power-law model, the standard deviation of the relative truncation error as a 

function of the truncation distance 0s  from the computation points was calculated through 

formula (2.66), and is shown in Figure 4.16. Note that 0s  is implicitly contained in  zz k
 , which 

can be numerically computed from (2.57). 
 

 

 

 

Figure 4.16: Relative truncation error between two points separated by a horizontal distance l  
versus truncation distance 0s . The mean sea depth is 4828.8d   m in the study area. 
 

 

 

The relative truncation error is the difference of the far zone topography effect between two 
points separated by a horizontal distance l . Figure 4.16 shows that, for a given l , increasing the 

truncation distance, 0s , reduces the relative truncation error. Figure 4.16 also shows that for a 
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given 0s , the relative truncation error increases as the separation distance l  increases. This 

suggests that a small study area should be adopted for simulated annealing, considering that in 
SA method as implemented here assumes that the far zone effect is the same for all points in the 
study area. If the study area is large, then we should divide it into several small regions and 
invert one region at a time, otherwise the assumption of a constant far zone topography effect is 
no longer valid. A small study area usually leads to a small number of seafloor topography 
parameters and thus benefits the simulated annealing by allowing a faster temperature cooling 
schedule (as shown by equation (3.40)). 

On the other hand, in the simulated annealing technique, the topography to be determined is 
surrounded by a padded-topography model. During the SA iterations, the errors in the padded-
topography model propagate to the unknown topography. This propagated error is larger at the 
edge of the study area where more of the padded-topography model is used. To reduce this error, 
the topography to be estimated by SA should cover as large an area as possible. 

Combining the two considerations above, given a certain truncation distance 0s , the size of the 

study area can be set to the largest l  whose corresponding relative truncation error is small 
enough, so that the far zone effect can be assumed uniform for the entire study area. Figure 4.16 
shows that if the study area remains at 2°×2° (about 222 km×222 km, that is, l =222 km), a 350 
km truncation distance reduces the relative truncation error to 3 Eötvös, which is smaller than the 
assumed VGG data accuracy (also a typical measurement accuracy of airborne gravity 
gradiometry is 5~7 Eötvös [Selman, 2013]). 

Because the data do not contain information higher than the Nyquist frequency, the sampling 
intervals of the vertical gravity gradient and the seafloor topography limit the resolution that the 
SA method can achieve. The grid size of the vertical gravity gradient data is 1ˊ×1ˊ, 
corresponding to a Nyquist wavelength of about 3.7 km. Therefore, there is no need to use 
intervals shorter than 1.85 km when building topography models. The resolution error computed 
through formula (2.73) based on the power-law model (4.7) is 8.8e-7 Eötvös, which is negligible. 

4.3.2 Data Preparation and SA Configuration 

The geodetic coordinates for the gravity gradients and the SIO global seafloor topography model 
were transformed to local Cartesian coordinates with origin (E157°, N21°, 0 m) through 
GEOTRANS software version 3.5 released by the National Geospatial-Intelligence Agency’s 
office of geomatics. 

The topography over the study area was divided into a mesh using local Cartesian coordinates 
with interval of 1713.8 m along the West-East direction and 1839.4 m along the South-North 
direction. The coordinates of the middle points between adjacent mesh nodes were calculated. 
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Then for each mesh node, its nearest west, east, south, north middle points were chosen as 
boundary to build a rectangular prism representing the seafloor topography at the mesh node, 
with each face of the prism parallel to one of the coordinate planes. The topographic height 
served as the upper boundary of the prism, and the mean depth as the bottom boundary. For each 
VGG observation point, the topography within its near zone of radius, 350 km (about 3.2°), was 
used to conduct the forward computation of the gravity gradient. The topography outside the 
2°×2° study area was substituted by the global topography model version 18.1 released by the 
Scripps Institution of Oceanography [Smith and Sandwell, 1997] to make the forward 
computation for observation points in the study area margin possible, see the schematic diagram 
shown in Figure 4.17. Therefore, the topography used to forward-compute the gradients in the 
2°×2° study area covers 9°×9°, ranging from E152.5° to E161.5° and from N16.5° to N25.5°. 
Only the topographic heights within the central 2°×2° are unknown parameters, and the outside 
topography was fixed to values from the SIO global topography model. This model, with 1ˊ×1ˊ 
resolution is resampled to a mesh with the same interval as the study area (1713.8 m along the 
West-East direction and 1839.4 m along the South-North direction) using the nearest-neighbor 
interpolation. The forward computation for observation points uses topography that is a 
composite of both known and to-be-solved parameters. Note that the forward computation 
algorithm provides the Z-Z component of the gradient with respect to the local Cartesian 
coordinate, whereas the observed gravity gradient is the vertical-vertical component with respect 
to the perpendicular to the reference ellipsoid. Since our study area is small, this discrepancy was 
neglected (along the meridian, the discrepancy is 1-cos(1°) = 0.015% at most.). 
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Figure 4.17: The green rectangle represents the range of observed vertical gravity gradients. The 
area directly beneath it and marked by a red rectangle is the unknown seafloor topography to be 
estimated. The topography between the red and the magenta rectangles are fixed values from 
SIO global topography model version 18.1. It is called the padding area. In this figure, the cyan 
circle marks the near zone topography needed to forward compute the vertical gravity gradient at 
a corner. The radius of the cyan circle is the truncation distance 0s  that defines the near zone. 
 

 

 

The search limit of the unknown seafloor topography (i.e. the state vector in the simulated 
annealing) can be set to constant values, e.g., the upper search limit could be set to the sea 
surface and the lower limit could be set to 1 km below the maximum depth over the study area. 
But the computations are wasted if one uses too large a search space. Considering the facts that 
the SIO global topography model is based on a fit to ship soundings [Smith and Sandwell, 1997] 
and that our SA method mainly improves the estimation of the topography due to originally 
neglected nonlinear effects which are not large, the search space was reduced by setting the 
upper and lower search limits of the seafloor topography at each grid point to 1 km above and 1 
km below the depth value interpolated from the SIO global topography model. The mean of the 
difference between the VGG observations and the VGG forward computed from the SIO global 



81 

 

topography model indicates the magnitude of the offset due to far zone mass. For example, in 
this area the mean of the difference is -2.9 Eötvös, and then the search domain for the gravity 
gradient offset due to far zone mass was empirically set to 5 0Eötvös Eötvös    . The tuning 
parameters for the simulated annealing are listed below. 
 

 

 

Table 4.4: The tuning parameters. 
 

0
iT   in   im   D   Q  

1  log 1 7e    log 1 4500e    16506 16506 

 

 

 

In this experiment, the SA iteration is terminated when the number of iterations reaches 1 6e . 
There are typically other criteria (e.g., terminate the iteration when the difference in cost function 
between transitions is smaller than a preset threshold for a certain number of times), but this is 
the only one that I used because it provides accurate control to the program running time. 

4.3.3 Results of the Simulated Annealing 

The program ran on the supercomputer Oakley at the Ohio Supercomputer Center and exited 
after 1 6e  iterations, as set in the termination criteria. The results are shown below. Figure 4.18 
indicates that the cost decreases as the iteration number increases. It has dropped less than two 
orders of magnitude during the annealing process. The number of the iterations needed by the SA 
to converge is related to the number of unknown parameters in the state. The greater the number 
of unknown parameters, the more iterations are needed. 
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Figure 4.18: The cost function decreases during annealing. 
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Figure 4.19: The change of cost function between transition. Red dots mean that the newly 
generated state reduces the cost function and the transition to the new state is accepted. Green 
dots mean that the new state increases the cost function and the transition to the new state is 
rejected by the Metropolis criterion. Blue dots mean that the newly generated state increases the 
cost function, but the transition is accepted. 
 

 

 

As shown in formula (3.36), a new state is generated by adding a disturbance to the old state. 
The disturbance is a stochastic variable controlled by the temperature. Figure 4.19 indicates that, 

at the beginning when the temperature is high, the disturbance and the resulting cost  are large. 

Most of the new states are accepted even if they increase the cost function. As the iteration 
proceeds, the temperature decreases exponentially. This leads to a gradually diminishing 

disturbance and cost . That is, the probability distribution of the disturbance gradually 

concentrates on a smaller disturbance. As the temperature decreases, the probability of accepting 
the transitions which increase the cost function gradually becomes low. The Metropolis criterion 
ensures that the transition which increases the cost function can be accepted with probability, 
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thus the states have the ability to escape from a local minimum. At the end stage when the 
temperature is low, this probability becomes low as well, so that only the transitions reducing the 

cost function are accepted. In the meantime, the state and the cost  can only change with a tiny 

amplitude. The state then refines its precision and the cost function approaches the global 
minimum. 

The seafloor depth (topography minus mean depth) as estimated through simulated annealing is 
shown in Figure 4.20, and its power spectral density (PSD) is shown in Figure 4.21. The other 
parameter in the state vector, the gravity gradient offset due to mass outside the near zone, is -3.1 
Eötvös. The PSD of the topography as a function of radial frequency was computed through the 
following formula by azimuthally averaging the 2-D periodogram: 

       bb f b b


  F F   (4.8) 

where bb  is the power spectral density of the topography, f  is the radial frequency,  is the 

average operator, and the asterisk denotes the complex conjugate. 

The PSD of the topography may be approximately represented by the following power law 
[Jekeli, 2013a], which is a straight line with negative slope in the log-log figure, 

 Cf     (4.9) 

where C  and   are constants. Therefore, in Figure 4.21 the power at frequencies higher than 

7e-5 cy/m represents mainly errors in the estimation. 

One may claim that the seafloor topography was recovered from the vertical gravity gradient, but 
the result contains high-frequency errors. The next step is to design a low-pass filter for the result 
and analyze the estimation accuracy. 

The high-frequency error is generated due to the large dimensionality of the inversion and the 
comparatively small number of iterations used. Several simple numerical tests were conducted 
using errorless, simulated topography and VGG data sets, in which the number of unknown 
topography parameters was increased from 4 to 100 to see its effect on the estimation accuracy. 
The result shows that the estimation accuracy of SA decreases as the number of unknown 
parameters increases. The error is of high-frequency character. As the number of topography 
parameters increases, the cooling schedule (3.39) becomes prohibitively slow (see the red line in 
Figure 4.22) and thus the needed computation load increases exponentially fast. As a 
compromise (see the blue line in Figure 4.22), (3.40) was used instead. This leads to a smaller 
number of iterations, but the cooling schedule decreases faster. As discussed in subsection 3.3.1, 
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the cooling schedule (3.40) had been successfully applied to a number of complex problems with 
large dimension. 
 

 

 

 

Figure 4.20: The seafloor depth estimated through simulated annealing. The units of the color bar 
are kilometer. 
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Figure 4.21: The Power spectral density of the topography estimation. 
 

 

 

 

Figure 4.22: The cooling schedule (3.40) used in this study versus 
1

16506i k
kT e , a particular 

cooling schedule (3.39) that statistically guarantees finding the global minimum. 
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The simulated annealing needs the temperature to be low at the ending stage of the iteration in 

order to converge. This is tuned by ic  through im  and in . As a result, the theoretical cooling 
schedule does not approach 450010  until 6627910  iterations, if ic  is set to 1. 

4.3.4 Low-pass Filtering the Estimated Seafloor Topography 

Because Figure 4.21 shows that the power at frequencies higher than 7e-5 cy/m is mainly caused 
by error, the same filter as in Parker’s method, the Gaussian low-pass filter (Figure 4.23) with 
cut-off frequency of 6.67e-5 cy/m (wavelength of 15 km) 

  232 2.8109 10

l

f
W e

  
   (4.10) 

was applied to the seafloor topography estimation shown in Figure 4.20 to make the results of 
SA and Parker’s method comparable. The filtered result is shown in Figure 4.24. 
 

 

 

 
Figure 4.23: The frequency response of the Gaussian filter applied to the SA estimated 
topography (left panel). The right panel shows a profile (red dashed line in the left panel) for 

0yf   cy/m. 
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Figure 4.24: The filtered topography estimation. The units are km. The red dashed line is the ship 
track of the vessel JOIDES Resolution. 
 

 

 

4.3.5 Evaluation 

Figure 4.25 presents the seafloor depth estimated using simulated annealing and the bathymetric 
depth measured by the vessel JOIDES Resolution in 2009. 
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Figure 4.25: The blue crosses are bathymetric depths measured by the vessel JOIDES Resolution. 
The green solid line is the depth at corresponding locations estimated through simulated 
annealing. 
 

 

 

Similar to the lower panel of Figure 4.2, the single-beam bathymetric depths from the NCEI 
were gridded on the same mesh as the topography model used in this section. At the mesh nodes 
constrained by ship sounding, the difference between the topography estimated by the SA 
method and the ship bathymetric depth was computed. The statistics of the differences are shown 
in Table 4.5. 
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Table 4.5: The statistics of the difference between topography estimation and the ship soundings 
at constrained mesh nodes. The units are meter. 
 

Max Absolute Mean STD RMS 

1307.69 2.37 235.95 235.97 

 

 

 

The histogram of these differences is shown in Figure 4.26. The skewness of these differences is 
0.88. As mentioned in subsection 4.2.4, because the peak of the histogram is sharp, and the tails 
are longer than those of the normal distribution, the RMS cannot fully represent the distribution. 
So, the cumulative distribution of the absolute difference is also computed and presented in 
Figure 4.27. It shows that half of the absolute differences are smaller than 112 m. More than 75% 
of the differences are smaller than 200 m. 
 

 

 

 
Figure 4.26: The histogram of the difference between ship soundings and estimation. 
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Figure 4.27: The cumulative distribution of the absolute difference between ship sounding and 
estimation. 
 

 

 

4.3.6 Other Tests of the Simulated Annealing Algorithm 

As shown in the bottom panel of Figure 2.3, the vertical gravity gradient is not sensitive to the 

long-wavelength topography due to the factor 2 f  in the gradient admittance. Therefore, 

removing the long wavelengths from the VGG and the topography may improve the estimation 
accuracy. 

This idea was tested in this subsection. The long-wavelength topography (>160 km) shown in 
Figure 4.5, rather than the mean depth, was used as the bottom boundary of the prisms that 
represent the seafloor, and the seafloor topography still served as the upper boundary of the 
prism. The forward-modeled VGG is thus attributed strictly to the shorter wavelengths of the 
seafloor topography and computed by 
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where jlrt  is the Z-coordinate of the long-wavelength regional topography at j , and all other 

notations have the same meaning as in (2.51). 

The high-pass filter 1s lW W   was applied to the observed VGG shown in Figure 4.1 to 

calculate the short-wavelength (<160 km) VGG, where lW  is the low-pass filter defined by (4.2). 

The difference between the forward computed and “observed” short-wavelength VGG was used 
in the computation of the cost function. 

Besides removing long wavelengths, a series of tests was also conducted in this subsection to see 
the effects of using a smaller truncation distance, and using a smaller study area. 

In test 0, the truncation distance was 49 km, and the study area spanned 2° (about 220 km) along 
latitude and longitude. Figure 4.16 shows that the corresponding maximum relative truncation 
error is about 50 Eötvös, which is not acceptable and suggests adopting a larger truncation 
distance. The test 0 served as a reference. The tests from No. 1 to No. 3 modified one condition 
at a time. Compared with test 0, test 1 increased the truncation distance to 350 km. In fact, test 1 
is the numerical experiment shown in section 4.3. Then based on test 1, test 2 removed the long 
wavelengths from the observed vertical gravity gradient, and forward computed its counterpart, 
the calculated vertical gravity gradient, using masses between seafloor topography and long-
wavelength topography. Finally, test 3 divided the study area into four 1°×1° regions, computed 
topography of one region at a time, and spliced the results together. All other settings were the 
same as for the test 2. 

The statistics of the results are shown in Table 4.6, which indicates that increasing the truncation 
distance significantly improved the estimation accuracy of the simulated annealing. This 
modification reduces the maximum absolute value of the difference between the estimated 
seafloor depths and the ship sounding measurements, as well as the standard deviation (STD) 
and root mean squared (RMS) value of this difference. An exception is the mean value of the 
difference. 

However, improvements obtained by removing the long wavelengths is not significant, since the 
VGG caused by long-wavelength topography is small. 

Dividing the 2°×2° study area into 4 small regions and estimating one region at a time does not 
improve the estimation accuracy. This may be explained by the large truncation distance used in 

test 2 and 3. According to Figure 4.16, the maximum relative truncation error for 0 350s  km, 

l =200 km (~ 2°) is 3 Eötvös. Reducing l  to 100 km (~1°) decreases this value to 1.6 Eötvös. 
The improvement is not significant. However, the effect of errors in the padded-topography 
model that propagates into the unknown topography was enlarged when the area size is reduced. 
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This effect may be larger than the improvement on the relative truncation error, and thus 
decreases the estimation accuracy. 

 



94 

 

Table 4.6: The statistics of the differences between topography estimation by SA and the ship soundings at constrained mesh 
nodes. The units are meter. 
 

 Settings Results 

Test No. Truncation 
distance 

(km) 

Long 
wavelengths 

removed 

Area size in 
one 

inversion 

Max 
absolute  

(m) 

Mean      
(m) 

STD        
(m) 

RMS       
(m) 

0 49  2°×2° 1379.66 -4.68 308.80 308.89 

1 350  2°×2° 1307.69 2.37 235.95 235.97 

2 350  2°×2° 1206.30 -11.31 224.74 225.02 

3 350  1°×1° 1356.97 -16.83 265.96 266.49 94 
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4.4 Comparison of the Estimation Results 

4.4.1 Comparison with the SIO Topography Model 

The global topography model [Smith and Sandwell, 1994; 1997], released by the Scripps 
Institution of Oceanography (SIO), has been incorporated into most publicly available global 
seafloor topography models, like Google Earth and the General Bathymetric Chart of the Oceans 
(GEBCO) [Marks and Smith, 2006; Marks et al., 2010]. It was predicted from altimetry-derived 
gravity anomalies using Parker’s formulation. In this section, it is used to compare with the 
estimation result in section 4.2, namely the seafloor topography estimated from altimetry-derived 
gravity gradients using Parker’s formulation. Note that Smith and Sandwell modified their 
topography prediction to force the predicted topography at grid cells constrained by ship 
soundings to fit the bathymetry-implied heights. Therefore, their unadjusted prediction (see left 
panel of Figure 4.28), rather than the final released version of the global topography, should be 
used. The difference between their unadjusted topography prediction and the constraining ship 
soundings was calculated. The statistics of the difference are shown in Table 4.7. 
 

 

 

 
Figure 4.28: (left) The unadjusted total global seafloor depth prediction released by SIO. (right) 
The grid cells constrained by ship soundings. For cells with more than one bathymetric depth, 
the median value is retained. The units of the colorbar are kilometer. 
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Table 4.7: The statistics of the differences between Smith and Sandwell’s unadjusted prediction 
and the ship sounding at constrained grid cells. The units are meter. 
 

Max Absolute Mean STD RMS 

1761.39 2.77 301.26 301.28 

 

 

 

The seafloor depths in the left panel of Figure 4.28 were predicted from gravity anomalies 
derived from satellite altimetry, whereas the topography shown in Figure 4.10 in section 4.2 was 
estimated by Parker’s formulation from the altimetry-derived gravity gradients. All other 
conditions for the two predictions such as gridding interval, filters, cut-off frequency were set to 
be as close as possible. Comparison between Tables 4.6 and 4.1 shows that the RMS of the 
differences with respect to the ship soundings for the gradient estimated topography by Parker’s 
formulation is about 11% smaller than the gravity anomaly predicted topography. Note that 
although the superiority of gravity gradients over gravity anomalies is theoretically analyzed in 
subsection 2.1.5, the comparison in this subsection cannot serve as a corresponding numerical 
demonstration since the same essential data (altimetry) were used in both cases. 

Hu et al. [2014b] tested their method in the same area. However, they interpolated the 
topography-to-gradient admittance at control points onto the whole topography grid, which 
makes their prediction method to some extent similar to direct interpolation of ship soundings. 
Besides, they compared the ship soundings with the polished SAS model (final released version, 
which itself should fit the ship soundings) rather than the unpolished one. As a result, the RMS 
of the difference is only 66.374 m. Therefore, their method is technically incorrect, and thus not 
compared with the topographies estimated in this chapter. 

4.4.2 Comparison Between the Two Methods 

In the preceding two sections, the seafloor topography was estimated from the same VGG data 
set using Parker’s formulation and SA, respectively. Both methods assume that the density of the 
topography is uniform, and make use of a relationship between topography and gravity gradients, 
although one is in the frequency domain and the other in the space domain. 

Parker’s method assumes a linear relationship between topography and gravity gradients whereas 
the SA method removes this linear approximation. As a result, Parker’s method cannot provide 
an accurate topography estimation at the short wavelengths. The reason can be found in Figure 
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3.4, which is computed from a synthesized topography that is very similar to our study area. At 
wavelengths longer than 15 km, the coherency between the topography and the vertical gravity 
gradient is larger than 0.8; so, Parker’s method which assumes a linear relation between 
topography and gravity gradient may perform well. However, at wavelengths shorter than 5 km, 
the coherency is lower than 0.5. Therefore, at short wavelengths, no matter how accurate the 
vertical gravity gradient is, Parker’s method is not able to infer the seafloor topography as well. 

The estimations in both methods are performed in the same spectral band of wavelengths as the 
SIO global topography model, namely for wavelengths longer than 15 km. Although the Nyquist 
wavelength of the topography and VGG data sets in the two methods is about 3.5 km, the same 
Gaussian low-pass filter with cut-off wavelength of 15 km was applied to both topography 
estimations. Note that although a high-pass filter was used in Parker’s method, it is just used to 
divide the spectral bands of the topography estimated from VGG and from the ship soundings. 
The final estimation only suppresses wavelengths shorter than 15 km. Tables 4.5, 4.1, and 4.3 are 
rewritten below for the convenience of comparison. 
 

 

 

Table 4.8: The statistics of the differences between topography estimation and the ship soundings 
at constrained mesh nodes. The units are meter. 
 

Topography 
Estimation 

Max 
Absolute 

Mean STD RMS 

Unadjusted 
SIO model 

1761.39 2.77 301.26 301.28 

FFT 1378.32 72.81 258.21 268.28 

SA 1307.69 2.37 235.95 235.97 

 

 

 

The comparison between the last two rows in Table 4.8 shows that the RMS of prediction error 
for the simulated annealing is 12% smaller than for Parker’s method. Since the estimations in 
both methods use the same VGG and perform in the same spectral band of wavelengths, this 
improvement is mainly attributed to the removal of the linear approximation in the modeled 
relationship between gravity gradient and topography. 
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The profile along the ship track of JOIDES Resolution is shown in Figure 4.29, which shows that, 
except a flat region (i.e. for a distance between 55 km and 95 km), in general the SA estimation 
is closer to the bathymetric depths than Parker’s FFT-based estimation. 
 

 

 

 
Figure 4.29: The blue crosses are bathymetric depths measured by the vessel JOIDES Resolution. 
The green solid line is the depth along the ship track estimated in section 4.3. The red dashed line 
is the depth estimated in section 4.2 based on Fourier transform. The cyan dot dashed line is 
from the vertical gravity gradients along the ship track. 
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Chapter 5: Sub-topography Density Anomaly 

Although the satellite altimetry data cover the global ocean densely except in polar areas, the 
spatial resolution in gravity anomaly estimation from altimetry is limited in any case. The 
missing short wavelength component is one of the reasons why the Fourier-based method does 
not perform well in rough areas. Therefore, an alternative source of gravity data is considered. 
Airborne gravity gradiometry, whose line spacing is usually smaller than 0.5 kilometer, is a more 
direct measure of the Earth’s gravity field at shorter wavelengths and inherently has the potential 
to improve not only the accuracy, but also the spatial resolution of the field for improved 
inference of seafloor topography. Besides, the altimetry-derived gravity gradients released by the 
SIO only contains vertical-vertical components, whereas the full-tensor airborne gravity 
gradiometry measures five independent gradient tensor components, which can be combined to 
further improve the accuracy of topography estimation. 

Originally developed by Bell Aerospace (now part of Lockheed Martin), their gravity 
gradiometer instrument has been put into commercial operation since the late 1990s on three 
airborne platforms, the airborne gravity gradiometer (AGG) by BHP Billiton Falcon, full tensor 
gradiometer (Air-FTG), and FTGeX by ARKeX [Dransfield, 2007]. Measurements with this 
instrument enhance the natural resource exploration toolbox and have found an increasing 
number of applications in the past two decades [Murphy et al., 2012]. Here it is tried to extend 
the application of airborne gravity gradiometry to seafloor topography estimation for the purpose 
of achieving higher spatial resolution and accuracy. 

The airborne gravity gradient measurements are as yet scarcely available in ocean areas. 
Although there are two gravity gradient data sets available over the ocean, both were conducted 
for geologic purposes in areas with complex sub-topography geological structures, where the 
assumption of uniform density does not hold. Several ways to separate the effect of sub-
topography density anomaly from gradient observations were investigated. The effort includes 
checking the characteristics of the power spectral density of the gradient observations and 
comparing them to the forward-computed gradients from ship bathymetry. But none of these 
analyses provided satisfying results. It is easy to understand, since sub-topography geologic 
structures are exactly what the contemporary commercially operated gradiometers are designed 
for. Therefore, no attempt can remove the sub-topography density anomaly effect from the 
gravity gradient observations, but instead we must accept the fact that at some places the sub-
topography density anomaly is severe while at some other places the density of terrain is almost 
constant, where inferring topography from gravity is feasible. I remain optimistic about seafloor 
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topography estimation from airborne gravity gradients, but showcase a demonstration of the 
existence of places where sub-topography geologic structures are complex and are the main error 
source that impedes topography estimation from gravity gradients. 

5.1 St. George’s Bay Area 

In December 2012, Bell Geospace Inc. (BGI) conducted a gravity gradiometry survey over St. 
George’s Bay [Selman, 2013]. It is located off the southwestern shore of Newfoundland, Canada, 
and lies between longitudes -59.43° and -58.38°, and latitudes 47.92° and 48.59°, see Figure 5.1. 
The FTG full tensor gradiometer is installed on a Basler Turbo BT-67 aircraft, which was flown 
to gently drape the land topography in order to minimize the distance between measurement 
altitude and ground. The reported accuracy of the FTG is about 5 to 7 Eötvös [Selman, 2013]. 
The designed (nominal) flight altitude during the entire survey is 80 meters above the water. The 
flight lines are 400 meters apart, with data sampled along-track at a one second interval, which 
translates to 59.7 m spatial sampling interval using the 215 km/hour speed. As part of the data 
processing, BGI projected the gravity gradients onto the Universal Transverse Mercator (UTM) 
zone 21 N. 

Also obtained were high horizontal resolution (10m × 10m) multibeam bathymetry data for this 
area from the Geological Survey of Canada (Atlantic) [Shaw and Courtney, 1997], see Figure 5.1. 
The reported accuracy of the multi-beam echo sounding is usually in the level of 10 cm 
[Ernstsen et al., 2006]. Besides, the accuracy of the multibeam sounding is generally evaluated 
according to the International Hydrographic Organization Standards for Hydrographic Surveys 
[International Hydrographic Organization, 2008], which requires the uncertainty of the reduced 
depths to be smaller than 0.25 0.0 '075 b   meter. It is much smaller than the accuracy of the 
gravity estimated seafloor topography. Therefore, the bathymetric data I obtained are treated as 
errorless (true) values. The forward-modeled gravity gradients caused by the seafloor topography 
were computed according to the right rectangular prism method using formula (2.51), with the 

truncation distance for the near zone set to 0 30s km . According to formulas (2.66) and (2.57), 

the relative truncation error corresponding to 30 km truncation distance is 0.35 Eötvös, which is 
one order smaller than the accuracy of VGG observations. The topography in regions not 
covered by multibeam bathymetry comes from the SIO topography model shown in Figure 5.2, 
whose spatial resolution is about 1230 m. 
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Figure 5.1: The collected data sets, where red dots represent the flight track of gravity 
gradiometry, and the colored region represents the multibeam bathymetry. The units of the color 
bar are meter. Only the gravity gradients in the area of the multibeam data (marked by the black 
dashed-line rectangle) were computed, since the resolution of multibeam bathymetry is much 
higher than the SIO topography model. 
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Figure 5.2: The SIO seafloor topography model, with the multibeam bathymetric depths 
incorporated, that is used in the forward computation. Scale bar units are meter. Red dots denote 
the location of measured gravity gradients within the rectangle marked in Figure 5.1. 
 

 

 

The gravity gradients forward computed from topography are shown in Figure 5.3 (b). They are 
also called the terrain effects and were computed similarly by BGI. The directly measured 
gradients are shown in Figure 5.3 (a). Subtracting (b) from (a) gives Figure 5.3 (c). Because a 
DC offset was removed from the gravity gradient observations by BGI during data processing, 
the mean of the vertical gravity gradient shown in (a) is near zero although its total value near the 
Earth’s surface is about 3080 Eötvös. From Figure 5.3 we may find that the measured gradients 
near the easting, x = 375 km, are mainly caused by the steep slope of the seafloor (see the 
multibeam bathymetry in Figure 5.1 marked by black dashed-line rectangle). In Figure 5.3 (c), 
apparently only high frequencies are left in this region. However, in the northwest region where 
the topography is smooth, the measured gradients (a) show abnormally high values, indicating a 
high-density anomaly beneath the topography. At the southeast corner, there is a trench where 
the observed gradient is significantly smaller than the terrain effect. One explanation is that the 
sediments in this trench are less dense than the surrounding seafloor rock. 
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In summary, over the St. George’s Bay area, ocean bedrock is overlaid with thick sediments. The 
gravity gradient has a large signal but the topography is smooth (Figure 5.1). In addition, at the 
northwest and southeast corners of Figure 5.3, significant gradient anomaly occurs which might 
be due to large internal crustal variations. As a result, the terrain effect contributes less than 50% 
of the gravity gradient observations (the RMS of the terrain effect shown in Figure 5.3 (b) is 
about 30.5% of the RMS of the directly measured gradients shown in Figure 5.3 (a)). 
Topography estimation from gravity gradients in this area is feasible, yet very inaccurate since 
sub-topography density variation introduces large errors. 

The following two sections present topography estimation from airborne gravity gradients within 
the rectangle marked in Figure 5.1 using both the SA and the Fourier methods. The two sections 
only focus on estimation results since the estimation algorithms are the same as described in 
chapter 4. For the convenience of computation, all the data sets are rotated -25.0357° about the 
Z-axis, and then translated by (-2600013, -4700165, 0). The X, Y axes of the new coordinates 
are called “rotated easting” and “rotated northing” respectively. Finally, they are resampled to a 
200 m × 200 m grid (see Figure 5.5). 
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Figure 5.3: (a) Gravity gradient zz  measured by BGI. (b) zz  forward computed from 
topography. (c) is the difference between (a) and (b). Units are Eötvös. Note that the scales are 
different for (a) and (b). 
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Figure 5.3. 
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5.2 Estimation Using Parker’s Formulation 

5.2.1 Analysis through Admittance Function 

The theoretical uncompensated gravity gradient admittance was computed based on equation 
(2.49) with the density of the seafloor topography set to 2.2 g/cm3 [Selman, 2013], see Figure 5.4. 
The distance between measured gravity gradients and the seafloor topography, d , was set to 
118.56 m (mean depth of 38.56m plus the nominal flight altitude of 80m). 
 

 

 

 

Figure 5.4: The theoretical gravity gradient admittance computed by formula (2.49). 
 

The Nyquist wavelength of the VGG data (shown in Figure 5.5) is 0.4 km. Figure 5.4 shows that, 

at the corresponding radial Nyquist frequency, 2 / 400f   cycle/m, the admittance is large. So, 

unlike in section 4.2, there is no need to remove short wavelengths. At long wavelengths, 
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however, the admittance is small, which means that the gravity gradients are not sensitive to the 
seafloor topography at long wavelengths. As a result, the VGG data are only used to estimate the 
spectrum between 0.4 km to 5 km wavelengths of the local topography. Wavelengths longer than 
5 km are obtained by low-pass filtering the ship soundings. The 5 km cut-off wavelength is 
empirically chosen based on the theoretical gravity gradient admittance shown in Figure 5.4. 

5.2.2 Data Preparation 

The vertical gravity gradients used in the estimation are shown in Figure 5.5. 

 
Figure 5.5: The 200 m × 200 m vertical gravity gradients of the study area in St. George’s Bay. 
The units are Eötvös. 
 

 

 

Parker’s method needs ship soundings to compute the topography-to-gradient admittance scale 
and to obtain the long wavelength topography. The single-beam bathymetric depths that were 
downloaded from NCEI are very sparse in the study area. The multi-beam bathymetric depths 
are densely distributed, but are reserved for accuracy tests and not used in the estimation. 
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Consequently, the 10 m × 10 m multi-beam bathymetric depths were resampled to a 2.4 km × 2.4 
km grid, and treated as simulated ship soundings. 

A 200 m × 200 m topography grid was interpolated from the simulated ship soundings (the 2.4 
km × 2.4 km grid) using the biharmonic spline interpolation method in preparation for the 
computation of the long-wavelength regional topography and the topography-to-gradient 
admittance scale; see Figure 5.6. 
 

 

 

 

Figure 5.6: The 200 m by 200 m seafloor depth interpolated from simulated ship soundings. The 
simulated ship soundings are obtained by resampling the multi-beam bathymetric depths, and are 
marked by red crosses. The units of the color bar are meter. 
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5.2.3 Data Filtering 

The Gaussian low-pass filter 

  2936.95 12 3

l

f
W e

    (5.1) 

was applied to the interpolated values shown in Figure 5.6 in order to obtain the long-wavelength 

seafloor topography Figure 5.7. 0.5lW   when 1/ 5000f   cycle/m. 

 

 

 

 

Figure 5.7: The long-wavelength depth obtained by low-pass filtering the simulated ship 
soundings. The units are meter. 
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To compute the topography-to-gradient admittance scale, the high-pass filter 1h lW W   was 

applied to the interpolated depths in Figure 5.6 to obtain the 0.4-5 km wavelength local 

topography. The vertical gravity gradients in Figure 5.5 were multiplied by   1 22 fdf e 


 in the 

frequency domain to obtain the equivalent gravity anomalies, and were then filtered using the 
same high-pass filter. Note that Parker’s formulation requires all the gravity gradients to be 
measured on the same plane. The actual flight altitude over the study area ranges from 65.2 m to 
244.5 m, with an average value of 86.8 m. In this analysis, this trajectory fluctuation is ignored. 
The scatter plot of local topography versus local equivalent gravity anomaly is shown in Figure 
5.8. The topography-to-gradient admittance scale computed through formula (4.5) is 

1.1479 4S e  . 
 

 

 

 
Figure 5.8: Local topography versus local equivalent gravity anomalies at places constrained by 
ship soundings, which are marked by red crosses in Figure 5.6. 
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Figure 5.8 shows that the local topography is only vaguely proportional to the local equivalent 
gravity anomalies. The correlation coefficient between them, computed according to (4.4), is 
only 0.4528. This is mainly due to the presumed large sub-surface density anomalies, as 
summarized in the last section. 

5.2.4 Results 

Since the linear model assumed in Parker’s method does not seem to hold well in this case, 
results are expected to be correspondingly poor. Nevertheless, an estimation of seafloor 
topography is made according to formula (3.3). That is, the high-pass filtered equivalent gravity 
anomalies are multiplied by the topography-to-gradient admittance scale, and then supplemented 
by the long-wavelength topography (Figure 5.7). The results are shown in Figure 5.9 and Figure 
5.10. The RMS of the difference between the total seafloor topography estimation and the multi-
beam implied topography is ±7.1 m. 
 

 

 

 
Figure 5.9: The short wavelength seafloor depths estimated from observed VGG according to 
formula (3.1). The units of the color bar are meter. 
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Figure 5.10: The total seafloor depths estimation. The units of the color bar are meter. 
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Figure 5.11: The profiles of the multibeam ship soundings, the depths estimated by using 
Parker’s formulation, and the long-wavelength depths obtained by low-pass filtering the ship 
soundings, along the line where the rotated northing equals 2 km. 
 

 

 

Figure 5.11 shows that, in general, the gradient-estimated topography improves the long-
wavelength topography obtained from ship soundings. The estimations with respect to different 
long cut-off wavelength were computed. Table 5.1 shows that increasing the long cut-off 
wavelength in equation (5.1) to expand the wavelength band estimated from VGG decreases the 
estimation accuracy. 
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Table 5.1: Long cut-off wavelength versus the RMS of the difference between the total seafloor 
topography estimation and the multi-beam implied topography. 
 

long cut-off wavelength 
[km] 

RMS    [m] 

3 5.3 

5 7.1 

7 9.9 

9 10.4 

 

 

 

5.3 Estimation Using Simulated Annealing 

5.3.1 Data Preparation and SA Configuration 

The same VGG data as described in section 5.2, namely those seen in Figure 5.5, were used in 
the estimation by simulated annealing. 

The X, Y coordinates of the 200 m × 200 m VGG grid were used to build the topography model 
by using adjacent right rectangular prisms. They serve as the X, Y coordinates of the prism 
center. Each face of the prism is parallel to one of the coordinate planes. The edge lengths of 
each prism along X and Y directions are both 200 m. The bottom boundary of the prism is the 
mean depth of the seafloor (38.56 m) over the study area, and the upper boundary is the 
topographic height. These topographic heights and one far zone topography effect parameter 
constitute the state vector to be estimated in the simulated annealing. 

The truncation distance in the forward computation was set to 23 km. According to formula 
(2.66), the corresponding relative truncation error is 0.5 Eötvös, which means that the largest 
difference of the far zone topography effect between two points both in the study area is 0.5 
Eötvös; this is one order of magnitude smaller than the accuracy of gradient observations. Thus, 
the topography model was extended by 23 km (115 grid nodes) from each of four sides to enable 
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the forward computation at the study area margin. The resolution of the extended topography is 
still 200 m by 200 m, and is interpolated from the 1ˊ×1ˊ SIO global topography model version 
18.1. 

The upper and lower search limits of the seafloor topography were set to 20 m above and below 
the multi-beam bathymetric depths, respectively. The density of the seafloor topography was set 
to 2.2 g/cm3. The search range for the far zone topography effect was set to [-20, 0] Eötvös. 
Other tuning parameters for the simulated annealing are listed in the Table 5.2. 
 

 

 

Table 5.2: The tuning parameters. 
 

0
iT   in   im   D   Q  

1  log 1 7e    log 1 4500e    5952 5952 

 

 

 

5.3.2 Results 

The SA program ran on the supercomputer Oakley at the Ohio Supercomputer Center, and exited 
after 1e7 iterations. The estimated seafloor topography is shown in Figures 5.12 and 5.13. The 
difference between the seafloor topography estimation and the multi-beam ship soundings was 
computed. The RMS of the difference is ±8.50 m. 
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Figure 5.12: The seafloor depths estimated by using simulated annealing. The units of the color 
bar are meter. 
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Figure 5.13: The profiles of the multibeam ship soundings and the SA estimated depths along the 
line where the rotated northing equals 2 km. 
 

 

 

Although, in this experiment, the RMS of Parker’s FFT-based method’s topography estimation 
error is smaller than the RMS of that based on the SA method, one cannot conclude that Parker’s 
method performs better. The Parker method seems to do well at long wavelengths due to reliance 
on truth data, while short wavelength features seem better approximated by SA, e.g., the sharp 
drop in topography at 9 km easting. 
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Chapter 6: Summary and Conclusions 

Theoretical analysis showed that the gravity gradient is more sensitive to the short-wavelength 
topography than gravity anomaly. This research attempted to improve the current standard 
seafloor topography estimation methods by employing gravity gradients, removing the linear 
approximation in the modeled relationship between gravity and topography, and by incorporating 
the airborne gradiometry data whose spatial resolution is high. 

The most widely used seafloor topography prediction method [Smith and Sandwell, 1994; 1997] 
was generalized to infer the topography from gravity gradients. Under the constant density 
assumption, the linear approximation of Parker’s infinite series [Parker, 1973] and the regional 
isostatic compensation mechanism [Watts, 2001] were used to develop the gradient admittance 
that relates topography and gravity gradients in the spectral domain. The admittance function 
shows that the vertical gravity gradient is not sensitive to the long wavelength, due to using the 
derivative of gravity. The sensitivity is also limited at the very high frequencies due to downward 
continuation. Inversion at these spectral bands is therefore not stable and only an intermediate 
bandwidth of topography can be estimated from the gravity gradients. The long wavelengths 
must be computed from an existing model derived, e.g., from ship soundings. 

The estimation based on Parker’s method was tested in a 2°×2° area in the West Pacific Ocean 
using an estimation of the local admittance between topography and the gravity gradients. The 
gravity gradients are determined from satellite altimetry as a proxy for observed airborne gravity 
gradients that are as yet scarcely available in particular ocean areas where the density of the 
topography can be assumed uniform. Because they are not measured gradients, the prediction 
bandwidth is set to the same range as for the altimetry-derived gravity anomalies used for 
topography estimation by Smith and Sandwell. 

Numerical analysis from this sample test showed that in rugged areas (topography ranges from -
1000 m to -5000 m over a 200 km by 200 km rectangular area), the nonlinear terms of Parker’s 
series are not negligible. This was supported by an algorithmic analysis of simulated topography 
using the radially symmetric coherency, which is a frequency-domain analogue of the correlation 
coefficient, and indicates how much of the observed gravity gradient is attributed to the linear 
part of the terrain effect. In the synthesized rugged area, the analysis shows that at short 
wavelengths, more than half of the implied vertical gravity gradient is from the nonlinear terrain 
effect if the density of the topography is assumed constant. This finding means that in rugged 
areas, the accuracy of the Fourier transform based method quickly decreases as the frequency 
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increases, no matter how accurate the gravity gradient measurement is and how high the 
resolution is. It strongly suggests that algorithms to remove the linear approximation should be 
developed in preparation for a more accurate and high resolution topography estimation 
capability. 

To employ nonlinear terms in the estimation of seafloor topography from gravity gradients, a 
global optimization technique called simulated annealing (SA) was used, which can process 
nonlinear inverse problems. This method was also tested in the same 2°×2° area in the West 
Pacific Ocean using the same altimetry-derived gravity gradients. The seafloor topography 
parameters in a forward model were estimated through SA by minimizing the difference between 
the observed and forward-computed vertical gravity gradients. Two processing steps were found 
critical to achieve success. Padding (i.e., extending) the vicinity of the study area with a known 
topography model is needed to make the forward computation possible. Including sufficient 
extent of topography for the upward continuation in the forward model is necessary to ensure 
that the relative truncation error is below the level of observation noise, and thus enabling the 
modeling of the far zone effect as a constant. 

The estimated topographies were compared with single beam bathymetric depths downloaded 
from NCEI. The RMS of the difference between them for the Fourier transform method is ±268 
m. The RMS of the difference for the simulated annealing method is ±236 m, which is 12% 
smaller. It is also 22% smaller than that of the SIO’s global topography model over the study 
area. 

In principle, the simulated annealing is superior to the Fourier transform method by removing the 
linear approximation in the modeled relationship between topography and gravity gradient, 
which is extremely important in rugged areas. Although this also implies a tremendous increase 
in computational burden, the computing cost in the coming “big data” and “artificial 
intelligence” era is decreasing fast. It is worthwhile to trade computation costs for better 
accuracy and resolution in the estimation of seafloor topography. Another advantage of the 
simulated annealing technique is that it has no restrictions on data distribution, as required in 
Parker’s infinite series model, thus enabling more flexibility in airborne gravity gradient 
trajectories. 

The simulated annealing method developed in this research may be useful in updating the global 
seafloor topography. But this method, as well as the Fourier transform method, are limited to 
areas where sub-topography density can be assumed uniform. The existence of places where sub-
surface geologic structures are complex and are the main source for gravity gradients impedes 
topography estimation from gravity gradients. This is demonstrated using airborne gravity 
gradients over St. George’s Bay. Identifying this kind of area is an interesting topic for future 
research. Further investigations need to be performed to optimally combine different gravity 
gradient tensor elements or combine gravity gradient and gravity anomaly from independent 
sources. The purpose of the former is to increase the signal-to-noise ratio, and the objective of 
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the latter is to combine the superiorities of the gravity gradient and the gravity anomaly at 
different frequencies. 
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Appendix A: Thomson’s Multiple-Slepian-Taper method 

 

Thomson [1982] windows one realization of random process by several orthogonal tapers  j lu x  

and uses these windowed data to calculate uncorrelated periodogram  ˆ j
b kf  according to 

(3.20). The weighted average of  ˆ j
b kf  reduces the estimation variance and gives the final 

estimation of the PSD (equation [9] in [Park et al., 1987b]).  

    
1

1ˆ ˆ
M

j
b k j b k

j

f f
M

 


     (A.1) 

where j  are weights, M  is the number of tapers used, and  ˆ j
b kf  is given by 

         *1ˆ j
b k j T l j T lf u x u b x

T  F F   (A.2) 

That is, if the periodograms are uncorrelated and their variances are same, after averaging the 

variance of the final PSD estimation is reduced by 
1

M
. 

When we use only a finite extent of a signal to determine the spectrum of the entire signal, the 
spectrum of the signal at a particular frequency leaks into neighboring parts of the spectrum. 
Usually a window is adopted to reduce the spectral leakage. According to different minimization 
criteria we could find different windows. Slepian [1978] builds an ideal taper set from discrete 
prolate spheroidal sequences (dpss) using the energy concentration criterion, 
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  (A.3) 

where 
1

2Nf
x




 is the Nyquist frequency, and NW f  is the bandwidth we designate. 
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Criterion (A.3) means that this taper concentrates most of its energy in the frequency interval 

 ,W W . W  measures the resolution of the estimates, and is usually chosen as a small integer 

multiple of the fundamental frequency 
1

N x
  [Simons et al., 2000]. The tapers built by this 

criterion are solutions to an eigenvector problem (A.4) [Lindberg and Park, 1987; Park et al., 
1987a].  

 j j jCu u   (A.4) 

The elements of C  are: 

 

  
 

sin 2

2

ij

W x i j
i j

C i j

W x i j




  


 
  

  (A.5) 

where , 0,1, ,i j N  . As a result, they are orthogonal and the resulting periodogram  ˆ j
b kf  

of the windowed data are uncorrelated. The corresponding eigenvalues are the frequency domain 
energy concentration ratios in (A.3), and serve as the weights in formula (A.1). The larger the 
eigenvalue, the less energy in the side lobe of the taper spectrum, see Figure A 3. 

For a chosen W , there are 2NW x  useful tapers. Usually only the first 2 1M NW x    tapers 
are used to build the uncorrelated periodogram. The corresponding eigenvalues of these M  
tappers approximate one. When the order of the taper increases beyond 2NW x , the 
corresponding eigenvalues decrease sharply to zero (see Figure A 2). Although larger W  builds 
more useful tapers and thus makes the variance of the final PSD estimation smaller, the 
resolution decays, see Figure A 4. So the selection of W  is a trade-off between estimate variance 
and resolution. 
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Figure A 1: Windowing tapers  ju x for data length 100N  , 3NW x  , 

1,2, ,2 1j NW x   . 
 

 

 

E
ig

en
va

lu
es

 
j

 

Figure A 2: Eigenvalues j versus corresponding order of dpss tapers. 
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Figure A 3: The power spectral density of each taper. 
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Figure A 4: The Thomson multitaper power spectral densities of data sampled from 

 cos 6y x  between -10 and 9.9 with interval 0.1. The upper PSD is calculated 
with 3NW x   while the lower PSD calculated with 6NW x  . Both calculations pick up the 
correct frequency 3, but with larger W  value, the resolution decays. 
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Generalizing to two dimensional PSD estimation is straight forward and has been discussed in 

[Hanssen, 1997]. Let us denote the data as a 1 2N N  matrix. Choosing two parameters 1W , 2W  

one could build two one dimensional taper sets 1
iu  and 2

ju . The two-dimensional tapper is simply 

the outer product of these two 1-D tapers. 

  1 2
,

T

i j i ju u u   (A.6) 

The corresponding weight ,i j  is the product of the eigenvalues of the two 1-D tapers. 

 ,i j i j      (A.7) 

By doing so, a total of   1 1 1 2 2 22 1 2 1N W x N W x     tapers are built. Windowing the data with 

these tapers and average the direct PSD gives the final PSD estimation. The units of the two-

dimensional cross-PSD is  2
/ /Eotvos m cycle m  . 
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Appendix B: The Spherical Harmonics of the Gravity Anomaly 

 

Equation (B.1) is the formula to compute the gravitational potential using the EGM2008 model. 

      
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n m
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where GM  is the geocentric gravitational constant, a  is a scaling factor, ,n mC  and ,n mS  are the 

spherical harmonic coefficients given in the EGM2008 model. 

The normal gravitational potential in spherical harmonics is [Hofmann-Wellenhof and Moritz, 
2005]: 
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where 
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where e  is the first eccentricity of the ellipsoid, la  is the semi-major axis of the ellipsoid, and 

2J  is the dynamical form factor of the earth. 

The gravity potential is the sum of the gravitational potential and centrifugal potential. If the 
rotation speeds of the reference ellipsoid and actual Earth are the same, the actual and normal 
centrifugal potential would cancel out and the disturbing potential T  can be written as 

      , , , , ' , ,T r V r V r         (B.4) 

In spherical approximation, the fundamental equation of physical geodesy becomes: 
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The spherical harmonics of the gravity anomaly, ,
g

n mC   and ,
g

n mS  , can be easily obtained by 

substituting (B.1), (B.2) and (B.4) into (B.5). 
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 (B.6) 

where '
, , ,

T V
n m n m n mC C C  , and , , 0T

n m n mS S  . Note that if 0m   or n  is odd, '
,

V
n mC  equals zero. 

By comparing the two equations in (B.6), we have: 
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Equation (B.6)-(B.8) are based on the assumption that the spherical harmonic coefficients of the 
EGM2008 model and normal potential model are given with respect to the same GM  and a . If 

the normal potential coefficients '
,

ˆ V
n mC  are given with differently defined 'VGM and la  , the 

following correction should be applied: 
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Appendix C: Pseudo-Code for the Adaptive Simulated Annealing 

 

Randomly choose 0b , and compute  0E b  

Let 0optimal b b , 1k    

Set 0T  

While (number of iteration is smaller than the preset limit)  

Do  

Calculate new temperature kT   

    Generate new state kb  and compute  kE b  

If    1k kE E b b  

        update state to kb  

        If    k optimalE Eb b  then let optimal kb b  

Else 

        If  exp / kE T ≥ random [0,1]  

            update state to kb  

        Else 

            keep 1kb  

        End If 

End If 

k  to 1k    

    Check the termination criteria 

        If they are satisfied, then break the While loop 

End Do 
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