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Introduction

This book is a two-part series on adjustment computations, Part 1 being introduc-
tory and Part 2 being advanced. Together, both parts should provide the reader
with a solid foundation in the theory and application of adjustment computations,
especially as they are used in the disciplines of geodetic science, surveying engineer-
ing, and allied disciplines. However, it is expected that researchers, data analysts,
and practitioners from other science and engineering fields can benefit from the
material as well.

The subject of adjustment computations is a rich topic spanning many science
and engineering disciplines. The need to adjust observations in some meaningful—
or perhaps better yet, optimal—way is an old one. The need becomes obvious as
soon as one realizes that repeated observations of the same phenomenon or physical
quantity usually do not yield the same numerical values, and yet they must be
reconciled somehow.

As a young scientist, Carl Gauss was faced with the problem of how to best use
redundant data to predict the trajectory of the asteroid Ceres. Gauss settled on a
method that came to be known as “least-squares adjustment,” some 15 years before
it was made known to the public by Legendre, in 1805, who claimed to be its original
discoverer. The debate over who first discovered the method of least squares for the
adjustment of observations, Gauss or Legendre, is discussed by Stigler (1981), who
provides evidence from important geodetic surveys that favor Gauss’ claim, though
Stigler admits that there still is not conclusive evidence to be absolutely certain
about who was first. Perhaps only Gauss ever really knew.

The term least squares is often used adjectivally as in least-squares adjustment,
least-squares solution, the method of least squares, etc. These terms are all more
or less synonymous. The term comes from the mathematical technique of minimiz-
ing the sum of squares of residuals (or sum of squared residuals), where residual
means the difference between an observation and its adjusted value. When obser-
vational weights are involved, the descriptive phrase should be modified to “the
sum of squares of weighted residuals.” Furthermore, the use of weight matrices
in a linear algebra formulation adds another level of detail (correlations between
random observation errors) that is often omitted from the descriptive phrase to
avoid overburdening it. But that is jumping too far ahead for this introduction.
In the chapters that follow, the term adjustment computations will apply to the
adjustment of observational data by the method of least squares, unless otherwise
noted.



2 INTRODUCTION

Calculus is used to setup the problem for minimizing the sum of squared resid-
uals, but the resulting solution can be found equivalently through both geometrical
(projection of vector spaces) and statistical methods. While most derivations in
this book involve minimization of an objective (target) function that includes La-
grange multipliers (the Lagrangian approach using calculus), equivalent statistical
derivations and geometric relationships are also given in some places.

Introduction to Part I The topics covered in Part I include classification of
errors, measures of dispersion, variance and covariance, propagation of errors, ob-
servation and normal equations, representation of residuals, estimation of a single
variance component, datum parameters, condition equations with and without pa-
rameters, various algorithms and examples, model constraints, statistical tests, and
error ellipses.

Chapter 1 contains a discussion about observations, model parameters, and
random variables, each of which are important quantities for the chapters that
follow. A review of some essential material from linear algebra is also presented as
a refresher.

Chapter 2 covers the model of direct observations and shows how the least-
squares estimate of the unknown model parameter is derived. Equivalencies to
the arithmetic and weighted means are discussed, and the concept of observation
weighting is introduced, with a few examples from geodesy provided.

Chapter 3 introduces the Gauss-Markov Model for the case of multiple unknown
parameters. This model forms a foundation for its extensions in chapters 5–7. The
least-squares estimate within the model is fully derived, along with the prediction
of residuals and an estimate for the unknown variance component of the model.
The concept of datum information is briefly discussed, leaving a more thorough
development for Part II.

Chapter 4 treats the model of condition equations, which is suitable for problems
requiring observations to be adjusted without the estimation of parameters.

Chapters 5 and 6 extend the Gauss-Markov Model to account for constraints
on the model parameters; the constraints are given without variance in Chapter 5,
while Chapter 6 treats stochastic constraints on the parameters.

Chapter 7 treats the topic of sequential adjustments, which is important in cer-
tain real-time applications and when new data are provided that must be combined
with the results of a previous adjustment. It takes a step in the direction of Kalman
filtering, a topic presented in Part II.

Chapter 8 develops the Gauss-Helmert Model, for which the associated least-
squares adjustment permits some problems to be solved more efficiently than the
could be with the earlier presented models. It may also allow for “orthogonal
regression” or “total least-squares” solutions to be computed in some cases.

Chapter 9 focuses on statistical analysis of least-squares adjustments. Among
other things, it develops concepts and formulas for hypothesis testing on estimated
parameters and for outlier detection for the observations.
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Introduction to Part II The objectives of the course that Part II is based
on (GS 762) were stated by Burkhard Schaffrin in the original course syllabus as
follows:

The course makes students aware of various special adjustment tech-
niques. Relations between the Gauss-Markov Model and traditional
least-squares solutions are explored and compared to the collocation
technique. Ranks of matrices are discussed, and they are derived for
matrices usually encountered in adjustment computations. The intro-
duction to generalized matrices will give the possibility to solve rank-
deficient systems. Estimable and non-estimable quantities in adjustment
are defined and discussed, as well as the estimation of variance compo-
nents. The role of prior information is clarified, and it is shown how the
least-squares adjustment in a Dynamic Linear Model leads to Kalman
filtering. As a result, students should be able to make a prudent choice
of a proper model and the corresponding adjustment techniques for a
host of overdetermined problems in geodetic science, no matter how
complicated.

Chapter 11 begins with a review of the nonlinear Gauss-Markov Model, show-
ing how the least-squares solution for the unknown parameters of the model can
be arrived at equivalently via both algebraic-geometric and statistical approaches,
resulting in an equivalency between LESS (LEast Squares-Solution) and BLUUE
(Best Linearly Uniformally Unbiased Estimate).

Chapter 12 introduces the linear algebra concepts of vec operator and Kronecker
product, which provide essential tools for the derivations in chapters that follow.
These concepts deserve attention here, because they typically are not covered in
first courses in linear algebra, which may be the extent of background in linear
algebra for many students reading this book.

In Chapter 13, the estimation of the unknown variance component appearing in
the Gauss-Markov Model is derived from the statistical concept of Best Invariant
Quadratic Uniformly Unbiased Estimate, or BIQUUE.

Chapter 14 treats the concept of expectation-dispersion correspondence, which
allows a quadratic model for the unknown variance component to be transformed
into a linear model and shows how BIQUUE for the unknown variance component
in the Gauss-Markov Model is equivalent to LESS within the linear model.

Chapter 15 introduces the rank-deficient Gauss-Markov Model, providing a use-
ful way to treat many adjustment problems in geodetic science where the observa-
tions do not provide enough information to estimate all the unknown parameters
of the model. The concept of generalized inverse is presented, which allows for
characterizing the solution space for the unknown model parameters, among which
the estimators MINOLESS (and its equivalent BLUMBE) and partial MINOLESS
are perhaps most useful.

Chapter 16 introduces variance component estimation for multiple variance com-
ponents, which allows one to deal with multiple observational weight matrices for
which the relative accuracies among them may be unknown or uncertain, in which



4 INTRODUCTION

case, estimating a variance component for each one of them might be desired. This
chapter shows how to do that.

Chapter 17 introduces the notion of prior information for the unknown model
parameters. Here, the concept of random, rather than fixed, model parameters
is introduced, and a model is presented that contains both types of parameters,
leading to least-squares estimates of the fixed parameters and predictions of the
random parameters.

Chapter 18 presents the dynamic linear model and derives the least-squares
solution within it, which is also known as a Kalman filter.

An appendix contains several matrix properties and identities used throughout
the book. A bibliography at the end includes referenced material and material for
suggested reading.

Notation

A few comments about the notation used in this book may be helpful. Matrices are
displayed in uppercase. Vectors are lowercase and are set in bold-face type (bold
face is not used for any other symbols). Scalar variables are generally lower-case.
Greek letters are used for unknown, non-random parameters, while Latin letters are
used for unknown, random variables. Symbols denoting estimates of non-random
variables use Greek letters with a hat on top, while predictions of random variables
are shown as Latin letters with tildes on top. The following tables list variables,
mathematical operators, and abbreviations used herein.

Table 1: Variables and mathematical operators

Symbol Description

A coefficient (design) matrix in the Gauss-Markov Model

B coefficient matrix in the Model of Condition Equations

c right-side vector in the system of normal equations N ξ̂ = c

C{·} covariance operator

D{·} dispersion operator

diag(·) a diagonal matrix with diagonal elements comprised of (·), which
represents a list of elements or a column vector.

dim the dimension of a matrix or of a vector space

e unknown random error vector for the observations

ẽ predicted random error (residual) vector for the observations

e0 unknown random error vector associated with stochastic con-
straints

ẽ0 predicted random error (residual) vector for e0
E{·} expectation operator

H0 null hypothesis

HA alternative hypothesis

Continued on next page
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Symbol Description

K constraint matrix used in the Gauss-Markov Model with (stochas-
tic) constraints

m number of unknown parameters

MSE{·} mean squared error operator

n number of observations

N normal-equations matrix in the system of normal equations N ξ̂ = c

N (·) the nullspace (kernel) of a matrix or the normal distribution, de-
pending on the context

P weight matrix for the observations

P0 weight matrix for stochastic constraints

q rank of the coefficient (design) matrix A

Q cofactor matrix for the observations

Qẽ cofactor matrix for the predicted random errors (residuals)

r redundancy of data model

R the field of real numbers

R(·) the range (column) space of a matrix

rk the rank of a matrix

tr the trace of a matrix

U matrix of eigenvectors

w constant vector in the Model of Condition Equations

y vector of observations (possibly in linearized form, resulting in “in-
cremental observations”)

z vector of constraints used in the Gauss-Markov Model with stochas-
tic constraints

α significance level for statistical tests

α observation coefficient vector in the Model of Direct Observations

β a quantity associated with the power of a statistical test

χ2 chi-square statistical distribution

δ a small deviation or non-random error, as in δP denoting a non-
random error in matrix P

Φ Lagrange target function

η unit vector used in the Outlier Detection Model

κ0 vector of specified constants used in the Gauss-Markov Model with
constraints

λ unknown vector of Lagrange multipliers

λ̂ estimated vector of Lagrange multipliers

µ, µ the expected value of a non-random variable, either the scalar µ or
vector µ

µ̂, µ̂ the estimate of a non-random variable

µ̂y vector of adjusted observations

ν statistical degrees of freedom

Continued on next page
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Symbol Description

θ the orientation of a confidence ellipse

σ2
0 unknown variance component

σ̂2
0 estimated variance component

Σ dispersion (or covariance) matrix for the observations

τ vector of ones (also called “summation vector”)

Ω (weighted) sum of squared residuals (unconstrained case)

ξ vector of unknown parameters (possibly in linearized form, result-
ing in “incremental parameters”)

ξ̂ estimated parameter vector
:= a binary operator that denotes that the variable on the left is de-

fined in terms of variables on the right, which have already been
introduced

Continued from previous page

Table 2: List of abbreviations

Abbrev. Meaning

BIQUUE Best Invariant Quadratic Uniformally Unbiased Estimate

BLUUE Best Linear Uniformly Unbiased Estimate

BLIP Best LInear Prediction

cdf cumulative distribution function

GHM Gauss-Helmert Model

GMM Gauss-Markov Model

LESS LEast-Squares Solution

MSE Mean Squared Error

pdf probability density function

rms root mean square



Part I

Adjustment Computations





Chapter 1

Foundations: Observations,
Parameters, Random Errors,
and Essential Math

1.1 Parameters and Observations, Purpose of Ad-
justment Computations

In geodetic science, observations (measurements) are typically made for the purpose
of estimating certain unknown quantities, for example, coordinates of GPS reference
stations, or heights of benchmarks. These unknown quantities are often expressed
as parameters of an observational model. In some cases an unknown parameter
might be measured directly (say the length of a bridge), but often parameters
are only “measured indirectly,” for example by measuring angles and distances to
determine coordinates of points. In any case, for our purposes we will consider
these unknown quantities to be fixed parameters, rather than random parameters,
which are treated in Part II. The terms fixed and random parameters refer to the
statistical (stochastic) properties of these unknown quantities. Physically, one may
think of a fixed parameter as representing a quantity that does not vary in time, or
space, at least not over the time span or region of interest.

While some observations might be made with the naked eye, for example by
reading the graduations on a steel tape to determine a distance between survey
markers, more often they are made by use of an instrument. Traditionally, in sur-
veying most instruments were optical-mechanical, such as a surveyor’s level or tran-
siting theodolite (“transit”). These instruments required scales or rods to be read
with the aid of telescopes and magnifying eyepieces. Eventually, optical-electronic
instruments added electronic distance measuring functionality, while horizontal and
vertical angles were still read by optical means. Later, with the advent of the total
station, both angles and distances were measured electronically, and perhaps not
even recorded manually if a data collector was used in conjunction with the instru-
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ment. Nowadays, robotic total stations, digital levels, GPS (or GNSS) receivers,
and laser scanners, not to mention drones with GPS receivers, cameras, and LI-
DAR, remove most of the traditional elements of human observation. Nevertheless,
we still refer to the quantities they measure and record (the data) as observations.
The import thing to know about observations, is that they always contain an ele-
ment of unknown, random error, whether they are made and recorded manually by
a human, or made and recorded electronically with little or no human involvement.

Errors in observations differ by type (nature). The types we are most concerned
with are random, systematic (bias), and blunders (mistakes). Blunders might belong
to the statistical category of outlier. We will discuss these categories of errors in
more detail in a later section. For now we simply assume that 1) all observations
contain random errors, 2) that it is often possible to account for systematic errors
in some way (if we are aware that they exist and know how to quantify them), and
3) that blunders must be avoided or found and removed.

Let us summarize these concepts with the following brief definitions:

Observation A measured quantity that has a numerical value and unit associ-
ated with it. Observations always contain unknown random errors and might
also be corrupted by systematic errors (biases) and blunders. Because of its
random component, an observation is treated as a (realization of a) random
variable. Quoting Koch (1999, p. 82)

For an experiment, whose result is registered by a real number or
by an instrument with a digital display, the mapping of the set
of elementary events onto the set of real numbers is achieved by
digital recording. The random variable thus defined will be called
a measurement or an observation.

Parameter An unknown quantity of interest that is to be estimated. Unknown
parameters are a component of an observational model, which models the ob-
servations as functions of these unknowns. In Part 1, we treat only fixed
parameters, by which we mean they do not vary statistically. Later, in Chap-
ter 17, random parameters (random effects) are introduced.

Purpose of adjustment computations Let us assume for now that our ob-
servations are free of biases and blunders. They still contain unknown random
errors. What’s more, by design we usually have more observations than the mini-
mum necessary to determine the unknown parameters of our observational model.
How then do we deal with these extra observations and their random errors? This
is the subject of adjustment computations, the purpose of which is to adjust the
observations in some way so that the difference between the given observations and
their adjusted values (called residuals) is as small as possible according to a stated
criterion. One particular method for doing so is the method of least-squares adjust-
ment, which is the primary subject of this book. The term “least squares” is due
to the requirement that

the sum of the squares of the (weighted) residuals is a minimum.
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1.2 Functional Relations and Stochastic Proper-
ties

As noted above, observations are typically made to compute the value of some
unknown quantities of interest. In order to relate the observations to the unknown
quantities, a mathematical function is specified. The function may be linear or
nonlinear depending on the complexity of the relation between the observations and
the unknowns. In the case where the unknown quantity can be observed directly,
a simple linear function might be suitable. In other cases, the chosen function may
be highly nonlinear.

As an example, suppose a distance is measured between points p1 and p2 whose
coordinates in the horizontal plane must be determined. In this case, the measured
distance, call it y, is the observation. The unknown quantities are the coordinate
pairs of the two points, viz. (x1, y1) and (x2, y2). The functional relationship be-
tween the measured distance and unknown coordinates can be written as

y(x1, y1, x2, y2) ≈
√

(x2 − x1)2 + (y2 − y1)2. (1.1a)

Obviously, the function is nonlinear in the unknown variables x1, y1, x2, and y2.
Note that the observation variable y is the dependent variable; it depends on the
unknown coordinates, which are the independent variables of the function. The
approximately-equals sign is used because the observation contains random error,
and thus the unknown quantities do not fully explain the observation variable.
Recall that the unknown quantities are considered to be nonrandom (“fixed”).

In order to change the approximately-equals sign to an equals sign, an additional
term must be added to the function so that both sides of the equation have a random
term (or, equivalently, the random term could be subtracted from the left side). The
random term, call it e, accounts for the unknown random error in the observation.
By introducing e, (1.1a) is then modified to read

y =
√
(x2 − x1)2 + (y2 − y1)2 + e, (1.1b)

where the function arguments on the left side are dropped for simplicity.
Equation (1.1b) is in the form of an (nonlinear) observation equation, which is

what we call an equation that expresses an observation as a random variable that
depends on unknown quantities that must be determined. Thus, we say that (1.1b)
models the observation as a function of unknown variables; we call these unknowns
parameters of the model. We want to determine (solve for) these parameters in some
optimal way. As we will see later, the determination of the values of the parameters
cannot be made with absolute certainty. Thus we use the statistical term estimation
when we speak of determining numerical values for the parameters.

So, we may refer to (1.1b) as an observational model; however, it is not a com-
plete model, because more needs be said about the stochastic nature of the random
error e in order to exploit its random properties when estimating the unknown pa-
rameters. In the following sections we will discuss in some detail how the stochastic
properties of random errors can be characterized. At this stage it is enough to say,
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for the sake of least-squares adjustments, that only the expectation and the vari-
ance of the errors need to be specified in the model. Expectation is a statistical
term that denotes the value we expect a random variable to take on, at least in an
average sense. And in this context, variance is a statistical term that denotes our
uncertainty about the expected value of a random variable, i.e., it puts statistical
bounds around the expected value. Formally, variance is described as a measure of
dispersion.

Unless otherwise noted, we will always specify the expectation of the random
errors to be zero. A succinct way to express the expectation and variance of the ran-
dom error e is e ∼ (0, σ2), which reads, “e is distributed with zero expectation and
sigma-squared variance.” Thus, the observational model (1.1b) is made complete
by extending it to

y =
√
(x2 − x1)2 + (y2 − y1)2 + e, e ∼ (0, σ2). (1.1c)

The observation equation is sometimes referred to as the functional part of the
model (or functional model), while the statement e ∼ (0, σ2) is sometimes referred
to the stochastic part of the model (or stochastic model). We call the inverse of
the variance the weight of the observation (weights are discussed in more detail in
a later section). Note that the unit of measurement of the random error e is the
same as that of the observation y, and the unit of measurement of the variance σ2

is the square of the observation’s unit.
The observational model (1.1c) is relevant to a particular problem, that is, to a

particular type of observation (an observed distance) and to particular parameters
(coordinates of two points). We would rather generalize it for use in a wide variety
of geodetic adjustment problems. For that we collect the unknown parameters in a
vector ξ, the symbol used to denote a vector of m unknown parameters throughout
this book. Furthermore, (1.1c) contains only one observation; it must be generalized
to handle any number of observations, possibly all with their own unique variances.
For this we make use of matrices and vectors.

Suppose rather than a single observation y we are given an n × 1 vector of
observations y = [y1, . . . , yn]

T , which has an associated, unknown vector of random
errors e = [e1, . . . , en]

T . Our general model should allow each of the random errors
to have its own unique variance, and it should allow for covariances between the
random errors (covariances are defined in Section 1.5.2). Thus an n × n cofactor
matrix Q is introduced, with its inverse P := Q−1 called weight matrix. When Q is
multiplied by an unknown scalar σ2

0 called variance component, the result is called
covariance matrix, which is denoted by the symbol Σ, i.e., Σ := σ2

0Q = σ2
0P

−1.
Note that some authors call the variance matrix “variance-covariance matrix,” and
some authors call the variance component the “variance of unit weight.” Putting
these components together results in the following model:

y
n×1

= f(ξ)
Rm→Rn

+ e
n×1

, e ∼ ( 0
n×1

, σ2
0P

−1

n×n
). (1.2a)

Note that the vector of functions f maps Rm into Rn, denoted mathematically by
f : Rm → Rn.
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Now, if the vector of functions f is nonlinear in the unknown parameters ξ, it
can be linearized by a truncated Taylor series expansion (see Appendix B). Whether
we have a linear form f(ξ) or a linearized form, we can represent it by an n × m
coefficient matrix A, so that the model (1.2a) can be restated as

y
n×1

= A
n×m

ξ + e
n×1

, e ∼ ( 0
n×1

, σ2
0P

−1

n×n
). (1.2b)

The development of the model (1.2b) is an important step in understanding the
relations between observations, parameters, and random errors. The model is of
type Gauss-Markov, which is an important model in geodetic science and one that
is used extensively in Chapter 3, with particular extensions of it as the focus of
Chapters 5 and 6. More details about random errors, covariances, and weights
will follow, and the usefulness of model (1.2b) will become more apparent in later
chapters. For now, we summarize with a brief description of each element of the
model.

y is a given n× 1 vector of (incremental) observations.

A is a given n × m coefficient (or design) matrix that has full column rank, i.e,
rkA = m.

ξ is an m× 1 vector of unknown (incremental) parameters.

e is an n× 1 vector of unknown random errors associated with the observations.

σ2
0 is an unknown variance component (scalar quantity). Note that σ2

0 is unitless.

P is an n × n weight matrix such that P−1 := Q for a given cofactor matrix Q,
and where the covariance matrix Σ is defined as Σ := σ2

0P
−1. Note that the

diagonal elements of Q have units that are the square of the units of their
associated observations.

1.3 Fundamentals of Matrix Algebra

Matrix algebra (or linear algebra) is fundamental to the mathematics of adjustment
computations, and it is used extensively in this book. Most of the concepts in
matrix algebra used here are covered in a first course in linear algebra at the college
or university level. Beyond that, there are many derivations in the chapters that
follow that make use of certain matrix relations and identities involving inverses of
sums and products of matrices that generally do not appear in a first course on
linear algebra. These relations are helpful both for reducing complicated formulas
to simpler forms and for showing alternative, but equivalent, solutions to the same
problem. (Seeing more than one solution to a problem may help to provide greater
insight into it, and we will find that sometimes one formula may be more or less
efficient than another equivalent one depending on the problem at hand.)

A list of matrix relations and identities used in this book is provided in Ap-
pendix A. The ones involving only a single line should be memorized. While it’s
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not necessary to memorize the multi-line formulas to read these notes well, being
able to recognize them or readily refer to them will make some of the derivations
in later chapters easier to follow. To facilitate reading of the derivations, their
equation numbers are usually referred to when they are used.

1.3.1 Important Concepts

Below is a list of concepts from linear algebra that the reader should be familiar with.
Some are described briefly in the paragraphs that follow. These books are good
sources for more complete descriptions: Strang (2006); Strang and Borre (1997).

• Gaussian elimination and back substitution

• Gauss-Jordan elimination

• The column space of a matrix

• The nullspace of a matrix

• The basis and dimension of a vector space

• The rank of a matrix

• Consistent and inconsistent systems of equations

• Eigenvalues and eigenvectors

• The properties of an invertible matrix

• The terms positive definite and positive semidefinite

• The term idempotent

• Choleskey’s decomposition

• All other items in Appendix A

Vector spaces The space Rn consists of all vectors with n real-valued compo-
nents. Two important vector spaces in adjustment computations are the column
space and the nullspace of a matrix.

A basis of a vector space A basis for a vector space is a sequence of vectors
that are linearly independent and that span the space. A vector space may have
many different bases, but given a basis, every vector in the space can be expressed
as a unique linear combination of the basis vectors. All bases for a vector space
contain the same number of vectors. This number is the dimension of the space.
The columns of an invertible m×m matrix provide a basis for Rm.
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Column space The column space of a matrix A consists of all linear combinations
of its columns. It is denoted byR(A) and is also called the range of A. Its dimension
equals the rank of A, which is also the number of linearly independent columns in
the space. We say that the columns of A span the column space of A.

Note that the column space of the matrix product AB is contained in the column
space of A, denoted mathematically by

R(AB) ⊂ R(A). (1.3)

In words, it means that every column of the matrix product AB is a linear combi-
nation of the columns of A.

Nullspace The nullspace of A consists of all solutions to Ax = 0. It is denoted
by N (A) and is also called the kernel of A. The dimension of the nullspace of A is
the number of nonzero vectors in the space. It can be computed by

dimN (A) = m− rkA, if A has m columns. (1.4)

This dimension is also called the nullity. If A is a square, nonsingular matrix, the
only vector in its nullspace is x = 0, and thus the dimension of its nullspace is zero.

The relationship between the dimensions of the column space and nullspace is
given by

dimR(A) + dimN (A) = dimRm = m, if the size of A is n×m. (1.5)

The rank of a matrix The rank of a matrix A is the number of its independent
rows, which is also the number of its independent columns.

Consistent and inconsistent systems of equations A consistent system of
equations is one that is solvable. The equation Ax = b is only consistent if b is in
the column space of A. For example, the equation in (1.2b) would not be consistent
if the random error vector e were removed from it. That is because the observation
vector y is not in the column space of the coefficient matrix A, due to the random
errors inherent in the observations.

Properties of an invertible matrix A matrix A is invertible if there exists a
matrix A−1 such that

A−1A = I and AA−1 = I. (1.6)

Only square matrices are possibly invertible. If matrix A is invertible:

• It is nonsingular (regular).

• Its inverse is unique.

• Its rank is equal to its dimension (size or order), i.e., rkA = m if the size of A
is m×m.
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• Its rank is equal to the dimension of its column space, i.e., rkA = dimR(A).

• The vector x = 0 is the only vector in its nullspace. Therefore, dimN (A) = 0.

• All its eigenvalues are nonzero.

Positive-definite and positive-semidefinite matrices:

Positive definite A matrix A is positive definite if xTAx > 0 for all nonzero
vectors x. A positive-definite matrix is nonsingular. All of its eigenvalues are greater
than zero. If the matrix is also symmetric, it can be factored by the Cholesky
decomposition. See page 28 for properties of a positive-definite matrix.

Positive semidefinite A matrix A is positive semidefinite if xTAx ≥ 0 for all
nonzero vectors x. A positive-semidefinite matrix is singular. At least one of its
eigenvalues is zero; none are less than zero; thus, a positive-semidefinite matrix is
also called a non-negative definite (NND) matrix.

Idempotent matrices An idempotent matrix equals its own square. It is a square
matrix, and it is singular unless it is the identity matrix.

The n× n matrix P is idempotent if PP = P . (1.7a)

If the n× n matrix P is idempotent, then so is In − P . (1.7b)

If P is idempotent, trP = rkP. (1.7c)

The eigenvalues of an idempotent matrix are 0 or 1. (1.7d)

Projection matrices are idempotent. (1.7e)

1.3.2 Practice Problems

The reader should know how to solve the following problems:

1. Solve the following system of equations, for the variables x1, . . . , x6, by Gaus-
sian elimination and back substitution:

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

2. Solve the preceding system of equations by Gauss-Jordan elimination.

3. Find a basis for the column space of

A =

1 0 1 1

3 2 5 1

0 4 4 −4

 .
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4. Find a basis for the row space of

B =


1 −2 0 0 3

2 −5 −3 −2 0

0 5 15 10 0

2 6 18 8 6

 .

5. Find a basis for the nullspace of matrix AT and a basis for the nullspace
of matrix B above. Confirm that the basis vectors in these nullspaces are
orthogonal to the column space of A and the row space of B, respectively (see
(A.45a)–(A.45d)).

6. What are the ranks of matrices A and B above.

7. Find the eigenvalues and eigenvectors of

A =

3 4 2

0 1 2

0 0 0

 and B =

0 0 2

0 2 0

2 0 0

 .

For each matrix, check that the sum of its eigenvalues equals its trace and
that the product of its eigenvalues equals its determinant.

8. Compute the Cholesky factor of

N =


2 0 0 −1 0

0 2 0 −1 −1

0 0 1 0 0

−1 −1 0 2 1

0 −1 0 1 2


and then compute the inverse of N using the Cholesky factor.

9. Assuming the partitioned matrix[
N11 N12

N21 N22

]

is nonsingular and that its sub-matrices N11 and N22 are also nonsingular,
without referring to Appendix A, derive its inverse using elementary row op-
erations.

10. If N is an m ×m nonsingular matrix and K is an l ×m matrix with l < m
such that rk[N |KT ] = m, then the matrix[

N KT

K 0

]
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is nonsingular and so is the matrix (N + KTK). Note that 0 denotes an
l× l matrix of zeros. Without reference to Chapter 5, derive its inverse using
elementary row operations. Hint: start by multiplying the bottom row on the
left by KT and add the result to the top row.

11. With reference to Appendix A, derive (A.6b) from (A.6a).

12. If N is a nonsingular matrix defined by N = ATPA, show that the quantity
I −AN−1ATP is idempotent (see (1.7a)), where I is the identity matrix.

13. If the matrix P is idempotent, show that I − P is too.

14. Can the dimension of the nullspace of a rectangular matrix ever be zero? Why
or why not?

1.4 Random Variables

From here to the beginning of Section 1.5 we use notation consistent with textbooks
in statistics for easy comparison to them. Accordingly, we useX to denote a random
variable and x to denote a numerical value that the random variable could take on.
After these sections, we resume the use of notation long used by Burkhard Schaffrin
for adjustment computations.

1.4.1 Review From Statistics

According to Mikhail and Ackermann (1982), probabilities are associated with sta-
tistical events, which are the outcomes of statistical experiments. If an event has
several possible outcomes, we associate with it a stochastic or random variable X,
which can take on different numerical values x for different outcomes. The total
of all possible outcomes of a statistical event associated with a random variable is
called the population. Because of its large size, it is not practical, or even possible,
to evaluate all the elements of a population. For this reason, we only select a small
number of them (by making observations), the set of which is called a sample of
the population.

Let’s associate these abstract statistical terms with a concrete example from
geodetic science. Suppose the coordinates of a geodetic network are to be deter-
mined from data collected by GPS receivers. The act of collecting and processing
those data is the experiment. The outcome is a set of coordinate differences between
points in the network, which we take to be observations in this example. These co-
ordinate differences could take on different values (i.e., no two experiments are likely
to produce the same set of values). Therefore, each observed coordinate difference
is considered to be a realization of a random variable. Obviously, we cannot obtain
the entire population of observed coordinate differences among the network points,
because there are an infinite number of them. Rather we must settle for a finite
number of observations obtained from the experiment, which constitutes a sample.
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Quoting Mikhail and Ackermann, “the total set of possible values of a random
variable, X, together with their probabilities, constitute what is termed a proba-
bility distribution associated with the random variable.” A probability distribution
involves a function that assigns a probability to all possible values of the random
variable it is associated with. The two types of probability distribution functions
are cumulative distribution function (or simply distribution function) and probability
density function (or density function or probability function). These two distribu-
tion functions are defined in the following two sections for a single random variable
(univariate distribution).

In general, the properties of cumulative distribution functions hold for both
continuous and discrete random variables. However, probability density functions
pertain only to continuous functions. Their discrete analog is the probability mass
function. In the following, we will limit our discussion to continuous random vari-
ables. An important property of a continuous random variable is that the probabil-
ity that it will take a particular value is zero. That is, if X is a continuous random
variable, then

P{X = x} = 0 for all x. (1.8)

1.4.1.1 Cumulative Distribution Function

The cumulative distribution function, F (x)1, gives the probability of the event
{X ≤ x} for every number x. It is written as

F (x) = P{X ≤ x} = P{−∞ < X ≤ x}. (1.9)

In words, (1.9) says that the probability that the random variable X will take on a
numerical value less than or equal to x is given by the function F (x). By definition,
the probabilities are limited to values between 0 and 1, i.e,

0 ≤ P ≤ 1, implying that lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1. (1.10)

Finally,

P{x < X} = 1− F (x) for all x. (1.11)

1.4.1.2 Probability Density Function

A probability density function f(x) of a continuous random variable X provides
a means to calculate the probability that X lies within a specified interval. It
does not, however, give the probability that X equals a specific value x, because
P{X = x} = 0 for all numbers x as stated in (1.8). The probability that X belongs
to an interval [a, b] is given by the integral

P{a ≤ X ≤ b} =

∫ b

a

f(x) dx, (1.12)

1Here we omit the subscript X, as in FX(x) and fX(x), which is often used in statistics
textbooks.
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which is the area under the curve f(x) between a and b as shown in Figure 1.1.
If the lower limit a is replaced by −∞, then a relationship between the cumu-

lative distribution function F (x) and the probability density function f(x) can be
written as

F (x) =

∫ x

−∞
f(t) dt, (1.13)

which, considering the Fundamental Theorem of Calculus, leads to the relation

d

dx
F (x) =

d

dx

∫ x

−∞
f(t) dt = f(x), (1.14)

for all values of x. It is important to note that a probability density function must
satisfy the following two properties:

f(x) ≥ 0 for all numbers x.∫ ∞

−∞
f(x) dx = 1.

(1.15a)

(1.15b)

Any integrable function that satisfies these two properties is the probability density
function of some random variable X.

It is also noted that, as a consequence of (1.8), P{X = a} = 0 and P{X = b} =
0, and therefore

P{a ≤ X ≤ b} = P{a < X ≤ b} = P{a ≤ X < b} = P{a < X < b}. (1.16)

ba
x

f(x)

Figure 1.1: The shaded area under the curve of the probability density function
f(x) is the probability that a random variable takes on values in the interval [a, b]

1.4.2 Distributions for Adjustment Computations

The four distributions discussed in this book are
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1. The Gaussian or normal distribution.

2. The t (Student’s t) distribution.

3. The χ2 distribution.

4. The F (Fisher) distribution.

For our purposes, these distributions are primarily used for hypothesis testing
to validate statistically the results of various adjustment computations. Standard
texts in statistics can be consulted for obtaining critical values of the distributions
from tables, some of which can also be found in the appendices herein. More details
about these distributions can be found in Chapter 9. Here, we briefly describe the
normal and standard normal distributions.

1.4.2.1 The Normal Distribution

The probability density function f(x) of the normal distribution is defined by the
equation

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , −∞ < x < ∞. (1.17)

The parameters of the function are the mean µ and the variance σ2 (σ2 > 0). The
graph of f(x) is a bell-shaped curve that is symmetric about µ and that extends
over the entire horizontal axis. The shorthand notation for indicating that a random
variable X has a normal distribution with mean µ and variance σ2 is

X ∼ N (µ, σ2). (1.18)

Because f(x) is symmetric about µ and reaches its maximum at x = µ, the mean
of the normal distribution is equal to its median and mode.

1.4.2.2 The Standard Normal Distribution

To avoid having to generate statistical tables for many values of µ and σ, the random
variable X is transformed to a standardized form by the equation

Z =
X − µ

σ
. (1.19)

The resulting standardized random variable2 Z has mean µZ = 0 and variance
σ2
Z = 1. It indicates the distance of X from its mean µ in units of its standard

deviation σ, as shown in Figure 1.2. Since Z ∼ N (0, 1), its probability density
function f(z) is defined by the equation

f(z) =
1√
2π

e−
1
2 z

2

. (1.20)

2Snedecor and Cochran (1980, p. 40) state that “The quantity Z goes by various names—
standard normal variate; standard normal deviate; normal variate in standard measure. . . ” Zar
(1996, p. 73) states that “carrying out the calculation of Equation [(1.19)] is known as normalizing,
or standardizing [X] . . . ”
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In summary, we state that

If the random variable X has a normal distribution with mean µ and vari-
ance σ2, the standardization Z = (X −µ)/σ of X has the standard normal
distribution; i.e., Z ∼ N (0, 1).

68.3%

95.5%

99.7%

34.15% 34.15% 13.6%13.6% 2.1%2.1%

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

Units of standard deviations

f
(z
)

Figure 1.2: Normal distribution curve (shown only over the domain [−3, 3]), with
percent of areas under curve denoting probabilities. Image derived from TikZ
code by John Canning, Senior Lecturer at the University of Brighton (http:
//johncanning.net/wp/?p=1202).

The reason that the curve in Figure 1.2 appears to peak near 0.4 is because
f(z = 0) = 1/

√
2π ≈ 0.4. The probabilities shown in the figure (as percentages)

are due to the probability statements

P (−1 < z < 1) = P (µ− σ < x < µ+ σ) = 0.683, (1.21a)

P (−2 < z < 2) = P (µ− 2σ < x < µ+ 2σ) = 0.955, (1.21b)

P (−3 < z < 3) = P (µ− 3σ < x < µ+ 3σ) = 0.997. (1.21c)

The intervals associated with these probability statements are commonly referred
to as the “1-sigma,” “2-sigma,” and “3-sigma” confidence intervals, respectively.
Other commonly used intervals are the so-called 50%, 90%, 95%, and 99% confidence
intervals. Their respective probability statements are given by

0.5 = P (−0.674 < z < 0.674), (1.22a)

0.9 = P (−1.645 < z < 1.645), (1.22b)

0.95 = P (−1.960 < z < 1.960), (1.22c)

0.99 = P (−2.576 < z < 2.576). (1.22d)

http://johncanning.net/wp/?p=1202
http://johncanning.net/wp/?p=1202
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The probabilities associated with these statements can be obtained from Table C.1.
For example, (1.21a) is obtained by subtracting F (−1) = 0.1587 from F (1) =
0.8413, which results in 0.6827. They can also be obtained in MATLAB with the
expression normcdf(1)-normcdf(-1).

For statements (1.22a)–(1.22d), the probabilities shown on the left sides must
be found within columns 2–11 of the table, and then the corresponding z-values
can be read (interpolated) from the first column and the heading. Because the
limits are centered around z, but the table lists P [Z ≤ z], one should determine
the value to find in the table as follows: if P denotes the probability, the value
1− (1−P )/2 = (1+P )/2 is the value to find in the table to obtain the upper limit
of z. For the lower limit of z, which only differs in sign from the upper one, use
(1−P )/2. For example, for (1.22a), find (1+0.5)/2 = 0.75 and (1−0.5)/2 = 0.25 in
the table. These limits can also be found by using the MATLAB function norminv.
For example norminv(0.25) returns −0.6745, and norminv(0.75) returns 0.6745.

Further discussions about the standard normal distribution can be found in
Section 9.3.1.

1.5 Random Variables in Adjustment Computa-
tions

In the following, we present some properties of random variables, which are also
called stochastic variables by some authors (e.g., Bjerhammar, 1973). More partic-
ularly, we focus on variables that represent random observation errors. Such errors
also have been called accidental errors ibid, pg. 5. Though we cannot know what
values random errors will take on, we may state what we expect their values to be,
and we may also specify their level of deviation or variance about their expected
values.

In the following sections, the notions of expectation and dispersion are defined
mathematically. We first start with the univariate case, where only one random
error is considered. Then we proceed to the multivariate case, where a vector of n
random errors is considered.

1.5.1 Univariate Case

The univariate case deals with one-dimensional random variables, i.e., it treats
scalar quantities rather than vector quantities. Let us introduce the continuous
random variable e with a given probability density function (pdf) f(et), where et
represents a realization of e, i.e., a possible value that e might take on.

Expectation The probabilistic mean of e is the value that we expect e to take
on. We denote the expectation of e as µe and define it as follows:

µe := E{e} =

∞∫
−∞

et f(et) det, (1.23)
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where E is called expectation operator. Equation (1.23) is also called the first
moment of e. If the random variable e represents measurement error, then, ideally,
E{e} = 0. If E{e} ≠ 0, we say that the measurement error is biased.

Dispersion The dispersion, or variance, of e is denoted by σ2
e and is defined by

σ2
e := E{(e− E{e})2} =

∞∫
−∞

(et − µe)
2f(et) det . (1.24a)

If E{e} = 0, then obviously

σ2
e =

∞∫
−∞

e2tf(et) det . (1.24b)

Equation (1.24a) is also called the second centralized moment of e. In addition
to σ2

e , D{e} is also used to denote the dispersion (variance) of e, where D is the
dispersion operator, but usually we reserve this notation for the multivariate case,
where it refers to an n×n covariance matrix. The terms dispersion and variance are
used interchangeably throughout this book, though formally variance is described
as a measure of dispersion. The positive square root of variance is called standard
deviation.

Variance is an indicator of how closely the values taken on by a random variable
are to its expected value. It is reflective of measurement precision and is inversely
proportional to it. Thus, a small variance indicates high precision, and a large vari-
ance indicates low precision. A succinct expression for the expectation and variance
of the random variable e, when e is assumed to be unbiased random measurement
error, is

e ∼ (0, σ2
e). (1.25)

The expression (1.25) is said in words as “e is distributed with zero mean and sigma-
sub-e-squared variance.” Note that (1.25) does not specify a pdf for e but only its
expectation and dispersion (or variance), or its first and second moments.

1.5.1.1 Expectation and Variance Propagation

Consider the observation equation

y = µ+ e, e ∼ (0, σ2
e), (1.26)

where y is an observation (measurement), µ is an unknown observable, and e ac-
counts for the random error inherent in the observation y. We want to find the
expectation and variance of y. In other words, we want to know how the expecta-
tion and variance propagate from the random variable e to the random variable y.
Note that µ is a constant, or non-random, variable. The expectation of a constant
is the constant itself; i.e., E{µ} = µ.
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Using (1.23), we can write the expectation of y = µ+ e as

E{y} =

∞∫
−∞

(µ+ et) f(et) det, (1.27a)

where et was defined in the preceding section as a value that the random variable e
can take on. The expectation operator is linear. Thus, the expectation of the sum
of random variables is the sum of their individual expectations. And, as noted
already, µ is a constant variable. Therefore

E{y} = µ

�
�
�
�
�
�>

1
∞∫

−∞

f(et) det +

∞∫
−∞

et f(et) det = µ+ E{e} = µ+ 0 = µ. (1.27b)

The first integral evaluates to one according to (1.15b); the second integral was
defined as expectation in (1.23).

The following rules are useful when working with expectations, given random
variables x and y and constant c:

E{E{x}} = E{x}, (1.28a)

E{x+ y} = E{x}+ E{y}, (1.28b)

E{c} = c, (1.28c)

E{cx} = c · E{x}, (1.28d)

E{x · y} = E{x} · E{y}
if and only if x and y are independent random variables,

(1.28e)

E{x2} ≠ E{x}2 in general. (1.28f)

These rules can be extended to the multivariate case by replacing random variables x
and y with random vectors x and y, respectively, and by replacing the constant c
with a constant matrix A.

After introducing yt as a variable of integration, as was done for et above, the
dispersion (variance) of y is defined by

D{y} =

∞∫
−∞

(yt − E{y})2f(yt) dyt =

=

∞∫
−∞

(µ+ et − µ)2f(et) det =

∞∫
−∞

e2tf(et) det = σ2
e . (1.29)

Summarizing, the first and second moments (i.e., the mean and variance) of y can
be written succinctly as y ∼ (µ, σ2

e).
Another useful formula for the dispersion of a random variable y expresses it as

the difference of the expectation of the square of the variable and the square of the
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variable’s expected value. It is derived as follows:

D{y} = E{(y − E{y})2} = (1.30a)

= E{y2 − 2yE{y}+ E{y}2} =

= E{y2 − 2yµ+ µ2} =

= E{y2} − 2µE{y}+ E{µ2} =

= E{y2} − 2µ2 + µ2 =

= E{y2} − µ2 ⇒

D{y} = E{y2} − E{y}2 = σ2
y. (1.30b)

Given constants α and γ, and in light of the above formulas, properties for
expectation and dispersion can be summarized as follows:

E{αy + γ} = αE{y}+ γ,

D{αy + γ} = α2D{y}.
(1.31a)

(1.31b)

Equation (1.31b) represents the law of error propagation (covariance propagation)
in its simplest form. It shows that, in contrast to the expectation, the dispersion
operator is not linear. Furthermore, it shows that dispersion is not affected by a
constant offset.

1.5.1.2 Mean Squared Error

The mean squared error, or MSE, of y is the expectation of the square of the
difference of y and its true value µ. It is defined mathematically as

MSE{y} = E{(y − µ)2} (1.32)

(compare to (1.30a)). It is useful to express the MSE as a combination of the
dispersion and a (squared) bias term. This is done via the following derivation:

MSE{y} = E{(y − µ)2} = E{[(y − E{y})− (µ− E{y})]2} =

= E{(y − E{y})2 − 2(y − E{y})(µ− E{y}) + (µ− E{y})2} =

= E{(y − E{y})2} − 2E{(y − E{y})(µ− E{y})}+ E{(µ− E{y})2}. (1.33)

Note that while y is a random variable, E{y} is not. So, in the middle term, the
expectation operator only applies to y. Therefore, we may continue with

MSE{y} = D{y} − 2(
�������:0
E{y} − E{y} )(µ− E{y}) + (µ− E{y})2 ⇒

MSE{y} = D{y}+ β2, (1.34)
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where bias is defined formally as

β := E{y − µ} = E{y} − µ. (1.35)

Thus, we see that the dispersion of y and the MSE of y are only equal in the absence
of bias, or in other words, only if indeed µ = E{y}.

We noted previously that dispersion (variance) is an indicator of precision. In
contrast, MSE is a measure of accuracy; it includes both dispersion and bias terms.
In general, it is harder to meet accuracy standards than precision standards. We
can typically increase precision by making more observations (though this may come
with additional costs in time and resources); however it might not be possible to
reduce bias by making more observations, and it may be very difficult to determine
the origin of bias.

Finally, we note that the square root of MSE is commonly called rms (root mean
square). Thus, strictly speaking, standard deviation and rms are only equivalent in
the absence of bias.

The reader may also enjoy reading the article Useful Statistics for Land Survey-
ors by Urho Uotila (2006), who was Burkhard Schaffrin’s predecessor as professor
of adjustment computations at The Ohio State University.

1.5.2 Multivariate Case

The multivariate case deals with multidimensional random variables represented by
column vectors. For example, multiple observations of the observable µ in (1.26)
can be expressed in the following system of equations:

y =


y1
...

yn

 = τµ+ e =


1
...

1

µ+


e1
...

en

 , (1.36)

where τ is a “summation vector”3 defined as τ := [1, . . . , 1]T . In the case of unbiased
observations, i.e. E{e} = 0, the expectation of the random error vector e is written
as

E{


e1
...

en

} =


E{e1}

...

E{en}

 =


0
...

0

 , (1.37)

showing that the expectation of a vector can be written component-wise. Likewise,
for the dispersion of each element ej of e, we have

D{ej} = E{
(
ej −����:0

E{ej}
)2} = E{e2j}. (1.38)

3The phrase “summing vector” has also been used. The name comes from the fact that if the
dot product is taken between a vector of ones and another vector, the result is the sum of the
elements of the other vector.
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For the multivariate case, we must introduce the concept of covariance, which
is a measure of similar behavior between random variables, e.g., between elements
ej and ek of e. Formally, the definition of covariance is

C{ej , ek} = σjk := E{
(
ej − E{ej}

)(
ek − E{ek}

)
}. (1.39)

Obviously,

C{ej , ek} = C{ek, ej}. (1.40)

Moreover, when E{e} = 0, the covariance between two of its elements reduces to

C{ej , ek} = E{ejek}, (1.41)

since E{ej} = E{ek} = 0. Even though we see from the definition of the covariance
(1.39) that it does not depend on bias, in practice we often find that bias appears
as positive correlation (see (1.51) for the definition of correlation coefficient).

Two random variables are said to be independent if their joint probability distri-
bution is equal to the product of their individual probability distributions. Mathe-
matically, this is written as

f{ej , ek} = f(ej) · f(ek) ⇔ ej and ek are independent. (1.42)

If two random variables are independent, their covariance is zero. The converse is
not true unless the random variables are jointly normally distributed.

In light of the concept of covariance, the dispersion of a vector of random vari-
ables is represented by a matrix. The jth diagonal element of the matrix is denoted
by σ2

j (or σ2
jj) and the j, k off-diagonal term is written as σjk. The matrix is called

a covariance matrix and is represented by Σ. Due to (1.40), the covariance matrix
is symmetric. An explicit representation of the covariance matrix Σ is given by

D{ e
n×1

}=


D{e1} C{e1, e2} . . . C{e1, en}

C{e2, e1} D{e2} . . . C{e2, en}
...

...
. . .

...

C{en, e1} C{en, e2} . . . D{en}

=: Σ
n×n

=


σ2
1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ2
n

 .

(1.43)

Obviously, if the random variables are uncorrelated, the covariance matrix is diag-
onal.

An important property of a covariance matrix is that it must be at least positive
semidefinite (or, equivalently, non-negative definite (Searle and Khuri, 2017, p.
202)). A matrix is positive semidefinite if, and only if, all of its eigenvalues are
non-negative. For many applications in geodetic science, the covariance matrix is
positive definite, which means that all its eigenvalues are greater than zero. The
following statements hold for every positive-definite matrix Σ:

• αTΣα = 0 ⇒ α = 0.
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• Σ is a nonsingular matrix (also called a regular matrix).

• All eigenvalues of Σ are positive and non-zero.

• All principle submatrices of Σ are also positive definite.

In the following chapters, where we present observational models, we factor out
of the covariance matrix Σ a scalar term denoted by σ2

0 , called a variance component,
with the resulting matrix called the cofactor matrix. We label the cofactor matrix
as Q; its inverse is labeled P and is called weight matrix. The relations between
these terms are written mathematically as

Σ = σ2
0Q = σ2

0P
−1. (1.44)

The simplest form of a covariance matrix Σ is the case where the cofactor matrix
Q is equal to the identity matrix In. Indeed, if Q is a multiple of the identity matrix,
the data are said to be homogeneously distributed. Another term for that case is
independent and identically distributed, abbreviated iid. If the covariance matrix is
diagonal, but its diagonal elements are not all the same, the data are said to have
a heteroscedastic distribution. These cases are illustrated as follows:

• Homogeneous case

D{e} = σ2
0Q = σ2

0


q 0 · · · 0

0 q 0
...

... 0
. . .

...

0 · · · · · · q

 ⇒ P =


1/q 0 · · · 0

0 1/q 0
...

... 0
. . .

...

0 · · · · · · 1/q

 =
1

q
·In

(1.45a)

• Heteroscedastic case

D{e} = σ2
0Q = σ2

0


q11 0 · · · 0

0 q22 0
...

... 0
. . .

...

0 · · · · · · qnn

 ⇒ P =


1/q11 0 · · · 0

0 1/q22 0
...

... 0
. . .

...

0 · · · · · · 1/qnn


(1.45b)

• General case

D{e} = σ2
0Q = σ2

0


q11 q12 · · · q1n

q21 q22 q23
...

...
...

. . .
...

qn1 · · · · · · qnn

 , with qij = qji ⇒ P = Q−1

(1.45c)

Note that for P = [pij ], pii ̸= 1/qii. Thus, the inverse of the diagonal compo-
nents of Q are not weights in this case!
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1.5.2.1 Error Propagation with Matrices

The derivations of (1.31a), (1.31b) and (1.34) can easily be extended to the mul-
tivariate case. Here we show their matrix analogs without deriving them (though
some are derived in the example problems that follow).

If y is a random vector, A a constant matrix, and γ a constant vector, then
the formulas for propagation of expectation and dispersion (error or covariance
propagation) are summarized as follows:

Expectation:

E{Ay + γ} = A·E{y}+ γ (1.46a)

Dispersion (law of error propagation):

D{Ay + γ} = A·D{y}·AT (1.46b)

Also, analogous to (1.30a) and (1.30b) we have

D{y} = E{(y − E{y})(y − E{y})T } = E{yyT } − E{y}E{y}T . (1.47)

Covariance: Given two random vectors, y and z, their covariance is written as

C{z,y} = E{(z − µz)(y − µy)
T } = E{zyT } − µzµ

T
y . (1.48)

Mean Squared Error: If y is a random vector with true value µ, the MSE of y is
written as

MSE{y} = D{y}+ ββT , (1.49a)

where the bias vector β is defined formally as

β := E{y − µ} = E{y} − µ. (1.49b)

Once again, we see that the mean squared error matrix of a random vector is only
equal to the dispersion matrix of the random vector in the absence of bias, i.e.,
when µ = E{y} ⇒ β = 0.

1.5.2.2 Correlation Matrix

A measure of correlation can be derived from the Cauchy-Schwartz inequality, which
is given by

C{ej , ek} =

∫∫
(et)j · (et)k · f((et)j , (et)k) d(et)j d(et)k = σjk ≤

≤

√∫
(et)2j · f

(
(et)j

)
d(et)j ·

∫
(et)2k · f

(
(et)k

)
d(et)k =

√
σ2
jσ

2
k. (1.50)
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Since σjk can take on a positive or a negative value, the above inequality leads to
the notion of a correlation coefficient, defined as

ρjk :=
σjk

σjσk
, with − 1 ≤ ρjk ≤ 1. (1.51)

Analogous to the covariance matrix, we may form a matrix of correlation coefficients.
Such a matrix is called a correlation matrix and is defined as

R
n×n

:=


1 ρ12 . . . ρ1n
ρ21 1 . . . ρ2n
...

...
. . .

...

ρn1 ρn2 . . . 1

 = RT . (1.52)

Given a covariance matrix Σ, the correlation matrix can be generated easily by

R = diag
(
1/σ1, . . . , 1/σn

)
· Σ · diag

(
1/σ1, . . . , 1/σn

)
. (1.53)

A note on units: Units must be properly accounted for in covariance matrices.
The following list clarifies the units of relevant terms.

σ2
0 unitless

ρjk unitless

σ2
j has squared units of observation yj

σjk has units of observation yj multiplied by the units of observation yk

A further discussion on observations and random errors is given in Section 2.1.1
in the context of data models and least-squares adjustments.

1.5.2.3 Examples of Covariance Propagation

1. Given y as an n × 1 observation vector and z = f(y) as an m × 1 vector of
nonlinear functions of y.

Find the m× n covariance matrix C{z,y}.
Solution: Let µ be the true value of y and linearize about expansion point µ0

to get z = α0 + A(y − µ0), with α0 := f(µ0) and A as the Jacobian matrix
of z = f(y).

Law of covariance propagation:

C{z,y}
m×n

= E{zyT } − E{z}E{y}T =

= E{
[
α0 +A(y − µ0)

]
yT } − E{α0 +A(y − µ0)} · E{y}T =

= α0 · E{y}T +A · E{yyT } −Aµ0 · E{y}T−
−α0 · E{y}T −A · E{y} · E{y}T +Aµ0 · E{y}T =

= A
[
E{yyT } − E{y}E{y}T

]
= A ·D{y} ⇒

C{z,y} = A ·D{y}
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2. Rather than one variable z as above, suppose we have z1 of size m1×1 and z2
of size m2 × 1. Find the m1 ×m2 covariance matrix C{z1, z2}.
Solution: After linearization

C{z1 = α0
1 +A1y, z2 = α0

2 +A2y} = A1
m1×n

·D{y}
n×n

· AT
2

n×m2

3. Given the m1 × 1 random vector z1, the m2 × 1 random vector z2, constant
vectors β1(l1 × 1) and β2(l2 × 1) and constant matrices B1(l1 × m1) and
B2(l2 ×m2).

Find the covariance matrix of x1 = β1 +B1z1 and x2 = β2 +B2z2.

Solution:

C{x1 = β1 +B1z1,x2 = β2 +B2z2} = B1
l1×m1

C{z1, z2}
m1×m2

BT
2

m2×l2

Note that the matrix C{z1, z2} is not necessarily symmetric.

4. What is the covariance of the random variable y with itself?

Solution:
C{y,y} = E{yyT } − E{y}E{y}T = D{y}

5. Given n× 1 vectors y = µ+ e with E{e} = 0, which implies that E{y} = µ
and D{e} = E{eeT }.
Find: The dispersion matrix D{y}.
Solution:

D{y} = E{(y − E{y})(y − E{y})T } = E{(y − µ)(y − µ)T } =

= E{yyT − yµT − µyT + µµT } = E{yyT } − µµT − µµT + µµT ⇒
D{y} = E{yyT } − µµT

6. Given random vectors y and z, with corresponding expectations E{y} = µy

and E{z} = µz, find the covariance matrix C{z,y}.
Solution:

C{z,y} = E{(z − µz)(y − µy)
T } = E{zyT − zµT

y − µzy
T + µzµ

T
y } =

= E{zyT } − µzµ
T
y − µzµ

T
y + µzµ

T
y = E{zyT } − µzµ

T
y

7. Suppose y1, y2, and y3 are independent measurements with standard devi-
ations

√
2 cm, 2 cm, and 1 cm, respectively. The quantities x1 and x2 are

computed from the measurements as follows

x1 =2y1 + y2 +2y3,

x2 = y1 − 2y2 .
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Evaluate the covariance matrix for the random vector x = [x1, x2]
T .

Solution: The given equations can be written in matrix form as

x =

[
x1

x2

]
= Ay =

[
2 1 2

1 −2 0

]y1y2
y3

 , D{y} =

2 0 0

0 4 0

0 0 1

 cm2 = Σyy

Now apply the law of error propagation (1.46b):

D{x} = A·D{y}·AT =

[
2 1 2

1 −2 0

]2 0 0

0 4 0

0 0 1


2 1

1 −2

2 0

 cm2 =

=

[
16 −4

−4 18

]
cm2 = Σxx

⇒ σx1
= 4 cm, σx2

= 3
√
2 cm, σx1x2

= −4 cm2

⇒ ρx1x2 =
σx1x2

σx1
σx2

=
−4 cm2

4 cm · 3
√
2 cm

= −0.2357.

Correlation matrix:

R =

[
1

4 cm 0

0 1
3
√
2 cm

][
16 −4

−4 18

]
cm2

[
1

4 cm 0

0 1
3
√
2 cm

]
=

=

[
1 −0.2357

−0.2357 1

]

8. An azimuth α and distance s were measured from known point C to point D
to determine the coordinates of D (see Figure 1.3). Compute the coordinates
of D and their covariance matrix, along with the correlation matrix, based on
the following data.

xc =2000.0m, σxc
=1 cm

yc =3000.0m, σyc
=1 cm

α =120◦00′00′′, σα = 10′′

s =1600.00m, σs =5 cm

Principle: covariance propagation D{Ay + γ} = A·D{y}·AT

Let the random variable y := [xc, yc, α, s]
T and the random variable x :=

[xD, yD]T .

Functional relations:

xD = xC + s · sinα
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y

x

C s

D

α

Figure 1.3: Azimuth α and distance s measured from point C to point D to deter-
mined the coordinates of point D.

yD = yC + s · cosα

x = f(y), x is a nonlinear function of y. Under linearization

x ≈ f(y0) +
∂f(y)

∂yT

∣∣∣∣
y0

(y − y0)

Use values of observations for y0.

f(y0) gives: xD = 3385.64m, yD = 2200.00m

∂xD

∂xC
= 1,

∂xD

∂yC
= 0,

∂xD

∂α
= s [m] · cosα, ∂xD

∂s
= sinα,

∂yD
∂xC

= 0,
∂yD
∂yC

= 1,
∂yD
∂α

= −s [m] · sinα, ∂yD
∂s

= cosα

⇒ A =

[
1 0 s [m] · cosα sinα

0 1 −s [m] · sinα cosα

]
=

[
1 0 −800.0m 0.866

0 1 −1385.64m −0.5

]
Note that the distance s is in units of meters, and these units must be car-
ried into matrix A to ensure the units of the resulting covariance matrix are
correct.

Covariance matrix for given data:

Σyy =


(0.01m)2 0 0 0

0 (0.01m)2 0 0

0 0
(

10′′

3600′′/1◦
π

180◦

)2
0

0 0 0 (0.05m)2


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Covariance matrix for coordinates of point D:

D{

[
xD

yD

]
} = A·Σyy·AT =

[
0.0035 0.0015

0.0015 0.0052

]
m2 = Σxx

Standard deviations for coordinates of point D:

⇒ σxD
= 6 cm, σyD

= 7 cm

Correlation matrix:

R =

[
1/σxD

0

0 1/σyD

]
·Σxx·

[
1/σxD

0

0 1/σyD

]
=

[
1 0.3568

0.3568 1

]

1.5.3 Practice Problems

1. Let X be a random variable with the following probability density function:

f(x) =

 1
8 (x− 1) for 1 < x < 5,

0 otherwise.

Derive the cumulative distribution function of X and evaluate P [X < 2],
P [X > 4], and P [1.5 < X < 4.5].

2. Let X be a random variable with the following probability density function:

f(x) =
sinx

2
for 0 < x < π.

Derive the cumulative distribution function of X and evaluate P [X < π/4],
P [X > π/2], and P [π/4 < X < π/2]. Sum the three probabilities and
comment on the result.

3. Evaluate the mean and variance of the random variable in the preceding prob-
lem (hint: integration by parts).

4. Two measurements are normally distributed with standard deviations of
0.55m and 0.35m, respectively. Compute the standard deviation of the sum
and difference of the two measurements if the correlation coefficient of the two
measurements is: (a) 0.5, (b) 0, (c) −0.5, (d) 1.0.

5. The X and Y coordinates of a survey point have standard deviations of
σx = 0.045m and σy = 0.025m, respectively. (a) Compute the correlation co-
efficient of X and Y if the covariance of X and Y is 0.000 12m2. (b) Compute
the covariance of X and Y if the correlation coefficient is 0.333.
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6. Consider a linear equation Y = a+ bX, where X is a random variable having
a normal distribution, i.e., X ∼ N (µX , σ2

X).

Show that E{Y } = a+ b·µX and σ2
Y = b2·σ2

X . Then show that

Z =
X − µX√

σ2
X

has zero mean and unit variance.

7. Consider the following system of equations
y1
y2
y3
y4

 =


1 −2 1 2

−1 3 2 −1

1 −1 6 7

2 −2 14 20



x1

x2

x3

x4

 = y = Ax,

where y1, y2, y3, and y4 are independent and identically distributed (iid) each
with the mean 0 and variance σ2.

(a) Express x1, x2, x3, and x4 in terms of y1, y2, y3, and y4.

(b) Compute the covariance matrix for x.

(c) Suppose now that instead of being iid, the dispersion of y is given by the
matrix 

σ2 ρσ2 0 0

ρσ2 σ2 ρσ2 0

0 ρσ2 σ2 ρσ2

0 0 ρσ2 σ2

 .

Answer question (b) in this case.

8. Suppose three points A, B, and C are sequentially located on a straight line
(Figure 1.4). A total station was used to measure distances between them, so
that the total distance between A and C could be estimated. The data are
listed in Table 1.1.

A B C

Figure 1.4: Points A, B, and C on a straight line

The variance of each observation is given by σ2 = (9mm)2 + (d/100)2mm2,
where d is distance in meters. Unbeknownst to the surveyor, a constant
bias β = 2.5 cm affected every observation, which is reflected as +0.025m in
Table 1.1.

Suppose the surveyor estimated the total distance AC by the formula

AC = z =
1

6
(y1 + y2 + y3 + y6 + y7 + y8) +

1

4
(y4 + y5).
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Table 1.1: Observations of line segments

yi Segment Observation [m]

y1 AB 52.154 + 0.025 = 52.179

y2 AB 52.157 + 0.025 = 52.182

y3 AB 52.155 + 0.025 = 52.180

y4 AC 70.180 + 0.025 = 70.205

y5 AC 70.178 + 0.025 = 70.203

y6 BC 18.022 + 0.025 = 18.047

y7 BC 18.021 + 0.025 = 18.046

y8 BC 18.025 + 0.025 = 18.050

(a) Compute the standard deviation and rms (square root of MSE) of z using
µAC = 70.179m as a hypothetical “true value” of the total distance AC.

(b) Now use the same formula for z with the unbiased observations (i.e.,
remove the 2.5 cm bias from each observation). Compute its variance
and compare to the variance of part (a). Do you expect the variances to
be the same? Why or why not?

(c) Find a different combination of the measurements that would provide
an estimate for the total distance that is not affected by the bias in
the measurements. Compute the standard deviation and rms for this
estimate (again using µAC = 70.179m as a hypothetical “true value”).
Compare these results to those of parts (a) and (b) and comment on your
findings.

9. Given a random variable y with expectation E{y} = µy and variance σ2
y,

suppose f and g are functions of y defined by f = ey and g = y3, respectively.

(a) Using a Taylor series expansion, express the expectations and disper-
sions of f and g in terms of µy, σ

2
y, and δ = (µ − µ0), where µ0 is an

approximation of µ.

(b) Assume that E{y} coincides with the true value of µy of y, so that biases
are due to the truncation of the Taylor series. What are the biases in
the f and g due to the series truncation? Which bias is larger?

(c) Assume that the approximate value µ0 coincides with the expectation µy

of y. What are the expectations and dispersions now?

10. Sides a and b of the right-angled plane triangle in Figure 1.5 were measured.
The values obtained are a = 399.902m and b = 300.098m, with variances
σ2
a = (0.015m)2 and σ2

b = (0.020m)2, respectively. The correlation coefficient
is ρab = 0.2. Compute side c and angle β and their standard deviations. Also
determine the correlation, if any, between computed side c and angle β.
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a

b
c

β

Figure 1.5: Right-angled plane triangle with measured sides a and b

11. The area of a trapezoidal parcel of land is computed by

A =

(
a1 + a2

2

)
b,

where a1, a2, and b were measured independently. The measurements and
their standard deviations are a1 = 301.257m, 0.025m, a2 = 478.391 ,0.045m,
and b = 503.782m, 0.030m. Compute the area of the parcel and the standard
deviation of the computed area.



Chapter 2

The Model of Direct
Observations

2.1 Model Definition

When an unknown parameter µ can be observed directly, the model of direct obser-
vations can be formed for the data by

y =


y1
...

yn

 =


µ+ e1

...

µ+ en

 = τµ+ e, (2.1a)

e ∼
(
0, σ2

0Q
)
, Q := P−1. (2.1b)

The terms in the data model are defined as follows:

y is a given n× 1 vector of observations with random properties.

µ is an unknown, non-random parameter to be estimated.

τ is an n× 1 vector of ones (“summation vector”), i.e., τ := [1, . . . , 1]T .

e is an n× 1 vector of unknown, random errors to be predicted.

Q is a given n × n cofactor matrix associated with e. It is symmetric, positive
definite, and non-random.

P is an n× n positive-definite weight matrix, being the inverse of Q.

σ2
0 is an unknown, non-random variance component that can be estimated.

Equation (2.1a) is called observation equations, while (2.1b) provides a stochastic
model for the random observational errors. Together, these two equations comprise
a complete data model.
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2.1.1 Terminology: Observations, Redundancy, Residuals
and Their Minimization

The observation vector y was described above as a given quantity. It is given in the
sense that it consists of measurements (observations) that are typically made and
recorded in the field. The measurements are considered to be a physical realization
of an observable — the quantity (“the thing”) being observed. An observable could
be a dimension of an element of a physical object or a relationship between its
elements, such as an angle between two connected edges of a geodetic network, the
end points of which being accessible monuments in the ground. Or, and observable
could be a property of an immaterial object, such as the phase of an electromag-
netic wave. Another example of an observable is the length of a bridge from a mark
scribed in concrete at its beginning to another at its end; then, an associated ob-
servation could be a distance measured and recorded with a surveyor’s total station
between those two marks. Being a measurement of an observable, an observation
is a numerical value with an associated unit of measurement.

Even though the vector of observations y is given, it has random properties
due to unavoidable random errors inherent both in making observations and in the
instruments used to make them. These random errors are unknown quantities, and
they are accounted for in the observation equations (2.1a) by the random error
vector e. Thus, we can say that we know the value of an observation, but we do
not know the value of its random error constituent. However, we have already
seen that we can say something about the expected values of the random errors
(i.e., E{e} = 0). Likewise, a statement can be made about the expectation of the
observations, viz.

µy := E{y} = E{τµ+ e} = τµ. (2.2a)

We may think of the vector µy as the vector of true observations, the values of
which are unknown, though they can be estimated via

Ê{y} =: µ̂y = τ µ̂, (2.2b)

where µ̂ is an estimate of the unknown parameter µ. The vector µ̂y is called the
vector of adjusted observations.

Because the given observations, y, contain unknown random errors represented
by e, we cannot possibly expect that y will equal τµ, though we may usually
hope that at least y ≈ τµ. The inequality y ̸= τµ should be immediately evident
from the symbols, since they imply that y is random and τµ is not. (Recall the
use of Latin characters for random variables and Greek characters for non-random
variables as discussed on page 4.) The rule eluded to here is that when one side of
an equation results in a random quantity, so must the other side. The incongruency
reflected in y ̸= τµ is rectified in (2.1a) by the addition of e on the right side. But
practically speaking, e is not much help, since it is unknown. This is where least-
squares adjustment theory and techniques can come to the rescue. For if there are
more observations than parameters in the model (i.e., more than one observation
for model (2.1)), we can use these redundant observations to predict values for e
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using a predictor derived from the principle of least-squares adjustment (see below
for a brief discussion on predictors and estimators).

The number of independent, redundant observations is called the redundancy of
the model. Another term for it is degrees of freedom, sometimes abbreviated df in
the statistical literature. The vector of predicted random errors is denoted by ẽ,
and it is also called the vector of residuals.

The idea behind least-squares adjustment is to predict the residuals so that
the (weighted) sum of their squares is minimized, while still satisfying the relation
y = τµ + e shown in (2.1a), but now with the predicted random errors ẽ and
the estimated parameter µ̂ rather than their corresponding “true,” but unknown,
quantities. That is, the relation

y = τ µ̂+ ẽ (2.3)

must hold after the adjustment, and the (weighted) sum of squared residuals Ω :=
ẽTP ẽ must be as small as possible. That is both the objective and the outcome of
least-squares adjustments.

It is the data that are being adjusted in least-squares adjustments. They are
adjusted so that the inconsistent equation y ̸= τµ is replaced by the consistent
equation µ̂y = τ µ̂. So, we speak of adjusted data, predicted residuals, and estimated
parameters as the outcomes of a least-squares solution, which is derived in the next
section.

Estimate vs. estimator In these notes we have hardly distinguished between the
terms estimate and estimator. This is partly because sometimes the same symbol
works for both terms depending on the context, though in some places we might
have used estimate when we could have used estimator, and the same can be said
for prediction and predictor. The distinction between these terms made by Tukey
(1987, p. 633) is quoted as follows:

An estimator is a function of the observations, a specific way of
putting them together. It may be specified by an arithmetic formula,
like ȳ = Σxi/n, or by words alone, as in directions for finding a sample
median by ordering and counting. We distinguish between the estimator
and its value, an estimate, obtained from the specific set of data. The
variance estimator, s2 = Σ(xi − x̄)2/(n− 1), yields the estimate 7 from
the three observations 2, 3, 7. We say s2 is an estimator for σ2, and we
call σ2 the estimated. In the numerical example, 7 estimates σ2.

2.2 The Least-Squares Solution

In order to minimize Ω := ẽTP ẽ while satisfying (2.3) we form the Lagrange target
function

Φ(e,λ, µ) := eTPe+ 2λT (y − τµ− e), (2.4)
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where λ is an unknown m× 1 vector of Lagrange multipliers. The target function
is made stationary with respect to the unknown terms e, λ, and µ when its first
partial derivatives are set equivalent to zero, which is reflected in the following
Euler-Lagrange necessary conditions:

1

2

∂Φ

∂e
=

1

2

[
∂Φ

∂ej

]
n×1

= P ẽ− λ̂
.
= 0, (2.5a)

1

2

∂Φ

∂λ
=

1

2

[
∂Φ

∂λj

]
n×1

= y − τ µ̂− ẽ
.
= 0, (2.5b)

1

2

∂Φ

∂µ
= τT λ̂

.
= 0. (2.5c)

These necessary conditions are sometimes called first-order conditions due to the
involvement of first partial derivatives. The sufficient condition for minimization is
satisfied by the fact that the second partial derivative of Φ is ∂2Φ/(∂e∂eT ) = 2P ,
where the weight matrix P is positive definite according to (2.1). Therefore, the
solution to the system of equations (2.5) yields the minimum of Φ, and thus the
weighted sum of squared residuals (weighted SSR) Ω = ẽTP ẽ is minimized. A proof
that Ω is minimum is shown by Koch (1999, Eq. (3.25) and Theorem (3.26)) for
the multivariate case (i.e., a vector of unknown parameters), which is treated in
the next chapter. Also, see Appendix A for comments on derivatives of quadratic
functions with respect to column vectors.

Throughout these notes, we use a hat to denote an estimate of a non-random
variable, whereas a tilde denotes a prediction of a random variable. The hat and
tilde marks were introduced into (2.5) to distinguish between the unknown variables
of the target function (2.4) and those particular quantities that satisfy the necessary

conditions. This reflects that ẽ, λ̂, and µ̂ cannot take on just any values but rather
only those that result from setting the first partial derivatives of the target function
to zero (denoted by the

.
= sign), which explains why it would not be logical to

introduce the hat and tilde symbols in (2.4). Also note that, for the vector ẽ, we
use the terms residual and predicted random error synonymously.

Now we must solve the system of equations (2.5) to obtain the least-squares
solution (LESS) as follows:

λ̂ = P ẽ = P
(
y − τ µ̂

)
using (2.5a) and (2.5b) (2.6a)

τT λ̂ = τTPy −
(
τTPτ

)
µ̂ = 0 using (2.6a) and (2.5c) (2.6b)

Equation (2.6b) leads to

µ̂ =
τTPy

τTPτ
(2.7)

for the estimate of the unknown parameter µ. And, from (2.5b), we have

ẽ = y − τ µ̂ ⇒ (2.8a)
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ẽ =
[
In − τ

(
τTPτ

)−1
τTP

]
y (2.8b)

for the prediction of the random error vector e. As stated already, the prediction ẽ
is also called residual vector. We say that the quantities µ̂, ẽ, and λ̂ belong to a
LEast-Squares Solution (LESS) within the model of direct observations (2.1).

It turns out that µ̂ is an unbiased estimator of µ, since

E{µ̂} = E{(τTPτ )−1τTPy} = (τTPτ )−1τTP ·E{y} = (τTPτ )−1τTPτµ = µ.
(2.9)

Likewise, the residual vector ẽ is an unbiased predictor of the random error vector e,
since

E{ẽ} =
[
In − τ (τTPτ )−1τTP

]
·E{y} =

=
[
In − τ (τTPτ )−1τTP

]
τµ = τµ− τµ = 0. (2.10)

The vectors τ and ẽ are said to be P -orthogonal since

τTP ẽ = τTP (y − τ µ̂) = τTP
[
In − τ

(
τTPτ

)−1
τTP

]
y =

= τTPy − τTPτ
(
τTPτ

)−1
τTPy = 0. (2.11)

This result reveals that the sum of the P -weighted residual vector within the model
of direct observations is zero.

The adjusted observations, τ µ̂, on the right side of (2.8a) can also be expressed
as

µ̂y := Ê{y} = τ µ̂ = y − ẽ. (2.12)

Obviously, since τTP ẽ = 0, we also have(
τ µ̂

)T
P ẽ = µ̂T

y P ẽ = 0. (2.13)

Equation (2.13) reveals an important characteristic of LESS; viz., the vector of
adjusted observations and the vector of P -weighted residuals are orthogonal to one
another. From a geometric point of view (illustrated in Figure 2.1), the orthogonal
relationship between these vectors means that the vector of observations y and the
vector of adjusted observations µ̂y are as close as possible to each other (considering
the weights in P ), which is exactly what we require from a least-squares adjustment:
a minimum adjustment of the data that will satisfy the given observational model.

In addition to solving for the estimated parameter µ̂ and the predicted random
error vector ẽ, we are typically interested in their dispersions (variances), which are
an indicator of their precisions. To compute their dispersions, we apply the law of
covariance propagation. First, for the dispersion of the estimated parameter µ̂ we
have

D{µ̂} =
τTP

τTPτ
D{y} Pτ

τTPτ
=

τTP
(
σ2
0P

−1
)
Pτ

τTPτ τTPτ
⇒
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P̄ :=
[
In − τ

(
τTPτ

)−1
τTP

]
y

ẽ

µ̂y = τ µ̂

P R(τ )

Figure 2.1: Depiction of P -orthogonality between residual vector ẽ and vector of
adjusted observations τ µ̂. The appearance of the weight matrix P in the box
represents its roll in the orthogonality relationship. The effect of the projection
matrix P̄ is depicted by the dashed arrow as projecting the observation vector y onto
the (one-dimensional) range space of τ . The vectors sum together as y = τ µ̂ + ẽ,
just as they should.

D{µ̂} =
σ2
0

τTPτ
. (2.14)

The n× n dispersion matrix for the residual vector ẽ is derived by

D{ẽ} = D{
[
In − τ

(
τTPτ

)−1
τTP

]
y} =

=
[
In − τ

(
τTPτ

)−1
τTP

]
D{y}

[
In − Pτ

(
τTPτ

)−1
τT

]
=

= σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT

][
In − Pτ

(
τTPτ

)−1
τT

]
=

= σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT

]
− σ2

0τ
(
τTPτ

)−1
τT+

+ σ2
0τ

(
τTPτ

)−1
τTPτ

(
τTPτ

)−1
τT ⇒

D{ẽ} = σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT

]
. (2.15)

It turns out that the last matrix in (2.15) involves the dispersion of the adjusted
observations, since

D{µ̂y} = τD{µ̂}τT = σ2
0τ

(
τTPτ

)−1
τT . (2.16)

Formally, neither (2.14) nor (2.15) nor (2.16) can be computed, since the variance
component σ2

0 is unknown, though it can be replaced by its estimate shown in (2.38).
From (2.15) we see that the dispersion (variance) of the jth element of ẽ is

σ2
ẽj

= σ2
0

(
σ2
jj −

1

τTPτ

)
, (2.17)

where σ2
jj is the jth diagonal element of P−1, and σ2

0 is the variance component
from the model (2.1). Thus it is apparent that the variance of the jth element of
the residual vector ẽ is smaller than the variance of the corresponding jth element
of the true, but unknown, random error vector e.
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2.2.1 Equivalency to Arithmetic Mean and Weighted Arith-
metic Mean

In the special case where the random errors are iid (i.e., the case of (1.45a)), the
LESS (2.7) reduces to µ̂ = τTy/(τT τ ), which is equivalent to the arithmetic mean.
This is easily seen by noting that τTy =

∑n
i=1 yi and τT τ = n. Therefore

µ̂ =

∑
y

n
, if e ∼ (0, iid), (2.18)

which, obviously, is the formula for the arithmetic mean.
In the case where the random errors have a heteroscedastic distribution (i.e., the

case of (1.45b) where the weight matrix P is diagonal), the LESS (2.7) is equivalent
to the weighted arithmetic mean, since

µ̂ =
τT diag(pi, . . . , pn)y

τT diag(pi, . . . , pn)τ
=

∑n
i=1 piyi∑n
i=1 pi

, if e ∼ (0, σ2
0 diag(1/pi, . . . , 1/pn). (2.19)

2.3 Observation Weighting and Weight Propaga-
tion

We start our discussion of observation weighting and weight propagation by showing
examples of it. Following that, we give some definitions and rules for general cases.

Assume two measurements y1 and y2 with the same (unknown) expectation µ
and given variance (precision) σ2, i.e.

yi ∼ (µ, σ2) for i = 1, 2. (2.20)

One of the “most plausible” values for µ as derived from the measurements
seems to the the arithmetic mean

µ̂ :=
y1 + y2

2
, (2.21a)

which is unbiased since

E{µ̂} =
1

2
µ+

1

2
µ = µ. (2.21b)

Its variance (dispersion) is given by

D{µ̂} =
[
1
2

1
2

] [
σ2
1 σ12

σ21 σ2
2

][
1
2
1
2

]
=

σ2
1

4
+

σ12

2
+

σ2
2

4
(2.21c)

in general, or

D{µ̂} =
σ2

2
, assuming σ12 := 0 and σ2

1 = σ2
2 =: σ2. (2.21d)

Now, if the result turns out to be insufficiently precise, i.e. the variance σ2/2
is still too large, we are forced to perform a third measurement y3. Assuming
independence (implying σ13 = 0 = σ23) and identical variance (implying σ2

3 = σ2),
we are in the position to from another arithmetic mean via
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(i) Simply averaging the first result µ̂ with the new observation y3, i.e.

¯̂µ :=
µ̂+ y3

2
, (2.22a)

which results in an unbiased estimate, since

E{ ¯̂µ} =
1

2
µ+

1

2
µ = µ. (2.22b)

Its variance is given by

D{ ¯̂µ} =
[
1
4

1
4

1
2

]σ2 0

0 σ2 0

0 0 σ2




1
4
1
4
1
2

 = σ2

(
1

16
+

1

16
+

1

4

)
=

3σ2

8
.

(2.22c)

(ii) Or we may use the arithmetic mean of all three observations via:

ˆ̂µ :=
y1 + y2 + y3

3
, (2.23a)

which is unbiased since

E{ ˆ̂µ} =
1

3
µ+

1

3
µ+

1

3
µ = µ. (2.23b)

Its variance is given by

D{ ˆ̂µ} =
[
1
3

1
3

1
3

]σ2 0

0 σ2 0

0 0 σ2




1
3
1
3
1
3

 = σ2

(
1

9
+

1

9
+

1

9

)
=

σ2

3
. (2.23c)

We see that

D{ ˆ̂µ} =
σ2

3
<

3σ2

8
= D{ ¯̂µ}, (2.24)

and thus we claim that the estimate ˆ̂µ is to be preferred over (is “better than”) ¯̂µ,
since it is more precise, i.e. has smaller variance.

However, we can form a different linear combination of µ̂ and y3 that will result
in ˆ̂µ, viz.

ˆ̂µ =
2·µ̂+ 1·y3

2 + 1
. (2.25a)

But, since

D{µ̂} =
σ2

2
and D{y3} =

σ2

1
, (2.25b)
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we can also write

ˆ̂µ =
D{µ̂}−1·µ̂+D{y3}−1·y3

D{µ̂}−1 +D{y3}−1
, (2.25c)

which is a properly weighted (arithmetic) mean of µ̂ and y3.
Let’s take our example one step further by assuming that the third measure-

ment y3 was performed twice as precise as the previous ones, i.e. σy3 = σ/2 ⇒
y3 ∼ (µ, σ2/4). The corresponding “most plausible” value of µ would then be the
weighted arithmetic mean according to

ˆ̂µ :=
2·µ̂+ 4·y3

2 + 4
=

y1 + y2 + 4y3
6

, (2.26a)

with

E{ ˆ̂µ} =
1

6
µ+

1

6
µ+

4

6
µ = µ, (2.26b)

implying that ˆ̂µ is an unbiased estimate of µ. Its dispersion is provided by

D{ ˆ̂µ} =
[
1
6

1
6

2
3

]σ2 0 0

0 σ2 0

0 0 σ2/4




1
6
1
6
2
3

 = σ2

(
1

36
+

1

36
+

4

9
·1
4

)
=

σ2

6
. (2.26c)

Definition: For a set of uncorrelated random variables y1, . . . , yn, with variances
σ2
1 , . . . , σ

2
n, we define a set of corresponding weights by

pj :=
const

σ2
j

for all j = 1, . . . , n, (2.27)

where the constant is to be chosen arbitrarily, but fixed. In this case we obtain the
weight matrix to be diagonal with

P := diag(p1, . . . , pn) = const·diag(σ−2
1 , . . . , σ−2

n ) = const·Σ−1. (2.28)

Definition: The arbitrarily chosen constant σ2
0 is called variance component (or

variance of unit weight by some authors), yielding the identities

P := σ2
0 ·Σ−1 =: Q−1 ⇔ Σ = σ2

0Q = σ2
0P

−1, (2.29)

with Q as n× n cofactor matrix.

Remarks:

(i) The variance component σ2
0 is unitless by definition.

(ii) The preceding definition (2.29) is general enough for non-diagonal matrices
Σ = D{y}, or correlated random variables y1, . . . , yn, respectively.
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2.3.1 Choice of Best Weights

If we choose weights according to the rule (2.29), is that the best we can do? By
best we mean a choice of weights that lead to a minimum variance for the estimate
of µ. We also want to ensure that µ̂ remains unbiased. With these objectives in
mind, consider the following:

(i) The weighted (or general) arithmetic mean

µ̄ :=

n∑
j=1

γjyj with

n∑
j=1

γj = 1, (2.30a)

for yj ∼ (µ, σ2
j ) being mutually uncorrelated, i.e., C{yi, yj} = 0, is unbiased

since

E{µ̄} =

n∑
j=1

γjE{yj} = µ·
n∑

j=1

γj = µ. (2.30b)

This shows that all weighted averages are unbiased, implying that over
infinitely many measurements they would provide the true value for µ.

(ii) The “best variance” of a weighted mean is determined by solving the following
minimization problem.

D{µ̄} =

n∑
j=1

γ2
j σ

2
j = min

γj

{
n∑

j=1

γj = 1}. (2.31a)

The Lagrange function

Φ(γj , λ) :=

n∑
j=1

γ2
j σ

2
j − 2λ·

( n∑
j=1

γj − 1
)
= stationary

γj ,λ
(2.31b)

is formed for minimization of Φ, with λ introduced as a Lagrange multiplier.
The Euler-Lagrange necessary conditions

1

2

∂Φ

∂γj
= σ2

jγj − λ
.
= 0, for all j (2.31c)

1

2

∂Φ

∂λ
= −

n∑
j=1

γj + 1
.
= 0 (2.31d)

lead to a minimum of Φ, since the sufficient condition

1

2

∂2Φ

∂γ2
j

= σ2
j > 0 (2.31e)

is fulfilled.
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Equation (2.31c) implies that

λ = σ2
jγj for all j = 1, . . . , n (2.31f)

further implying that

σ2
jγj = const ⇒ γj =

const

σ2
j

. (2.31g)

From (2.31d), we have

1 =

n∑
j=1

γj = const·
n∑

j=1

σ−2
j ⇒ const =

( n∑
j=1

σ−2
j

)−1
, (2.31h)

further implying that

γj =
σ−2
j∑n

i=1 σ
−2
i

, (2.31i)

which leads to

γj =
pj∑
pi

for pj :=
1

σ2
j

. (2.31j)

as an expression for the jth weight γj .

Therefore, we can answer the question at the beginning of this section by
saying

If we choose the weights according to rule (2.29), we obtain that weighted
average having aminimum variance, i.e. that which extracts the information
out of the measurements in the “best” way.

2.3.2 Examples for Weighting

The following examples illustrate how weights are chosen as the reciprocals of vari-
ances when working with quantities that have been derived from observations and
that might be combined with other data in an adjustment problem.

1. Leveling:

Let σ2 be the variance of one leveling setup between consecutive turning
points. Then, assuming n different setups for the entire leveling run, we find
the height difference

Hn −H0 := (Hn −Hn−1) + . . .+ (Hj+1 −Hj) + . . .+ (H1 −H0) =

n∑
j=1

hj ,

for hj := Hj −Hj−1.
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Figure 2.2: A single leveling run from point P0 to point Pn

Further assuming uncorrelated observations, with variance D{hj} := σ2 for
all j = 1, . . . , n, the law of error propagation gives

D{Hn −H0} = σ2·n.

Assuming equal intervals of length s0 between consecutive turning points, we
find the equivalent expression

D{Hn −H0} = (σ2s−1
0 )·S,

if S is the distance between point P0 and Pn along the leveling run, implying
that the weights are defined by one over the overall distance S, i.e.

p := S−1.

Here we assume that the interval s0 is constant among all other leveling runs
that may be combined in an adjustment, which is a common case when sur-
veying standards are being adhered to. Thus the term σ2s−1

0 is taken to be a
constant “reference variance,” and the weighting depends only on the length
of the leveling run, which agrees with experience and intuition that suggests
longer runs are less precise (thus lower weight) than shorter ones.

2. Horizontal directions: Let φj be the average of a set of measured directions
to target j and n be the number of rounds (or sets) of directions measured.
Further assume that the individual directions are uncorrelated and have vari-
ance σ2. Then we find

D{φj} = σ2·n−1

as the variance of the averaged direction and

pj := n

as its corresponding weight. This agrees with experience and intuition that
suggests that the more rounds that are measured, the greater the weight to
be assigned when combined with other data in an adjustment.

Note, however, that angles from the same round are correlated, since they are
essentially differences between two directions.
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3. Electronic distance measurements: If Sj is a measured distance and ρ1 and ρ2
are coefficients from a calibration of the instrument (ρ1 > 0, ρ2 > 0), then
the variance of Sj is

D{Sj} = σ2
0(ρ1 + ρ2·S2

j ),

which implies that the corresponding weight is defined by

pj :=
1

ρ1 + ρ2·S2
j

.

2.4 Estimated Variance Component

The variance component σ2
0 is an unknown quantity in model (2.1). However, it

can be estimated as a function of the P -weighted norm of the residual vector ẽ and
can be used as a “goodness of fit statistic,” a concept discussed in Section 9.4. The
estimated variance component is derived as follows:

The LEast-Squares Solution (LESS) within the model of direct observations is
shown in (2.7) as

µ̂ =
τTPy

τTPτ
=

τTΣ−1y

τTΣ−1τ
, (2.32a)

so that the P -weighted norm of the residual vector

ẽTP ẽ =∥y − τ ·µ̂∥2P = (y − τ ·µ̂)TP (y − τ ·µ̂) (2.32b)

is a random variable with expectation

E{(y − τ ·µ̂)TP (y − τ ·µ̂)} = (2.33a)

= E{yTPy} − E{yTPτ ·µ̂} −������
E{µ̂·τTPy} +(((((((

E{µ̂2·τTPτ} =

= trE{PyyT } − (τTPτ )−1· trE{τTPyyTPτ} =

= tr
[
P ·E{yyT }

]
− (τTPτ )−1· tr

[
PττTP ·E{yyT }

]
=

= tr
[
P ·D{y}

]
+ tr

[
P ·E{y}E{y}T

]
−

− tr
[
Pτ (τTPτ )−1τTP (σ2

0P
−1)

]
− tr

[
Pτ (τTPτ )−1τTPτµ2τT

]
=

= σ2
0 tr In +�����

µ2·τTPτ − σ2
0 ·
�
�

��τTPτ

τTPτ
−�����

µ2·τTPτ =

= σ2
0(n− 1) ⇒

E{(n− 1)−1(y − τ ·µ̂)TP (y − τ ·µ̂)} = σ2
0 (2.33b)

The quantity n− 1 is called the redundancy or degrees of freedom of the model.
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Now, we may take the argument of the expectation shown in (2.33b) and assign
it the symbol σ̂2

0 , implying that

σ̂2
0 = (n− 1)−1(y − τ ·µ̂)TP (y − τ ·µ̂) =
= (n− 1)−1(yTPy − µ̂·τTPy) =

=
ẽTP ẽ

n− 1
,

(2.34a)

(2.34b)

(2.34c)

which is an unbiased estimate of σ2
0 , since E{σ̂2

0} = σ2
0 .

Remark In fact, σ̂2
0 is the “best” in a certain class of quadratic unbiased estimates

of σ2
0 (being invariant with respect to translations in µ) and has — under normality

assumptions — dispersion

D{σ̂2
0} = 2(σ2

0)
2(n− 1)−1 = MSE{σ̂2

0}. (2.35)

In summary, we can write the so-called sum of squared residuals (SSR) as

Ω := ẽTP ẽ, (2.36)

which, together with the redundancy of the model

r := n− 1, (2.37)

comprises the formula

σ̂2
0 :=

ẽTP ẽ

r
(2.38)

for the estimated variance component.

2.5 Computation Checks and an Example

2.5.1 Checks on Residuals

A statistical analysis of the results of various adjustment computations is the subject
of Chapter 9, where tests for goodness of fit, detection of outliers, and for particular
values of the estimated parameters are presented. But even before statistical analy-
sis is employed, certain checks should be made on the residuals to confirm that they
look reasonable and to assure that the computations were made correctly. Below is
a minimal list of checks that should be made after an adjustment computation.

1. Inspect the elements of the residual vector ẽ to make sure they look reason-
able. As a general rule, if a residual is much greater than three times the
square root of the variance of the corresponding observation, one might ought
to question the accuracy of that observation or its variance. In that case,
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the corresponding observation could be temporarily removed and the adjust-
ment computed again. Then, a residual could be predicted for the removed
observation and the results inspected to decide if the observation should be
retained or not. The method of outlier detection described in Section 9.7 is
meant to help lead to decisions about the accuracy of a suspect observation
and whether or not to admit it in the final adjustment.

2. Consider the magnitude of the estimated variance component σ̂2
0 . Is it close

to the value you expect it to take on (perhaps 1)? If it varies largely from
the value you expect it to take on, it will generally indicate that either 1) the
observational model is inaccurate, or 2) the weights (or variances) have not
been accurately specified, or both.

In the case of 1, the model may need to be revised to include more parameters
so that the parameters of the model more accurately explain the observations.
(Of course, then we would no longer have a model of direct observations
with a single parameter µ.) Or, it could be that the observations contain
some systematic errors that need to be removed so that the assumption that
E{y} = τµ is made valid.

In the case of 2, a relative small value of σ̂2
0 suggests that the specified obser-

vational variances (reflected in the cofactor matrix Q = P−1) were too large
(i.e. the observations are more precise than reflected in the cofactor matrix).
Conversely, if σ̂2

0 turns out to be relatively large, the specified variances in Q
might be too small (i.e. the observations are less precise than reflected in the
cofactor matrix).

3. Provided the model redundancy is large enough, say greater than 10 or 20,
we might expect that approximately half the residuals will be negative and
about half positive. Certainly this would be the case if the random observation
errors turned out to be normally distributed. So, it is prudent to check the
ratio of negative to positive residuals and make sure the ratio is not greatly
different than 1. Note that this check might not apply for adjustments within
the model of condition equations discussed in Chapter 4.

4. Going beyond the previous item, if the redundancy is large enough, say greater
than 10 or 20, a histogram of the residuals should be plotted to check how
closely its shape resembles the pdf curve of a normal distribution, if it is
assumed that the random observation errors are approximately normally dis-
tributed.

5. Compute the estimated variance component both by (2.34b) and (2.34c) and
make sure they are equivalent up to the precision of the computations.

6. Compute the trace of the matrix of redundancy numbers as defined in (9.85a)
and (9.85b) and confirm that the result is an integer that equals the redun-
dancy of the model r.
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2.5.2 Example of LESS Within the Model of Direct Obser-
vations

Given the following vector of observations y and its associated dispersion ma-
trix D{y}, compute the LESS for

1. The estimated parameter µ̂ and its estimated dispersion.

2. The estimated variance component σ̂2
0 .

3. The vector of predicted residuals ẽ and its estimated dispersion matrix.

y =

100.02m100.04m

99.97m

 , D{y} = σ2
0

 1 1/2 0

1/2 1 0

0 0 9

 cm2.

Solution: To simplify the problem somewhat, we may subtract 100m from the
observations and solve for δµ̂ as an intermediate step, working with cm instead of
meters. Then, the modified observation vector reads y → y = [2 cm, 4 cm, −3 cm]T .
Weight matrix:

⇒ P =

 4/3 −2/3 0

−2/3 4/3 0

0 0 1/9

 cm−2 =
1

9
·

12 −6 0

−6 12 0

0 0 1

 cm−2

Estimated parameter and its estimated variance:

δµ̂ =
τTPy

τTPτ
=

[
2/3 2/3 1/9

]
y[

2/3 2/3 1/9
]
τ

=
(11/3) cm−1

(13/9) cm−2
=

33

13
cm

⇒ µ̂ = 100m + δµ̂ = 100.0254m

with D{µ̂} =
σ2
0

τTPτ
=

9

13
σ2
0 cm

2

Also yTPy =
[
0 12/3 −1/3

]
y = 17 = 221/13

and δµ̂·τTPy =

(
33

13

)
·
(
11

3

)
=

121

13
⇒ σ̂2

0 =
100/13

2
=

50

13

⇒ D̂{µ̂} =

(
9

13

)
·
(
50

13

)
=

450

169
= 2.66 cm2

µ̂ = (100.025± 0.016) m

Predicted residuals and their estimated covariance matrix:

ẽ = y − τ µ̂ =
[
−0.5385 +1.4615 −5.5385

]T
cm
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with D{ẽ} = σ2
0

( 1 1/2 0

1/2 1 0

0 0 9

−

9/13 9/13 9/13

9/13 9/13 9/13

9/13 9/13 9/13

) · cm2 ⇒

D{ẽ} =
σ2
0

13

 4 −5/2 −9

−5/2 4 −9

−9 −9 108

 · cm2

Checks:

P ẽ =

−1.6923

+2.3077

−0.6154

 ⇒ τTP ẽ = −0.00006 ✓ and ẽTP ẽ = 7.69 ≈ 100/13 = σ̂2
0 ·2 ✓

“Redundancy numbers” (see (9.85a) and (9.85b) for definition of redundancy num-
bers)

D{ẽ}·P =
σ2
0

13

 7 −6 −1

−6 7 −1

−6 −6 12

 ⇒ tr(D{ẽ}·P )/σ2
0 =

26

13
= 2 = 3− 1 = r ✓

2.6 Best Linear Uniformly Unbiased Estimate

Here we take a statistical approach to estimating the unknown parameter µ. We
want to find an estimate for µ, expressed as a linear combination of the obser-
vations y, that extracts the “best” information from the data. The estimate is
denoted by µ̂ and is characterized as the Best Linear Uniformly Unbiased Estimate
(BLUUE) of µ. The three criteria used to derive the BLUUE are described as
follows:

1. Linear criterion: The linear criterion states that the estimated parameter must
be a linear combination of the data contained in y, i.e.

µ̂ = αTy, (2.39a)

where α is an unknown vector to be determined.

2. Uniformly Unbiased criteria: An unbiased estimator is one for which its ex-
pectation is equal to the true, but unknown, quantity it estimates. Stated
mathematically,

µ = E{µ̂} = E{αTy} = αTE{y} = αTE{τµ+ e} = αT τµ, for all µ ∈ R,
which implies

αT τ = 1. (2.39b)

Requiring this condition to hold for all µ ∈ R satisfies the “uniform” criterion,
whereas the requirement that αT τ = 1 satisfies the “unbiased” criterion.
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3. Best criterion: The best criterion requires minimum MSE(µ̂), or, equivalently,
minimum dispersion, since µ̂ is unbiased. Mathematically, the criterion reads

minD{µ̂}, where D{µ̂} = D{αTy} = αTD{y}α ⇒
minD{µ̂} = σ2

0α
TQα, subject to τTα = 1. (2.39c)

Accordingly, a Lagrange target function is formed by

Φ(α, λ) := αTQα+ 2λ
(
τTα− 1

)
. (2.40)

The necessary conditions for stationarity are provided by the Euler-Lagrange equa-
tions, which are written as

1

2

∂Φ

∂α
= Qα̂+ τ λ̂

.
= 0, (2.41a)

1

2

∂Φ

∂λ
= τT α̂− 1

.
= 0. (2.41b)

The sufficient condition for minimization is satisfied by ∂2Φ/(∂α∂αT ) = 2Q, which
is a positive-definite matrix according to (2.1). Solving (2.41a) and (2.41b) simul-
taneously yields

α̂ = −Q−1τ λ̂ = −Pτ λ̂ using (2.41a), (2.42a)

1 = τT α̂ = −τTPτ λ̂ ⇒ λ̂ =
−1

τTPτ
using (2.41b) and (2.42a). (2.42b)

Substituting (2.42b) into (2.42a) we get

α̂ = (τTPτ )−1Pτ . (2.42c)

Finally, substituting the transpose of (2.42c) into the linear requirement µ̂ = αTy
yields the BLUUE of µ as

µ̂ =
τTPy

τTPτ
. (2.43)

Equation (2.43) agrees with (2.7) derived for LESS. Thus we see that the LESS and
the BLUUE are equivalent within the model of direct observations.

We may also prove mathematically that (2.43) fulfills the weighted LESS prin-
ciple by showing that the P -weighted residual norm ẽTP ẽ for any other solution is
larger than that obtained via BLUUE, which we do in the following: Suppose ˆ̂µ is
any other estimate for µ, then

˜̃eTP ˜̃e =
(
y − τ ˆ̂µ

)T
P
(
y − τ ˆ̂µ

)
=

=
[(
y − τ µ̂

)
− τ

(
ˆ̂µ− µ̂

)]T
P
[(
y − τ µ̂

)
− τ

(
ˆ̂µ− µ̂

)]
=

=
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
−2

(
ˆ̂µ− µ̂

)
�������:0
τTP

(
y − τ µ̂

)
+

(
τTPτ

)(
ˆ̂µ− µ̂

)2
=

=
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
+
(
τTPτ

)(
ˆ̂µ− µ̂

)2 ≥
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≥
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
= ẽTP ẽ

Q.E.D.

We have used the P -orthogonality relation (2.11) in the third line of the proof.
Let us briefly summarize these results by stating three important properties of

the least-squares solution (LESS) of the unknown parameter µ within the model of
direct observations.

The LESS (equivalently BLUUE) within the model of direct observations
provides

1. An unbiased estimate µ̂ of the unknown parameter µ, i.e. E{µ̂} = µ.

2. A minimum P -weighted norm of the residual vector, i.e. Ω :=∥ẽ∥2P is
minimized.

3. A minimum variance (dispersion) D{µ̂}.

2.7 Effects of a Wrongly Chosen Weight Matrix in
the Model of Direct Observations

Assume that the weight matrix P has been wrongly chosen by an amount δP ,
where δP is assumed to be a small, positive-(semi)definite matrix that is uncorre-
lated with P . (Apparently δP itself would not have to be positive-(semi)definite as
long as the sum (P + δP ) is positive definite.) Consequently, we have

P → (P + δP ) ⇒ µ̂ → (µ̂+ δµ̂), D{µ̂} → D{µ̂+ δµ̂}, and σ̂2
0 → σ̂2

0 + δσ̂2
0 .
(2.44)

2.7.1 Effect on the Parameter Estimate

The following shows the effect of a wrongly chosen weight matrix on the estimated
parameter µ̂:

(
µ̂+ δµ̂

)
=

τT (P + δP )y

τT (P + δP )τ
⇒

δµ̂ =
τT (P + δP )y

τT (P + δP )τ
− µ̂ =

τT (P + δP )y

τT (P + δP )τ
· τ

TPτ

τTPτ
−
(
τTPy

τTPτ

)
·
τT

(
P + δP

)
τ

τT (P + δP )τ
=

=
((((((
τTPyτTPτ + τT δPyτTPτ −((((((

τTPyτTPτ − τTPyτT δPτ

(τTPτ )τT (P + δP )τ
=

=
τT δPy

τT
(
P + δP

)
τ
− τT δPτ µ̂

τT (P + δP )τ
=

τT δP
(
y − τ µ̂

)
τT (P + δP )τ
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Finally, we arrive at

δµ̂ =
τT δP

τT (P + δP )τ
ẽ. (2.45)

2.7.2 Effect on the Cofactor Matrix for the Estimated Pa-
rameter

The following shows the effect of a wrongly chosen weight matrix on the cofactor
matrix Qµ̂ for the estimated parameter µ̂, where D{µ̂} = σ2

0Qµ̂ is the dispersion
of µ̂:

δQµ̂ =
(
Qµ̂ + δQµ̂

)
−Qµ̂ =

1

τT (P + δP )τ
− 1

τTPτ
=

=
τTPτ − τT (P + δP )τ(
τTPτ

)
τT (P + δP )τ

=
−τT δPτ(

τTPτ
)
τT (P + δP )τ

.

Thus we have

δQµ̂ = − τT δPτ

τT (P + δP )τ
Qµ̂. (2.46)

2.7.3 Effect on the Estimated Variance Component

The following shows the effect of a wrongly chosen weight matrix on the estimated
variance component: First note that

ẽTP ẽ =
(
yT − µ̂τT

)
P
(
y − τ µ̂

)
=

= yTP (y − τ µ̂)− µ̂
�����������(
τTPy − τTPτ

τTPy

τTPτ

)
=

= yTPy − yTPτ µ̂ = yTPy − τTPyµ̂ = yTPy − µ̂2τTPτ .

Following the above logic, we have

(n− 1)
(
σ̂2
0 + δσ̂2

0

)
= yT (P + δP )y − τT (P + δP )y

(
µ̂+ δµ̂

)
⇒

⇒ (n− 1)δσ̂2
0 = yT (�P + δP )y − τT (P + δP )y(µ̂+ δµ̂)−���

yTPy + (τTPy)µ̂ =

(Note: the last term will cancel one of the four terms in the binomial product.)

= yT (δP )y − τT δPy
(
µ̂+ δµ̂

)
−
(
τTPy

)
δµ̂ =

= yT (δP )y − µ̂τT (δP )y − τT (P + δP )yδµ̂ =

=
(
yT − µ̂τT

)
(δP )y − τT (P + δP )yδµ̂ =

= ẽT (δP )y − τT (P + δP )y

τT (P + δP )τ
τT (δP )ẽ =
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(Note that the previous results for δµ̂ have been substituted in the line above.)

= yT (δP )ẽ−
(
µ̂+ δµ̂

)
τT (δP )ẽ =

(Using yT (δP )ẽ =
(
µ̂τT + ẽT

)
δP ẽ = ẽT δP ẽ+ µ̂τT δP ẽ)

= ẽT (δP )ẽ− δµ̂τT (δP )ẽ ⇒

(n− 1)δσ̂2
0 = ẽT (δP )ẽ−

(
δµ̂

)2
τT (P + δP )τ

Finally, we arrive at

δσ̂2
0 =

1

n− 1

[
ẽT (δP )ẽ−

(
δµ̂

)2
τT (P + δP )τ

]
. (2.47)

2.7.4 Effect on the Estimated Dispersion

The the effect of a wrongly chosen weight matrix on the estimated dispersion of µ̂
is obviously given by

D̂{µ̂+ δµ̂} =
(
σ̂2
0 + δσ̂2

0

)
D{µ̂+ δµ̂} =

(
σ̂2
0 + δσ̂2

0

)(
Qµ̂ + δQµ̂

)
. (2.48)

2.8 Practice Problems

1. Show that the LESS of (2.7) is an unbiased estimate of µ.

2. Show that the residual vector of (2.8a) is an unbiased prediction of e.

3. Consider the problem of repeated measurements where an unknown distance µ
between two points was directly observed n times. The observations are col-
lected in the vector y = [y1, y2, . . . , yn]

T . The distribution of their random
errors is described by e ∼ (0, σ2

0σ
2In); furthermore E{y} = τµ.

(a) If the random variable z is defined by z = (y1 + y2 + . . . + yn)/n, show
that E{z} = E{µ̂} as shown in (2.7) and that D{z} = D{µ̂} as shown
in (2.14).

(b) Assuming that σ2
0 = 1 and σ2 = 1 cm2, graph the dispersion of µ̂ as a

function of the number of observations n from n = 2 to n = 100.

(c) Now suppose that there is correlation between successive observation
errors described by the relations

ρei,ei+1
= 0.001/σ2, ρei,ei+2

= 0.0008/σ2,

ρei,ei+3
= −0.00006/σ2, for i = 1, . . . , n− 3.

Using assumed values σ2
0 = 1 and σ2 = 1 cm2, compute D{µ̂} for n =

100.

(d) Repeat item (b) for the case of item (c).
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4. Twelve direct observations of one unknown parameter µ are listed in Table 2.1.
The first set of five observations (I) were made at one time and have measure-
ment variance σ2

I = (0.05)2. The second set of seven observations (II) were
made at a later time with measurement variance σ2

II = (0.10)2. All random
measurement errors are independent. No units are given.

Table 2.1: Twelve direct observations of one unknown parameter µ

Set I, σ2
I = (0.05)2

y1 y2 y3 y4 y5
9.99 10.04 9.93 9.88 9.93

Set II, σ2
II = (0.10)2

y6 y7 y8 y9 y10 y11 y12
10.03 10.04 10.05 9.99 10.02 9.95 10.09

(a) Using only data set I:

i. Compute the BLUUE (or LESS) µ̂.

ii. Compute the dispersion D{µ̂} (no hat on D).

iii. Compute the residual vector ẽ.

iv. Compute the estimated variance component σ̂2
0 .

(b) Now using only data set II, repeat items i–iv, this time denoting the

computed values as ˆ̂µ, D{ ˆ̂µ}, ˜̃e, and ˆ̂σ2
0 , respectively.

(c) Based on the discussion above about the weighted arithmetic mean, try
to estimate the unknown parameter based on the linear combination

ˆ̂
µ̂ =

[
α1 α2

] [
µ̂
ˆ̂µ

]
,

using the dispersions computed in the previous two items to determine
the “weights” α1 and α2. Repeat items i and ii for this case, this time

denoting the computed values as
ˆ̂
µ̂ and D{ ˆ̂µ̂}, respectively.

(d) Now compute i–iv using all 12 observation simultaneously and compare
your results to those computed in the preceding items. Comment on
your findings.

5. Stellar observations were made in order to determine the astronomical azimuth
between two geodetic control points. Table 2.2 shows the arc-minute and arc-
second parts of each observation. The degrees part is 126◦ for all observations.
The observations are considered to be uncorrelated. The first 12 observations
were determined from sightings on Polaris with a precision of σ1 = 5′′. The
remaining 18 observations were determined by sightings on the Sun with a
less precise instrument than that used for the first 12. The precision of these
observations is σ2 = 10′′.
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Table 2.2: Observations of the astronomical azimuth (in minutes and seconds of
arc) between two points. Add 126◦ to all values.

No. Direction No. Direction No. Direction

1 11′34′′ 11 11′34′′ 21 11′19′′

2 11′30′′ 12 11′38′′ 22 11′22′′

3 11′34′′ 13 11′35′′ 23 11′01′′

4 11′29′′ 14 11′40′′ 24 11′44′′

5 11′29′′ 15 11′37′′ 25 11′33′′

6 11′37′′ 16 11′27′′ 26 11′23′′

7 11′37′′ 17 11′33′′ 27 11′44′′

8 11′37′′ 18 11′22′′ 28 11′13′′

9 11′33′′ 19 11′39′′ 29 11′29′′

10 11′24′′ 20 11′19′′ 30 10′38′′

(a) Compute the LESS within the model of direct observations for the es-
timated parameter µ̂, its estimated dispersion D̂{µ̂}, and the estimated
variance component σ̂2

0 .

(b) Repeat the previous part 30 times (i = 1, . . . , 30), removing only the
ith observation each time so that each ith solution is based on 29 ob-
servations. Tabulate your results and include in each line the difference
between the removed observation yremoved and the estimated azimuth µ̂i;
let’s refer to it as epredicted = yremoved − µ̂i. Highlight the solution that
has the largest magnitude for epredicted. Call it solution k for reference
in the next part.

(c) Now repeat part (a) using all 30 observations, but this time modify the
weight of the observation with the value for epredicted found in solution k
of part (b). Use 1/(epredicted)

2
k for the new weight. Compare your solu-

tion to solution k from part (b). Are they close? Do you expect them to
be? Why or why not?

Which of the 32 solutions that you computed would you adopt as the
final solution? Give a justification for your choice.

6. Consider the weight matrix P := P(5.a) used in problem 5.a to have been
“wrongly chosen” and the weight matrix used in 5.c to be legitimate. Let δP
be their difference such that P(5.c) = P + δP .

Compute the effects of the wrongly chosen weight matrix on the estimated
parameter µ̂, its estimated dispersion D̂{µ̂}, and the estimated variance com-
ponent σ̂2

0 .

Note that the root problem with 5.a is that its last observation appears to be
an outlier, not that the weights were necessarily “chosen wrongly.” However,
it seems that the problem can be mitigated by an appropriate “de-weighting”
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of the suspect observation, which provides an opportunity to apply equations
(2.45), (2.46), and (2.47).

2.9 Summary Formulas for the Least-Squares So-
lution Within the Model of Direct Observa-
tions

The model of direct observations is given by

y
n×1

=


y1
...

yn

 =


µ+ e1

...

µ+ en

 = τµ+ e,

e ∼
(
0, σ2

0Q
)
, Q := P−1.

Table 2.3: Summary formulas for the LESS within the model of
direct observations

Quantity Formula Eq.

Model redundancy r = n− 1 (2.37)

Estimated parameter µ̂ = (τTPy)/(τTPτ ) (2.7)

Dispersion of estimated
parameter

D{µ̂} = σ2
0/(τ

TPτ ) (2.14)

Vector of predicted
residuals

ẽ = y − τ µ̂ (2.8a)

Dispersion matrix for
residuals

D{ẽ} = σ2
0 ·
[
P−1 − τ

(
τTPτ

)−1
τT

]
(2.15)

Sum of squared
residuals (SSR)

Ω = ẽTP ẽ (2.36)

Estimated variance
component

σ̂2
0 = (ẽTP ẽ)/(n− 1) (2.38)

Vector of adjusted
observations

Ê{y} =: µ̂y = y − ẽ (2.12)

Dispersion matrix for
adjusted observations

D{µ̂y} = σ2
0 ·τ

(
τTPτ

)−1
τT (2.16)



Chapter 3

The Gauss-Markov Model

3.1 Model Definition

The Gauss-Markov Model (GMM) is the underlying data model for many of the
topics that follow. Koch points out why the model is named for both Gauss and
Markov in his excellent textbook Parameter Estimation and Hypothesis Testing in
Linear Models (Koch, 1999, p. 154). In presentation of the GMM, it is assumed
that the observation equations (3.1a) have been linearized, if necessary. The model
is written as follows:

y = A
n×m

ξ + e, rkA = m, (3.1a)

e ∼
(
0, σ2

0P
−1

)
. (3.1b)

It is sometimes expressed more succinctly as

Aξ = E{y} with D{y} = σ2
0P

−1, (3.1c)

or, equivalently, as

y ∼ (Aξ, σ2
0P

−1). (3.1d)

In the case of linearization, y is a vector of observations minus “zeroth-order”
terms (i.e., y represents incremental observations); A is a known n×m coefficient
matrix (also called design or information matrix, or Jacobian matrix if partial
derivatives are involved) relating the observations to the unknown parameters; ξ
is a vector of unknown parameters to estimate (updates to initial values in the
case of linearization), and e is a vector of random observation errors, having zero
expectation. Equation (3.1a) requires the n × m coefficient matrix A to have full
column rank; thus, the model is also said to be a Gauss-Markov Model with full
rank (Koch, 1999, Eq. (3.7)).

The n×n matrix P is symmetric. It contains weights of the observations, which
may be correlated. The inverse of P shown in (3.1) implies that P is a positive-
definite matrix; this inverse matrix is called the cofactor matrix and is denoted byQ.
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The symbol σ2
0 represents a variance component, which is considered unknown but

can be estimated. The dispersion matrix D{e} = σ2
0P

−1 is called the variance-
covariance matrix, or simply the covariance matrix, and is also denoted by Σ.
In summary, we have the following relation between the dispersion, weight, and
cofactor matrices of the unknown, random error vector e:

D{e} = Σ = σ2
0Q = σ2

0P
−1. (3.2)

Obviously, if Q = I then D{e} = D{y} = σ2
0I, and therefore some authors call σ2

0

the variance of unit weight, though we refrain from using that term.

The redundancy r of the model (3.1a) is defined as

r := n− rkA = n−m. (3.3)

Redundancy is also called degrees of freedom in the context of statistical testing
discussed in Chapter 9.

The GMM shown in (3.1) has two main components. The first component,
(3.1a), contains the observation equations y = Aξ+e, which show the functional re-
lation between the observations, their random errors, and the unknown parameters
that are to be estimated. The second component, (3.1b), shows a stochastic model,
e ∼ (0, σ2

0P
−1), which expresses the expectation and dispersion of the random er-

rors. These quantities are also called the first and second moments, respectively, of
the random error vector e.

If the rank of matrix A is less than the number of unknown parameters to esti-
mate, we say that the problem is rank deficient. Such a problem cannot be solved
based on the observations alone; additional information about the unknown param-
eters must be provided. The problem of rank deficiency is covered in Section 3.5
and, much more thoroughly, in the Part II.

3.2 The Least-Squares Solution Within the Gauss-
Markov Model

We now derive the LEast-Squares Solution (LESS) for the parameter estimate ξ̂
and the predicted random error (residual) vector ẽ, with their associated dispersion
matrices, under the assumption that the coefficient matrix A has full column rank.
For convenience, we define the m×m matrix N and the m× 1 vector c as[

N, c
]
:= ATP

[
A, y

]
. (3.4)

The objective of least-squares minimization is to minimize the P -weighted sum
of squared residuals, or, equivalently, to minimize the P -weighted random errors in
the model (3.1). Thus the Lagrange target function

Φ(ξ) := (y −Aξ)TP (y −Aξ) = stationary (3.5)
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should be minimized. Forming the the Euler-Lagrange necessary conditions (or
first-order conditions) leads directly to the least-squares normal equations

1

2

∂Φ

∂ξ
=

(
ATPA

)
ξ̂ −ATPy = N ξ̂ − c

.
= 0. (3.6)

The sufficient condition is satisfied by (1/2)·(∂2Φ/∂ξ∂ξT ) = N , which is positive
definite since matrix A has full column rank according to (3.1a). Equation (3.6)
leads to the least-squares solution (LESS)

ξ̂ = N−1c (3.7)

for the unknown parameter vector ξ, with its expectation computed by

E{ξ̂} = N−1E{c} = N−1ATPE{y} = N−1ATPAξ = ξ. (3.8)

The predicted random error vector (also called residual vector) is then given by

ẽ = y −Aξ̂ =
(
In −AN−1ATP

)
y, (3.9)

with expectation

E{ẽ} =
(
In −AN−1ATP

)
E{y} =

(
In −AN−1ATP

)
Aξ = Aξ −Aξ = 0. (3.10)

A simple proof that the quadratic form ẽTP ẽ is a minimum is shown by Koch
(1999, Eq. (3.25) and Theorem (3.26)). For the case where P = I, the proof means
that minimizing (3.5) results in a minimum sum of squared residuals ẽT ẽ.

The expectation of the given observation vector is expressed as E{y} = µy,
where µy is the true, but unknown, vector of observables. Thus we write the vector
of adjusted observations as

Ê{y} =: µ̂y = y − ẽ = Aξ̂, (3.11)

with expectation

E{µ̂y} = AE{ξ̂} = Aξ. (3.12)

Equations (3.8), (3.10) and (3.12) show that the estimated parameters, the residuals,
and the adjusted observations, respectively, are unbiased.

The corresponding dispersion matrices are computed by using the law of covari-
ance propagation. The dispersion of the estimated parameters is computed by

D{ξ̂} = D{N−1ATPy} =
(
N−1ATP

)
D{y}

(
PAN−1

)
=

= N−1ATP
(
σ2
0P

−1
)
PAN−1 ⇒

D{ξ̂} = σ2
0N

−1. (3.13)
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And, the dispersion of the residual vector ẽ is

D{ẽ} =
(
In −AN−1ATP

)
D{y}

(
In − PAN−1AT

)
=

=
(
In −AN−1ATP

)(
σ2
0P

−1
)(
In − PAN−1AT

)
=

= σ2
0

(
In −AN−1ATP

)(
P−1 −AN−1AT

)
⇒

D{ẽ} = σ2
0

(
P−1 −AN−1AT

)
= (3.14a)

= D{y} −D{Aξ̂} =: σ2
0Qẽ, (3.14b)

where the matrix

Qẽ := P−1 −AN−1AT (3.14c)

is the cofactor matrix of the residual vector ẽ. Equations (3.14a) to (3.14c) reveal
that the variances of the residuals are smaller than the corresponding variances of
the observations, since the matrix product AN−1AT is positive definite. Finally,
the dispersion of the vector of adjusted observations is computed by

D{µ̂y} = D{Aξ̂} = AD{ξ̂}AT = σ2
0AN−1AT , (3.15a)

and therefore the cofactor matrix for the adjusted observations is written as

Qµ̂y
:= AN−1AT . (3.15b)

As an aside, the cofactor matrix Qµ̂y
has been called “hat matrix” by au-

thors such as Draper and Smith (1998, pp. 205, 207) in the context of linear re-
gression when the weight matrix is the identity matrix, since in that case µ̂y =

A(ATA)−1Ay =: Hy, and thus H “puts a hat on y” (they used Ŷ to denote
adjusted observations). In the context of the GMM (3.1), where P ̸= I, the hat
matrix is obviously A(ATPA)−1AP (according to (3.11)), which is non-symmetric.
The esteemed American mathematician and statistician John W. Tukey is said to
have coined the term hat matrix (Hoaglin and Welsch, 1978). However, in many
disciplines, such as geodetic science, the term does not seem to be in common use.

Analogous to Figure 2.1, the projection of the observation vector y onto the
range space of the design matrix A by the projection matrix QẽP is depicted in
Figure 3.1.

Summarizing the above equations, the respective distributions for the estimated
parameter vector, the residual vector, and the vector of adjusted observations are
succinctly expressed by

ξ̂ ∼
(
ξ, σ2

0N
−1

)
, (3.16a)

ẽ ∼
(
0, σ2

0

[
P−1 −AN−1AT

]
= D{y} −D{µ̂y}

)
, (3.16b)

µ̂y ∼
(
Aξ, σ2

0AN−1AT
)
. (3.16c)

Since the variance component σ2
0 is an unknown quantity, the dispersions shown in

(3.16) cannot be computed unless either σ2
0 is estimated or a value is specified for

it. In the case where the estimated variance component is used in lieu of the true,
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QẽP :=
[
In −A

(
ATPA)−1ATP

]
y

ẽ

µ̂y = Aξ̂ = A
(
ATPA)−1ATPy

P R(A)

Figure 3.1: Depiction of P -orthogonality between residual vector ẽ and vector of
adjusted observations Aξ̂. The appearance of the weight matrix P in the box
represents its roll in the orthogonality relationship. The effect of the projection
matrix QẽP is depicted by the dashed arrow as projecting the observation vector y
onto the (m-dimensional) range space of A. The vectors sum together as y = Aξ̂+ẽ,
just as they should.

but unknown, variance component, we speak of an estimated dispersion matrix for
the estimated parameter vector, which is provided by

D̂{ξ̂} = σ̂2
0N

−1, (3.17)

with obvious extension to other quantities, such as D̂{ẽ} and D̂{µ̂y}. See Sec-
tion 3.3 for the derivation of the variance component estimate σ̂2

0 , the formula for
which is given in (3.30).

3.2.1 Example — Fitting a Parabola

Suppose n observations were taken of data that, when plotted in 2D, appear to
approximate a parabola (Figure 3.2). The y-coordinates represent measured data
with random errors having zero mean and iid dispersion. The x-coordinates are
assumed to be known without error. This is a classical regression problem.

The observations equations of the Gauss-Markov Model (GMM) are set up as
follows: The ith observation equation, i = 1, . . . , n,

yi = ax2
i + bxi + c+ ei, (3.18)

can be extended to a system of equations in matrix from as

y1

y2
...

yn


︸ ︷︷ ︸

y

=



x2
1 x1 1

x2
2 x2 1
...

...
...

x2
n xn 1


︸ ︷︷ ︸

A


a

b

c


︸︷︷︸

ξ

+



e1

e2
...

en


︸ ︷︷ ︸

e

. (3.19)
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Figure 3.2: A fitted parabolic curve based on measured y-coordinates and given
x-coordinates

where ξ := [a, b, c]T is the vector of unknown parameters, which, together with the
stochastic model e ∼ (0, iid), constitutes a Gauss-Markov Model. Note that in other
examples of a GMM, the the random observation errors could have a heteroscedastic
distribution, or their dispersion could be represented by a full cofactor matrix Q.

3.2.2 Correlation of Adjusted Observations and Predicted
Residuals

Equation (3.14b) implies that the covariance between the vector of adjusted obser-

vations µ̂y = Aξ̂ and the vector of residuals ẽ is zero. Since, according to (3.7)
and (3.9), both vectors are a function of the random vector y, this can also be
shown by applying the law of covariance propagation as follows:

C{Aξ̂, ẽ} = AN−1ATP ·D{y} ·
(
In −AN−1ATP

)T
=

= σ2
0

[
AN−1AT −AN−1

(
ATPA

)
N−1AT

]
=

= σ2
0

[
AN−1AT −AN−1AT

]
= 0. (3.20)

Also, we have the following covariance between the adjusted and original observa-
tions:

C{Aξ̂,y} = AN−1ATPD{y} = σ2
0AN−1ATPP−1 =

= σ2
0AN−1AT = D{Aξ̂}. (3.21)

Zero correlation does not necessarily imply statistical independence, though the
converse does hold. Analogous to (9.9a), the adjusted observations and predicted
residuals are not statistically independent unless the expectation of their product is
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equal to the product of their expectations. The following shows that this property
is not satisfied: Since the trace of a scalar product is the scalar product itself, we
start with

E{(Aξ̂)T ẽ} = E{tr ξ̂TAT
(
In −AN−1ATP

)
y}.

But the trace is invariant with respect to a cyclic transformation (see (A.5)). Thus,

E{(Aξ̂)T ẽ} = E{tr
(
AT −ATAN−1ATP

)
yξ̂T } =

= tr
(
AT −ATAN−1ATP

)
E{yξ̂T } ≠ 0 = E{(Aξ̂)T }E{ẽ}, since E{ẽ} = 0.

3.2.3 P -Weighted Norm of the Residual Vector

The P -weighted norm of the residual vector ẽ is an important quantity that can be
used to check the overall (“global”) fit of the adjustment. The norm is defined as

Ω := ẽTP ẽ, (3.22)

and it is guaranteed to be a minimum, since ẽ was obtained by minimizing eTPe
(cf. (3.5)). In the special case where P = In, the quadratic form Ω is often called
the sum of squared residuals, or SSR, in the statistical literature. We use the term
SSR in the following chapters even when P is not the identity matrix. Substituting
(3.9) into (3.22) leads to some commonly used alternative forms for Ω.

ẽTP ẽ = (y −Aξ̂)TP (y −Aξ̂) = (3.23a)

= yTPy − yTPAξ̂ − ξ̂TATPy + ξ̂TATPAξ̂ =

= yTPy − 2cT ξ̂ + cT ξ̂ =

= yTPy − cT ξ̂ = (3.23b)

= yTPy − cTN−1c = (3.23c)

= yTPy − (N ξ̂)TN−1N ξ̂ =

= yTPy − ξ̂TN ξ̂ = (3.23d)

= yT (P − PAN−1ATP )y (3.23e)

Note that the target function (3.5) could have been written explicitly as a func-
tion of the random error vector e with the introduction of a vector of Lagrange
multipliers λ as follows:

Φ(e, ξ,λ) = eTPe+ 2λT (y −Aξ − e) = stationary. (3.24)

The Euler-Lagrange necessary conditions (or first-order conditions) would then fol-
low as

1

2

∂Φ

∂e
= P ẽ− λ̂

.
= 0, (3.25a)
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1

2

∂Φ

∂ξ
= AT λ̂

.
= 0, (3.25b)

1

2

∂Φ

∂λ
= y −Aξ̂ − ẽ

.
= 0. (3.25c)

Equation (3.25a) leads immediately to λ̂ = P ẽ as an estimate of the unknown
Lagrange multipliers and thus to yet another expression for the P -weighted norm,
namely

Ω = ẽTP ẽ = ẽT λ̂ = λ̂TP−1λ̂. (3.26)

Moreover, substituting (3.25a) into (3.25b) yields, in analogy to (2.13), the or-
thogonality condition ATP ẽ = 0, which implies that the vector of adjusted obser-
vations is P -orthogonal to the vector of residuals, i.e., (Aξ̂)TP ẽ = 0.

Incidentally, when P = I the orthogonality condition becomes AT ẽ = 0, imply-
ing that the residual vector ẽ is in the left nullspace of matrix A (nullspace of AT )
in that case. This explains why the residuals sum to zero in ordinary least-squares1

problems where one column of A contains only ones, or any constant value (e.g., in
line-fitting problems and the in parabola-fitting example above).

3.3 Estimated Variance Component Within the
Gauss-Markov Model

As stated in Section 2.4, the variance component σ2
0 is an unknown quantity in

the Gauss-Markov Model (GMM). We now present the derivation of the estimated
variance component σ̂2

0 . As defined in (3.1), the dispersion matrix for the random
error vector e is D{e} = σ2

0Q. Also, by definition of dispersion we have D{e} =
E{(e− E{e})(e− E{e})T }. But, for the error vector E{e} = 0; therefore

D{e} = E{eeT } = σ2
0Q = σ2

0P
−1, since E{e} = 0. (3.27)

The following steps lead to an expression for the variance component σ2
0 in terms

of the quadratic product eTPe.

E{eeT } = σ2
0Q (by definition)

PE{eeT } = σ2
0In (multiply both sides by P )

trPE{eeT } = σ2
0 tr In = nσ2

0 (apply the trace operator)

trE{PeeT } = nσ2
0 (move the constant matrix P into the expectation)

E{trPeeT } = nσ2
0

(interchange the trace and expectation operators—both linear)

E{tr eTPe} = nσ2
0

(the trace is invariant with respect to a cyclic transformation)

1Some authors refer to the case of P = I as ordinary least-squares, e.g., Harville (2000, p. 267).
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E{eTPe} = nσ2
0 (a quadratic product is a scalar; trace of scalar is scalar itself)

σ2
0 = E{e

TPe

n
} (dividing through by n and placing n inside E{·})

σ̄2
0 :=

eTPe

n
(define a symbol for the term inside E{·})

E{σ̄2
0} = σ2

0 (by substitution)

Thus we can say that
(
eTPe

)
/n provides an unbiased representation of σ2

0 . How-
ever, we do not actually know the true random error vector e, but we do know its
predicted value ẽ.

We now work with the residual vector ẽ to find an unbiased estimate of σ2
0 .

Combining steps similar to those explained above, we can write

E{ẽTP ẽ} = trE{ẽTP ẽ} = trE{ẽẽT }P = trD{ẽ}P. (3.28)

According to (3.14a), the dispersion of the residual vector is D{ẽ} = σ2
0

(
P−1 −

AN−1AT
)
. Substituting this result into (3.28) gives

E{ẽTP ẽ} = trσ2
0

(
P−1 −AN−1AT

)
P =

= σ2
0

(
tr In − trAN−1ATP

)
=

= σ2
0

(
tr In − trN−1ATPA

)
= (using (A.5))

= σ2
0(n− rkN) = σ2

0(n− rkA). (using (1.7c))

Finally, we arrive at

E{ ẽTP ẽ

n− rkA
} = σ2

0 . (3.29)

Now, we simply label the argument of the expectation operator on the left side
of (3.29) as σ̂2

0 , which allows us to write the expression for the estimated variance
component as

σ̂2
0 =

ẽTP ẽ

n− rkA
. (3.30)

Obviously, σ̂2
0 is a uniformly unbiased estimate of σ2

0 , since E{σ̂2
0} = σ2

0 . In the
case of the Model of Direct Observations, we replace A with τ , which has rank of 1,
and thus we have σ̂2

0 := ẽTP ẽ/(n−1), which verifies (2.38). Alternative expressions
for σ̂2

0 can be reached by use of (3.23) and (3.26).
The above derivations imply the following relationship between E{eTPe} and

E{ẽTP ẽ}:

E{eTPe}
n

=
E{ẽTP ẽ}
n− rkA

= σ2
0 ⇒ (3.31a)

E{ẽTP ẽ} < E{eTPe} (3.31b)
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According to Grafarend and Schaffrin (1993, pg. 103), and Schaffrin (1997b),
the dispersion, and estimated dispersion, respectively, of σ̂2

0 are given by

D{σ̂2
0} = (n−m)−1 · 2

(
σ2
0

)2
(3.32)

and

D̂{σ̂2
0} = (n−m)−1 · 2

(
σ̂2
0

)2
, (3.33)

where it is assumed that m = rkA; cf. Searle and Khuri (2017, Eq. (10.35)).
After a least-squares adjustment, the estimated variance component can be

tested for statistical agreement with a specified value, say 1, by means of hypothesis
testing as described in Section 9.4.2.

3.4 Linearized Observation Equations and a Cor-
responding Algorithm for an Iterative Least-
Squares Solution

When the the observations y are expressed as nonlinear functions of the unknown
parameters ξ, the observation equations and dispersion matrix can be represented
as

E{y} = a(ξ), (3.34a)

D{y} = σ2
0P

−1 = D{e}, e := y − E{y}, (3.34b)

implying that

y = a(ξ) + e, (3.34c)

where a(ξ) is a vector of functions that maps Rm to Rn and σ2
0 and e are defined

as usual. Given a vector of approximate parameter values ξ(0), a Taylor-series
expansion permits (3.34a) to be rewritten as

E{y} = a(ξ(0)) +
∂a

∂ξT

∣∣∣∣
ξ=ξ(0)

·(ξ − ξ(0)) + · · · (3.35a)

leading to

E{y − a(ξ(0))} = A·(ξ − ξ(0)) + higher order terms, (3.35b)

where A is an n×m coefficient matrix containing the partial derivatives evaluated
at ξ(0); such a matrix is also called a Jacobian matrix.

By truncating the Taylor-series expansion (i.e. dropping the higher-order terms)
and working with observation increments y − a(ξ(0)) and parameter increments
ξ − ξ(0), we may form the system of linearized least-squares normal equations

(ATPA)(ξ̂ − ξ(0)) = ATP (y − a(ξ(0))), (3.36)
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leading to

ξ̂ = ξ(0) + (ATPA)−1ATP (y − a(ξ(0))) (3.37a)

and

D{ξ̂} = D{ξ̂ − ξ(0)} = σ2
0(A

TPA)−1 (3.37b)

for the estimate of ξ and its dispersion matrix, respectively.
The chosen approximate values for ξ(0) may be less precise than we prefer, which,

in turn, might affect the accuracy and precision of the estimates ξ̂. In practice, ξ(0)
may be taken from a solution based on only a minimum subset of the observation
equations (i.e., only m of them to solve for m unknowns). Such approximate values
could be improved by replacing them with values obtained from an initial least-
squares estimate ξ̂. Then, the system of normal equations could be updated and
solved again, leading to more precise values for ξ̂. This process could be repeated
until the difference between ξ̂ and ξ(0) becomes arbitrarily small. This technique is
called iterative least-squares solution.

In the jth iteration step (j > 0) of an algorithm for an iterative least-squares
solution, the vector of approximate values ξ(j) is specified by

ξ(j) := ξ̂j−1 − 0˜, (3.38a)

where the subtraction of a random zero vector 0˜ is a formality that reflects that
the approximate vector ξ(j) is non-random, as it must be. Thus, we say that the

subtraction of 0˜ strips ξ̂j−1 of its randomness (note that the subtraction of a vector

of random zeros does not change the numerical values of ξ̂j−1). The iterations are
repeated until ∥∥∥ξ̂j − ξ̂(j−1)

∥∥∥ < ϵ (3.38b)

for some chosen, small ϵ. Such an iterative algorithm is called a Gauss-Newton
algorithm.

Summarizing notation, at iteration step j, the symbol ξ(j) has been used to
indicate approximate values for the Taylor-series expansion point, while ξ is used
for the true (unknown) parameter vector as usual, and ξ̂j denotes the vector of
estimated parameters.

Iterative algorithm to solve a linearized system of normal equations:

1. Initialization: Specify initial values for ξ(0), e.g., based on a minimum number
of observation equations. Compute a(ξ(0)) to form matrix A(0). Then set the
iteration index to j = 1.

2. Compute the jth solution

ξ̂j = ξ(j−1) +
[
AT

(j−1)PA(j−1)

]−1
AT

(j−1)P
[
y − a(ξ(j−1))

]
. (3.39a)
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Check for convergence: If the inequality∥∥∥ξ̂j − ξ(j−1)

∥∥∥ < ϵ (3.39b)

holds for some chosen ϵ, then the solution has converged; thus go to step 4.

3. Increment the iteration counter j by one. Update the expansion point ξ(j−1)

according to (3.38a). Update the partial derivatives in the Jacobian matrix
A(j−1). Repeat step 2.

4. Upon convergence, and dropping the iteration index j, the dispersion matrix
for the estimated parameters becomes

D{ξ̂} = (ATPA)−1. (3.39c)

The residual vector is provided by

ẽ = y − a(ξ̂), (3.39d)

the vector of adjusted observations by

y − ẽ = a(ξ̂), (3.39e)

and the estimated variance component by

σ̂2
0 = (ẽTP ẽ)/r. (3.39f)

Checks similar to those discussed in Section 2.5.1 should also be made.

3.5 Introduction of Datum Information to Treat
the Rank-Deficient Gauss-Markov Model

A rank-deficient Gauss-Markov Model (GMM) is one in which the rank of the
coefficient matrix A is less than its number of columns. This means that at least
one column of A is either a scalar multiple of a different column or that it can
be expressed as a linear combination of other columns. Such rank deficiency is
expressed mathematically as rkA < m, where m is the number of columns of A. It
implies also that rkN = rkATPA < m, which means that the unknown parameters
cannot be estimated by (3.7). Put another way, a rank-deficient model is one in
which there are more parameters than can be estimated from the data. In fact,
the rank of the coefficient matrix reveals the number of estimable parameters of the
model.

Rank deficiency often arises in the context of network adjustments where sta-
tion coordinates must be estimated but the observations do not contain sufficient
information to define the underlying coordinate system, also called datum in this
context. Thus we speak of a network datum deficiency. As noted in Chapter 5, a
2-D network where only angles and distance have been measured provides an ex-
ample of a datum deficiency of three, owing to the unknown origin and orientation
parameters of the network. However, if certain values (or known values) are pro-
vided for enough parameters, this “datum information” can be used to eliminate
the rank deficiency of the model. The method is described in the following.
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Consider the following (linearized) GMM with rank-deficient matrix A:

y = Aξ + e, e ∼
(
0, σ2

0P
−1

)
, rkA =: q < m. (3.40a)

We can partition the matrix A as

A
n×m

=

[
A1
n×q

A2
n×(m−q)

]
, with rkA1 = q := rkA, (3.40b)

so that matrix A1 has full column rank. A compatible partitioning of the parameter
vector ξ, i.e.,

ξ =


ξ1
q×1

ξ2
(m−q)×1

 , (3.40c)

leads to the following system of partitioned normal equations:AT
1

AT
2

P

[
A1, A2

]ξ̂1
ξ̂2

 =

AT
1

AT
2

Py =

AT
1 PA1 AT

1 PA2

AT
2 PA1 AT

2 PA2


ξ̂1
ξ̂2

 =

AT
1 Py

AT
2 Py

 =

=

N11 N12

N21 N22


ξ̂1
ξ̂2

 =

c1
c2

 . (3.41)

The sub-scripted terms in (3.41) may be defined more succinctly as[
Nij , ci

]
:= AT

i P
[
Aj , y

]
, for i, j ∈ {1, 2}. (3.42)

Defining a datum form−q parameters means that values for them must be specified.
Mathematically, a datum is defined by ξ̂2 → ξ02, where ξ

0
2 is known. The rank of A1

given in (3.40b) implies that the inverse of the q × q matrix N11 exists. Therefore,

from the top row of (3.41), and with a given datum ξ02 substituted for ξ̂2, we can
write

N11ξ̂1 = c1 −N12ξ
0
2 ⇒ (3.43a)

ξ̂1 = N−1
11

(
c1 −N12ξ

0
2

)
. (3.43b)

Equation (3.43b) shows that datum values can be specified or modified after ob-
servations have been made and matrix N11 has been inverted. Moreover, since the
only random component in (3.43b) is c1, we have

D{ξ̂1} = σ2
0N

−1
11 (3.44)
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for the dispersion of the vector of estimated parameters ξ̂1.
The predicted random error (residual) vector and its dispersion are then defined

as follows:

ẽ = y −Aξ̂ = y −
[
A1 A2

]ξ̂1
ξ02

 = y −A1ξ̂1 −A2ξ
0
2,

D{ẽ} = D{y} −D{A1ξ̂1} = σ2
0

(
P−1 −A1N

−1
11 AT

1

)
.

(3.45a)

(3.45b)

Note that C{y, A1ξ̂1} = 0, which is implied by (3.45b). After computing the
residuals, it is straightforward to compute the vector of adjusted observations and
it dispersion matrix, respectively, by

Ê{y} =: µ̂y = y − ẽ = A1ξ̂1 +A2ξ
0
2,

D{µ̂y} = D{A1ξ̂1} = σ2
0 ·A1N

−1
11 AT

1 .

(3.46a)

(3.46b)

Here, µ̂y is also interpreted as an estimate of the true, and thus unknown, vector
of observables µy, where E{y} = µy.

The sum of squared residuals (SSR) is given by

Ω = ẽTP ẽ, (3.47)

while the redundancy of the model is provided by

r = n− rkA = n− q. (3.48)

Substituting (3.45a) into (3.47), and considering (3.43a), leads to

σ̂2
0 =

ẽTP ẽ

r
=

yTPy − cT1 ξ̂1 − cT2 ξ
0
2

n− q
(3.49)

as an estimate for the unknown variance component σ2
0 . Here, the relation ξ̂T1 N11ξ̂1

+ξ̂T1 N12ξ̂2 = ξ̂T1 c1 has been used. However, since rkA1 = rkA = q, the n× (m− q)
submatrix A2 must be in the column space of the n× q matrix A1 so that

A2 = A1L (3.50a)

for some q × (m− q) matrix L. Therefore,

N12 = AT
1 PA2 = AT

1 PA1L = N11L ⇒ (3.50b)

N−1
11 N12 = L. (3.50c)

With this result, and using (3.43b), we have

cT1 ξ̂1 + cT2 ξ
0
2 = yTPA1

(
N−1

11 c1 −N−1
11 N12ξ

0
2

)
+ yTPA2ξ

0
2 =
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= yTPA1

(
N−1

11 c1 − Lξ02
)
+ yTPA2ξ

0
2 =

= yTPA1N
−1
11 c1 − yTP

(
A1L

)
ξ02 + yTPA2ξ

0
2 =

= yTPA1N
−1
11 c1 = cT1 N

−1
11 c1, (3.51)

which, upon substitution into (3.49), leads to

σ̂2
0 =

yTPy − cT1 N
−1
11 c1

n− q
(3.52)

as an alternative form for the estimated variance component.
It is instructive to compare the dispersion of ξ̂1 shown in (3.44) with the cor-

responding dispersion in the case that matrix A has full row rank, i.e., rkA = m.
In the full-rank case, we could invert the coefficient matrix of (3.41) and find the

upper q× q block of the inverse, scaled by σ2
0 , to be the dispersion of ξ̂1. Referring

to (A.15) for the inverse of the partitioned matrix N , we find

D{ξ̂1}︸ ︷︷ ︸
no datum

= σ2
0

[
N−1

11 +N−1
11 N12

(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

]
=

= σ2
0

(
N11 −N12N

−1
22 N21

)−1
> σ2

0N
−1
11 = D{ξ̂1}︸ ︷︷ ︸

datum supplied

.
(3.53)

The smaller dispersion in the last line of (3.53) shows that if a datum is introduced
(increase in information), the unknown parameters ξ are estimated with smaller
variance.

Minimally constrained adjustment The type of least-squares adjustment de-
scribed in this section belongs to a class of minimally constrained adjustment, a
subject treated in much greater detail in Part II. The reason that the adjustment
is of type minimally constrained is because the datum information only provides
information on m− q of the parameters, which is just enough to overcome the rank
deficiency of the model. The result is a unique solution for the residual vector ẽ, the
adjusted observations Aξ̂, and the estimated variance component σ̂2

0 . This means
that the specification for ξ02 will not affect the computed values of these quantities.
Put another way, we can say that they are invariant to the choice of the datum.
On the other hand, the vector of estimated parameters ξ̂ will not be unique; it does
depend on the specification of ξ02.

3.6 Practice Problems

1. Starting with the Lagrange target function (3.24), derive the least-squares
solution (LESS) within the Gauss-Markov Model for the unknown parameter
vector ξ and the unknown vector of Lagrange multipliers λ.

2. Based on your answer in the preceding problem, show that the identity Ω =
λ̂TP−1λ̂ in (3.26) holds.
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3. In order to determine the height of point F , leveling measurements have been
taken in forward and reverse directions from three different points A, B,
and C, each with known height. The relevant data are given in Table 3.1.

Table 3.1: Leveling data for Problem 3.

Point
Height
[m]

Forward obs.
to F [m]

Length of
path [km]

Reverse obs.
from F [m]

A 100.055 10.064 2.5 −10.074

B 102.663 7.425 4 −7.462

C 95.310 14.811 6 −14.781

Assume that the standard deviations of the observations are σ = 3mm per
every one km of leveling and that all measurements are uncorrelated. Setup
the Gauss-Markov Model and compute the LESS of:

(a) The height at point F and its estimated dispersion.

(b) The vector of residuals and its estimated dispersion matrix.

(c) The estimated variance component.

(d) Compute the trace of the product σ−2
0 ·D{ẽ}·P and confirm that it equals

the redundancy of the model.

4. Elevations were observed with a digital level at nodes of a 2D-grid. The
horizontal coordinates of the nodes (X,Y ) are assumed be be known with
certainty, while the random errors of the observed elevations have a homoge-
neous distribution with zero mean and σ2 = (10mm)2 variance. The data are
listed in Table 3.2.

(a) Use the LESS within the GMM to estimate the parameters of a fitted
plane assuming the observation equations can be modeled by

E{yi} = aXi + bYi + c, i = 1, . . . , n,

with unknown parameters ξ = [a, b, c]T .

(b) Use the LESS within the GMM to estimate parameters for a quadratic
surface assuming the observation equations can be modeled by

E{yi} = aX2
i + bY 2

i + cXiYi + dXi + eYi + f, i = 1, . . . , n,

with unknown parameters ξ = [a, b, c, d, e, f ]T .

(c) Which of the two above observational models, the planar one or the
quadratic one, fit the data best? Give the reason for your answer.
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Table 3.2: Elevation data yi observed at known grid locations

i Xi Yi yi i Xi Yi yi

1 −20 −20 9.869 14 0 10 10.019

2 −20 −10 9.920 15 0 20 10.037

3 −20 0 9.907 16 10 −20 9.946

4 −20 10 9.957 17 10 −10 9.988

5 −20 20 9.959 18 10 0 10.035

6 −10 −20 9.889 19 10 10 10.055

7 −10 −10 9.937 20 10 20 10.066

8 −10 0 9.973 21 20 −20 9.963

9 −10 10 10.025 22 20 −10 9.986

10 −10 20 10.026 23 20 0 10.037

11 0 −20 9.917 24 20 10 10.068

12 0 −10 10.000 25 20 20 10.069

13 0 0 10.007
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Figure 3.3: Two distances and two azimuths measured from known points A and B
to determine coordinates of point P

5. To determine the coordinates of an unknown point P (x, y), some measure-
ments were carried out from two given points A(50, 30) and B(100, 40) in
meters.

Two distances were observed, the first from A to P and the second from B
to P . The observed distances are y1 = 66.137m and y2 = 58.610m, and they
are considered to be uncorrelated with variance σ2 = (1 cm)2.
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In addition, two azimuths were observed independently. The observed azimuth
from A to P is y3 = 20◦20′55′′ and the observed azimuth from B to P is
y4 = 332◦33′41′′. The standard deviation of both azimuths is σα = 5′′.

Compute the following:

(a) The estimated coordinates of point P .

(b) The estimated variances of the coordinates and their correlation coeffi-
cient.

(c) The residual vector ẽ.

(d) The estimated variance component σ̂2
0 .

6. To determine the coordinates of a new point P , distances were measured to
four given points having known coordinates. One angle was also measured.
The coordinates of the given points are listed in Table 3.3, and the observa-
tions, along with their standard deviations, are listed in Table 3.4.

P1

y1

P

P2

y2

P3

y3

P4

y4

y5

Figure 3.4: Four distances and one angle measured to determine point P

Table 3.3: Coordinates of known points in meters

Point xi [m] yi [m]

P1 842.281 925.523

P2 1337.544 996.249

P3 1831.727 723.962

P4 840.408 658.345
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Table 3.4: Observations: distances and their standard deviation are in units of
meters.

Observable yi σi

P1P 244.457 0.006

P2P 321.622 0.010

P3P 773.129 0.024

P4P 280.019 0.080

∠P1PP2 123◦38′20′′ 5′′

(a) Setup the observation equations and form the normal equations.

(b) Compute the LESS for the coordinates of points P and compute their
variances and covariances.

(c) Compute the residual vector ẽ, the adjusted observations, and the dis-
persion matrices of both.

(d) Compute the estimated variance component σ̂2
0 .

7. Pearson (1901) presented the data in Table 3.5 for a line-fitting problem. Con-
sidering the x-coordinates to be known with certainty and the y-coordinates to
be observed with random errors having zero mean and iid dispersion, complete
the following:

(a) Setup a Gauss-Markov Model to estimate the slope and y-intercept of a
line and compute those estimates.

(b) Compute the residual vector ẽ and the estimated variance component σ̂2
0 .

(c) Plot the data along with the fitted line.
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Table 3.5: Pearson (1901) data for a fitted line

Point i xi yi

1 0.0 5.9

2 0.9 5.4

3 1.8 4.4

4 2.6 4.6

5 3.3 3.5

6 4.4 3.7

7 5.2 2.8

8 6.1 2.8

9 6.5 2.4

10 7.4 1.5

8. The affine 2-D transformation is based on six unknown parameters:

• ξ1, ξ2 for the translation of the origin of the coordinate frame,

• β, β + ϵ for the rotation angles of the respective axes.

• ω1, ω2 for the scale factors of the respective axes.

For a point having coordinates (xi, yi) in the source coordinate frame and
(Xi, Yi) in the target coordinate frame, the transformation is described by[

Xi

Yi

]
=

[
ω1· cosβ −ω2· sin(β + ϵ)

ω1· sinβ ω2· cos(β + ϵ)

][
xi

yi

]
+

[
ξ1

ξ2

]
+

[
eXi

eYi

]
. (3.54a)

Here

• (xi, yi) are given coordinates in the source system;

• (Xi, Yi) are observed coordinates in the target system;

• i denotes the point number, i ∈ {1, 2, . . . , n/2}.

Making the substitutions

ξ3 := ω1 cosβ, ξ4 := ω2 sin(β + ϵ), ξ5 := ω1 sinβ, ξ6 := ω2 cos(β + ϵ)
(3.54b)

results in the linear system of observation equations

Xi = xi·ξ3 − yi·ξ4 + ξ1 + eXi ,

Yi = xi·ξ5 + yi·ξ6 + ξ2 + eYi ,

[
eXi

eYi

]
∼ (

[
0

0

]
, σ2

0

[
(QXX)ii (QXY )ii

(QT
XY )ii (QY Y )ii

]
),

(3.54c)
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where QXX , QY Y , and QXY are given cofactor matrices.

Using the data from Table 3.6, which is copied from Wolf (1983, p. 586), and
assuming the random observation errors are iid, complete the following:

(a) Compute the least-squares estimates of ξ̂ and then the derived quanti-

ties β̂1, β̂2, ω̂1, and ω̂2.

(b) Sketch a diagram showing the axes of both coordinate systems. Annotate
the diagram with labels for the rotation angles between the axes and the
translations between the two origins.

(c) Use the estimated parameters to compute coordinates in the xy system
for points 1–3 shown in Table 3.6.

Table 3.6: Calibrated (known) and comparator (measured) coordinates from Wolf
(1983, p. 586)

Comparator coordinates Calibrated coordinates

Point X [mm] Y [mm] x [mm] y [mm]

Fiducial A 55.149 159.893 −113.000 0.000

Fiducial B 167.716 273.302 0.000 113.000

Fiducial C 281.150 160.706 113.000 0.000

Fiducial D 168.580 47.299 0.000 −113.000

1 228.498 105.029

2 270.307 199.949

3 259.080 231.064

9. The spirit leveling data in Table 3.7 come from Rainsford (1968), where or-
thometric corrections have already been applied to the recorded observations.
The weight of each observation was taken as the distance in miles divided
by 100. All random observation errors are uncorrelated. The unknown pa-
rameters are the heights of points A, B, C, D, E, and F (Figure 3.5). Since
the observations pertain to height differences, the model has a rank deficiency
(datum deficiency) of one. Therefore, datum information is introduced as in
Section 3.5 by specifying the height of point D as 1928.277 ft.

Complete the following:

(a) Set up a partitioned Gauss-Markov Model and the corresponding parti-
tioned least-squares normal equations according to Section 3.5.

(b) Compute the LESS for the estimated heights of points A, B, C, E, and F .

(c) Compute the residual vector and the estimated variance component.

(d) Compute the adjusted observations and then sum them for each of the
four closed loops in the network that pass through either point B or C.
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A

B
C

D

E

F

y1 y2

y3

y4

y5

y6

y7

y8
y9

Figure 3.5: Leveling network after Rainsford (1968)

Table 3.7: Leveling data from Rainsford (1968)

Observed Length

From To No. height diff. [ft] [miles]

A B 1 +124.632 68

B C 2 +217.168 40

C D 3 −92.791 56

A D 4 +248.754 171

A F 5 −11.418 76

F E 6 −161.107 105

E D 7 +421.234 80

B F 8 −135.876 42

C E 9 −513.895 66

Also sum them for the closed perimeter loop that contains all points
except B and C.

(e) Repeat all your computations using a height of 1679.432 ft for point A
as datum information. Which results are different and which are the
same between the two adjustments? Can you explain the differences and
similarities?
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3.7 Summary Formulas for the Introduction of Da-
tum Information for the Least-Squares Solu-
tion Within the Rank Deficient Gauss-Markov
Model

The rank deficient Gauss-Markov Model is given by

y
n×1

=

[
A1
n×q

A2
n×(m−q)

]
ξ1
q×1

ξ2
(m−q)×1

+ e, e ∼
(
0, σ2

0P
−1

)
,

rkA =: q < m and rkA1 = q.

Table 3.8: Summary formulas for the introduction of datum infor-
mation (ξ̂2 → ξ02) for the LESS within the rank deficient Gauss-
Markov Model

Quantity Formula Eq.

Model redundancy r = n− rkA = n− q (3.48)

Vector of estimated
parameters, with
given ξ02

ξ̂1 = N−1
11

(
c1 −N12ξ

0
2

)
(3.43b)

Dispersion matrix
for estimated
parameters

D{ξ̂1} = σ2
0 ·N−1

11 (3.44)

Vector of predicted
residuals, with
given ξ02

ẽ = y −Aξ̂ = y −A1ξ̂1 −A2ξ
0
2 (3.45b)

Dispersion matrix
for residuals

D{ẽ} = σ2
0 ·
(
P−1 −A1N

−1
11 AT

1

)
(3.45b)

Sum of squared
residuals (SSR)

Ω = ẽTP ẽ (3.47)

Estimated variance
component, with
given ξ02

σ̂2
0 = (ẽTP ẽ)/r =

(yTPy − cT1 ξ̂1 − cT2 ξ
0
2)/(n− q)

(3.49)

Continued on next page
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Quantity Formula Eq.

Vector of adjusted
observations

Ê{y} =: µ̂y = y − ẽ = A1ξ̂1 +A2ξ
0
2 (3.46a)

Dispersion matrix
for adjusted
observations

D{µ̂y} = σ2
0 ·A1N

−1
11 AT

1 (3.46b)

Continued from previous page

3.8 Summary Formulas for the Least-Squares So-
lution Within the Gauss-Markov Model With
Full Rank

The Gauss-Markov Model with full column rank coefficient matrix A is given by

y
n×1

= A
n×m

ξ + e, e ∼
(
0, σ2

0P
−1

)
,

rkA = m.

Table 3.9: Summary formulas for the LESS within the Gauss-
Markov Model with full rank

Quantity Formula Eq.

Model redundancy r = n− rkA = n−m (3.3)

Vector of estimated
parameters

ξ̂ = N−1c, [N, c] := ATP [A, y] (3.7)

Dispersion matrix for
estimated parameters

D{ξ̂} = σ2
0 ·N−1 (3.13)

Vector of predicted
residuals

ẽ = y −Aξ̂ =
(
In −AN−1ATP

)
y (3.9)

Dispersion matrix for
residuals

D{ẽ} = σ2
0 ·
(
P−1 −AN−1AT

)
(3.14a)

Sum of squared
residuals (SSR)

Ω = ẽTP ẽ (3.22)

Continued on next page



3.8. SUMMARY FORMULAS 87

Quantity Formula Eq.

Estimated variance
component

σ̂2
0 = (ẽTP ẽ)/(n− rkA) (3.30)

Vector of adjusted
observations

Ê{y} =: µ̂y = y − ẽ (3.11)

Dispersion matrix for
adjusted observations

D{µ̂y} = σ2
0 ·AN−1AT (3.15a)

Continued from previous page
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Chapter 4

The Model of Condition
Equations

4.1 Model Definition

In the least-squares adjustment within the model of condition equations, the un-
known parameters ξ are not estimated directly, rather the random error vector e
is predicted. This approach might be taken if the parameters are of no particular
interest, or it might be done to make the problem easy to formulate. An example
of the latter is the adjustment of leveling networks, where the parameters (heights
of the stations) are of primary interest, but because closed “level loops” within the
network sum to zero (a necessary condition), it is convenient to difference the obser-
vations along these loops before performing the adjustment (see level-loop example
in Section 4.4). Another motivation for using the model of condition equations
is that the size of the matrix to invert in the least-squares solution (LESS) may
be smaller than that in the corresponding LESS within the Gauss-Markov Model
(GMM).

Let the r×nmatrix B represent a difference operator such that when it is applied
to the n×1 observation equations y = Aξ+e, the parameters are eliminated. More
specifically, we require that BA = 0, which implies that By = B(Aξ + e) = Be.
Therefore, by applying the difference operator B, the GMM is transformed to the
following model of condition equations:

w := B
r×n

y = Be, e
n×1

∼ (0, σ2
0P

−1), (4.1a)

r := n− q = rkB, (4.1b)

where the variable r denotes the redundancy of the model, and q is the rank of the
n×m matrix A from the GMM (3.1). Equation (4.1b) requires that matrix B has
full row rank. Moreover, it shows that the redundancy of the model is not changed
from that of the GMM by eliminating parameters.
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4.2 The Least-Squares Solution Within the Model
of Condition Equations

The least-squares criterion for minimizing the (P -weighted, squared) norm of the
vector of observational random errors is written as

min eTPe subject to w = Be, (4.2)

for which the Lagrange target function

Φ(e,λ) := eTPe+ 2λT (w −Be) (4.3)

can be written, which must be made stationary with respect to the unknown terms e
and λ. Here, λ is an r × 1 vector of Lagrange multipliers. Taking the first partial
derivatives of (4.3) leads to the Euler-Lagrange necessary conditions

1

2

∂Φ

∂e
= P ẽ−BT λ̂

.
= 0, (4.4a)

1

2

∂Φ

∂λ
= w −Bẽ

.
= 0. (4.4b)

The sufficient condition, required to ensure a minimum is reached, is satisfied by
∂2Φ/∂e∂eT = 2P , which is positive definite since the weight matrix P is invertible
according to (4.1a). The simultaneous solution of (4.4a) and (4.4b) leads to the
Best LInear Prediction (BLIP) of e as derived in the following: Equation (4.4a)
leads to

ẽ = P−1BT λ̂. (4.5a)

Then, (4.4b) and (4.5a) allows

w = Bẽ =
(
BP−1BT

)
λ̂ ⇒ (4.5b)

λ̂ =
(
BP−1BT

)−1
w ⇒ (4.5c)

ẽ = P−1BT
(
BP−1BT

)−1
w, (4.5d)

finally leading to the predicted random error vector

ẽ = P−1BT
(
BP−1BT

)−1
By. (4.5e)

Note that the matrix product BP−1BT results in a symmetric, positive-definite
matrix of size r×r, since B has full row rank. The predicted random error vector ẽ
is also called the residual vector. The expectation of the given observation vector is
expressed as E{y} = µy, where µy is the true, but unknown, vector of observables.
Thus we write the vector of adjusted observations as

Ê{y} = µ̂y = y − ẽ. (4.6)
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Nota bene: Implicit in the term By is the subtraction of a constant term κ if
necessary, viz. (By − κ)− Be = 0, implying that By → By − κ. An example
is the condition that the n interior angles of a simple polygon in a plane must
sum to κ = (n− 2)180◦. Then the condition equation would read

[
1 1 · · · 1

]

y1 − e1

y2 − e2
...

yn − en

− (n− 2)π = 0.

Thus, for numerical computations, we may need to modify (4.5e) to read

ẽ = P−1BT
(
BP−1BT

)−1
(By − κ), (4.7)

which has no effect on the dispersion formulas that follow.

The square of the P -weighted residual norm Ω, also called the sum of squared
residuals (SSR), is computed by

Ω = ẽTP ẽ = ẽTBT λ̂ = wT λ̂ = wT (BP−1BT )−1w =

= yTBT (BP−1BT )−1By,

(4.8a)

(4.8b)

leading to the estimated variance component

σ̂2
0 =

Ω

r
=

ẽTP ẽ

r
, (4.9)

with r = rkB. In words, it is described as the squared P -weighted residual norm
divided by the degrees of freedom (redundancy) of the model.

Applying the law of error propagation, the dispersion of the residual vector is
computed by

D{ẽ} = P−1BT (BP−1BT )−1B ·D{y} ·BT (BP−1BT )−1BP−1 =

= P−1BT (BP−1BT )−1B(σ2
0P

−1)BT (BP−1BT )−1BP−1 ⇒

D{ẽ} = σ2
0 · P−1BT (BP−1BT )−1BP−1. (4.10)

As we did earlier within the GMM (Section 3.2.2), we compute the covariance
between the residual vector ẽ and the vector adjusted observations µ̂y = y − ẽ as
follows:

C{µ̂y, ẽ} = C{
[
I − P−1BT

(
BP−1BT

)−1
B
]
y, P−1BT

(
BP−1BT

)
By} =

=
[
I − P−1BT

(
BP−1BT

)−1
B
]
·D{y} ·

[
P−1BT

(
BP−1BT

)−1
B
]T

=

=
[
I − P−1BT

(
BP−1BT

)−1
B
]
· σ2

0P
−1 ·BT

(
BP−1BT

)−1
BP−1 =
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= σ2
0

[
P−1BT

(
BP−1BT

)−1
BP−1 − P−1BT

(
BP−1BT

)−1
BP−1BT ·

·
(
BP−1BT

)−1
BP−1

]
= 0

(4.11)

Thus, it has been shown that the residuals and adjusted observations are uncor-
related, and therefore the dispersion of the adjusted observations can be written
as

D{µ̂y} = D{y} −D{ẽ} = σ2
0

[
P−1 − P−1BT (BP−1BT )−1BP−1

]
. (4.12)

Note that B is not a unique matrix, but regardless of how B is chosen the results
of the adjustment will be the same, provided the following necessary conditions for
B are satisfied:

(i) Dimensionality: rkB = n− rkA = n−q = r, which means that rkB+rkA =
(n− q) + q = n.

(ii) Orthogonality: BA = 0.

4.3 Equivalence Between LESS Within the Gauss-
Markov Model and the Model of Condition
Equations

To show the equivalence between the least-squares adjustments within the GMM
and the model of condition equations, it must be shown that the predicted random
error vectors (residuals) from both adjustments are equivalent. The residual vector ẽ
from each adjustment can be expressed as a projection matrix times the true random
error vector e (or equivalently, times the observation vector y) as shown below.

The residual vector within the GMM can be written as

ẽ =
[
In −AN−1ATP

]
e. (4.13)

And the residual vector within the model of condition equations can be written as

ẽ =
[
P−1BT

(
BP−1BT

)−1
B
]
e. (4.14)

Note that the right sides of (4.13) and (4.14) cannot actually be computed since e
is unknown, but the equations do hold since, for the GMM,

ẽ =
[
In −AN−1ATP

]
y =

=
[
In −AN−1ATP

]
(Aξ + e) =

=
[
Aξ −AN−1(ATPA)ξ

]
+

[
In −AN−1ATP

]
e ⇒

ẽ =
[
In −AN−1ATP

]
e, (4.15)

and, for the model of condition equations,

ẽ = P−1BT
(
BP−1BT

)−1
By =
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= P−1BT
(
BP−1BT

)−1
B(Aξ + e) ⇒

ẽ =
[
P−1BT

(
BP−1BT

)−1
B
]
e, (4.16)

using the fact that BA = 0.
To show that (4.13) and (4.14) are equivalent, it must be shown that the range

spaces and the nullspaces are equivalent for their respective projection matrices

P̄1 := [In −AN−1ATP ] and P̄2 := [P−1BT (BP−1BT )−1B].

(i) Equivalent range spaces: Show that

R
[
In −AN−1ATP

]
= R

[
P−1BT

(
BP−1BT

)−1
B
]
.

Proof: Since ATPP−1BT = ATBT = 0, then[
In −AN−1ATP

][
P−1BT

(
BP−1BT

)−1
B
]
z =

=
[
P−1BT

(
BP−1BT

)−1
B
]
z − 0 for all z ∈ Rn,

which, according to (1.3), implies that

R
[
P−1BT

(
BP−1BT

)−1
B
]
⊂ R

[
In −AN−1ATP

]
.

Also:

dimR
[
P−1BT

(
BP−1BT

)−1
B
]
=

= rk
[
P−1BT

(
BP−1BT

)−1
B
]
= using (A.45a)

= tr
[
P−1BT

(
BP−1BT

)−1
B
]
= using (1.7c)

= tr
[
BP−1BT

(
BP−1BT

)−1]
= using (A.5)

= tr Ir = r.

Furthermore:

dimR
[
In −AN−1ATP

]
=

= rk
(
In −AN−1ATP

)
= using (A.45a)

= tr
(
In −AN−1ATP

)
= using (1.7c)

= tr In − tr
(
N−1ATPA

)
= using (A.5)

= n− rkN = n− rkA =

= n− q = r,

which implies that

R
[
In −AN−1ATP

]
= R

[
P−1BT

(
BP−1BT

)−1
B
]
, (4.17)

since one range space contains the other and both have the same dimension.
Thus we have shown that the range spaces (column spaces) of P̄1 and P̄2 are
equivalent. Now we turn to the nullspaces.
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(ii) Equivalent Nullspaces: Show that

N
[
In −AN−1ATP

]
= N

[
P−1BT

(
BP−1BT

)−1
B
]
.

Proof:

First show that N
[
In −AN−1ATP

]
= R(A).

We begin with [
In −AN−1ATP

]
Aα = 0 for all α,

which implies that

R(A) ⊂ N
[
In −AN−1ATP

]
, since Aα ∈ R(A);

also

dimR(A) = rkA = q.

Equations (A.45a) and (A.45b) reveal that the sum of the dimensions of the
range space and nullspace of a matrix is equal to its number of columns. Using
this property, and results from (i), we find that

dimN
[
In −AN−1ATP

]
=

= n− dimR
[
In −AN−1ATP

]
= n− r = q.

Therefore,

N
[
In −AN−1ATP

]
= R(A).

Also, we have [
P−1BT

(
BP−1BT

)−1
B
]
A = 0,

since BA = 0. The preceding development implies that

R(A) = N
[
In −AN−1ATP

]
⊂ N

[
P−1BT

(
BP−1BT

)−1
B
]
,

or

N (P̄1) ⊂ N (P̄2).

We showed in part (i) that the dimensions of the range spaces of the respective
projection matrices are equivalent. And, since

dimN (P̄1) = n− dimR(P̄1) = n− dimR(P̄2),

it follows that

dimN (P̄1) = dimN (P̄2).

As already stated in part (i), if one vector space is a subset of another and both
spaces have the same dimension, then the subspaces are equivalent. Therefore, we
can say that

N (P̄1) = N (P̄2),
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or

N
[
In −AN−1ATP

]
= N

[
P−1BT

(
BP−1BT

)−1
B
]
. (4.18)

We have shown that both the range spaces and nullspaces of the projection
matrices P̄1 and P̄2 are equivalent, proving that the residual vectors from the two
adjustments are the same and thus that the two adjustments are indeed equivalent.

4.4 Examples — Linear and Nonlinear

4.4.1 Linear Example — a Small Leveling Network

The following example is borrowed from Mikhail and Gracie (1981, Problem 4-8).
It involves a leveling network comprised of two closed loops as shown in Figure 4.1.
The data are listed in Table 4.1.

A

B

C D

18
km

y1

12 km
y2

8 km
y4

22 kmy5

20 ]kmy3

Figure 4.1: Example leveling network

Table 4.1: Leveling network data

Line
Element
of y

Observed elevation
difference (m)

Length
(km)

A to B y1 −12.386 18

B to C y2 −11.740 12

C to A y3 24.101 20

C to D y4 −8.150 8

D to A y5 32.296 22

In a leveling network, one condition equation can be written for each closed loop.
Connecting observations in a counter-clockwise order, two condition equations may
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be written as

(y1 − e1) + (y2 − e2) + (y3 − e3) = 0,

−(y3 − e3) + (y4 − e4) + (y5 − e5) = 0,

or, in matrix form, as

By =

[
1 1 1 0 0

0 0 −1 1 1

]

−12.386

−11.740

24.101

−8.150

32.296

 = Be.

The observations’ weights are inversely proportional to the distances in km, so that

P−1 = 10−6 · diag(18, 12, 20, 8, 22) ·m2

appears to be a reasonable weight matrix. The residuals are then computed by

ẽ = P−1BT (BP−1BT )−1By =


−0.003

−0.002

−0.020

0.007

0.018

m.

The redundancy of the model is given by r = rkB = 2. The adjusted observations
are computed by

µ̂y = y − ẽ =


−12.383

−11.738

24.121

−8.157

32.278

m.

The dispersion matrix for the residuals is

D{ẽ} = σ2
0 · P−1BT (BP−1BT )−1BP−1 =

= σ2
0 ·


7.7 5.1 5.1 1.4 3.8

5.1 3.4 3.4 0.9 2.5

5.1 3.4 11.4 −2.3 −6.3

1.4 0.9 −2.3 1.5 4.2

3.8 2.5 −6.3 4.2 11.5

mm2.

The weighted sum of squared residuals is Ω := ẽTP ẽ = (6.454972)2, leading to the
estimated variance component σ̂2

0 = Ω/r = (4.564355)2. The estimated variance
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component may be used to compute the estimated dispersion matrix for the residuals
as

D̂{ẽ} = σ̂2
0 · P−1BT (BP−1BT )−1BP−1 =

=


1.61 1.07 1.07 0.29 0.79

1.07 0.71 0.71 0.19 0.52

1.07 0.71 2.38 −0.48 −1.31

0.29 0.19 −0.48 0.32 0.87

0.79 0.52 −1.31 0.87 2.40

 cm2.

Now, if the same problem were to be modeled within the Gauss-Markov Model
with the unknown parameters being the heights of the points denoted by ξ =
[HA, HB , HC , HD]T , then the coefficient matrix would be written as

A =


−1 1 0 0

0 −1 1 0

1 0 −1 0

0 0 −1 1

1 0 0 −1

 .

Obviously, the conditions r = n−rkA = 5−3 = 2 = rkB and BA = 0 are satisfied.
Indeed, one can easily verify that the LESS within the GMM will produce the same
residual vector and same estimated variance component as shown above.

4.4.2 Nonlinear Example — Observations of a Triangle

Table 4.2 lists distance observations for all sides of a triangle and two of its angles
as depicted in Figure 4.2. The standard deviations of the observations are shown
in the last column of the table. The observations are to be adjusted by computing
the residual vector within the model of condition equations.

Table 4.2: Observations of sides and angles of a triangle

Obs. no. Observation Std. dev.

y1 120.01m 1 cm

y2 105.02m 1 cm

y3 49.98m 1 cm

y4 94◦47′10′′ 20′′

y5 60◦41′20′′ 20′′

The following two nonlinear condition equations can be written as a function of
the unknown 5 × 1 random error vector e, the first based on the law of sines and
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P1

y
3

P2

y1

P3

y 2

y4

y5

Figure 4.2: Observations of sides and angles of a triangle

the second on the law of cosines for a triangle in a plane:

f1(e) = (y2 − e2)· sin(y4 − e4)− (y1 − e1)· sin(y5 − e5) = 0 (4.19a)

f2(e) = (y1 − e1)
2 + (y2 − e2)

2 − (y3 − e3)
2−

− 2·(y1 − e1)(y2 − e2)· cos(π − y4 + e4 − y5 + e5) = 0.
(4.19b)

The following total derivatives are written for the sake of forming partial deriva-
tives that are needed for linearization:

df1 = − sin(y4 − e4)de2 − (y2 − e2) cos(y4 − e4)de4 + sin(y5 − e5)de1+

+ (y1 − e1) cos(y5 − e5)de5,
(4.20a)

df2 =
[
−2(y1 − e1) + 2(y2 − e2) cos(π − y4 + e4 − y5 + e5)

]
de1+

+
[
−2(y2 − e2) + 2(y1 − e1) cos(π − y4 + e4 − y5 + e5)

]
de2+

+ 2(y3 − e3)de3 +
[
2(y1 − e1)(y2 − e2) sin(π − y4 + e4 − y5 + e5)

]
(de4 + de5).

(4.20b)

From these equations we get the partial derivatives ∂f1/∂e2 = − sin(y4 − e4), etc.,
leading to the Jacobian matrix

B =

∂f1
∂e1

∂f1
∂e2

∂f1
∂e3

∂f1
∂e4

∂f1
∂e5

∂f2
∂e1

∂f2
∂e2

∂f2
∂e3

∂f2
∂e4

∂f2
∂e5

 , (4.20c)

which must have rank 2 (full row rank).
The problem is linearized by the truncated Taylor series

f(e) ≈ f(e0) +
∂f

∂eT

∣∣∣∣
e=e0

·(e− e0) = 0 (4.21a)
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about the expansion point e0, being an approximate value for the unknown vector
of random errors e. Using matrix B, evaluated at e0, to represent the partial
derivatives, and introducing ∆e := e − e0 as an unknown, incremental vector of
residuals, leads to the formula

−f(e0) = B·∆e, (4.21b)

which is in the form of

w = Be (4.21c)

given in the model of condition equations. Therefore, we can setup an iterative
algorithm to predict ∆e as follows:

1. Set e0 = 0 and choose a convergence criterion ϵ.

2. Then for j = 1, 2, . . ., while ∆̃ej > ϵ, compute:

∆̃ej = P−1BT
j (BjP

−1BT
j )

−1wj (4.22a)

ẽj = ej + ∆̃ej . (4.22b)

Then update the expansion point, the Jacobian matrix, and the vector w for the
next iteration as follows:

ej+1 = ẽj − 0˜, Bj+1 = B|ej+1
, and wj+1 = −f(ej+1). (4.22c)

For the first iteration, the matrix B and vector w read

B =

[
0.08719744 −0.09965131 0 8.762479 58.75108

−48.92976 8.325453 99.96000 10463.14 10463.14

]
and

w =

[
−0.00816522

−0.86019942

]
.

Upon convergence the predicted residual vector turns out to be

ẽ =


−0.0021m

0.0035m

−0.0024m

−5.6′′

−9.2′′

 . (4.23)

Note that when choosing a numerical value for the convergence criterion ϵ, one
must be mindful of the units involved in the residual vector. In this example, we
have units of meters, for which a change of less than 0.1mm might be satisfactory,
but we also have units of radians for the angles, for which a change of less than
5×10−6rad might be required. In such cases it may be prudent to check the elements
of ∆̃ej individually, using separate convergence criterion for different observation
types. Then, the algorithm would be considered to have converged when all the
convergence criteria have been satisfied.



100 CHAPTER 4. THE MODEL OF CONDITION EQUATIONS

4.5 Generation of Equivalent Condition Equations
When the Gauss-Markov Model is Rank Defi-
cient

We may also wish to transform the rank-deficient model (3.40a) into a model of
condition equations. To do so, consider the further splitting of the rank-deficient
matrix A defined in (3.40b) as follows:

A
n×m

=
[
A1 A2

]
=

[
A11 A12

A21 A22

]
, (4.24a)

dim(A11) = q × q and dim(A22) = (n− q)× (m− q). (4.24b)

Also, we have rkA11 = q := rkA. And, with the introduction of the q × (m − q)
matrix L in (3.50a), satisfying A2 = A1L, we may write

A2 =

[
A12

A22

]
= A1L =

[
A11

A21

]
L ⇒ A =

[
A1 A1L

]
. (4.25)

Now, the matrix B within the model of condition equations could be chosen as

B
r×n

:=
[
A21A

−1
11 −In−q

]
, (4.26)

with r being the redundancy of the model as shown in (3.48) and (4.1b). This is a
legitimate choice for B as long as the two conditions discussed in Section 4.2, are
satisfied, viz the dimensionality condition and the orthogonality condition.

The first condition requires that the dimensions of the column spaces of A and B
sum to the number of observations n. The second condition requires that the rows
of matrix B are orthogonal to the columns of A, i.e., BA = 0. Taken together, these
conditions mean that A and BT are orthogonal complements in n-dimensional space,
or, stated more succinctly,

R(A)
⊥
⊕R(BT ) = Rn. (4.27)

Both conditions i and ii are satisfied for (4.26) as shown below.

i. Dimensionality condition:

rkB = r = n− q = n− rkA ⇒ rkA+ rkB = n. (4.28a)

ii. Orthogonality condition:

BA = B
[
A1 A2

]
= BA1

[
Iq L

]
, (4.28b)

but

BA1 =
[
A21A

−1
11 −In−q

] [A11

A21

]
= A21A

−1
11 A11 −A21 = 0, (4.28c)

and therefore

BA = 0. (4.28d)
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Note that as long as the rank of matrix A is known, we can always generate a
splitting of A as shown in (4.24a); however, we may need to reorder the columns
of A (tantamount to reordering the elements of the parameter vector) to ensure
that A11 has full column rank.

4.6 Practice Problems

1. Practice deriving the formula for the residual vector ẽ as shown in Section 4.2
until you can do it without referring to the notes.

2. Compute the residual vector of Problem 9 of Section 3.6 using the LESS within
the model of condition equations. Confirm that the rank of matrix B is n− 5
and that BA = 0, where A is the coefficient matrix from problem 9.

3. The observations listed in Table 4.3 are depicted in Figure 4.3. Assume that
the listed angles were derived from differences of independently observed di-
rections measured with a theodolite. For example, observation y2 was derived
from subtracting the observed direction from point P2 to point P3 from the
direction from P2 to P4. The variance of each direction is σ2 = (10′′)2.

(a) Determine the variance of each of the six angles as well as the covariance
between angles y2 and y3 and the covariance between angles y4 and y5.
Based on these results, write down the covariance matrix Q.

(b) Write down suitable condition equations and determine the redundancy
of the model.

(c) Using the LESS within the model of condition equations, compute the
residual vector ẽ and its dispersion matrix D{ẽ}.

(d) Compute the estimated variance component σ̂2
0 .

Table 4.3: Six measured angles between four points

Element
of y

Observation

y1 37◦52′35′′

y2 46◦56′10′′

y3 57◦18′50′′

y4 37◦52′40′′

y5 53◦44′50′′

y6 31◦03′20′′
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P1

P4

P2

P3

y1
y2

y3

y4

y5

y6

Figure 4.3: Six measured angles between four points

4. Four distances were measured between three points A, B, C as shown in
Figure 4.4. The observed distances are y1 = 300.013m, y2 = 300.046m,
y3 = 200.055m, and y4 = 500.152m. There are no correlations between the
distances, and their standard deviations are defined by σ = (5 + 10d)mm,
where d is the measured distance in km. Perform a least-squares adjustment
within the model of condition equations to find the adjusted distance between
points A and C and its estimated variance.

A B C

y1

y2

y3

y4

Figure 4.4: Four distances measured between three points A, B, C

5. Four angles are depicted in Figure 4.5. Angles y1 and y2 were derived from
differencing among three observed directions. Angle y3 was derived from
an independent set of two directions. Likewise, angle y4 was derived from
yet another independent set of two directions. All directions are considered
uncorrelated with standard deviation σ = 10′′. The derived angles are y1 =
60◦22′15′′, y2 = 75◦39′20′′, y3 = 223◦58′40′′, y4 = 136◦01′30′′.
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Note: The observed directions are uncorrelated, but some of the derived angles
are not.

Use the LESS within the model of condition equations to compute the adjusted
angles for y1 and y2. Also compute their variances.

P

P1

P2

P3

y1

y2

y3

y4

Figure 4.5: Four angles derived from three sets of directions

6. Using the data from problem 7 of Section 3.6, compute the residual vector ẽ
by using the LESS within the model of condition equations. Confirm that the
rank of matrix B is n− 2 and that BA = 0, where A is the coefficient matrix
from problem 7.

Hint: The slope between the first point and the jth point must equal the slope
between the jth point and the (j + 1)th point for j = 2, 3, . . . , n− 1.

4.7 Summary Formulas for the Least-Squares So-
lution Within the Model of Condition Equa-
tions

The model of condition equations is given by

w
r×1

:= B
r×n

y = Be, e ∼ (0, σ2
0P

−1),

r := rkB.



104 CHAPTER 4. THE MODEL OF CONDITION EQUATIONS

Table 4.4: Summary formulas for the LESS within the model of condition equations

Quantity Formula Eq. No.

Model redundancy r = rkB (4.1b)

Vector of predicted
residuals

ẽ = P−1BT
(
BP−1BT

)−1
By (4.5e)

Dispersion matrix for
residuals

D{ẽ} = σ2
0 ·P−1BT (BP−1BT )−1BP−1 (4.10)

Sum of squared residuals
(SSR)

Ω = ẽTP ẽ (4.8a)

Estimated variance
component

σ̂2
0 = Ω/r (4.9)

Vector of adjusted
observations

Ê{y} =: µ̂y = y − ẽ (4.6)

Dispersion matrix for
adjusted observations

D{µ̂y} = σ2
0 ·P−1 −D{ẽ} (4.12)



Chapter 5

The Gauss-Markov Model
with Constraints

When prior information about the values of certain parameters, or about functional
relationships between them, is known before the adjustment, those quantities can be
maintained through the adjustment by application of constraints. For example, one
may already know the height difference between two points in a leveling network
that is to be adjusted, or it could be that the azimuth between two points in a
2D network to be adjusted must maintain a specified value. In both cases, the
prior information can be preserved through constraints added to the Gauss-Markov
Model (GMM). We say that such information is known a priori. The term a priori
is a Latin phrase that literally means “from the earlier.” In geodetic science, it
refers to knowledge or information possessed before an experiment is conducted or
an adjustment is computed.

One case where constraints might be useful is when the design matrix A does
not have full column rank, implying that the inverse N−1 of the normal equation
matrix does not exist, which means that the parameters of the model cannot be
estimated using (3.7). This problem can occur, for example, when network observa-
tions must be adjusted in the estimation of point coordinates, but the observations
themselves do not provide complete information about the network datum (i.e., its
size, shape, orientation, and origin). For example, distance measurements provide
information about the scale (size) of a network, and angle measurements provide
information about its shape. But neither measurement type provides information
about the origin or orientation of the network figure, which is necessary for esti-
mating coordinates of network points. In such a case in 2-D, applying a constraint
on two coordinates (i.e., on two parameters) and one azimuth (a function of four
parameters) would provide the lacking information. In this case, the specified con-
straint values could be somewhat arbitrary, but we still may speak of them as being
“known” (i.e., specified a priori) in the context of adjustments with constraints.

Of course, we have already seen in Section 3.5 how a minimum number of con-
straints on the unknown parameters can be imposed via datum information, thereby
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overcoming a datum (rank) deficiency in the model and permitting a minimally con-
strained adjustment of the observations. The model explored in this chapter can
be used not only to handle datum deficiencies in a way that leads to a minimally
constrained adjustment, it can also be used to handle a variety of fixed constraints,
possibly leading to an over-constrained adjustment. The latter case is one in which
the imposition of constraints will impact the values of the residual vector.

5.1 Model Definition and Minimization Problem

The Gauss-Markov Model (GMM) with constraints imposed on the unknown pa-
rameters (all or some of them) is written as

y
n×1

= A
n×m

ξ + e, e ∼ (0, σ2
0P

−1), rkA =: q ≤ m, (5.1a)

κ0
l×1

= K
l×m

ξ, rkK =: l ≥ m− q, (5.1b)

where the rank condition

rk
[
AT , KT

]
= m (5.1c)

must be satisfied. The terms of the model are as defined on page 63, but now with
the addition of a known l×m coefficient matrix K and an l× 1 vector of specified
constants κ0. Symbols for the normal equations were introduced in (3.4) and are
repeated here for convenience:[

N, c
]
:= ATP

[
A, y

]
. (5.2)

Note that, in contrast to the model in (3.1), the coefficient matrix A in (5.1a) is not
required to have full column rank, in which case the matrix inverse N−1 would not
exist. However, the specified rank conditions imply that (N+KTK)−1 exists, and,
if N−1 exists, so does (KN−1KT )−1. This is because the range space of [AT , KT ]
spans Rm as implied by the rank condition stated in (5.1c). The redundancy of the
model is computed by

r := n−m+ rkK = n−m+ l. (5.3)

Introducing an l× 1 vector of Lagrange multipliers λ, the Lagrange target func-
tion to minimize is

Φ(ξ,λ) := (y −Aξ)TP (y −Aξ)− 2λT
(
κ0 −Kξ

)
= stationary = (5.4a)

= yTPy − 2ξTATPy + ξTATPAξ − 2λT (κ0 −Kξ). (5.4b)

Its first partial derivatives are taken to form the following Euler-Lagrange necessary
conditions:

1

2

∂Φ

∂ξ
= N ξ̂ − c+KT λ̂

.
= 0, (5.5a)
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1

2

∂Φ

∂λ
= −κ0 +Kξ̂

.
= 0. (5.5b)

In matrix form (5.5a) and (5.5b) are expressed as[
N KT

K 0

][
ξ̂

λ̂

]
=

[
c

κ0

]
, (5.6)

where the vector on the left side contains m+ l unknowns to be estimated.
The sufficient condition, required for minimization, is satisfied by

(1/2)
(
∂2Φ/∂ξ∂ξT

)
= N, (5.7)

which is positive (semi)definite. We refer to the matrix on the left side of (5.6) as the
least-squares normal equation matrix. It is invertible if, and only if, rk

[
AT , KT

]
=

m. This rank condition means that, for the normal equation matrix,

• among the first m columns, at least m− l must be linearly independent, and

• the additional l columns are complementary, meaning that when combined
with the first m− l columns they span Rm.

5.2 Estimation of Parameters and Lagrange Mul-
tipliers

In the following, we consider two cases: (1) N is invertible (nonsingular or regular),
and (2) N is singular. The LEast-Squares Solution (LESS) is developed for both
cases in the following:

Case 1: N is invertible, implying that matrix A has full column rank, i.e., rkA = m.
Equations (5.5a) and (5.5b) then imply

ξ̂ = N−1
(
c−KT λ̂

)
, (5.8a)

κ0 = Kξ̂ = KN−1c−KN−1KT λ̂ (5.8b)

⇒ λ̂ = −
(
KN−1KT

)−1(
κ0 −KN−1c

)
, (5.8c)

finally leading to the LESS

ξ̂ = N−1c+N−1KT
(
KN−1KT

)−1(
κ0 −KN−1c

)
. (5.8d)

The vector difference κ0 − KN−1c in (5.8d) is called a vector of discrepancies.
It shows the mismatch between the vector of specified constants κ0 and a linear
combination (as generated by the matrix K) of the solution without constraints

(i.e., N−1c). The estimated vectors ξ̂ and λ̂ may also be presented in terms of the
inverse of the matrix in (5.6), viz.[

ξ̂

λ̂

]
=

[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1 N−1KT

(
KN−1KT

)−1(
KN−1KT

)−1
KN−1 −

(
KN−1KT

)−1

][
c

κ0

]
. (5.9)
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Also, note that the expectation of the estimated vector of Lagrange multipliers
is derived by

E{λ̂} = −E{
(
KN−1KT

)−1
(κ0 −KN−1c)} =

=
(
KN−1KT

)−1[
KN−1ATPE{y} − κ0

]
=

=
(
KN−1KT

)−1
(Kξ − κ0) = 0. (5.10)

Case 2: N is singular (i.e., not invertible), implying that matrix A does not have
full column rank, i.e., rkA < m.

Multiplying equation (5.5b) by KT and adding the result to (5.5a), leads to(
N +KTK

)
ξ̂ = c+KT

(
κ0 − λ̂

)
⇒

ξ̂ =
(
N +KTK

)−1
c+

(
N +KTK

)−1
KT

(
κ0 − λ̂

)
. (5.11)

Then from (5.5b) and (5.11) we have

κ0 = Kξ̂ = K
(
N +KTK

)−1
c+K

(
N +KTK

)−1
KT

(
κ0 − λ̂

)
⇒(

κ0 − λ̂
)
=

[
K
(
N +KTK

)−1
KT

]−1[
κ0 −K

(
N +KTK

)−1
c
]
. (5.12)

Substituting (5.12) into (5.11) leads to the LESS

ξ̂ =
(
N +KTK

)−1
c+

(
N +KTK

)−1
KT ·

·
[
K
(
N +KTK

)−1
KT

]−1[
κ0 −K

(
N +KTK

)−1
c
]
. (5.13)

The form of (5.13) is identical to (5.8d) except that all occurrences of matrix N in
(5.8d) have been replaced by N +KTK in (5.13). Of course, (5.13) can be used for
both the singular and nonsingular cases.

Also, note that the expectation of vector difference κ0 − λ̂ is derived by

E{κ0 − λ̂} = E{
[
K
(
N +KTK

)−1
KT

]−1[
κ0 −K

(
N +KTK

)−1
c
]
} =

=
[
K
(
N +KTK

)−1
KT

]−1[
κ0 −K

(
N +KTK

)−1
ATPE{y}

]
=

=
[
K
(
N +KTK

)−1
KT

]−1
K
[
Im −

(
N +KTK

)−1
N
]
ξ =

=
[
K
(
N +KTK

)−1
KT

]−1
K
[
Im −

(
N +KTK

)−1(
N +KTK

)]
ξ+

+
[
K
(
N +KTK

)−1
KT

]−1
K
(
N +KTK

)−1
KT ·Kξ = Kξ

⇒ E{κ0 − λ̂} = Kξ or E{λ̂} = κ0 −Kξ ⇒ (5.14a)

E{λ̂} = 0. (5.14b)

5.3 Derivation of Dispersion Matrices

We now compute the formal dispersion matrices for the both the vector of estimated
parameters ξ̂ and the vector of estimated Lagrange multipliers λ̂.
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Case 1: For case 1, we start with (5.6), from which we have[
ξ̂

λ̂

]
=

[
N KT

K 0

]−1 [
c

κ0

]
. (5.15)

Applying the law of covariance propagation, noting that κ0 is a non-random vector,
and substituting the matrix from (5.9) implies that

D{

[
ξ̂

λ̂

]
} =

[
N KT

K 0

]−1

·D{

[
c

κ0

]
} ·

[
N KT

K 0

]−1

=

= σ2
0

[
N KT

K 0

]−1 [
N 0

0 0

][
N KT

K 0

]−1

=

= σ2
0

[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1 0

0
(
KN−1KT

)−1

]
, (5.16)

which, upon comparing to (5.9), reveals the relation[
D{ξ̂} X

XT −D{λ̂}

]
= σ2

0

[
N KT

K 0

]−1

. (5.17)

Here the symbol X represents a term of no particular interest; note that it does not
represent the covariance C{ξ̂, λ̂}, which turns out to be zero.

Case 2: The results for case 2 are slightly different, because we work with a system
of equations involving N+KTK rather than N itself. Thus, rather than the system
of equations shown in (5.15), we work with the modified system[

ξ̂

λ̂

]
=

[
N +KTK KT

K 0

]−1 [
c+KTκ0

κ0

]
. (5.18)

Note that the matrix in (5.15) has full rank even when matrix N is singular, so it
is not necessary to use the modified system (5.18). However, this modified system
has its own benefits, and it is consistent with equation (5.13) derived above.

Using the formulas for inverting a partitioned matrix (see (A.14) and (A.15))
and introducing the notation NK := (N + KTK) for the sake of brevity, we can
write[

NK KT

K 0

]−1

=

[
N−1

K −N−1
K KT

(
KN−1

K KT
)−1

KN−1
K N−1

K KT
(
KN−1

K KT
)−1(

KN−1
K KT

)−1
KN−1

K −
(
KN−1

K KT
)−1

]
.

(5.19)

Our goal is to express the inverted matrix in (5.19) in terms of the inverted
matrix in (5.15). We start by multiplying the former by the inverse of the latter
and then carry out some matrix algebra.
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[
N+KTK KT

K 0

]−1 [
N KT

K 0

]
=

[
N+KTK KT

K 0

]−1 [
N+KTK−KTK KT

K 0

]
=

=

[
Im 0

0 Il

]
−

[
N +KTK KT

K 0

]−1 [
KTK 0

0 0

]
=

[
Im 0

0 Il

]
−

[
0 0

K 0

]
=

=

[
N KT

K 0

]−1 [
N KT

K 0

]
−

[
0 0

K 0

]
=

=

[
N KT

K 0

]−1 [
N KT

K 0

]
−

[
0 0

0 Il

][
N KT

K 0

]
=

=

[
N KT

K 0

]−1

−

[
0 0

0 Il

][
N KT

K 0

]
. (5.20)

Multiplying the first and last products of (5.20) by the inverse of their last terms
and considering (5.17) reveals that[
N+KTK KT

K 0

]−1

=

[
N KT

K 0

]−1

−

[
0 0

0 Il

]
=

[
σ−2
0 D{ξ̂} X

XT −σ−2
0 D{λ̂} − Il

]
,

(5.21)

and therefore, in consideration of (5.19),

−
[
K
(
N +KTK

)−1
KT

]−1
= −σ−2

0 D{λ̂} − Il ⇒

D{λ̂} = σ2
0

{[
K
(
N +KTK

)−1
KT

]−1 − Il
}
. (5.22)

Alternative derivation of dispersion matrix The following alternative ap-
proach to deriving the dispersion matrix for case 2 was recognized by Dru Smith
and Kyle Snow during collaborative work, where, again, the abbreviation NK :=
(N +KTK) is used: The law of linear covariance propagation (law of error propa-
gation) allows us to write

D{

[
ξ̂

λ̂

]
} =

[
NK KT

K 0

]−1

·D{

[
c+KTκ0

κ0

]
} ·

[
NK KT

K 0

]−1

=

= σ2
0

[
NK KT

K 0

]−1

·

[
N 0

0 0

]
·

[
NK KT

K 0

]−1

=: σ2
0

[
Q11 Q12

QT
12 Q22

]
, (5.23a)

where, upon substitution of (5.19), the block matrices Q11, Q12, and Q22 turn out
to be

Q22 =
(
KN−1

K KT
)−1

K
(
N−1

K ·N ·N−1
K

)
KT

(
KN−1

K KT
)−1

, (5.23b)

Q12 =
(
N−1

K ·N ·N−1
K

)
KT

(
KN−1

K KT
)−1 −N−1

K KTQ22, (5.23c)
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Q11 =
[
N−1

K −N−1
K KT

(
KN−1

K KT
)−1

KN−1
K

]
·NN−1

K −Q12KN−1
K . (5.23d)

Now, we wish to reduce these matrices to simpler forms, for which the following
relationship is useful

N−1
K ·N ·N−1

K = N−1
K −N−1

K (KTK)N−1
K . (5.24)

Substituting (5.24) into (5.23b) leads to

Q22 =
(
KN−1

K KT
)−1

K
[
N−1

K −N−1
K (KTK)N−1

K

]
KT

(
KN−1

K KT
)−1

=

=
(
KN−1

K KT
)−1 − Il = σ−2

0 D{λ̂}. (5.25a)

Then, substituting (5.25a) into (5.23c) results in

Q12 =
(
N−1

K ·N ·N−1
K

)
KT

(
KN−1

K KT
)−1 −N−1

K KT
[(
KN−1

K KT
)−1 − Il

]
=

=
[
N−1

K −N−1
K (KTK)N−1

K

]
KT

(
KN−1

K KT
)−1−N−1

K KT
(
KN−1

K KT
)−1

+N−1
K KT=

= 0 = C{ξ̂, λ̂}, (5.25b)

and, therefore, (5.23d) reduces to

Q11 =
[
N−1

K −N−1
K KT

(
KN−1

K KT
)−1

KN−1
K

]
·NN−1

K =

= N−1
K −N−1

K (KTK)N−1
K −N−1

K KT (KN−1
K KT )−1K

[
N−1

K −N−1
K (KTK)N−1

K

]
=

= N−1
K −N−1

K KT
(
KN−1

K KT
)−1

KN−1
K = σ−2

0 D{ξ̂}. (5.25c)

Summary of dispersion matrices For convenience, we summarize the disper-
sion matrices of the estimated parameters and the estimated Lagrange multipliers
for both cases 1 and 2 as follows:

Case 1 (N nonsingular):

D{ξ̂} = σ2
0

[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1

]
D{λ̂} = σ2

0

(
KN−1KT

)−1

(5.26a)

(5.26b)

Case 2 (N singular):

D{ξ̂} = σ2
0

(
N +KTK

)−1 − σ2
0

(
N +KTK

)−1
KT ·

·
[
K
(
N +KTK

)−1
KT

]−1
K
(
N +KTK

)−1

D{λ̂} = σ2
0

{[
K
(
N +KTK

)−1
KT

]−1 − Il
}

(5.27a)

(5.27b)

Cases 1 and 2:

C{ξ̂, λ̂} = 0 (5.28)



112 CHAPTER 5. THE GMM WITH CONSTRAINTS

As with the parameter estimates, the dispersion matrices for both cases 1 and 2
have a similar form, with every occurrence ofN in case 1 being replaced byN+KTK
in case 2, the exception being the identity matrix Il appearing in case 2. Also note
that the dispersion matrices in (5.26a) and (5.27a) are nothing more than the coeffi-
cient matrices multiplying the vector c in (5.8d) and (5.13), respectively, multiplied
by the (unknown) variance component σ2

0 . Finally, it is clear from the above that

the constraints reduce the dispersion matrix of ξ̂ compared to the corresponding
dispersion matrix within the GMM (without constraints) derived in Chapter 3 (cf.
(3.13)).

5.4 Residuals and Adjusted Observations

For both cases 1 and 2, the residual vector ẽ and vector of adjusted observations µ̂y

may be obtained in a straightforward way after the estimation of the parameters
by use of the formulas

ẽ = y −Aξ̂, (5.29)

and

Ê{y} = µ̂y = y − ẽ. (5.30)

Here, µ̂y is also interpreted as an estimate of the true, and thus unknown, vector
of observables µy, where E{y} = µy.

The dispersion matrix for the residual vector ẽ can be derived from application
of the law of covariance propagation as follows: Since

D{ẽ} = D{y −Aξ̂} = D{y}+AD{ξ̂}AT − 2C{y, Aξ̂}, (5.31)

we start by deriving the covariance matrix C{y, Aξ̂}. For case 1 we have

C{y, Aξ̂} = In ·D{y} ·
{
A
[
N−1ATP −N−1KT (KN−1KT )−1KN−1ATP

]}T
=

(5.32a)

= σ2
0P

−1
[
PAN−1AT − PAN−1KT (KN−1KT )−1KN−1AT

]
= (5.32b)

= σ2
0A

[
N−1 −N−1KT (KN−1KT )−1KN−1

]
AT = (5.32c)

= AD{ξ̂}AT = D{Aξ̂} = C{y, Aξ̂}. (5.32d)

Then, by substituting (5.32d) into (5.31), we arrive at

D{ẽ} = D{y} −AD{ξ̂}AT ⇒ (5.33a)

D{ẽ} = σ2
0 ·

{
P−1 −A

[
N−1 −N−1KT (KN−1KT )−1KN−1

]
AT

}
(5.33b)

and

D{ẽ} = σ2
0 ·

[
P−1 −AN−1AT +AN−1KT (KN−1KT )−1KN−1AT

]
. (5.33c)
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Note that (5.33c) reveals that the dispersion matrix for the residuals within the
GMM with constraints is larger than that for the GMM without constraints (cf.
(3.14a)). For case 2, one only needs to replace the matrix N−1 with (N +KTK)−1

in formulas (5.32) and (5.33).
Obviously, the dispersion matrix for the adjusted observations is written as

D{µ̂y} = D{y − ẽ} = D{Aξ̂} = AD{ξ̂}AT , (5.34)

implying that the dispersion matrix of the residual vector can be expressed as

D{ẽ} = D{y} −D{µ̂y}, (5.35)

revealing once again that the dispersion matrix of the residuals is smaller than that
of the observations.

5.4.1 A Numerical Example

A simple numerical example can be used to verify several of the equations derived
above. We borrow our example from Smith et al. (2018), which is a small leveling
network depicted in Figure 5.1.

246 m

160 m

164 m

135 m 124 m

8
0
 m

192 m

130 m157 m

96 m 85 m 111 m

1

2

3

4 5

6

7

Figure 5.1: Small leveling network copied from Smith et al. (2018)

The matrices of interest are shown below. The unknown parameters (heights of
stations) are ordered according to the seven numbered stations in Figure 5.1. The
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connection between the observations and the stations is reflected in the coefficient
matrix A.

A
12×7

=



1 0 0 0 0 −1 0

0 0 −1 0 0 1 0

1 0 0 −1 0 0 0

0 −1 0 1 0 0 0

0 1 0 0 −1 0 0

0 0 0 0 0 −1 1

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

0 0 0 −1 0 1 0

0 0 0 1 0 0 −1

0 0 0 0 −1 0 1

0 0 −1 0 1 0 0



, y
12×1

=



0.333557

0.365859

2.850824

−0.948661

−1.040570

−0.824317

−1.989007

−0.528043

2.517497

−1.692892

−0.296337

−0.162582



m,

K
3×7

=

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

 , κ0
3×1

=

68.856966.9471

68.1559

m,

P−1 = diag(2.214, 1.440, 1.476, 1.215, 1.116, 0.720, 1.728, 1.170, 1.413,

0.864, 0.765, 0.999) · 10−6 m2

Since the matrix A does not have full column rank, the problem belongs to
case 2.

5.5 Estimated Variance Component

The estimated variance component for the GMM with constraints is derived similar
to that for the GMM without constraints as shown in Section 3.3. The estimation
is based on the principle

σ̂2
0

ẽTP ẽ
=

σ2
0

E{ẽTP ẽ}
, (5.36)

with the assumption E{σ̂2
0} = σ2

0 . Furthermore, for the purpose of validating
the constraints via hypothesis testing, we wish to decompose the quadratic form
ẽTP ẽ into the sum of two quadratic forms, viz. ẽTP ẽ = Ω + R, where Ω is the
sum of squared residuals (SSR) associated with the LESS within the GMM without
constraints. In the following, we derive these components for both cases 1 and 2.

5.5.1 Case 1 — Matrix N is invertible ⇒ rkA = m

ẽTP ẽ =
(
y −Aξ̂

)T
P
(
y −Aξ̂

)
=
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=
[(
y −AN−1c

)
−AN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)]T
P ·

·
[(
y −AN−1c

)
−AN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)]
=

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
−

−
(
y −AN−1c

)T
PAN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)
−

−
(
κ0 −KN−1c

)T (
KN−1KT

)−1
KN−1ATP

(
y −AN−1c

)
+

+
(
κ0 −KN−1c

)T (
KN−1KT

)−1
KN−1

(
ATPA

)
N−1KT

(
KN−1KT

)−1·
·
(
κ0 −KN−1c

)
=

(Note that ATP
(
y −AN−1c

)
= 0.)

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
+
(
κ0 −KN−1c

)T (
KN−1KT

)−1·
·
(
κ0 −KN−1c

)
=

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
+ λ̂T

(
KN−1KT

)
λ̂ = Ω+R (5.37)

The scalars Ω and R defined as

Ω :=
(
y −AN−1c

)T
P
(
y −AN−1c

)
(5.38a)

and

R :=
(
κ0 −KN−1c

)T (
KN−1KT

)−1(
κ0 −KN−1c

)
, (5.38b)

respectively.
Thus we have decomposed the quadratic form ẽTP ẽ into components Ω and R.

Obviously, both Ω and R are random numbers since they are both functions of the
random vector c. It turns out that they are also uncorrelated. The random vari-
able Ω is associated with the LESS within the GMM without constraints, whereas R
is due to the addition of the constraints κ0 = Kξ. From (5.38b) we see that R is
always positive, revealing that the inclusion of constraints increases the value of
ẽTP ẽ. The random variables Ω and R are used for hypothesis testing as discussed
in Chapter 9.

We now derive the expectation of ẽTP ẽ.

E{ẽTP ẽ} = E{Ω}+ E{R} =

= (n−m)σ2
0 + E{λ̂T

(
KN−1KT

)
λ̂} = using (3.29) for E{Ω}

= (n−m)σ2
0 + tr

[(
KN−1KT

)
E{λ̂ λ̂T }

]
=

= (n−m)σ2
0 + tr

[(
KN−1KT

)(
D{λ̂}+ E{λ̂}E{λ̂}T

)]
=

(with E{λ̂} = 0 and D{λ̂} = σ2
0

(
KN−1KT

)−1
)

= (n−m)σ2
0 + tr

[(
KN−1KT

)
σ2
0

(
KN−1KT

)−1]
=

= (n−m+ l)σ2
0 (5.39)
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Substitution of (5.37) and (5.39) into (5.36) yields the following formula for the
estimated variance component:

σ̂2
0 =

(
y −AN−1c

)T
P
(
y −AN−1c

)
n−m+ l

+

+

(
κ0 −KN−1c

)T (
KN−1KT

)−1(
κ0 −KN−1c

)
n−m+ l

. (5.40)

Other useful forms of ẽTP ẽ are derived below starting with (5.37).

ẽTP ẽ =
(
y −AN−1c

)T
P
(
y −AN−1c

)
+ λ̂T

(
KN−1KT

)
λ̂ =

= yTPy − cTN−1c−
(
κT
0 − cTN−1KT

)
λ̂ = using (5.8c)

= yTPy − cTN−1
(
c−KT λ̂

)
− κT

0 λ̂ = using (5.8a)

= yTPy − cT ξ̂ − κT
0 λ̂ =

= yTP
(
y −Aξ̂

)
− κT

0 λ̂ =

= yTP ẽ− κT
0 λ̂ (5.41)

5.5.2 Case 2 — Matrix N is singular ⇒ rkA < m

ẽTP ẽ =

=
{
y −A

(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]}T
P
{
y −A

(
N +KTK

)−1·
·
[
c+KT

(
κ0 − λ̂

)]}
=

= yTPy − yTPA
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−

[
c+KT

(
κ0 − λ̂

)]T ·
·
(
N +KTK

)−1
ATPy +

[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1·

·
(
ATPA+KTK −KTK

)(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
=

= yTPy − cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−

[
c+KT

(
κ0 − λ̂

)]T ·
·
(
N +KTK

)−1
c+

[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−

−
[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1
KTK

(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
=

= yTPy −
((((((((((((((((

cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−

− cT
(
N +KTK

)−1
c−

hhhhhhhhhhhhh

(
κ0 − λ̂

)T
K
(
N +KTK

)−1
c+

+
((((((((((((((((

cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
+

hhhhhhhhhhhhh

(
κ0 − λ̂

)T
K
(
N +KTK

)−1
c+

+
(
κ0 − λ̂

)T
K
(
N +KTK

)−1
KT

(
κ0 − λ̂

)
− ξ̂TKTKξ̂ =

= yTPy − cT
(
N +KTK

)−1
c+

(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT

](
κ0 − λ̂

)
−

− κT
0 κ0

(5.42)
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Now we compute the expectation for ẽTP ẽ.

E{ẽTP ẽ} =

= E{yTPy − cT
(
N +KTK

)−1
c
]
+

+
(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT

](
κ0 − λ̂

)
− κT

0 κ0} =

= E{yTP
[
y −A

(
N +KTK

)−1
c
]}

+ E{
(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT

]
·

·
(
κ0 − λ̂

)}
− E{κT

0 κ0} =

= trP
[
In −A

(
N +KTK

)−1
ATP

]
E{yyT }+ tr

[
K
(
N +KTK

)−1
KT

]
·

· E{
(
κ0 − λ̂

)(
κ0 − λ̂

)T } − trE{κT
0 κ0} =

(Note that E{
(
κ0 − λ̂

)(
κ0 − λ̂

)T } = D{κ0 − λ̂} + E{κ0 − λ̂}E{κ0 − λ̂}T and

D{κ0− λ̂} = D{λ̂} = σ2
0

{[
K(N +KTK)−1K

]−1− Il
}
, and E{κ0− λ̂} = Kξ, and

E{yyT } = D{y}+ E{y}E{y}T = σ2
0P

−1 +AξξTAT ).

= trP
[
In −A

(
N +KTK

)−1
ATP

](
σ2
0P

−1 +AξξTAT
)
+

+ tr
[
K
(
N +KTK

)−1
KT

][
D{λ̂}+ E{κ0 − λ̂}E{κ0 − λ̂}T

]
− trKξξTKT =

= tr
[
σ2
0In + PAξξTAT − PA

(
N +KTK

)−1
ATσ2

0 − PA
(
N +KTK

)−1
ATPA·

· ξξTAT
]
+ tr

[
K
(
N +KTK

)−1
KT

]({[
K
(
N +KTK

)−1
KT

]−1 − Il
}
σ2
0+

+KξξTKT
)
− trKξξTKT =

= σ2
0n+ tr ξξTN − σ2

0 tr
(
N +KTK

)−1
N − tr

(
N +KTK

)−1
NξξTN + σ2

0l−

− σ2
0 tr

[
K
(
N +KTK

)−1
KT

]
+ tr

[(
N +KTK

)−1
KTKξξTKTK

]
−

− trKξξTKT =

= σ2
0n− σ2

0 tr
(
N +KTK

)−1(
N +KTK

)
+ σ2

0l+

+ tr
[
Im −

(
N +KTK

)−1
N
]
ξξTN − tr

[
Im −

(
N +KTK

)−1
KTK

]
ξξTKTK =

= σ2
0(n−m+ l) + tr

(
N +KTK

)−1
KTKξξTN − tr

(
N +KTK

)−1
NξξTKTK =

= σ2
0(n−m+ l) + tr

[(
N +KTK

)−1
KTKξξTN

]T−
− trNξξTKTK

(
N +KTK

)−1
= σ2

0(n−m+ l)

⇒ E{ẽTP ẽ} = σ2
0(n−m+ l) (5.43)

Finally, substituting (5.42) and (5.43) into (5.36) yields

σ̂2
0 =

yTPy − cT
(
N +KTK

)−1
c

(n−m+ l)
+

+

(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT

](
κ0 − λ̂

)
− κT

0 κ0

(n−m+ l)
, (5.44a)
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or, by use of (5.12) and with NK := N +KTK for compactness,

σ̂2
0 =

yTPy − cTN−1
K c+

(
κ0 −KN−1

K c
)T (

KN−1
K KT

)(
κ0 −KN−1

K c
)
− κT

0 κ0

(n−m+ l)
,

(5.44b)

or

σ̂2
0 =

ẽTP ẽ

(n−m+ l)
. (5.44c)

We cannot directly identify Ω and R in (5.42) as we could in case 1. Therefore, we
define Ω as

Ω =
(
y −AN−c

)T
P
(
y −AN−c

)
, (5.45)

and R as

R = ẽTP ẽ− Ω, (5.46)

where ẽTP ẽ is given in (5.42). The symbol N− in (5.45) stands for a generalized
inverse of the matrix N . While generalized inverses are beyond the scope of these
notes, the following generalized inverse is shown so that readers unfamiliar with the
topic can still make use of equation (5.45). First, assume that the matrix N and
vector c have been partitioned as follows:

N
m×m

=

N11
q×q

N12

N21 N22

 and c
m×1

=

 c1
q×1

c2

 , (5.47)

where the q × q submatrix N11 has full rank q, i.e., rkN11 = q := rkN . Note
that such a partitioning can always be formed, even if the parameters in ξ must be

reordered to do so. Then, the m×m matrix G :=
[
N−1

11 0
0 0

]
is a generalized inverse

of N and thus can be used in (5.45) for N−, which simplifies that equation to

Ω = yTPy − cT1 N
−1
11 c1 if rkN11 = rkN. (5.48)

5.6 Hypothesis Test Using the Estimated Variance
Component

The following ratio is formed for both cases 1 and 2 for the purposes of hypothesis
testing (see Chapter 9 for more details on hypothesis testing):

T :=
R/(l −m+ q)

Ω/(n− q)
∼ F (l −m+ q, n− q), with q := rk(A). (5.49)
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The ratio T is called a Test statistic. It is assumed to have an F -distribution with
l −m+ q and n− q degrees of freedom.1 The hypothesis test is then stated as

H0 : Kξ = κ0 versus HA : Kξ ̸= κ0, (5.50)

where H0 is called the null hypothesis and HA is called the alternative hypothesis.
For some chosen significance level α,

Accept H0 : if T ≤ Fα,l−m+q,n−q

Reject H0 : if T > Fα,l−m+q,n−q,

where Fα,l−m+q,n−q is taken from a table of critical values for the F -distribution.
The critical values for certain values of r1 and r2 are listed in Appendix C. If
MATLAB is available, the critical value may be generated by use of the MATLAB
command finv(1− α,r1,r2).

Note that the redundancy r2 := n − q represents the degrees of freedom for
the system of equations if no constraints were applied, whereas the redundancy
r1 := l−m+ q represents the increase in degrees of freedom due to the constraints,
i.e.

r = r1 + r2 = (l −m+ q) + (n− q) = n−m+ l, (5.51)

which agrees with (5.3). In the case that matrix A has full column rank (i.e.,
rkA = q = m), then the redundancies reduce to r1 := l and r2 := n−m, respectively.

5.7 Practice Problems

1. Derive the expectation of the vector of estimated parameters ξ̂ given in (5.8d).

Is ξ̂ an unbiased estimator of the vector of unknown parameters ξ?

2. Solve the following problems for the data given in Section 5.4.1:

(a) Confirm that N = ATPA is rank deficient and that the rank condition
(5.1c) is satisfied.

(b) Compute the vector of estimated parameters ξ̂ by (5.13) and confirm
that it agrees with that obtained by (5.18).

(c) Compute the dispersion matrices of ξ̂ and λ̂ using (5.27a) and (5.27b),
respectively, and compare to that obtained by (5.21).

Note that the matrix to invert in (5.18) may be ill-conditioned (nearly singu-
lar) in this case due to the relative magnitude of the elements of matrices N
and K. To increase numerical stability, you may need to scale matrix K and
vector κ0 before using them in (5.18). Try scaling by 104. No scaling should
be necessary for the other formulas.

1The assumption of F -distribution is based on an underlying assumption that the residuals
are normally distributed, which means that functions of their squares, such as Ω and R, have a
χ2-distribution. The ratio of two independent variables that each have a χ2-distribution is itself
a random variable with F -distribution. Recall that no assumption about the probability density
function of the random errors was required for the derivation of their least-squares prediction.
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3. With reference to Section 5.4.1, we now simulate case 1 by changing the third
element of the last row of matrix A from −1 to 0 and by changing the last
element of vector y from −0.162582 to 67.992. All matrices involving N and
vectors involving y must be recomputed accordingly.

(a) Confirm that the revised matrix N = ATPA has full rank.

(b) Compute the vector of estimated parameters ξ̂ by both (5.8d) and (5.13)
and confirm that they are equal.

(c) Compute the dispersion matrices of ξ̂ and λ̂ using (5.17) and (5.21) and
confirm that they are equal.

(d) Compute the dispersion matrices using the formulas for case 1, (5.26a)
and (5.26b), and confirm that they agree with the respective formulas
for case 2, (5.27a) and (5.27b).

Note that the solution of this problem will not match that of the preceding
problem; they are different problems.

4. Using the GMM with constraints, constrain the height of pointD in problem 9
of Section 3.6 to 1928.277 ft and check that the LESS agrees with what you
computed in parts (b), (c), and (d) of that problem.

5. By imposing certain constraints upon the unknown parameters, the affine
transformation problem presented in Problem 8 of Section 3.6, can be con-
verted to an orthogonality-preserving transformation (only one rotation angle
instead of two), or, by a different set of constraints, it can be converted to
a similarity transformation (one rotation angle and one scale factor). Using
the data from Problem 8, setup the GMM with constraints, state the model
redundancy, and compute the LESS for the unknown parameters and variance
component in the following two cases:

(a) Orthogonality-preserving transformation: Impose a constraint on the
second rotation angle so that ϵ = 0 via the following:

ξ4/ξ6 = ξ5/ξ3 ⇒ ξ3ξ4 − ξ5ξ6 = 0.

Note that linearization is required in this case.

(b) Similarity transformation: Impose the constraints that ϵ = 0 and ω1 = ω2

via the following:

ξ3 − ξ6 = 0 and ξ4 − ξ5 = 0.

6. To monitor deformation, points P1 and P2 were established between deform-
ing and non-deforming regions, respectively. Distances were observed from
three known points, A, B, and C, to both points P1 and P2 (see Figure 5.2)
The 2D coordinates of the known points are listed in Table 5.1, and the
observations are listed in Table 5.2. The variance of each observation is
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σ2 = (0.005 ]m)2. Distances observed from the same point have a correlation
coefficient of ρ = 0.4. Otherwise the observations are uncorrelated. Suppose
the baseline between points P1 and P2 is thought to be 251.850m (perhaps
determined from a previous survey), and it is decided to use this value as a
constraint in a least-squares adjustment. Determine the following by use of
the LESS within the GMM with constraints:

(a) The redundancy of the model.

(b) The 2D coordinates of points P1 and P2 and their dispersion matrix.

(c) The vector of observation residuals and its dispersion matrix.

(d) The estimated variance component.

(e) Setup a hypothesis test with significance level α = 0.05 and determine if
the constraint is consistent with the observations.

A

P1

P2

B

C

Figure 5.2: Observations from known points A, B, and C

Table 5.1: Coordinates of known points

Station X [m] Y [m]

A 456.351 500.897

B 732.112 551.393

C 984.267 497.180
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Table 5.2: Observations from known points A, B, and C

From To Obs. [m]

A P1 183.611

A P2 395.462

B P1 226.506

B P2 181.858

C P1 412.766

C P2 171.195

7. The data plotted in Figure 3.2 are listed in Table 5.3 below, where the x-
coordinates are assumed to be known and the y-coordinates were measured
independently and have a common variance of σ2 = (1 cm)2.

Now suppose a fitted parabola must pass through data point number 5 exactly.
Compute the LESS within the GMM with constraints for the three unknown
parameters of the parabola and form a hypothesis test to check the validity
of the constraint.

Table 5.3: Known x-coordinates and measured y-coordinates plotted in Figure 3.2

No. xi [m] yi [m]

1 1.001 1.827

2 2.000 1.911

3 3.001 1.953

4 4.000 2.016

5 5.000 2.046

6 6.003 2.056

7 7.003 2.062

8 8.003 2.054

9 9.001 2.042

10 9.998 1.996

11 11.001 1.918

12 12.003 1.867
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5.8 Summary Formulas for the Least-Squares So-
lution Within the Gauss-Markov Model with
Constraints

The Gauss-Markov Model with constraints is given by

y
n×1

= A
n×m

ξ + e, e ∼ (0, σ2
0P

−1), rkA =: q ≤ m,

κ0
l×1

= K
l×m

ξ, rkK =: l ≥ m− q, rk
[
AT , KT

]
= m.

Table 5.4: Summary formulas for the LESS within the GMM with
constraints

Quantity Formula Eq.

Model redundancy r = n−m+ rkK = n−m+ l (5.3)

Vector of estimated
parameters, when
rkA = m

ξ̂ =

N−1c+N−1KT
(
KN−1KT

)−1(
κ0−KN−1c

) (5.8d)

Dispersion matrix
for estimated
parameters, when
rkA = m

D{ξ̂} =

σ2
0 ·
[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1

] (5.26a)

Vector of estimated
parameters, when
rkA < m

ξ̂ =
(
N +KTK

)−1
c+

(
N +

KTK
)−1

KT
[
K
(
N +KTK

)−1
KT

]−1[
κ0 −K

(
N +KTK

)−1
c
] (5.13)

Dispersion matrix
for estimated
parameters, when
rkA < m

D{ξ̂} =

σ2
0 ·
[
N−1

K −N−1
K KT

(
KN−1

K KT
)−1

KN−1
K

]
with NK := N +KTK

(5.27a)

Vector of predicted
residuals

ẽ = y −Aξ̂ (5.29)

Dispersion matrix
for residuals, when
rkA = m

D{ẽ} = σ2
0 ·
{
P−1 −A

[
N−1 −

N−1KT (KN−1KT )−1KN−1
]
AT

} (5.33b)

Continued on next page
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Quantity Formula Eq.

Dispersion matrix
for residuals, when
rkA < m

D{ẽ} = σ2
0 ·
(
P−1 −A

{
(N +KTK)−1 − (N +

KTK)−1KT [K(N +KTK)−1KT ]−1K(N +
KTK)−1

}
AT

) (5.33b)

Sum of squared
residuals (SSR)

SSR = ẽTP ẽ
(5.41)
(5.42)

Estimated variance
component

σ̂2
0 = (ẽTP ẽ)/r (5.44c)

Vector of adjusted
observations

µ̂y = y − ẽ (5.30)

Dispersion matrix
for adjusted
observations

D{µ̂y} = A·D{ξ̂}·AT (5.34)

Continued from previous page



Chapter 6

The Gauss-Markov Model
with Stochastic Constraints

6.1 Model Definition

The Gauss-Markov Model (GMM) with stochastic constraints is similar in form
to the GMM with constraints shown in Chapter 5, with one important difference:
the constraints in the stochastic case are specified with some level of uncertainty,
expressed in the form of a given weight matrix P0, or an associated cofactor matrix
Q0 := P−1

0 . The model reads

y
n×1

= A
n×m

ξ + e, rkA =: q ≤ min{m,n}, (6.1a)

z0
l×1

= K
l×m

ξ + e0, rkK =: l ≥ m− q, (6.1b)[
e

e0

]
∼ (

[
0

0

]
, σ2

0

[
P−1 0

0 P−1
0

]
). (6.1c)

Note that in this model there is no correlation between the random error vectors e
and e0. Also, the unknown variance component σ2

0 is common to both cofactor
matrices P−1 and P−1

0 . However, there may be correlations within one or both of
the cofactor matrices, just not between them. Depending on the application, the
data in the vector y can be thought of as new information, while the constraint
information in the vector z0 can be thought of as prior information (for example,
z0 could contain coordinates estimated from a previous adjustment, now considered
as prior information).

It is required that the column space of the augmented matrix [AT |KT ] spans
Rm, which holds when the rank condition

rk
[
AT |KT

]
= m (6.2)

is satisfied. The redundancy of the model is given by

r = n−m+ l. (6.3)
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In words, we can say that the redundancy is the number of observation equations
minus the number of parameters to estimate plus the number of constraint equa-
tions.

6.1.1 The Addition Theory of Normal Equations

Consider the case of two given data sets that, in part, depend on a set of common,
unknown model parameters. Starting with their associated systems of normal equa-
tions, eliminate all parameters from each system that are not common to both, for
instance by means of a “reduced weight matrix.” The two resulting sets of “reduced
normal equations” will then only contain common parameters. If there are any re-
maining common parameters that are of no interest (so-called nuisance parameters)
these may likewise be eliminated from both systems. The two systems of reduced
normal equations can now be added to each other in order to find the least-squares
solution for the entire system. Obviously, this procedure works for any number of
data sets, not just for two.

6.2 Least-Squares Solution

According to Schaffrin (1995), the LEast-Squares Solution (LESS) for the unknown
parameters ξ within model (6.1) may be derived by minimizing the Lagrange target
function

Φ(e, e0, ξ,λ,λ0) = eTPe+ eT0 P0e0 + 2
[
λT , λT

0

]([A
K

]
ξ +

[
e

e0

]
−

[
y

z

])
=

= stationary
e,e0,ξ,λ,λ0

. (6.4)

Here we simply consider (6.1) as an extended GMM and apply the addition
theory of normal equations, stated in Section 6.1.1, as follows:

[
AT KT

] [P 0

0 P0

][
A

K

]
· ξ̂ =

[
AT KT

] [P 0

0 P0

][
y

z0

]
(6.5a)

or (
N +KTP0K

)
ξ̂ = c+KTP0z0, (6.5b)

where [
N, c

]
:= ATP

[
A,y

]
. (6.6)

In the case where the matrix N is invertible, the Sherman-Morrison-Woodbury-
Schur formula (A.6a) may be used to invert the matrix on the left side of (6.5b) as
in the following:

ξ̂ =
(
N +KTP0K

)−1(
c+KTP0z0

)
= (6.7a)
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=
[
N−1 −N−1KT

(
P−1
0 +KN−1KT

)−1
KN−1

](
c+KTP0z0

)
=

= N−1c+N−1KTP0z0 +N−1KT
(
P−1
0 +KN−1KT

)−1·
·
(
−KN−1c−KN−1KTP0z0

)
=

= N−1c+N−1KT
(
P−1
0 +KN−1KT

)−1[(
P−1
0 +KN−1KT

)
P0z0 −KN−1c−

−KN−1KTP0z0
]
⇒

ξ̂ = N−1c+N−1KT
(
P−1
0 +KN−1KT

)−1(
z0 −KN−1c

)
. (6.7b)

Thus, the LESS (6.7b) can be viewed as a weighted average between the prior
and the new information. The vector z0 − KN−1c is referred to as a vector of
discrepancies. The solution can also be recognized as an update to the solution
ξ̂ = N−1c within the GMM (3.1). It is also interesting to express it as an update
to the LESS within the GMM with “fixed” constraints (5.1). This can be done

by changing the symbols ξ̂ and κ0 in (5.8d) to ξ̂K and z0, respectively, solving
for N−1c in terms of these renamed variables, and substituting into (6.7b), which
yields the following:

ξ̂ = ξ̂K +N−1KT
[(
P−1
0 +KN−1KT

)−1 −
(
KN−1KT

)−1](
z0 −KN−1c

)
. (6.8)

Note that as P−1
0 = Q0 → 0, ξ̂ → ξ̂K .

By applying the laws of covariance propagation to (6.7a), the dispersion matrix

for the vector of estimated parameters ξ̂ is computed as follows:

D{ξ̂} =
(
N +KTP0K

)−1
D{c+KTP0z0}

(
N +KTP0K

)−1
=

= σ2
0

(
N +KTP0K

)−1(
N +KTP0K

)(
N +KTP0K

)−1 ⇒

D{ξ̂} = σ2
0

(
N +KTP0K

)−1
= σ2

0

[
N−1 −N−1KT

(
P−1
0 +KN−1KT

)−1
KN−1

]
.

(6.9)

The subtraction in (6.9) implies that our knowledge of the parameters has improved
(variance decreased) by supplying the additional prior information, provided the
estimated variance component σ̂2

0 does not change much in doing so. Indeed, if the
new data, y, is consistent with the old, z0, then σ̂2

0 is not expected to change very
much when the data are combined. In contrast, σ̂2

0 is expected to increase if there
is inconsistency between the old and new information. In such a case, it may be
advisable to introduce a second variance component, one associated with the weight
matrix P and the other with P0. This is the purpose of the variance component
model, which is introduced in Part II.

We now present the residual vectors ẽ and ẽ0 (also called predicted random
error vectors). The residual vector ẽ for the observations y is computed by

ẽ = y −Aξ̂. (6.10)

The residual vector ẽ0 associated with the prior information z0 is

ẽ0 = z0 −Kξ̂ = (6.11a)
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=
(
z0 −KN−1c

)
−
(
KN−1KT + P−1

0 − P−1
0

)(
P−1
0 +KN−1KT

)−1·
·
(
z0 −KN−1c

)
=

=
(
z0 −KN−1c

)
−
[(
KN−1KT + P−1

0

)(
P−1
0 +KN−1KT

)−1−

− P−1
0

(
P−1
0 +KN−1KT

)−1
](
z0 −KN−1c

)
=

=
{
Il −

[
Il − P−1

0

(
P−1
0 +KN−1KT

)−1]}(
z0 −KN−1c

)
=

= P−1
0

(
P−1
0 +KN−1KT

)−1(
z0 −KN−1c

)
⇒

ẽ0 =
(
Il +KN−1KTP0

)−1(
z0 −KN−1c

)
. (6.11b)

The dispersion matrix of the residual vectors is derived as follows (see also
Practice Problem 2 in Section 6.6):

D{

[
ẽ

ẽ0

]
} = D{

[
y

z0

]
}+D{

[
A

K

]
ξ̂}−2C{

[
y

z0

]
,

[
A

K

]
ξ̂} = D{

[
y

z0

]
}−D{

[
A

K

]
ξ̂} =

(6.12a)

= σ2
0

[
P−1 0

0 P−1
0

]
− σ2

0

[
A

K

] [
N−1 −N−1KT

(
P−1
0 +KN−1KT

)−1
KN−1

]
·

·
[
AT KT

]
=

= σ2
0

[
P−1 −AN−1AT −AN−1KT

−KN−1AT P−1
0 −KN−1KT

]
+

+σ2
0

[
AN−1KT

KN−1KT

] (
P−1
0 +KN−1KT

)−1
[
KN−1AT KN−1KT

]
. (6.12b)

From (6.12b), we can write the dispersion matrices for the residual vectors individ-
ually as

D{ẽ} = σ2
0

(
P−1 −AN−1AT

)
+ σ2

0AN−1KT
(
P−1
0 +KN−1KT

)−1
KN−1AT ⇒

(6.13a)

D{ẽ} = σ2
0

[
P−1 −A

(
N +KTP0K

)−1
AT

]
, (6.13b)
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and

D{ẽ0} = σ2
0P

−1
0 − σ2

0KN−1KT + σ2
0KN−1KT

(
P−1
0 +KN−1KT

)−1
KN−1KT =

= σ2
0P

−1
0 − σ2

0KN−1KT
(
P−1
0 +KN−1KT

)−1·
·
(
P−1
0 +KN−1KT −KN−1KT

)
=

= σ2
0P

−1
0 − σ2

0KN−1KT
(
Il + P0KN−1KT

)−1
=

= σ2
0P

−1
0

(
Il + P0KN−1KT

)(
Il + P0KN−1KT

)−1 − σ2
0KN−1KT ·

·
(
Il + P0KN−1KT

)−1
=

= σ2
0P

−1
0

(
Il + P0KN−1KT

)−1
+ σ2

0KN−1KT
(
Il + P0KN−1KT

)−1−

− σ2
0KN−1KT

(
Il + P0KN−1KT

)−1 ⇒

D{ẽ0} = σ2
0P

−1
0

(
Il + P0KN−1KT

)−1
. (6.14)

We summarize by listing a few equivalent formulas for D{ẽ0}.

D{ẽ0} = σ2
0P

−1
0

(
Il + P0KN−1KT

)−1
= (6.15a)

= σ2
0

(
Il +KN−1KTP0

)−1
P−1
0 = (6.15b)

= σ2
0P

−1
0

(
P−1
0 +KN−1KT

)−1
P−1
0 = (6.15c)

= σ2
0

(
P0 + P0KN−1KTP0

)−1
= (6.15d)

= σ2
0

[
P−1
0 −K

(
N +KTP0K

)−1
KT

]
(6.15e)

The symmetry of the matrix D{ẽ0} has been exploited to get from (6.15a) to
(6.15b), using the rule for the transpose of a matrix product (A.1) and the rule for
the transpose of an inverse (A.2). Also (A.3) has been used in the above.

Now it remains to write a succinct form for the covariance matrix C{ẽ, ẽ0},
beginning with the off-diagonal element of (6.12b).

C{ẽ, ẽ0} = −σ2
0AN−1KT + σ2

0AN−1KT
(
P−1
0 +KN−1KT

)−1
KN−1KT =

(6.16a)

= −σ2
0AN−1KT

(
P−1
0 +KN−1KT

)−1(
P−1
0 +KN−1KT −KN−1KT

)
= (6.16b)

= −σ2
0AN−1KT

(
Il + P0KN−1KT

)−1
= (6.16c)

= −σ2
0A

(
Im +N−1KTP0K

)−1
N−1KT = (6.16d)

= −σ2
0A

(
N +KTP0K

)−1
KT (6.16e)

The line following (6.16c) is based on relations shown in equations (A.8). To see
how these equations are used, compare what follows the term −σ2

0A in (6.16c)
and (6.16d), with the first and last lines in (A.8).

We also note that in the GMM with stochastic constraints, the predicted residual
vector ẽ = y−Aξ̂ by itself is no longer a projection of y onto the range space of A.
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However, the vector
[
ẽT , ẽT0

]T
does represent a projection of

[
yT , zT

0

]T
onto the

range space of [AT , KT ]T , since[
ẽ

ẽ0

]
=

[
y −Aξ̂

z0 −Kξ̂

]
=

{[
In 0

0 Il

]
−

[
A

K

] (
N +KTP0K

)−1
[
ATP KTP0

]}[
y

z0

]
,

(6.17)

and the matrix in braces is idempotent, which can be verified by application of
(1.7a).

The adjusted observations and adjusted constraint values are easily computed
by

µ̂y = y − ẽ = Aξ̂, (6.18)

and

µ̂z0 = z0 − ẽ0 = Kξ̂. (6.19)

Their respective dispersion matrices are derived by simple application of variance
propagation as follows:

D{µ̂y} = D{Aξ̂} = A ·D{ξ̂} ·AT = σ2
0 ·A

(
N +KTP0K

)−1
AT , (6.20)

D{µ̂z0} = D{Kξ̂} = K ·D{ξ̂} ·KT = σ2
0 ·K

(
N +KTP0K

)−1
KT . (6.21)

Here, µ̂y is also interpreted as an estimate of the true, and thus unknown, vector
of observables µy, where E{y} = µy; likewise, E{z0} = µz0 .

With the help of (6.20) and (6.21), the dispersion matrices of the residual vectors
can by expressed as

D{ẽ} = D{y} −D{µ̂y}, (6.22a)

D{ẽ0} = D{z0} −D{µ̂z0}. (6.22b)

Alternative derivation of normal equations Starting with the Lagrange tar-
get function (6.4), the vector of random errors e and the vector of Lagrange mul-
tipliers λ can be eliminated by substitution of y − Aξ for e. Furthermore, by
introducing

−P−1
0 λ0 = e0 = z0 −Kξ, (6.23a)

as in Schaffrin (1995), the target function can be expressed equivalently as

Φ(ξ,λ0) = (y −Aξ)TP (y −Aξ) + 2λT
0

(
Kξ − z0

)
− λT

0 P
−1
0 λ0 = stationary

ξ,λ0

.

(6.23b)
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Minimizing the above target function leads to the following system of normal
equations: [

N KT

K −P−1
0

][
ξ̂

λ̂0

]
=

[
c

z0

]
. (6.24)

Using (6.1b) and (6.24), we can express the predicted residual vector ẽ0 as a function

of the vector of Lagrange multipliers λ̂0 as follows:

z0 = Kξ̂ + ẽ0 = Kξ̂ − P−1
0 λ̂0 ⇒ ẽ0 = −P−1

0 λ̂0. (6.25)

Therefore, the dispersion of ẽ0 is given also by

D{ẽ0} = P−1
0 D{λ̂0}P−1

0 . (6.26)

Assuming matrix N is invertible, from (6.24) we see that the dispersion of ξ̂

and λ̂0 can be found from

D{

[
ξ̂

λ̂0

]
} =

[
N KT

K −P−1
0

]−1

D{

[
c

z0

]
}

[
N KT

K −P−1
0

]−1

=

= σ2
0

[
N KT

K −P−1
0

]−1 [
N 0

0 P−1
0

][
N KT

K −P−1
0

]−1

=

= σ2
0

[
N KT

K −P−1
0

]−1 [
N−1 0

0 P0

]−1 [
N KT

K −P−1
0

]−1

=

= σ2
0

[
N +KTP0K 0

0 P−1
0 +KN−1KT

]−1

. (6.27)

The last line was reached by successively applying the rule for the product of two
inverses (A.3). From (6.27) we see that

D{λ̂0} = σ2
0

(
P−1
0 +KN−1KT

)−1
= σ2

0

[
P0 − P0K

(
N +KTP0K

)−1
KTP0

]
.

(6.28)

Finally, substituting (6.28) into (6.26) and applying the product-of-inverses rule,
we can write

D{ẽ0} = σ2
0P

−1
0

(
P−1
0 +KN−1KT

)−1
P−1
0 = σ2

0

(
P0 + P0KN−1KTP0

)−1
. (6.29)

Also, the off-diagonal blocks of (6.27) reveal that ξ̂ and λ̂0 are uncorrelated, viz.

C(ξ̂, λ̂0) = 0. (6.30)
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6.3 Variance Component Estimate

The derivation of the variance component estimate is shown here in detail. The
trace operator is employed analogously to what was done in Section 3.3. We also
make use of the following expectation and dispersion relationships:

E{c+KTP0z0} =
[
ATP KTP0

]
E{

[
y

z0

]
} =

=
[
ATP KTP0

] [A
K

]
ξ =

(
N +KTP0K

)
ξ, (6.31)

D{c+KTP0z0} = D{
[
ATP KTP0

] [ y

z0

]
} =

= σ2
0

[
ATP KTP0

] [
P−1 0

0 P−1
0

][
PA

P0K

]
= σ2

0

(
N +KTP0K

)
, (6.32)

as well as

E{
(
c+KTP0z0

)(
c+KTP0z0

)T } = D{c+KTP0z0}+
+ E{c+KTP0z0}E{c+KTP0z0}T ,

(6.33a)

E{yyT } = D{y}+ E{y}E{y}T = σ2
0P

−1 +AξξTAT , (6.33b)

E{z0zT
0 } = D{z0}+ E{z0}E{z0}T = σ2

0P
−1
0 +KξξTKT . (6.33c)

The estimated variance component is derived from the expectation of the com-
bined quadratic forms of the residual vectors, ẽTP ẽ+ẽT0 P0ẽ0, based on the principle

σ̂2
0

ẽTP ẽ+ ẽT0 P0ẽ0
=

σ2
0

E{ẽTP ẽ+ ẽT0 P0ẽ0}
. (6.34)

The derivation proceeds as follows:

E{ẽTP ẽ+ ẽT0 P0ẽ0} =

= E{
([ y

z0

]
−

[
A

K

]
ξ̂
)T [

P 0

0 P0

] ([ y

z0

]
−

[
A

K

]
ξ̂
)
} =

= E{yTPy + zT
0 P0z0 − 2ξ̂T

(
c+KTP0z0

)
+ ξ̂T

(
N +KTP0K

)
ξ̂} =

= E{yTPy + zT
0 P0z0 − 2ξ̂T

(
c+KTP0z0

)
+ ξ̂T

(
c+KTP0z0

)
} =

= E{yTPy + zT
0 P0z0 − ξ̂T

(
c+KTP0z0

)
} =

= E{yTPy + zT
0 P0z0 −

(
c+KTP0z0

)T (
N +KTP0K

)−1(
c+KTP0z0

)
} =

= E{tr
(
yTPy

)
+ tr

(
zT
0 P0z0

)
− tr

[(
c+KTP0z0

)T (
N +KTP0K

)−1·
·
(
c+KTP0z0

)]
} =
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= E{tr
(
PyyT

)
+ tr

(
P0z0z

T
0

)
− tr

[(
N +KTP0K

)−1(
c+KTP0z0

)
·

·
(
c+KTP0z0

)T ]} =

= tr
(
PE{yyT }

)
+ tr

(
P0E

{
z0z

T
0

})
− tr

[(
N +KTP0K

)−1
E{

(
c+KTP0z0

)
·

·
(
c+KTP0z0

)T }] =
= tr

(
PE{yyT }

)
+ tr

(
P0E

{
z0z

T
0

})
− tr

[(
N +KTP0K

)−1
D{c+KTP0z0}

]
−

− tr
[(
N +KTP0K

)−1
E{c+KTP0z0}E{c+KTP0z0}T

]
=

= tr
[
P
(
σ2
0P

−1 +AξξTAT
)]

+ tr
[
P0

(
σ2
0P

−1
0 +KξξTKT

)]
−

− σ2
0 tr

[(
N +KTP0K

)−1(
N +KTP0K

)]
−

− tr
[(
N +KTP0K

)−1(
N +KTP0K

)
ξξT

(
N +KTP0K

)]
=

= σ2
0 tr

(
PP−1

)
+ tr

(
PAξξTAT

)
+ σ2

0 tr
(
P0P

−1
0

)
+ tr

(
P0KξξTKT

)
−

− σ2
0 tr

(
Im

)
− tr

(
ξξTN + ξξTKTP0K

)
=

= σ2
0 tr

(
In
)
+ tr

(
ξTNξ

)
+ σ2

0 tr
(
Il
)
+ tr

(
ξTKTP0Kξ

)
−

− σ2
0 tr

(
Im

)
− tr

(
ξTNξ

)
− tr

(
ξTKTP0Kξ

)
=

= σ2
0(n+ l −m)

⇒ σ2
0 = (n+ l −m)−1·E{ẽTP ẽ+ ẽT0 P0ẽ0}

From the preceding derivation, it follows that

σ̂2
0 =

ẽTP ẽ+ ẽT0 P0ẽ0
n−m+ l

(6.35)

provides an unbiased estimate of the variance component σ2
0 . Here, the numerator

contains the sum of squared residuals

SSR : ẽTP ẽ+ ẽT0 P0ẽ0, (6.36)

while the denominator contains the model redundancy, r = n−m+ l, as specified
in (6.3).

6.4 Hypothesis Test Using the Estimated Variance
Component

Hypothesis testing can be used to validate that the least-squares solution is con-
sistent with the stochastic constraints in the model (6.1). The test statistic to be
computed is comprised of a ratio of two estimated, and therefore random, variances
and thus has an F -distribution (see Section 9.4). The idea is to extract from the
sum of the quadratic products in (6.36) the associated sum of squared residuals
that would have been computed for the LESS within the unconstrained GMM so-
lution, viz. ξ̂u = N−1c, had it been estimated. We label this quantity Ω. What
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remains after extracting Ω from (6.36) is a quantity that depends on the weight ma-
trix P0. We denote this remaining portion as R(P0) to indicate that it is a function
of P0. Both Ω and R(P0) are scalars, and both have random properties. These two
variables, which are used to form the test statistic, are defined as follows:

Ω :=
(
y −AN−1c

)T
P
(
y −AN−1c

)
= yTPy − cTN−1c, (6.37a)

R(P0) := ẽTP ẽ+ ẽT0 P0ẽ0 − Ω. (6.37b)

Note: If the matrix N in (6.37a) is singular, than N−1 can be replaced with any
generalized inverse of N as discussed on page 118.

Again we note that ξ̂u = N−1c represents the least-squares solution within
model (6.1) had the stochastic constraints been omitted. In the following deriva-

tions, we also make use of (6.7b), (6.11a), and (6.11b) to write formulas for ẽ0 and ξ̂

in terms of ξ̂u as follows:

ẽ0 = z0 −Kξ̂ =
(
Il +KN−1KTP0

)−1(
z0 −Kξ̂u

)
, (6.38)

ξ̂ = ξ̂u +N−1KTP0ẽ0. (6.39)

As long as N is non-singular (matrix A has full-column rank), we can determine
a formula for R(P0) independent of Ω. To do so, we begin with the quadratic
form for the full predicted residual vector appearing in (6.36) (also called sum of
squared residuals, SSR) and decompose it into Ω and R(P0). Note that the crossed-
out vector in the first line below is neglected since its contribution vanishes in the
quadratic product.

ẽTP ẽ+ ẽT0 P0ẽ0 =
([ y

z0

]
−
�
�
��

[
A

K

]
ξ̂
)T [

P 0

0 P0

] ([ y

z0

]
−

[
A

K

]
ξ̂
)
=

= yTPy − yTPAξ̂ + zT
0 P0z0 − zT

0 P0Kξ̂ =

= yTPy − yTPA
(
ξ̂u +N−1KTP0ẽ0

)
+ zT

0 P0z0 − zT
0 P0K

(
ξ̂u +N−1KTP0ẽ0

)
=

=
(
yTPy − yTPAξ̂u

)︸ ︷︷ ︸
Ω

+zT
0 P0

(
z0 −Kξ̂u

)︸ ︷︷ ︸
(Il+KN−1KTP0)ẽ0

−
(
c+KTP0z0

)T︸ ︷︷ ︸
ξ̂T (N+KTP0K)

N−1KTP0ẽ0 =

= Ω+ zT
0 P0

(
Il +KN−1KTP0

)
ẽ0 − ξ̂T

(
N +KTP0K

)
N−1KTP0ẽ0 =

= Ω+ zT
0

(
Il + P0KN−1KT

)
P0ẽ0 −

(
Kξ̂

)T (
Il + P0KN−1KT

)
P0ẽ0 =

= Ω+
(
z0 −Kξ̂

)T (
Il + P0KN−1KT

)
P0ẽ0 =

= Ω+
(
z0 −Kξ̂u

)T (
Il + P0KN−1KT

)−1(
Il + P0KN−1KT

)
·

·
(
P−1
0 +KN−1KT

)−1(
z0 −Kξ̂u

)
=

= Ω+
(
z0 −Kξ̂u

)T (
P−1
0 +KN−1KT

)−1(
z0 −Kξ̂u

)
=

= Ω+R(P0)

Thus, R(P0) is defined as

R(P0) :=
(
z0 −Kξ̂u

)T (
P−1
0 +KN−1KT

)−1(
z0 −Kξ̂u

)
, (6.40)
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with ξ̂u := N−1c and assuming the inverse of N exists, in which case (6.37b) and
(6.40) should yield identical results.

Finally, the test statistic T can be expressed as a ratio of R(P0) to Ω, viz.

T =
(ẽTP ẽ+ ẽT0 P0ẽ0 − Ω)/(l −m+ q)

Ω/(n− q)
=

=
R
(
P0

)
/(l −m+ q)

Ω/(n− q)
∼ F (l −m+ q, n− q). (6.41)

Recall from (6.2) that l := rk(K) and q := rk(A).
The following hypothesis test can now be performed, where N stands for the

normal distribution and z0 is an unknown quantity:

H0 : z0 ∼ N
(
Kξ, σ2

0P
−1
0

)
against HA : z0 ∼ N

(
z0 ̸= Kξ, σ2

0P
−1
0

)
. (6.42)

The term H0 is called the null hypothesis, and HA is the alternative hypothesis.
After choosing a level of significance α and taking Fα,l−m+q,n−q from a table of
critical values for the F -distribution, the following logic can be applied:

If T ≤ Fα,l−m+q,n−q accept H0; else reject H0. (6.43)

If MATLAB is available, the critical value may be generated by use of the MATLAB
command finv(1− α,l −m+ q,n− q).

6.5 Some Comments on Reproducing Estimators

In this section we briefly discuss two estimators within the Gauss-Markov Model
with stochastic constraints (6.1) that leave the constrained parameters unchanged,
i.e., unchanged from the values specified in z0. Such estimators are called repro-
ducing estimators. For example, in a network adjustment problem the a priori
coordinates of a station might need to be left unchanged by the adjustment.

For simplicity, we restrict the discussion to models of full rank, i.e., rkA = m,
where m is the number of columns of matrix A and also the number of parameters
to estimate.

One approach that is sometimes taken to obtain a reproducing estimator is to
simply adopt the estimator within the Gauss-Markov Model with fixed constraints
shown in (5.8d), which is optimal for that model. Two points should be made
regarding the use of that estimator within the model (6.1). First, it is not an
optimal estimator within model (6.1), and, second, its dispersion matrix shown in
(5.26a) and (5.27a) is not correct within model (6.1). In the following, we show the
proper dispersion matrix for the reproducing estimator within model (6.1). First,
we introduce different subscripts to denote various linear estimators for ξ.

ξ̂U denotes the unconstrained estimator ξ̂U = N−1c, which is not optimal within
model (6.1).
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ξ̂K denotes the reproducing estimator from equation (5.8d), which is not optimal
within model (6.1).

ξ̂S denotes the estimator from equation (6.7a), which is optimal within model (6.1).

Next we express the estimator ξ̂K as a function of the optimal estimator ξ̂S .
Using (6.5b), we can write(

N +KTP0K
)−1

c = ξ̂S −
(
N +KTP0K

)−1
KTP0z0. (6.44)

We then repeat (5.8d) for the estimator ξ̂K with N replaced by
(
N + KTP0K

)
and κ0 replaced by z0 according to the model (6.1). This is our starting point.

ξ̂K =
(
N +KTP0K

)−1
c+

+
(
N +KTP0K

)−1
KT

[
K
(
N +KTP0K

)−1
KT

]−1[
z0 −K

(
N +KTP0K

)−1
c
]

(6.45)

Now using (6.44) in (6.45), we can write

ξ̂K = ξ̂S −
(
N +KTP0K

)−1
KTP0z0+

+
(
N +KTP0K

)−1
KT

[
K
(
N +KTP0K

)−1
KT

]−1[
z0 −K

(
N +KTP0K

)−1
c
]
.

Factoring out −
(
N +KTP0K

)−1
KT

[
K
(
N +KTP0K

)−1
KT

]−1
yields

ξ̂K = ξ̂S −
(
N +KTP0K

)−1
KT

[
K
(
N +KTP0K

)−1
KT

]−1·

·
{[
K
(
N +KTP0K

)−1
KT

]
P0z0 − z0 +K

(
N +KTP0K

)−1
c
}
.

Now, from (6.7a) we recognize Kξ̂S in the above line; thus we write:

ξ̂K = ξ̂S +
(
N +KTP0K

)−1
KT

[
K
(
N +KTP0K

)−1
KT

]−1(
z0 −Kξ̂S

)
. (6.46)

We now have the fixed-constraint estimator ξ̂K expressed as a function of the op-
timal estimator for model (6.1), namely ξ̂S . Using a familiar formula for

(
N +

KTP0K
)−1

and noting that(
N +KTP0K

)−1
KTP0 = N−1KT

(
P−1
0 +KN−1KT

)−1
,

we can rewrite (6.46) as:

ξ̂K = ξ̂S +
[
N−1 −N−1KT

(
P−1
0 +KN−1KT

)−1
KN−1

]
KT ·

·
[
KN−1KT

(
P−1
0 +KN−1KT

)−1
P−1
0

]−1(
z0 −Kξ̂S

)
. (6.47)

Note the following useful relations:
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[
N−1 −N−1KT

(
P−1
0 +KN−1KT

)−1
KN−1

]
KT =

= N−1KT
(
P−1
0 +KN−1KT

)−1
P−1
0 (6.48)

and[
KN−1KT

(
P−1
0 +KN−1KT

)−1
P−1
0

]−1
=

= P0

(
P−1
0 +KN−1KT

)(
KN−1KT

)−1
. (6.49)

Equation (6.48) is derived as follows:[
N−1 −N−1KT

(
P−1
0 +KN−1KT

)−1
KN−1

]
KT =

= N−1KT −N−1KT
(
P−1
0 +KN−1KT

)−1(
P−1
0 +KN−1KT − P−1

0

)
=

= N−1KT −N−1KT
(
P−1
0 +KN−1KT

)−1(
P−1
0 +KN−1KT

)
−

−N−1KT
(
P−1
0 +KN−1KT

)−1(−P−1
0

)
=

= N−1KT −N−1KT +N−1KT
(
P−1
0 +KN−1KT

)−1
P−1
0 =

= N−1KT
(
P−1
0 +KN−1KT

)−1
P−1
0 .

Successive application of the rule for the product of inverted matrices was used in
equation (6.49). Substituting (6.48) and (6.49) into (6.47) yields:

ξ̂K = ξ̂S +N−1KT
(
P−1
0 +KN−1KT

)−1
P−1
0 P0

(
P−1
0 +KN−1KT

)
·

·
(
KN−1KT

)−1(
z0 −Kξ̂S

)
=

= ξ̂S +N−1KT
(
KN−1KT

)−1(
z0 −Kξ̂S

)
. (6.50)

Equation (6.50) gives an elegant expression of the fixed-constraint estimator ξ̂K
in terms of the optimal estimator ξ̂S . Realizing that the model with stochastic con-
straints (6.1) becomes the model with fixed constraints (5.1) when P−1

0 is replaced
by zero, we can replace (6.50) with (6.51) below, which is also obvious from our

starting equation (6.45). This also makes the appropriate dispersion matrix D{ξ̂K}
under model (6.1) easier to compute.

ξ̂K = ξ̂U +N−1KT
(
KN−1KT

)−1(
z0 −Kξ̂U

)
(6.51)

Note that C{z0,y} = 0, which allows us to apply the dispersion operator to (6.51)
as follows:

D{ξ̂K} = D{ξ̂U −N−1KT
(
KN−1KT

)−1
Kξ̂U}+

+D{N−1KT
(
KN−1KT

)−1
z0} ⇒

D{ξ̂S → ξ̂K} = σ2
0N

−1 − σ2
0N

−1KT
(
KN−1KT

)−1
KN−1+

+ σ2
0N

−1KT
(
KN−1KTP0KN−1KT

)−1
KN−1.

(6.52)
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The notation D{ξ̂S → ξ̂K} reflects that the dispersion is computed within model

(6.1) and that the optimal estimator ξ̂S within that model is replaced by the re-

producing estimator ξ̂K . Compare (6.52) to (5.16) to see that D{ξ̂K} increases
by

σ2
0N

−1KT
(
KN−1KTP0KN−1KT

)−1
KN−1

in this case.
We already noted that ξ̂K is a sub-optimal (reproducing) estimator within model

(6.1). We now give the optimal reproducing estimator without derivation (for details
see Schaffrin (1997a)).

ξ̂opt−rep = ξ̂S +KT
(
KKT

)−1(
z0 −Kξ̂S

)
(6.53)

The symbol ξ̂S on the right side of (6.53) represents the optimal (“non-reproduc-
ing”) estimator. Equation (6.53) is identical to (6.50) when N−1 is replaced by I.

The dispersion matrix is given by

D{ξ̂opt−rep} = D{ξ̂S}+D{KT
(
KKT

)−1(
z0 −Kξ̂S

)
} =

= σ2
0N

−1 − σ2
0N

−1KT
(
P−1
0 +KN−1KT

)−1
KN−1+

+ σ2
0K

T
(
KKT

)−1
P−1
0

(
P−1
0 +KN−1KT

)−1
P−1
0

(
KKT

)−1
K. (6.54)

Also note that

E{ξ̂opt−rep} = ξ, (6.55a)

z0 −Kξopt−rep = 0, (6.55b)

D{Kξ̂opt−rep} = D{z0} = σ2
0P

−1
0 . (6.55c)

6.6 Practice Problems

1. Given the target function

Φ(ξ,λ0) = (y −Aξ)TP (y −Aξ) + 2λT
0 (Kξ − z0)− λT

0 P
−1
0 λ0

from (6.23b), complete the following:

(a) With the help of (6.23a), show that equations (6.4) and (6.23b) are
equivalent.

(b) Formulate the Euler-Lagrange necessary conditions for the least-squares
solution of the unknown parameters ξ and the unknown vector of La-
grange multipliers λ0.

(c) Show how the sufficient condition for minimization is satisfied.

(d) Using the Euler-Lagrange necessary conditions that you formulated in

item 1.b, derive the vector of estimated parameters ξ̂ and check that it
agrees with (6.7b).
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2. Confirm that (6.12a) is correct by showing that

C{

[
y

z0

]
,

[
A

K

]
ξ̂} = D{

[
A

K

]
ξ̂}.

3. Repeat Problem 4 of Section 5.7, this time using the following constraints:

(a) Use 1928.277 ft as z0 and σ2 = (0.005 ft)2 for its variance. Compare your
answers to those of Problem 4. Are they the same? If so, what is your
explanation for that? Can a hypothesis test be formulated as described
in Section 6.4?

(b) Now add another constraint that requires the height of point D to be
248.750 ft greater than the height of point A, with variance σ2=2(0.0052)
ft2. Form a hypothesis test to check the consistency of the observation
equations and the constraint equations.

4. Repeat Problem 6 of Section 5.7. This time use 251.850m as z0 and σ2 =
(0.005m)2 for its variance. Compare your answers to those of Problem 6.
What changes, what stays the same? Form a hypothesis test to check the
consistency of the observation equations and the constraint equations.

5. Repeat Problem 7 of Section 5.7. This time use 2.046m as z0 and σ2 = (1 cm)2

for its variance. Compare your answers to those of Problem 7. What changes,
what stays the same? Form a hypothesis test to check the consistency of the
observation equations and the constraint equations.

6. Referring to the example problem in Section 5.4.1, set the vector κ0 shown
there equal to z0. Use the following matrix for P−1

0 :

P−1
0 =

 2.84067584875257 0.533989733139618 0.535740019844372

0.533989733139618 2.14132575448909 0.531530384522843

0.535740019844372 0.531530384522843 2.19379908268108

 ·

· (10−6)m2.

In addition, multiply the cofactor matrix P−1 by 0.017381 and the cofactor
matrix P−1

0 by 8.709801 to account for the variance components estimated
in Smith et al. (2018), which should result in a solution that agrees with the
results shown therein.

Complete the following:

(a) Estimate the heights of all points.

(b) Form a hypothesis test to check the consistency of the observation equa-
tions and the constraint equations.

7. Show that the total residual vector [ẽT , ẽT0 ]
T results from a projection of

[yT , zT
0 ]

T onto the range space of [AT , KT ]T . Hint: see equation (6.17).
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6.7 Summary Formulas for the Least-Squares So-
lution Within the Gauss-Markov Model with
Stochastic Constraints

The Gauss-Markov Model with stochastic constraints is given by

y
n×1

= A
n×m

ξ + e,

z0
l×1

= K
l×m

ξ + e0,[
e

e0

]
∼ (

[
0

0

]
, σ2

0

[
P−1 0

0 P−1
0

]
).

Table 6.1: Summary formulas for the LESS within the Gauss-
Markov Model with stochastic constraints

Quantity Formula Eq.

Model redundancy r = n−m+ l (6.3)

Vector of estimated
parameters

ξ̂ =
(
N +KTP0K

)−1(
c+KTP0z0

)
(6.7a)

Dispersion matrix
for estimated
parameters

D{ξ̂} = σ2
0 ·
(
N +KTP0K

)−1
(6.9)

Vector of predicted
residuals

ẽ = y −Aξ̂ (6.10)

Dispersion matrix
for residuals

D{ẽ} = σ2
0 ·
[
P−1 −A

(
N +KTP0K

)−1
AT

]
(6.13b)

Vector of residuals
of prior
information

ẽ0 = z0 −Kξ̂ (6.11a)

Dispersion matrix
for residuals of
prior information

D{ẽ0} = σ2
0 ·P−1

0

(
Il + P0KN−1KT

)−1
(6.14)

Sum of squared
residuals (SSR)

Ω +R(P0) = ẽTP ẽ+ ẽT0 P0ẽ0
(6.36),
(6.37b)

Continued on next page
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Quantity Formula Eq.

Estimated variance
component

σ̂2
0 = (ẽTP ẽ+ ẽT0 P0ẽ0)/(n−m+ l) (6.35)

Vector of adjusted
observations

µ̂y = y − ẽ (6.18)

Dispersion matrix
for adjusted
observations

D{µ̂y} = σ2
0 ·A

(
N +KTP0K

)−1
AT (6.20)

Vector of adjusted
constraints

µ̂z0 = z0 − ẽ0 (6.19)

Dispersion matrix
for adjusted
constraints

D{µ̂z0} = σ2
0 ·K

(
N +KTP0K

)−1
KT (6.21)

Continued from previous page
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Chapter 7

Sequential Adjustments

A sequential adjustment might be called for when two successive data sets must
be combined to estimate a single set of parameters. This type of adjustment is
especially useful when only the parameter estimates and their dispersion matrix,
but not the associated observations, are available from the first data set. Then,
update formulas can be used that allow the second data set to be adjusted in a
way that depends on the estimates from the first data set, with the results being
equivalent to what would have been computed from a simultaneous adjustment of
both data sets. Though we refer to the two data sets respectively as first and second,
they could be any two successive data sets that must be treated by a sequential
adjustment, e.g., they could be the ninth and tenth.

7.1 Model Definition

The data model for sequential adjustments is based on two data sets, denoted below
by subscripts 1 and 2, respectively. The first data set is comprised of n1 observations,
and the second is comprised of n2. It is assumed that the observations from the first
data set, y1, are uncorrelated with those from the second, y2, i.e., C{y1,y2} = 0.
Moreover, all parameters associated with the second data set are also associated
with the first data set. Thus, the data model is written as

y1
n1×1

= A1
n1×m

ξ + e1, (7.1a)

y2
n2×1

= A2
n2×m

ξ + e2, (7.1b)[
e1

e2

]
n×1

∼
([0

0

]
, σ2

0

[
P−1
1 0

0 P−1
2

])
. (7.1c)

The ranks of the coefficient (design) matrices A1 and A2 are such that

rkA1 = rk

[
A1

A2

]
= m, with rkA2 ≤ m. (7.2)
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Equations (7.1) and (7.2) show that the coefficient matrix A1 has full column
rank m, that there is no correlation between the random error vectors e1 and e2,
and that both data sets share a common variance component σ2

0 . Also, we define
the total number of observations, n, from both data-sets 1 and 2 as

n := n1 + n2. (7.3)

The following notation is adopted for normal-equation variables used in Sec-
tions 7.1 to 7.3:

[Nii, ci] = AT
i Pi [Ai, yi] , i ∈ {1, 2}, (7.4a)

so that

N11 = AT
1 P1A1, N22 = AT

2 P2A2, c1 = AT
1 P1y1, and c2 = AT

2 P2y2. (7.4b)

Subscripts on N and c have somewhat different meanings for sections that follow
Section 7.3; careful attention should be paid to their definitions given there.

We use a single hat to denote estimates that are based only on the first data set
and a double hat to denote estimates that are based on both data sets. For example,
the estimated parameter vector ξ̂ is based only on the first data set, whereas the

estimate
ˆ̂
ξ is based on both data sets. This makes it convenient to show estimates

based on both data sets as an update to estimates based on only the first data set.
We recognize a structural similarity between the data model shown in (7.1) and

the Gauss-Markov Model with stochastic constraints shown in (6.1). Given this
similarity, we may immediately write down a least-squares solution for ξ, and its
dispersion matrix, in the form of (6.7b) and (6.9), respectively, viewing the second
data set as analogous to stochastic constraints.

ˆ̂
ξ = ξ̂ +N−1

11 AT
2

(
P−1
2 +A2N

−1
11 AT

2

)−1(
y2 −A2ξ̂

)
=

= ξ̂ +
(
N11 +AT

2 P2A2

)−1
AT

2 P2

(
y2 −A2ξ̂

)
D{ˆ̂ξ} = D{ξ̂} − σ2

0N
−1
11 AT

2

(
P−1
2 +A2N

−1
11 AT

2

)−1
A2N

−1
11

(7.5)

(7.6)

(7.7)

Equation (A.8a) was used in going from (7.5) to (7.6). It is important to note
that the matrix

(
P−1
2 + A2N

−1
11 AT

2

)
is of size n2 × n2; whereas the size of matrix(

N11+AT
2 P2A2

)
ism×m. Therefore, if the second data set has only one observation

then n2 = 1, and the update via (7.5) is very fast! This may be the case, for example,
in a real-time application where one new observation is added at each epoch in time.

It is also noted that the matrix subtracted in (7.7) is positive definite, which
means that regardless of the precision of the second data set reflected in P2, the
dispersion of the parameters estimated from both data sets will be smaller than
that estimated from only the first data set.

7.2 Verification of the Sequential Adjustment

In this section we discuss verification of the sequential adjustment, the aim of which
is to confirm that the adjustment based on both data sets is consistent with an
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adjustment based only on the first data set. By consistent we mean that both the
first data set only and the combined data sets fit the model well, implying that
the residuals from an adjustment of the first data set would not change much in a
sequential adjustment of both data sets.

We can make use of the work done in Chapter 6 to write the estimated variance
component σ̂2

0 in a form composed of the sum of squared residuals (SSR) Ω based
on an adjustment of the first data set only and an update R(P2) for the contribu-
tion to the SSR from the second data set, analogous to the derivation of (6.40).
This facilitates hypothesis testing for the purpose of determining if the combined
adjustment is consistent with an adjustment based only on the first data set. The
decomposition of ˆ̂σ2

0 into Ω and R(P2) is expressed as follows:

ˆ̂σ2
0(n−m) = Ω +R(P2); with Ω = σ̂2

0(n1 −m) (7.8a)

and where

R(P2) = −
(
y2 −A2ξ̂

)T ˆ̂
λ with

ˆ̂
λ := −

(
P−1
2 +A2N

−1
11 AT

2

)−1(
y2 −A2ξ̂

)
. (7.8b)

Therefore, we can rewrite (7.8a) as

ˆ̂σ2
0(n−m) = Ω +

(
y2 −A2ξ̂

)T (
P−1
2 +A2N

−1
11 AT

2

)−1(
y2 −A2ξ̂

)
, (7.8c)

where the form of R(P2) is obviously similar to that of R(P0) in (6.40).
Then, the test statistic

T =
R/n2

Ω/(n1 −m)
∼ F (n2, n1 −m) (7.9)

can be computed to verify the sequential adjustment, i.e., that both the first data
set and the combined first and second data sets fit the model well. The test statistic
has an F -distribution with n2 and n1 −m degrees of freedom. For some specified
significance level α, we may claim that the observations from the second data set
are consistent with those from the first if T ≤ Fα,n2,n1−m. See Chapter 9 for more
on hypothesis testing.

7.3 Alternative Solution for the Normal Equations

Using the addition theory of normal equations, stated in Section 6.1.1, we may find
a matrix representation of the normal equations as follows, where again the double
hats above ξ refer to an estimate based on both data sets:(

AT
1 P1A1 +AT

2 P2A2

)ˆ̂
ξ =

(
AT

1 P1y1 +AT
2 P2y2

)
, (7.10a)

or (
N11 +N22

)ˆ̂
ξ =

(
c1 + c2

)
. (7.10b)

These normal equations lead to

N11
ˆ̂
ξ +N22

ˆ̂
ξ − c2 = c1 ⇒ (7.11a)
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N11
ˆ̂
ξ +AT

2
ˆ̂
λ2 = c1, with

ˆ̂
λ = P2

(
A2

ˆ̂
ξ − y2

)
⇒ (7.11b)

y2 = A2
ˆ̂
ξ − P−1

2
ˆ̂
λ. (7.11c)

Then, from (7.11b) and (7.11c), we can write the following system of least-squares
normal equations: [

N11 AT
2

A2 −P−1
2

] ˆ̂
ξ
ˆ̂
λ

 =

[
c1

y2

]
. (7.12)

From the first row of (7.12) we get

ˆ̂
ξ = N−1

11 c1 −N−1
11 AT

2
ˆ̂
λ = (7.13a)

= ξ̂ −N−1
11 AT

2
ˆ̂
λ. (7.13b)

Equation (7.13b) is an update formula as a function of the vector of estimated

Lagrange multipliers
ˆ̂
λ. Without further derivation, we can compare (7.13b) to

(7.5) to get an expression for the estimated vector of Lagrange-multiplier as

ˆ̂
λ = −

(
P−1
2 +A2N

−1
11 AT

2

)−1(
y2 −A2ξ̂

)
, (7.14)

which agrees with (7.8b). Applying covariance propagation to (7.13b), we find the

dispersion matrix of
ˆ̂
ξ to be

D{ˆ̂ξ} = D{ξ̂} − σ2
0N

−1
11 AT

2

(
P−1
2 +A2N

−1
11 AT

2

)−1
A2N

−1
11 , (7.15)

where we used the fact that C{y2, ξ̂} = 0, which indicates that the observations
from the second data set are uncorrelated with the estimated parameters based on
the first data set only.

7.4 Sequential Adjustment, Rank-Deficient Case

7.4.1 First Data Set Only

Suppose matrix A1 does not have full column rank, i.e. rkA1 =: q1 < m. Then we
may introduce a datum by further splitting the system of equations as was done in
Section 4.5. Let us split A1 into an n1 × q1 part denoted A11 and an n1 × (m− q1)
part denoted A12. Accordingly, we also split the parameter vector ξ into a q1 × 1
part ξ1 and a (m− q1)× 1 part ξ2. Thus, we have

A1 = [A11, A12] , rkA11 =: q1, and ξ =
[
ξT1 , ξ

T
2

]T
. (7.16a)

With this splitting, we introduce new terms for the normal equations, where it
is stressed that the subscripts on matrix N and vector c are used differently
than in the preceding sections. Most notably, the subscript 2 does not refer to
the second data set, but only to the location of a block in the matrix N .
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The terms N11, N12, and c1 are defined as follows:[
AT

11

AT
12

]
P1

[
A11 A12

]
=

[
AT

11P1A11 AT
11P1A12

AT
12P1A11 AT

12P1A12

]
=

[
N11 N12

AT
12P1A11 AT

12P1A12

]
,

(7.16b)

and

c1 = AT
11P1y1. (7.16c)

Note that we purposely did not use symbols N21 and c2 here, because they will be
defined in a different way in the next section.

Next we introduce given datum information ξ02 for ξ2, such that ξ2 → ξ02, where
the subscript 2 now obviously refers to the datum (the second part of ξ), rather than
a second data set. The formulas for the estimated parameters and their dispersion
matrix based on the first data set only can be copied from (3.43b) and (3.44),
respectively.

ξ̂1 = N−1
11

(
c1 −N12ξ

0
2

)
D{ξ̂1} = σ2

0N
−1
11

(7.17a)

(7.17b)

The estimated variance component σ̂2
0 is slightly different from that of (3.49) and

(3.52) and is given by the formula

σ̂2
0 =

yT
1 P1

(
y1 −A11ξ̂1 −A12ξ

0
2

)
(n1 − q1)

(7.17c)

or, equivalently,

σ̂2
0 =

(
yT
1 P1y1 − cT1 N

−1
11 c1

)
(n1 − q1)

. (7.17d)

Note that the steps taken from (3.49) to (3.52) can be used to go from (7.17c) to
(7.17d).

7.4.2 Both First and Second Data Sets

Now we introduce the second data set with a splitting analogous to the first, viz.

y2 = A21ξ1 +A22ξ2 + e2, e2 ∼
(
0, σ2

0P
−1
2

)
. (7.18)

The matrix A21 is of size n2 × q1, and A22 is of size n2 × (m− q1). No information
in the second data set refers to the datum choice; it only adds to the redundancy
provided by the first data set. Thus, the rank of the normal equation matrix is
unchanged, which is true also for the 2× 2-block coefficient matrix, i.e.,

rk

[
A11 A12

A21 A22

]
=: q = q1. (7.19)
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To be clear, the first subscript refers to the data set, 1 or 2, and the second subscript
refers to the part of the parameter vector ξ, first or second. The full least-squares
normal equations are then written as[

AT
11P1A11 +AT

21P2A21 AT
11P1A12 +AT

21P2A22

AT
12P1A11 +AT

22P2A21 AT
12P1A12 +AT

22P2A22

][
ˆ̂
ξ1

ξ02

]
=

=

[
AT

11P1 AT
21P2

AT
12P1 AT

22P2

][
y1

y2

]
. (7.20)

From the first row of (7.20), we may write the least-squares solution for
ˆ̂
ξ1 directly,

followed by its dispersion matrix, as

ˆ̂
ξ1 =

(
AT

11P1A11 +AT
21P2A21

)−1·
·
[(
AT

11P1y1 +AT
21P2y2

)
−

(
AT

11P1A12 +AT
21P2A22

)
ξ02
]
,

D{ˆ̂ξ1} = σ2
0

(
AT

11P1A11 +AT
21P2A21

)−1
.

(7.21)

(7.22)

In order to derive update formulas, it is helpful to introduce an alternative
expression for the normal equations analogous to what was done in (7.11a) through
(7.12). From (7.17a), we can write(

AT
11P1A11

)
ξ̂1 =

(
AT

11P1y1

)
−
(
AT

11P1A12

)
ξ02, (7.23a)

or N11ξ̂1 = c1 −N12ξ
0
2, (7.23b)

which, when subtracted from the first row of (7.20), leaves(
AT

21P2A21

)
ξ̂1 =

(
AT

21P2y2

)
−
(
AT

21P2A22

)
ξ02, (7.23c)

or N21ξ̂1 = c2 −N22ξ
0
2. (7.23d)

Note that the symbols N11 and N12 are still being used as defined in (7.16b),
whereas the definition of N22 and N21 becomes apparent by comparing (7.23c)
to (7.23d).

Together, (7.23b) and (7.23d) comprise the first row of (7.20). Recombining
(7.23b) and (7.23d) gives(

N11 +N21

)ˆ̂
ξ1 = c1 + c2 −

(
N12 +N22

)
ξ02, (7.24a)

implying that

N11
ˆ̂
ξ1 +AT

21
ˆ̂
λ = c1 −N12ξ

0
2, with

ˆ̂
λ := P2

(
A21

ˆ̂
ξ1 − y2 +A22ξ

0
2

)
. (7.24b)

Note that in (7.23a)–(7.23d) a single hat was used for the estimate of ξ1 since
each respective equation represents only one set of data. The double hat in (7.24a)
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denotes the estimate of ξ1 based on both data sets. From (7.24b) we can write the
system of normal equations in matrix form as follows:[

N11 AT
21

A21 −P−1
2

]ˆ̂ξ1
ˆ̂
λ

 =

[
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
. (7.25)

The solution of (7.25) can be obtained by applying the inversion formula for a
partitioned matrix as shown in (A.15), resulting inˆ̂ξ1

ˆ̂
λ

 =

[
N11 AT

21

A21 −P−1
2

]−1 [
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
=

=

[
N−1

11 −N−1
11 AT

21S
−1
2 A21N

−1
11 N−1

11 AT
21S

−1
2

S−1
2 A21N

−1
11 −S−1

2

][
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
,

(7.26)

where

S2 := P−1
2 +A21N

−1
11 AT

21. (7.27)

Finally, the estimated parameters and Lagrange multipliers are expressed as

ˆ̂
ξ1 = N−1

11

(
c1 −N12ξ

0
2

)
+

+N−1
11 AT

21

(
P−1
2 +A21N

−1
11 AT

21

)−1[
A21N

−1
11

(
−c1 +N12ξ

0
2

)
+ y2 −A22ξ

0
2

]
⇒

(7.28a)

ˆ̂
ξ1 = ξ̂1 +N−1

11 AT
21

(
P−1
2 +A21N

−1
11 AT

21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
, (7.28b)

ˆ̂
λ = −

(
P−1
2 +A21N

−1
11 AT

21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
. (7.28c)

The dispersion matrix of the estimated vector of Lagrange multipliers is

D{ ˆ̂λ} =
(
P−1
2 +A21N

−1
11 AT

21

)−1
D{y −A21ξ̂1}

(
P−1
2 +A21N

−1
11 AT

21

)−1
, (7.29)

since D{ξ02} = 0. The following relations also hold:

C{y2, ξ̂1} = 0, (7.30a)

D{y −A21ξ̂1} = σ2
0

(
P−1
2 +A21N

−1
11 AT

21

)
, (7.30b)

D{ ˆ̂λ} = σ2
0

(
P−1
2 +A21N

−1
11 AT

21

)−1
, (7.30c)

D{ˆ̂ξ1} = D{ξ̂1} − σ2
0N

−1
11 AT

21

(
P−1
2 +A21N

−1
11 AT

21

)−1
A21N

−1
11 . (7.30d)

The estimated variance component is expressed as follows:

ˆ̂σ2
0(n− q) = σ̂2

0

(
n1 − q1

)
+
(
y2 −A21ξ̂1 −A22ξ

0
2

)T ·
·
(
P−1
2 +A21N

−1
11 AT

21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
⇒ (7.31a)
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ˆ̂σ2
0(n− q) = σ̂2

0

(
n1 − q1

)
− ˆ̂
λT

(
y2 −A21ξ̂1 −A22ξ

0
2

)
. (7.31b)

Once again, we note that we have used the definition N11 := AT
11P1A11 in this

section.

7.5 Sequential Adjustment with New Parameters

In this section we consider the case where the second data set refers to at least some
of the parameters involved in the first data set plus some additional new parame-
ters that were not involved in the first data set. Thus we speak of m1 parameters
associated with the first data set and an additional m2 introduced with the second
data set, so that the total number of parameters involved in the combination of
both data sets is given by m = m1 +m2. In the double subscripts used below, the
first one refers to the data set, while the second one refers to the matrix splitting.
For example, A21 is that part of the design matrix from the second data set that
refers to the original parameters, whereas A22 is associated with the new parameters
involved in the second data set. We could have adopted a new symbol to denote a
“preprocessed observation” vector that includes datum information, e.g. ȳ. How-
ever, we have elected to continue using y and simply note that it could include
datum information in addition to the observations. The data model that follows
implies that we have assumed there are no correlations between the observations
of data-set 1 and those of data-set 2; it also implies that both sets of observations
share a common variance component σ2

0 .[
y1

y2

]
=

[
A11 0

A21 A22

][
ξ1

ξ2

]
+

[
e1

e2

]
,

[
e1

e2

]
∼ (

[
0

0

]
, σ2

0

[
P−1
1 0

0 P−1
2

]
) (7.32)

The size of the system of equations is implied by the following:

y1 ∈ Rn1 , y2 ∈ Rn2 , ξ1 ∈ Rm1 , ξ2 ∈ Rm2 ,
[
ξT1 , ξ

T
2

]T∈ Rm, (7.33a)

n = n1 + n2, m = m1 +m2. (7.33b)

Now, using the addition theory of normal equations, stated in Section 6.1.1, we can
write[

AT
11 AT

21

0 AT
22

][
P1 0

0 P2

][
A11 0

A21 A22

]ˆ̂ξ1
ˆ̂
ξ2

 =

[
AT

11P1 AT
21P2

0 AT
22P2

][
y1

y2

]
⇒ (7.34a)

[
AT

11P1A11 +AT
21P2A21 AT

21P2A22

AT
22P2A21 AT

22P2A22

]ˆ̂ξ1
ˆ̂
ξ2

 =

[
AT

11P1y1 +AT
21P2y2

AT
22P2y2

]
. (7.34b)

Here again, the double-hats refer to estimates based on both data sets.
Now, the first data set may no longer be available, rather we may have only

the estimates from the first adjustment. In this case we can use the bottom row of
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(7.34b) to solve for the estimates of the new parameters in terms of only the second
set of observations, leading to

ˆ̂
ξ2 =

(
AT

22P2A22

)−1
AT

22P2

(
y2 −A21

ˆ̂
ξ1
)
. (7.35)

Then, from the normal equations based solely on the first data set, we may substi-
tute

AT
11P1y1 =

(
AT

11P1A11

)
ξ̂1 (7.36)

into the top row of the right side of (7.34b) and invert the normal-equation matrix
on the left to solve for the parameter estimates. For convenience, we introduce the
following symbols to use in the inverted matrix:

S1 := AT
11P1A11 +AT

21P2A21 −AT
21P2A22

(
AT

22P2A22

)−1
AT

22P2A21 = (7.37a)

= AT
11P1A11 +AT

21P̄2A21, (7.37b)

P̄2 := P2 − P2A22

(
AT

22P2A22

)−1
AT

22P2, (7.37c)

N22 = AT
22P2A22. (7.37d)

We refer to P̄2 as a reduced weight matrix. Upon inverting the normal-equations
matrix from (7.34b) (see (A.15) for the inverse of a partitioned matrix), we find the

following solution for
ˆ̂
ξ1 and

ˆ̂
ξ2:ˆ̂ξ1

ˆ̂
ξ2

 =

[
S−1
1 −S−1

1

(
AT

21P2A22

)
N−1

22

−N−1
22

(
AT

22P2A21

)
S−1
1 N−1

22 +N−1
22

(
AT

22P2A21

)
S−1
1

(
AT

21P2A22

)
N−1

22

]
·

·

[(
AT

11P1A11

)
ξ̂1 +AT

21P2y2

AT
22P2y2

]
. (7.38)

We can continue by using (7.37b) and (7.37c) with the first row of (7.38) to arrive
at

ˆ̂
ξ1 = S−1

1

[(
AT

11P1A11

)
ξ̂1 +AT

21P2y2 −
(
AT

21P2A22

)
N−1

22 AT
22P2y2

]
= (7.39a)

= S−1
1

{[(
AT

11P1A11

)
ξ̂1 +AT

21P̄2y2

]
+

[(
AT

21P̄2A21

)
−

(
AT

21P̄2A21

)]
ξ̂1
}
= (7.39b)

= S−1
1 AT

21P̄2

(
y2 −A21ξ̂1

)
+ S−1

1

(
AT

11P1A11 +AT
21P̄2A21

)
ξ̂1 = (7.39c)

= S−1
1 AT

21P̄2

(
y2 −A21ξ̂1

)
+ ξ̂1 ⇒ (7.39d)

ˆ̂
ξ1 − ξ̂1 = S−1

1 AT
21P̄2

(
y2 −A21ξ̂1

)
, (7.39e)

where (7.39e) is in the form of an update formula.
We assume that P2 is invertible, as implied in the given model (7.32). We now

wish to check the rank of the reduced weight matrix P̄2. It is easy to check that
the product P−1

2 P̄2 is idempotent. Then using (1.7c) and (A.4) we find

rk P̄2 = rk
(
P−1
2 P̄2

)
= tr

(
P−1
2 P̄2

)
= tr

(
In2

−A22

(
AT

22P2A22

)−1
AT

22P2

)
= (7.40a)
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= n2 − tr
[
A22

(
AT

22P2A22

)−1
AT

22P2

]
= n2 − tr

[(
AT

22P2A22

)−1
AT

22P2A22

]
=
(7.40b)

= n2 −m2 < n2. (7.40c)

Thus there is a rank reduction that comes from modifying the original weight ma-
trix P2 to obtain P̄2. Moreover, we find that matrix P̄2 is singular.

The dispersion matrices for the estimated parameters, i.e., D{ˆ̂ξ1} and D{ˆ̂ξ2},
are shown at the end of the next section.

7.6 Sequential Adjustment with New Parameters
and Small Second Data Set

In (7.39e) we must invert the m1 ×m1 matrix S1 to solve the system of equations.
However, in some applications, the number of observations n2 in the second data
set may be significantly less than m1. In this case we would like to reformulate the
solution in (7.39e) so that only a matrix of size n2 × n2 needs to be inverted.

We have an alternative expression for matrix S1 in (7.37b), the inverse of which
can be derived as follows:

S−1
1 =

[(
AT

11P1A11

)
+
(
AT

21P̄2A21

)]−1
= (7.41a)

=
{[
Im1 +

(
AT

21P̄2A21

)(
AT

11P1A11

)−1](
AT

11P1A11

)}−1
= (7.41b)

=
(
AT

11P1A11

)−1[
Im1

+
(
AT

21P̄2A21

)(
AT

11P1A11

)−1]−1
. (7.41c)

Using (7.41c), we may rewrite (7.39e) as

ˆ̂
ξ1 − ξ̂1 =

=
(
AT

11P1A11

)−1[
Im1

+
(
AT

21P̄2A21

)(
AT

11P1A11

)−1]−1
AT

21P̄2

(
y2−A21ξ̂1

)
=

=
(
AT

11P1A11

)−1
AT

21P̄2

[
In2

+A21

(
AT

11P1A11

)−1
AT

21P̄2

]−1(
y2 −A21ξ̂1

)
.

(7.42a)

(7.42b)

Here, we have made use of (A.8a) in the step from (7.42a) to (7.42b), with matri-
ces A and D in (A.8a) set to identity. Note that the matrix to invert inside the
square brackets is of size m1 × m1 in (7.42a) but is size n2 × n2 in (7.42b). The
choice of which equation to use will usually be determined by the smaller of m1

and n2. Also, we have the relation

− ˆ̂
λ =

[
In2

+A21

(
AT

11P1A11

)−1
AT

21P̄2

]−1(
y2 −A21ξ̂1

)
, (7.43)

which means that the solution for the first subset of parameters may also be ex-
pressed as

ˆ̂
ξ1 − ξ̂1 = −

(
AT

11P1A11

)−1
AT

21P̄2
ˆ̂
λ. (7.44)
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Now we begin with (7.35), and substitute (7.42b), to find a solution for the

parameters
ˆ̂
ξ2 in terms of the Lagrange multipliers

ˆ̂
λ:

ˆ̂
ξ2 =

(
AT

22P2A22

)−1
AT

22P2

(
y2 −A21

ˆ̂
ξ1
)
= (7.45a)

=
(
AT

22P2A22

)−1
AT

22P2 ·
{(

y2 −A21ξ̂1
)
−A21

(
AT

11P1A11

)−1
AT

21P̄2·

·
[
In2

+A21

(
AT

11P1A11

)−1
AT

21P̄2

]−1(
y2 −A21ξ̂1

)}
=

(7.45b)

=
(
AT

22P2A22

)−1
AT

22P2

[
In2

+A21

(
AT

11P1A11

)−1
AT

21P̄2

]−1(
y2 −A21ξ̂1

)
(7.45c)

⇒ ˆ̂
ξ2 = −

(
AT

22P2A22

)−1
AT

22P2
ˆ̂
λ. (7.45d)

The inverse formula of (A.6a) was used to go from (7.45b) to (7.45c), with matri-
ces T , W , and V in (A.6a) set to identity matrices of appropriate sizes.

To facilitate computing the parameter dispersion matrix we write the following
system of normal equations, noting that (7.46b) is in the form of an update solution
(cf. (7.34b) and (7.36)):[

AT
11P1A11 +AT

21P2A21 AT
21P2A22

AT
22P2A21 AT

22P2A22

]ˆ̂ξ1
ˆ̂
ξ2

 =

[(
AT

11P1A11

)
ξ̂1 +AT

21P2y2

AT
22P2y2

]
,

(7.46a)

or [
AT

11P1A11 +AT
21P2A21 AT

21P2A22

AT
22P2A21 AT

22P2A22

]ˆ̂ξ1 − ξ̂1
ˆ̂
ξ2

 =

[
AT

21P2

(
y2 −A21ξ̂1

)
AT

22P2

(
y2 −A21ξ̂1

)] .

(7.46b)

Note that (7.46a) is equivalent to (7.34b) shown earlier.
We have already inverted the normal-equation matrix in (7.38). Taking elements

from (7.38), we may write the parameter dispersion and covariance matrices as
follows:

D{ˆ̂ξ1} = σ2
0S

−1
1 = σ2

0

(
AT

11P1A11 +AT
21P̄2A21

)−1
,

C{ˆ̂ξ1, ˆ̂ξ2} = −D{ˆ̂ξ1}
(
AT

21P2A22

)(
AT

22P2A22

)−1
,

D{ˆ̂ξ2} = σ2
0

(
AT

22P2A22

)−1 −
(
AT

22P2A22

)−1(
AT

22P2A21

)
C{ˆ̂ξ1, ˆ̂ξ2}.

(7.47a)

(7.47b)

(7.47c)

Each of the above covariance matrices (7.47a) through (7.47c) include the ma-
trix S−1

1 , which implies that a matrix of size m1 ×m1 must be inverted. However,
with the insertion of In2

into (7.47a), and with appropriate matrix groupings, we
may apply the inversion formula (A.6a) to find an inverse of smaller dimension as
shown in the following:

D{ˆ̂ξ1} = σ2
0

[(
AT

11P1A11

)
+

(
AT

21P̄2

)
In2

A21

]−1
= (7.48a)
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= σ2
0N

−1
11 − σ2

0N
−1
11 AT

21P̄2

(
In2 +A21N

−1
11 AT

21P̄2

)−1
A21N

−1
11 . (7.48b)

Here again, we have used N11 := AT
11P1A11 for compactness. The parenthetical

term that must be inverted in equation (7.48b) is an n2 × n2 matrix, which, again,
may be much smaller than an m1 ×m1 matrix, depending on the application. Of
course, the matrix (AT

11P1A11)
−1 is also size m1 ×m1, but it is assumed that this

inverse had already been performed in the adjustment of the first data set and was
saved for subsequent use.

The estimated variance component is expressed as

ˆ̂σ2
0

(
n−m

)
= σ̂2

0

(
n1 −m1

)
−
(
y2 −A21ξ̂1

)T
P̄2

ˆ̂
λ. (7.49a)

Then, substituting (7.43) results in

ˆ̂σ2
0

(
n−m

)
= σ̂2

0

(
n1 −m1

)
+

+
(
y2 −A21ξ̂1

)T
P̄2

[
In2

+A21

(
AT

11P1A11

)−1
AT

21P̄2

]−1(
y2 −A21ξ̂1

)
. (7.49b)

7.7 Practice Problems

1. Considering Problem 9 of Section 3.6, assume that a second observation cam-
paign has been conducted, where the original observation scheme was re-
peated, except that the final three observations from the first campaign were
not repeated in the second one. Both data sets are listed in Table 7.1, and
a diagram of the leveling network is shown in Figure 3.5. Furthermore, as-
sume that the weight of each observation in both data sets is defined as the
distance in miles associated with the observation divided by 100. Introduce
datum information so that the height of point D is fixed at 1928.277 ft.

(a) Compute estimates for ξ̂, along with its cofactor matrix, and the esti-
mated variance component σ̂2

0 based only on the first data set.

(b) Using the results of the previous step, compute estimates for
ˆ̂
ξ, D{ˆ̂ξ},

and the estimated variance component ˆ̂σ2
0 using update formulas that do

not directly depend on the observations from the first data set.
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Table 7.1: Leveling data from Rainsford (1968) as yI and simulated second data
set as yII . d stands for distance between stations.

From To No. yI [ft] yII , [ft] d [miles]

A B 1 +124.632 +124.659 68

B C 2 +217.168 +217.260 40

C D 3 −92.791 −92.904 56

A D 4 +248.754 +248.797 171

A F 5 −11.418 −11.402 76

F E 6 −161.107 −161.172 105

E D 7 +421.234 80

B F 8 −135.876 42

C E 9 −513.895 66

2. Now consider the case where one new station, G, was added to the network
during the second observation campaign as depicted in Figure 7.1. The data
for the first observation campaign can be taken from Table 7.1. The data
from the second observation campaign are listed in Table 7.2.

Use (7.39e) followed by (7.35) to compute
ˆ̂
ξ1 and

ˆ̂
ξ2, respectively, or, instead,

use (7.42b) for
ˆ̂
ξ1.

Hint: Because of the network datum deficiency of one, you can modify the
observation vector from the second data set by subtracting out the datum
value of 1928.277 ft from observations y3 and y7 and then remove the param-
eter for the height of station D from the parameter vector. You may check
your answers by combining both data sets into one, and then solve for the
unknown parameters according to Section 3.5.
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Figure 7.1: Simulated extension of a leveling network by Rainsford (1968)

Table 7.2: Leveling data for simulated second data set as yII . d stands for distance
between stations.

From To No. yII , [ft] d [miles]

A B 1 +124.659 68

B C 2 +217.260 40

C D 3 −92.904 56

A G 4 +178.852 85

A F 5 −11.402 76

F E 6 −161.172 105

E D 7 +421.212 80

B G 8 +54.113 45

G C 9 +162.992 45



Chapter 8

Condition Equations with
Parameters: the
Gauss-Helmert Model

8.1 Model Definition

Data models introduced prior to this chapter have either admitted observation
equations with unknown parameters or condition equations without parameters,
but not both. In contrast, the Gauss-Helmert Model (GHM) allows both condition
equations and equations involving unknown parameters to be combined in the same
model. Thus, the GHM can be viewed as being more flexible (or more general) than
either the Gauss-Markov Model (GMM) (Chapter 3) or the Model of Condition
Equations (Chapter 4), since it combines aspects of both. In some cases, the GHM
might be useful for dealing with complicated observation equations, for example
when multiple observations are related functionally to one or more parameters via
specified (possibly nonlinear) equations.

In other cases, the LEast-Squares Solution (LESS) within the GHM is equivalent
to that of orthogonal regression, or, more generally, to a total least-squares (TLS)
solution. Such solutions are sought within models that have both independent and
dependent random data variables. Examples are line and curve fitting in 2D when
both x- and y-coordinates are measured. Coordinate transformation problems also
fall in this category when the coordinates from both the source and target systems
are measured quantities. We will learn how to treat these problems in this chapter.

8.1.1 An example Gauss-Helmert Model

We begin our discussion of the GHM with a leveling-network example in order to
contrast the GMM with the Model of Condition Equations and to show how the
GHM combines the information used in those two models. The diagram in Figure 8.1
shows a leveling network with four points (P1, P2, P3, P4) that has been observed
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in two closed loops comprised of a total of five observations (y1, y2, y3, y4, y5). First
we present a (rank deficient) partitioned GMM as

y = A1ξ1 +A2ξ2 + e, (8.1a)

e ∼
(
0, σ2

0P
−1

)
, (8.1b)

rkA1 = rk
[
A1 |A2

]
=: q < m, (8.1c)

where the coefficient matrix A and the vector of unknown parameters ξ have been
partitioned, respectively, as

A =

[
A1
n×q

A2
n×(m−q)

]
and ξ =

[
ξT1
1×q

ξT2
1×(m−q)

]T
. (8.2)

P1

P3

P4

P2

y1

y2

y3

y4

y5

Figure 8.1: Leveling network. Arrows point in the direction of the level runs.

In this example, the number of unknown parameters is m = 4 (heights of four
points). Since leveled height-differences supply no information about the height
datum, we can only estimate the heights of three of the points with respect to
the remaining fourth one. That explains why rkA =: q = 3 < m, implying a
datum deficiency of m − q = 1. Thus, the model has been partitioned so that ξ1
contains three estimable heights, and ξ2 is a single non-estimable height, which
must be assigned a “datum value.” In this example, we arbitrarily chose point P4

for the non-estimable height. As was stated in Section 3.5, we have the relationship
A2 = A1L for some q × (m− q) matrix L, which means that matrix A2 is a linear
combination of the columns of matrix A1, reflecting the rank deficiency of matrix
A = [A1 |A2].

The problem could also be solved within the Model of Condition Equations
introduced in Chapter 4, which reads

By = Be, e ∼ (0, σ2
0P

−1), (8.3a)

with the orthogonality condition

i. B ·
[
A1 A2

]
= 0, (8.3b)
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and the rank condition

ii. rkB = r = n− rkA1. (8.3c)

These two conditions ensure equivalent least-squares solutions within the models of
(8.1) and (8.3a) as discussed in Section 4.3.

We have the following design (coefficient) matrices and parameter vectors for
the example leveling network, for which it is easy to verify that both conditions i
and ii are satisfied:

A1 =


−1 1 0

−1 0 1

0 −1 1

0 −1 0

0 0 −1

 , A2 =


0

0

0

1

1

 , A =
[
A1 A2

]
,

B =

[
1 −1 1 0 0

0 0 −1 1 −1

]
, ξ1 =

h1

h2

h3

 , ξ2 =
[
h4

]
,

(8.4a)

with

q := rkA1 = rkA = 3, r := rkB = 2 = n− rkA1 = 5− 3 = 2, and B·A = 0.
(8.4b)

Here, hi represents the height of point Pi.

Now we wish to introduce a new coefficient matrix B that does not contain
matrix A in its nullspace, so that we can form a Model of Condition Equations
with parameters. For now we use the symbol B̄ in order to distinguish it from the
coefficient matrix B used in the Model of Condition Equations, which does contain
matrix A in its nullspace (i.e., BA = 0, but B̄A ̸= 0). Similarly, we introduce other
bar-terms to form the following GHM:

ȳ = B̄y = w̄ = B̄A1ξ1 + B̄A2ξ2 + B̄e, (8.5a)

B̄e ∼
(
0, σ2

0B̄P−1B̄T
)
, (8.5b)

rk
(
B̄
)
=: r̄. (8.5c)

The size of B̄ is r̄× n, implying that B̄ has full row rank. The GHM in (8.5) is
equivalent to the GMM in (8.1) if, and only if,

iii. B̄A1 has n− r̄ columns of zeros, and

iv. rk(B̄A1) + r = r̄ ⇔ n = r̄ + q − rk(B̄A1) = rk B̄ + rkA− rk(B̄A1)

Note that, through the matrix B̄, one observation is eliminated for each elimi-
nated parameter. Referring to the level network example, we may wish to eliminate
the height of point P3 from the parameter list (perhaps it is a temporary benchmark
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of no particular interest). This can be done by introducing the following example
matrix B̄:

B̄ =


1 0 0 0 0

0 1 −1 0 0

0 0 0 1 0

0 0 1 0 1

 ⇒ B̄A2 =


0

0

1

1

 , B̄A1 =


−1 1 0

−1 1 0

0 −1 0

0 −1 0

 .

With these example matrices we have n = 5, r = 2, r̄ = rk B̄ = 4, q = rkA1 = 3, and
rk(B̄A1) = 2. Since n− r̄ = 1, the single column of zeros in B̄A1 satisfies condition
iii. Also, condition iv is satisfied since n = 5 = rk B̄ + rkA− rk(B̄A1) = 4 + 3− 2.

As an aside, we note that it is also possible to remove l estimable parameters via
the splitting of the constraint equation introduced in (5.1), i.e.

κ0 = K
l×m

ξ =
[
K1, K2

] [ξ1
ξ2

]
⇒ (8.6a)

ξ1 = K−1
1 κ0 −K−1

1 K2ξ2. (8.6b)

Here, K1 is a l×l invertible matrix, and K2 is of size l×(m−l). Upon substitution
for ξ1 of (8.6b) into (8.1), we find the following modified system of observation
equations with l parameters eliminated:

y = A1ξ1 +A2ξ2 + e = A1K
−1
1 κ0 + (A2 −A1K

−1
1 K2)ξ2 + e. (8.7)

The l × 1 vector ξ1 has vanished on the right side of (8.7). While this technique
is possible, it might not be used frequently in practice.

8.2 Least-Squares Solution

We could derive the solution for ξ within the GHM (8.5) from statistical principles
via BLUUE (Best Linear Uniformly Unbiased Estimate), but here we use the equiv-
alent principle of LESS (LEast-Squares Solution) as was done in Sections 2.2, 3.2
and 4.3, etc. In the following, we recombine coefficient matrices A1 and A2 back
into the single matrix A and recombine the partitioned parameter vector back into
a single vector ξ = [ξT1 , ξ

T
2 ]

T . Accordingly, we can rewrite (8.5) as

w̄ = B̄A1ξ1 + B̄A2ξ2 + B̄e = Āξ + B̄e, (8.8)

where another bar-symbol was introduced for convenience, viz. Ā := B̄A.
Our target function should minimize a quadratic form in the random error vec-

tor e itself, rather than Be; i.e., we minimize eTPe. Then, the Lagrange target
function is written as

Φ(e, ξ,λ) =: eTPe+ 2λT
(
B̄e+ Āξ − w̄

)
, (8.9)
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which must be made stationary with respect to the unknown vectors e, ξ, and λ.
This is done by imposing the Euler-Lagrange necessary conditions, which results in
the following system of equations:

1

2

∂Φ

∂e
= P ẽ+ B̄T λ̂

.
= 0, (8.10a)

1

2

∂Φ

∂ξ
= ĀT λ̂

.
= 0, (8.10b)

1

2

∂Φ

∂λ
= B̄ẽ+ Āξ̂ − w̄

.
= 0. (8.10c)

The vectors of predicted random errors (residuals) and estimated parameters are
then solved for as follows:

ẽ = −
(
P−1B̄T

)
λ̂ ⇒ from equation (8.10a)

−
(
B̄P−1B̄T

)
λ̂ = w̄ − Āξ̂ ⇒ multiplying by B̄ and using (8.10c)

− λ̂ =
(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
⇒

(
B̄P−1B̄T

)
is invertible

− ĀT λ̂ = ĀT
(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
= 0 ⇒ mult. by ĀT and using (8.10b)

ĀT
(
B̄P−1B̄T

)−1
Āξ̂ = ĀT

(
B̄P−1B̄T

)−1
w̄

Finally, we arrive at

ξ̂ =
[
ĀT

(
B̄P−1B̄T

)−1
Ā
]−1

ĀT
(
B̄P−1B̄T

)−1
w̄ (8.11a)

and

ẽ = P−1B̄T
(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
(8.11b)

for the estimated parameters and predicted residuals, respectively. Equation (8.11a)
has the same form as the LESS derived within the GMM in Section 3.2, and (8.11b)
looks much like formula (4.5d) for the residual vector within the Model of Condition
Equations.

Note that matrix Ā would need to have full column rank to use (8.11a). Thus, in
the example problem in the preceding section, the datum deficiency would need to
be handled first. This could be done, for example, by modifying (“pre-processing”)
the observation vector as mentioned in Section 7.5 and in Problem 2 of Section 7.7.
In the remainder of this chapter, we will assume that there are no rank deficiencies
in the the data models.

The dispersion matrix for the estimated parameter vector ξ̂ is expressed by

D{ξ̂} = σ2
0

[
ĀT

(
B̄P−1B̄T

)−1
Ā
]−1

. (8.12)

And the dispersion matrix for the residual vector reads

D{ẽ} = P−1B̄T
(
B̄P−1B̄T

)−1[
B̄ ·D{e} · B̄T−

− Ā ·D{ξ̂} · ĀT
](
B̄P−1B̄T

)−1
B̄P−1, (8.13)

with D{e} = σ2
0P

−1 as stated in the model (8.1).
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Notation change: For the remainder of the chapter we drop the bars from the
symbols as a matter of convenience. Recall that the bars were introduced in the
first place to distinguish between the matrix B introduced in (8.5) and that used
in Chapter 4 for the Model of Condition Equations. Dropping the bars means that
B̄ → B, w̄ → w, Ā → BA.

We make one more notation change by replacing the matrix productBA that was
used in the derivations above with the symbol A itself to represents a more general
form of the model. Recall that the matrix BA above included the coefficient matrix
A from a Gauss-Markov Model (GMM). However the more general formulation
of the least-squares adjustment within the GHM would not necessarily reference
quantities used in a GMM.

With these simplified notations, we rewrite the solution (8.11a) as follows:

ξ̂ =
[
AT

(
BP−1BT

)−1
A
]−1

AT
(
BP−1BT

)−1
w. (8.14)

The dispersion of ξ̂ is derived in parts as follows:

D{AT
(
BP−1BT

)−1
w} = AT

(
BP−1BT

)−1
D{w}

(
BP−1BT

)−1
A =

= AT
(
BP−1BT

)−1
B·D{y}·BT

(
BP−1BT

)−1
A =

=
(
BP−1BT

)−1(
σ2
0A

TBP−1BT
)(
BP−1BT

)−1
A =

= σ2
0A

T
(
BP−1BT

)−1
A;

therefore

D{ξ̂}=
[
AT

(
BP−1BT

)−1
A
]−1·D{AT

(
BP−1BT

)−1
w}·

[
AT

(
BP−1BT

)−1
A
]−1

=

=
[
AT

(
BP−1BT

)−1
A
]−1[

σ2
0A

T
(
BP−1BT

)−1
A
][
AT

(
BP−1BT

)−1
A
]−1

,

finally resulting in

D{ξ̂} = σ2
0

[
AT

(
BP−1BT

)−1
A
]−1

. (8.15)

8.3 Iteratively Linearized Gauss-Helmert Model

In this section we present the Gauss-Helmert Model (GHM) as an iteratively lin-
earized model, showing how to form both the model and the least-squares solution
within the model at each step of an iteration scheme. The developed algorithm
is useful for a wide range of problems encountered in geodetic science and other
disciplines.

The reader should be clear that the coefficient matrices A and B used in this
section (and those that follow) are not the same as the coefficient matrices A and B
used in the GMM and Model of Condition Equations, respectively. This should be
obvious from the development that follows.

Suppose we are given a nonlinear functional model that relates n observations y
to m unknown parameters Ξ among m + r nonlinear condition equations b such
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that

b(y − e︸ ︷︷ ︸
n×1

, Ξ︸︷︷︸
m×1

) = 0, b ∈ Rm+r, e ∼ (0, σ2
0P

−1

n×n
), (8.16)

representing also a mapping b : Rm+n → Rm+r. Equation (8.16) is a nonlinear
Gauss-Helmert Model with redundancy r.

By introducing the “true” n× 1 vector of observables µ as

µ := y − e = E{y}, (8.17)

the least-squares objective for model (8.16) is then defined by

eTPe = min, subject to b(µ,Ξ) = 0. (8.18)

An iterative linearization of (8.16), together with the least-squares estimation of
the unknown parameters Ξ and prediction of the unknown random errors e, can be
formed as follows.

Begin by assigning initial values µ0 and Ξ0 to the unknowns µ and Ξ, respec-
tively, e.g., µ0 = y − 0˜ and Ξ0 by some approximate method (perhaps using LESS
within the GMM if linearization would not be required for that solution). Then
execute the following conditional loop:

While

δ < ∥ξ̂j∥ or ϵ < ∥ẽ(j) − ẽ(j−1)∥ (8.19)

for chosen thresholds δ and ϵ, and j ∈ N, perform the following steps:

(i) Use the truncated Taylor series about expansion point (µj ,Ξj):[
∂b

∂µT

∣∣
µj ,Ξj

, ∂b
∂ΞT

∣∣
µj ,Ξj

]
·

[
µ− µj

Ξ−Ξj

]
+ b(µj ,Ξj) = 0, (8.20a)

and replace µ with y − e in accordance with (8.17), to introduce

ξj+1
m×1

:= Ξ−Ξj , A(j)

(m+r)×m
:= − ∂b

∂ΞT

∣∣
µj ,Ξj

, B(j)

(m+r)×n
:=

∂b

∂µT

∣∣
µj ,Ξj

, (8.20b)

wj
(m+r)×1

:= b(µj ,Ξj) +B(j) · (y − µj), (8.20c)

and to form the linearized Gauss-Helmert Model

wj = A(j)ξ̂j+1 +B(j)e, e ∼ (0, σ2
0P

−1). (8.20d)

(ii) Produce the (j + 1)th LEast-Squares Solution (LESS) for (8.20d), viz.

ξ̂j+1 =
{
(A(j))T

[
(B(j))P−1(B(j))T

]−1
(A(j))

}−1·

· (A(j))T
[
(B(j))P−1(B(j))T

]−1
wj ,

(8.20e)

ẽ(j+1) = P−1(B(j))T
[
(B(j))P−1(B(j))T

]−1
(wj − (A(j))ξ̂j+1). (8.20f)
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(iii) Obtain new approximate values (non-random) through

Ξj+1 := Ξ̂(j+1) − 0˜ = Ξj + ξ̂j+1 − 0˜, (8.20g)

µj+1 := µ̂(j+1) − 0˜ = y − ẽ(j+1) − 0˜, (8.20h)

where 0˜ denotes a “random zero vector” of suitable size (following Harville,
1986). This means that the jth (approximate) estimates are stripped of their
randomness while keeping their numerical values. The use of 0˜ is formally
required to avoid the assignment of random values to a non-random quantity;
however, its use is of no consequence in practice, since it does not affect the
numerical results.

Repeat the cycle until convergence is reached.
As already suggested, the initial approximate values for µ might be taken from

the observation vector y via µ0 := y−0˜. Unfortunately, this has occasionally led to
the misunderstanding that the so-called “misclosure vector” wi, in the ith iteration
cycle, ought to be updated by b(µi,Ξi) when, in fact, the correct update is described
by (8.20c). Also, the expression for wj in (8.20c) is approximately equal to b(y,Ξj)
and sometimes may turn out to be precisely equal to it; however, in some cases its
usage may lead to convergence to an inaccurate solution. An excellent treatment of
potential pitfalls for solving nonlinear least-squares problems, can be found in Pope
(1972), which the reader is encouraged to read. See Schaffrin and Snow (2010) for
a more detailed discussion of this topic.

8.4 Estimated Variance Component

The P -weighted norm of the residual vector ẽ is defined as

Ω := ẽTP ẽ = (8.21a)

=
(
λ̂TBP−1

)
P
(
P−1BT λ̂

)
= (8.21b)

=
[
−
(
w −Aξ̂

)T (
BP−1BT

)−1](
BP−1BT

)
λ̂ = (8.21c)

=
(
w −Aξ̂

)T (
BP−1BT

)−1(
w −Aξ̂

)
= (8.21d)

=
(
Bẽ

)T (
BP−1BT

)−1(
Bẽ

)
. (8.21e)

Thus it follows that, the uniformly unbiased estimate of the variance component σ2
0

is given by

σ̂2
0 =

(
Bẽ

)T (
BP−1BT

)−1(
Bẽ

)
r

=
ẽTP ẽ

r
=

−wT λ̂

r
, (8.22)

where the redundancy r is defined as

r := rkB − rkA, (8.23)

which is the number of rows of B minus the number of columns of A, assuming
matrix B has full row rank and matrix A has full column rank.
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8.5 Equivalent Normal Equations

From (8.10b) and the second equation following (8.10c), and considering the no-
tation changed described on Page 162, we can recognize the following system of
normal equations:[

BP−1BT −A

−AT 0

][
λ̂

ξ̂

]
=

[
−w

0

]
⇒

[
λ̂

ξ̂

]
=

[
BP−1BT −A

−AT 0

]−1 [
−w

0

]
. (8.24)

We want to show that the solution to this system yields the same ξ̂ as that of
(8.14). The formula for the inverse of a partitioned matrix (see (A.15)) leads to the
following solution:[

λ̂

ξ̂

]
=

[
X1 X2

−W−1AT (BP−1BT )−1 (0−W )−1

][
−w

0

]
,

with W := AT (BP−1BT )−1A, and finally to[
λ̂

ξ̂

]
=

[
−X1w[

AT (BP−1BT )−1A
]−1

AT (BP−1BT )−1w

]
. (8.25)

Here the symbols X1 and X2 represent quantities of no interest. We see that the
solution for the parameters ξ̂ is the same in (8.14).

8.6 Example Problems

The following example problems are meant to help illustrate the use of the Gauss-
Helmert Model (GHM).

8.6.1 Example — Fitting a Parabola When Both x- and y-
Coordinates are Observed

In this example, we show how the GHM can be used to fit a parabola when both the
x- and y-coordinates have been observed. This is in contrast to the problem treated
in Section 3.2.1 with the GMM, where only the dependent variables (y-coordinates)
could be considered as measurements. Here, the observation vector y is comprised
of all pairs of the n/2 measured points. For example, y could be defined as

y
n×1

=
[
x1, x2, . . . , xn/2, y1, y2, . . . , yn/2

]T
. (8.26)

Alternatively, the elements of y could be ordered by coordinate pairs, i.e., y =
[x1, y1, . . . , xn/2, yn/2]

T . The key is that consistency of ordering must be maintained
for the coefficient matrix B, the random error vector e, and the observation cofactor
matrices, too.
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Denoting the true (unknown) variables as µxi and µyi , i = 1, 2, . . . , n/2, the
following equations can be written for the ith pair of observed variables (xi, yi):

xi = µxi + exi , E{exi}= 0 ⇒ E{xi} = µxi , (8.27a)

yi = µyi + eyi , E{eyi} = 0 ⇒ E{yi} = µyi . (8.27b)

For this example, we assume that the measurement errors are iid. Collecting
the random error terms in vectors ex and ey, respectively, their stochastic nature
can then be expressed succinctly as

e
n×1

=

[
ex

ey

]
∼

([
0

0

]
, σ2

0

[
In/2 0

0 In/2

])
. (8.28)

The (nonlinear) function that relates the ith pair of variables (µxi
, µyi

) to the
non-random parameters Ξ = [Ξ1,Ξ2,Ξ3]

T is given by

bi(Ξ1,Ξ2,Ξ3, µxi
, µyi

) = µyi
− µ2

xi
Ξ1 − µxi

Ξ2 − Ξ3 = 0, i ∈ {1, 2, . . . , n/2},
(8.29a)

which can be linearized about (ui0,Ξ0) by

b0i + dµyi
− (2µ0

xi
Ξ0
1 + Ξ0

2) dµxi
− (µ2

xi
)0 dΞ1 − µ0

xi
dΞ2 − dΞ3 = 0, (8.29b)

where higher order terms have been neglected. Here the superscript 0 denotes the
expansion point for the variables and parameters that the derivatives are evaluated
at, viz. ui0 = [µ0

xi
, µ0

yi
]T and Ξ0 = [Ξ0

1,Ξ
0
2,Ξ

0
3]

T . The argument list for bi has been
dropped for the sake of brevity. Now define n/2 equations with:

ξ =
[
dΞ1, dΞ2, dΞ3

]T
= Ξ−Ξ0, (8.30a)

−Ai =
[
−(µ0

xi
)2, −µ0

xi
, −1

]
, (8.30b)

Bi =
[
−2µ0

xi
Ξ0
1 − Ξ0

2, 1
]
, (8.30c)

where Ai is the ith row of an (m+ r)×m matrix A (with m = 3 and r being the
redundancy of the model, and n = 2(m+ r) in this example). In contrast, Bi shows
only the non-zero elements of a row of an (m+r)×n matrix B. Those two elements
go in the ith and 2ith columns, respectively, of the ith full row of B (assuming the
ordering of observations shown in (8.26)). Further define

dµxi
= µxi

− µ0
xi

= xi − µ0
xi

− exi
and dµyi

= µyi
− µ0

yi
= yi − µ0

yi
− eyi

,

(8.30d)

along with vectors

ei =
[
exi

, eyi

]T
, and wi = b0i +Bi

[
xi − µ0

xi
, yi − µ0

yi

]T
(8.30e)

so that (8.29b) can be rewritten for the ith observed coordinate pair as

−Aiξ −Biei + wi = 0. (8.31)
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Then the complete set of n/2 = m+ r equations can be expressed as

w = Aξ +Be, (8.32)

which is obviously in the form of a GHM, within which a least-squares solution can
be computed using the algorithm described in Section 8.3. In order to avoid non-
convergence or convergence to the wrong solution, one must pay careful attention
to the comments in the last paragraph of Section 8.3. In practice, they mean that
all the terms A, B, and w must be updated at each iteration, using numerical value
computed from the previous iteration.

The preceding formulation can be applied to the fitting of many different kinds
of functions in 2D- and 3D-space, including lines, planes, quadratic surfaces, etc.
When the data are iid, these adjustments amount to solving so-called “orthogo-
nal regression” problems, since the residuals pairs (ẽxi

, ẽyi
) define vectors that are

orthogonal to the fitted curve (or surface in 3D). In the case of a general weight
matrix P , we might prefer to say “P -weighted orthogonal regression,” since the
weights will influence the direction of the 2D and 3D residual vectors.

8.6.2 Example — Fitting a Ellipse When Both x- and y-
Coordinates are Observed

An equation for an ellipse can be written as a function of its center point (z1, z2), the
length of its semi-major axis a, the length of its semi-minor axis b, and the counter-
clockwise angle α between the z1-axis and the semi-major axis (see Figure 8.2).
Accordingly, a (nonlinear) function that relates the ith pair of n/2 pairs of random
variables (µxi , µyi) to the unknown (but non-random) parameters (µα, µa, µb, µz1 ,
µz2) is provided by

bi
(
µα, µa, µb, µz1 , µz2 , µxi

, µyi

)
=

= µ2
b

[
cos2 µα(µxi

− µz1)
2 + 2 cosµα sinµα(µxi

− µz1)(µyi
− µz2)+

+ sin2 µα(µyi − µz2)
2
]
+

+ µ2
a

[
sin2 µα(µxi

− µz1)
2 − 2 sinµα cosµα(µxi

− µz1)(µyi
− µz2)+

+ cos2 µα(µyi − µz2)
2
]
− µ2

aµ
2
b = 0,

(8.33)

with i ∈ {1, . . . , n/2}. Collecting the unknown parameters in the vector Ξ, viz. Ξ =
[µα, µa, µb, µz1 , µz2 ]

T , their values can then be estimated via a least-squares solution
within the GHM as outlined in Section 8.6.1, where (8.29a) would be replaced by
(8.33).

8.6.3 Example — 2D Similarity Transformation When Co-
ordinates Have Been Observed in Both the Source and
Target Systems

If n/2 coordinate pairs (Xi, Yi) and (xi, yi) have been observed in both target
(“new”) and source (“old”) coordinate systems, respectively, then the following
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z1∥(z1, z2)

b a

α

Figure 8.2: An ellipse with semi-major and semi-minor axes a and b, respectively,
centered at (z1, z2) and rotated by angle α

GHM can be used to model a 2D similarity transformation:

b(µ, ξ) :=


· · ·
Xi

Yi

· · ·

−


· · ·
eXi

eYi

· · ·

−


· · · · · · · · ·
1 0 xi − exi

−(yi − eyi
)

0 1 yi − eyi
xi − exi

· · ·



ξ1

ξ2

ξ3

ξ4

 = 0, (8.34a)

where

y :=
[
. . . , Xi, Yi, . . . , xi, yi, . . .

]T
is a 2n× 1 vector of observed coordinates,

(8.34b)

e :=
[
. . . , eXi , eYi , . . . , exi , eyi , . . .

]T
is a 2n× 1 random error vector, (8.34c)

µ := y − e is a 2n× 1 vector of actual (“true”) coordinates, and (8.34d)

ξ :=
[
ξ1, ξ2, ξ3, ξ4]

T is the 4× 1 vector of unknown parameters, with (8.34e)

ξ3 := ω cosα, and ξ4 := ω sinα. (8.34f)

Here, ξ1 and ξ2 are translation parameters along the X- and Y -axis, respectively;
ω is a scale factor, and α is a counter-clockwise rotation angle.

8.7 Some Published Examples

The following papers include numerical examples for the GHM that may be of
interest to the reader:

1. Circle fitting: Schaffrin and Snow (2010).

2. Line fitting in 3D: Snow and Schaffrin (2016).
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3. 2D similarity transformations: Neitzel and Petrovic (2008).

In addition to these sources, Pope’s 1972 paper is highly recommended to un-
derstand how to best avoid potential pitfalls in adjusting data within iteratively
linearized models.

8.8 Practice Problems

1. A circle is to be fitted to the set of measured coordinates shown in Table 8.1,
which were presented in Schaffrin and Snow (2010). Both x- and y-coordinates
were measured, and the associated random errors are considered to be iid.

Table 8.1: Measured coordinates for the fitting of a circle. Units are not given.

No. x y

1 0.7 4.0

2 3.3 4.7

3 5.6 4.0

4 7.5 1.3

5 6.4 −1.1

6 4.4 −3.0

7 0.3 −2.5

8 −1.1 1.3

(a) Setup an appropriate Gauss-Helmert Model with the coordinates of the
center of the circle and its radius as the three unknown parameters. What
is the redundancy of the model?

(b) Compute the least-squares estimates of the center of the circle and its
radius. You may use the following initial approximations for the param-
eters: Ξ0 = [3, 1, 4]T (in order of x and y coordinates of the center point
followed by the radius).

(c) Compute the estimated variance component and the empirical rms of the
estimated parameters (i.e., the square roots of the diagonal elements of
the estimated dispersion matrix).

(d) What is the geometrical relationship between the estimated center of the
circle and each respective pair of observed and adjusted coordinates?

2. An ellipse is to be fitted to the set of measured coordinates plotted in Fig-
ure 8.3 and listed in Table 8.2. Both z1- and z2-coordinates were measured,
and the associated random errors are considered to be iid.
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Figure 8.3: Fitted ellipse and measured coordinates in the 2-D plane (listed in
Table 8.2)

(a) Setup an appropriate Gauss-Helmert Model with the coordinates of the
center of the ellipse (z1, z2), its semi-major and semi-minor axes lengths

Table 8.2: Measured coordinates for the fitting of an ellipse. Units are not given.

No. z1 z2

1 2.0 6.0

2 7.0 7.0

3 9.0 5.0

4 3.0 7.0

5 6.0 2.0

6 8.0 4.0

7 −2.0 4.5

8 −2.5 0.5

9 1.9 0.4

10 0.0 0.2
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a and b, and the angle α between the z1 axis and the semi-major axis as
five unknown parameters (see Section 8.6.2). What is the redundancy of
the model?

(b) Compute the least-squares estimates of the unknown parameters of the
ellipse. You may use the following initial approximations for the param-
eters: Ξ0 = [0, 7, 3, 3, 4]T (in order of µ0

α, µ
0
a, µ

0
b , µ

0
z1 , µ

0
z1).

(c) Compute the estimated variance component and the empirical rms of the
estimated parameters (i.e., the square roots of the diagonal elements of
the estimated dispersion matrix).

3. The data used for fitting the parabola shown in Figure 3.2 are listed in Ta-
ble 8.3. Assume that the cofactor matrix for the x-coordinates is Qx =
(0.010m)2·In and that the cofactor matrix for the y-coordinates is Qy =
(0.005m)2·In. Using the model presented in Section 8.6.1, compute the fol-
lowing:

(a) Estimates for the three unknown parameters of the parabola.

(b) The estimated variance component.

(c) The empirical rms of the estimated parameters (i.e., the square roots of
the diagonal elements of the estimated dispersion matrix).

Table 8.3: Measured coordinates for the fitting of a parabola. The units are in
meters.

No. x y

1 1.007 1.827

2 1.999 1.911

3 3.007 1.953

4 3.998 2.016

5 4.999 2.046

6 6.015 2.056

7 7.014 2.062

8 8.014 2.054

9 9.007 2.042

10 9.988 1.996

11 11.007 1.918

12 12.016 1.867
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8.9 Summary Formulas for the Least-Squares So-
lution Within the Gauss-Helmert Model

See the last paragraph of Section 8.2 for comments about replacing the product BA
used in earlier sections of this chapter with the matrix A itself, as was done in the
following:

The linearized Gauss-Helmert Model (GHM) is given by

w
(r+m)×1

= A
(r+m)×m

ξ + B
(r+m)×n

e, e
n×1

∼ (0, σ2
0P

−1).

Table 8.4: Summary formulas for the LESS within the Gauss-
Helmert Model

Quantity Formula Eq.

Model
redundancy

r = rkB − rkA (8.23)

Vector of
estimated
parameters

ξ̂ =[
AT

(
BP−1BT

)−1
A
]−1

AT
(
BP−1BT

)−1
w

(8.11a)

Dispersion
matrix for
estimated
parameters

D{ξ̂} = σ2
0 ·
[
AT

(
BP−1BT

)−1
A
]−1

(8.12)

Vector of
predicted
residuals

ẽ = P−1BT
(
BP−1BT

)−1(
w −Aξ̂

)
(8.11b)

Dispersion
matrix for
residuals

D{ẽ} =

P−1BT
(
BP−1BT

)−1[
B·D{e}·BT −

A·D{ξ̂}·AT
](
BP−1BT

)−1
BP−1

(8.13)

Sum of
squared
residuals
(SSR)

Ω = ẽTP ẽ (8.21a)

Estimated
variance
component

σ̂2
0 = Ω/r (8.22)



Chapter 9

Statistical Analysis

It is assumed that the reader of these notes has had at least a first course in statistical
methods or probability theory and thus has some familiarity with hypothesis testing
in statistical analysis. Therefore, key terms and concepts will be described only
briefly, and the main focus will be placed on the application of hypothesis testing to
parameters estimated from least-squares adjustments as described in the preceding
chapters. For a broader treatment of statistical methods, and an excellent refresher
on hypothesis testing in particular, see Snedecor and Cochran (1980).

Consider a normally distributed random (scalar) variable y with the following
first through fourth moments:

E{y} = µ, (9.1a)

E{(y − µ)2} = D{y} = σ2, (9.1b)

E{(y − µ)3} = 0, (9.1c)

E{(y − µ)4} = 3(σ2)2. (9.1d)

The third moment being zero in (9.1c) means there is no skewness in the distribution
of the random variable. The right side of (9.1d) indicates that there is no kurtosis
(peak) in the distribution.

If (9.1c) or (9.1d) are not satisfied, the variable is not normally distributed and
can be characterized as follows:

E{(y − µ)3} > 0 ⇔ the distribution is skewed to the positive side. (9.2a)

E{(y − µ)3} < 0 ⇔ the distribution is skewed to the negative side. (9.2b)

E{(y − µ)4} − 3(σ2)2 > 0 ⇔ the distribution has positive kurtosis. (9.2c)

E{(y − µ)4} − 3(σ2)2 < 0 ⇔ the distribution has negative kurtosis. (9.2d)

Skewness appears in a graph of a sample of the random variable (e.g., a histogram)
as a shift in the peak value from center. Positive kurtosis shows higher probability
near the expected value µ, which results in a taller, narrower graph. Negative
kurtosis shows higher probability in the tails of the graph; thus the graph appears
flatter than that of a normally distributed variable.
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The pdf (probability density function, or density function) of a normally dis-
tributed random (scalar) variable y is

f(y) =
1√
2πσ2

e−(y−µ)2/2σ2

, (9.3)

where µ is the expectation of the distribution (population mean), σ is standard
deviation, σ2 is variance, and e is Euler’s number (i.e., the base of the natural log-

arithm, e ≈ 2.71828). Note that the term 1/
√
2πσ2 ≈ 0.4/σ denotes the amplitude

of the graph of the curve, µ shows the offset of the peak from center, and σ is the
distance from the center to the inflection points of the curve.

The cdf (cumulative distribution function, or distribution function) of a normally
distributed random variable is expressed as

F (y) =

y∫
−∞

f(t) dt =
1

σ
√
2π

y∫
−∞

e−(t−µ)2/2σ2

dt. (9.4)

Figure 9.1 shows pdf and cdf plots for the normal distribution using various values
for µ and σ2. Line colors and types match between the pdf and cdf plots. The solid,
green line represents the respective standard normal pdf and cdf curves.

Note that, in geodetic-science applications, the random variable y might be an
observation, an adjusted observation, a predicted residual, etc. We can standardize
the random variable y with the following transformation, which subtracts out the
mean and divides by the standard deviation:

z =
y − µ

σ
. (9.5)

The standardized random variable z has the following moments and probability
functions:

E{z} = 0, (9.6a)

D{z} = 1, (9.6b)

pdf : f(z) =
1√
2π

e−z2/2, (9.6c)

cdf : F (z) =

z∫
−∞

f(t) dt =
1√
2π

z∫
−∞

e−t2/2 dt . (9.6d)

A plot of the pdf of z is shown in Figure 9.2, along with example Student’s t-
distribution curves (discussed below).

In the multivariate case, the random variable y is an n×1 vector, with an n×n
dispersion (covariance) matrix Σ = D{y} and expectation vector µ = E{y}, which
is also size n× 1. The pdf is then written as

f(y) =
1

(2π)n/2
√
detΣ

e−(y−µ)TΣ−1(y−µ)/2. (9.7)
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Figure 9.1: pdf curve (top) and cdf curve (bottom) for the normal distribution with
matching line types and colors so that the legend pertains to both graphs

And the cdf is written as

F (y1, . . . , yn) =

yn∫
−∞

. . .

y1∫
−∞

f(t1, . . . , tn) dt1 . . . dtn . (9.8)
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Figure 9.2: Curves of Student’s t- and normal distributions for a standard-
ized/studentized random variable

The elements of y, i.e. y1, . . . , yn, are statistically independent if, and only if,

f(t1, . . . , tn) = f(t1) · f(t2) · . . . f(tn), (9.9a)

which implies

C{yi, yj} = 0 for i ̸= j. (9.9b)

Equation (9.9b) states that there is no covariance between the elements of random
vector y.

The third and fourth moments for the multivariate case are given in (9.10a)
and (9.10b), respectively.

E{(yi − µi)(yj − µj)(yk − µk)} = 0 for i, j, k = {1, . . . , n} (9.10a)

E{(yi − µi)(yj − µj)(yk − µk)(yl − µl)} = 3(σ2
i )

2 · δijkl for i, j, k, l = {1, . . . , n},
(9.10b)

with δijkl being the Kronecker-delta function satisfying δijkl = 1 if, and only if,
i = j = k = l; otherwise δijkl = 0.

In the following, we discuss studentized residuals, which have a t-distribution
(or Student’s t-distribution). The pdf for a (scalar) variable having a t-distribution
and ν = n− 1 degrees of freedom is defined as follows:

f(t) =
1√

(n− 1)π
· Γ(n/2)

Γ
(
n−1
2

) · 1(
1 + t2

n−1

)n/2 , (9.11)

where the gamma function is defined by

Γ(n) := (n− 1)Γ(n− 1) =

∞∫
0

e−ttn−1 dt = (n− 1)! for n ∈ N. (9.12)
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As is known from introductory statistics, the pdf for the Student’s t-distribution
resembles the pdf of the standard normal distribution when ν is around 30. For ν =
∞, the distributions are identical. A plot of the pdf for the Student’s t-distribution,
with ν = 2, 4, 8, together with the pdf for the standard normal distribution, is shown
in Figure 9.2.

9.1 Standardized and Studentized Residuals

We begin this section by restating the (full-rank) Gauss-Markov Model and writing
the predicted vector of random errors within the model.

y = Aξ + e, e ∼
(
0, σ2

0P
−1

)
, rkA = m (9.13a)

ẽ =
(
In −AN−1ATP

)
y =

(
In −AN−1ATP

)
e (9.13b)

As usual, the observation vector y is of size n × 1, and the coefficient matrix A is
of size n × m, and normal equation variables are defined by [N, c] := ATP [A, y].
Obviously, the far-right side of (9.13b) cannot be computed since e is an unknown
variable. However, the expression is useful for analytical purposes.

In the following, we assume that the random error vector e has a normal dis-
tribution expressed by e ∼ N (0, σ2

0P
−1) (where the symbol N denotes normal

distribution). This assumption is made for the sake of hypothesis testing in sta-
tistical analysis, which requires that test statistics1 be computed as a function of
a specified pdf. The justification of the assumption owes to the central limit the-
orem as stated by Bjerhammar (1973, p. 35) (see also the footnote on page 190).
However, since e and σ2

0 are unknown their respective prediction ẽ and estimate σ̂2
0

are used instead; consequently, the Student’s t-distribution is used in place of the
normal distribution for formulating hypothesis tests.

9.1.1 Standardized Residuals

The so-called standardized residual vector is a function of the residual vector ẽ and
its dispersion matrix D{ẽ} as shown in the following:

D{ẽ} = σ2
0

(
P−1 −AN−1AT

)
=: σ2

0Qẽ, (9.14a)

σ2
ẽj = ηT

j D{ẽ}ηj = E{ẽ2j}, (9.14b)

with

ηj :=
[
0, . . . , 0, 1

jth
, 0, . . . , 0

]T
, (9.14c)

as a unit vector that serves to extract the jth diagonal element from the dispersion
matrix. Then, the jth standardized residual is defined as

z̃j := ẽj/σẽj . (9.15)

1The term test statistic is called test criterion by Snedecor and Cochran (1980, p. 65).
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9.1.2 Studentized Residuals

Since the variance component σ2
0 is considered unknown in the model (9.13a), we

replace it with its estimate σ̂2
0 , leading to the following analogous set of equations

for the studentized residual :

σ̂2
0 =

ẽTP ẽ

n− rk(A)
=

yTPy − cTN−1c

n−m
, (9.16a)

D̂{ẽ} = σ̂2
0

(
P−1 −AN−1AT

)
=: σ̂2

0Qẽ, (9.16b)

σ̂2
ẽj = ηT

j D̂{ẽ}ηj = Ê{ẽ2j}. (9.16c)

Then the studentized residual is defined as

t̃j := ẽj/σ̂ẽj . (9.17)

Note that the denominator in (9.15) is constant (due to the unknown but constant
variance component σ2

0), whereas the denominator of (9.17) is random due to the
introduction of the estimate σ̂2

0 , which is random. Of course the numerator is
random in both cases.

Using Q to represent cofactor matrices in general, we can rewrite the standard-
ized and studentized residuals in the following alternative forms:

Standardized residual: z̃j := ẽj
/√

σ2
0

(
Qẽ

)
jj

∼ N (0, 1). (9.18a)

Studentized residual: t̃j := ẽj
/√

σ̂2
0

(
Qẽ

)
jj

∼ t(n− 1). (9.18b)

Here σ2
0Qẽ = D{ẽ}, and (Qẽ)jj denotes the jth diagonal element of the resid-

ual cofactor matrix Qẽ, and we have assumed that the standardized residuals are
normally distributed, implying that the studentized residuals follow the Student’s t-
distribution. Again, it is noted that (9.18a) cannot be computed unless the variance
component σ2

0 is known.

9.1.2.1 Example of Studentized Residuals

This example treats studentized residuals within the model of direct observations
of a single parameter µ with weight matrix P = In.

y = τµ+ e, e ∼ N
(
0, σ2

0In
)
, with τ = [1, . . . , 1]T

µ̂ =
τTy

τT τ
=

1

n

(
y1 + . . .+ yn

)
∼ N

(
µ, σ2

0/n
)

ẽ = y − τ µ̂ ∼ N (0, σ2
0

[
In − n−1 · ττT

]
)

Qẽ = In − n−1 · ττT

σ̂2
0 =

ẽT ẽ

(n− 1)
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The formula for Qẽ in the above example means that (Qẽ)jj = (n− 1)/n, which
shows that the more observations we have (i.e., the larger n is), the more the
dispersion of the predicted random error D{ẽ} approaches the dispersion of the true
random error D{e}. In this example the standardized and studentized residuals are
written as follows:

Standardized: z̃j =
ẽj√

σ2
0(Qẽ)jj

=
ẽj
√
n

σ0

√
n− 1

∼ N (0, 1). (9.19a)

Or, alternatively: z̃j =
ẽj√
(Qẽ)jj

=
ẽj
√
n√

n− 1
∼ N (0, σ2

0). (9.19b)

Studentized: t̃j =
ẽj√

σ̂2
0(Qẽ)jj

=
ẽj√
ẽT ẽ

√
n ∼ t(n− 1). (9.19c)

We extend the example by including a hypothesis test for the parameter esti-
mate µ̂ against a specified value µ0 at a significance level α.

Hypothesis test: H0 : E{µ̂} = µ0 against HA : E{µ̂} ≠ µ0.

Test statistic: t =
µ̂− µ0√

σ̂2
0

√
n ∼ t(n− 1).

We accept the null hypothesis H0 if t−α/2 ≤ t ≤ tα/2; otherwise we reject H0.
We may perform a similar test H0 : E{ẽj} = 0 for the jth residual. In this case the
test statistic is the studentized residual computed by (9.19c).

9.2 Hypothesis Testing Within the Gauss-Markov
Model

The hypothesis test introduced in Section 9.1 for direct observations of a single
parameter is now extended to the Gauss-Markov Model (GMM). In introducing the
GMM in Chapter 3, a probability density function was not given for the random
observation errors; only the first and second moments of the random errors were
specified. This is indeed all that is necessary to formulate and solve the least-
squares estimation problem within the GMM. However, in order to perform classical
hypothesis testing after the least-squares estimate has been computed, a probability
distribution must be specified. Typically, we assume that the observation errors
have a normal distribution. Then, the (full rank) GMM is written succinctly as

y
n×1

= A
n×m

ξ + e, rkA = m, e ∼ N
(
0, σ2

0P
−1

)
. (9.20)

where the symbol N denotes the normal distribution.
Minimization of the observation errors via a least-squares adjustment leads to

the following vectors of parameter estimates and predicted random-errors, shown
with their corresponding normal distributions (normal because the distribution of
the observations were assumed to be normal for the sake of hypothesis testing):

ξ̂ = N−1c ∼ N
(
ξ, σ2

0N
−1

)
, (9.21a)
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ẽ =
(
In −AN−1ATP

)
y ∼ N

(
0, σ2

0

[
P−1 −AN−1AT

])
. (9.21b)

Or equivalently, we could write for the predicted residual vector

ẽ =
(
In −AN−1ATP

)
e = QẽPy ∼ N

(
0, σ2

0Qẽ

)
, (9.22a)

with its cofactor matrix provided by

Qẽ := P−1 −AN−1AT . (9.22b)

The jth standardized and studentized residuals are then written as

jth standardized residual: z̃j := ẽj
/√

σ2
0(Qẽ)jj ∼ N (0, 1), (9.23)

jth studentized residual: t̃j := ẽj
/√

σ̂2
0(Qẽ)jj ∼ t(n−m). (9.24)

As shown in Chapter 3, we compute the estimated reference variance within the
GMM by

σ̂2
0 =

ẽTP ẽ

n−m
, (9.25)

where n − m is the redundancy of the model. The hypothesis test for the jth
studentized residual then becomes

H0 : E{ẽj} = 0 versus HA : E{ẽj} ≠ 0. (9.26)

Likewise, we may test individual elements of the estimated parameter vector ξ̂.
For example, we may want to compare the jth element of the estimated parameter

vector, ξ̂j , against some specified value ξ
(0)
j . In this case, the null hypothesis and

computed test statistic are defined as follows:

H0 : E{ξ̂j} = ξ
(0)
j versus HA : E{ξ̂j} ≠ ξ

(0)
j , (9.27a)

tj =
ξ̂j − ξ

(0)
j√

σ̂2
0

(
N−1

)
jj

∼ t(n−m), (9.27b)

or

t2j =

(
ξ̂j − ξ

(0)
j

)[(
N−1

)
jj

]−1(
ξ̂j − ξ

(0)
j

)
/1

(ẽTP ẽ)/(n−m)
∼ F (1, n−m). (9.27c)

From (9.27b) and (9.27c) we see that in this case the square of the test statistic
having a Student’s t-distribution has an F -distribution.

For a given significance level α, we accept H0 if t−α/2 ≤ tj ≤ tα/2; otherwise
we reject H0. We can use a cdf table for the t-distribution to find the value of
tα/2(n −m). Note that α is the probability of making a Type I error (also called
the significance level of the test), and n − m is the degrees of freedom associated
with σ̂2

0 ; for the F -distribution, 1 is the degrees of freedom associated with the
numerator.
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9.3 Confidence Intervals for Ellipses, Ellipsoids,
and Hyperellipsoids

After we estimate the mean of a population, or the parameter of a data model, we
might then like to make a statement about the accuracy of the estimated value. In
statistics, a probability statement gives the probability that the estimated quantity
falls within a certain interval centered on the true, but unknown mean (or model
parameter). Such an interval is called a confidence interval, and its upper and lower
bounds are called confidence limits. Confidence ellipses, ellipsoids, and hyperellip-
soids are the respective 2-D, 3-D, and n-D analogues to confidence intervals.

9.3.1 Confidence Intervals — Univariate Case

By definition, the cdf (cumulative distribution function) of a random variable X is

FX(x) = P (X ≤ x), −∞ < x < ∞, (9.28)

which provides the probability that the unknown quantity X is less than or equal
to the sampled value x. It follows, then, that the probability that X lies within the
interval (a, b] is

P (a < X ≤ b) = FX(b)− FX(a). (9.29)

Applying (9.29) to the standard normal random variable z of (9.5), we can write
the following probabilities for confidence intervals bounded by ±1σ, ±2σ, ±3σ,
respectively, from the mean, where σ = 1 since z ∼ N (0, 1) according to (9.6a)
and (9.6b):

P (−1 < z ≤ 1) = P (µ− σ < y ≤ µ+ σ) = 68.3% (9.30a)

P (−2 < z ≤ 2) = P (µ− 2σ < y ≤ µ+ 2σ) = 95.5% (9.30b)

P (−3 < z ≤ 3) = P (µ− 3σ < y ≤ µ+ 3σ) = 99.7% (9.30c)

The intervals associated with these probability statements are commonly referred
to as the “1-sigma,” “2-sigma,” and “3-sigma” confidence intervals, respectively.
Other commonly used intervals are the so-called 90%, 95%, and 99% confidence
intervals. For a normally distributed random variable z, their respective probability
statements are

90% = P (−1.645 < z ≤ 1.645), (9.31a)

95% = P (−1.960 < z ≤ 1.960), (9.31b)

99% = P (−2.576 < z ≤ 2.576). (9.31c)

Probability limits correspond to the area under the graph of the associated
pdf. For example, the area between ±σ under the graph of the standard normal
distribution shown in Figure 9.2 is 0.683, and it is 0.997 for ±3σ. The regions
beyond these areas are called the tails of the graph. Figure 1.2 depicts a graphical
representation of the areas comprising ±σ, ±2σ, and ± 3σ. It is shown again in
Figure 9.3 for convenience.
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Figure 9.3: Normal distribution curve, with percent of areas under curve denoting
probabilities. Image derived from TikZ code by John Canning, Senior Lecturer at
the University of Brighton (http://johncanning.net/wp/?p=1202).

9.3.2 Confidence Ellipses — Bivariate Case

Now let us consider the bivariate (2-D) case where y is a random 2-D vector and µ
is its expected value; i.e., µ = E{y}. Also, the dispersion of y is given by a 2 × 2
dispersion matrix Σ. In summary, we have

y =

[
y1

y2

]
, µ =

[
µ1

µ2

]
= E{

[
y1

y2

]
}, Σ := D{y} =

[
σ2
1 σ12

σ21 σ2
2

]
, σ12 = σ21. (9.32)

When speaking of the elements of the vectors and matrix in (9.32), we say that
µ1 is the expected value of y1; σ

2
1 is the variance of y1 (with σ1 called standard

deviation), and σ12 is the covariance between y1 and y2.
The 2-D analogue to a confidence interval is a confidence ellipse, which can be

generated from

(y − µ)TΣ−1(y − µ) = (9.33a)

=
1

(1− ρ212)

(
(y1 − µ1)

2

σ2
1

− 2ρ12
(y1 − µ1)(y2 − µ2)

σ1σ2
+

(y2 − µ2)
2

σ2
2

)
= k2, (9.33b)

where k is a constant, and ρ is the correlation coefficient defined by

ρ12 =
σ12

σ1σ2
. (9.34)

By varying k, we generate a family of ellipses, each having an associated constant
probability. Setting k = 1 results in the standard confidence ellipse. The ellipses
actually originate by slicing the surface associated with a bivariate density func-
tion (pdf) with a plane parallel to the (y1, y2)-coordinate plane (see Figure 9.4) as
described in the following.

http://johncanning.net/wp/?p=1202
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Using the terms defined in (9.32), together with equation (9.7), we can write the
joint pdf (or bivariate density function) of y explicitly as

f(y) = f(y1, y2) =
1

2π
√
σ2
1σ

2
2 − σ2

12

·

· exp
{
− σ2

1σ
2
2

2(σ2
1σ

2
2 − σ2

12)

[
(y1 − µ1)

2

σ2
1

− 2σ12
(y1 − µ1)

σ2
1

(y2 − µ2)

σ2
2

+
(y2 − µ2)

2

σ2
2

]}
=

(9.35a)

=
1

2πσ1σ2

√
1− ρ212

·

· exp
{
− 1

2(1− ρ212)

[(
y1 − µ1

σ1

)2

− 2ρ12

(
y1 − µ1

σ1

)(
y2 − µ2

σ2

)
+

(
y2 − µ2

σ2

)2]}
,

(9.35b)

where exp stands for the exponential function, e.g., exp{x} = ex. The density
function has the form of a bell-shaped surface over the (y1, y2)-coordinate plane,
centered at (µ1, µ2). By ignoring ρ, the respective marginal pdf’s f(y1) and f(y2)
can be written as

f(y1) =
1

2π
exp

{
−1

2

(
y1 − µ1

σ1

)2}
, (9.36a)

and

f(y2) =
1

2π
exp

{
−1

2

(
y2 − µ2

σ2

)2}
. (9.36b)

The bivariate density function f(y1, y2) and the marginal density functions f(y1)
and f(y2) are depicted in Figure 9.4 with ellipses traced out by slicing planes.

Each element of the vector y may be normalized according to (9.5), so that the
jth element of the normalized vector z is expressed in terms of the corresponding
jth element of y; that is zj = (yj − µj)/σj , j = 1, 2. Substituting zj into (9.35b)
we can write the following pdf for the normalized 2-D vector z:

f(z1, z2) =
1

2πσ1σ2

√
1− ρ212

· exp
{
− 1

2
(
1− ρ212

)(z21 − 2ρ12z1z2 + z22
)}

. (9.37)

As noted above, a family of ellipses can be generated by slicing the bell-shaped
surface generated by the density function (9.37) with planes parallel to the (y1, y2)-
coordinate plane (see Figure 9.4). The formula for the ellipse can be defined by
setting the density function to a constant value related to the height of the slicing
plane, which after some simplification results in an equation of the form (9.33b). Ac-
cording to Mikhail and Gracie (1981, p. 221), the relationship between the height h
of the slicing plane above the (y1, y2)-coordinate plane and the constant k in (9.33b)
is given by k2 = ln[4π2h2σ2

1σ
2
2(1− ρ212)]

−1. Setting k = 1 gives the equation for the
standard confidence ellipse as follows:

z21 − 2ρ12z1z2 + z22 = 1− ρ212. (9.38)
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Figure 9.4: Bivariate and marginal density functions (pdf’s) with ellipses traced
from slicing planes, after Mikhail and Gracie (1981, p. 221)

The size, shape, and orientation of the confidence ellipse are determined by the
eigenvalues and eigenvectors of the dispersion matrix Σ.

9.3.2.1 Eigenvector-eigenvalue decomposition of Σ

The eigenvector-eigenvalue decomposition of the 2 × 2 matrix Σ is described as
follows: Denote the eigenvectors of Σ as uj and the eigenvalues as λj , j = 1, 2.
Then we have the relation

Σuj = λuj , (9.39)

for which we write the following characteristic equation:

det
(
Σ− λI2

)
=

(
σ2
1 − λ

)(
σ2
2 − λ

)
− σ2

12 = λ2 −
(
σ2
1 + σ2

2

)
λ+

(
σ2
1σ

2
2 − σ2

12

)
= 0.
(9.40)

In (9.40), λ has been used in general to represent either eigenvalue λ1 or λ2. By
convention, we require λ1 ≥ λ2 > 0 and write the following solution for the roots of
the characteristic equation (9.40):

λ1 or 2 =
σ2
1 + σ2

2

2
±

√(
σ2
1 + σ2

2

2

)2

− 1

4
4σ2

1σ
2
2 +

4σ2
12

4
⇒ (9.41a)

λ1 or 2 =
σ2
1 + σ2

2

2
± 1

2

√(
σ2
1 − σ2

2

)2
+ 4σ2

12 > 0, (9.41b)
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which shows that the eigenvalues must be greater than zero, since Σ is positive
definite.

Now we must find the two corresponding eigenvectors. Let the matrix U be
comprised of the two eigenvectors u1 and u2 such that U := [u1, u2]. Also define
a diagonal matrix comprised of the corresponding eigenvalues Λ := diag(λ1, λ2).
Then according to (9.39) we have

ΣU = UΛ = (9.42a)

=

[
σ2
1 σ12

σ12 σ2
2

][
u11 u12

u21 u22

]
=

[
u11 u12

u21 u22

][
λ1 0

0 λ2

]
= (9.42b)

=

[
σ2
1u11 + σ12u21 σ2

1u12 + σ12u22

σ12u11 + σ2
2u21 σ12u12 + σ2

2u22

]
=

[
λ1 · u11 λ2 · u12

λ1 · u21 λ2 · u22

]
. (9.42c)

Starting by equating the first columns on each side of (9.42c), and then the second
columns, we can write the following four equations in the four unknowns u11, u12,
u21, and u22:

u21 =

(
λ1 − σ2

1

)
u11

σ12
, u21 =

σ12u11

λ1 − σ2
2

, u12 =
σ12u22

λ2 − σ2
1

, u12 =

(
λ2 − σ2

2

)
u22

σ12
.

(9.43)

The eigenvector u1 = [u11, u21]
T defines the direction of the semimajor axis

of the confidence ellipse, while the eigenvector u2 = [u12, u22]
T , orthogonal to u1,

defines the semiminor axis direction. The square root of the eigenvalue λ1 gives the
semimajor-axis length, and the square root of the eigenvalue λ2 gives the semiminor-
axis length. Also, if θ is the angle measured counter clockwise from the positive z1-
axis to the semimajor axis of the confidence ellipse, then we can write the matrix U
as

U = [u1, u2] =

[
cos θ − sin θ

sin θ cos θ

]
. (9.44)

Using (9.43) and (9.44), the angle θ is derived as follows:

tan θ =
sin θ

cos θ
=

u21

u11
=

λ1 − σ2
1

σ12
=

σ12

λ1 − σ2
2

= −u12

u22
=

σ2
2 − λ2

σ12
=

σ12

σ2
1 − λ2

and

(9.45a)

tan(2θ) =
2 tan θ

1− tan2 θ
=

(
2σ12

λ1 − σ2
2

)
1

1− σ2
12(

λ1−σ2
2

)2

(
λ1 − σ2

2

λ1 − σ2
2

)
⇒ (9.45b)

tan(2θ) =
2σ12

(
λ1 − σ2

2

)(
λ1 − σ2

2

)2 − σ2
12

=
2σ12

(
λ1 − σ2

2

)
4[

2
(
λ1 − σ2

2

)]2 − 4σ2
12

. (9.45c)

By manipulating (9.41b), we have

2
(
λ1 − σ2

2

)
=

(
σ2
1 − σ2

2

)
±

√(
σ2
1 − σ2

2

)2
+ 4σ2

12 ⇒ (9.46a)
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[
2
(
λ1 − σ2

2

)]2
= 2

(
σ2
1 − σ2

2

)2 ± 2
(
σ2
1 − σ2

2

)√(
σ2
1 − σ2

2

)2
+ 4σ2

12 + 4σ2
12. (9.46b)

Substituting (9.46a) and (9.46b) into (9.45c) gives

tan(2θ) =

4σ12

[(
σ2
1 − σ2

2

)
±
√(

σ2
1 − σ2

2

)2
+ 4σ2

12

]
2
(
σ2
1 − σ2

2

) [(
σ2
1 − σ2

2

)
±

√(
σ2
1 − σ2

2

)2
+ 4σ2

12

] ⇒ (9.47a)

tan(2θ) =
2σ12

σ2
1 − σ2

2

. (9.47b)

As stated in Mikhail and Gracie (1981, p. 227), “the quadrant of 2θ is determined in
the usual way from the signs of the numerator 2σ12 and the denominator (σ2

1−σ2
2).”

Returning now to the notion of ellipses of constant probability represented by
(9.33a), probabilities for various values of k are most easily determined by using a
transformed system of equations centered on µ and rotated so that the y1 and y2
axes coincide with the axes formed by the eigenvectors u1 and u2. Then, instead
of correlated coordinates y1 and y2, we end up with uncorrelated coordinates u1

and u2 with respective variances λ1 and λ2 from (9.41b). And so the probability
statement for being on or within an ellipse having semimajor and semiminor axes
k
√
λ1 and k

√
λ2, respectively, is

P

{
u2
1

λ1
+

u2
2

λ2
< k2

}
= P{χ2 < k2} = 1− α, (9.48)

where α is a specified level of significance. Because it is assumed that u1 and u2 are
sampled from a normal distribution, the sum of their squares has a χ2 distribution.
See Section 9.4.1 for a description of the χ2 distribution.

Given a value for P = 1 − α, the value of k (or vice versa) can be determined
from a table of values for the χ2 density function. Users of MATLAB® can generate
P given k2 by using P = chi2cdf(k2, 2), and k2 given P can be generated by
k2 = chi2inv(P, 2). Commonly used values are shown in Table 9.1. Compare the
probability of 39.4% associated with the 1-sigma confidence ellipse to the value of
68.3% shown in (9.30a) for the 1-sigma confidence interval in the univariate case.

Table 9.1: “k-sigma” probabilities for various confidence ellipses. P = 1− α.

P 0.394 0.500 0.900 0.950 0.990

k 1.000 1.177 2.146 2.448 3.035

9.3.3 Standard Empirical Error Ellipse

An empirical error ellipse differs from the confidence ellipse described above in
that the covariance matrix Σ is replaced by the estimated matrix Σ̂, such that
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Σ̂−1 = σ̂−2
0 Q−1, for example, where σ̂2

0 is an estimated variance component and Q
is a given cofactor matrix. Then, for the standard empirical error ellipse (k := 1),
rather than (9.33a), we have

(y − µ̂)TQ−1(y − µ̂)

σ̂2
0

= k2 = 1. (9.49)

If we are evaluating n/2 number of 2-D points, so that Q−1 is of size n× n, we
may simply work with each of the (n/2 number of) 2 × 2 block diagonal matrices
of σ̂−2

0 Q−1 independently to form the empirical error ellipse of each point. However,
we must bear in mind that these block diagonal matrices do not tell the whole story
since the off-block-diagonal elements have been ignored. In any case, it may be
prudent to verify that the associated correlation-coefficients of the off-block-diagonal
elements are relatively small in magnitude.

Note that error ellipses and confidence ellipses have the same shape, but are
centered differently; namely, error ellipses in the estimated point (e.g. (µ̂1, µ̂2)) and
confidence ellipses in the “true” point (e.g. (µ1, µ2)). Accordingly, the interpre-
tation is that the 1-sigma error ellipse shows about 40% likelihood for the “true”
point to fall inside, whereas the 1-sigma confidence ellipse shows us the area where,
with about 40% likelihood, the estimated point can be found. In case that an esti-
mated variance component is involved (e.g. σ̂2

0), the term “empirical error ellipse”
is favored.

9.3.3.1 2-D examples within the Gauss-Markov Model

The following two examples apply to the Gauss-Markov Model (GMM):

1. Consider the GMM (9.20), with an associated least-squares solution and dis-
persion given in (9.21a). Assume that the parameter vector ξ is comprised of

successive 2-D point coordinates such that (ξ̂2i−1, ξ̂2i) represents the coordi-
nate estimates of the ith point. Now, also assume that we wish to compare
the estimates with given (fixed) values (ξ02i−1, ξ02i), perhaps from published
results of a previous adjustment. Then we may write the following equations
for the null hypothesis and the standard empirical error ellipse, where, for
convenience, k := 2i and j := k − 1 are used for indices (obviously, the index
k is not the same as the constant k used in (9.33b) and (9.48)):

H0 : E{
[
ξ̂j , ξ̂k

]T } =
[
ξ0j , ξ

0
k

]T
, (9.50a)

1

σ̂2
0

[
ξ̂j − ξ0j
ξ̂k − ξ0k

]T [
Nj,j Nj,k

Nk,j Nk,k

][
ξ̂j − ξ0j
ξ̂k − ξ0k

]
= 1. (9.50b)

2. Suppose that instead of comparing the solution to given, fixed values we want
to compare the results (2-D coordinate estimates) of two adjustments. Using
the previously defined indices, let the estimates of the ith point of the second

adjustment be represented by (
ˆ̂
ξj ,

ˆ̂
ξk). We ask the question: is the outcome
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of the second adjustment statistically equivalent to the first? Unless there is
statistically significant overlap of the respective error ellipses, the answer is
no. The null hypothesis H0 and the test statistic f are defined as follows:

H0 : E{
[
ξ̂j , ξ̂k

]T } = E{
[ ˆ̂
ξj ,

ˆ̂
ξk
]T }, (9.51a)

f :=
1/2

σ̂2
0/σ

2
0

 ξ̂j − ˆ̂
ξj

ξ̂k − ˆ̂
ξk

T

D{

 ξ̂j − ˆ̂
ξj

ξ̂k − ˆ̂
ξk

}−1

 ξ̂j − ˆ̂
ξj

ξ̂k − ˆ̂
ξk

 ∼ F (2, n− rkA).

(9.51b)

Here, 1/2 in the numerator reflects the first degrees of freedom, 2, owing
to two elements of the parameter vector being tested. Also note that the
unknown variance component σ2

0 shown in the denominator cancels with the
same term occurring in the dispersion matrix. Moreover, in computing the test
statistic f , it is assumed that the estimated variance component σ̂2

0 is common
to both adjustments. This assumption can be verified by a homogeneity test
H0 : E{σ̂2

0} = E{ˆ̂σ2
0}, which is discussed in Section 9.4. Here, we also assume

that the rank of matrix A is equivalent in both adjustments, which is equal
to the number of unknown parameters m according to the model definition
(9.20). Note that in the case that the two adjustments are uncorrelated, we
could replace the inverted dispersion matrix of parameter differences with the
inverse of the sum of the two respective dispersion matrices.

3. From a least-squares adjustment of a 3D network, the following variances
and correlation coefficient were obtained for the estimates of the horizontal
coordinates of one of the points:

σ2
x = (0.035)2 m2, σ2

y = (0.022)2 m2, ρxy = 0.31

Draw the empirical error ellipse for the point (assumed centered at its esti-
mated coordinate values). What is the probability that the “true” coordinates
lie within the error ellipse centered at the estimated coordinates? How does
the ellipse change if, instead of the standard error ellipse, we seek the ellipse
for which there is a 95% probability that the true point lies within the ellipse
centered on the estimated point?

Table 9.2: Solution for standard empirical error ellipse

semimajor axis length a = 0.035 989m

semiminor axis length b = 0.020 341m

rotation angle θ = 16.396123◦

probability 39.4%
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Figure 9.5: Standard empirical error ellipse

According to Table 9.1, the semimajor and semiminor axes lengths would
increase by a factor of 2.447 for a 95% error ellipse. However, the orientation
of the ellipse would not change.

9.3.4 Confidence Ellipsoids and Hyperellipsoids — Multi-
variate Case

In the 3-D case, confidence ellipses are extended to confidence ellipsoids. But, in
our general formulation of the GMM we may be working with a higher-dimensional
space, and thus we speak of confidence hyperellipsoids. Since 3-D and higher di-
mensions are natural extensions of the 2-D case, no further discussion is necessary.
However, we do list probabilities associated with confidence ellipsoids for the 3-D
case in Table 9.3. The table entries can be generated using the same MATLAB®

commands shown in the previous section, except that the second argument must
be 3 (degrees of freedom) instead of 2.

Table 9.3: “k-sigma” probabilities for various confidence ellipsoids. P = 1− α.

P 0.199 0.500 0.900 0.950 0.990

k 1.000 1.538 2.500 2.796 3.365

9.4 χ2-distribution, Variance Testing, and F -dis-
tribution

This section includes the statistical topics of χ2- and F -distributions as well as the
topic of variance testing.
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9.4.1 χ2-Distribution

The χ2-distribution is attributed to the German geodesist F.R. Helmert from 1876.
If we claim that the (unknown) random error vector e from the GMM is nor-
mally distributed as e ∼ N (0, σ2

0P
−1), then the quadratic product eTPe has a χ2-

distribution with ν := rkP = n degrees of freedom, expressed by

eTPe

σ2
0

∼ χ2(ν). (9.52)

Now, define x := eTPe/σ2
0 (which cannot actually be computed since both e and σ2

0

are unknown). Therefore, the pdf of x is written as

f(x) =


1

2ν/2Γ(ν/2)
x(ν−2)/2e−x/2 for x > 0

0 for x ≤ 0,

(9.53)

where e is Euler’s number 2.71828 . . . The gamma function Γ(·) was defined in
(9.12). Figure 9.6 shows plots of the χ2-distribution for ν = {1, 3, 5, 8, 10, 30} with
respective colors: black, magenta, cyan, red, green, blue. Note that the peaks of the
curves move to the right as ν increases and that the curves appear to approximate
the normal-distribution curve as ν grows to 10 and larger. This agrees with our
expectation that the χ2-distribution is asymptotically normal, due to the central
limit theorem.2

From the variance component derivations in Section 3.3, we have E{eTPe} =
n · σ2

0 , and, furthermore, we can write

E{eTPe/σ2
0} = tr

(
P · E{eeT }/σ2

0

)
= tr In = n, (9.54a)

E{ẽTP ẽ/σ2
0} = tr

(
P · E{ẽẽT }/σ2

0

)
= tr

(
In −AN−1ATP

)
= n− rkA = n−m.

(9.54b)

Then, with the help of (9.25) and (9.54b), the relation

ẽTP ẽ/σ2
0 = νσ̂2

0/σ
2
0 ∼ χ2(ν), (9.55a)

is established, with

ν := n−m (9.55b)

as the degrees of freedom (usually denoted r for redundancy elsewhere in these
notes).

Note that though we have been discussing the random error vector e and the
predicted residual ẽ, the relations expressed in (9.55a) apply to all quadratic forms in
normally distributed variables. Thus, when we have a vector of normally distributed
variables, the corresponding quadratic form will have a χ2-distribution.

2According to Bjerhammar (1973, Section 2.15), the central limit theorem says that “the sum
of n independent stochastic variables having equal expectation and variance will have a distribution
that converges towards the normal distribution for n → ∞.”
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Figure 9.6: Curve of χ2-distribution with various degrees of freedom ν

9.4.2 Variance Testing

Suppose we want to compare the estimated variance component σ̂2
0 to a given quan-

tity σ2 (in the latter, the 0-subscript is not used so as not to confuse the given value
with the unknown “true value”). We do so by performing the following hypothesis
test at a chosen significance level α (e.g., α = 0.05):

H0 : E{σ̂2
0} ≤ σ2 vs. HA : E{σ̂2

0} > σ2 (9.56a)

t := (n−m) ·
(
σ̂2
0/σ

2
)
∼ χ2(n−m) (9.56b)

If t ≤ χ2
α,n−m accept H0; else reject H0. (9.56c)

The test as shown is referred to as a one-tailed test, because the null hypothesis
only states that the expectation of the estimated quantity is less than or equal to a
given value (the use of ≥ in H0 would also constitute a one-tailed test). In contrast,
a two-tailed test would require an equals sign in the null hypothesis. The jargon
one- and two-tailed comes from the fact that 1−α represents the area under the pdf
curve left of the right tail in the one-tailed case, and it represents the area between
both the left and right tails (each of which have area α/2) in the two-tailed case.

Under the assumption that the data model is correct, if the estimate σ̂2
0 turns

out statistically to be less than the given value σ2, we deem our measurements to be
more precise than that reflected in the weight matrix P . On the other hand, if σ̂2

0
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proves statistically to be greater than the given value, we deem our measurements to
be less precise. Usually our main concern is that σ̂2

0 reflects that our measurements
are at least as precise as what is reflected by the elements of the weight matrix P ,
thus the use of a single-tailed hypothesis may be more commonly used in practice.

On the other hand, if we need to test for equality between the estimated variance
component σ̂2

0 and a chosen value σ2, the above hypothesis test should be modified
to depend on α/2 as follows:

H0 : E{σ̂2
0} = σ2 vs. HA : E{σ̂2

0} ≠ σ2 (9.57a)

t := (n−m) ·
(
σ̂2
0/σ

2
)
∼ χ2(n−m) (9.57b)

If χ2
1−α/2,n−m < t < χ2

α/2,n−m accept H0; else reject H0. (9.57c)

Note: Some tables of the χ2 distribution list percentiles that equal the area under
the curve less than χ2

p,df rather than the area under the curve right of χ2
α,df shown

in other tables (where df stands for degrees of freedom, sometimes denoted as ν).
Either type of table can be used as long as the relationship p = 1−α is considered.

In the case where we need to compare two estimated reference variances σ̂2
0,1

and σ̂2
0,2 from two independent adjustments, we must compute a ratio of test statis-

tics, which has an F -distribution (assuming both the numerator and denominator
have χ2-distributions). Let t1 and t2 be the test statistics from the respective ad-
justments; then we can write

t1/(n1 −m1)

t2/(n2 −m2)
= σ̂2

0,1/σ̂
2
0,2 ∼ F (n1 −m1, n2 −m2), (9.58)

where ni−mi, i = 1, 2, are the respective degrees of freedom of the two independent
adjustments.

9.4.3 F -Distribution

The F -distribution was named for its discover R.A. Fisher (1925) by G.W. Snedacor
(1935). It is a distribution for the ratio of two mutually independent random vari-
ables that have χ2-distributions with degrees of freedom v1 := m and v2 := n−m,
respectively. The pdf of such a variable is given by

f(w) =
Γ
(
m
2 + n−m

2

)
mm/2(n−m)(n−m)/2w(m/2)−1

Γ(m2 )Γ
(
n−m

2

)
(n−m+mw)(m/2+(n−m)/2)

= (9.59a)

=
(v1/v2)

v1/2Γ
(
(v1 + v2)/2

)
w(v1/2)−1

Γ(v1/2)Γ(v2/2)
(
1 + v1w/v2

)(v1+v2)/2
. (9.59b)

As n becomes large compared to m, the curve of the F -distribution approaches the
curve of the normal distribution.
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9.5 Hypothesis Testing on the Estimated Param-
eters

In the GMM, we may wish to perform a global model-check by comparing a specified
parameter vector ξ0 to the estimated vector ξ̂. In such a case, we may use as the
test statistic the ratio of weighted norms of the difference vector ξ̂ − ξ0 and the
predicted residual vector ẽ as follows:

w :=
(ξ̂ − ξ0)TATPA(ξ̂ − ξ0)

σ2
0m

· σ
2
0(n−m)

ẽTP ẽ
∼ F (m,n−m). (9.60)

Here we have assumed that matrix A has full rank, i.e., rkA = m. Since the
numerator and denominator are statistically independent of one another, the test
statistic w has an F -distribution with m and n−m degrees of freedom, as shown in
(9.60). Therefore, our global model-check is made by the following hypothesis test:

H0 : E{ξ̂} = ξ0 vs. HA : E{ξ̂} ≠ ξ0 (9.61a)

If w ≤ Fα,m,n−m accept H0; else reject H0. (9.61b)

We now show that the numerator and denominator of w are indeed independent,
as required for use of the F -distribution. To do so, we only need to show that

C{ẽTP ẽ, (ξ̂ − ξ)T (ATPA)(ξ̂ − ξ)} = 0. (9.62)

Note that, without loss of generality, we have replaced ξ0 with ξ. From (4.5e) we
have ẽ = [In −AN−1ATP ]e. Therefore,

ẽTP ẽ = eT
[
In − PAN−1AT

]
P
[
In −AN−1ATP

]
e =

= eT
[
P − PAN−1ATP

]
e =: eTM1e. (9.63a)

Also

A(ξ̂ − ξ) = e− ẽ = e−
(
In −AN−1ATP

)(
Aξ + e

)
=

(
AN−1ATP

)
e ⇒ (9.63b)

(ξ̂ − ξ)T
(
ATPA

)
(ξ̂ − ξ) = eT

(
PAN−1AT

)
P
(
AN−1ATP

)
e = (9.63c)

= eT
(
PAN−1ATP

)
e =: eTM2e. (9.63d)

By substitution of (9.63a) and (9.63d), the condition (9.62) is equivalent to the
condition that eTM1e and eTM2e are independent, which holds if, and only if,

M1D{e}M2 = 0 (9.63e)

(cf. Searle and Khuri (2017, Theorem 10.3)), which is true since(
P − PAN−1ATP

)(
σ2
0P

−1
)(
PAN−1ATP

)
= 0. (9.63f)
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9.6 Checking an Individual Element (or 2-D or 3-
D Point) of the Parameter Vector

We may use an l×m matrix K to select a subset of size l from the m× 1 vector of
estimated parameters ξ̂ for hypothesis testing as follows:

H0 : E{Kξ̂} = Kξ0 = κ0, (9.64a)

HA : E{Kξ̂} = Kξ0 ̸= κ0. (9.64b)

If l = 1, K is a unit row vector that extracts the relevant element from the parameter
vector, in which case κ0 is simply a scalar quantity. The following examples show
the matrix K used for extracting a single element, a 2-D point, and a 3-D point,
respectively:

K :=
[
0, . . . , 0, 1, 0, . . . , 0

]
, where 1 appears at the jth element; (9.65a)

K :=
[
02, . . . , 02, I2, 02, . . . , 02

]
, where K is size 2×m; (9.65b)

K :=
[
03, . . . , 03, I3, 03, . . . , 03

]
, where K is size 3×m. (9.65c)

For 2-D and 3-D points, the subscripts denote the dimension of the square sub-
matrices (zero matrix or identity matrix), and In (n ∈ {2, 3}) is the jth sub-matrix

of K, which means it “selects” the jth point from ξ̂.
The test statistic is then defined as

w : =

[
K
(
ξ̂ − ξ0

)]T
D{K

(
ξ̂ − ξ0

)
}−1

[
K
(
ξ̂ − ξ0

)]
/ rkK

σ̂2
0/σ

2
0

= (9.66a)

=

[
Kξ̂ − κ0

]T [
KN−1KT

]−1[
Kξ̂ − κ0

]
/l

σ̂2
0

=:
R/l

(ẽTP ẽ)/(n−m)
. (9.66b)

Note that σ2
0 appears in the denominator of (9.66a) in order to cancel out the same

term hidden inside the dispersion matrix in the numerator. Also note that since ξ0

is a specified (and therefore non-random) quantity to test against, the dispersion is
not affected by it, i.e.,

D{K(ξ̂ − ξ0)} = D{Kξ̂} = σ2
0KN−1KT . (9.67)

The symbols R and Ω are used for convenience and are analogous to the symbols
introduced in Sections 5.5 and 6.4, respectively. They are statistically independent
of one another and have the following distributions:

R ∼ χ2(l), Ω ∼ χ2(n−m). (9.68)

Statistical independence between the random variables R and Ω means that their
joint pdf is equivalent to the product of their individual pdf’s: f(R,Ω) = f(R)·f(Ω).
Independence can be shown by following the same line of thought as that used
at the end of the previous section, where M1 remains unchanged and M2 is now
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PAN−1KT
[
KN−1KT

]−1
KN−1ATP . Therefore, the test statistic (9.66b) has an

F -distribution represented by

w ∼ F (l, n−m). (9.69)

An alternative, more compact, form for w when l = 1 is given by

w =
(ξ̂j − (κ0)j)

2

σ̂2
0

(
N−1

)
jj

∼ F (1, n−m). (9.70)

The decision to accept or reject the null hypothesis is made analogous to (9.61b).

9.6.1 Non-central F -Distribution

If the null hypothesis H0 is false, the test statistic w is said to have a non-central
F -distribution (denoted here as F ′), which requires a non-centrality parameter θ
so that w ∼ F ′(v1, v2, θ) under HA, where v1 and v2 have been used to denote the
degrees of freedom, in general. The qualification “under HA” implies that we must
pose a specific alternative hypothesis HA in this case, rather than just the negation
ofH0. For a one-tailed test, the area under the non-central F -distribution curve and
to the right of Fα (from the F -distribution table) is denoted as β. The value of β
is also the probability of making an error of the second kind, namely to accept the
null hypothesis H0 when the specified alternative hypothesis HA is actually true.
The quantity 1 − β is known as the power of the test. As the value of θ increases,
so does the value 1 − β. Below we have rewritten (9.69) for the non-central case,
with the theoretical formula for 2θ following.

w ∼ F ′(l, n−m, θ) (9.71a)

2θ =
(
Kξ − κ0

)T (
KN−1KT

)−1(
Kξ̂ − κ0

)
(9.71b)

Note that the non-centrality property is reflected in (9.71b) by including both the

true (unknown) vector of parameters ξ and its estimate ξ̂ in bilinear form.

9.7 Detection of a Single Outlier in the Gauss-
Markov Model

A model that expresses the jth observation as a potential outlier can be written as

yj = aT
j ξ

(j) + ξ
(j)
0 + ej . (9.72)

The terms of the model are described as follows:

yj is the jth element of the n× 1 observation vector y.

aj is an m × 1 column vector that is comprised of the m elements of the jth row
of matrix A so that [a1,a2, . . . ,an]

T := A.
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ξ(j) denotes the m × 1 vector of unknown parameters associated with that set of
observations whose jth element is considered an outlier, as opposed to ξ,
which is associated with the same set of observations except that the jth one
is not considered as an outlier.

ej is the jth element of the unknown random error vector e.

ξ
(j)
0 is an unknown (scalar) parameter that accounts for an outlier. In other words,

it accounts for a non-random error in the observation. The formula for its
estimate is developed below.

The following example may be illustrative: Suppose the observation yj should

have been 100m but only a value of 10m was recorded, then ξ
(j)
0 accounts for a

90m blunder.
A modified GMM whose jth observation might be deemed an outlier is expressed

as

y
n×1

= A
n×m

ξ(j) + ηj
n×1

ξ
(j)
0 + e, ηj :=

[
0, . . . , 0, 1, 0, . . . , 0

]T
, (9.73a)

e ∼ N (0, σ2
0P

−1). (9.73b)

Note that the number 1 in ηj appears at the jth element; all other elements are 0.
We must compare the model in (9.73) with the original GMM (3.1), which is as-
sumed to not include an outlier. Since the model (9.73) assumes only one outlier in
the data set, n comparisons of the two models are necessary in order to test all yi
(i = 1, . . . , n) observations independently. For each comparison we introduce the
constraint equation

ξ
(j)
0 = K

[
ξ(j)

ξ
(j)
0

]
= κ0 = 0. (9.74)

Here K := [0, 0, . . . , 1] is of size 1× (m+1). When we impose the constraint (9.74)
upon the model (9.73), we obtain a model equivalent to the original GMM (3.1)
that does not include an additional parameter to model an outlier.

Diagonal weight matrix P assumed Note: For the remainder of this section,
we will assume that the weight matrix P is diagonal: P = diag(p1, . . . , pn), where pi
is the weight of the ith observation. See Schaffrin (1997b) for a treatment of outlier
detection with correlated observations.

Now, we begin with the following Lagrange target function to derive a least-
squares estimator in the unconstrained model (9.73):

Φ
(
ξ(j), ξ

(j)
0

)
=

(
y −Aξ(j) − ηjξ

(j)
0

)T
P
(
y −Aξ(j) − ηjξ

(j)
0

)
, (9.75)

which is made stationary with respect to ξ(j) and ξ
(j)
0 by setting the first partial

derivatives of (9.75) to zero, resulting in the following Euler-Lagrange necessary
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conditions:

1

2

[
∂Φ

∂ξ(j)

]T
= −ATPy +ATPηj ξ̂

(j)
0 +ATPAξ̂(j)

.
= 0, (9.76a)

1

2

∂Φ

∂ξ
(j)
0

= −ηT
j Py + ηT

j PAξ̂(j) + ηT
j Pηj ξ̂

(j)
0

.
= 0. (9.76b)

Of course the second partial derivatives are functions of P , which is positive definite
by definition, thereby satisfying the sufficient condition required for obtaining the
minimum of (9.75). In matrix form we have[

N ATPηj

ηT
j PA ηT

j Pηj

][
ξ̂(j)

ξ̂
(j)
0

]
=

[
c

ηT
j Py

]
, (9.77a)

or, because P was assumed to be diagonal,[
N ajpj

pja
T
j pj

][
ξ̂(j)

ξ̂
(j)
0

]
=: N1

[
ξ̂(j)

ξ̂
(j)
0

]
=

[
c

pjyj

]
. (9.77b)

Here, as in previous chapters, we have used the definition [N, c] := ATP [A, y].
Using (A.15) for the inverse of a partitioned matrix, and decomposing the resulting
inverse into a sum of two matrices, results in[

ξ̂(j)

ξ̂
(j)
0

]
=

[
N−1 0

0 0

][
c

pjyj

]
+

[
N−1ajpj

−1

] (
pj − pja

T
j N

−1ajpj
)−1·

·
[
pja

T
j N

−1 −1
] [ c

pjyj

]
,

(9.78a)

or[
ξ̂(j)

ξ̂
(j)
0

]
=

[
N−1 0

0 0

][
c

pjyj

]
−

[
N−1ajpj

−1

] (
pj − p2ja

T
j N

−1aj

)−1
pj
(
yj − aT

j N
−1c

)
.

(9.78b)

From (9.78b), and recalling that ξ̂ = N−1c is associated with a data model that
assumes no outliers, we can write the following difference between estimations:

ξ̂(j) − ξ̂ = −N−1aj

(
yj − aT

j ξ̂

p−1
j − aT

j N
−1aj

)
= −N−1aj

ẽj
(Qẽ)jj

, (9.79)

where (Qẽ)jj is the jth diagonal element of the cofactor matrix for the residual
vector ẽ. For the estimated non-random error in the observation yj we have

ξ̂
(j)
0 =

yj − aT
j ξ̂

1− pjaT
j N

−1aj
=

ẽj
(QẽP )jj

=
ẽj/pj
(Qẽ)jj

, (9.80)
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where the last equality holds since P was said to be diagonal.
The hypothesis test for the jth observation being an outlier is then written as

H0 : E{ξ̂(j)0 } = 0 versus HA : E{ξ̂(j)0 } ≠ 0. (9.81)

The test statistic has an F -distribution and is computed by

Tj =
Rj/1

(Ω−Rj)/(n−m− 1)
∼ F (1, n−m− 1). (9.82)

The definition of Rj , in terms of ξ̂
(j)
0 , is

Rj :=

(
ξ̂
(j)
0 − 0

)2
KN−1

1 KT
=

(
ξ̂
(j)
0

)2(
pj − p2ja

T
j N

−1aj

)−1 =
ẽ2j

(QẽP )2jj
pj(QẽP )jj =

ẽ2j
(Qẽ)jj

.

(9.83)

The matrix N1 was defined as

N1 :=

[
N ajpj

pja
T
j pj

]
, (9.84)

in (9.77b). Pre- and post-multiplying N−1
1 by K extracts only its last diagonal

element, which, upon applying the formula for the inverse of a partitioned matrix,
turns out to be the scalar quantity (pj − p2ja

T
j N

−1aj)
−1.

It is important to note that the symbols ẽ and Qẽ appearing in (9.83) represent
the residual vector and its cofactor matrix, respectively, as predicted within the
GMM (3.1) — see (3.9) and (3.14c). As was already mentioned, when we impose
the constraint (9.74) on model (9.73b) we reach a solution identical to the LESS
within model (3.1). It is also important to understand the terms in the denominator
of (9.82). As stated previously, the symbol R is used to account for that portion
of the P -weighted residual norm due to the constraints. The first parenthetical
term in the denominator, (Ω−Rj), accounts for that part of the norm coming from
the unconstrained solution. Here we have used Ω := ẽTP ẽ, with ẽ belonging to
the constrained solution (determined within the model (3.1)). Therefore, we must
subtract R from Ω, as it is defined here, to arrive at the portion of the norm coming
from the unconstrained LESS computed within model (9.73).

We note again that the equations from (9.77b) to (9.83) hold only in the case
of a diagonal weight matrix P . Regardless of whether or not P is diagonal, the
quantity

rj := (QẽP )jj (9.85a)

is the jth so-called redundancy number, for the unconstrained solution in this case.
The following properties hold for rj :

0 < rj ≤ 1 for j = {1, . . . , n} and
∑
j

rj = n− rkA. (9.85b)
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Note that (QẽP )jj = pj · (Qẽ)jj for the case that matrix P is diagonal, as reflected
in (9.80).

We comment that outlier detection at the 2-D and 3-D level can also be per-
formed, for example, in testing whether observed 2-D and 3-D points are outliers.
The 3-D case is also appropriate for GPS baseline adjustments. Its development is
shown by Snow (2002); see also Snow and Schaffrin (2003).

A strategy for outlier detection Since the model (9.73) only accounts for an
outlier at the jth observation. A strategy is needed to check for outliers at all
observations including the case where more than one outlier might be present in
the observation vector y. The usual way of approaching this problem is to perform n
independent outlier tests, allowing j to run from 1 to n. If the null hypothesis cannot
be accepted for one or more of the tests, the observation associated with the largest
value for the test statistic Tj is flagged as a potential outlier and removed from
the observation vector y. The entire process is repeated until the null hypothesis
can be accepted for all remaining observations, with n being reduced by 1 for each
successive set of tests.

To be more conservative, after each set of tests that results in an observation
being flagged as a potential outlier and removed, the previously removed observa-
tions are added back in one at a time (in the opposite order they were removed)
to see if they can remain in the observation vector or if they once again must be
removed. Eventually, one would hope to reach a point where all outliers have been
detected and removed, implying that finally the null hypothesis can be accepted for
all remaining residuals.

The reason for this conservative step is that an outlier at the jth element of
the observation vector may result in a larger test statistic for some residuals other
than ẽj . To see how this could be, we repeat the formula for the vector of residuals
shown in (3.9):

ẽ = y −Aξ̂ =
(
In −AN−1ATP

)
y = QẽPy =: Ry, (9.86a)

where the symbol R has been used to denote the matrix whose diagonal elements
are the so-called redundancy numbers as shown in (9.85a). If R is expressed as
matrix of column vectors, viz. R = [r1, r2, . . . , rn], then it is easy to see that

ẽ = r1·y1 + r2·y2 + · · ·+ rn·yn, (9.86b)

revealing that each element of ẽ is potentially a linear combination of all the ele-
ments of y (since R is not expected to be a diagonal matrix, in general). This means
that an outlier at the jth element of y could “bleed into” residuals other than ẽj ,
perhaps giving the impression that some different observation is an outlier, when in
fact it is not. This linear relationship between the residuals and the observations
attests to the challenge of successful outlier detection after an adjustment. It may
or may not succeed in identifying all outliers and in avoiding wrongly misidentifying
some observations as outliers when they in fact are not. The challenge of successful
outlier detection underscores the importance of avoiding making errors in observa-
tions and in finding strategies to find all blunders in the data before an adjustment
is performed.
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Chapter 10

Answers to Practice
Problems

The following list contains partial answers to selected practice problems.

Chapter 2 TODO

Chapter 3

3.a; 3.c ξ̂ = 110.1176m; σ̂2
0 = 2.205883.

4.a; 4.b â = 0.00252, b̂ = 0.00288, ĉ = 9.98620, σ̂2
0 = (1.987)2; â = −6.1 × 10−5,

b̂ = −5.6×10−5, ĉ = 9.9×10−6, d̂ = 2.52×10−3, ê = 2.88×10−3, f̂ = 10.010,
σ̂2
0 = 1.4072.

5.a; 5.d P̂x = 72.997m, P̂y = 92.009m; σ̂2
0 = (0.690)2.

6.b; 6.b P̂x = 1065.201m, P̂y = 825.198m; σ̂2
0 = (1.758)2.

7.a; 7.b ξ̂1 = −0.5396 (slope), ξ̂2 = 5.7612 (y-intercept); σ̂2
0 = (0.316)2.

8.a ξ̂1 = 168.149mm, ξ̂2 = 160.300mm, ω̂1 = 1.000011, ω̂2 = 1.000021, β̂ =

0◦12′22.0′′, β̂ + ϵ = 00◦13′08.5′′.

9.b; 9.c ĤA = 1679.509 ft, ĤB = 1804.043 ft, ĤC = 2021.064 ft, ĤE = 1507.075 ft,
ĤF = 1668.148 ft, H0

D = 1928.277 ft; σ̂2
0 = (0.081)2.

9.e ĤB = 1803.966 ft, ĤC = 2020.986 ft, ĤD = 1928.200 ft, ĤE = 1506.998 ft,
ĤF = 1668.071 ft, H0

A = 1679.432 ft, σ̂2
0 = (0.081)2.
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Chapter 4

3. ẽ = [8.1, 8.8,−5.3, 3.4,−8.8,−9.4]T arcsec, σ̂2
0 = (0.879453)2,

Q =


200 0 0 0 0 0
0 200 −100 0 0 0

0 −100 200 0 0 0

0 0 0 200 −100 0

0 0 0 −100 200 0

0 0 0 0 0 200

 arcsec2 (to be converted).

4. µ̂y4 = 500.214m± 5mm.

5. σ̂2
0 = (1.1321)2, Q =

 200 −100 0 0 0

−100 200 0 0 0

0 0 200 0 0
0 0 0 200 0
0 0 0 0 200

 arcsec2 (to be converted).

Chapter 5

5.a; 5.b r = 3, σ̂2
0 = (0.015)2; r = 4, σ̂2

0 = (0.013)2.

6.a; 5.b r = 3, P̂1 = (589.979, 374.998)m.

7. â = −0.00735466, Ω = 7.57541, R = 0.162439.

Chapter 6

3.a; 3.b r = 4, σ̂2
0 = (0.08063)2; r = 5, σ̂2

0 = (0.07305)2, T = 0.104487.

4. r = 3, σ̂2
0 = (4.599140)2, T = 33.07538.

5. â = −0.00729396, Ω = 7.57541, R = 0.0234899.

6.a ξ̂T =
[
68.8534 66.9512 68.1542 66.0026 67.9917 68.5199 67.6955

]T
m,

σ̂2
0 = (1.00036)2.

Chapter 7

1.a See answers to Problems 9.b and 9.c of Chapter 3.

1.b
ˆ̂
ξ = [1679.497, 1804.053, 2021.126, 1507.062, 1668.156, 1928.277]T ft,
ˆ̂σ2
0 = (0.08197)2 = 0.006719.

2. Estimated height in feet: ĤA = 1679.493, ĤB = 1804.072, ĤC = 2021.150,
ĤE = 1507.068, ĤF = 1668.159, ĤG = 1858.255.

Chapter 8

1.b; 1.c ξ̂ = [3.04324, 0.74568, 4.10586]T ; σ̂2
0 = (0.243289)2 = 0.059190.

2.b; 2.c ξ̂ = [19.700 975◦, 6.6284, 2.8227, 2.6177, 3.6400]T ; σ̂2
0 = (0.263559)2 =

0.069463.

3.a; 3.b ξ̂ = [1.73586328, 0.098057768, −0.0072771964]T ; σ̂2
0 = (1.830478)2 =

3.350650.
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Chapter 11

Review of the Gauss-Markov
Model

The nonlinear form of the Gauss-Markov Model (GMM) is written as

Y = a(Ξ) + e, (11.1a)

e ∼ (0, σ2
0P

−1). (11.1b)

The symbols in equation (11.1) are defined as follows:

Y is a given n× 1 vector of observations.

a is a (known) nonlinear function such that a : Rm → Rn, m < n.

Ξ is an m× 1 vector of unknown, non-random parameters.

e is an n× 1 vector of unknown, random errors.

σ2
0 is an unknown variance component.

P is a given n× n matrix of observation weights.

We linearize (11.1a) by Taylor-series expansion with respect to a fixed (i.e., non-
random) approximation Ξ0 (called expansion point), which leads to the following
linearized GMM :

y := Y − a(Ξ0) =
∂a(Ξ)

∂ΞT

∣∣∣∣
Ξ=Ξ0

(Ξ−Ξ0) + (higher order terms) + e. (11.2)

Neglecting the higher order terms and defining a coefficient matrix A := ∂a/∂ΞT :
Rm → Rn, m < n, and an incremental parameter vector ξ := Ξ−Ξ0, we can then
write the linearized GMM as

y = Aξ + e, (11.3a)

e ∼ (0, σ2
0P

−1). (11.3b)
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Note that rkA = dimR(A) = m if, and only if, there is no rank deficiency in the
model. For the linearized case this relation holds everywhere in the m-dimensional
space, but it may not hold in the nonlinear case.

We review two approaches to estimating the parameter vector ξ:

I. Algebraic-geometric approach (e.g., least-squares adjustment).

II. Statistical approach (e.g., minimum variance, unbiased estimators).

I. Algebraic-geometric approach: This approach uses a weighted least-squares
adjustment, which is derived from the minimization of the weighted L2-norm

∥y −Aξ∥2P = min
ξ

(11.4)

and leads to an estimate ξ̂ for the unknown parameters. Or, being more general,
we can express the problem as a minimization of the random error vector e, which
leads to both the parameter estimate ξ̂ and the predicted random error (or residual)
vector ẽ.

∥e∥2P = min
e,ξ

{e = y −Aξ} (11.5)

The Lagrange target function (or Lagrangian function) to minimize is a scalar-
valued function that is quadratic in the unknown random error vector e. It is
written as

Φ(e, ξ,λ) = eTPe+ 2λT (y −Aξ − e), (11.6)

which must be made stationary with respect to the unknown variables e, ξ, and
λ, where λ is an n × 1 vector of Lagrange multipliers. Accordingly, the Euler-
Lagrange necessary conditions (or first-order conditions) lead to a minimization of
(11.6). In forming the Euler-Lagrange necessary conditions, we take the first partial
derivatives of the target function (11.6), set them to be zero, and use hat and tilde
symbols to denote the particular solutions to these condition equations.

1

2

∂Φ

∂e
= P ẽ− λ̂

.
= 0 (11.7a)

1

2

∂Φ

∂ξ
= −AT λ̂

.
= 0 (11.7b)

1

2

∂Φ

∂λ
= y −Aξ̂ − ẽ

.
= 0 (11.7c)

For convenience we define normal equation variables N and c as[
N, c

]
:= ATP

[
A, y

]
. (11.8)

In the following, we often refer to matrix N as the normal equations matrix.
Solving the three equations (11.7) in the three unknowns ẽ, ξ̂, and λ̂ leads to

λ̂ = P ẽ, (11.9a)
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AT λ̂ = ATP ẽ = 0, (11.9b)

implying that

AT λ̂ = ATP (y −Aξ̂) = 0, (11.9c)

which leads to the LEast-Squares Solution (LESS) for ξ as

ξ̂ = (ATPA)−1ATPy = N−1c (11.9d)

and the predicted residual vector

ẽ = (I −AN−1ATP )y. (11.9e)

Note the following relation between the predicted residual vector ẽ and the unknown
random error vector e:

ẽ = (I −AN−1ATP )y = (I −AN−1ATP )(y −Aξ) = (I −AN−1ATP )e.
(11.10)

Equation (11.10) shows that, in general, the predicted random error vector ẽ is not
the same as the true (unknown) random error vector e. They would only be the
same if e belonged to the nullspace of ATP , which is hardly possible since random
measurement errors are involved.

The expectations of the estimated parameter vector ξ̂ and the predicted random
error vector ẽ are given as follows:

E{ξ̂} = N−1ATP · E{y} = N−1ATPAξ = ξ. (11.11)

Equation (11.11) holds for all ξ ∈ Rm. Therefore, ξ̂ is said to be a uniformly
unbiased estimate of ξ.

E{ẽ} = (I −AN−1ATP ) · E{y} = (I −AN−1ATP )Aξ = Aξ −Aξ = 0 = E{e}
(11.12)

Because the n× 1 vector 0 is only one element of Rn, ẽ is considered to be a weakly
unbiased prediction of e.

The associated dispersion and covariance matrices are derived as follows:

D{ξ̂} = N−1ATP ·D{y} · PAN−1 = N−1ATP (σ2
0P

−1)PAN−1 ⇒

D{ξ̂} = σ2
0N

−1, (11.13)

D{ẽ} = (I −AN−1ATP ) ·D{y} · (I − PAN−1AT ) =

= (I −AN−1ATP )(σ2
0P

−1)(I − PAN−1AT ) =

= σ2
0(P

−1 −AN−1AT )(I − PAN−1AT
)
=

= σ2
0(P

−1 −AN−1AT )− P−1PAN−1AT +AN−1ATPAN−1AT ⇒
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D{ẽ} = σ2
0(P

−1 −AN−1AT ), (11.14)

C{ξ̂, ẽ} = N−1ATP ·D{y} · (I − PAN−1AT ) =

= N−1ATP (σ2
0P

−1)(I − PAN−1AT ) =

= σ2
0N

−1AT − σ2
0N

−1ATPAN−1AT = σ2
0(N

−1AT −N−1AT ) ⇒

C{ξ̂, ẽ} = 0. (11.15)

Equation (11.15) shows the “covariance orthogonality.” This is opposed to the
algebraic orthogonality depicted in Figure 11.1, where it is shown that the residual
vector ẽ is added to y to make equation (11.3) consistent. Through the least-
squares principle, we have found a particular residual vector ẽ that is closest to
(geometrically orthogonal to) the column space of matrix A.

y

Aξ̂

R(A)

ẽ
basis vectors
for R(A)

Figure 11.1: Orthogonality between R(A) and ẽ

Let us consider the P -weighted L2-norm of the residual vector ẽ, which can be
expressed in the following forms:

∥ẽ∥2P = ẽTP ẽ = (y −Aξ̂)TP (y −Aξ̂) = (11.16a)

= yTP (y −Aξ̂)− ξ̂TATP ẽ = (11.16b)

= yTP (y −Aξ̂) = yTPy − cT ξ̂ = yTPy − ξ̂TN ξ̂. (11.16c)

In (11.16) we have used the orthogonality property ATP ẽ = 0 shown in (11.9b).
However, we have not yet shown that equations (11.16) are connected to the “best”
estimate for the variance component σ2

0 . That is, the connection between ẽ and σ̂2
0

is unknown at this point. Furthermore, there is no algebraic principle that allows
us to make this connection; we must use statistics.
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II) Statistical approach: This approach gives a more indirect estimate of the
unknown parameters ξ. Our principal unknown is an m × n matrix L that the
parameter estimate ξ̂ can be derived from. We seek a linear estimator. That
is, the parameter estimates ξ̂ must depend linearly on the observation vector y.
Furthermore, we require the estimate to be uniformly unbiased and to be best in
terms of minimum variance. Together these requirements comprise the Best Linear
Uniformly Unbiased Estimate, or BLUUE, of ξ. The components of BLUUE are
outlined in the following:

(i) Linear requirement:

ξ̂ = Ly + γ, where L ∈ Rm×n and γ ∈ Rm. (11.17a)

Equation (11.17a) is an inhomogeneous linear form due the m× 1 vector γ.
It requires that both L and γ be determined. Therefore, there are m(n + 1)
unknowns, a relatively large number.

(ii) Uniformly unbiased requirement:

ξ = E{ξ̂} for all ξ ∈ Rm ⇒
E{Ly + γ} = LE{y}+ γ = LAξ + γ,

(11.17b)

leading to the two requirements

LA = Im and γ = 0. (11.17c)

Equation (11.17c) specifies m × m constraints in the first equation and m
constraints in the second equation. Thus the number of unknowns minus the
number of constraints is m(n + 1) − m(m + 1) = m(n − m). Therefore, we
have reduced our search space somewhat from m(n+ 1).

(iii) Best requirement: By “best” we mean minimum average-variance. An average
variance can be computed by dividing the trace of the m × m parameter
dispersion matrix by m. However, division by m only scales the quantity to
be minimized, so we can just as well minimize the trace itself.

trD{ξ̂} = σ2
0 tr(LP

−1LT ) = min
L

{LA = Im} (11.17d)

The quadratic form LP−1LT in (11.17d) is the term to minimize. The term LA =
Im imposes m×m constraints.

Because unbiasedness is required, the dispersion of ξ̂ is the same as the MSE
of ξ̂. Thus we can write

trMSE{ξ̂} = trE{(ξ̂ − ξ)(ξ̂ − ξ)T } = E{(ξ̂ − ξ)T (ξ̂ − ξ)} = E{∥ξ̂ − ξ∥2}.
(11.18)

The result is an expectation of a vector norm, which is a scalar. Note that the
property of the trace being invariant with respect to a cyclic transformation was
used in (11.18).
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The Lagrange target function associated with (11.17d) is

Φ(L,λ) = trLP−1LT + 2 trΛ(LA− Im), (11.19)

which must be made stationary with respect to L and Λ. Here, Λ is an m×m sym-
metric matrix of Lagrange multipliers. Accordingly, the Euler-Lagrange necessary
conditions are formed by

1

2

∂Φ

∂L
= L̂P−1 + Λ̂AT .

= 0 (11.20a)

1

2

∂Φ

∂Λ
= L̂A− Im

.
= 0. (11.20b)

In equation (11.20a) we have used rules (12) and (4) from section 10.3.2 of Lütkepohl
(1996) for derivatives of the trace. Likewise, in equation (11.20b) we have used rule
(5) from the same section of Lütkepohl (see equations (A.47) herein). The two
condition equations are solved simultaneously as follows:

L̂ = −Λ̂TATP

implies that

−Λ̂TATPA = Im ⇒ Λ̂ = −(ATPA)−1,

finally leading to

L̂ = (ATPA)−1ATP. (11.21)

Substituting the solution for L̂ into (11.17a) and using the condition γ = 0 in
(11.17c) leads to the BLUUE for the parameters ξ as

ξ̂ = L̂y + γ = (ATPA)−1ATPy. (11.22)

Comparing (11.22) to (11.9d), reveals that the BLUUE of ξ is equivalent to the
LESS of ξ within the (full-rank) Gauss-Markov model.



Chapter 12

Introducing the vec Operator
and the Kronecker-Zehfuss
Product

The vec operator forms a column vector from the columns of the matrix that it
operates on by stacking one column on top of the next, from first to last.

G
p×q

:=
[
g1, . . . , gq

]
⇒ vecG

pq×1
:=

[
gT
1 , . . . , g

T
q

]T
(12.1)

Here g1, . . . , gq are the p× 1 column vectors of G. Note that the reverse operation
is not unique.

Given two p × q matrices A, B such that A
p×q

:= [aij ] and B
p×q

:= [bij ], the

following relationship between the trace and the vec operator holds:

tr(ATB) = tr(BAT ) = (trace invariant with respect to a cyclic transf.) (12.2)

=

p∑
i=1

q∑
j=1

aijbij = (first sum for trace, second for matrix product)

= (vecA)T vecB =

=
∑
ij

aijbij , (multiplies corresponding elements)

which finally allows us to write

tr(ATB) = (vecA)T vecB. (12.3)

Given matrices A of size p × q, B of size q × r, and C of size s × r, we
have the following important relationship, which connects the vec operator and
the Kronecker-Zehfuss product (also called direct product, Kronecker product, and
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Zehfuss product—see Searle and Khuri (2017, p. 78)).

vec(ABCT )
ps×1

= (C ⊗A)
ps×qr

vecB
qr×1

, (12.4)

where the Kronecker product is defined by

(C ⊗A) := [cijA] =


c11A c12A . . . c1rA

c21A
. . .

...

cs1A cs2A . . . csrA

 . (12.5)

The definition of the Kronecker product, as well as many of its properties, is given
in the appendix and is used in several of the following sections.

Now we generalize formula (12.4) using a quadruple product of matrices, which
is commonly found in the variance-component estimation problem. Because the
trace is invariant with respect to a cyclic transformation, we can write

tr(ABCTDT ) = tr(DTABCT ) = (12.6a)

= (vecD)T vec(ABCT ) = (12.6b)

= (vecD)T (C ⊗A) vecB, (12.6c)

where (12.3) and (12.4) where used in the last two lines, respectively.

It is also required at times to apply the vec operator to a vector outer-product.
Given a vector a, substitute into equation (12.4) A = a and CT = aT ; also let
B = I1 = 1. Then we have

vec(aaT ) = a⊗ a. (12.7)

Commutation matrices appear in the rules for the Kronecker product in the
appendix. Here we comment that a commutation matrix K is square and has only
ones and zeros for its elements. Each row has exactly a single one, and likewise for
each column. Thus the identity matrix is one example of a commutation matrix.
The commutation matrix is not symmetric (except for the identity matrix), but
it is orthogonal, meaning that K−1 = KT . A commutation matrix is also a vec-
permutation matrix. We illustrate this property by the following example:

K :=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


, A :=

[
a11 a12 a13

a21 a22 a23

]
⇒ vecA =



a11

a21

a12

a22

a13

a23


,
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vecAT =



a11

a12

a13

a21

a22

a23


=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1





a11

a21

a12

a22

a13

a23


= K vecA.

To demonstrate the usefulness of the Kronecker product, we now show certain
applications of it to the Gauss-Markov Model (GMM) and the associated Best
Linear Uniformly Unbiased Estimate (BLUUE). We begin by deriving an alternative
form for the target function (11.19) in order to exploit the Kronecker product.

Φ(L,Λ) = trLP−1LT + 2 trΛT (LA− Im) = (12.8a)

= trLP−1LT Im + 2 tr(LA− Im)ΛIm = (noting the symmetry of Λ)

= trLP−1LT Im + 2 trLAΛIm − 2 tr ImΛIm =

= (vecLT )T (Im × P−1) vecLT+

+ 2(vecLT )T (Im ×A) vecΛ− 2(vec Im)T vecΛ ⇒
Φ(l,λ) = lT (Im × P−1)l+ 2

[
lT (Im ×A)− (vec Im)T

]
λ (12.8b)

Here, l and λ are variables for the vectorized forms of the unknown matrices L
and Λ and are define as follows:

l := vec(LT ) is an nm× 1 vector containing the rows of L in vector form.
(12.8c)

λ := vecΛ is an m2 × 1 vector comprised of the columns of Λ. (12.8d)

Using vectors l and λ, the following Lagrange target function can be written as an
alternative to (11.19):

Φ(l,λ) = lT (Im ⊗ P−1)l− 2
[
lT (Im ⊗A)− (vec Im)T

]
λ, (12.9)

which must be made stationary with respect to l and λ. Accordingly, the Euler-
Lagrange necessary conditions are written as

1

2

∂Φ

∂l
= (Im ⊗ P−1)̂l− (Im ⊗A)λ̂

.
= 0, (12.10a)

1

2

∂Φ

∂λ
= −(Im ⊗AT )̂l+ vec Im

.
= 0. (12.10b)

The normal equations are then solved for l̂ and λ̂ as follows: Equation (12.10a)
implies that

l̂ = (Im ⊗ P−1)−1(Im ⊗A)λ̂ = (Im ⊗ PA)λ̂, (12.11a)

which, together with (12.10b), further implies

(Im ⊗ATPA)λ̂ = vec Im, (12.11b)
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leading to the estimates

λ̂ = (Im ⊗ATPA)−1 vec Im = vec(ATPA)−1, (12.11c)

l̂ = vec(L̂T ) = (Im ⊗ PA) vec(ATPA)−1 = vec
[
PA(ATPA)−1

]
, (12.11d)

and finally to

L̂ = (ATPA)−1ATP. (12.11e)

The sufficient condition for minimization is satisfied by

1

2

∂2Φ

∂l∂lT
=

∂(Im ⊗ P−1)̂l

∂lT
= Im ⊗ P−1, (12.12)

which is positive definite.
The Best Linear Uniformly Unbiased Estimation (BLUUE) of ξ and its disper-

sion are, respectively,

ξ̂ = L̂y = Λ̂TATPy = (ATPA)−1ATPy, (12.13a)

and

D{ξ̂} = Λ̂TATP (σ2
0P

−1)PAΛ̂ = σ2
0(A

TPA)−1 = σ2
0N

−1. (12.13b)

Likewise, the predicted residual vector and its dispersion are, respectively,

ẽ := y −Aξ̂ =
[
In −A(ATPA)−1ATP

]
y, (12.14a)

and

D{ẽ} = σ2
0

[
P−1 −A(ATPA)−1AT

]
. (12.14b)

Corollary: In the Gauss-Markov Model (GMM) with full-rank matrices A and P ,

the BLUUE of ξ is automatically generated by the LESS ξ̂ with the associated
dispersion matrix D{ξ̂} and residual vector ẽ. This fact is called “Gauss’ second
argument in favor of the least-squares adjustment.”



Chapter 13

Variance Component
Estimation

In this chapter we develop estimators for the unknown variance component σ2
0 from

the Gauss-Markov Model (GMM) (11.3b). We begin by restating the full-rank
GMM from chapter Chapter 11.

y = Aξ + e, rkA = m < n, e ∼ (0, σ2
0P

−1) (13.1)

Our goal is to determine the estimated variance component σ̂2
0 in such a way that

it is independent of the estimated parameter vector ξ̂.
First note that

E{eeT } = σ2
0P

−1 = D{e}, (13.2a)

and

E{eTe} = E{tr eTe} = E{tr eeT } = trE{eeT } = σ2
0 trP

−1 =

= E{(y −Aξ)T (y −Aξ)} = E{yTy} − E{y}TE{y} = E{yTy} − ξTATAξ.

(13.2b)

We see from (13.2b) that σ2
0 and ξ are not decoupled. But we want the estimates σ̂2

0

and ξ̂ to be decoupled so that estimating the variance component σ2
0 has nothing to

do with estimating the parameter vector ξ. To this end we seek the Best Invariant
Quadratic Uniformly Unbiased Estimate, or BIQUUE. Each term in the acronym
BIQUUE is explained below.

BIQUUE

(i) Quadratic requirement: σ̂2
0 is quadratic in the observation vector y, such that

σ̂2
0 = yTMy, (13.3a)
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where M is an unknown n× n matrix to be determined. Since σ̂2
0 is a scalar,

it is equal to its transpose; therefore

σ̂2
0 = (yTMy)T = yTMTy = yT

(
M +MT

2

)
y. (13.3b)

Thus we can use M or MT ; it does not matter. So, without loss of general-
ity, we require the matrix M to be symmetric. This reduces the number of
unknowns from n2 to n(n+ 1)/2.

(ii) Invariant requirement: We require the estimate to be invariant with respect
to translation, i.e., invariant with respect to a shift of y along the range space
of A. The motivation for this requirement is to ensure that σ̂2

0 is independent

of the estimated parameter vector ξ̂, an objective already stated above.

σ̂2
0 = (y −Aξ)TM(y −Aξ) for all ξ ∈ Rm. (13.4a)

Obviously, (13.4a) includes the estimate ξ̂ since it also belongs to Rm. Due
to invariance we can write

σ̂2
0 = yTMy = (y −Aξ)TM(y −Aξ) =

= yTMy − yTMAξ − ξTATMy + ξTATMAξ,
(13.4b)

implying that

ξTATMAξ = 2yTMAξ for any y and any ξ. (13.4c)

“For any ξ” means that ξ could be positive or negative. The left side of (13.4c)
would not change if ξ is replaced by −ξ, but the right side would change in
sign. The only quantity that remains equal when we change the sign of ξ in
(13.4c) is zero. Therefore, the condition becomes

yTMAξ = 0 for any y and any ξ, which is true if, and only if, MA = 0.
(13.4d)

This matrix constraint satisfies the invariant condition; that is, the “decou-
pling” between ξ̂ and σ̂2

0 guarantees invariance.

(iii) Uniformly Unbiased requirement: The equality

σ2
0 = E{σ̂2

0} = E{yTMy} = E{eTMe} (13.5a)

holds since σ̂2
0 = yTMy according to (13.3a). Also, due to the invariant

principle, e = y −Aξ holds for all ξ. Thus, we may continue with

σ2
0 = trE{MeeT } = tr(MD{e}) = σ2

0 tr(MP−1) for all σ2
0 ∈ R+ ⇔

(13.5b)

1 = tr(MP−1). (13.5c)

Here, R+ denotes the field of positive real numbers. Equation (13.5c) provides
the uniformly-unbiased condition; it holds due to the invariance principle.
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(iv) Best requirement: “Best” means that the dispersion of the estimated variance
component σ̂2

0 must be minimized.

D{σ̂2
0} = min

M

MA = 0

tr(MP−1) = 1
(13.6)

We are dealing with the dispersion of a quadratic form, which is a fourth moment.
Therefore we need to make an additional assumption. We must assume quasi-
normality, which says that the third and fourth moments behave as if the random
errors e are normally distributed.

Aside: For the normal distribution, all moments can be written as a function
of the first and second moments, E{ei} = 0 and E{e2i } = σ2

i , respectively. More-
over, under normality, the following relations hold for the fourth and all odd-order
moments of the ith random error ei:

E{e4i } = 3(σ2
i )

2 and E{e2k+1
i } = 0, k = 0, 2, 4, . . . (13.7)

The left side of (13.6) can also be expressed as follows:

D{σ̂2
0} = D{eTMe} = E{eTMeeTMe} − E{eTMe}2 = (13.8a)

= E{eTMeeTMe} −
[
σ2
0 tr(MP−1)

]2
= E{eTMeeTMe} − (σ2

0)
2. (13.8b)

Note that in numerical computations we would replace e with y in (13.8) since e
is unknown. However, analytically the results are the same due to the invariance
property.

Now, the expectation term in (13.8b) consists of products in the random vari-
able e; therefore, it can be expressed as a sum of the expectations of all combinations
of the products. We illustrate this with symbols under the respective occurrences
of e as follows (obviously each of these accented vectors e are actually equivalent
to one another):

E{
¯
eTMe˜⌢

eTM
⌣
e} = E{

¯
eTMe˜}E{

⌢
eTM

⌣
e}+ E{Me˜⌢

eT }E{M
⌣
e
¯
eT }+

+E{
¯
e

⌢
eT }E{Me˜⌣

eTMT } =

= (σ2
0)

2 +ME{eeT }ME{eeT }+ E{eeT }ME{eeT }MT =

= (σ2
0)

2 + (σ2
0)

2MP−1MP−1 + (σ2
0)

2P−1MP−1MT . (13.9)

Noting thatM is symmetrical and substituting (13.9) into (13.8b) and then applying
the trace operator yields

D{σ̂2
0} = 2(σ2

0)
2 tr(P−1MP−1MT ) = 2(σ2

0)
2(vecM)T (P−1 ⊗ P−1) vecM,

(13.10)

leading to the following expression that must be minimized:

D{σ̂2
0} = min

M
{MA = 0, tr(MP−1) = 1}. (13.11)
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Introducing an m × n matrix of Lagrange multipliers Λ and a scalar Lagrange
multiplier λ0 leads to the following Lagrange target function:

Φ(M,Λ, λ0) = tr(MP−1MP−1)− 2 tr(MTAΛ)− 2
[
tr(MP−1)− 1

]
λ0, (13.12)

which must be made stationary with respect to the unknown variablesM , Λ, and λ0.
An alternative form of the Lagrangian function can be written as

Φ(vecM,λ, λ0) = 2(vecM)T (P−1 ⊗ P−1) vecM+

+ 4(vecM)T (In ⊗A)λ+ 4
[
(vecM)T vecP−1 − 1

]
λ0,

(13.13)

which must be made stationary with respect to vecM , λ, and λ0.
Note that vecM is an n2 × 1 vector; λ is an nm× 1 vector, and λ0 is a scalar.

The equivalence between (13.12) and (13.13) is seen by noting that vecΛ = λ and
by use of (12.2) and (12.5).

The Euler-Lagrange necessary conditions result in

1

4

∂Φ

∂ vecM
= (P−1 ⊗ P−1) vecM + (In ⊗A)λ̂+ vecP−1λ̂0

.
= 0, (13.14a)

1

4

∂Φ

∂λ
= (In ⊗AT ) vecM

.
= 0, (13.14b)

1

4

∂Φ

∂λ0
= (vecP−1)T vecM − 1

.
= 0. (13.14c)

For convenience, a hat symbol is not used over the particular vector vecM that we
solve for in the minimization, as has been done for λ̂ and λ̂0. From (13.14a) we get
the following expression for vecM :

vecM = −(P−1 ⊗ P−1)−1(In ⊗A)λ̂− (P−1 ⊗ P−1)−1 vec (P−1)λ̂0 =

= −(P ⊗ P )(In ⊗A)λ̂− (P ⊗ P ) vec (P−1)λ̂0 =

= −(PIn ⊗ PA)λ̂− vec (PP−1P )λ̂0 ⇒

vecM = −(P ⊗ PA)λ̂− vec (P )λ̂0. (13.15a)

Now, substituting (13.15a) into (13.14b) and dropping the negative sign results in

(In ⊗AT )
[
(P ⊗ PA)λ̂+ vec (P )λ̂0

]
= 0

(In ⊗AT )(P ⊗ PA)λ̂+ (In ⊗AT ) vec (P )λ̂0 = 0

(InP ⊗ATPA)λ̂+ vec(ATPITn )λ̂0 = 0

(P ⊗N)λ̂+ vec(ATP )λ̂0 = 0. (13.15b)

Finally, we can write the estimated vector of Lagrange multipliers as

λ̂ = −(P−1 ⊗N−1) vec(ATP )λ̂0 = − vec(N−1ATPP−1)λ̂0 = − vec (N−1AT )λ̂0.
(13.15c)
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Substituting (13.15c) into (13.15a) yields

vecM = (P ⊗ PA) vec (N−1AT )λ̂0 − vec (P )λ̂0 =

= vec (PAN−1ATP )λ̂0 − vec (P )λ̂0 ⇒

vecM = −
[
vec (P )− vec (PAN−1ATP )

]
λ̂0. (13.15d)

Then we substitute (13.15d) into (13.14c) to obtain

−(vecP−1)T
[
vec (P )− vec (PAN−1ATP )

]
λ̂0 = 1. (13.15e)

Using (12.2) allows us to rewrite (13.15e) and solve for λ̂0 as follows:

− tr
(
P−1

[
P − PAN−1ATP

])
λ̂0 = 1 ⇒

− tr(In −AN−1ATP )λ̂0 = 1 ⇒

−
[
tr In − tr(N−1ATPA)

]
λ̂0 = 1 ⇒

(n−m)λ̂0 = −1 ⇒

λ̂0 = −1/(n−m). (13.15f)

Now we substitute (13.15f) into (13.15d) and obtain

vecM = vec
{
(n−m)−1

[
P − PAN−1ATP

]}
. (13.15g)

Because the matrices within the vec operator in (13.15g) are of the same size, we
can write

M = (n−m)−1[P − PAN−1ATP ]. (13.15h)

Now we substitute (13.15h) into (13.3a) to obtain an expression for the estimated
variance component as

σ̂2
0 = yTMy = yT

[
(n−m)−1(P − PAN−1ATP )

]
y = (13.16a)

= (n−m)−1
(
yTPy − yTPAN−1ATPy

)
. (13.16b)

Equation (13.16b) is the BIQUUE for the unknown variance component σ2
0 . The

estimated variance component σ̂2
0 has been determined independently from the pa-

rameter estimate ξ̂, which was our objective.
Let us verify that the two conditions stated in (13.6) are satisfied for matrix M .

First condition: MA = 0

MA =
{
(n−m)−1[P − PAN−1ATP ]

}
A = (n−m)−1[PA− PAN−1ATPA] ⇒

MA = (n−m)−1[PA− PA] = 0 (13.17a)
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Second condition: tr(MP−1) = 1

tr(MP−1) = tr
({

(n−m)−1[P − PAN−1ATP ]
})

P−1 ⇒
tr(MP−1) = (n−m)−1[tr In − trPAN−1AT ] = (n−m)−1(tr In − tr Im) = 1

(13.17b)

Now using the symbols N and c introduced in (11.8), we can rewrite BIQUUE
(13.16b) as follows:

σ̂2
0 =

yTPy − cT ξ̂

n−m
=

yTPy − ξ̂TN ξ̂

n−m
=

ẽTP ẽ

n−m
. (13.18)

The vector ẽ in (13.18) is the same as the predicted residual vector associated
with the BLUUE of ξ. Thus the BIQUUE variance component σ̂2

0 agrees with that

associated with BLUUE for ξ. Also note that the use of the symbol ξ̂ in (13.18)
is only done for convenience and does not mean that BIQUUE depends on the
estimate for the parameter vector.

Incidentally, if we omit the uniformly-unbiased condition of (13.6), we arrive at
BIQE, which differs from BIQUUE by an addition of 2 in the denominator.

ˆ̂σ2
0 =

ẽTP ẽ

n−m+ 2
= BIQE{σ2

0} (13.19)

The BIQUUE variance component σ̂2
0 is a random variable, so we want to find

its expectation and dispersion.
First it is useful to compute the expectation E{yyT }.

E{yyT } = E{(Aξ + e)(Aξ + e)T } = E{AξξTAT +AξeT + eξTAT + eeT } =

= E{AξξTAT }+ E{AξeT }+ E{eξTAT }+ E{eeT } =

= AξξTAT +AξE{eT }+ E{e}ξTAT +D{e} ⇒
E{yyT } = σ2

0P
−1 +AξξTAT (13.20a)

Next we compute the expectation of σ̂2
0 .

(n−m)E{σ̂2
0} = E{yTPy − yTPAN−1ATPy} =

= trE{yTPy − yTPAN−1ATPy} = tr(PE{yyT })− tr(PAN−1ATPE{yyT }) =
= tr

[
P
(
σ2
0P

−1 +AξξTAT
)]

− tr
[
PAN−1ATP (σ2

0P
−1 +AξξTAT )

]
=

= tr(σ2
0In + ξTNξ)− tr(PAN−1ATσ2

0 + PAN−1ATPAξξTAT ) =

= tr(σ2
0In + ξTNξ)− tr(Imσ2

0 + ξTNξ) ⇒
(n−m)E{σ̂2

0} = σ2
0(n−m) (13.20b)

Finally, we can write the expectation of the BIQUUE variance component as

E{σ̂2
0} = σ2

0 . (13.21)
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Equation (13.21) shows that BIQUUE σ̂2
0 is indeed an unbiased estimate of σ2

0 .
The dispersion of BIQUUE σ̂2

0 is computed as follows: Considering (13.10) and
that matrix M is symmetric, we write

D{σ̂2
0} = 2(σ2

0)
2 tr(MP−1MP−1).

Then, considering (13.15h)

D{σ̂2
0} = 2(σ2

0)
2 tr

(
[P − PAN−1ATP ]P−1[P − PAN−1ATP ]P−1

)
(n−m)−2 =

= 2(σ2
0)

2 tr
(
[In − PAN−1AT ]2

)
(n−m)−2 =

(because [In − PAN−1AT ] is idempotent)

= 2(σ2
0)

2
[
tr In − tr(ATPAN−1)

]
(n−m)−2 =

= 2(σ2
0)

2(n−m)(n−m)−2,

finally resulting in

D{σ̂2
0} = 2(σ2

0)
2/(n−m). (13.22)

Equation (13.22) shows the true dispersion of the BIQUUE variance component
D{σ̂2

0} in terms of the true variance component σ2
0 . Equation (13.22) also implies

that the estimated dispersion is provided by

D̂{σ̂2
0} = 2(σ̂2

0)
2/(n−m). (13.23)

From equation (13.23) we see that the estimated dispersion of the BIQUUE variance
component will turn out to be relatively large unless the model redundancy n−m
is large.

We gave the solution to BIQE above; it can be shown that its dispersion is given
by

D{ˆ̂σ2
0} = 2(σ2

0)
2/(n−m+ 2). (13.24)
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Chapter 14

Expectation-Dispersion
Correspondence

An alternative approach to estimating the variance component σ2
0 exploits the vec

operator to a larger degree by changing the quadratic estimate to a linear estimate.
Mathematically, this change is expressed by

yTMy → vec(yTMy) = (vecM)T (y ⊗ y). (14.1)

The first term in (14.1) is quadratic in y. The rightmost term is linear in (y ⊗ y).
Note that the equation in (14.1) holds since (using (A.32))

yTMy = tr(yTMy) = tr(MTyI1y
T ) = (vecM)T (y ⊗ y), (14.2)

where M is symmetric by definition.
The key idea is to change our original (quadratic) model so that the Best Linear

Uniformly Unbiased Estimate (BLUUE) of the variance component in the revised
(linear) model is the same as the BIQUUE for the variance component in the original
model. We call this equivalence Expectation-Dispersion (E-D) Correspondence, so
named because we rephrase the dispersion D{σ̂2

0} as an expectation.
We begin by computing the expectation of the Kronecker product y⊗y in (14.1).

Using (12.7) and (13.20a), we can write

E{y ⊗ y} = vecE{yyT } = vec(σ2
0P

−1 +AξξTAT ) = (14.3a)

(applying (12.7) to Aξ)

= (vecP−1)σ2
0 + (Aξ ⊗Aξ) ⇒ (14.3b)

(using (A.38))

E{y ⊗ y} = (vecP−1)σ2
0 + (A⊗A)(ξ ⊗ ξ). (14.3c)

Both unknown quantities σ2
0 and ξ appear in equation (14.3c). Note that we could

estimate the term ξ ⊗ ξ appearing (14.3c); however, ξ ⊗ ξ tells us nothing about ξ
itself, and therefore we consider ξ ⊗ ξ to be a nuisance parameter. Note that the
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size of ξ ⊗ ξ is m2 × 1; however the product contains only (m + 1)/2 independent
elements. We need a matrix B that, when multiplied on the left of (14.3c), will
eliminate the nuisance parameters ξ⊗ξ, i.e., B(A⊗A) = 0. For example, we could
choose B as

B := (In −AN−1ATP )⊗ (In −AN−1ATP ). (14.4)

It is apparent from (14.4) that B(A ⊗ A) = 0. Also, using (A.43), we have trB =
(n−m)2, which is the number of independent equations left in the model. The rank
of matrix B is easily computed by noting that the matrix within the parenthetical
terms in (14.4) is idempotent and that the rank of an idempotent matrix equals its
trace, and by using (A.43).

After multiplication by matrix B, the resulting model (now linear in y ⊗ y) is
not equivalent to the original model (which is linear in y), but we choose to proceed
with this matrix B anyway. Our next step is to find the expectation E{ẽ⊗ ẽ}, and
to do so we begin with B(y ⊗ y) since

B(y ⊗ y) =
[
(In −AN−1ATP )⊗ (In −AN−1ATP )

]
(y ⊗ y) = (14.5a)

= (In −AN−1ATP )y ⊗ (In −AN−1ATP )y = (14.5b)

= (y −Aξ̂)⊗ (y −Aξ̂) = ẽ⊗ ẽ. (14.5c)

Here, ξ̂ is the BLUUE for the parameter vector in the Gauss-Markov Model (GMM).
Continuing, with the help of (14.3c), we find

E{ẽ⊗ ẽ} = B · E{y ⊗ y} = B
[
(vecP−1)σ2

0 + (A⊗A)(ξ ⊗ ξ)
]
= (14.6a)

= B(vecP−1)σ2
0 +B(A⊗A)(ξ ⊗ ξ) ⇒ (14.6b)

E{ẽ⊗ ẽ} = B(vecP−1)σ2
0 . (14.6c)

With equation (14.6c) we have a linear model in σ2
0 . An alternative expression for

E{ẽ⊗ ẽ} is derived as follows:

E(ẽ⊗ ẽ) = B(vecP−1)σ2
0 =

=
[
(In −AN−1ATP )⊗ (In −AN−1ATP )

]
(vecP−1) · σ2

0 =
(14.7a)

(applying (A.31))

= vec
[
(In −AN−1ATP )P−1(In − PAN−1AT ) · σ2

0

]
= (14.7b)

(transposing the symmetrical part)

= vec
[
(In −AN−1ATP )(In −AN−1ATP )P−1 · σ2

0

]
⇒ (14.7c)

(exploiting the idempotent property)

E(ẽ⊗ ẽ) = vec(P−1 −AN−1AT ) · σ2
0 . (14.7d)

Note that the matrix expression (P−1−AN−1AT ) might be singular, but this poses
no problem due to use of the vec operator. We now derive the dispersion of ẽ⊗ ẽ.
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First, note that

ẽ = y −Aξ̂ = (Aξ + e)−Aξ̂ = e+A(ξ − ξ̂). (14.8)

This relation, along with the invariance principle, is exploited in the following:

D{ẽ⊗ ẽ} = D{B(y ⊗ y)} = D{B
[
(y −Aξ)⊗ (y −Aξ)

]
} = (14.9a)

= D{B(e⊗ e)} = BD{e⊗ e}BT = (14.9b)

= B
(
E{(e⊗ e)(e⊗ e)T } − E{e⊗ e}E{e⊗ e}T

)
BT . (14.9c)

Now, considering the first expectation term in (14.9c), and temporarily using various
symbols beneath the variables to illustrate how the combinations are formed, we
find

E{(
¯
e⊗ e˜)(⌢e⊗

⌣
e)T } = E{

¯
e⊗ e˜}E{(

⌢
e⊗

⌣
e)T }+

+ E{
¯
e

⌢
eT } ⊗ E{e˜⌣

eT }+K(E{
¯
e

⌣
eT } ⊗ E{e˜⌢

eT }),
(14.10a)

or, more simply

E{(e⊗ e)(e⊗ e)T } = E{(e⊗ e)}E{(e⊗ e)T }+
+ E{eeT } ⊗ E{eeT }+K(E{eeT } ⊗ E{eeT }).

(14.10b)

In equation (14.10b) a commutation matrixK has been introduced by way of (A.40).
Inserting (14.10b) into (14.9c) and making use of (13.2a) leads to

D{ẽ⊗ ẽ} = B(I +K)(P−1 ⊗ P−1) · (σ2
0)

2 ·BT = (14.11a)

= (σ2
0)

2 · (I +K)
[
B(P−1 ⊗ P−1)BT

]
⇒ (14.11b)

D{ẽ⊗ ẽ} = (σ2
0)

2 · (I +K)
[
(P−1 −AN−1AT )⊗ (P−1 −AN−1AT )

]
. (14.11c)

In (14.11b) we have used the fact that B is a Kronecker product of the same matrix
(see (14.4)), so that BK = KB. We may now combine equations (14.7d) and
(14.11c) into one succinct expression describing the distribution of ẽ⊗ ẽ as follows:

ẽ⊗ ẽ ∼ (σ2
0 · vec(P−1 −AN−1AT ),

(σ2
0)

2 · (I +K)
[
(P−1 −AN−1AT )⊗ (P−1 −AN−1AT )

]
).

(14.12)

Note that both the expectation and dispersion in (14.12) contain the parameter σ2
0 .

Also note that the matrix comprised of the Kronecker product is singular. This
equation has some similarities to the GMM, enough to try the least-squares solution
(LESS) approach to estimate σ2

0 . We call this approach E-D Correspondence, the
concept of which is summarized in the diagram below.

y ∼ (Aξ, σ2
0P

−1)
E-D→

Correspondence
ẽ⊗ ẽ ∼ (E{ẽ⊗ ẽ}, D{ẽ⊗ ẽ}) (14.13)



226 CHAPTER 14. E-D CORRESPONDENCE

In order to proceed with the estimation of σ2
0 using LESS, we need to handle

the singular dispersion matrix in (14.12), which requires a generalized inverse (g-
inverse). The g-inverse of a p× q matrix G is defined as the q × p matrix G− such
that

GG−G = G. (14.14)

We seek a g-inverse for the matrix (P−1 − AN−1AT ), which is provided by (P −
PAN−1ATP ), since

(P−1 −AN−1AT )(P − PAN−1ATP )(P−1 −AN−1AT ) = (P−1 −AN−1AT ).
(14.15)

Furthermore, we define the (singular) cofactor matrix from (14.12) as

Q := (I +K)
[
(In −AN−1ATP )P−1 ⊗ (In −AN−1ATP )P−1

]
, (14.16)

where the term (I+K) is essentially a factor of 2 in Q. Let the g-inverse of matrix Q
be called W , so that QWQ = Q. The following matrix satisfies this equation:

W :=
1

4
(I +K)

[
P (In −AN−1ATP )⊗ P (In −AN−1ATP )

]
. (14.17)

Note that multiplication of matrix W on both the right and left by Q yields

QWQ =
1

4
(I +K)3

[
(In −AN−1ATP )P−1 ⊗ (In −AN−1ATP )P−1

]
, (14.18a)

but
1

4
(I +K)3 =

1

4
(I + 3K + 3K2 +K3) =

1

4
(I + 3K + 3I + IK) = I +K. (14.18b)

So, indeed, W is a g-inverse of Q.
In the GMM we reach LESS by minimization of the target function Φ = (y −

Aξ)TP (y − Aξ). Now we are able to write an analogous LESS target function for
the estimated variance component σ2

0 using the g-inverse W derived above.
LESS target function:[

(ẽ⊗ ẽ)− E{ẽ⊗ ẽ}
]T

W
[
(ẽ⊗ ẽ)− E{ẽ⊗ ẽ}

]
=

= {(ẽ⊗ ẽ)− vec
[
(In −AN−1ATP )P−1

]
σ2
0}T ·

·W ·{(ẽ⊗ ẽ)− vec
[
(In −AN−1ATP )P−1

]
σ2
0} = min

σ2
0

. (14.19)

Following the LESS approach, we write a system of normal equations directly, based
on the target function (14.19).

LESS normal equations:{
vec

[
(In −AN−1ATP )P−1

]}T
W vec

[
(In −AN−1ATP )P−1

]
· σ̂2

0 =

=
{
vec

[
(In −AN−1ATP )P−1

]}T
W (ẽ⊗ ẽ). (14.20)
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To derive a solution for the estimated variance component σ2
0 , we first simplify

{vec[(In −AN−1ATP )P−1]}TW,

since it appears in both sides of (14.20). Here we use (A.31) and the fact that
(I +K) is equivalent to a factor of 2 when multiplied in W .{

vec
[
(In −AN−1ATP )P−1

]}T
W =

=
1

2

{
vec

[
(In − PAN−1AT )P (In −AN−1ATP )P−1P (In −AN−1ATP )

]}T
=

=
1

2

[
vec(P − PAN−1ATP )

]T
=

{
vec

[
(In −AN−1ATP )P−1

]}
)TW (14.21a)

Now we substitute (14.21a) into the right side of (14.20) to arrive at{
vec

[
(In −AN−1ATP )P−1

]}T
W (ẽ⊗ ẽ) =

1

2

[
vec(P − PAN−1ATP )

]T
(ẽ⊗ ẽ) =

=
1

2
ẽT (P − PAN−1ATP )ẽ =

1

2
ẽTP ẽ, (14.21b)

since ATP ẽ = 0 according to (11.9b). Next we substitute (14.21a) into the left side
of (14.20).{

vec
[
(In −AN−1ATP )P−1

]}T
W vec

[
(In −AN−1ATP )P−1

]
σ̂2
0 =

=
1

2

[
vec(P − PAN−1ATP )

]T
vec

[
(In −AN−1ATP )P−1

]
σ̂2
0 =

(Continuing with help of (A.32), where matrices A and C are identity in that
equation)

=
1

2
tr
[
(In −AN−1ATP )P−1(P − PAN−1ATP )

]
σ̂2
0 =

=
1

2
tr
[
(In −AN−1ATP )(In −AN−1ATP )

]
σ̂2
0 =

=
1

2
tr
[
(In −AN−1ATP )

]
σ̂2
0 =

1

2
tr
{
(In −N−1ATPA)

}
σ̂2
0 =

=
1

2
(n−m)σ̂2

0 . (14.21c)

Finally, we equate the left side (14.21b) and right side (14.21c) to obtain

1

2
ẽTP ẽ =

1

2
(n−m)σ̂2

0 , (14.21d)

resulting in the following estimate for the variance component σ2
0 :

σ̂2
0 =

ẽTP ẽ

(n−m)
. (14.22)
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We conclude that LESS for the model (14.12) is equivalent to BIQUUE in the
GMM (13.1), which is evident from the respective formulas for the estimated vari-
ance component (14.22) and (13.18).

We can also use E-D correspondence to derive the Best Linear Estimate, BLE,
of σ2

0 . This is done by expressing the estimate ˆ̂σ2
0 as a linear function of ẽ ⊗ ẽ

and minimizing its MSE. The solution is equivalent to the BIQE mentioned in
Chapter 13. The problem is setup below.

• Linear requirement:

ˆ̂σ2
0 = LT (ẽ⊗ ẽ). (14.23)

• Best requirement:

MSE{ˆ̂σ2
0} = D{ˆ̂σ2

0}+ (E{ˆ̂σ2
0} − σ2

0)
2 =

= LTD{ẽ⊗ ẽ}+ LTE{ẽ⊗ ẽ}E{ẽ⊗ ẽ}TL− 2σ2
0L

TE{ẽ⊗ ẽ}+ (σ2
0)

2 = min
L

.

(14.24)

• Solution:

ˆ̂σ2
0 =

ẽTP ẽ

n−m+ 2
= BLE{σ2

0} = BIQE{σ2
0}. (14.25)



Chapter 15

The Rank-Deficient
Gauss-Markov Model

The rank-deficient Gauss-Markov Model (GMM) describes the case where the co-
efficient matrix A (also called design matrix or information matrix) does not have
full column rank. As usual, we are dealing with n observations and m parameters
so that the (linearized) observation vector y is of size n × 1, while matrix A is of
size n×m. The model is stated as follows:

y = Aξ + e, e ∼ (0,Σ = σ2
0P

−1), rkA =: q < m < n. (15.1)

As in earlier chapters, the least-squares normal equations are written compactly
as

N ξ̂ = c, (15.2a)

where [
N, c

]
:= ATP

[
A, y

]
. (15.2b)

The ranks of the m × m normal-equations matrix N and the n × m coefficient
matrix A are related by

rkN = dimR(N) ≤ dimR(AT ) = rkAT = rkA = q < m, (15.3)

where the symbol R stands for range space (also called column space or kernel).
Here we have assumed that m < n, meaning that it is not a lack of observations

that gives rise to the rank deficiency but that the system of redundant observation
equations does not carry enough information about the parameters to estimate all
of them. In terms of the columns of matrix A, it can be said that only q of them are
linearly independent and that each of the remaining m−q of them can be expressed
as a linear combination of the q independent ones.

The less-than-or-equals sign in (15.3) denotes a more general relationship than
what is needed here. We may change it to the equality sign since the weight matrix P
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is positive definite, which means dimR(N) = dimR(AT ). Therefore,

rkN = rkA = q < m. (15.4)

Likewise, we can make a statement about the range spaces of matrices N and AT

as follows:

R(N) ⊂ R(AT ) and dimR(N) = rkN = rkAT = dimR(AT ) ⇔ (15.5a)

R(N) = R(AT ). (15.5b)

Question: Do solutions for ξ̂ always exist? Yes, because

c := ATPy ∈ R(AT ) = R(N). (15.6)

In other words, the vector c is in the range (column) space of N , which guarantees

that we have solutions for N ξ̂ = c.
Question: How many solutions for ξ̂ are there and how do we represent them?

The general solution ξ̂ belongs to a solution hyperspace that is shifted out of the
origin by a particular solution ξ̂part, where ξ̂part is a solution to an inhomogeneous
system of equations. Running parallel to the set of all particular solutions, and
through the origin of the solution hyperspace, is the nullspace of N , which is com-
prised of all the solutions to the homogeneous system N ξ̂ = 0. Therefore we can
write the general solution, as the sum of the particular solutions and the nullspace
of N , denoted N (N), as in

ξ̂ = ξ̂part +N (N). (15.7)

Figure 15.1 shows a graphical representation of equation (15.7). Obviously there

are infinite choices for the particular solution ξ̂part, and thus there are infinitely
many solutions for the unknown parameters within the rank deficient GMM.

Using set notation, we may characterize the nullspaces of N and A by

N (N) := {α |Nα = 0} and N (A) := {α |Aα = 0}, (15.8)

respectively. When Aα = 0 so does Nα; therefore

N (N) ⊂ N (A). (15.9a)

Also

dimN (N) = dimN (A) = m− q, (15.9b)

since

N (A)
⊥
⊕R(AT ) = Rm, (15.9c)

which says that the nullspace of matrix A and the range space of AT are both
complimentary and orthogonal subspaces of one another. Because of (15.9a) and
(15.9b), we can state that

N (N) = N (A), (15.9d)
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ξ̂
(1)
part

ξ̂
(2)
part

ξ̂
(3)
part

ξ̂part +N (N)

N (N) = N (A) =
= R(Im −N−N)

Figure 15.1: A schematic representation of the solution space for ξ̂, showing three
example particular solutions out of an infinite number of them

allowing us to extend (15.7) to

ξ̂ = ξ̂part +N (N) = ξ̂part +N (A). (15.10)

Thus we can generate all solutions ξ̂ if we know how to find a particular solu-
tion ξ̂part and if we know how to generate the nullspace of matrix A (or the nullspace
of N). To find the nullspace, we must turn to the topic of generalized inverses.

15.1 Generalized Inverses

Generalized inverses (called g-inverses by Rao (1965)) are important for solving
systems of equations that have singular coefficient matrices. Let G be the g-inverse
of matrix N (with both G and N of size m×m), then

NGN = N, (15.11a)

implying that

N(Im −GN) = 0, (15.11b)

which further implies that

R(Im −GN) ⊂ N (N). (15.11c)

Question: are the two spaces shown in (15.11c) equivalent? The answer is yes,
as shown below.
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The matrix (Im −GN) is idempotent since

(Im −GN)(Im −GN) = (Im −GN)−GN(Im −GN) = (Im −GN). (15.12a)

Therefore rk(Im −GN) = tr(Im −GN), and the dimension of the range space is

dimR(Im −GN) = rk(Im −GN) = tr(Im −GN) = m− tr(GN). (15.12b)

But, GN itself is also idempotent; therefore:

dimR(Im −GN) = m− tr(GN) = m− dimR(GN) = m− q =

= m− dimR(N) = dimN (N).
(15.12c)

Because of (15.11c) and (15.12c), we can indeed say that the spaces in (15.11c) are
equivalent, i.e.,

R(Im −GN) = N (N). (15.12d)

We have relied on the fact that, if one space is contained in another and the dimen-
sion of both spaces are the same, then the spaces must be equivalent.

Let the g-inverse matrix G be represented by the symbol N−, then

R(Im −N−N) = N (N) for any N− of N. (15.13)

Using (15.13) together with (15.10), we are now ready to write the complete

solution space of ξ̂ as

ξ̂ = ξ̂part + (Im −N−N)z for any z ∈ Rm and any chosen g-inverse N−.

(15.14)
As an aside, we show the dimension of the range space of the idempotent ma-

trix GN used in (15.12c). The rank of a product of matrices must be less than or
equal to the rank of any factor. Therefore,

rk(NGN) ≤ rk(GN) ≤ rkN = rk(NGN), (15.15a)

implying that

rk(GN) = rkN = q. (15.15b)

15.2 Finding a Generalized Inverse

Note the following properties associated with the m×m normal-equations matrix N
and its g-inverse G:

1. GN is idempotent (and as such, is a projection matrix), and so is NG. That
is, GN ·GN = GN , and NG ·NG = NG.

2. Im −GN is idempotent.
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3. m ≥ rkG ≥ rkN = q.

Item 3 states that the g-inverse G of N will always have equal or greater rank than
that of N itself.

An important subclass of g-inverses is the reflexive g-inverse. If G is a g-inverse
of N , and if N is also a g-inverse of G, then we say that G is a reflexive g-inverse
of N . Considering item 3 above, if GNG = G, then rkN = q ≥ rkG ⇒ rkG = q.
So, if we are given a g-inverse of rank q, it must be reflexive.

Another important g-inverse subclass is the Moore-Penrose inverse1, which is
also called the pseudoinverse. If the following four conditions are met, then the
g-inverse G is the pseudoinverse of N denoted as N+:

NGN = N

GNG = G

NG = (NG)T

GN = (GN)T


⇔ G = N+ (15.16)

The pseudoinverse is unique, and if N has full rank (i.e. rkN = m), the pseudoin-
verse is the same as the regular matrix inverse N−1.

Note that g-inverses of N do not need to be symmetric. However, if G is a
g-inverse of N , then GT is as well. This is shown in the following:

(NGN)T = NT = N = NTGTNT = NGTN. (15.17)

We also note that the pseudoinverse of a symmetric matrix is itself symmetric,
and that N+ = N+N(N+)T is positive semidefinite (assuming N is singular). How-
ever, as already stated, an arbitrary g-inverse G might not be symmetric and also
might not be positive semidefinite. However a reflexive symmetric (and therefore
positive-semidefinite) g-inverse defined as

N−
rs = GNGT (15.18a)

is characterized by

rkN−
rs = rkN = q (15.18b)

and

N−
rs = N−

rsN(N−
rs)

T = N−
rsNN−

rs. (15.18c)

The g-inverse N−
rs is in the class of reflexive symmetric g-inverses, which is a

very important class for the work that follows. We note that a reflexive symmetric
g-inverse can always be found from a given arbitrary g-inverse N− by

N−
rs = N−N(N−)T . (15.19)

There are many ways to construct a g-inverse of N . We show several examples
below. In some of the examples we use a more generic symbol A in order to stress

1According to Cross (1985), this g-inverse was first discovered by Moore in 1920 and then
independently by Penrose in 1955.
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that the matrix does not have to be symmetric or even square. For the discussion
that follows, it is helpful to partition N so that the upper-left q×q block matrix N11

has rank q as follows:

N
m×m

=

[
N11 N12

N21 N22

]
, dimN11 = q × q, rkN11 = q = rkN. (15.20)

The equations in (15.20) imply that the second column of the partitioned matrix
is a linear combination of the first column. Therefore, for some q×(m−q) matrix L,
we have [

N12

N22

]
=

[
N11

N21

]
· L, or N12 = N11L and N22 = N21L. (15.21)

In practice, the rows and columns of N might have to be reordered to ensure
that N11 is full rank as shown in (15.20), but that is usually easy to do. Also note
that since N is positive semidefinite, it can be decomposed as follows:

N =

[
UTDU UTDH

HTDU HTDH

]
=

[
UT

HT

]
D

[
U H

]
=

[
(D1/2U)T

(D1/2H)T

] [
D1/2U D1/2H

]
.

(15.22)

Here, U is an upper triangular matrix of size q × q; H is size q × (m− q), and D is
a q × q diagonal matrix. Also note that (D1/2U)T is the Cholesky factor of N11.

g-inverse example 1: (with N defined as in (15.22))

N− =

[
UT

HT

] (
UUT +HHT

)−1
D−1

(
UUT +HHT

)−1
[
U H

]
(15.23)

Check:

NN− =

[
UT

HT

]
D

[
U H

] [UT

HT

] (
UUT +HHT

)−1
D−1

(
UUT +HHT

)−1
[
U H

]
=

=

[
UT

HT

](
UUT +HHT

)−1 [
U H

]
⇒

NN−N =

[
UT

HT

](
UUT +HHT

)−1 [
U H

] [UT

HT

]
D

[
U H

]
=

=

[
UT

HT

]
D

[
U H

]
= N

Since this g-inverse N− has rank q, it is reflexive. Obviously it is also symmetric.
Therefore, it could also be labeled N−

rs. In this case it also satisfies all the properties
of a pseudoinverse.
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g-inverse example 2: (see Lütkepohl (1996), section 9.12.3, item (3))

N− =

[
(D1/2U)T

(D1/2H)T

][
D1/2U D1/2H

] [(D1/2U)T

(D1/2H)T

]−2 [
D1/2U D1/2H

]
= N+

(15.24)

The properties shown in (15.16) for the pseudoinverse can be verified for (15.24)
after some tedious matrix multiplications.

g-inverse example 3:

N− =

[
N−1

11 0

0 0

]
= N−1

rs (15.25)

Check:

NN−N =

[
N11 N12

N21 N22

][
N−1

11 0

0 0

][
N11 N12

N21 N22

]
=

[
Im 0

N21N
−1
11 0

][
N11 N12

N21 N22

]
=

=

[
N11 N12

N21N
−1
11 N11 N21N

−1
11 N12

]
=

[
N11 N12

N21 N21N
−1
11 N12

]
From (15.21) we have N12 = N11L and N22 = N21L so that N21N

−1
11 N12 = N21L =

N22, which completes the check for a g-inverse. Reflexivity is easy to check also.

g-inverse example 4: By rank factorization, the n×m matrix A may be factored
into the product of an n× q matrix F and a q×m matrix H, where rkA = rkF =
rkH = q and A = FH. Then a reflexive g-inverse of A may be obtained by

A−
r = HT (HHT )−1(FTF )−1FT . (15.26)

15.3 The Singular Value Decomposition

Given a matrix A of size n × m and rkA = q, the singular values of A are the
positive square roots of the positive eigenvalues of ATA or AAT , which are square,
symmetric matrices with real eigenvalues. (Note that only the positive eigenvalues of
the matrix products ATA and AAT are the same.) Let the diagonal n×m matrix Λ
contain q non-zero elements, being the singular values λj of A, where j = 1, . . . , q.
Let U be the orthogonal n× n matrix whose columns are the eigenvectors of AAT ,
and let V be the orthogonal m ×m matrix whose columns are the eigenvectors of
ATA. Then

A = UΛV T (15.27)

is the Singular Value Decomposition (SVD) of matrix A. Note that if A is sym-
metric, U = V . The g-inverse examples 5 through 8 below are all based on the
SVD.
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g-inverse example 5: Define a q × q diagonal matrix as

∆−1 = diag(λi, . . . , λq). (15.28)

Then there exists a set of g-inverses of A defined by

{A−} = {V

[
∆−1 K

L M

]
UT | K,L,M arbitrary with suitable size}. (15.29)

The rank of the block matrix can vary between q and m depending on the choices
for K, L, and M .

g-inverse example 6: Let the matrix M in (15.29) be defined as M := L∆K,
then

{A−
r } = {V

[
∆−1 K

L L∆K

]
UT | K,L arbitrary with suitable size} (15.30)

represents a set of g-inverses of A.

g-inverse example 7: Let the matrix M in (15.29) be defined as M := L∆LT ,
then

{A−
rs} = {V

[
∆−1 LT

L L∆LT

]
UT | L arbitrary with suitable size} (15.31)

represents a set of g-inverses of A.

g-inverse example 8:

A+ = V

[
∆−1 0

0 0

]
UT (15.32)

g-inverse example 9: Zlobec’s formula for the pseudoinverse is

N+ = N(NNN)−N, (15.33)

where the g-inverse can be any g-inverse of N3. The invariance of N+ with respect
to the choice of the g-inverse in Zlobec’s formula is due to the g-inverse’s placement
between the two occurrences of matrix N . Again we note that the pseudoinverse is
unique, but there are a variety of ways to generate it.

Now that we have seen how to generate a g-inverse, the next question regard-
ing our general solution (15.14) is “how do we represent the particular solution

ξ̂part?” We claim that ξ̂part is represented by N−c (or equivalently N−ATPy)
since NN−ATPy = c. To validate this claim, we must show that

NN−AT = AT , (15.34a)
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which is done as follows. Because N begins with AT , we can write

R(NN−AT ) ⊂ R(AT ). (15.34b)

Furthermore,

dimR(NN−AT ) = rk(NN−AT ) ≥ rk([NN−AT ]PA) = (15.34c)

= rkNN−N = rkN = q ≥ rk(NN−AT ), (15.34d)

or

rk(NN−AT ) ≥ q ≥ rk(NN−AT ), (15.34e)

implying that

rk(NN−AT ) = q. (15.34f)

But also dimR(AT ) = q, which further implies

R(NN−AT ) = R(AT ), (15.34g)

since if one range space belongs to another and they both have the same dimension,
they must be equivalent. Thus, we conclude that

NN−AT = AT , (15.35a)

and, after transposing,

AN−N = A. (15.35b)

Therefore it follows that

(NN−AT )Py = ATPy = c. (15.35c)

We can now write our general solution (15.14) in terms of N−c as follows:

ξ̂ = {N−c+ (Im −N−N)α | α ∈ Rm} for any chosen g-inverse N−,

(15.36)
where α is an arbitrary, but non-random, m× 1 vector.

From the law of error propagation, we find the dispersion of the general solution
to be

D{ξ̂} = D{N−c+ (Im −N−N)α} =

= N−D{c}(N−)T = σ2
0N

−N(N−)T = σ2
0N

−
rs. (15.37)

We now verify that the dispersion matrix in (15.37) is indeed a reflexive sym-
metric g-inverse.

1. Obviously the dispersion matrix σ2
0N

−N(N−)T is symmetric.

2. The matrix N−N(N−)T is a g-inverse of N because:

N [N−N(N−)T ]N = (NN−N)(N−)TN = N(N−)TN = N,

recalling that if N− is a g-inverse of N , so is (N−)T .



238 CHAPTER 15. THE RANK-DEFICIENT GMM

3. The matrix N is a g-inverse of N−N(N−)T because:

[N−N(N−)T ]N [N−N(N−)T ] = N−(N(N−)TN)[N−N(N−)T ] =

= N−N [N−N(N−)T ] = N−(NN−N)(N−)T = N−N(N−)T .

Because the dispersion (covariance) matrix in (15.37) is represented by a reflexive
symmetric g-inverse of N , we may, without loss of generality, restrict ourselves to
reflexive symmetric g-inverses in our search for a general solution ξ̂. Furthermore,
the covariance matrix cannot have a rank greater than that of N , and thus it is
positive semidefinite (cf. (15.15b) and the sentence that precedes it).

We have infinite choices for our particular solution ξ̂part, but one of particu-
lar interest is that which is shortest in magnitude (i.e., smallest L2-norm). This
particular solution can be derived by imposing a minimum norm condition on the
parameter vector in the least-squares target function; it is thus called MInimum
NOrm LEast-Squares Solution (MINOLESS) and is developed formally in the fol-
lowing section.

15.4 Minimum Norm Least-Squares Solution

MINOLESS is an acronym for MInimum NOrm LEast-Squares Solution. We know
that, within the rank deficient GMM,N ξ̂ = c has many solutions; we seek the short-
est (minimum norm) of these. The idea is to minimize the norm (inner product),

of ξ̂, according to

ξT ξ = min
ξ

such that Nξ = c. (15.38)

Thus, if ξ is an “incremental” parameter vector, as it is under linearization, mini-
mum norm means minimum change from the initial vector ξ0, e.g., the initial Taylor
series expansion point.

The Lagrange target function to minimize is written as

Φ(ξ, λ) := ξT ξ + 2λT (Nξ − c), (15.39)

which must be made made stationary for ξ and λ, where λ is an m × 1 vector
of Lagrange multipliers. Accordingly, the Euler-Lagrange (first-order) necessary
conditions are then written as

1

2

∂Φ

∂ξ
= ξ̂T + λ̂TN

.
= 0, (15.40a)

1

2

∂Φ

∂λ
= ξ̂TN − cT

.
= 0. (15.40b)

The sufficient condition (i.e., that second partial derivative must be positive) is
satisfied since (1/2)∂2Φ/∂ξ∂ξT = In, which is positive definite.

Equations (15.40a) and (15.40b) lead to the solution ξ̂ as follows:

ξ̂ = −N λ̂ and N ξ̂ = c, (15.41a)
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implying that

c = −NN λ̂ ⇒ λ̂ = −(NN)−c. (15.41b)

Finally, we arrive at the solution for the vector of unknown parameters ξ as

ξ̂MINOLESS = N(NN)−c. (15.42)

Note that N(NN)− is a particular g-inverse of N , but also note that (NN)− ̸=
N−N−. Equation (15.42) is one expression of MINOLESS. There are others, as

will be shown later. Using variance propagation, the dispersion of ξ̂ is given by

D{ξ̂} = N(NN)− ·D{c} · (NN)−N = σ2
0N(NN)−N(NN)−N, (15.43)

which implies that

N(NN)−N(NN)−N = N−
rs. (15.44)

Here, we have used the fact that any power of the symmetric matrix N is also
symmetric, and the g-inverse of a symmetric matrix is also symmetric. The matrix
scaled by σ2

0 in (15.43) is called cofactor matrix. We can always express a LESS as
a product of such a cofactor matrix and the normal equation vector c. That is,

σ2
0 · ξ̂ = D{ξ̂} · c for any ξ̂. (15.45)

Therefore, we can also express MINOLESS in terms of the matrix N−
rs in (15.44)

by writing

ξ̂MINOLESS = [N(NN)−N(NN)−N ]c. (15.46)

Here, we note that the product AN−AT is invariant with respect to the chosen
g-inverse N−. Also, not only is N(NN)− a g-inverse of N , according to (15.17)
its transpose (NN)−N is also a g-inverse of N . Based on these relations, and by
expressing (15.46) alternatively as

ξ̂ = [ATPA(NN)−N(NN)−N ]ATPy, (15.47)

it is seen that (15.46) is unique regardless of the choice of the g-inverse.

Typically, in geodetic-science applications the estimated parameter vector ξ̂ is a
vector of incremental updates to initial approximations of ξ. As noted above, using
MINOLESS in this case guarantees that changes from the initial approximations to
the estimated values are a minimum, in terms of the L2-norm. This minimum-norm
solution is shown schematically in Figure 15.2, where the origin represents the initial
approximation to ξ. An infinite number of solution lie on the line labeled ξ̂part +

N (A). Their vectors originate at the origin; the shortest of these is ξ̂MINOLESS.
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ξ̂part = N−
rs c

ξ̂MINOLESS

ξ̂part +N (A)

N (A)

Figure 15.2: Schematic representation of the solution space for MINOLESS

15.5 Partial Minimum Norm Least-Squares Solu-
tion

In some cases we may only want a certain subset of the initial parameter vector
to change in a minimum-norm sense. For example, we may know the locations of
some points in a geodetic network to a high level of accuracy, while locations of the
remaining network points may not be known as well or may even be known only
approximately. In this case, we may wish to employ partial-MINOLESS, which is
based on using a selection matrix S to choose a subset of the parameters for norm
minimization.

The minimization problem is then stated as

ξ̂TSξ̂ = min
ξ̂

{N ξ̂ = c}, S :=

[
Is 0

0 0

]
. (15.48)

The size of the identity matrix Is corresponds to the number of selected parameters.
Note that we can always construct S with Is in the upper-left block, as shown in
(15.48), by reordering the parameter vector if necessary; otherwise, S would be a
diagonal matrix with ones at elements corresponding to selected parameters and
zeros elsewhere.

The Lagrange target function to minimize in this case is given by

Φ(ξ,λ) := ξTSξ − 2λT (Nξ − c), (15.49)
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which must be made stationary with respect to ξ and λ. Accordingly, The Euler-
Lagrange necessary conditions are provided by

1

2

∂Φ

∂ξ
= ξ̂TS − λ̂TN

.
= 0 ⇒ Sξ̂ −N λ̂

.
= 0, (15.50a)

1

2

∂Φ

∂λ
= ξ̂TN − cT

.
= 0 ⇒ N ξ̂ − c

.
= 0. (15.50b)

The sufficient condition for minimization is satisfied since (1/2)∂2Φ/∂ξ∂ξT = S,
which is positive (semi)definite.

Obviously matrix S is singular, but we choose S so that S + N is invertible,
requiring that S selects at leastm−rkA parameters (with rkA := q), or equivalently
requiring rkS ≥ m− q. Not only that, but it is required that rk[N,S] = m, which
implies that, at least in some cases, not just any minimum m − q parameters can
be selected, but rather parameters must be selected such that S + N becomes
nonsingular. As an example, consider a 3D network adjustment with a datum
deficiency of three (i.e., m − q = 3) due to the absence of any information about
the network’s origin. Assuming an XY Z coordinate parameterization, S has to
select at least one X, one Y , and one Z coordinate; it could not select only three
X-coordinates, for example, as that would not satisfy the rank requirement (i.e.,
information about the origin of the Y - and Z-axes would still be missing).

The above system of normal equations is solved as follows: By adding equations
(15.50a) and (15.50b) we obtain

(S +N)ξ̂ = N λ̂+ c, (15.51a)

leading to

ξ̂ = (S +N)−1(N λ̂+ c). (15.51b)

Substituting (15.51b) into (15.50b) yields

N(S +N)−1(N λ̂+ c)− c = 0,

or

N(S +N)−1N λ̂ = c−N(S +N)−1c =

= [(S +N)−N ](S +N)−1c = S(S +N)−1c,

leading to

λ̂ = [N(S +N)−1N ]−S(S +N)−1c (15.51c)

as an estimate for the vector of Lagrange multipliers. Then, substituting (15.51c)
into (15.51a) yields

(S +N)ξ̂ = c+N [N(S +N)−1N ]−S(S +N)−1c. (15.51d)

We use the identity NN−c = c to write the equivalent equation

(S +N)ξ̂ = N [N(S +N)−1N ]−N(S +N)−1c+

+N [N(S +N)−1N ]−S(S +N)−1c =
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= N [N(S +N)−1N ]−
[
N(S +N)−1 + S(S +N)−1

]
c =

= N
[
N(S +N)−1N

]−
c, (15.51e)

finally leading to the partial-MINOLESS

ξ̂ = ξ̂P-MINOLESS = (S +N)−1N [N(S +N)−1N ]−c. (15.51f)

Using the law of covariance propagation, we write the partial-MINOLESS dis-
persion matrix as

D{ξ̂} = σ2
0(S +N)−1N [N(S +N)−1N ]−N [N(S +N)−1N ]−N(S +N)−1.

(15.52)
We may rewrite the partial-MINOLESS solution, replacing the matrix multi-

plying c in (15.51f) with the cofactor matrix appearing in the dispersion (15.52),
resulting in

ξ̂P-MINOLESS = (S +N)−1N [N(S +N)−1N ]−N [N(S +N)−1N ]−N(S +N)−1c.
(15.53)

Now, what happens if we replace S by Im, i.e., all parameters are selected for
norm minimization? Obviously partial-MINOLESS becomes MINOLESS itself as
shown below.

ξ̂Im−MINOLESS = (Im +N)−1N
[
N(Im +N)−1N

]−
N ·

·
[
N(Im +N)−1N

]−
N(Im +N)−1c =

= (Im +N)−1N
[
N(Im +N)−1N

]−
c ⇒

ξ̂MINOLESS = N+c (15.54)

The dispersion for MINOLESS is computed by

D{ξ̂MINOLESS} = D{N+c} = N+D{c}N+ = σ2
0N

+. (15.55)

It is interesting to compare (15.54) with the form of MINOLESS found earlier
in (15.42). Once again we note that regardless of the form of MINOLESS (or simi-
larly the form of N+), the MINOLESS is unique. However, there is no connection
between MINOLESS and BLUUE, as there is no unbiased estimate for this LESS.
That is, the rank deficient GMM has no unbiased solution for the unknown param-
eters. This fact is easily demonstrated by attempting to derive a LUUE (Linear
Uniformly Unbiased Estimate) as follows.

The Linear Uniformly Unbiased Estimate (LUUE) requires that

ξ̂ = Ly,

with L being an m× n matrix. Then, applying the expectation operator,

E{ξ̂} = LE{y} = LAξ,

with the size of LA being m×m and rk(LA) ≤ rkA = q < m. Thus, LA is singular,
and therefore LA ̸= Im. Therefore, LUUE = ∅; i.e., there is no unbiased solution
for ξ.
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15.6 Best Least-Squares Solution

We expect the least-squares solution to be best in a certain class. By best we mean
that the trace of its dispersion matrix is minimum. We already found that the
dispersion is based on a reflexive symmetric g-inverse, i.e.,

D{ξ̂LESS} = σ2
0N

−
rs for all N−

rs. (15.56)

Our task now is to compare the trace of the dispersion matrix from MINOLESS
to that of a general LESS, recalling that the best LESS must satisfy the normal
equations N ξ̂ = c. We start by expressing the estimate as a linear combination of
the observations as follows:

ξ̂ = Ly, with NL = ATP, (15.57a)

which implies that

D{ξ̂} = σ2
0LP

−1LT , (15.57b)

permitting us to write

σ−2
0 trD{ξ̂} = tr(LP−1LT ) = min

LT
{LTN = PA}. (15.57c)

So we see that minimizing the trace of the dispersion matrix is tantamount to
minimizing the m × n matrix L (under the specified conditions) since the weight
matrix P is fixed. Analogous to (12.9), we make use of the vec operator and the
Kronecker-Zehfuss product to form the following Lagrange target function, where
l := vecLT :

Φ(l,λ) := lT (Im ⊗ P−1)l+ 2λT
[
N ⊗ Inl− vec(PA)

]
, (15.58)

which must be made stationary with respect to l and λ. To clarify the form of
the target function, we note that the first product comes from applying (A.32)
to tr(LP−1LT ) = tr(P−1LT InL). The term including the Lagrange multiplier λ
comes from the constraint LTN −PA = 0 with application of the vec operator such
that vec(InL

TN)− vec(PA) = 0, followed by the application of (A.31).
The Euler-Lagrange necessary conditions are

1

2

∂Φ

∂l
= (Im ⊗ P−1)̂l+ (N ⊗ In)λ̂

.
= 0, (15.59a)

1

2

∂Φ

∂λ
= (N ⊗ In)̂l− vec(PA)

.
= 0. (15.59b)

The sufficient condition for minimization is satisfied since (1/2) · ∂2Φ/(∂l∂lT ) =
(In⊗P−1) is positive definite. The system of normal equations is solved as follows:
From (15.59a) we get

l̂ = −(Im ⊗ P−1)−1(N ⊗ In)λ̂ = −(N ⊗ P )λ̂. (15.60a)

And, by substituting the preceding equation into (15.59b), we get

vec(PA) = −(NN ⊗ P )λ̂. (15.60b)
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We need (N ⊗ P )λ̂; so we exploit the fact that N(N2)−N2 = N by multiplying
both sides of (15.60b) by (N(NN)− ⊗ In), which gives

(N(NN)− ⊗ In) vec(PA) = −(N(NN)− ⊗ In)(NN ⊗ P )λ̂ = −(N ⊗ P )λ̂ = l̂,
(15.60c)

leading to

l̂ = vec
[
InPA(N(NN)−)T

]
= vec(PA(NN)−N) = vecLT , (using (A.31)),

(15.60d)

implying that

LT = PA(NN)−N ⇒ L = N(NN)−ATP. (15.60e)

Finally, we substitute (15.60e) into (15.57a) to get (compare to (15.42))

ξ̂ = Ly = N(NN)−ATPy = N(NN)−c = ξ̂MINOLESS. (15.60f)

Thus we find that MINOLESS is best among all LESS with minimum trace. How
can we prove this directly? We start by showing that (N+N)N−

rs(NN+) = N+ and
then exploit that relationship in the proof that follows.

(N+N)N−
rs(NN+) = N+(NN−

rsN)N+ = N+NN+ = N+

implying that

trN+ = tr
[
(N+N)N−

rs(NN+)
]
.

We continue by exploiting symmetry and applying a cyclic transformation.

trN+ = tr
[
(NN+)T (N+N)N−

rs

]
=

= tr
[
N+NN−

rs

]
= (because N+N is idempotent)

= tr
[
N−

rs −N−
rs +N+NN−

rs

]
=

= tr
[
N−

rs − (Im −N+N)N−
rs

]
=

= trN−
rs − tr

[
(Im −N+N)(Im −N+N)N−

rs

]
=

(because (Im −N+N) is idempotent)

= trN−
rs − tr

[
(Im −N+N)T (Im −N+N)N−

rs

]
=

(transpose due to symmetry)

= trN−
rs − tr

[
(Im −N+N)N−

rs(Im −N+N)T
]
= (cyclic transformation)

But, the triple product is positive semidefinite; therefore we can state that

trN+ = trN−
rs − tr

[
(Im −N+N)N−

rs(Im −N+N)T
]
≤ trN−

rs. (15.61)

Thus we have proved directly that the pseudoinverse N+ provides a minimum trace
in the class of cofactor matrices, i.e.,

trN+ ≤ trN−
rs for all N−

rs. (15.62)
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Can we make a similar characterization of partial-MINOLESS? Is it partially
best in terms of having the smallest (partial) trace of the cofactor matrix? In other
words, is the sum of the cofactor diagonal elements corresponding to the selected
points smallest? The answer is yes, as we show below.

Analogous to (15.57c) we minimize a subset of the trace of the parameter dis-
persion matrix as

σ−2
0 tr(SD{ξ̂}) = min

LT
such that LTN = PA. (15.63)

From (15.51f) we already know that matrix L should satisfy L := (S+N)−1N [N(S+
N)−1N ]−ATP . Analogous to (15.58), we write the following Lagrange target func-
tion:

Φ(l,λ) := lT (S ⊗ P−1)l+ 2λT
[
(N ⊗ In)l− vec(PA)

]
, (15.64)

which must be made stationary with respect to l and λ. Again we have defined
l := vecLT . Accordingly, the Euler-Lagrange necessary conditions are written as
(compare to (15.59a) and (15.59b))

1

2

∂Φ

∂l
= (S ⊗ P−1)̂l+ (N ⊗ In)λ̂

.
= 0, (15.65)

1

2

∂Φ

∂λ
= (N ⊗ In)̂l− vec(PA)

.
= 0. (15.66)

Note that (S ⊗ P−1) is not invertible due to the singularity of S, in general. We
solve the system of equations (15.65) and (15.66) as follows: Multiplying (15.65) by
(In ⊗ P ) gives

(S ⊗ In)̂l+ (N ⊗ P )λ̂ = 0. (15.67a)

Adding this to (15.66) yields

[(N + S)⊗ In ]̂l = vec(PA)− (N ⊗ P )λ̂, (15.67b)

leading to

l̂ = [(N + S)⊗ In]
−1 vec(PA)− [(N + S)⊗ In]

−1(N ⊗ P )λ̂ =

= [(N + S)−1 ⊗ In] vec(PA)− [(N + S)−1 ⊗ In](N ⊗ P )λ̂ =

= vec[PA(N + S)−1]− [(N + S)−1N ⊗ P ]λ̂, using (A.32). (15.67c)

Now substitute l̂ from (15.67c) into (15.66) to obtain

vec(PA) = (N ⊗ In)
{
vec[PA(N + S)−1]− [(N + S)−1N ⊗ P ]λ̂

}
=

= vec[PA(N + S)−1N ]− [N(N + S)−1N ⊗ P ]λ̂, using (A.31). (15.67d)

Now, the product that includes λ̂ in (15.67a) can be expressed as follows:

(N ⊗ P )λ̂ =
{
N [N(N + S)−1N ]− ⊗ In

}
[N(N + S)−1N ⊗ P ]λ̂. (15.67e)
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Combining (15.67d) and (15.67e) gives

(N ⊗ P )λ̂ = −
{
N [N(N + S)−1N ]− ⊗ In

}
[vec(PA)− vec[PA(N + S)−1N ].

(15.67f)

Multiplying the right side through and using (A.31) yields

(N ⊗ P )λ̂ = − vec
{
PA[N(N + S)−1N ]−N

}
+

+ vec
{
PA(N + S)−1N [N(N + S)−1N ]−N

}
.

(15.67g)

Recalling that N = ATPA, the matrix A in the last term of the preceding line can
be replaced by A = AN−N , see (15.35a), which permits reduction of said term to
vec(PA).

(N ⊗ P )λ̂ = − vec
{
PA[N(N + S)−1N ]−N

}
+ vec(PA) (15.67h)

Now we can substitute the preceding line into (15.67b) in order to solve for l̂.

vec(PA)−
[
(N + S)⊗ In

]̂
l = − vec

{
PA[N(N + S)−1N ]−N

}
+ vec(PA),

(15.67i)

implying that

l̂ =
[
(N + S)−1 ⊗ In

]
vec

{
PA[N(N + S)−1N ]−N

}
=

= vec
{
PA[N(N + S)−1N ]−N(N + S)−1

}
= vec(L̂T ), (15.67j)

which finally leads to an expression for the m×m matrix L as

L̂ = (N + S)−1N [N(N + S)−1N ]−ATP, with ξ̂P-MINOLESS = L̂y. (15.67k)

This agrees with our solution in (15.51f) and shows that partial-MINOLESS in-
deed yields the minimum partial trace of the dispersion matrix among all other
estimators; thus it is partially best.

15.7 Best Linear Uniformly Minimum Bias Esti-
mate

Analogous to BLUUE in the GMM of full rank, we take a statistical approach
here to derive an estimator in the rank-deficient GMM. We already stated that all
estimates ξ̂ in the rank-deficient GMM are biased by our treatment of the rank
deficiency. We wish to minimize this bias by finding the Best Linear Uniformly
Minimum Bias Estimate (BLUMBE ). The attributes of BLUMBE are described
below.

(i) Linear: The estimate is required to be linear in the observation vector y.

ξ̂ = Ly, where the m× n matrix L is to be determined. (15.68)
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(ii) Minimum bias:

E{ξ̂} = (LA)ξ, with rk(LA) ≤ rkA = q ⇒ LA ̸= Im. (15.69)

We see that the matrix product LA cannot be the identity matrix Im because
it has rank q < m. But the product LA would need to be equal to Im in order
for the estimate to be uniformly unbiased. We call the difference LA − Im
the bias matrix, and we wish to make it as small as possible by minimizing
its Frobenius norm, or rather by minimizing the square of the norm as follows
(see the definition of the Frobenius (or Euclidean) norm in (A.27)):

Φ(L) = ∥LA− Im∥2F = tr
[
(LA− Im)(LA− Im)T

]
= min

L
. (15.70)

To fulfill the requirement (15.70), it is necessary that the first partial derivative
of Φ(L) with respect to LT equal zero (necessary condition), which leads to

(AAT )LT −A
.
= 0 or (LA− Im)AT .

= 0. (15.71)

See (A.47) for derivatives of the trace. Of course the sufficiency condition is
satisfied for minimization since AAT is positive semidefinite. From (15.71) we
have the geometric interpretation that R(ATLT − Im) ⊂ N (A).

(iii) Best: The trace of dispersion matrix must be minimum.

We wish to minimize the dispersion matrix D{ξ̂} = σ2
0LP

−1LT . Dropping
the constant σ2

0 and considering (ii) leads to the following target function to
minimize:

Φ(LT ,Λ) = tr(LP−1LT ) + 2 tr(LA− Im)ATΛ, (15.72)

which must be made stationary with respect to LT and the n × n matrix of
Lagrange multipliers Λ. Accordingly, the Euler-Lagrange necessary conditions
are written as

1

2

∂Φ

∂LT
= P−1L̂T +AAT Λ̂

.
= 0, (15.73a)

1

2

∂Φ

∂Λ
= AAT L̂T −A

.
= 0. (15.73b)

Note that we could also check for the sufficient condition; however, this re-
quires the vec operator and Kronecker products to do so. For the sake of
brevity, we simply state that the necessary conditions do indeed lead to a
minimization of (15.72). The above system (15.73a) and (15.73b) is solved as
follows: From (15.73a)) we can write

L̂T = −PAAT Λ̂. (15.74a)

Then, by substituting (15.74a) into (15.73b), we obtain

A = −AATPAAT Λ̂.
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Multiplying by ATP from the left results in

N = −NNAT Λ̂.

Then multiplying by N(NN)− from the left gives

N(NN)−N = −N(NN)−NNAT Λ̂.

Noting that N(NN)−NN = N means

N(NN)−N = −NAT Λ̂. (15.74b)

We seek an expression for PAAT Λ̂ in terms of known quantities to substitute
into (15.74a). So we multiply both sides of (15.74b) by AN− to get

AN−N(NN)−N = −AN−NAT Λ̂,

which, together with using (15.35b), implies

A(NN)−N = −AAT Λ̂.

Then, multiplying on the left by P results in

PA(NN)−N = −PAAT Λ̂,

and, by substitution into (15.74a), we get

L̂T = PA(NN)−N,

leading to

L̂ = N(NN)−ATP. (15.74c)

Finally, upon substituting (15.74c) for L̂ into (15.68) and comparing to (15.60f)
we get

ξ̂BLUMBE = L̂y = N(NN)−c = ξ̂MINOLESS. (15.74d)

We have just shown that the BLUMBE and the MINOLESS are equivalent. This
equivalency makes these solutions very appealing for the rank deficient GMM, as
together they fulfill the following properties:

• Minimum norm of parameter vector.

• Smallest trace of dispersion matrix.

• Smallest norm of bias matrix.

A relevant question at this point is “what is the bias associated with BLUMBE?”
The BLUMBE bias vector β is derived as follows:

β := E{ξ̂} − ξ = (15.75a)
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= L̂E{y} − ξ =̂LAξ − ξ ⇒ (15.75b)

β = (L̂A− Im)ξ = [N(NN)−N − Im]ξ. (15.75c)

Equation (15.75c) in the above derivation reveals the bias matrix L̂A− Im that is
minimized by BLUMBE.

We now make a few additional comments about the least-squares solution within
the rank-deficient GMM. In addition to the vector of estimated parameters ξ̂, we
can also generate a predicted residual vector ẽ, a vector of adjusted observations µ̂y,
and an estimated variance component σ̂2

0 . Each of their formulas are summarized
below.

ξ̂ =
{
N−

rsc+ (Im −N−
rsN)α |α ∈ Rm

}
=

=
{
N−

rsc |N−
rs is a reflexive symmetric g-inverse of N

} (15.76a)

µ̂y = Aξ̂ (15.76b)

ẽ =
[
In − (AN−

rsA
T )P

]
y, (15.76c)

where AN−
rsA

T is invariant with respect to the chosen g-inverse

σ̂2
0 = ẽTP ẽ/(n− rkA). (15.76d)

The denominator in (15.76d) is the redundancy of the model. It is equal to the
number of observations minus the number of estimable parameters. It is only equiv-
alent to the number of observations minus the number of parameters, or unknowns,
if the design matrix A has full column rank, in which case the redundancy is n−m.

An important point to make is that ẽ, µ̂y, and σ̂2
0 are all unique. That is, they

do not depend on the chosen g-inverse, N−
rs, for the solution (15.76a). However,

ξ̂ itself is not unique; that is, it does depend directly on the chosen g-inverse.
The following expectations reflect these properties (where (15.35a), (15.35b), and
E{y} = Aξ have been used):

E{ξ̂} = E{N−
rsc} = N−

rsA
TPE{y} = N−

rsA
TPAξ = N−

rsNξ ̸= ξ, (15.77a)

E{µ̂y} = E{Aξ̂} = AN−
rsNξ = Aξ = E{y}, (15.77b)

E{ẽ} =
[
In − (AN−

rsA
T )P

]
E{y} =

[
A−AN−

rsN
]
ξ =

[
A−A

]
ξ = 0 = E{e}.

(15.77c)

15.7.1 S -Transformations Introduced

Suppose we have two different elements of the solution space, namely ξ̂(1) and ξ̂(2),
that take the forms

ξ̂(1) = G1c and ξ̂(2) = G2c where G1, G2 ∈ {N−
rs}, (15.78)

i.e., G1 and G2 are different g-inverses, both of which are reflexive symmetric.
Now suppose we would like to transform from one solution to the other. The

transformations are written as

ξ̂(1) = (G1N)ξ̂(2) and ξ̂(2) = (G2N)ξ̂(1), (15.79)
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with respective dispersion matrices

D{ξ̂(1)} = (G1N) ·D{ξ̂(2)} · (G1N)T and D{ξ̂(2)} = (G2N) ·D{ξ̂(1)} · (G2N)T .
(15.80)

The relations in (15.79) hold because the normal equations N ξ̂(i) = c are ful-

filled for all ξ̂(i). These transformations are called “S-transformations.” They have
practical use in datum transformation problems, and they are discussed further in
section 15.9.

It is often costly to compute N−
rs. How then can we represent the product GiN?

The only difference between various GiN is in the dimension of their nullspaces.
Thus, in the following we look at different bases for the nullspace of A (or, equiva-
lently, the nullspace of N) to solve our rank deficient problem.

15.8 Minimum and Inner Constraints

In the context of minimum constraints, the term “minimum” is used to mean the
minimum number of constraints required to overcome the rank deficiency of the
model. This is in contrast to an over-constrained model, where more constraints
than are necessary are provided, in which case the residual vector will be impacted
by the constraints. The constraints are given in the form of linear equations in the
unknown parameters. The term “inner constraints” adjustment is used by some
authors in the context of networks with datum deficiency to denote the MINOLESS
shown Section 15.8.3. Among these authors are Leick et al. (2015) and (Blaha, 1971,
p. 3, §7.3, §8), the latter of which refers to the constraints as inner adjustment
constraints.2

15.8.1 Restricted LEast-Squares Solution (RLESS)

The minimal constraint equation is written as

Kξ = κ0. (15.81)

where, K is an l ×m matrix whose row space relates to that of matrix A by

R(KT ) ∩R(AT ) = ∅ and R(KT ) ∪R(AT ) = Rm, (15.82a)

which also means the direct sum of the row spaces results in

R(KT )⊕R(AT ) = Rm. (15.82b)

Equivalently, the rank condition

rk
[
AT , KT

]
= rkA+ rkK = m, (15.82c)

holds, implying that

rkK = m− q, (15.82d)

2The term “inner constraint” stems from the work of Meissl (1969).
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leading to the “restriction”

rows of K = l = m− q = datum deficiency, (15.82e)

for the number of minimal constraints needed to overcome the rank deficiency of
matrix A (Schaffrin, 1985, p. 552). This restriction is what the ‘R’ in RLESS
(Restricted LESS) denotes.

Both the constraint matrix K and the right-side vector κ0 are known, constant
quantities. In practice, κ0 is often a vector of zeros, especially in the case of lin-
earized observation equations. The above equations tell us that the row space of
matrix A combined with the row space of K (i.e., their union) span all of Rm. Even
more, the union forms a basis for Rm.

Combining equation (15.81) with the observation equations (11.3), allows us to
write the following system of extended normal equations:[

N KT

K 0

][
ξ̂

λ̂

]
=

[
c

κ0

]
. (15.83)

The extended normal-equation matrix on the left side is indeed regular (non-singular)
due to the rank relations of (15.82c). The normal equations can be solved as follows:
Adding KT× row 2 to row 1 results in

(N +KTK)ξ̂ = c+KT (κ0 − λ̂), (15.84a)

leading to

ξ̂ = (N +KTK)−1c+ (N +KTK)−1KT (κ0 − λ̂). (15.84b)

Now we combine the preceding line with row 2 to obtain

κ0 = Kξ̂ = K(N +KTK)−1c+K(N +KTK)−1KT (κ0 − λ̂), (15.84c)

which leads to

κ0 − λ̂ =
[
K(N +KTK)−1KT

]−1[
κ0 −K(N +KTK)−1c

]
. (15.84d)

Finally, upon substituting (15.84d) into (15.84b), we can write the Restricted Least-
Squares Solution (RLESS) as

ξ̂RLESS = (N +KTK)−1c+ (N +KTK)−1KT ·

·
[
K(N +KTK)−1KT

]−1[
κ0 −K(N +KTK)−1c

]
; (15.85)

see (15.104) for a simplified expression.
If κ0 turns out to be zero, and if we factor out the vector c, the solution (15.85)

reduces to

ξ̂RLESS =
[
(N +KTK)−1 − (N +KTK)−1KT

[
K(N +KTK)−1KT

]−1·
·K(N +KTK)−1

]
c, if κ0 = 0.

(15.86)
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Now, for convenience in further analysis, denote the matrix on the right side of
15.86 as G, viz.

G :=
[
(N +KTK)−1 − (N +KTK)−1KT

[
K(N +KTK)−1KT

]−1
K(N +KTK)−1

]
.

(15.87)

15.8.2 Reflexive Symmetric G-Inverse

Question: is the matrix G in (15.87) a reflexive symmetric g-inverse of N? We
claim that it is. The proof that follows is rather lengthy, but out of it comes a
representation of matrix K that leads to the so called inner-constraint solution.
The symmetry of G is obvious from inspection. The reflexivity can be confirmed by
checking the rank. Because the rank of G will not change when premultiplied by the
full-rank matrix N +KTK, and because this multiplication results in a idempotent
matrix (N +KTK)G, we make use of this multiplication as follows:

rkG = rk
[
(N +KTK)G

]
=

= tr
[
(N +KTK)G

]
= (due to its idempotent property)

= tr Im − tr
{
[K(N +KTK)−1KT ]−1K(N +KTK)−1KT

}
=

= m− (m− q) = q = rkN.

Since rkG = rkN , if the symmetric matrix G is a g-inverse of N , it is also a reflexive
symmetric g-inverse. What is left is to show that G is indeed a g-inverse of N . We
start by forming the product NGN .

NGN = N(N +KTK)−1N −N(N +KTK)−1KT ·

·
[
K(N +KTK)−1KT

]−1
K(N +KTK)−1N

(15.88)

Our aim is to show that K(N +KTK)−1N = 0, which would cancel what follows
the minus sign on the right side of (15.88). Then we must show that the remaining
term N(N +KTK)−1N equals N , which implies that (N +KTK)−1 is a g-inverse
of N and thereby proves that G is as well. This is done in the following section.

15.8.3 (Partial) Minimum Norm Least-Squares Solution
(MINOLESS)

Recalling that m is the number of unknown parameters and l is the number of re-
quired constraints, we introduce an l×m matrix E to form the constraint equations

Eξ = 0, (15.89a)

such that

AET = 0, (15.89b)

and

R(AT )
⊥
⊕R(ET ) = Rm, (15.89c)
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implying that

rkE = m− q = l. (15.89d)

The above relations mean that the columns of ET (or rows of E) form a basis for the
nullspace of A, and thus also for the nullspace of N . Every row of E is perpendicular
to every row of A, and though the rows of E do not have to be perpendicular to
one another, they are linearly independent of each other. So, we could construct
matrix E with eigenvectors corresponding to the zero eigenvalues of N . But this is
only one choice for constructing E; the matrix E is not unique.

Considering the constraint matrix K introduced in (15.81), because of (15.89b)
we have the relation

(N +KTK)ET = KT (KET ). (15.90)

Now we assert that the l × l matrix KET is invertible.
Proof: Suppose KET is not invertible. This implies that there exists a linear

combination of the rows of K that is orthogonal to a column of ET ; or in math-
ematical terms R(KT ) ⊂ R(ET )⊥. This would mean that a vector in R(KT ) is
contained in R(AT ) since R(AT ) = R(ET )⊥. But this contradicts the direct sum
in (15.82b). In other words, there exists no linear combination of the rows of K that
is perpendicular to a column of ET , and therefore, KET is invertible. We continue
by pre- and post-multiplying (15.90) by appropriate inverses as follows:

ET (KET )−1 = (N +KTK)−1KT , (15.91a)

implying that

N(N +KTK)−1KT = NET (KET )−1. (15.91b)

But, NET = 0 due to (15.89b), therefore

N(N +KTK)−1KT = 0. (15.91c)

Thus (15.88) does reduce to NGN = N(N+KTK)−1N . Now, using two successive
applications of the rule for the inverse of a sum (see equation (A.6a) in the appendix)
we can check to see if this product further reduces to N .

N(N +KTK)−1N = N
[
N− −N−KT (Il +KN−KT )−1KN−]N = (15.92a)

= NN−N −NN−KT
[
Il −K(N +KTK)−1KT

]
KN−N = (15.92b)

= N −NN−KT (Il − Il)KN−N = N (15.92c)

Here we have used the relationship K(N +KTK)−1KT = Il, which is obvious from
(15.91a).

Thus we have shown that the matrix G of (15.87) is indeed a reflexive symmetric
g-inverse for N , given any arbitrary matrix K satisfying the conditions (15.82a)–
(15.82d). We summarize by listing three important relations between the normal-
equations matrix N and the minimal-constraint matrix K.

N(N +KTK)−1N = N (15.93a)
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N(N +KTK)−1KT = 0 (15.93b)

K(N +KTK)−1KT = Il (15.93c)

As we have said already, the minimum-constraint matrix K must satisfy condi-
tions (15.82a)–(15.82d); the matrix K is otherwise arbitrary. The matrix E intro-
duced above satisfies these conditions and may be used in place of K. In this case
we get MINOLESS. Rewriting (15.86), which used κ0 = 0, with E instead of K
gives

ξ̂MINOLESS =
{
(N + ETE)−1 − (N + ETE)−1ET ·

·
[
E(N + ETE)−1ET

]−1
E(N + ETE)−1

}
c.

(15.94)

Using relations (15.91a) and (15.93c), with K replaced by E, allows us to rewrite
(15.94) as

ξ̂MINOLESS =
[
(N + ETE)−1 − ET (EET )−1(EET )−1E

]
c. (15.95)

The diagram in Figure 15.3 illustrates the geometric relationships between the
range spaces of AT , ET , and KT , together with RLESS and MINOLESS.

ξ̂MINOLESS = ξ̂BLUMBE

ξ̂RLESS

ξ̂particular +N (A)
(solution space)

N (A) = R(ET )

R(A
T )

R(K T
)

Figure 15.3: Schematic representation of the solution space with RLESS and
MINOLESS (BLUMBE) as particular solutions

Now we prove that (15.95), or equivalently (15.94), is in fact MINOLESS. To
do so we must show that the matrix on the right side of (15.95), which we define
here as G, is the pseudoinverse N+ of N .

G :=
[
(N + ETE)−1 − ET (EET )−1(EET )−1E

] ?
= N+. (15.96)
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We already know that G ∈ N−
rs from the above derivation of RLESS. We only have

to show the two remaining properties of the pseudoinverse; see (15.16).
Note that NG = N(N + ETE)−1, because NET contains the product AET ,

which is zero by (15.89b). If G is in fact equal to N+, then NG must satisfy
NG = (NG)T according to (15.16). This is checked as follows:

NG = N(N + ETE)−1 =

= (N + ETE − ETE)(N + ETE)−1 =

= (N + ETE)(N + ETE)−1 − ETE(N + ETE)−1

And now using the transpose of (15.91a) with K replaced by E leads to

NG = Im − ET (EET )−1E. (15.97)

The matrix in (15.97) is obviously symmetric so that NG = (NG)T . Also, since G
and N are both symmetric, NG = (NG)T = GTNT = GN so that all conditions
for the pseudoinverse have been satisfied, and thus it is proved that (15.94) is indeed
MINOLESS. Note also that due to the orthogonality relation (15.89b), we can write

ξ̂MINOLESS = (N + ETE)−1c = N+c. (15.98)

Note, however, that (N + ETE)−1 ̸= N+. The solution for ξ based on matrix E
is a particular type of minimum-constraint solution, which has been called the
inner-constraint solution by some authors as noted in Section 15.8. Note that the
constraint equation (15.81) has, in essence, been replaced by Eξ = 0 and that
MINOLESS can actually be obtained by the following extended normal equations
system, analogously to (15.83), viz.[

N ET

E 0

][
ξ̂

λ̂

]
=

[
c

0

]
. (15.99)

One form of the dispersion matrix for MINOLESS was already shown in (15.55).
Applying covariance propagation to (15.98) leads to the equivalent formula

D{ξ̂MINOLESS} = σ2
0(N + ETE)−1N(N + ETE)−1 = σ2

0N
+. (15.100)

Also, analogous to (15.75c), we write the bias vector for the inner constraint
solution (15.98) as

β = [(N + ETE)−1N − Im]ξ. (15.101)

By introduction of the selection matrix S defined in Section 15.8.3 into the
extended normal equations (15.99), so that the constraint equation (15.89a) becomes

ESξ = 0, (15.102)
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one may also derive partial MINOLESS and its dispersion matrix as

ξ̂P-MINOLESS = (N + SETES)−1c,

D{ξ̂P-MINOLESS} = σ2
0(N + SETES)−1N(N + SETES)−1.

(15.103a)

(15.103b)

We end this section by noting that as a consequence of equations (15.93a)
through (15.93c), and because the leading N in (15.93b) can be replaced by A,
the formula (15.85) for RLESS can be rewritten in the following simplified form:

ξ̂RLESS = (N +KTK)−1(c+KTκ0). (15.104)

Applying covariance propagation to equation (15.104) yields an alternate form for
the RLESS dispersion as

D{ξ̂RLESS} = σ2
0(N +KTK)−1N(N +KTK)−1. (15.105)

15.8.4 Summary Formulas for Minimally-Constrained LESS’s

Regarding partial MINOLESS, if the selection matrix S is the identity matrix, all
parameters are selected, and partial MINOLESS becomes MINOLESS. On the other
hand, if S selects only the minimum number of parameters necessary to overcome
the datum deficiency, then partial MINOLESS is equivalent to RLESS (if κ0 = 0).
The following table list commonly used formulas for the three minimally-constrained
solutions RLESS, MINOLESS, and partial MINOLESS.

Table 15.1: Summary of formulas for minimally-constrained least-squares estimators

Type Estimator Dispersion matrix

RLESS ξ̂ = (N+KTK)−1(c+KTκ0) D{ξ̂} = σ2
0(N +KTK)−1N(N +KTK)−1

MINO-
LESS

ξ̂ = (N + ETE)−1c = N+c D{ξ̂} = σ2
0(N + ETE)−1N(N + ETE)−1

Partial
MINO-
LESS

ξ̂ = (N + SETES)−1c D{ξ̂}=σ2
0(N+SETES)−1N(N+SETES)−1

15.9 More on S -Transformations

In equation (15.79) we introduced the so called S-transformation. We now express
the S-transformation in terms of the minimum-constraint matrix K from (15.81)
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and the inner-constraint matrix E from (15.89b). From (15.86) we have the follow-
ing reflexive symmetric g-inverse for the (singular) normal-equations matrix N :

N−
rs =

{
(N +KTK)−1 − (N +KTK)−1KT

[
K(N +KTK)−1KT

]−1·
·K(N +KTK)−1

}
=

= (N +KTK)−1 − (N +KTK)−1KTK(N +KTK)−1 = (using (15.93c))

= (N +KTK)−1
[
(N +KTK)−KTK

]
(N +KTK)−1 ⇒

N−
rs = (N +KTK)−1N(N +KTK)−1 (15.106)

Now according to (15.79) we must multiply N−
rs on the right by N to form an

S-transformation. Doing so yields

N−
rsN = (N +KTK)−1N(N +KTK)−1N = (N +KTK)−1N = (using (15.93a))

= (N +KTK)−1(N +KTK −KTK) = Im − (N +KTK)−1KTK ⇒
N−

rsN = Im − ET (KET )−1K (using (15.91a)). (15.107)

Thus, given any RLESS solution ξ̂(2) we can compute a different RLESS solution
ξ̂(1) that is based on its associated constraint matrix K using (15.107) as follows:

ξ̂(1) = N−
rsN ξ̂(2) =

[
Im − ET (KET )−1K

]
ξ̂(2). (15.108a)

To be clear, the matrix K used in (15.108a) is the matrix that would have been used

in the solution for ξ̂(1) had it been computed directly, not the one that was used in
the solution for ξ̂(2). Note that the matrix to invert in (15.108a) is size l× l, which
will almost certainly be small compared to the dimension of N . What’s more, since
the relations (15.93a) to (15.93c) hold when K is replaced by E (for MINOLESS)
or ES (for partial MINOLESS), (15.108a) can be used to convert between any two
minimally constrained solutions. Using the law of error propagation, the dispersion
matrix for ξ̂(1) is provided by

D{ξ̂(1)} =
[
Im − ET (KET )−1K

]
·D{ξ̂(2)} ·

[
Im − ET (KET )−1K

]T
.

(15.108b)

15.9.1 Example Use of an S -Transformation

Here, an example is presented where the preservation of sparsity of the normal
equation matrixN := ATPA is the motivation to use an S-transformation. Consider
the case of a 3D network adjustment comprised of GPS vectors as the only type
of observation. Such observations provide scale and orientation information about
the network datum, but they provide no information about its origin. Thus, the
network adjustment problem has a datum deficiency of three, which also means the
normal equation matrix N has a rank deficiency of three. Now, further suppose that
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MINOLESS is the type of adjustment that must be computed. Then, the 3 × m
matrix E, AET = 0, would be defined by

E := [I3 · · · I3], (15.109a)

and therefore the m×m product ETE would result in

ETE =


I3 . . . I3
...

. . .
...

I3 . . . I3

 . (15.109b)

Here, the number of unknown parameters m is an integer multiple of 3, and we as-
sume they are (incremental) point coordinates ordered by ξ =: [x1 y1 z1 · · · xk yk zk]

T

for k := m/3 points.
Obviously, adding ETE to N in this case may greatly reduce the sparsity of N ,

especially if N had most of its nonzero elements near its diagonal. On the other
hand, if partial MINOLESS is computed with the m×m selection matrix S defined
by

S := diag(I3 03 · · · 03), (15.110)

then the sparsity of N + SETES would be the same as that of N itself. Moreover,
this expression of S results in the minimally-constrained adjustment RLESS. Thus,
we may take ES as our matrix K; i.e., K := ES, and therefore N + SETES →
N + KTK. Now, let ξ̂

(2)
be the partial MINOLESS computed using S as just

defined. That solution can be transformed to MINOLESS by substituting E for K
in (15.108a), resulting in

ξ̂(1) =
[
Im − ET (EET )−1E

]
ξ̂(2). (15.111)

Then, we must only invert the 3 × 3 matrix EET to convert partial MINOLESS

ξ̂
(2)

to MINOLESS ξ̂
(1)

. Incidentally, an inspection of the structure of [Im −
ET (EET )−1E] reveals that its density of non-zero elements is 1/3.

We saw already what ETE looks like in this example, but what about EET ? It
turns out to be a diagonal matrix that is a scalar multiple of the identity matrix Il,
where the scalar is simply m/l. Thus, (EET )−1 = (l/m) · Il. This means that
ET (EET )−1E = (l/m)ETE, and, therefore, using (15.109b) and defining a :=
1− l/m and b := a− 1, we have

[
Im − ET (EET )−1E

]
=


aIl bIl · · ·

bIl aIl
...

. . .


m×m

=


a b · · ·

b a

...
. . .


(m/l)×(m/l)

⊗ Il. (15.112)
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So we see that the expression [Im −ET (EET )−1E] can be formed directly without
any mathematical operations. A closer inspection reveals a very simple way to

compute the S-transformation in this example. Let (x̂
(2)
i , ŷ

(2)
i , ẑ

(2)
i ) denote the ith

estimated (incremental) coordinate triple from ξ̂
(2)

. Then the MINOLESS estimates

of the ith triple of coordinates (x̂
(1)
i , ŷ

(1)
i , ẑ

(1)
i ) can be computed by

x̂
(1)
i = a · x̂(2)

i + b ·
m/3∑
j=1
j ̸=i

x̂
(2)
j = x̂

(2)
i + b ·

m/3∑
j=1

x̂
(2)
j , etc. (15.113)

Equation (15.113) shows MINOLESS as a weighted average of RLESS (or any other
minimally-constrained LESS), where the weights are a function of the number of un-
knowns m and the size of the datum deficiency l. It is stressed that the MINOLESS

ξ̂
(1)

is unique regardless of the datum choice for ξ̂
(2)

.

But, what is really important, is that the solution ξ̂
(2)

can first be computed
using (15.104) with the sparsity of N +KTK being the same as that of N . This is
important, because large systems of equations can be solved more efficiently when
the matrix to “invert” (or compute the Cholesky factor of) is sparse, especially if
the parameters have been ordered in a way to keep the nonzero elements of N close
to its diagonal. For reordering algorithms that accomplish that, see, for example,
the Banker’s ordering algorithm presented by Snay (1979) and the Approximate
Minimum Degree (AMD) ordering algorithm described by Amestoy et al. (1996).

Obviously, the corresponding dispersion matrix could be computed by

D{ξ̂(1)} =
[
Im − ET (EET )−1E

]
·D{ξ̂(2)} ·

[
Im − ET (EET )−1E

]
. (15.114)

Here we see that extra work involving a triple product in three m × m matrices
is required to transform the dispersion matrix D{ξ̂(2)}. However, this extra work
is likely offset by the time saved in computing an inverse, or Cholesky factor, for
a less dense matrix involved in computing ξ̂(2), as already discussed. Also, the
nonzero elements of the matrix in (15.112) take on only two different values; so,
some clever, cost-saving implementation of an algorithm for the triple product could
be employed. In fact, the matrix product [Im−ET (EET )−1E](N+KTK)−1 can be
computed efficiently by noting that multiplying by ET (EET )−1E in this case results
in summing every third row of (N + KTK)−1, three times, and then multiplying
all three of the sums by l/m, i.e., rows 1, 4, 7, . . . are summed; rows 2, 5, 8, . . . are
summed; and rows 3, 6, 9, . . . are summed.

What if the S-transformation should transform ξ̂(1) to partial MINOLESS rather
than MINOLESS? In that case, one only needs to skip over the non-selected points
in the summation in (15.113) and change the denominator from m to the num-
ber of selected parameters in the definition of a. Furthermore, the matrix [Im −
ET (KET )−1K] may have a much smaller density of non-zero elements than [Im −
ET (EET )−1E], depending on the number of parameters selected by S. If that
number is denoted by ns, then apparently the density can be computed by [(m −
ns) +m · ns/3]/m

2, which turns out to be 1/3 in the case of MINOLESS (ns = m)
but smaller otherwise.
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Finally, the respective residual vectors corresponding to ξ̂(1) and ξ̂(2) are iden-
tical, a property of minimally-constrained solutions reiterated in the next section.

15.10 Concluding Remarks about the Restricted
Least-Squares Solution

In addition to (15.14) and (15.36), we have an alternative way to represent the
solution space within the rank deficient GMM via RLESS.

ξ̂ = {ξ̂ | ξ̂ = ξ̂RLESS subject to minimum constraints Kξ = κ0} (15.115)

For convenience we have set κ0 := Kξ = 0 in some of the derivations above. The
zero-vector always applies to the case where the observation equations have been
linearized, as ξ̂ becomes a vector of estimated updates to the initial, or approximate,
parameter values in that case. For purely linear observation equations (15.1), we
may have a non-zero vector κ0, in which case it must be included in the solution
formula as in (15.93b).

If we base the reflexive symmetric matrix N−
rs for RLESS on the singular value

decomposition of N , as in (15.31), we only need to replace the arbitrary matrix L in
that formula with the constraint matrix K in order to reach a minimum-constraint
solution satisfying Kξ = κ0.

Finally, we reiterate that no matter which minimum-constraint conditions we
impose, the residual vector will turn out the same. Incidentally, that is a necessary
condition for two adjustment models to be the same; i.e, they will lead to the same
residual vector. This is true because the term AN−

rsA
T in the equation for the

predicted random errors (residuals), viz.

ẽ = (In −AN−
rsA

TP )y, (15.116)

is invariant with respect to the choice of N−
rs. Applying covariance propagation to

(15.116) leads to the dispersion matrix

D{ẽ} = σ2
0(P

−1 −AN−
rsA

T ), (15.117)

which is also unique among all minimally constrained adjustments.



Chapter 16

The Variance Component
Model

16.1 Introduction of the Variance Component
Model

The variance component model (VCM) allows for multiple variance components
in the covariance matrix Σ of the random error vector e. The functional part
(observation equations) of the VCM looks like that of the Gauss-Markov Model
(GMM), but the covariance matrix is expressed as a linear combination of known
cofactor matrices Qi, each multiplied by a unique, unknown variance component σ2

i

(or covariance component σij). In fact, Koch (1999, p. 226) refers to the VCM as
the GMM with unknown variance and covariance components. The VCM is written
as

y = A
n×m

ξ + e, rkA ≤ m < n, (16.1a)

e ∼ (0,Σ = σ2
1Q1 + σ12Q2 + · · ·+ σ2

l Qk), k = l(l + 1)/2. (16.1b)

If the covariance matrix Σ is diagonal, and possibly if it is block diagonal, then no
covariance components will be involved, and the number of variance components l
will be equal to the number of cofactor matrices k.

If matrix A has full column rank, the Best Linear Uniformly Unbiased Estimate
(BLUUE) of the unknown parameters ξ within the VCM (16.1) is given by

ξ̂BLUUE = (ATΣ−1A)−1ATΣ−1y =

=
[
AT (σ2

1Q1 + σ12Q2 + . . .+ σ2
l Qk)

−1A
]−1

AT (σ2
1Q1 + σ12Q2 + . . .+ σ2

l Qk)
−1y.
(16.2)

We see from (16.2) that the parameter estimates ξ̂BLUUE depend on the unknown
variance components, and thus we cannot actually compute the BLUUE for the
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VCM. So we are left with the option of replacing the unknown variance components
with their estimates σ̂2

1 , σ̂12, . . ., σ̂
2
l . But then we have a functional dependency

viz. ξ̂ := ξ̂(σ̂2
1 , σ̂12, . . . , σ̂

2
l ).

At this point, one may naturally ask whether such an estimator retains the linear
and unbiased properties of BLUUE. To be sure, ξ̂(σ̂2

1 , σ̂12, . . . , σ̂
2
l ) is nonlinear in y,

since the unknown variance components are functions of y (as we shall soon see)
and they also multiply y in the solution (16.2) of the normal equations. Therefore,

the estimator ξ̂ is not BLUUE. However, under certain assumptions, it can be
shown that ξ̂ is unbiased. In order to show this we make use of the concept of
E-D correspondence (see chapter 14). Let us now proceed with the derivations for
variance component estimation, leading to formulas for the parameter estimator
ξ̂(σ̂2

1 , σ̂12, . . . , σ̂
2
l ).

16.2 A Model Linear in the Unknown Variance
Components

Our approach will be to develop a model linear in the unknown variance components
that has the same structure as the Gauss Markov Model (GMM). We will then derive
estimators for the unknown parameters of the model, i.e., the variance components,
by application of a least-squares solution (LESS), as was done within the GMM.
A key concept of variance component estimation is that of invariance, which makes
the estimation of variance components entirely independent of the estimation of the
parameters ξ.

In the developments of this section we omit covariance components σij and limit
the number of variance components to two for simplicity. In theory, any number of
variance components could be included in the VCM, but the presence of very many
of them would require a sufficiently large model redundancy to avoid numerical
instabilities that could occur in algorithms for their estimation. We also assume in
the following that matrix A has full column rank so that the inverse of ATΣ−1A
exists. Later in the chapter we comment on how to handle the problem if matrix A
is rank deficient.

We begin by introducing approximations (or initial values) to Σ, σ2
1 , and σ2

2

as Σ0, σ
2
1,0, and σ2

2,0, respectively, relating them as follows:

Σ0 := σ2
1,0Q1 + σ2

2,0Q2, (16.3a)

implying that

vecΣ0︸ ︷︷ ︸
n2×1

=

[
vecQ1 vecQ2

]σ2
1,0

σ2
2,0

 =: V ϑ0. (16.3b)

The transformation of (16.3a) into (16.3b) by use of the vec operator is key to
arriving at a model that is linear in the unknown variance components.

Using the above approximations, and continuing to assume that matrixA has full
column rank, leads to the following vectors of estimated parameters and predicted
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random errors (residuals):

ξ̂0 = ξ̂(σ2
1,0, σ

2
2,0) = (ATΣ−1

0 A)−1ATΣ−1
0 y, (16.4a)

ẽ0 = y −Aξ̂0 =
[
In −A(ATΣ−1

0 A)−1ATΣ−1
0

]
y =

[
In − S0

]
e. (16.4b)

Here, we define the similarity-transformation matrix S0:=A(ATΣ−1
0 A)−1ATΣ−1

0

and note that the columns of A are in the nullspace of [In − S0], which is apparent
from

[In − S0]A = [In −A(ATΣ−1
0 A)−1ATΣ−1

0 ]A = 0. (16.5a)

Thus, we can replace y with the true random error vector e to arrive at

[In − S0]y = [In − S0](Aξ + e) = [In − S0]e, (16.5b)

which is theoretically accurate even though e is unknown and thus cannot be com-
puted. From here we can write a new model based on the Kronecker product ẽ0⊗ẽ0
of the residual vectors, viz.

E{ẽ0 ⊗ ẽ0} =
[
(In − S0)⊗ (In − S0)

]
· E{e⊗ e}. (16.6)

Again, the motivation for this new model is to eventually arrive at a model that
is linear in the unknown variance components σ2

1 and σ2
2 . Using (12.7), we have

e⊗ e = vec(eeT ), which implies that

E{e⊗ e} = E{vec(eeT )} = vecE{eeT } = vecD{e} = vecΣ. (16.7)

This means that (16.6) can be rewritten as

E{ẽ0 ⊗ ẽ0} =
[
(In − S0)⊗ (In − S0)

]
V ϑ, (16.8)

where ϑ is analogous to ϑ0 but is based on the true (unknown) variance components
rather than the approximate ones.

Equation (16.8) is now a linear form in ϑ = [σ2
1 , σ

2
2 ]

T , which is precisely the
quantity that we want to estimate. Keep in mind that the initial approximation ϑ0

is used in the computation of ẽ0. This is because ẽ0 is defined through S0, and S0

depends on Σ0, which depends on the approximation ϑ0. Numerically, this means
that we must iterate the solution of ϑ0 until it converges to ϑ̂. This is the so-called
reproducing property.

Now we show the dispersion of the Kronecker product ẽ0⊗ ẽ0, which, under the
assumption of quasi-normality, reads

D{ẽ0 ⊗ ẽ0} = (In2 +K)
[
(In − S0)Σ(In − S0)

T ⊗ (In − S0)Σ(In − S0)
T
]
, (16.9a)

where K is a commutation matrix. Equation (16.9a) is more complicated than
(14.16) within the GMM, since it is based on both the true matrix Σ and the



264 CHAPTER 16. THE VARIANCE COMPONENT MODEL

approximate matrix S0. However, by substituting the approximation Σ0 and ex-
ploiting the symmetry of Σ0(In − S0)

T and the idempotent property of (In − S0),
we can write an approximate dispersion matrix as

D0{ẽ0 ⊗ ẽ0} = (In2 +K)
[
(In − S0)Σ0 ⊗ (In − S0)Σ0

]
. (16.9b)

Combining (16.4b) and (16.8), and including (16.9b), the analogy of the model
(16.6) to the GMM (i.e., E{y} = Aξ, D{y} = Σ = σ2

0Q) is shown in the following
schematic:

New model—linear in ϑ = [σ2
1 , σ

2
2 ]

T

Expectation:

E{ẽ0 ⊗ ẽ0} = E{(In − S0)y ⊗ (In − S0)y︸ ︷︷ ︸
Analogous to y in the GMM

} =

=
[
(In − S0)⊗ (In − S0)

]
V︸ ︷︷ ︸

Analogous to A in GMM

ϑ︸︷︷︸
Analogous to ξ in the GMM

Dispersion:

D0{ẽ0 ⊗ ẽ0} = (In2 +K)
[
(In − S0)Σ0 ⊗ (In − S0)Σ0

]︸ ︷︷ ︸
Analogous to Σ = σ2

0Q in the GMM

(16.10a)

(16.10b)

Based on the analogy to the GMM, we require a weight matrix G0 (analogous
to P in the GMM) to compute the weighted LEast-Squares Solution (LESS) of the
variance component vector ϑ. In full analogy to (14.17), we define an “approximate
weight matrix” as follows:

G0 = (In2 +K)
[
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
. (16.11)

Note that up to a factor of 1/4, G0 turns out to be a g-inverse of the approximate
dispersion matrix (16.9b) (cf. (14.16) and (14.17)). Once again, we note that K is
a commutation matrix. We can now write the normal equations for the weighted
LESS. First we form the right-side vector, analogously to ATPy in the GMM.

Right-side:

V T
[
(In − S0)

T ⊗ (In − S0)
T
]
(In2 +K)

[
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
·

·
[
(In − S0)y ⊗ (In − S0)y

]
=

(16.12a)

V T (In2 +K)
[
(In − S0)

T ⊗ (In − S0)
T
][
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
·

·
[
(In − S0)y ⊗ (In − S0)y

]
=

(16.12b)

= V T (In2 +K)
[
(In − S0)

TΣ−1
0 (In − S0)⊗ (In − S0)

TΣ−1
0 (In − S0)

]
·

·
[
(In − S0)y ⊗ (In − S0)y

]
=

(16.12c)

= V T (In2 +K)
[
(In − S0)

TΣ−1
0 (In − S0)

2y ⊗ (In − S0)
TΣ−1

0 (In − S0)
2y

]
=

(16.12d)
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= V T (In2 +K)
[
(In − S0)

TΣ−1
0 (In − S0)y ⊗ (In − S0)

TΣ−1
0 (In − S0)y

]
.
(16.12e)

We used (A.40) in going from (16.12a) to (16.12b), and the idempotency of (In−S0)
was exploited from (16.12d) to (16.12e). Note that (In −S0)

TΣ−1
0 is symmetric, so

by using its transpose and considering that In − S0 is idempotent, we can further
reduce the right side to

V T (In2 +K)
[
Σ−1

0 (In−S0)y⊗Σ−1
0 (In−S0)y

]
= V T (In2 +K)

[
Σ−1

0 ẽ0⊗Σ−1
0 ẽ0

]
=

= 2V T
(
Σ−1

0 ⊗ Σ−1
0

)
(ẽ0 ⊗ ẽ0). (16.12f)

In the second line we used the fact that K is a vec permutation matrix, so that with
symmetric Qi (i ∈ {1, 2} in this case) and use of (A.41), we can rewrite V T (In2+K)
as

V T (In2 +K) =

(vecQ1)
T

(vecQ2)
T

 (In2 +K) = 2V T . (16.12g)

Note that the factor of 2 is independent of the number of variance components. Now
we can successively apply (A.31) in its transposed form to the last line of (16.12f),
resulting in

2

[vec(Σ−1
0 Q1Σ

−1
0 )]T

[vec(Σ−1
0 Q2Σ

−1
0 )]T

 (ẽ0 ⊗ ẽ0) = 2

[vec(ẽT0 Σ−1
0 Q1Σ

−1
0 ẽ0)]

T

[vec(ẽT0 Σ
−1
0 Q2Σ

−1
0 ẽ0)]

T

 =

= 2

ẽT0 Σ−1
0 Q1Σ

−1
0 ẽ0

ẽT0 Σ
−1
0 Q2Σ

−1
0 ẽ0

 .

(16.12h)

Finally, by use of (16.4b) and introduction of the singular matrix W0 := Σ−1
0 (In −

S0), we may write

2

ẽT0 Σ−1
0 Q1Σ

−1
0 ẽ0

ẽT0 Σ
−1
0 Q2Σ

−1
0 ẽ0

 = 2

yT (In − S0)Σ
−1
0 Q1Σ

−1
0 (In − S0)y

yT (In − S0)Σ
−1
0 Q2Σ

−1
0 (In − S0)y

 = 2

yTW0Q1W0y

yTW0Q2W0y


(16.12i)

as an expression of the right side of the normal equations.
Now we work out the left side of the normal equations, analogous to (ATPA)ξ̂

in the GMM. Much of this work has already been done since the left side begins
with the same terms as the right side (analogous to ATP in the GMM); these steps
will not be repeated.

Left side:

V T
[
(In − S0)

T ⊗ (In − S0)
T
]
(In2 +K)

[
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
·

·
[
(In − S0)⊗ (In − S0)

]
V ϑ̂ =

(16.13a)
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= 2V T
[
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
V ϑ̂ = (16.13b)

(see (16.12) for more details)

= 2

tr
[
Σ−1

0 (In − S0)Q1Σ
−1
0 (In − S0)Q1

]
tr
[
Σ−1

0 (In − S0)Q1Σ
−1
0 (In − S0)Q2

]
tr
[
Σ−1

0 (In − S0)Q2Σ
−1
0 (In − S0)Q1 tr

[
Σ−1

0 (In − S0)Q2Σ
−1
0 (In − S0)Q2


σ̂2

1

σ̂2
2

 =

(16.13c)

= 2

tr[W0Q1W0Q1] tr[W0Q1W0Q2]

tr[W0Q2W0Q1] tr[W0Q2W0Q2]


σ̂2

1

σ̂2
2

 , (16.13d)

with

W0 := Σ−1
0 (In − S0) = Σ−1

0 − Σ−1
0 A(ATΣ−1

0 A)−1ATΣ−1
0 . (16.13e)

Before combining the left (16.12i) and right (16.13e) sides into one system of
equations we introduce subscripts to express the dependence of the (j+1)th solution
on the jth solution, and we drop the leading factor of 2 from both sides. Then the
system of normal equations for the (j + 1)th solution is given by tr[WjQ1WjQ1] tr[WjQ1WjQ2]

tr[WjQ2WjQ1] tr[WjQ2WjQ2]


σ̂2

1

σ̂2
2


(j+1)

=

yTWjQ1Wjy

yTWjQ2Wjy

 . (16.14)

The solution for (16.14) is usually iterated until, for some prescribed level of
precision δ, we arrive at ∥∥ϑ̂j+1 − ϑ̂j

∥∥2 < δ2. (16.15)

Thus, the solution ϑ̂ is called the reproducing Best Invariant Quadratic Uniformly
Unbiased Estimate (reproBIQUUE) of ϑ.

There is always a solution to the system of equations (16.14) since they represent
normal equations. However, the solution may not be unique, and often it is not.
As stated previously, we consider the system to be nonlinear in ϑ̂. In summary,
we write the normal equations for the weighted LESS of ϑ in its nonlinear form
without iteration subscripts, bearing in mind that σ2

1,0 and σ2
2,0 are approximated

by σ̂2
1 and σ̂2

2 from the previous iteration. tr(W0Q1W0Q1) tr(W0Q1W0Q2)

tr(W0Q2W0Q1) tr(W0Q2W0Q2)


σ̂2

1

σ̂2
2

 =

yTW0Q1W0y

yTW0Q2W0y


W0 := Σ−1

0 − Σ−1
0 A(ATΣ−1

0 A)−1ATΣ−1
0 .

Σ0 = σ2
1,0Q1 + σ2

2,0Q2

(16.16a)

(16.16b)

(16.16c)
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Because of the invariant property of BIQUUE, the vector y in (16.16a) can be

replaced by ẽ = y − Aξ̂, which is also apparent since the columns of matrix A are
in the nullspace of W0, i.e., W0A = 0. Thus, we also haveσ̂2

1

σ̂2
2

 =

 tr(W0Q1W0Q1) tr(W0Q1W0Q2)

tr(W0Q2W0Q1) tr(W0Q2W0Q2)


−1 ẽTW0Q1W0ẽ

ẽTW0Q2W0ẽ

 . (16.17)

The corresponding estimator for the unknown parameters ξ is then provided by

ξ̂ = (AT Σ̂−1A)−1AT Σ̂−1y =

=
[
AT (σ̂2

1Q1 + σ̂2
2Q2)

−1A
]−1

AT (σ̂2
1Q1 + σ̂2

2Q2)
−1y. (16.18)

16.2.1 Extension to k Variance Components

It’s easy enough to imagine what (16.16a) to (16.18) would look like for more
than two variance components, say k = l(l + 1)/2 of them (including covariance
components). To inspire the imagination, we show that larger system here:

tr(W0Q1W0Q1) tr(W0Q1W0Q2) · · · tr(W0Q1W0Qk)

tr(W0Q2W0Q1) tr(W0Q2W0Q2)

...
. . .

tr(W0QkW0Q1) · · · tr(W0QkW0Qk)





σ̂2
1

σ̂12

...

σ̂2
l


=



yTW0Q1W0y

yTW0Q2W0y

...

yTW0QkW0y


,

with W0 = Σ−1
0 − Σ−1

0 A(ATΣ−1
0 A)−ATΣ−1

0 . (16.19)

Then, assuming matrix A has full column rank, the corresponding estimator for
the unknown parameters ξ reads

ξ̂ = (AT Σ̂−1A)−1AT Σ̂−1y, (16.20a)

Σ̂ = σ̂2
1Q1 + σ̂12Q2 + · · ·+ σ̂2

l Qk, with k = l(l + 1)/2, (16.20b)

if Σ0 has converged to Σ̂ by iterative computation.

16.2.2 Practical Matters

Should we solve the problem by aiming for a local BIQUUE at every iteration step?
This is an open question. Prof. Schaffrin said that he does not believe it is the best
way, but it is the way it is often done in practice. The best algorithm may not
produce a local minimum at each iteration, but we are not interested in these local
minimums. Our objective is to convergence to a global minimum.

The solutions may or may not depend on the initial approximations. Usually
we know which solution to choose if we do find multiple solutions. The larger
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problem is that the system is “blind” to the non-negativity requirement of the
estimates (i.e. the variance components must be positive). In practice, the cofactor
matrices, Qi, are usually revised if the solution yields negative variance component
estimates. This is because the negative values are likely an indicator that there
is something wrong with the model, i.e., the model is not consistent with the the
observations. And we would not change the observations. However, we may be
inclined to disregard a few observations (if we deem them to be outliers). Another
approach would be to introduce an additional variance component to estimate.

Another question that one might ask is why the variance component estimates
sometimes turn out negative. It is easy to see this in our case of two variance
components. The normal matrix in (16.16a) is positive in each block. Therefore,
the off-diagonal elements of its inverse are negative (think of the familiar formula
for the inverse of a 2 × 2 matrix). So depending on the relative magnitudes of Q1

and Q2, we may or may not end up with positive estimates.

Estimated dispersion of variance components What about the precision of
our estimates? The estimated dispersion matrix is simply the inverse of the matrix
on the left side of 16.16a, which for k variance components is

D̂{ϑ̂} =



tr(W0Q1W0Q1) tr(W0Q1WQ2) · · ·

tr(W0Q2W0Q1) tr(W0Q2WQ2)

...
. . .

tr(W0QkW0Q1) · · · tr(W0QkW0Qk)



−1

. (16.21)

This is already the estimated dispersion of ϑ̂ (hence the hat over the dispersion
operator D) due to the estimated variance components involved in matrix W . It is

hard to express the true dispersion D{ϑ̂} because of the iteration process.

Assume a single variance component Let us check (16.21) for the case of a
single variance component, which we simply label as σ̂2

0 .
Start with tr(ŴQŴQ), where

Ŵ = Σ̂−1 − Σ̂−1A(AT Σ̂−1A)−1AT Σ̂−1 = (σ̂2
0)

−1(P − PAN−1ATP ). (16.22a)

Multiplication by the cofactor matrix Q from the right yields

ŴQ = (σ̂2
0)

−1(In − PAN−1AT ), (16.22b)

which implies that

tr(ŴQŴQ) = (σ̂2
0)

−2 tr
[
(In − PAN−1AT )2

]
=

= (σ̂2
0)

−2 tr
(
In − PAN−1AT

)
= (σ̂2

0)
−2(n−m),

(16.22c)
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from which it follows

2
[
tr(ŴQŴQ)

]−1
= 2(σ̂2

0)
2/(n−m). (16.22d)

Note that (16.22d) is identical to (13.23), showing the consistency of univariate and
multivariate variance component estimators. In general, we should replace m with
rkA to account for possible rank deficiency in matrix A. Compare this result to
the solution found in (13.23).

Redundancy matters In general, variance component estimation requires a rel-
atively large redundancy in the observational model. For comparison, when es-
timating the m × 1 vector of unknowns ξ in the GMM we might like to have a
redundancy of about m. However, for variance component estimation we probably
would like to have roughly the square of m. It may even require a redundancy of
over 100 to estimate as few as five variance components.

Unbiasedness matters Now we return to our earlier question (Section 16.1)

regarding the unbiasedness of the parameter estimates. Specifically, is ξ̂ still unbi-
ased when we replace the “true” variance components σ2

i , i ∈ {1, . . . , k}, with their
reproBIQUUE estimates σ̂2

i ?
Formally we can equate the vectors of quadratic products

yT ŴQ1Ŵy

...

yT ŴQkŴy

 =


eT ŴQ1Ŵe

...

eT ŴQkŴe

 , (16.23)

though we cannot actually compute the right side because of the unknown random
error vector e. However, let us assume that e is symmetrically distributed with
E{e} = 0. This assumption means that we have an equal chance of any element
of e being positive or negative. So the terms σ̂2

i do not change when +e is replaced
by −e, because we base our estimation on a quadratic form in e. Formally we can
write a difference between the estimate and the true parameter vector as follows:

ξ̂ − ξ = (AT Σ̂−1A)−1AT Σ̂−1(y −Aξ) =
[
(AT Σ̂−1A)−1AT Σ̂−1

]
e. (16.24)

We see that the difference ξ̂− ξ is linear in e and note that the term multiplying e
will not change in sign when e does. Due to our symmetric distribution assumption,
there is an equal chance of e being positive or negative; therefore there is also an
equal chance of ξ̂ − ξ being positive or negative. As a formality, we also assume
that E{ξ̂} exists. And since ξ̂ − ξ changes sign whenever e does, this implies that

E{ξ̂ − ξ} = 0 ⇒ E{ξ̂} = ξ, (16.25)

which means that ξ̂ is uniformly unbiased under reproBIQUUE.
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Rank deficient matrix A In the model (16.1), the coefficient matrix A is shown
to have full column rank, implying that the matrix product ATΣ−1

0 A appearing
in (16.16b) is invertible. But many problems in geodesy involve a rank-deficient
system of equations. How is the matrix W0 shown in (16.16b) computed in that
case? Koch (1999, p. 230) answers this question tacitly by simply using the sign for
a generalized inverse instead of the regular inverse, writing

W0 := Σ−1
0 − Σ−1

0 A(ATΣ−1
0 A)−ATΣ−1

0 (16.26)

instead of (16.16b). For network adjustment problems with rank deficiencies, one
could replace (ATΣ−1

0 A)− with (ATΣ−1
0 A+KTK)−1, where K is the datum matrix

associated with RLESS, which was shown to be a generalized inverse for the normal-
equation matrix N in Section 15.8.2. Regardless of the choice for the generalized
inverse, the matrix W0 is unique since the generalized inverse is multiplied on the
left by A and on the right by AT , a property stated already following (15.47).

16.3 Variance Component Estimation in the Gauss-
Markov Model with Constraints

Suppose instead of the Gauss Markov Model (GMM) of (16.1) we must estimate
variance components within the GMM with constraints (Chapter 5) or within the
GMM with stochastic constraints (Chapter 6). It turns out that nothing different
needs to be done for these problems for the reasons explained in the following.

Because BIQUUE is invariant with respect to a translation within the range
space of the coefficient matrix A, we found out that the solutions to (16.16a) and
(16.17) are identical. Therefore, we can say that the residual vector ẽ computed by

ẽ = y−Aξ̂ for any ξ̂ will result in the same estimates for the variance components,
meaning that we may use the residual vector computed from any LESS in (16.17).
Based on this conclusion, we can say that the variance components estimated within
GMM for which the RLESS, partial MINOLESS, or MINOLESS is computed should
be one and the same as those used within an overly constrained GMM for which
LESS is computed. What is important to bear in mind is that for the overly
constrained cases, the inverse of ATΣ−1

0 A, or a generalized inverse for it, should
still be used in the computation of W0 (e.g, in (16.19)). Replacing it with the
inverse of an extended normal equations matrix used to compute the parameter
estimates within those models would not lead to the correct values for BIQUUE.
An exception to this statement is discussed in the following section.

16.3.1 Variance Component EstimationWhen a Variance Com-
ponent for Stochastic Constraints Must Also be Esti-
mated

If variance components within the GMM with stochastic constraints (16.17) must
be estimated, including the one associated with the cofactor matrix for the con-
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straints Q0, where Q0 = P−1
0 and P0 is defined in (6.1c), then the following modi-

fications should be made to (16.19) in accordance with Smith et al. (2018).
With the variables described in (6.1), define the following extended matrices and

vectors:

A′ :=

A

K


(n+l)×m

, y′ :=

 y

z0


(n+l)×1

, ẽ′ :=

 ẽ

ẽ0


(n+l)×1

, and Σ′
0 :=

Σ0 0

0 σ2
0,0P

−1
0


(n+l)×(n+l)

.

(16.27)

Let σ2
0 represent the unknown variance component associated with Q0 = P−1

0 and
let σ2

1 , σ12, . . ., σ
2
l be associated with Σ0 as defined in Section 16.2.1. Then we

need only to replace the observation vector y in (16.19) with its extended form y′,
or with ẽ′, and modify W0 as follows:

W0 := Σ′−1
0 − Σ′−1

0 A′(A′TΣ′−1
0 A′)−A′TΣ′−1

0 ⇒ (16.28a)

W0 =

Σ−1
0 0

0 σ−2
0,0P0

−

−

Σ−1
0 0

0 σ−2
0,0P0


A

K

 (ATΣ−1
0 A+ σ−2

0,0K
TP0K)−1

[
AT KT

]Σ−1
0 0

0 σ−2
0,0P0

 =

=

Σ−1
0 0

0 σ−2
0,0P0

−

 Σ−1
0 A(ATΣ−1

0 A+ σ−2
0,0K

TP0K)−1ATΣ−1
0

σ−2
0,0P0K(ATΣ−1

0 A+ σ−2
0,0K

TP0K)−1ATΣ−1
0

Σ−1
0 A(ATΣ−1

0 A+ σ−2
0,0K

TP0K)−1σ−2
0,0K

TP0

σ−4
0,0P0K(ATΣ−1

0 A+ σ−2
0,0K

TP0K)−1KTP0


(16.28b)

with

Σ0 = σ2
1,0Q1 + σ12,0Q2 + · · ·+ σ2

l,0Qk and k = l(l + 1)/2. (16.28c)

Here the index k pertains to the last cofactor matrix associated with the obser-
vations. Thus, there are actually k + 1 components to estimate, including the one
associated with the weight matrix P0 for the parameter constraints. Also note that
the trailing zeros in the subscripts of the variance components denote approximate
values as usual.
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Chapter 17

Prior Information

In this chapter we investigate the topic of prior information on the unknown pa-
rameters. More specifically, we decompose the parameter vector ξ into two parts,
ξ1 and ξ2, where we assume that prior information, in the form of pseudo-observa-
tions b0, is available only for ξ1. Furthermore, we associate a random error vector e0
with the prior information and assume that it is uncorrelated with the random er-
ror vector e associated with the observations y, i.e., we assume that C{e, e0} = 0.
In practice, the prior information may come from a previous adjustment with its
dispersion matrix provided by the covariance matrix of the estimated parameters
from that adjustment. The data model with prior-information can be written as an
extended Gauss-Markov Model (GMM) as follows:

y
n×1

= A1ξ1 +A2ξ2 + e,

ξ1 ∈ Rr×1, ξ2 ∈ R(m−r)×1, rkA1 ≤ r, rkA2 = m− r

b0
r×1

= ξ1 + e0, e

e0

 ∼ (

0
0

 , σ2
0

P−1 0

0 Q0

)

(17.1a)

(17.1b)

(17.1c)

(17.1d)

Here the full design matrix and parameter vector are denoted by

A
n×m

:=

[
A1 A2

]
and ξ

m×1
:=

ξ1
ξ2

 . (17.2)

The variables in the model are described by

y is a given n× 1 vector of observations.

ξ1 is an r × 1 vector of unknown parameters.
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ξ2 is an (m− r)× 1 vector of unknown parameters.

A1 is a given n× r coefficient (design) matrix.

A2 is a given n× (m− r) coefficient (design) matrix.

e is an n× 1 vector of unknown random errors associated with the observations y.

b0 is a given r×1 vector of (random) pseudo-observations called prior information.

e0 is an r × 1 vector of unknown random errors associated with the pseudo-obser-
vations b0.

P is a given n× n positive-definite weight matrix for the observations y.

Q0 is a given r× r positive-definite cofactor matrix for the pseudo-observations b0.

σ2
0 is an unknown variance component.

Note that matrix A2 is assumed to have full column rank, i.e., rkA2 = m− r, while
A1 does not necessarily have full column rank. Typically, b0 is a vector of zeros due
to linearization (though still a random vector). If b0 is not zero, then it contains
the bias of the prior information with respect to the initial approximations for the
parameters ξ (assuming linearization). Finally, we note that the model uses a single
variance component σ2

0 , multiplying both cofactor matrices P−1 and Q0 =: P−1
0 ,

where P and P0 are called weight matrices.

17.1 Pseudo-observations

The extended GMM includes pseudo-observations, which are considered to be direct
observations of the unknown parameters ξ1. Since the model uses only a single
variance component, it indeed belongs to the class of Gauss-Markov models. The
following expression summarizes the model in a more compact form than does (17.1):y

b0

 ∼ (

A1 A2

Ir 0


ξ1
ξ2

 , σ2
0

P−1 0

0 P−1
0

). (17.3)

Because the model is a type of GMM, we can immediately write the LEast-
Squares Solution (LESS) for the unknown parameters ξ and the associated disper-
sion matrix, in accordance with the addition theory of normal equations.ξ̂1

ξ̂2

=


AT

1 Ir

AT
2 0


P 0

0 P0


A1 A2

Ir 0




−1 AT
1 P P0

AT
2 P 0


y

b0

 =

=:

N11 + P0 N12

N21 N22


−1 c1+P0b0

c2

 ,

(17.4a)



17.1. PSEUDO-OBSERVATIONS 275

D{

ξ̂1
ξ̂2

} = σ2
0

N11 + P0 N12

N21 N22


−1

, (17.4b)

with Nij := AT
i PAj , i, j ∈ {1, 2}. (17.4c)

It is evident from the upper-left block of the dispersion matrix in (17.4b) that the

magnitude of the variances of ξ̂1 have been reduced due to the prior information
on ξ1.

Now we want to find an equivalent estimator and dispersion matrix in terms of
previous estimates made within a model without prior information. A solution of
this form is more revealing of what is gained by adding the prior information to
the model. For simplicity, we assume that the complete design matrix A has full
column rank, though it does not have to in general. We start with the cofactor
matrix Qξ̂ (inverted matrix on right side of (17.4b)), and rewrite it as follows:

Qξ̂
:= σ−2

0 D{

ξ̂1
ξ̂2

} =


N11 N12

N21 N22

+

P0 0

0 0




−1

= (17.5a)

=

N11 N12

N21 N22


−1


N11 N12

N21 N22

+

P0 0

0 0

−

P0 0

0 0




N11 + P0 N12

N21 N22


−1

=

(17.5b)

=

N11 N12

N21 N22


−1

N11 + P0 N12

N21 N22


N11 + P0 N12

N21 N22


−1

−

−

N11 N12

N21 N22


−1 P0 0

0 0


N11 + P0 N12

N21 N22


−1

.

(17.5c)

Now, introducing the first Schur compliment of the partitioned matrix of N as
S1 := N11−N12N

−1
22 N21, and then using the rules for inverting a partitioned matrix,

we may write

N11 N12

N21 N22


−1

=

 S−1
1 −S−1

1 N12N
−1
22

−N−1
22 N21S

−1
1 N−1

22 +N−1
22 N21S

−1
1 N12N

−1
22

 . (17.5d)
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Now we continue manipulating the cofactor matrix from (17.5c) to result in

Qξ̂ =

N11 N12

N21 N22


−1

−

 S−1
1 P0 0

−N−1
22 N21S

−1
1 P0 0

 ·

·

 (S1 + P0)
−1 −(S1 + P0)

−1N12N
−1
22

−N−1
22 N21(S1 + P0)

−1 N−1
22 +N−1

22 N21(S1 + P0)
−1N12N

−1
22

 .

(17.5e)

This result implies that the dispersion matrix of ξ̂ can be written as

D{

ξ̂1
ξ̂2

} = σ2
0

N11 N12

N21 N22


−1

−

− σ2
0

 S−1
1 P0(S1 + P0)

−1 −S−1
1 P0(S1 + P0)

−1N12N
−1
22

−N−1
22 N21S

−1
1 P0(S1 + P0)

−1 N−1
22 N21S

−1
1 P0(S1 + P0)

−1N12N
−1
22

 .

(17.6)

Note that (17.6) is still symmetric since S−1
1 P0(S1 + P0)

−1 is symmetric as shown
in the following:

S−1
1 P0(S1 + P0)

−1 =

= S−1
1 P0

[
S1(Ir + S−1

1 P0)
]−1

= S−1
1 P0(Ir + S−1

1 P0)
−1S−1

1 =

(now applying (A.8a))

= S−1
1 (Ir + P0S

−1
1 )−1P0S

−1
1 =

=
[
(Ir + P0S

−1
1 )S1

]−1
P0S

−1
1 =

= (S1 + P0)
−1P0S

−1
1 .

An interesting observation from the dispersion D{ξ̂} given in (17.6) is that though
prior information is only provided for ξ1, we also gain an improvement in the dis-
persion of ξ̂2.

We are now ready to express the estimator for the parameter vector in terms
of the estimator within the model that does not include prior information. For
convenience, we write the latter using cup symbols. We then make use of the
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cofactor matrix appearing in (17.6).⌣

ξ1

⌣

ξ2

 :=

N11 N12

N21 N22


−1 c1

c2

 =

=

 S−1
1 −S−1

1 N12N
−1
22

−N−1
22 N21S

−1
1 N−1

22 +N−1
22 N21S

−1
1 N12N

−1
22


c1
c2

 ⇒

(17.7a)

ξ̂1
ξ̂2

 =

⌣

ξ1

⌣

ξ2

−

 −Ir

N−1
22 N21

S−1
1 P0

(
S1 + P0

)−1[−Ir, N12N
−1
22

]
·

·

c1 + P0b0

c2

+

N11 N12

N21 N22


−1 P0b0

0


(17.7b)

Note that it is important not to ignore the prior information vector b0 even if it
is numerically zero. This is because it is a random variable and thus its impact will
not be zero in the dispersion matrix D{ξ̂}. Making use of (17.5d), and performing
certain algebraic manipulations, we can further modify (17.7b) with the objective
of reaching a vector of “parameter improvements.”ξ̂1
ξ̂2

−

⌣

ξ1

⌣

ξ2

 =

 −Ir

N−1
22 N21

S−1
1 P0

(
Ir + S−1

1 P0

)−1
S−1
1

[
c1 + P0b0 −N12N

−1
22 c2

]
+

+


 −Ir

N−1
22 N21

S−1
1

[
−Ir, N12N

−1
22

]
+

0 0

0 N−1
22




P0b0

0

 =

=

 −Ir

N−1
22 N21

S−1
1

(
Ir + P0S

−1
1

)−1[−P0S
−1
1

(
N12N

−1
22 c2 − c1

)
+ P0S

−1
1 P0b0

]
+

+

 −Ir

N−1
22 N21

S−1
1

[
−Ir, N12N

−1
22

] P0b0

0


 =

=

 −Ir

N−1
22 N21

S−1
1

(
Ir + P0S

−1
1

)−1
[−P0S

−1
1

(
N12N

−1
22 c2 − c1

)
+

+ P0S
−1
1 P0b0 −

(
Ir + P0S

−1
1

)
P0b0] =
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=

 −Ir

N−1
22 N21

S−1
1

(
Ir + P0S

−1
1

)−1[
P0S

−1
1

(
c1 −N12N

−1
22 c2

)
− P0b0

]
=

=

 −Ir

N−1
22 N21

S−1
1

(
Ir + P0S

−1
1

)−1
P0

(⌣

ξ1 − b0
)

In summary, we can express the vector of parameter improvements as

ξ̂1
ξ̂2

−

⌣

ξ1

⌣

ξ2

 =

 −Ir

N−1
22 N21

(
Ir + S−1

1 P0

)−1
S−1
1 P0

(⌣

ξ1 − b0
)
⇒

ξ̂1
ξ̂2

−

⌣

ξ1

⌣

ξ2

 =

 −Ir

N−1
22 N21

(
Ir + P−1

0 S1

)−1(⌣

ξ1 − b0
)
.

(17.8a)

(17.8b)

Equation (17.8a) may be used if P0 is not invertible, and equation (17.8b) may

be used if P0 is invertible. The vector
⌣

ξ1 − b0 is the discrepancy vector between
the prior information and what would have been estimated using the new data
set without the prior information. Since the matrix (Ir + P−1

0 S1) has positive
eigenvalues, multiplication by its inverse reduces the discrepancy vector.

If we had introduced a second variance component σ2
1 associated with the new

data set, this would only have had a second-order effect on the estimates and would
have required the ratio σ2

0/σ
2
1 in front of the prior information weight matrix P0.

How does the prior information change the predicted random error (residual)

vector ẽ? We want to express the change as an update to the residual vector
⌣
e and

also as a function of
⌣

ξ , which would be predicted, respectively, estimated within a
GMM without prior information.

ẽ = y −A1ξ̂1 −A2ξ̂2 =

=
[
y −A1

⌣

ξ1 −A2

⌣

ξ2

]
−A1

(
ξ̂1 −

⌣

ξ1

)
−A2

(
ξ̂2 −

⌣

ξ2

)
=

=
⌣
e −A1

(
ξ̂1 −

⌣

ξ1

)
−A2

(
ξ̂2 −

⌣

ξ2

)
=

=
⌣
e +

(
A1 −A2N

−1
22 N21

)(
Ir + P−1

0 S1

)−1(⌣

ξ1 − b0
)

(17.9)

We note that the product (Ir +P−1
0 S1)

−1(
⌣

ξ1− b0) appears frequently in the above
equations and so in practice it may be worth computing it once at the outset and
then saving it for subsequent use.
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17.2 Alternative Normal Equations

In this section we introduce an alternative system of normal equation to accom-
modate prior information. The resulting solution is identical to that presented in
the preceding section, however this alternative form allows for a singular cofactor
matrix Q0.

The normal equations are written as

(N11 + P0)ξ̂1 +N12ξ̂2 = c1 + P0b0, (17.10a)

N21ξ̂1 +N22ξ̂2 = c2, (17.10b)

λ̂ = P0(ξ̂1 − b0). (17.10c)

The preceding three equations can be combined in matrix form as follows:
N11 N12 Ir

N21 N22 0

Ir 0 −P−1
0




ξ̂1

ξ̂2

λ̂

 =


c1

c2

b0

 . (17.11)

Here, λ̂ is an r× 1 vector of estimated Lagrange multipliers. The normal-equations
matrix on the left side of (17.11) is of size (m + r) × (m + r). We could use the
Cholesky algorithm to reduce the upper 2 × 2 sub-matrix block and then proceed
with Gaussian elimination.

The inverse of the normal-equations matrix yields the cofactor matrix of the esti-
mates. However, we only need to concern ourselves with the upper 2×2 sub-matrix
block of the inverse in order to find the dispersion of the parameter estimates ξ̂1
and ξ̂2. In the equation that follows, the other terms of no special interest have
been replaced with the symbol X.


N11 N12 Ir

N21 N22 0

Ir 0 −P−1
0


−1

=




N11 N11

N11 N11

+

Ir
0

P0

[
Ir 0

]
−1

X

X X


=

=

 σ−2
0 D{ξ̂} X

X X

 =



N11 + P0 N11

N11 N11


−1

X

X X

 (17.12)

It is interesting to investigate the consequences of diminishing the weight of the
prior information. Suppose the prior information weight matrix is defined as P0 :=
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εP0 and we have the situation where ε → 0. This means that the prior information

looses its influence, resulting in ξ̂1 →
⌣

ξ1 with degrees of freedom (redundancy) n+

r−m. However, if ε = 0 then we have ξ̂1 =
⌣

ξ1 with degree of freedom n−m. In other
words, as ε approaches zero, the resulting estimate numerically approaches what
would be obtained if prior information were not included in the model. However,
the degrees of freedom of the model with prior information is larger than that of the
model without prior information by a constant r, which is the number of parameters
that we supposedly have prior information for. This has an unsatisfactory result on
our estimated variance component σ̂2

0 ; it makes it look better than what it is. We
might rather specify redundancy as a function of ε, but exactly how best to do that
is still an open question.

Suppose we are given values for
⌣

ξ1 and
⌣

ξ2, together with the prior information b0
and associated weights P0, and suppose we want to find the solution for ξ̂1 and ξ̂2.
From row 1 of (17.8b) we can solve

(P0 + S1)(ξ̂1 −
⌣

ξ1) = P0(b0 −
⌣

ξ1). (17.13)

Then, by substitution of the first row of (7.13) into the second row, we can write

ξ̂2 −
⌣

ξ2 = −N−1
22 N21(ξ̂1 −

⌣

ξ1). (17.14)

The update for the dispersion is then given by

D{

ξ̂1
ξ̂2

} −D{

⌣

ξ1

⌣

ξ2

} = −σ2
0

N11 + P0 N12

N21 N22


−1 P0 0

0 0


N11 N12

N21 N22


−1

,

(17.15)

which already was evident from (17.5c).
Suppose we are given only the prior information b0 and we would like to find

the solutions for ξ̂1 and ξ̂2. The solution is developed by starting with (17.4a) and
using the relationship Q0 = P−1

0 as follows:

ξ̂1
ξ̂2

 =

N11 + P0 N12

N21 N22


−1


c1 −N11b0

c2 −N21b0

+

N11 + P0 N12

N21 N22


b0
0


 ,

which implies thatξ̂1 − b0

ξ̂2

 =

N11 + P0 N12

N21 N22


−1 AT

1 P (y −A1b0)

AT
2 P (y −A1b0)

 =
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=


Ir +N11Q0 N12

N21Q0 N22


P0 0

0 Im−r




−1 AT
1 P (y −A1b0)

AT
2 P (y −A1b0)

 =

ξ̂1 − b0

ξ̂2

 =

Q0 0

0 Im−r


Ir +N11Q0 N12

N21Q0 N22


−1 AT

1 P (y −A1b0)

AT
2 P (y −A1b0)

 . (17.16)

The first matrix on the right side of (17.16) is singular if Q0 is singular, but this is
of no consequence since we do not need to invert it. The second matrix on the right
side is regular (non-singular) even if Q0 is singular. The dispersion is given by

D{

ξ̂1
ξ̂2

} = σ2
0

Q0 0

0 Im−r


Ir +N11Q0 N12

N21Q0 N22


−1

. (17.17)

In order to confirm the consistency between the current data and the prior infor-
mation, we can test the validity of the null hypothesis

H0 : E{ξ̂1 −
⌣

ξ1} = 0. (17.18)

The test statistic T is defined as

T :=
(ξ̂1 −

⌣

ξ1)
T ·D{ξ̂1 −

⌣

ξ1}−1 · (ξ̂1 −
⌣

ξ1)

r(σ̂2
0/σ

2
0)

∼ F (r, n−m). (17.19)

17.3 Mixed Linear Model (Helmert’s Knack)

The idea underlying the mixed linear model is that some of the parameters are
random, while others are fixed. This is different than all models presented up
to this point, where we have consistently defined the unknown parameters to be
fixed (non-random). Here we introduce a non-random analogue to the vector of
prior information b0, denoted by β0. Numerically, b0 and β0 are equivalent, but
stochastically their equivalence is obtained only by addition of a random zero-vector,
denoted by 0˜, as follows:

b0 = β0 + 0˜ = ξ1 + e0, e0 ∼ (0, σ2
0P

−1
0 = σ2

0Q0), (17.20a)

β0 =
(
ξ1 − 0˜)+ e0 = x1 + e0, where x1 := ξ1 − 0˜. (17.20b)

Equation (17.20b) is known as Helmert’s knack. It is used to transform the non-
random parameter vector ξ1 to a random parameter vector x1. Some explanation
about the notation might be helpful. As usual, we use Greek letters for non-random
variables and Latin letters for random variables. In this case we have also placed
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a tilde beneath the zero to denote a random vector of zeros associated with the
unknown parameters. The expectation and dispersion of the unknown, random
parameters x1 are

E{x1} = E{β0 − e0} = β0 − E{e0} = β0, (17.21a)

D{x1} = D{β0 − e0} = D{e0} = σ2
0Q0. (17.21b)

Since we have used the random vector 0˜ in the pseudo-observations, we need to
modify the original observation equations given in (17.1a) by subtracting A10˜ from
both sides of the equation. This does not change the numerical values on the left
side, but it does make it a different vector in terms of its stochastic properties. We
denote the revised left-side vector as ȳ.

ȳ = y −A10˜ =

= A1ξ1 −A10˜+A2ξ2 + e =

= A1

(
ξ1 − 0˜)+A2ξ2 + e ⇒

ȳ = A1x1 +A2ξ2 + e (17.22)

Again we note that ȳ contains the same numerical values as y, but now with
dispersion matrix

D{ȳ} = σ2
0(A1Q0A

T
1 + P−1). (17.23)

On the right side of (17.22), we have a random parameter-vector x1 and a non-
random parameter-vector ξ2; the equation is linear in these unknowns. This is why
we call the model a mixed linear model (MLM); it has a mix of fixed and random
unknown parameters. We summarize the MLM in the box below.

ȳ :=
(
y −A10˜) = A1x1 +A2ξ2 + e,

x1 = β0 − e0, x1 ∼ (β0, σ
2
0Q0), rkA2 = m− r, e

e0

 ∼ (

0
0

 , σ2
0

P−1 0

0 Q0

).

(17.24a)

(17.24b)

(17.24c)

In going from the extended GMM (17.1) to the MLM (17.24), we have changed
from a model that has no a-priori information about the non-random parameters ξ1
to a model that has a-priori information about the random parameters x1. In either
case, we know nothing a priori about the parameters in ξ2. We claim that the MLM
is more flexible, in general, than the extended GMM. The following discussion
supports this claim.

In the extended GMM, the class of linear estimators is represented by[
ξ̂T1 , ξ̂

T
2

]T
= L1y + L2b0 + γ0, (17.25)
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where L1 and L2 are unknown matrices. In contrast, in the MLM the class of linear
predictors/estimators is represented by

[
x̃T
1 , ξ̂

T
2

]T
= Lȳ + γ, (17.26)

where L is unknown and the vector β0, that x1 depends on, could be nonlinear.
So we see that the linear class is larger for the MLM than for the extended GMM,
which makes the MLMmore flexible. However, it might be that the optimal estimate
found in the MLM could also be found in the extended GMM; it depends on the
linearity of β0.

Moritz (1970, 1972) used the MLM to introduce least-squares collocation. The
collocation solution was linear for both ȳ and β0; so it could be described by
the extended GMM. Schaffrin prefers the MLM to the extended GMM because it
permits nonlinear forms of β0.

0 2 4 6 8 10 12
0

1

2

 

 Signal: x
1

Measurement: y=x
1
+e

trend: β
0

Figure 17.1: Sinusoidal signal containing random noise and linear trend

We now list some practical examples for the use of the MLM.

Example 1:
A typical application comes from signal theory. Here we are interested in a sig-
nal x1, which may include a linear or nonlinear component β0. Assuming no fixed
parameters ξ̂2 and A1 = I, the observation equations become y = x1 + e. Figure
17.1 illustrates this example.

Example 2:
The MLM can be applied to deformation analysis, for example the monitoring of
bridges or dams. In this case, we may have a-priori information about how we
believe the structure should deform under load, but we are most interested in the
actual deformation; that is the random signal to determine. We observe the signal
plus noise; we must remove the noise (i.e., extract the signal from the noise).

Example 3:
Moritz applied the MLM to the problem of determining the gravity field of the
earth. Here, the normal gravity field is the prior information, and the random
signal to determine is is the earth’s anomalous gravity field.

Moritz (1972) provides other examples of least-squares collocation in Reports of
the Department of Geodetic Science, Number 175.
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17.4 Solutions for the Mixed Linear Model

To obtain solutions for the unknown parameters of the MLM, we start by deriving
the BLUUE for the non-random parameters ξ2. Substituting the equation for x1

from (17.24b) into the observation equation of (17.24) allows us to write the Mixed
Linear Model (MLM) in an alternative form as

ȳ −A1β0 = A2ξ2 + (e−A1e0), (17.27a)

(e−A1e0) ∼ (0, σ2
0

[
P−1 +A1Q0A

T
1

]
). (17.27b)

The MLM in (17.27) appears in the form of a GMM. The left side of (17.27a) is
known and so are the characteristics of the combined error vector e−A1e0 on the
right side. So, we can estimate ξ2 using least-squares principles via the following
formula:

ξ̂2 =
[
AT

2 (P
−1 +A1Q0A

T
1 )

−1A2

]−1
AT

2 (P
−1 +A1Q0A

T
1 )

−1(ȳ −A1β0).

(17.28)

The first inverted matrix in (17.28) is the cofactor matrix for ξ̂2 so that the

dispersion matrix of ξ̂2 is given by

D{ξ̂2} = σ2
0

[
AT

2 (P
−1 +A1Q0A

T
1 )

−1A2

]−1
. (17.29)

An alternative form of the dispersion matrix is obtained as follows: By use of (A.6a)
we obtain

(P−1 +A1Q0A
T
1 )

−1 = P − PA1(Q
−1
0 +AT

1 PA1)
−1AT

1 P, (17.30a)

with

(Q−1
0 +AT

1 PA1)
−1 = (Ir +Q0A

T
1 PA1)

−1Q0. (17.30b)

Upon substitution of (17.30a), together with (17.30b), into the dispersion formula
(17.29) we get

D{ξ̂2} = σ2
0

{
AT

2

[
P − PA1(Ir +Q0A

T
1 PA1)

−1Q0A
T
1 P

]
A2

]
}−1 =

= σ2
0

[
N22 −N21(Ir +Q0N11)

−1Q0N12

]−1
= σ2

0

[
N22 −N21Q

−1
0 +N11)

−1N12

]−1
=

= σ2
0N

−1
22 + σ2

0N
−1
22 N21

[
(Q−1

0 +N11)N12N
−1
22 N21

]−1
N12N

−1
22 ,

or

D{ξ̂2} = σ2
0N

−1
22 + σ2

0N
−1
22 N21(Ir +Q0S1)

−1Q0N12N
−1
22 , (17.31)

where

S1 := N11 −N12N
−1
22 N21. (17.32)
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Also, we have used the familiar relations

Nij := AT
i PAj and c̄i := AT

i P ȳ, (17.33)

where the symbol c̄i is used below. To reach an alternative expression for ξ2, we
use (17.30a) through (17.31) to modify (17.28) as follows:

ξ̂2 =
[
N−1

22 +N−1
22 N21(Ir +Q0S1)

−1Q0N12N
−1
22

]
·

·
[
AT

2 P −N21(Ir +Q0N11)
−1Q0A

T
1 P

]
(ȳ −A1β0).

(17.34)

For convenience, and for future reference, we also write

ξ̂2 = G2(ȳ −A1β0), (17.35a)

with

G2 :=
[
N−1

22 +N−1
22 N21(Ir +Q0S1)

−1Q0N12N
−1
22

]
·

·
[
AT

2 P −N21(Ir +Q0N11)
−1Q0A

T
1 P

]
.

(17.35b)

Expanding (17.35a) leads to

ξ̂2 = N−1
22 (c̄2 −N21β0)−N−1

22 N21(Ir +Q0N11)
−1Q0(c̄1 −N11β0)+

+N−1
22 N21(Ir +Q0S1)

−1Q0N12N
−1
22 (c̄2 −N21β0)−

−N−1
22 N21(Ir +Q0S1)

−1Q0N12N
−1
22 N21(Ir +Q0N11)

−1Q0(c̄1 −N11β0).

(17.36)

The single and double underlines in the second and fourth lines of the above equation
are used to highlight similar terms. We may insert the identity matrix

(Ir +Q0S1)
−1(Ir +Q0N11 −Q0N12N

−1
22 N21) = Ir (17.37)

between the underlined terms in the second line, which, after some algebraic ma-
nipulation, leads to

ξ̂2 = N−1
22 (c̄2 −N21β0)−N−1

22 N21(Ir +Q0S1)
−1Q0(c̄1 −N12N

−1
22 c̄2 − S1β0).

(17.38)
After further algebraic manipulation, we can also write

ξ̂2 = N−1
22 c̄2 −N−1

22 N21(Ir +Q0S1)
−1

[
Q0(c̄1 −N12N

−1
22 c̄2) + β0

]
. (17.39)

In summary, we began with equation (17.27), which has the form of the GMM,
and we applied least-squares criteria to reach a solution for ξ2. We know that LESS
within the (full-rank) GMM is equivalent to BLUUE. So, we claim that the various

expressions of ξ̂2 above, beginning with (17.28), give the BLUUE within the mixed
linear model for the non-random (fixed) parameter vector ξ2.

From (17.27) we see that our solution will only lead to a prediction for e−A1e0.
But what we need a prediction for e0 so that we can predict x1. We can arrive at
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LESS for ẽ0 based on the following Model of Condition Equations with Parameters
(see first set of Adjustment Notes):

ȳ −A1β0 = A2ξ2 +
[
In, −A1

]  e

e0

 , (17.40a)

 e

e0

 ∼ (

0
0

 , σ2
0

P−1 0

0 Q0

). (17.40b)

This model leads to the following solution for the predicted random errors: ẽ

ẽ0

 =

P−1 0

0 Q0


 In

−AT
1

([
In, −A1

] P−1 0

0 Q0


 In

−AT
1

)−1

·

·
(
ȳ −A1β0 −A2ξ̂2

)
=

=

 P−1

−Q0A
T
1

(
P−1 +A1Q0A

T
1

)−1(
ȳ −A1β0 −A2ξ̂2

)
⇒

 ẽ

ẽ0

 =

 P−1

−Q0A
T
1

 [
P − PA1

(
Ir +Q0N11

)−1
Q0A

T
1 P

](
ȳ −A1β0 −A2ξ̂2

)
.

(17.41)

The second row of (17.41) provides the following formula for ẽ0:

ẽ0 = −Q0(c̄1 −N11β0 −N12ξ̂2) + (Q0N11 + Ir − Ir)(Ir +Q0N11)
−1Q0A

T
1 P ·

· (ȳ −A1β0 −A2ξ̂2) =

= −Q0(c̄1 −N11β0 −N12ξ̂2) +Q0(c̄1 −N11β0 −N12ξ̂2)−

−(Ir +Q0N11)
−1Q0(c̄1 −N11β0 −N12ξ̂2) =

= −(Ir +Q0N11)
−1Q0(c̄1 −N11β0 −N12ξ̂2) ⇒

ẽ0 = −Q0(Ir +N11Q0)
−1(c̄1 −N11β0 −N12ξ̂2). (17.42)

By comparing the first and second rows of (17.41), we immediately see ẽ0 as a
function of ẽ:

ẽ0 = −Q0A
T
1 P ẽ. (17.43)

Now, it is obvious from the MLM that we have x̃1 = β0 − ẽ0, which upon
substitution of (17.42) yields

x̃1 = β0 +Q0(Ir +N11Q0)
−1(c̄1 −N11β0 −N12ξ̂2), (17.44)
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or, alternatively,

x̃1 = (Ir +Q0N11)
−1Q0A

T
1 P (ȳ1 −A2ξ̂2) +

[
Ir − (Ir +Q0N11)

−1Q0N11

]
β0 =
(17.45a)

= (Ir +Q0N11)
−1Q0A

T
1 P (ȳ1 −A2ξ̂2) + (Ir +Q0N11)

−1β0. (17.45b)

Here we used the general relationship (I +A)−1 = I − (I +A)−1A in the last step
to reach (17.45b). Note that we have arrived at the prediction x̃1 strictly by least-
squares principles. However, in this model we have the equivalence of LESS to the
inhomBLIP (Best inhomogeneous Linear Predictor). The idea behind inhomBLIP
is given in the following section.

17.5 Best Inhomogeneous Linear Predictor

The idea behind inhomBLIP is that in the class of linear predictors{
L(ȳ −A2ξ̂2) + γ

∣∣ L is an r × n matrix, γ is an r × 1 vector
}

(17.46a)

the predictor

x̃1 = (Ir +Q0N11)
−1Q0A

T
1 P (ȳ1 −A2ξ̂2) + (Ir +Q0N11)

−1β0 =

= L1(ȳ1 −A2ξ̂2) + γ1

(17.46b)

has minimum mean square prediction error (MSPE). That is,

trMSPE{x̃1} = trE{(x̃1 − x1)(x̃1 − x1)
T } =

= trE{
[
L1(ȳ1 −A2ξ̂2) + γ1 − x1

][
L1(ȳ1 −A2ξ̂2) + γ1 − x1

]T } = min
L1,γ1

(17.46c)

The variables L1 and γ1 are defined as follows:

L1 := (Ir +Q0N11)
−1Q0A

T
1 P = Q0A

T
1 (P

−1 +A1Q0A
T
1 )

−1, (17.47a)

γ1 := (Ir +Q0N11)
−1β0 = β0 − L1A1β0. (17.47b)

The minimization of (17.46c) is not developed further here. However, we do note
that the predictor x̃1 is automatically weakly unbiased in the sense that

E{x̃1} = (Ir +Q0N11)
−1[Q0A

T
1 P · E{ȳ1 −A2ξ̂2}+ E{β0}] = (17.48a)

= (Ir +Q0N11)
−1[Q0A

T
1 PA1β0 + β0] = β0 (17.48b)

for the given vector β0. Note that (17.48b) does not necessarily hold for any arbi-
trary vector β0, but rather for the given β0, hence the term weakly unbiased.
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Let us now consider in detail the mean-square prediction error MSPE of {x̃1}.
Because of unbiasedness, we can write

MSPE{x̃1} = D{x̃1 − x1}. (17.49a)

Also, because the vector differences x̃1 −x1 and e0 − ẽ0 only differ by β0, we have

MSPE{x̃1} = D{e0 − ẽ0} = D{e0} − C{e0, ẽ0} − C{ẽ0, e0}+D{ẽ0}. (17.49b)

Let us compute the last four terms of (17.49b) individually.

D{e0} = σ2
0Q0 (17.50a)

In computing D{ẽ0}, we first write the dispersion for the term ȳ − A1β0 − A2ξ̂2.

This term, as we have already seen, is equivalent to the prediction ˜e−A1e0. Also,
equation (17.40b) implies no covariance between ȳ −A1β0 and A2ξ̂2, i.e.

D{ȳ −A1β0 −A2ξ̂2} = D{ ˜e−A1e0} = D{ȳ −A1β0} −D{A2ξ̂2}. (17.50b)

Now making use of (17.42), we can write

D{ẽ0} = Q0(Ir +N11Q0)
−1AT

1 PD{ȳ −A1β0 −A2ξ̂2}PA1Q0(Ir +N11Q0)
−1.

(17.50c)

For the covariance terms, we have C{e0, ẽ0} = C{ẽ0, e0}T , and with the help of
(17.35b), we write the covariance C{e0, ẽ0} as follows:

C{e0, ẽ0} = Q0(Ir +N11Q0)
−1A1P · C{ȳ −A1β0 −A2ξ̂2, e0} =

= Q0(Ir +N11Q0)
−1A1P · C{(In −A2G2)(ȳ −A1β0), e0} =

= Q0(Ir +N11Q0)
−1A1P (In −A2G2) · C{(A2ξ2 + e−A1e0), e0} =

= −
[
Q0(Ir +N11Q0)

−1A1P
]
(In −A2G2)A1(σ

2
0Q0) = C{ẽ0, e0}T (17.50d)

To recap, equation (17.49b) is comprised of equations (17.50a) through (17.50d).
The way we would actually form the dispersion matrix is as follows:

D{

x̃1 − x1

ξ̂2

} =

Ir +Q0N11 Q0N12

N21 N22


−1 Q0 0

0 Im−r

 =

=

 MSPE{x̃1} C{x̃1 − x1, ξ̂2}

C{ξ̂2, x̃1 − x1} D{ξ̂2}

 .

(17.51)

Here we stress that we are not interested in the dispersion D{x̃1}, since this is
an indicator of variation between x̃1 and E{x̃1}. Rather we are interested in the
variation between x̃1 and the true variable x1, a concept that the following formula
makes clear:

MSPE{x̃1} = E{(x̃1 − x1)(x̃1 − x1)
T } = D{x̃1 − x1}, (17.52)

since E{x̃1 − x1} = 0.
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17.6 Alternative Normal Equations for the Mixed
Linear Model

In the previous section we showed different, but equivalent, expressions for the
predicted parameter vector x̃1. All of these expressions depended on the estimate ξ̂2
for the fixed parameters. Our goal in this section is to find a system of normal
equations that will permit the random parameters x̃1 to be predicted without the
need to compute the fixed parameters ξ̂2. With reference to (17.28), we begin with
the following orthogonality relations, which are analogous to ATP ẽ = 0 in the
GMM:

AT
2 (P

−1 +A1IrQ0A
T
1 )

−1(ẽ−A1ẽ0) = (17.53a)

= AT
2

[
P − PA1(Ir +Q0A

T
1 PA1)

−1Q0A
T
1 P

]
(ẽ−A1ẽ0) = (17.53b)

= AT
2 P ẽ−N21ẽ0 −N21(Ir +Q0N11)

−1Q0A
T
1 P ẽ+

+N21(Ir +Q0N11)
−1Q0N11ẽ0 = 0.

(17.53c)

Now we make use of the relations

ẽ = (ȳ −A1x̃1 −A2ξ̂2) (17.54a)

and

ẽ0 = β0 − x̃1 (17.54b)

in order to write

c̄2 = N21x̃1 +N22ξ̂2 +N21(β0 − x̃1) +N21(Ir +Q0N11)
−1Q0A

T
1 P (ẽ−A1ẽ0) =

= N21β0 +N22ξ̂2 +AT
2 P ẽ−N21ẽ0. (17.55)

Also, multiplying the residuals in (17.54) by AT
1 P leads to

c̄1 = N11β0 +N12ξ̂2 +AT
1 P ẽ−N11ẽ0. (17.56)

Now we introduce a new symbol

ν̂ := AT
1 P ẽ (17.57)

and note that AT
2 P ẽ = 0. Combining equations (17.55) through (17.57) into a

single systems of equations yields the normal equations
N11 N12 Ir

N21 N22 0

Ir 0 −Q0




x̃1

ξ̂2

ν̂

 =


c̄1

c̄2

β0

 . (17.58)
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The solution to (17.58) yields both x̃1 and ξ̂2; it also allows us to invert the
normal-equations matrix when Q0 is singular. If Q0 is regular (non-singular), we
may reduce the size of the system as follows:P0 +N11 N12

N21 N22


x̃1

ξ̂2

 =

c̄1 + P0β0

c̄2

 . (17.59)

Consistent with previous claims, the solution to (17.59) yields inhomBLIP for x̃1

and BLUUE for ξ̂2. It also leads to ν̂ = P0(x̃1 − β0).
After inverting the matrix on the left side of (17.59) (see Appendix A for inver-

sion formula), we can write the prediction for x1 as follows:

x̃1 = (P0 +N11)
−1(c̄1 + P0β0) + (P0 +N11)

−1·

·N12

[
N22 −N21(P0 +N11)

−1N12

]−1·
·
[
N21(P0 +N11)

−1(c̄1 + P0β0)− c̄2
]
. (17.60a)

Likewise, the estimation for ξ2 is given by

ξ̂2 = −
[
N22 −N21(P0 +N11)

−1N12

]−1[
N21(P0 +N11)

−1(c̄1 + P0β0)− c̄2
]
.

(17.60b)
Note that (17.60b) is equivalent to (17.28), which can be seen by confirming the
following two equivalences:[

AT
2 (P

−1 +A1Q0A
T
1 )

−1A2

]−1
=

[
N22 −N21(P0 +N11)

−1N12

]−1
, (17.61a)

N21(P0 +N11)
−1(c̄1 + P0β0) = c̄2 +AT

2 (P
−1 +A1Q0A

T
1 )

−1(A1β0 − ȳ). (17.61b)

Combining (17.60a) and (17.60b) yields the following expression for the pre-

dicted random effects vector x̃1 as a function of the estimated fixed parameters ξ̂2:

x̃1 = β0 + (P0 +N11)
−1(c̄1 −N11β0 −N12ξ̂2), (17.62a)

which agrees with (17.44).
Recall that ȳ, c̄1, and c̄2 are numerically equivalent to y, c1, and c2, respectively,

but they have different stochastic properties due to the randomness of x1 (see
(17.33) and (17.22)). If we factor out the term AT

1 P from second parenthetical
expression in (17.62a), we get

x̃1 = β0 +
(
P0 +N11

)−1
AT

1 P (ȳ −A1β0 −A2ξ̂2), (17.62b)

which can be re-written as

x̃1 = β0 + C{x1,y}[D{y}]−1(c̄1 −N11β0 −N12ξ̂2), (17.63)
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since

C{x1,y} = σ2
0P

−1
0 AT

1 (17.64a)

and

D{y} = σ2
0(A1P

−1
0 AT

1 + P−1). (17.64b)

We conclude this chapter by commenting that LESS from the extended GMM
yields the same numerical results as LESS from the MLM, but the interpretation
is completely different. In the mixed linear model, x̃1 is predicted, while ξ̂1 is esti-
mated within the extended GMM. Therefore, we are not interested in the dispersion
of x̃1 itself but rather its MSPE.

D{

x̃1 − x1

ξ̂2

} = σ2
0

P0 +N11 N12

N21 N22


−1

̸= D{

x̃1

ξ̂2

}, (17.65a)

where

D{x̃1 − x1} = MSPE{x̃1}. (17.65b)

Finally, we state that the estimated variance component as shown below is the
Best Invariant Quadratic Uniformly Unbiased Estimate within the MLM.

σ̂2
0 =

(ẽ−A1ẽ0)
T (P−1 +A1Q0A

T
1 )(ẽ−A1ẽ0)

(n−m+ r)
(17.66a)

Or, alternatively, using (17.40b), we can write

σ̂2
0 =

ẽT (In +Q0N11)
T (P−1 +A1Q0A

T
1 )(In +Q0N11)ẽ

(n−m+ r)
. (17.66b)

Here, we have assumed that rkA = m. Also, recall that for the MLM, r is the
dimension of x1.
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Chapter 18

The Dynamic Linear Model
and Kalman Filtering

The Dynamic Linear Model (DLM) is a linearized model that consists of an initial
value problem (IVP) and observed variables. It can be viewed as a model of ob-
servation equations with differential constraints. The constraints are not imposed
on the parameters but rather on the parameter changes (i.e., changes that occur in
time).

After linearizing and discretizing the original differential equations, we arrive
at the following (differential) state equation at epoch 1 as a function of the state
variables x0 at epoch 0:

x1 = Φ0x0 + u1. (18.1)

The symbols are defined as follows:

xi is an m× 1 unknown state vector at epoch i = 0, 1.

Φ0 is an m×m given state transition matrix.

u1 is an m× 1 random noise vector.

From (18.1) we can write the following stochastic constraints for x0 and x1:

[
Im, −Φ0

] x1

x0

 = u1. (18.2)

We mentioned already that the DLM is an initial value problem. The initial
conditions are expressed by

x̃0 = x0 + e00. (18.3)

Here the subscript 0 denotes epoch 0, while the superscript 0 denotes the initial
condition. We note that the subscript for u1 is sometimes shown as 0 rather than 1
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in the literature. This is merely a convention, as the variable u1 represents the
noise (random error) of the difference of the states x1 and Φ0x0, between epochs 1
and 0, respectively. Also, for any epoch i, the state transition matrix Φi is unique;
that is, it changes from epoch to epoch. Our knowledge of the initial state vector x̃0

can be improved by using a backward filter, but its use is not possible in real-time
applications.

Equations (18.2) and (18.3) constitute the IVP in discrete form. Their stochastic
properties (expectation and dispersion) are written asu1

e00

 ∼ (

0
0

 ,

Θ1 0

0 Σ0
0

). (18.4)

At this stage we have 2m unknowns and 2m equations (owing to the unknown
m × 1 vectors x and u). Since there is no redundancy in the model, we cannot
determine the unknowns in a least-squares sense. The redundancy enters the model
via the following observation equations:

y1 = A1x1 + e1, y1 ∈ Rn, A1 ∈ Rn×m, (18.5a)

with the stochastic model

e1 ∼ (0,Σ1), C{e1,u1} = 0, C{e1, e00} = 0. (18.5b)

Thus we see that the DLM is comprised of three components: observation equa-
tions (18.5a), state equations (18.1), and initial conditions (18.3). We may combine
all three parts of the model into one succinct statement as follows:

y1 = A1x1 + e1

x1 = Φ0x0 + u1

x̃0 = x0 + e00




e1

u1

e00

 ∼ (


0

0

0

 ,


Σ1 0 0

0 Θ1 0

0 0 Σ0
0

). (18.6)

Notice the absence of a (common) variance component, σ2
0 , in the model. We can

consider it to be embedded within the covariance matrices Σ1, Θ1, and Σ0
0.

Our goal is to predict the unknown state vector x1 and determine its mean
squared error (MSE) matrix. The relations between the predicted variables (with
tildes) and true variables (without tildes) are described by

x̃1 = x1 + e01, (18.7a)

and

D{e01 = x̃1 − x1} = MSPE{x̃1} = Σ0
1. (18.7b)

We may also wish to use “backward filtering” to compute the prediction ˜̃x0 for the
initial state vector x0. However, as mentioned previously, this is not feasible, or
even possible, in real-time problems.
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We now introduce a new prediction variable
⌣
x1 by combining the state equation

and initial condition. This variable represents our prior knowledge (prior informa-
tion) about the state vector

x1 = Φ0x0 + u1 = Φ0(x̃0 − e00) + u1, (18.8a)

which leads to the predictor

⌣
x1 := Φ0x̃0 = x1 − (u1 − Φ0e

0
0). (18.8b)

We call the term in parenthesis in (18.8b) the combined error. Note that

E{⌣
x1} = E{x1}, (18.9a)

since

E{u1 − Φ0e
0
0} = 0. (18.9b)

We note that the “prior information” (18.8a) and (18.8b) in the DLM is more
complicated than that in the Mixed Linear Model (MLM). Here, we must deter-

mine the predicted state vector x̃1 (which is different than
⌣
x1) based on the new

observations. The variable
⌣
x1 is the best prediction based on the state equation

and the initial condition only. We essentially blend the prior knowledge
⌣
x1 with

the observations y1. With this fusion of information we are able to determine
the prediction x̃1. Note that all of the redundancy in the model comes from the
observation equations. The initial value problem is only uniquely solvable.

This fusion process is called Kalman filtering. It can be done in real time,
in which case the number of state parameters may be restricted by the speed of
the computer processor. The key is to have good information about the state
equation, not only the state transition matrix Φ0 but also the associated covariance
matrix, Θ1, of the state equation. The information contained in matrices Φ0 and Θ1

describes how we think the dynamic system behaves. Our knowledge of the system
is introduced as a differential equation, which is linearized and discretized to form
the state equation. This work must be done before the adjustment stage.

With the introduction of (18.8b), we may write an equivalent version of the
DLM as follows:

y1 = A1x1 + e1
⌣
x1 = x1 − (u1 − Φ0e

0
0)


 e1

−(u1 − Φ0e
0
0)

 ∼ (

0
0

 ,

Σ1 0

0 Θ1 +Φ0Σ
0
0Φ

T
0

)

(18.10)

The model (18.10) essentially combines observation equations (in y1) with pseudo-

observation equations (in
⌣
x1). But here we are dealing with random effects, so the
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DLM is not an extended GMM but rather is essentially an extended random effects
model (REM).

The LEast-Squares Solution (LESS) within the DLM is equivalent to the in-
homBLIP of x1. Based on the model (18.10), we can write the least-squares normal
equations directly as follows:

[
AT

1 Im

] Σ−1
1 0

0
(
Θ1 +Φ0Σ

0
0Φ

T
0

)−1


A1

Im

 x̃1 =

=

[
AT

1 Σ
−1
1

(
Θ1 +Φ0Σ

0
0Φ

T
0

)−1

]y1

⌣
x1

 .

(18.11)

Solving the normal equations results in

x̃1 =
[
AT

1 Σ
−1
1 A1 +

(
Θ1 +Φ0Σ

0
0Φ

T
0

)−1]−1[
AT

1 Σ
−1
1 y1 +

(
Θ1 +Φ0Σ

0
0Φ

T
0

)−1⌣
x1

]
.

(18.12)

Then, the following steps lead to the isolation of
⌣
x1:

x̃1 =
[
AT

1 Σ
−1
1 A1 +

(
Θ1 +Φ0Σ

0
0Φ

T
0

)−1]−1·

·
[
AT

1 Σ
−1
1 y1 +

(
Θ1 +Φ0Σ

0
0Φ

T
0

)−1⌣
x1 +AT

1 Σ
−1
1 A1

⌣
x1 −AT

1 Σ
−1
1 A1

⌣
x1

]
⇒

(18.13a)

x̃1 =
⌣
x1 +

[
AT

1 Σ
−1
1 A1 +

(
Θ1 +Φ0Σ

0
0Φ

T
0

)−1]−1
AT

1 Σ
−1
1

(
y1 −A1

⌣
x1

)
,

(18.13b)

or

x̃1 =
⌣
x1 +K1z1. (18.13c)

Here, the m× n matrix

K1 :=
[
AT

1 Σ
−1
1 A1 +

(
Θ1 +Φ0Σ

0
0Φ

T
0

)−1]−1
AT

1 Σ
−1
1 (18.13d)

is called Kalman gain matrix, and the n× 1 vector

z1 := (y1 −A1
⌣
x1) (18.13e)

is called the innovation.

The form of the Kalman gain matrix in (18.13d) is useful for the case where
the dimension, m, of the state vector is smaller than the number of observations n,
since the size of matrix to invert is m×m.
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We may write alternative forms of the solution as follows:

x̃1 −
⌣
x1 =

[
Im + (Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1 Σ

−1
1 A1

]−1·

· (Θ1 +Φ0Σ
0
0Φ

T
0 )A

T
1 Σ

−1
1 (y1 −A1

⌣
x1) =

(18.14a)

= (Θ1 +Φ0Σ
0
0Φ

T
0 )A

T
1

[
Σ1 +A1(Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

]−1
(y1 −A1

⌣
x1). (18.14b)

In (18.14a) we have used the the relations (A.9a) and (A.9c), and in (18.14b) we
have used the relations (A.8a) and (A.8e). Both equations (18.14a) and (18.14b) are
in the form of an update. However, equation (18.14a) requires the inversion of an
m×m matrix, whereas equation (18.14b) requires the inversion of an n×n matrix.
Oftentimes, in real-time applications, the number of observations n at a given epoch
is small (perhaps only 1) compared to the number of state parameters m. In such
cases, equation (18.14b) would be preferred over equation (18.14a).

We note that in the technical literature x̃1 is called the filtered state, while
⌣
x1

is called the predicted state. However, in the statistical literature, x̃1 is referred to
as the best prediction. It is this best prediction x̃1 that we are interested in.

We summarize the various forms of the Kalman gain matrix appearing in the
above formulas as follows:

K1 =
[
AT

1 Σ
−1
1 A1 + (Θ1 +Φ0Σ

0
0Φ

T
0 )

−1
]−1

AT
1 Σ

−1
1 = (18.15a)

=
[
Im + (Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1 Σ

−1
1 A1

]−1
(Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1 Σ

−1
1 = (18.15b)

=
(
Θ1 +Φ0Σ

0
0Φ

T
0

)
AT

1

[
Σ1 +A1(Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

]−1
. (18.15c)

By combining the two equations in (18.10), we can alternatively express the
innovation vector as

z1 := (y1 −A1
⌣
x1) = e1 +A1(u1 − Φ0e

0
0) =

[
In A1 −A1Φ0

]

e1

u1

e00

 . (18.16)

The dispersion of the innovation vector is readily apparent from (18.16); by applying
the law of error propagation we obtain

D{z1} =

[
In A1 −A1Φ0

]

Σ1 0 0

0 Θ1 0

0 0 Σ0
0




In

AT
1

−ΦT
0 A

T
1

 =

= Σ1 +A1(Θ1 +Φ0Σ
0
0Φ

T
0 )A

T
1 .

(18.17)

We may express the stochastic properties of the innovation z1 more concisely as

z1 ∼ (0, D{z1}) and C{zi, zj} = 0 for i ̸= j. (18.18)
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The statement of zero correlation means that the innovative sequence (from epoch
to epoch) is uncorrelated. The expectation E{zi} = 0 should be tested for. If,
through statistical testing, the expectation is found to be non-zero, this means that
the state equations are inconsistent with the observation equations, implying that
the state equations might need to be modified.

The familiar model of condition equations (see Chapter 4), along with the least-
squares solution (LESS) for the residual vector within that model, is given by

w := Be, (18.19)

and

ẽ = P−1BT (BP−1BT )−1w. (18.20)

Comparing (18.16) with the first part of (18.20), we see that the innovation
vector is in the form of the model of condition equations. Thus, in accordance with
the LESS within that model, we can immediately write the solution to the vector
of predicted errors (residuals) as

ẽ1

ũ1

ẽ00

 =


Σ1 0 0

0 Θ1 0

0 0 Σ0
0




In

AT
1

−ΦT
0 A

T
1

 ·

·


[
In A1 −A1 Φ0

]

Σ1 0 0

0 Θ1 0

0 0 Σ0
0




In

AT
1

−ΦT
0 A

T
1





−1

z1,

(18.21a)

or 
ẽ1

ũ1

ẽ00

 =


Σ1

Θ1A
T
1

−Σ0
0Φ

T
0 A

T
1


[
Σ1 +A1

(
Θ1 +Φ0Σ

0
0Φ

T
0

)
AT

1

]−1
z1. (18.21b)

If we substitute the predicted errors from (18.21b) into the second equation of
(18.10), we arrive at

x̃1 =
⌣
x1 +

(
ũ1 − Φ0ẽ

0
0

)
, (18.22)

which leads to the same update formula found in (18.14b).
We mentioned earlier that backwards filtering can be used to obtain a better

prediction of the initial state vector x̃0, though this is usually not feasible in real-
time applications. Substituting the predicted random error vector ẽ00 of (18.21b)
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into the third equation of (18.6), and making use of (18.13e) for z1, allows us to
write the backwards filter in the form of an update to x̃0 as follows:

˜̃x0 = x̃0 + ẽ00 = x̃0 − Σ0
0Φ

T
0 A

T
1

[
Σ1 +A1(Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

]−1
(y1 −A1Φ0x̃0).

(18.23)

In order to form the model for the next interval, we need the covariance ma-
trix Σ0

1. This matrix is defined as

Σ0
1 := MSPE{x̃1} = D{x̃1 − x1} = D{(x̃1 −

⌣
x1)− (x1 −

⌣
x1)}. (18.24)

Referring to (18.8b), we may write a vector difference depending on unknown vectors
x1, u1, and e00 as

x1 −
⌣
x1 = u1 − Φ0e

0
0, (18.25a)

which implies the following vector difference based on corresponding predicted vari-
ables:

x̃1 −
⌣
x1 = ũ1 − Φ0ẽ

0
0. (18.25b)

So, with help of (18.25b), we may replace the differences in (18.24) with linear
combinations of the residual vectors as in the following:

D{(ũ1 − Φ0ẽ
0
0)− (u1 − Φ0e

0
0)} =

D{ũ1 − Φ0ẽ
0
0} − C{(ũ1 − Φ0ẽ

0
0), (u1 − Φ0e

0
0)}−

− C{
(
u1 − Φ0e

0
0

)
,
(
ũ1 − Φ0ẽ

0
0

)
}+D{u1 − Φ0e

0
0}.

(18.26)

We now determine each of the four terms on the right side of (18.26) before
combining them into a single equation. Comparing (18.14b) and (18.22) we see
that

D{ũ1 − Φ0ẽ
0
0} = (Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

[
Σ1 +A1(Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

]−1
D{z1}·

·
[
Σ1 +A1(Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

]−1
A1(Θ1 +Φ0Σ

0
0Φ

T
0 ),

(18.27a)

which, upon substitution of (18.17), leads to

D{ũ1 − Φ0ẽ
0
0} = (Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

[
Σ1 +A1(Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

]−1·
·A1(Θ1 +Φ0Σ

0
0Φ

T
0 ).

(18.27b)

From the given model (18.10) we can write

D{u1 − Φ0e
0
0} = Θ1 +Φ0Σ

0
0Φ

T
0 . (18.27c)

Using (18.27c), we can rewrite (18.27b) as

D{ũ1 − Φ0ẽ
0
0} = (Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

[
Σ1 +A1(Θ1 +Φ0Σ

0
0Φ

T
0 )A

T
1

]−1·
·A1D{u1 − Φ0e

0
0} = K1A1D{u1 − Φ0e

0
0},

(18.27d)
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which leads to the following covariance terms:

C{ũ1 − Φ0ẽ
0
0,u1 − Φ0e

0
0} = K1A1D{u1 − Φ0e

0
0} = (18.27e)

(and, due to symmetry,)

= C{u1 − Φ0e
0
0, ũ1 − Φ0ẽ

0
0} = D{ũ1 − Φ0ẽ

0
0}. (18.27f)

Summing the individual components (18.27c) through (18.27f) yields

D{(ũ1 − Φ0ẽ
0
0)− (u1 − Φ0e

0
0)} = (Im −K1A1)(Θ1 +Φ0Σ

0
0Φ

T
0 ) =: Σ0

1.

(18.28)

With the covariance matrix Σ0
1, we are ready to process the data at epoch 2, and

we can continue in a like manner with any epochs that follow.
Notice that the variance component σ2

0 has not been included in the dispersion
formulas. This is because we try to avoid extra computations in real-time applica-
tions. However, we may wish to test our hypothesis that the innovation vector z1
is zero. To do so, we form the test statistic

Ω := zT
1

(
D{z1}

)−1
z1, (18.29)

which has redundancy n. Our hypothesis test (at each epoch) is

H0 : E{z1} = 0 versus Ha : E{z1} ≠ 0. (18.30)

The distribution of the test statistic is

Ω ∼ χ2
n under H0. (18.31)

For some chosen level of significance α, we reject the null hypothesis H0 if Ω > χ2
α.

Note that we could also test the expectations of ẽ1, ũ1, and ẽ00 separately if the
null hypothesis in (18.30) is rejected.



Appendix A

Useful Matrix Relations and
Identities

Basic relationships
Product of transposes:

ATBT = (BA)T (A.1)

Transpose of inverse:

(AT )−1 = (A−1)T (A.2)

Product of inverses:

A−1B−1 = (BA)−1 (A.3)

Rank of triple product: Given: A(m× n), B(m×m), C(n× n):

B,C nonsingular ⇒ rk(BAC) = rk(A) or rk(BA) = rk(A) if C = I (A.4)

Trace invariant with respect to a cyclic permutation of factors If the
product ABC is square, then the following trace operations are equivalent:

tr(ABC) = tr(BCA) = tr(CAB). (A.5)

Sherman-Morrison-Woodbury-Schur formula

(T − UW−1V )−1 = T−1 + T−1U(W − V T−1U)−1V T−1 (A.6a)
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Multiplying on the right by U and rearranging leads to the so-called push-through
identity

T−1U(W − V T−1U)−1W = (T − UW−1V )−1U. (A.6b)

The origin of the phrase “push-through” is illustrated by the special case where
T = tI and W = wI, leading to

U(tI − (1/w)V U)−1 = (tI − (1/w)UV )−1U. (A.6c)

As a consequence of (A.6a), we also have:

(I ± UW−1V )−1 = I ∓ U(W ± V U)−1V, (A.7a)

(I ± UV )−1 = I ∓ U(I ± V U)−1V, (A.7b)

(I ±W−1V )−1 = I ∓ (W ± V )−1V, (A.7c)

(I ± V )−1 = I ∓ (I ± V )−1V, (A.7d)

(I ±W−1)−1 = I ∓ (W ± I)−1. (A.7e)

Useful Matrix Equalities Equations (39–43) of “Useful Matrix Equalities” (hand-
out from Prof. Schaffrin, possibly originating from Urho A. Uotila).

DC(A+BDC)−1 = (D−1 + CA−1B)−1CA−1 = (A.8a)

= D(I + CA−1BD)−1CA−1 = (A.8b)

= DC(I +A−1BDC)−1A−1 = (A.8c)

= DCA−1(I +BDCA−1)−1 = (A.8d)

= (I +DCA−1B)−1DCA−1 (A.8e)

We may expand the above UME’s by setting, in turn, each matrix equal to the
identity matrix, thus generating four new sets of identities, as follows:

Let A = I:

DC(I +BDC)−1 = (D−1 + CB)−1C = (A.9a)

= D(I + CBD)−1C = (A.9b)

= (I +DCB)−1DC. (A.9c)

Let B = I:

DC(A+DC)−1 = (D−1 + CA−1)−1CA−1 = (A.10a)

= D(I + CA−1D)−1CA−1 = (A.10b)

= DC(I +A−1DC)−1A−1 = (A.10c)
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= DCA−1(I +DCA−1)−1 = (A.10d)

= (I +DCA−1)−1DCA−1. (A.10e)

Let C = I:

D(A+BD)−1 = (D−1 +A−1B)−1A−1 = (A.11a)

= D(I +A−1BD)−1A−1 = (A.11b)

= DA−1(I +BDA−1)−1 = (A.11c)

= (I +DA−1B)−1DA−1. (A.11d)

Let D = I:

C(A+BC)−1 = (I + CA−1B)−1CA−1 = (A.12a)

= C(I +A−1BC)−1A−1 = (A.12b)

= CA−1(I +BCA−1)−1. (A.12c)

Suppose the matrices A and B in (A.8) are identity matrices, then we have

DC(I +DC)−1 = (D−1 + C)−1C = (A.13a)

= D(I + CD)−1C = (A.13b)

= (I +DC)−1DC. (A.13c)

Inverse of the partitioned normal equation matrix Assume the matrix N
is of full rank and is partitioned as follows:

N =

N11 N12

N21 N22

 . (A.14)
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The following steps lead to the inverse of N expressed in terms of the partitioned
blocks:  N11 N12 I 0

N21 N22 0 I

 →

 I N−1
11 N12 N−1

11 0

N21 N22 0 I

 →

 I N−1
11 N12 N−1

11 0

0 N22 −N21N
−1
11 N12 −N21N

−1
11 I

 →

 I N−1
11 N12 N−1

11 0

0 I −
(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

(
N22 −N21N

−1
11 N12

)−1

 →

 I 0

0 I

∣∣∣∣∣∣∣
N−1

11 +N−1
11 N12 ·W ·N21N

−1
11 −N−1

11 N12 ·W

−W ·N21N
−1
11 W

 ,

with W := (N22 −N21N
−1
11 N12)

−1. Finally we may writeN11 N12

N21 N22


−1

=

 N−1
11 +N−1

11 N12 ·W ·N21N
−1
11 −N−1

11 N12 ·W

−W ·N21N
−1
11 W

 . (A.15)

Note that other equivalent representations of this inverse exist. Taking directly from
the Useful Matrix Equalities handout mentioned above, we write some additional
expressions for the inverse.N11 N12

N21 N22


−1

=

Q11 Q12

Q21 Q22

 (A.16)

Q11 =
(
N11 −N12N

−1
22 N21

)−1
= (A.17a)

= N−1
11 +N−1

11 N12

(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11 = (A.17b)

= N−1
11 +N−1

11 N12Q22N21N
−1
11 (A.17c)

Q22 =
(
N22 −N21N

−1
11 N12

)−1
= (A.18a)
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= N−1
22 +N−1

22 N21

(
N11 −N12N

−1
22 N21

)−1
N12N

−1
22 = (A.18b)

= N−1
22 +N−1

22 N21Q11N12N
−1
22 (A.18c)

Q12 = −
(
N11 −N12N

−1
22 N21

)−1
N12N

−1
22 = −Q11N12N

−1
22 = (A.19a)

= −N−1
11 N12

(
N22 −N21N

−1
11 N12

)−1
= −N−1

11 N12Q22 (A.19b)

Q21 = −N−1
22 N21

(
N11 −N12N

−1
22 N21

)−1
= −N−1

22 N21Q11 = (A.20a)

= −
(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11 = −Q22N21N

−1
11 (A.20b)

In the case that N22 = 0, we have:

Q22 = −
(
N21N

−1
11 N12

)−1
(A.21a)

Q11 = N−1
11 +N−1

11 N12Q22N21N
−1
11 (A.21b)

Q12 = −N−1
11 N12Q22 (A.21c)

Q21 = −Q22N21N
−1
11 (A.21d)

Schur Complement: The parenthetical term
(
N22 −N21N

−1
11 N12

)
shown above

is called the Schur Complement of N11. In general, given the partitioned matrix

M =

A B

C D

 , (A.22a)

if matrix D is invertible, the Schur complement of D is

S1 = A−BD−1C. (A.22b)

Likewise, if matrix A is invertible, the Schur complement of A is

S2 = D − CA−1B. (A.22c)

Now, let S = S2 = D − CA−1B and assume M is nonsingular. Carlson (1986)
shows that  I 0

−CA−1 I


A B

C D


I −A−1B

0 I

 =

A 0

0 S

 , (A.23a)
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which can be used to write the inverse of M first as a triple product of matrices
and then in the form of (A.15) as follows:

M−1 =

I −A−1B

0 I


A−1 0

0 S−1


 I 0

−CA−1 I

 =

=

A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

 . (A.23b)

Carlson (ibid.) credits this formulation to Banachiewicz.

Vector and matrix norms For a real number p ≥ 1, the p-norm, or lp-norm, of
the n× 1 vector x is defined by

∥x∥p =
(
|x1|p +|x2|p + · · ·+|xn|p

)1/p
. (A.24)

Particular cases

1. p = 1, 1-norm or l1-norm:

∥x∥1 = |x1|+|x2|+ · · ·+|xn| (A.25a)

2. p = 2, 2-norm or l2-norm (Euclidean distance/norm):

∥x∥2 = (x2
1 + x2

2 + · · ·+ x2
n)

1/2 (A.25b)

3. p = ∞, ∞-norm or l∞-norm (“infinity norm”):

∥x∥∞ = max{|x1| ,|x2| , . . . ,|xn|} (A.25c)

In a similar way, entry-wise matrix norms for a n×m matrix A are defined by

∥A∥p =∥vecA∥p =
( n∑
i=1

m∑
j=1

∣∣aij∣∣p)1/p, (A.26)

where vec is the operator that turns a matrix into a vector by stacking its columns
on top of each other from the first to the last.
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Particular cases

1. p = 2, “Frobenius norm,” also called l2-norm, Hilbert-Schmidt norm, Schur
norm, and Euclidean norm: (Lütkepohl, 1996, pg. 103):

∥A∥2 =∥A∥F =
√

tr(ATA) (A.27a)

2. p = ∞, Max norm:

∥A∥∞ =∥A∥max = max
i,j

[
∣∣aij∣∣] (A.27b)

Determinants and inverses of 2× 2 and 3× 3 matrices

For a 2× 2 matrix

A =

[
a b
c d

]
the determinant is defined by

detA = |A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc. (A.28a)

The inverse of A can be found by

A−1 =
1

|A|

[
d −b
−c a

]
=

1

ad− bc

[
d −b
−c a

]
. (A.28b)

Writing a 3× 3 matrix A as

A =

a b c
d e f
g h i

 , (A.29a)

the determinant of A is found by

detA = |A| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ =
= +a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ =
= −d

∣∣∣∣b c
h i

∣∣∣∣+ e

∣∣∣∣a c
g i

∣∣∣∣− f

∣∣∣∣a b
g h

∣∣∣∣ =
= +g

∣∣∣∣b c
e f

∣∣∣∣− h

∣∣∣∣a c
d f

∣∣∣∣+ i

∣∣∣∣a b
d e

∣∣∣∣ .
(A.29b)
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The inverse of A is found by

A−1 =
1

|A|



+

∣∣∣∣e f
h i

∣∣∣∣ −
∣∣∣∣d f
g i

∣∣∣∣ +

∣∣∣∣d e
g h

∣∣∣∣
−
∣∣∣∣b c
h i

∣∣∣∣ +

∣∣∣∣a c
g i

∣∣∣∣ −
∣∣∣∣a b
g h

∣∣∣∣
+

∣∣∣∣b c
e f

∣∣∣∣ −
∣∣∣∣a c
d f

∣∣∣∣ +

∣∣∣∣a b
d e

∣∣∣∣



T

=
1

|A|



∣∣∣∣e f
h i

∣∣∣∣ ∣∣∣∣c b
i h

∣∣∣∣ ∣∣∣∣b c
e f

∣∣∣∣∣∣∣∣f d
i g

∣∣∣∣ ∣∣∣∣a c
g i

∣∣∣∣ ∣∣∣∣c a
f d

∣∣∣∣∣∣∣∣d e
g h

∣∣∣∣ ∣∣∣∣b a
h g

∣∣∣∣ ∣∣∣∣a b
d e

∣∣∣∣


=

=
1

|A|

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd

 . (A.29c)

Kronecker product The Kronecker-Zehfuss product of matrices is often sim-
ply called the Kronecker product. Its definition and several computational rules
associated with it are given below.

Definition: let G = [gij ] be a p× q matrix and H = [hij ] be an r × s matrix, then

G⊗H :=
[
gij ·H

]
(A.30)

gives the Kronecker-Zehfuss product G⊗H, which is of size pr × qs.

Kronecker-Zehfuss computational rules:

(1) vecABCT = (C ⊗A) vecB (A.31)

(2) trABCTDT = trDTABCT = (vecD)T (C ⊗A) vecB (A.32)

(3) (G⊗H)T = GT ⊗HT (A.33)

(4) (G⊗H)−1 = G−1 ⊗H−1 (A.34)

(5) α(G⊗H) = αG⊗H = G⊗ αH for α ∈ R (A.35)

(6) (F +G)⊗H = (F ⊗H) + (G⊗H) (A.36)

(7) G⊗ (H + J) = (G⊗H) + (G⊗ J) (A.37)

(8) (A⊗B)(G⊗H) = AG⊗BH (A.38)

(9) (H ⊗G) = K(G⊗H)K for “commutation matrices” of suitable size
(A.39)

(10) KT is also a commutation matrix with KKT = I = KTK ⇒
K(H ⊗G) = (G⊗H)K (A.40)

(Note that K is a generic symbol; the two K matrices could be different.)

specially: K(H ⊗ g) = g ⊗H for any vector g

(11) K ⊗K is also a commutation matrix ⇒ vec(GT ) = vec(KKTGT ) =

(G⊗ I)K vec I = K(I ⊗G) vec I = K vecG. Hence, K is called a “vec-
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permutation matrix.” (A.41)

(12) Let λG and λH be vectors with the respective eigenvalues of the matrices

G and H; then the vector (λG ⊗ λH) contains exactly the eigenvalues of

the matrix (G⊗H). (A.42)

(13) tr(G⊗H) = trG trH (A.43)

(14) G and H positive (semi)definite ⇒ G⊗H positive (semi)definite (A.44)

The four fundamental matrix subspaces Let A be a matrix of size n × m
with rkA =: q. The four fundamental matrix subspaces are

The column space of A (also range of A) is denoted by R(A).

The nullspace of A (also the kernel of A) is denoted by N (A).

The row space of A, which is R(AT ).

The left nullspace of A, which is N (AT ).

The subspaces are elements of larger spaces, the sizes of which are determined by
the dimension of A.

N (A) ⊂ Rm, R(AT ) ⊂ Rm

N (AT ) ⊂ Rn, R(A) ⊂ Rn

The dimensions of the subspaces are a function of the rank of A, which we denote
by q.

dimR(A) = q

dimN (A) = m− q (also called the nullity of A)

dimR(AT ) = q

dimN (AT ) = n− q

In summary, we may write

R(A) = column space of A; dimension q (A.45a)

N (A) = nullspace of A; dimension m− q (A.45b)

R(AT ) = row space of A; dimension q (A.45c)

N (AT ) = left nullspace of A; dimension n− q (A.45d)
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Derivative of a quadratic form While some authors write the derivative of a
quadratic form (a scalar-valued vector function) with respect to a column vector as
a row vector, we write such a derivative as a column vector. This is in agreement
with the following authors: Grafarend and Schaffrin (1993); Harville (2000, pg. 295);
Koch (1999, pg. 69); Lütkepohl (1996, pg. 175); Strang and Borre (1997, pg. 300).
For example, given x ∈ Rn and Q ∈ Rn×n, we have

Φ(x) = xTQx ⇒ ∂Φ

∂x
= 2Qx. (A.46)

Derivatives of the trace (for additional formulas see Lütkepohl (1996, pp. 177–
179))

X(m× n), A(n×m) :
∂ tr(AX)

∂X
=

∂ tr(XA)

∂X
= AT (A.47a)

X(m× n), A(m× n) :
∂ tr(XTA)

∂X
=

∂ tr(AXT )

∂X
= A (A.47b)

X(m× n) :
∂ tr(XTX)

∂X
=

∂ tr(XXT )

∂X
= 2X (A.47c)

X(m× n), A(m×m) :
∂ tr(XTAX)

∂X
= (A+AT )X (A.47d)

X(m× n), A(m×m) symmetric:
∂ tr(XTAX)

∂X
= 2AX (A.47e)

X(m× n), A(n× n) :
∂ tr(XAXT )

∂X
= X(A+AT ) (A.47f)

X(m× n), A(n× n) symmetric:
∂ tr(XAXT )

∂X
= 2XA (A.47g)

X,A(m×m) :
∂ tr(XAX)

∂X
= XTAT +ATXT (A.47h)

X(m× n), A(p×m) :
∂ tr(AXXTAT )

∂X
= 2ATAX (A.47i)

See Lütkepohl (1996) for many more useful matrix relationships.
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Linearization

A truncated Taylor series is frequently used to linearize a nonlinear function. Read-
ers will remember from introductory calculus the Taylor series for a function of one
variable. As a review, we present both Taylor’s theorem and series, as well as
quadratic and linear approximations to functions based on truncations of the series.
Then we show the extension of the liner approximation to a multivariate function
using matrices.

B.1 Taylor’s Theorem and Series for a Function of
a Single Variable

If the function f and its first n derivatives f ′, f ′′, . . . , f (n) are continuous on the
interval [a, b] and if f (n) is differentiable on (a, b), then there exists a number cn+1

between a and b such that

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2
(b− a)2 + . . .+

f (n)(a)

n!
(b− a)n+

+
f (n+1)(cn+1)

(n+ 1)!
(b− a)n+1. (B.1)

Taylor series The Taylor series itself, for f about x = a, is given by

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n + . . . (B.2)
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Quadratic approximation A quadratic approximation of f(x) near x = a is

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2, (B.3a)

with an error e2(x) that satisfies

∣∣e2(x)∣∣ ≤ ∣∣max f ′′′(c)
∣∣

6
|x− a|3 , c between a and x. (B.3b)

Linear approximation Likewise, a linear approximation of f(x) near x = a is

f(x) ≈ f(a) + f ′(a)(x− a), (B.4a)

with an error e1(x) that satisfies

∣∣e1(x)∣∣ ≤ ∣∣max f ′′(c)
∣∣

2
(x− a)2, c between a and x. (B.4b)

B.2 Linearization: A Truncated Taylor’s Series for
the Multivariate Case

Let y = f(Ξ) represent an n × 1 set of nonlinear functions of the independent
m × 1 vector Ξ. Assume that the functions f are continuous over the interval
[Ξ,Ξ0] and that their first derivatives exist over the interval (Ξ,Ξ0). Then, a linear
approximation of y = f(Ξ) near Ξ = Ξ0 is given by

y ≈ f(Ξ0) +
∂f

∂ΞT

∣∣∣∣
Ξ0

·(Ξ−Ξ0), (B.5a)

which, after introduction of the incremental vector ξ := Ξ − Ξ0 and the n × m
matrix A := ∂f/∂ΞT , can be rewritten as

y − f(Ξ0) ≈ Aξ. (B.5b)

More detailed representations of f(Ξ0) and A are as follows:

f(Ξ0)
n×1

=


f1(Ξ

0
1, . . . ,Ξ

0
m)

...

fn(Ξ
0
1, . . . ,Ξ

0
m)

 , A
n×m

=


∂f1
∂Ξ1

∣∣∣
Ξ0

1

. . . ∂f1
∂Ξm

∣∣∣
Ξ0

m

...
...

∂fn
∂Ξ1

∣∣∣
Ξ0

1

. . . ∂fn
∂Ξm

∣∣∣
Ξ0

m

 . (B.6)
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B.2.1 Example

Distances y1, y2, and y3 in the horizontal plane are given from three points with
known horizontal coordinates to one new point with unknown horizontal coordinates
(u, v). Using (u1, v1) as the coordinates of the first known point, etc., and (u0, v0)
as an approximation for the unknown coordinates (u, v), linearize the distance
functions y1 = f1(u, v) =

√
(u1 − u)2 + (v1 − v)2, etc.

Solutiony1y2
y3


︸ ︷︷ ︸

y

−


√
(u1 − u0)2 + (v1 − v0)2√
(u2 − u0)2 + (v2 − v0)2√
(u3 − u0)2 + (v3 − v0)2


︸ ︷︷ ︸

f(Ξ=Ξ0)

≈

≈


(u0−u1)√

(u1−u0)2+(v1−v0)2
(v0−v1)√

(u1−u0)2+(v1−v0)2

(u0−u2)√
(u2−u0)2+(v2−v0)2

(v0−v2)√
(u2−u0)2+(v2−v0)2

(u0−u3)√
(u3−u0)2+(v3−v0)2

(v0−v3)√
(u3−u0)2+(v3−v0)2


︸ ︷︷ ︸

A

[
u− u0

v − v0

]
︸ ︷︷ ︸

ξ

. (B.7)

Note that we have not included a random error vector e, as the focus here is on
linearization, not modeling of random errors — we did not say that y is a vector of
observations; we simply said that it contains three given distances.
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Appendix C

Statistical Tables

C.1 Values of the Standard Normal Cumulative
Distribution Function

F (z) =

∫ z

−∞

1√
2π

e−u2/2 du = P [Z ≤ z]

z

Table C.1: Probabilities P [Z ≤ z] computed by the MATLAB function
normcdf(z) over the domain [−3.09, 3.09] at an interval of 0.01

z 0 1 2 3 4 5 6 7 8 9

−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

Continued on next page
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z 0 1 2 3 4 5 6 7 8 9

−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

−0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

Continued from previous page
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C.2 Percentiles (Critical Values) of the t-Distri-
bution

tp

Table C.2: Percentiles (critical values) of the t-distribution computed by the
MATLAB function tinv(p,ν) for percentile p and degrees of freedom ν

ν t0.55 t0.60 t0.65 t0.70 t0.75 t0.80 t0.85
1 0.1584 0.3249 0.5095 0.7265 1.0000 1.376 1.963

2 0.1421 0.2887 0.4447 0.6172 0.8165 1.061 1.386

3 0.1366 0.2767 0.4242 0.5844 0.7649 0.9785 1.250

4 0.1338 0.2707 0.4142 0.5686 0.7407 0.9410 1.190

5 0.1322 0.2672 0.4082 0.5594 0.7267 0.9195 1.156

6 0.1311 0.2648 0.4043 0.5534 0.7176 0.9057 1.134

7 0.1303 0.2632 0.4015 0.5491 0.7111 0.8960 1.119

8 0.1297 0.2619 0.3995 0.5459 0.7064 0.8889 1.108

9 0.1293 0.2610 0.3979 0.5435 0.7027 0.8834 1.100

10 0.1289 0.2602 0.3966 0.5415 0.6998 0.8791 1.093

11 0.1286 0.2596 0.3956 0.5399 0.6974 0.8755 1.088

12 0.1283 0.2590 0.3947 0.5386 0.6955 0.8726 1.083

13 0.1281 0.2586 0.3940 0.5375 0.6938 0.8702 1.079

14 0.1280 0.2582 0.3933 0.5366 0.6924 0.8681 1.076

15 0.1278 0.2579 0.3928 0.5357 0.6912 0.8662 1.074

16 0.1277 0.2576 0.3923 0.5350 0.6901 0.8647 1.071

17 0.1276 0.2573 0.3919 0.5344 0.6892 0.8633 1.069

18 0.1274 0.2571 0.3915 0.5338 0.6884 0.8620 1.067

19 0.1274 0.2569 0.3912 0.5333 0.6876 0.8610 1.066

20 0.1273 0.2567 0.3909 0.5329 0.6870 0.8600 1.064

21 0.1272 0.2566 0.3906 0.5325 0.6864 0.8591 1.063

22 0.1271 0.2564 0.3904 0.5321 0.6858 0.8583 1.061

23 0.1271 0.2563 0.3902 0.5317 0.6853 0.8575 1.060

24 0.1270 0.2562 0.3900 0.5314 0.6848 0.8569 1.059

25 0.1269 0.2561 0.3898 0.5312 0.6844 0.8562 1.058

26 0.1269 0.2560 0.3896 0.5309 0.6840 0.8557 1.058

27 0.1268 0.2559 0.3894 0.5306 0.6837 0.8551 1.057

28 0.1268 0.2558 0.3893 0.5304 0.6834 0.8546 1.056

29 0.1268 0.2557 0.3892 0.5302 0.6830 0.8542 1.055

30 0.1267 0.2556 0.3890 0.5300 0.6828 0.8538 1.055

40 0.1265 0.2550 0.3881 0.5286 0.6807 0.8507 1.050

60 0.1262 0.2545 0.3872 0.5272 0.6786 0.8477 1.045

80 0.1261 0.2542 0.3867 0.5265 0.6776 0.8461 1.043

100 0.1260 0.2540 0.3864 0.5261 0.6770 0.8452 1.042

200 0.1258 0.2537 0.3859 0.5252 0.6757 0.8434 1.039

400 0.1257 0.2535 0.3856 0.5248 0.6751 0.8425 1.038

Continued on next page
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ν t0.90 t0.95 t0.975 t0.99 t0.995 t0.9995
600 0.1257 0.2535 0.3855 0.5247 0.6749 0.8422 1.037

800 0.1257 0.2534 0.3855 0.5246 0.6748 0.8421 1.037

1000 0.1257 0.2534 0.3854 0.5246 0.6747 0.8420 1.037

∞ 0.1257 0.2533 0.3853 0.5244 0.6745 0.8416 1.036

ν t0.90 t0.95 t0.975 t0.99 t0.995 t0.9995
1 3.078 6.314 12.71 31.82 63.66 36.62

2 1.886 2.920 4.303 6.965 9.925 31.60

3 1.638 2.353 3.182 4.541 5.841 12.92

4 1.533 2.132 2.776 3.747 4.604 8.610

5 1.476 2.015 2.571 3.365 4.032 6.869

6 1.440 1.943 2.447 3.143 3.707 5.959

7 1.415 1.895 2.365 2.998 3.499 5.408

8 1.397 1.860 2.306 2.896 3.355 5.041

9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587

11 1.363 1.796 2.201 2.718 3.106 4.437

12 1.356 1.782 2.179 2.681 3.055 4.318

13 1.350 1.771 2.160 2.650 3.012 4.221

14 1.345 1.761 2.145 2.624 2.977 4.140

15 1.341 1.753 2.131 2.602 2.947 4.073

16 1.337 1.746 2.120 2.583 2.921 4.015

17 1.333 1.740 2.110 2.567 2.898 3.965

18 1.330 1.734 2.101 2.552 2.878 3.922

19 1.328 1.729 2.093 2.539 2.861 3.883

20 1.325 1.725 2.086 2.528 2.845 3.850

21 1.323 1.721 2.080 2.518 2.831 3.819

22 1.321 1.717 2.074 2.508 2.819 3.792

23 1.319 1.714 2.069 2.500 2.807 3.768

24 1.318 1.711 2.064 2.492 2.797 3.745

25 1.316 1.708 2.060 2.485 2.787 3.725

26 1.315 1.706 2.056 2.479 2.779 3.707

27 1.314 1.703 2.052 2.473 2.771 3.690

28 1.313 1.701 2.048 2.467 2.763 3.674

29 1.311 1.699 2.045 2.462 2.756 3.659

30 1.310 1.697 2.042 2.457 2.750 3.646

40 1.303 1.684 2.021 2.423 2.704 3.551

60 1.296 1.671 2.000 2.390 2.660 3.460

80 1.292 1.664 1.990 2.374 2.639 3.416

100 1.290 1.660 1.984 2.364 2.626 3.390

200 1.286 1.653 1.972 2.345 2.601 3.340

400 1.284 1.649 1.966 2.336 2.588 3.315

600 1.283 1.647 1.964 2.333 2.584 3.307

800 1.283 1.647 1.963 2.331 2.582 3.303

1000 1.282 1.646 1.962 2.330 2.581 3.300

∞ 1.282 1.645 1.960 2.326 2.576 3.291
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C.3 Critical Values of the χ2-Distribution

Table C.3: Critical values of the χ2-distribution computed by the MATLAB
function chi2inv(1− α,ν) for significance level α and degrees of freedom ν

ν α=0.999 0.995 0.99 0.975 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.001

1 0.000 0.000 0.000 0.001 0.004 0.016 0.102 0.455 1.323 2.706 3.841 5.024 6.635 7.879 10.828

2 0.002 0.010 0.020 0.051 0.103 0.211 0.575 1.386 2.773 4.605 5.991 7.378 9.210 10.597 13.816

3 0.024 0.072 0.115 0.216 0.352 0.584 1.213 2.366 4.108 6.251 7.815 9.348 11.345 12.838 16.266

4 0.091 0.207 0.297 0.484 0.711 1.064 1.923 3.357 5.385 7.779 9.488 11.143 13.277 14.860 18.467

5 0.210 0.412 0.554 0.831 1.145 1.610 2.675 4.351 6.626 9.236 11.070 12.833 15.086 16.750 20.515

6 0.381 0.676 0.872 1.237 1.635 2.204 3.455 5.348 7.841 10.645 12.592 14.449 16.812 18.548 22.458

7 0.598 0.989 1.239 1.690 2.167 2.833 4.255 6.346 9.037 12.017 14.067 16.013 18.475 20.278 24.322

8 0.857 1.344 1.646 2.180 2.733 3.490 5.071 7.344 10.219 13.362 15.507 17.535 20.090 21.955 26.124

9 1.152 1.735 2.088 2.700 3.325 4.168 5.899 8.343 11.389 14.684 16.919 19.023 21.666 23.589 27.877

10 1.479 2.156 2.558 3.247 3.940 4.865 6.737 9.342 12.549 15.987 18.307 20.483 23.209 25.188 29.588

11 1.834 2.603 3.053 3.816 4.575 5.578 7.584 10.341 13.701 17.275 19.675 21.920 24.725 26.757 31.264

12 2.214 3.074 3.571 4.404 5.226 6.304 8.438 11.340 14.845 18.549 21.026 23.337 26.217 28.300 32.909

13 2.617 3.565 4.107 5.009 5.892 7.042 9.299 12.340 15.984 19.812 22.362 24.736 27.688 29.819 34.528

14 3.041 4.075 4.660 5.629 6.571 7.790 10.165 13.339 17.117 21.064 23.685 26.119 29.141 31.319 36.123

15 3.483 4.601 5.229 6.262 7.261 8.547 11.037 14.339 18.245 22.307 24.996 27.488 30.578 32.801 37.697

16 3.942 5.142 5.812 6.908 7.962 9.312 11.912 15.338 19.369 23.542 26.296 28.845 32.000 34.267 39.252

17 4.416 5.697 6.408 7.564 8.672 10.085 12.792 16.338 20.489 24.769 27.587 30.191 33.409 35.718 40.790

18 4.905 6.265 7.015 8.231 9.390 10.865 13.675 17.338 21.605 25.989 28.869 31.526 34.805 37.156 42.312

19 5.407 6.844 7.633 8.907 10.117 11.651 14.562 18.338 22.718 27.204 30.144 32.852 36.191 38.582 43.820

20 5.921 7.434 8.260 9.591 10.851 12.443 15.452 19.337 23.828 28.412 31.410 34.170 37.566 39.997 45.315

21 6.447 8.034 8.897 10.283 11.591 13.240 16.344 20.337 24.935 29.615 32.671 35.479 38.932 41.401 46.797

22 6.983 8.643 9.542 10.982 12.338 14.041 17.240 21.337 26.039 30.813 33.924 36.781 40.289 42.796 48.268

23 7.529 9.260 10.196 11.689 13.091 14.848 18.137 22.337 27.141 32.007 35.172 38.076 41.638 44.181 49.728

24 8.085 9.886 10.856 12.401 13.848 15.659 19.037 23.337 28.241 33.196 36.415 39.364 42.980 45.559 51.179

25 8.649 10.520 11.524 13.120 14.611 16.473 19.939 24.337 29.339 34.382 37.652 40.646 44.314 46.928 52.620

26 9.222 11.160 12.198 13.844 15.379 17.292 20.843 25.336 30.435 35.563 38.885 41.923 45.642 48.290 54.052

27 9.803 11.808 12.879 14.573 16.151 18.114 21.749 26.336 31.528 36.741 40.113 43.195 46.963 49.645 55.476

28 10.391 12.461 13.565 15.308 16.928 18.939 22.657 27.336 32.620 37.916 41.337 44.461 48.278 50.993 56.892

29 10.986 13.121 14.256 16.047 17.708 19.768 23.567 28.336 33.711 39.087 42.557 45.722 49.588 52.336 58.301

30 11.588 13.787 14.953 16.791 18.493 20.599 24.478 29.336 34.800 40.256 43.773 46.979 50.892 53.672 59.703

31 12.196 14.458 15.655 17.539 19.281 21.434 25.390 30.336 35.887 41.422 44.985 48.232 52.191 55.003 61.098

32 12.811 15.134 16.362 18.291 20.072 22.271 26.304 31.336 36.973 42.585 46.194 49.480 53.486 56.328 62.487

33 13.431 15.815 17.074 19.047 20.867 23.110 27.219 32.336 38.058 43.745 47.400 50.725 54.776 57.648 63.870

34 14.057 16.501 17.789 19.806 21.664 23.952 28.136 33.336 39.141 44.903 48.602 51.966 56.061 58.964 65.247

35 14.688 17.192 18.509 20.569 22.465 24.797 29.054 34.336 40.223 46.059 49.802 53.203 57.342 60.275 66.619

36 15.324 17.887 19.233 21.336 23.269 25.643 29.973 35.336 41.304 47.212 50.998 54.437 58.619 61.581 67.985

37 15.965 18.586 19.960 22.106 24.075 26.492 30.893 36.336 42.383 48.363 52.192 55.668 59.893 62.883 69.346

38 16.611 19.289 20.691 22.878 24.884 27.343 31.815 37.335 43.462 49.513 53.384 56.896 61.162 64.181 70.703

39 17.262 19.996 21.426 23.654 25.695 28.196 32.737 38.335 44.539 50.660 54.572 58.120 62.428 65.476 72.055

40 17.916 20.707 22.164 24.433 26.509 29.051 33.660 39.335 45.616 51.805 55.758 59.342 63.691 66.766 73.402

41 18.575 21.421 22.906 25.215 27.326 29.907 34.585 40.335 46.692 52.949 56.942 60.561 64.950 68.053 74.745

42 19.239 22.138 23.650 25.999 28.144 30.765 35.510 41.335 47.766 54.090 58.124 61.777 66.206 69.336 76.084

43 19.906 22.859 24.398 26.785 28.965 31.625 36.436 42.335 48.840 55.230 59.304 62.990 67.459 70.616 77.419

44 20.576 23.584 25.148 27.575 29.787 32.487 37.363 43.335 49.913 56.369 60.481 64.201 68.710 71.893 78.750

45 21.251 24.311 25.901 28.366 30.612 33.350 38.291 44.335 50.985 57.505 61.656 65.410 69.957 73.166 80.077

46 21.929 25.041 26.657 29.160 31.439 34.215 39.220 45.335 52.056 58.641 62.830 66.617 71.201 74.437 81.400
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47 22.610 25.775 27.416 29.956 32.268 35.081 40.149 46.335 53.127 59.774 64.001 67.821 72.443 75.704 82.720

48 23.295 26.511 28.177 30.755 33.098 35.949 41.079 47.335 54.196 60.907 65.171 69.023 73.683 76.969 84.037

49 23.983 27.249 28.941 31.555 33.930 36.818 42.010 48.335 55.265 62.038 66.339 70.222 74.919 78.231 85.351

50 24.674 27.991 29.707 32.357 34.764 37.689 42.942 49.335 56.334 63.167 67.505 71.420 76.154 79.490 86.661

60 31.738 35.534 37.485 40.482 43.188 46.459 52.294 59.335 66.981 74.397 79.082 83.298 88.379 91.952 99.607

70 39.036 43.275 45.442 48.758 51.739 55.329 61.698 69.334 77.577 85.527 90.531 95.023 100.43 104.22 112.32

80 46.520 51.172 53.540 57.153 60.391 64.278 71.145 79.334 88.130 96.578 101.88 106.63 112.33 116.32 124.84

90 54.155 59.196 61.754 65.647 69.126 73.291 80.625 89.334 98.650 107.57 113.15 118.14 124.12 128.30 137.21

100 61.918 67.328 70.065 74.222 77.929 82.358 90.133 99.334 109.14 118.50 124.34 129.56 135.81 140.17 149.45
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C.4 Critical Values of the F -Distribution

The tables below list critical values of the F -distribution computed by the MATLAB function finv(1 − α,r1,r2)
for level of significance α and degrees of freedom r1 = {1, 2, 3} and r2, where α(2) pertains to two tails and α(1)
pertains to a single tail. The critical values for ∞ were generated by finv(1− α,r1,1.0e6).

Table C.4: Critical values of the F -distribution with numerator degrees of
freedom r1 = 1

α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
1 5.828 39.86 161.4 647.8 4052. 16210. 64840 405400. 1621000.

2 2.571 8.526 18.51 38.51 98.50 198.5 398.5 998.5 1998.

3 2.024 5.538 10.13 17.44 34.12 55.55 89.58 167.0 266.5

4 1.807 4.545 7.709 12.22 21.20 31.33 45.67 74.14 106.2

5 1.692 4.060 6.608 10.01 16.26 22.78 31.41 47.18 63.61

6 1.621 3.776 5.987 8.813 13.75 18.63 24.81 35.51 46.08

7 1.573 3.589 5.591 8.073 12.25 16.24 21.11 29.25 36.99

8 1.538 3.458 5.318 7.571 11.26 14.69 18.78 25.41 31.56

9 1.512 3.360 5.117 7.209 10.56 13.61 17.19 22.86 27.99

10 1.491 3.285 4.965 6.937 10.04 12.83 16.04 21.04 25.49

11 1.475 3.225 4.844 6.724 9.646 12.23 15.17 19.69 23.65

12 1.461 3.177 4.747 6.554 9.330 11.75 14.49 18.64 22.24

13 1.450 3.136 4.667 6.414 9.074 11.37 13.95 17.82 21.14

14 1.440 3.102 4.600 6.298 8.862 11.06 13.50 17.14 20.24

15 1.432 3.073 4.543 6.200 8.683 10.80 13.13 16.59 19.51

16 1.425 3.048 4.494 6.115 8.531 10.58 12.82 16.12 18.89

17 1.419 3.026 4.451 6.042 8.400 10.38 12.55 15.72 18.37

18 1.413 3.007 4.414 5.978 8.285 10.22 12.32 15.38 17.92

19 1.408 2.990 4.381 5.922 8.185 10.07 12.12 15.08 17.53

20 1.404 2.975 4.351 5.871 8.096 9.944 11.94 14.82 17.19

21 1.400 2.961 4.325 5.827 8.017 9.830 11.78 14.59 16.89

22 1.396 2.949 4.301 5.786 7.945 9.727 11.64 14.38 16.62

23 1.393 2.937 4.279 5.750 7.881 9.635 11.51 14.20 16.38

24 1.390 2.927 4.260 5.717 7.823 9.551 11.40 14.03 16.17

25 1.387 2.918 4.242 5.686 7.770 9.475 11.29 13.88 15.97

26 1.384 2.909 4.225 5.659 7.721 9.406 11.20 13.74 15.79

27 1.382 2.901 4.210 5.633 7.677 9.342 11.11 13.61 15.63

28 1.380 2.894 4.196 5.610 7.636 9.284 11.03 13.50 15.48

29 1.378 2.887 4.183 5.588 7.598 9.230 10.96 13.39 15.35

30 1.376 2.881 4.171 5.568 7.562 9.180 10.89 13.29 15.22

35 1.368 2.855 4.121 5.485 7.419 8.976 10.61 12.90 14.72

40 1.363 2.835 4.085 5.424 7.314 8.828 10.41 12.61 14.35

45 1.358 2.820 4.057 5.377 7.234 8.715 10.26 12.39 14.08

50 1.355 2.809 4.034 5.340 7.171 8.626 10.14 12.22 13.86

60 1.349 2.791 4.001 5.286 7.077 8.495 9.962 11.97 13.55

70 1.346 2.779 3.978 5.247 7.011 8.403 9.838 11.80 13.33

80 1.343 2.769 3.960 5.218 6.963 8.335 9.747 11.67 13.17

90 1.341 2.762 3.947 5.196 6.925 8.282 9.677 11.57 13.05

100 1.339 2.756 3.936 5.179 6.895 8.241 9.621 11.50 12.95

120 1.336 2.748 3.920 5.152 6.851 8.179 9.539 11.38 12.80

140 1.334 2.742 3.909 5.134 6.819 8.135 9.480 11.30 12.70

Continued on next page
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α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
160 1.333 2.737 3.900 5.120 6.796 8.102 9.437 11.24 12.63

180 1.332 2.734 3.894 5.109 6.778 8.077 9.403 11.19 12.57

200 1.331 2.731 3.888 5.100 6.763 8.057 9.377 11.15 12.52

300 1.328 2.722 3.873 5.075 6.720 7.997 9.297 11.04 12.38

500 1.326 2.716 3.860 5.054 6.686 7.950 9.234 10.96 12.28

∞ 1.323 2.706 3.841 5.024 6.635 7.879 9.141 10.83 12.12

Continued from previous page, r1 = 1

Table C.5: Critical values of the F -distribution with numerator degrees of
freedom r1 = 2

α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
1 7.500 49.50 199.5 799.5 5000. 20000. 80000. 500000. 2000000.

2 3.000 9.000 19.00 39.00 99.00 199.0 399.0 999.0 1999.0

3 2.280 5.462 9.552 16.04 30.82 49.80 79.93 148.5 236.6

4 2.000 4.325 6.944 10.65 18.00 26.28 38.00 61.25 87.44

5 1.853 3.780 5.786 8.434 13.27 18.31 24.96 37.12 49.78

6 1.762 3.463 5.143 7.260 10.92 14.54 19.10 27.00 34.80

7 1.701 3.257 4.737 6.542 9.547 12.40 15.89 21.69 27.21

8 1.657 3.113 4.459 6.059 8.649 11.04 13.89 18.49 22.75

9 1.624 3.006 4.256 5.715 8.022 10.11 12.54 16.39 19.87

10 1.598 2.924 4.103 5.456 7.559 9.427 11.57 14.91 17.87

11 1.577 2.860 3.982 5.256 7.206 8.912 10.85 13.81 16.41

12 1.560 2.807 3.885 5.096 6.927 8.510 10.29 12.97 15.30

13 1.545 2.763 3.806 4.965 6.701 8.186 9.839 12.31 14.43

14 1.533 2.726 3.739 4.857 6.515 7.922 9.475 11.78 13.73

15 1.523 2.695 3.682 4.765 6.359 7.701 9.173 11.34 13.16

16 1.514 2.668 3.634 4.687 6.226 7.514 8.918 10.97 12.69

17 1.506 2.645 3.592 4.619 6.112 7.354 8.701 10.66 12.29

18 1.499 2.624 3.555 4.560 6.013 7.215 8.513 10.39 11.94

19 1.493 2.606 3.522 4.508 5.926 7.093 8.349 10.16 11.64

20 1.487 2.589 3.493 4.461 5.849 6.986 8.206 9.953 11.38

21 1.482 2.575 3.467 4.420 5.780 6.891 8.078 9.772 11.16

22 1.477 2.561 3.443 4.383 5.719 6.806 7.965 9.612 10.95

23 1.473 2.549 3.422 4.349 5.664 6.730 7.863 9.469 10.77

24 1.470 2.538 3.403 4.319 5.614 6.661 7.771 9.339 10.61

25 1.466 2.528 3.385 4.291 5.568 6.598 7.687 9.223 10.46

26 1.463 2.519 3.369 4.265 5.526 6.541 7.611 9.116 10.33

27 1.460 2.511 3.354 4.242 5.488 6.489 7.542 9.019 10.21

28 1.457 2.503 3.340 4.221 5.453 6.440 7.478 8.931 10.09

29 1.455 2.495 3.328 4.201 5.420 6.396 7.419 8.849 9.992

30 1.452 2.489 3.316 4.182 5.390 6.355 7.365 8.773 9.898

35 1.443 2.461 3.267 4.106 5.268 6.188 7.145 8.470 9.519

40 1.435 2.440 3.232 4.051 5.179 6.066 6.986 8.251 9.247

45 1.430 2.425 3.204 4.009 5.110 5.974 6.865 8.086 9.042

50 1.425 2.412 3.183 3.975 5.057 5.902 6.770 7.956 8.883

60 1.419 2.393 3.150 3.925 4.977 5.795 6.632 7.768 8.651

Continued on next page



C.4. CRITICAL VALUES OF THE F -DISTRIBUTION 323

α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
70 1.414 2.380 3.128 3.890 4.922 5.720 6.535 7.637 8.489

80 1.411 2.370 3.111 3.864 4.881 5.665 6.463 7.540 8.371

90 1.408 2.363 3.098 3.844 4.849 5.623 6.409 7.466 8.281

100 1.406 2.356 3.087 3.828 4.824 5.589 6.365 7.408 8.209

120 1.402 2.347 3.072 3.805 4.787 5.539 6.301 7.321 8.103

140 1.400 2.341 3.061 3.788 4.760 5.504 6.255 7.260 8.029

160 1.398 2.336 3.053 3.775 4.740 5.478 6.222 7.215 7.974

180 1.397 2.332 3.046 3.766 4.725 5.457 6.195 7.180 7.931

200 1.396 2.329 3.041 3.758 4.713 5.441 6.175 7.152 7.897

300 1.393 2.320 3.026 3.735 4.677 5.393 6.113 7.069 7.797

500 1.390 2.313 3.014 3.716 4.648 5.355 6.064 7.004 7.718

∞ 1.386 2.303 2.996 3.689 4.605 5.298 5.992 6.908 7.601

Continued from previous page, r1 = 2

Table C.6: Critical values of the F -distribution with numerator degrees of
freedom r1 = 3

α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
1 8.200 53.59 215.7 864.2 5403.0 21610. 86460. 540400.2 2162000.

2 3.153 9.162 19.16 39.17 99.17 199.2 399.2 999.2 1999.

3 2.356 5.391 9.277 15.44 29.46 47.47 76.06 141.1 224.7

4 2.047 4.191 6.591 9.979 16.69 24.26 34.96 56.18 80.09

5 1.884 3.619 5.409 7.764 12.06 16.53 22.43 33.20 44.42

6 1.784 3.289 4.757 6.599 9.780 12.92 16.87 23.70 30.45

7 1.717 3.074 4.347 5.890 8.451 10.88 13.84 18.77 23.46

8 1.668 2.924 4.066 5.416 7.591 9.596 11.98 15.83 19.39

9 1.632 2.813 3.863 5.078 6.992 8.717 10.73 13.90 16.77

10 1.603 2.728 3.708 4.826 6.552 8.081 9.833 12.55 14.97

11 1.580 2.660 3.587 4.630 6.217 7.600 9.167 11.56 13.65

12 1.561 2.606 3.490 4.474 5.953 7.226 8.652 10.80 12.66

13 1.545 2.560 3.411 4.347 5.739 6.926 8.242 10.21 11.89

14 1.532 2.522 3.344 4.242 5.564 6.680 7.910 9.729 11.27

15 1.520 2.490 3.287 4.153 5.417 6.476 7.634 9.335 10.76

16 1.510 2.462 3.239 4.077 5.292 6.303 7.403 9.006 10.34

17 1.502 2.437 3.197 4.011 5.185 6.156 7.205 8.727 9.989

18 1.494 2.416 3.160 3.954 5.092 6.028 7.035 8.487 9.686

19 1.487 2.397 3.127 3.903 5.010 5.916 6.887 8.280 9.424

20 1.481 2.380 3.098 3.859 4.938 5.818 6.757 8.098 9.196

21 1.475 2.365 3.072 3.819 4.874 5.730 6.642 7.938 8.994

22 1.470 2.351 3.049 3.783 4.817 5.652 6.539 7.796 8.816

23 1.466 2.339 3.028 3.750 4.765 5.582 6.447 7.669 8.657

24 1.462 2.327 3.009 3.721 4.718 5.519 6.364 7.554 8.515

25 1.458 2.317 2.991 3.694 4.675 5.462 6.289 7.451 8.386

26 1.454 2.307 2.975 3.670 4.637 5.409 6.220 7.357 8.269

27 1.451 2.299 2.960 3.647 4.601 5.361 6.158 7.272 8.163

28 1.448 2.291 2.947 3.626 4.568 5.317 6.100 7.193 8.066

29 1.445 2.283 2.934 3.607 4.538 5.276 6.048 7.121 7.977

Continued on next page
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α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
30 1.443 2.276 2.922 3.589 4.510 5.239 5.999 7.054 7.894

35 1.432 2.247 2.874 3.517 4.396 5.086 5.802 6.787 7.565

40 1.424 2.226 2.839 3.463 4.313 4.976 5.659 6.595 7.329

45 1.418 2.210 2.812 3.422 4.249 4.892 5.551 6.450 7.151

50 1.413 2.197 2.790 3.390 4.199 4.826 5.466 6.336 7.013

60 1.405 2.177 2.758 3.343 4.126 4.729 5.343 6.171 6.812

70 1.400 2.164 2.736 3.309 4.074 4.661 5.256 6.057 6.673

80 1.396 2.154 2.719 3.284 4.036 4.611 5.193 5.972 6.571

90 1.393 2.146 2.706 3.265 4.007 4.573 5.144 5.908 6.493

100 1.391 2.139 2.696 3.250 3.984 4.542 5.105 5.857 6.432

120 1.387 2.130 2.680 3.227 3.949 4.497 5.048 5.781 6.341

140 1.385 2.123 2.669 3.211 3.925 4.465 5.008 5.728 6.277

160 1.383 2.118 2.661 3.199 3.906 4.441 4.977 5.689 6.230

180 1.381 2.114 2.655 3.189 3.892 4.423 4.954 5.658 6.193

200 1.380 2.111 2.650 3.182 3.881 4.408 4.936 5.634 6.164

300 1.377 2.102 2.635 3.160 3.848 4.365 4.881 5.562 6.078

500 1.374 2.095 2.623 3.142 3.821 4.330 4.838 5.506 6.010

∞ 1.369 2.084 2.605 3.116 3.782 4.279 4.773 5.422 5.910

Continued from previous page, r1 = 3
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