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Introduction

These notes are Part 2 of a two-part series on adjustment computations, Part 1
being introductory and Part 2 being advanced. Together, both parts should provide
the reader with a solid foundation in the theory and application of adjustment
computations, especially as they are used in the disciplines of geodetic science and
engineering and surveying engineering. However, it is expected that researchers,
data analysts, and practitioners from other science and engineering fields can benefit
from these notes as well.

The subject of adjustment computations is a rich topic spanning many science
and engineering disciplines. The need to adjust observations in some meaningful,
or perhaps better yet, optimal, way is an old one. The need becomes obvious
as soon as one realizes that repeated observations of the same phenomenon or
physical quantity usually do not yield the same numerical values. And of course,
this realization ought to occur as soon as one begins taking notice of the things
happening around them, especially if that notice involves the use of instruments
and devices that allow measurement or quantification of some physical, abstract, or
social phenomenon, whether arising in nature or manufactured by humans.

As a young researcher, Carl Gauss was faced with the problem of how to best
use redundant data to predict the trajectory of the asteroid Ceres. Apparently,
Gauss settled on a method later known as “least squares,” some 15 years before it
was made known to the public by Legendre, in 1805, who claimed to be its original
discoverer. The debate over who first discovered least squares, Gauss or Legendre, is
discussed by Stigler (1981), who provides evidence from important geodetic surveys
that favor Gauss’ claim, though Stigler admits that there still is not conclusive
evidence to be absolutely certain about who was first. Perhaps only Gauss will ever
know.

The term least squares is often used adjectivally as in least-squares adjustment,
least-squares solution, the method of least squares, etc. These terms are all more
or less synonymous. The term comes from the mathematical technique of minimiz-
ing the sum of squares of residuals (or sum of squared residuals), where residual
means the difference between an observation and its adjusted value. When obser-
vational weights are involved, the descriptive phrase should be modified to “the
sum of squares of weighted residuals.” Furthermore, the use of weight matrices
in a linear algebra formulation adds another level of detail (correlations between
random observation errors) that is often omitted from the descriptive phrase to
avoid overburdening it. But that is jumping too far ahead for this introduction.
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In the chapters that follow, the term adjustment computations will apply to the
adjustment of observational data by the method of least squares, unless otherwise
noted.

Calculus is used to setup the minimization problem for minimizing the sum
of squared residuals, but the resulting solution can be found equivalently through
both geometrical (projection of vector spaces) and statistical methods. While most
derivations in these notes involve minimization of an objective (target) function that
includes Lagrange multipliers (the Lagrangian approach using calculus), equivalent
statistical derivations and geometric relationships are also given in some places.

The objectives of the former course these notes are based on (GS 762) were
stated by Burkhard Schaffrin as follows:

Objectives: The course makes students aware of various special adjustment
techniques. Relations between the Gauss-Markov model and traditional least-
squares solutions are explored and compared to the collocation technique. Ranks
of matrices are discussed, and they are derived for matrices usually encountered in
adjustment computations. The introduction to generalized matrices will give the
possibility to solve rank-deficient systems. Estimable and non-estimable quanti-
ties in adjustment are defined and discussed, as well as the estimation of variance
components. The role of prior information is clarified, and it is shown how the
least-squares adjustment in a Dynamic Linear Model leads to Kalman filtering. As
a result, students should be able to make a prudent choice of a proper model and
the corresponding adjustment techniques fora host of overdetermined problems in
geodetic science, no matter how complicated.

Chapter 1 begins with a review of the non-linear Gauss-Markov model, show-
ing how the least-squares solution for the unknown parameters of the model can
be arrived at equivalently via both algebraic-geometric and statistical approaches,
resulting in an equivalency between LESS (LEast Squares-Solution) and BLUUE
(Best Linearly Uniformally Unbiased Estimate).

Chapter 2 introduces the linear algebra concepts of vec operator and Kronecker
product, which provide powerful tools for the derivations in chapters that follow.
These concepts deserve attention here, because they typically are not covered in
first courses in linear algebra, which may be the extent of background in linear
algebra for many students using these notes.

In Chapter 3, the estimation of the unknown variance component appearing in
the Gauss-Markov Model is derived from the statistical concept of Best Invariant
Quadratic Uniformly Unbiased Estimate, or BIQUUE.

Chapter 4 treats the concept of expectation-dispersion correspondence, which al-
lows a quadratic model for the unknown variance component to be transformed into
a new linear model and shows how BIQUEE for the unknown variance component
in the Gauss-Markov model is equivalent to LESS within the new model.

Chapter 5 introduces the rank-deficient Gauss-Markov Model, providing a useful
way to treat many adjustment problems in geodetic science where the observations
do not provide enough information to estimate all the unknown parameters of the
model. The concept of generalized inverse is presented, which allows for charac-
terizing the solution space for the unknown model parameters, among which the
estimators MINOLESS (and its equivalent BLUMBE) and partial MINOLESS are
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perhaps most useful.
Chapter 6 introduces variance component estimation, a topic that most re-

searchers and engineers in the geodetic sciences and surveying will likely encounter
in their work sooner or later. It provides a powerful method for dealing with mul-
tiple observational weight matrices for which the relative accuracies among them
may be unknown or uncertain, in which case, estimating a variance component for
each one of them might be desired. This chapter shows how to do that.

Chapter 7 introduces the notion of prior information for the unknown model
parameters. Here, the concept of random, rather, that fixed model parameters
is introduced, and a model is presented that contains both types of parameters,
leading to least-squares estimates of the fixed parameters and predictions for the
random parameters.

Chapter 8 presents the dynamic linear model and derives the least-squares so-
lution within it, which is also known as a Kalman filter.

An appendix contains several matrix properties and identities used throughout
the text. A bibliography at the end includes referenced material and material for
suggested reading.

Notation

A few comments about the notation used in this document may be helpful. Matrices
are displayed in uppercase. Vectors are lowercase and are set in bold-face type (bold
face is not used for any other symbols). Scalar variables are generally lower-case.
Greek letters are used for unknown, non-random parameters, while Latin letters are
used for unknown, random variables. Symbols denoting estimates of non-random
variables use Greek letters with a hat on top, while predictions of random variables
are shown as Latin letters with tildes on top.
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Chapter 1

Review of the Gauss-Markov
Model

The non-linear form of the Gauss-Markov Model (GMM) is written as

Y = a(Ξ) + e, (1.1a)

e ∼ (0, σ2
0P
−1). (1.1b)

The symbols in equation (1.1) are defined as follows:

Y is a given n× 1 vector of observations.

a is a (known) non-linear function such that a : Rm → Rn, m < n.

Ξ is an m× 1 vector of unknown, non-random parameters.

e is an n× 1 vector of unknown, random errors.

σ2
0 is an unknown variance component.

P is a given n× n matrix of observation weights.

We linearize (1.1a) by Taylor-series expansion with respect to a fixed (i.e., non-
random) approximation Ξ0 (called expansion point), which leads to the following
linearized GMM :

y := Y − a(Ξ0) =
∂a(Ξ)

∂ΞT

∣∣∣∣
Ξ=Ξ0

(Ξ−Ξ0) + (higher order terms) + e. (1.2)

Neglecting the higher order terms and defining a coefficient matrix A := ∂a/∂ΞT :
Rm → Rn, m < n, and an incremental parameter vector ξ := Ξ−Ξ0, we can then
write the linearized GMM as

y = Aξ + e, (1.3a)

e ∼ (0, σ2
0P
−1). (1.3b)
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Note that rkA = dimR(A) = m if, and only if, there is no rank deficiency in the
model. For the linearized case this relation holds everywhere in the m-dimensional
space, but it may not hold in the non-linear case.

We review two approaches to estimating the parameter vector ξ:

I. Algebraic-geometric approach (e.g., least-squares adjustment).

II. Statistical approach (e.g., minimum variance, unbiased estimators).

I. Algebraic-geometric approach: This approach uses a weighted least-squares
adjustment, which is derived from the minimization of the weighted L2-norm

‖y −Aξ‖2P = min
ξ

(1.4)

and leads to an estimate ξ̂ for the unknown parameters. Or, being more general,
we can express the problem as a minimization of the random error vector e, which
leads to both the parameter estimate ξ̂ and the predicted random error (or residual)
vector ẽ.

‖e‖2P = min
e,ξ
{e = y −Aξ} (1.5)

The Lagrange target function (or Lagrangian function) to minimize is a scalar-
valued function that is quadratic in the unknown random error vector e. It is
written as

Φ(e, ξ,λ) = eTPe+ 2λT (y −Aξ − e), (1.6)

which must be made stationary with respect to the unknown variables e, ξ, and
λ, where λ is an n × 1 vector of Lagrange multipliers. Accordingly, the Euler-
Lagrange necessary conditions (or first-order conditions) lead to a minimization of
(1.6). In forming the Euler-Lagrange necessary conditions, we take the first partial
derivatives of the target function (1.6), set them to be zero, and use hat and tilde
symbols to denote the particular solutions to these condition equations.

1

2

∂Φ

∂e
= P ẽ− λ̂ .

= 0 (1.7a)

1

2

∂Φ

∂ξ
= −AT λ̂ .

= 0 (1.7b)

1

2

∂Φ

∂λ
= y −Aξ̂ − ẽ .

= 0 (1.7c)

For convenience we define normal equation variables N and c as[
N, c

]
:= ATP

[
A, y

]
. (1.8)

In the following, we often refer to matrix N as the normal equations matrix.
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Solving the three equations (1.7) in the three unknowns ẽ, ξ̂, and λ̂ leads to

λ̂ = P ẽ, (1.9a)

AT λ̂ = ATP ẽ = 0, (1.9b)

implying that

AT λ̂ = ATP (y −Aξ̂) = 0, (1.9c)

which leads to the LEast-Squares Solution (LESS) for ξ as

ξ̂ = (ATPA)−1ATPy = N−1c (1.9d)

and the predicted residual vector

ẽ = (I −AN−1ATP )y. (1.9e)

Note the following relation between the predicted residual vector ẽ and the unknown
random error vector e:

ẽ = (I −AN−1ATP )y = (I −AN−1ATP )(y −Aξ) = (I −AN−1ATP )e. (1.10)

Equation (1.10) shows that, in general, the predicted random error vector ẽ is not
the same as the true (unknown) random error vector e. They would only be the
same if e belonged to the null space of ATP , which is hardly possible since random
measurement errors are involved.

The expectations of the estimated parameter vector ξ̂ and the predicted random
error vector ẽ are given as follows:

E{ξ̂} = N−1ATP · E{y} = N−1ATPAξ = ξ. (1.11)

Equation (1.11) holds for all ξ ∈ Rm. Therefore, ξ̂ is said to be a uniformly unbiased
estimate of ξ.

E{ẽ} = (I −AN−1ATP ) · E{y} = (I −AN−1ATP )Aξ = Aξ −Aξ = 0 = E{e}
(1.12)

Because the n× 1 vector 0 is only one element of Rn, ẽ is considered to be a weakly
unbiased prediction of e.

The associated dispersion and covariance matrices are derived as follows:

D{ξ̂} = N−1ATP ·D{y} · PAN−1 = N−1ATP (σ2
0P
−1)PAN−1 ⇒

D{ξ̂} = σ2
0N
−1, (1.13)

D{ẽ} = (I −AN−1ATP ) ·D{y} · (I − PAN−1AT ) =

= (I −AN−1ATP )(σ2
0P
−1)(I − PAN−1AT ) =

= σ2
0(P−1 −AN−1AT )(I − PAN−1AT

)
=

= σ2
0(P−1 −AN−1AT )− P−1PAN−1AT +AN−1ATPAN−1AT ⇒

D{ẽ} = σ2
0(P−1 −AN−1AT ), (1.14)
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C{ξ̂, ẽ} = N−1ATP ·D{y} · (I − PAN−1AT ) =

= N−1ATP (σ2
0P
−1)(I − PAN−1AT ) =

= σ2
0N
−1AT − σ2

0N
−1ATPAN−1AT = σ2

0(N−1AT −N−1AT )⇒

C{ξ̂, ẽ} = 0. (1.15)

Equation (1.15) shows the “covariance orthogonality.” This is opposed to the
algebraic orthogonality depicted in Figure 1.1, where it is shown that the residual
vector ẽ is added to y to make equation (1.3) consistent. Through the least-squares
principle, we have found a particular residual vector ẽ that is closest to (geometri-
cally orthogonal to) the column space of matrix A.

basis vectors

)A(Rfor 

)A(R

»̂A

y

e~

Figure 1.1: Orthogonality between R(A) and ẽ

Let us consider the P -weighted L2-norm of the residual vector ẽ, which can be
expressed in the following forms:

‖ẽ‖2P = ẽTP ẽ = (y −Aξ̂)TP (y −Aξ̂) = (1.16a)

= yTP (y −Aξ̂)− ξ̂TATP ẽ = (1.16b)

= yTP (y −Aξ̂) = yTPy − cT ξ̂ = yTPy − ξ̂TN ξ̂. (1.16c)

In (1.16) we have used the orthogonality property ATP ẽ = 0 shown in (1.9b).
However, we have not yet shown that equations (1.16) are connected to the “best”
estimate for the variance component σ2

0 . That is, the connection between ẽ and σ̂2
0

is unknown at this point. Furthermore, there is no algebraic principle that allows
us to make this connection; we must use statistics.

II) Statistical approach: This approach gives a more indirect estimate of the
unknown parameters ξ. Our principal unknown is an m × n matrix L that the
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parameter estimate ξ̂ can be derived from. We seek a linear estimator. That
is, the parameter estimates ξ̂ must depend linearly on the observation vector y.
Furthermore, we require the estimate to be uniformly unbiased and to be best in
terms of minimum variance. Together these requirements comprise the Best Linear
Uniformly Unbiased Estimate, or BLUUE, of ξ. The components of BLUUE are
outlined in the following:

(i) Linear requirement:

ξ̂ = Ly + γ, where L ∈ Rm×n and γ ∈ Rm. (1.17a)

Equation (1.17a) is an inhomogeneous linear form due the m × 1 vector γ.
It requires that both L and γ be determined. Therefore, there are m(n + 1)
unknowns, a relatively large number.

(ii) Uniformly unbiased requirement:

ξ = E{ξ̂} for all ξ ∈ Rm ⇒
E{Ly + γ} = LE{y}+ γ = LAξ + γ,

(1.17b)

leading to the two requirements

LA = Im and γ = 0. (1.17c)

Equation (1.17c) specifies m × m constraints in the first equation and m
constraints in the second equation. Thus the number of unknowns minus the
number of constraints is m(n + 1) −m(m + 1) = m(n −m). Therefore, we
have reduced our search space somewhat from m(n+ 1).

(iii) Best requirement: By “best” we mean minimum average-variance. An average
variance can be computed by dividing the trace of the m × m parameter
dispersion matrix by m. However, division by m only scales the quantity to
be minimized, so we can just as well minimize the trace itself.

trD{ξ̂} = σ2
0 tr(LP−1LT ) = min

L
{LA = Im} (1.17d)

The quadratic form LP−1LT in (1.17d) is the term to minimize. The term LA = Im
imposes m×m constraints.

Because unbiasedness is required, the dispersion of ξ̂ is the same as the MSE
of ξ̂. Thus we can write

tr MSE{ξ̂} = trE{(ξ̂ − ξ)(ξ̂ − ξ)T } = E{(ξ̂ − ξ)T (ξ̂ − ξ)} = E{‖ξ̂ − ξ‖2}. (1.18)

The result is an expectation of a vector norm, which is a scalar. Note that the
property of the trace being invariant with respect to a cyclic transformation was
used in (1.18).

The Lagrange target function associated with (1.17d) is

Φ(L,λ) = trLP−1LT + 2 tr Λ(LA− Im), (1.19)
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which must be made stationary with respect to L and Λ. Here, Λ is an m×m sym-
metric matrix of Lagrange multipliers. Accordingly, the Euler-Lagrange necessary
conditions are formed by

1

2

∂Φ

∂L
= L̂P−1 + Λ̂AT

.
= 0 (1.20a)

1

2

∂Φ

∂Λ
= L̂A− Im

.
= 0. (1.20b)

In equation (1.20a) we have used rules (12) and (4) from section 10.3.2 of Lütkepohl
(1996) for derivatives of the trace. Likewise, in equation (1.20b) we have used rule
(5) from the same section of Lütkepohl (see equations (A.20) herein). The two
condition equations are solved simultaneously as follows:

L̂ = −Λ̂TATP

implies that

−Λ̂TATPA = Im ⇒ Λ̂ = −(ATPA)−1,

finally leading to

L̂ = (ATPA)−1ATP. (1.21)

Substituting the solution for L̂ into (1.17a) and using the condition γ = 0 in (1.17c)
leads to the BLUUE for the parameters ξ as

ξ̂ = L̂y + γ = (ATPA)−1ATPy. (1.22)

Comparing (1.22) to (1.9d), reveals that the BLUUE of ξ is equivalent to the
LESS of ξ within the (full-rank) Gauss-Markov model.



Chapter 2

Introducing the vec Operator
and the Kronecker-Zehfuss
Product

The vec operator forms a column vector from the columns of the matrix that it
operates on by stacking one column on top of the next, from first to last.

G
p×q

:=
[
g1, . . . , gq

]
⇒ vecG

pq×1
:=
[
gT1 , . . . , g

T
q

]T
(2.1)

Here g1, . . . , gq are the p× 1 column vectors of G. Note that the reverse operation
is not unique.

Given two p × q matrices A, B such that A
p×q

:= [aij ] and B
p×q

:= [bij ], the

following relationship between the trace and the vec operator holds:

tr(ATB) = tr(BAT ) = (trace invariant with respect to a cyclic transf.) (2.2)

=

p∑
i=1

q∑
j=1

aijbij = (first sum for trace, second for matrix product)

= (vecA)T vecB =

=
∑
ij

aijbij , (multiplies corresponding elements)

which finally allows us to write

tr(ATB) = (vecA)T vecB. (2.3)

Given matrices A of size p×q, B of size q×r, and C of size s×r, we have the fol-
lowing important relationship, which connects the vec operator and the Kronecker-
Zehfuss product (or Kronecker product).

vec(ABCT )
ps×1

= (C ⊗A)
ps×qr

vecB
qr×1

, (2.4)
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where the Kronecker product is defined by

(C ⊗A) := [cijA] =


c11A c12A . . . c1rA

c21A
. . .

...

cs1A cs2A . . . csrA

 . (2.5)

The definition of the Kronecker product, as well as many of its properties, is given
in the appendix and is used in several of the following sections.

Now we generalize formula (2.4) using a quadruple product of matrices, which
is commonly found in the variance-component estimation problem.

tr(ABCTDT ) = tr(DTABCT ) = (trace invariant w.r.t. a cyclic transf.) (2.6a)

= (vecD)T vec(ABCT ) = (using equation (2.3)) (2.6b)

= (vecD)T (C ⊗A) vecB. (using equation (2.4)) (2.6c)

It is also required at times to apply the vec operator to a vector outer-product.
Given a vector a, substitute into equation (2.4) A = a and CT = aT ; also let
B = I1 = 1. Then we have

vec(aaT ) = a⊗ a. (2.7)

Commutation matrices appear in the rules for the Kronecker product in the
appendix. Here we comment that a commutation matrix K is square and has only
ones and zeros for its elements. Each row has exactly a single one, and likewise for
each column. Thus the identity matrix is one example of a commutation matrix.
The commutation matrix is not symmetric (except for the identity matrix), but
it is orthogonal, meaning that K−1 = KT . A commutation matrix is also a vec-
permutation matrix. We illustrate this property by the following example:

K :=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


, A :=

[
a11 a12 a13

a21 a22 a23

]
⇒ vecA =



a11

a21

a12

a22

a13

a23


,

vecAT =



a11

a12

a13

a21

a22

a23


=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1





a11

a21

a12

a22

a13

a23


= K vecA.
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To demonstrate the usefulness of the Kronecker product, we now show certain
applications of it to the Gauss-Markov Model (GMM) and the associated Best
Linear Uniformly Unbiased Estimate (BLUUE). We begin by deriving an alternative
form for the target function (1.19) in order to exploit the Kronecker product.

Φ(L,Λ) = trLP−1LT + 2 tr ΛT (LA− Im) = (2.8a)

= trLP−1LT Im + 2 tr(LA− Im)ΛIm = (noting the symmetry of Λ)

= trLP−1LT Im + 2 trLAΛIm − 2 tr ImΛIm =

= (vecLT )T (Im × P−1) vecLT+

+ 2(vecLT )T (Im ×A) vec Λ− 2(vec Im)T vec Λ⇒
Φ(l,λ) = lT (Im × P−1)l+ 2

[
lT (Im ×A)− (vec Im)T

]
λ (2.8b)

Here, l and λ are variables for the vectorized forms of the unknown matrices L
and Λ and are define as follows:

l := vec(LT ) is an nm× 1 vector containing the rows of L in vector form.
(2.8c)

λ := vec Λ is an m2 × 1 vector comprised of the columns of Λ. (2.8d)

Using vectors l and λ, the following Lagrange target function can be written as an
alternative to (1.19):

Φ(l,λ) = lT (Im ⊗ P−1)l− 2
[
lT (Im ⊗A)− (vec Im)T

]
λ, (2.9)

which must be made stationary with respect to l and λ. Accordingly, the Euler-
Lagrange necessary conditions are written as

1

2

∂Φ

∂l
= (Im ⊗ P−1)̂l− (Im ⊗A)λ̂

.
= 0, (2.10a)

1

2

∂Φ

∂λ
= −(Im ⊗AT )̂l+ vec Im

.
= 0. (2.10b)

The normal equations are then solved for l̂ and λ̂ as follows: Equation (2.10a)
implies that

l̂ = (Im ⊗ P−1)−1(Im ⊗A)λ̂ = (Im ⊗ PA)λ̂, (2.11a)

which, together with (2.10b), further implies

(Im ⊗ATPA)λ̂ = vec Im, (2.11b)

leading to the estimates

λ̂ = (Im ⊗ATPA)−1 vec Im = vec(ATPA)−1, (2.11c)

l̂ = vec(L̂T ) = (Im ⊗ PA) vec(ATPA)−1 = vec
[
PA(ATPA)−1

]
, (2.11d)

and finally to

L̂ = (ATPA)−1ATP. (2.11e)
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The sufficient condition for minimization is satisfied by

1

2

∂2Φ

∂l∂lT
=
∂(Im ⊗ P−1)̂l

∂lT
= Im ⊗ P−1, (2.12)

which is positive definite.
The Best Linear Uniformly Unbiased Estimation (BLUUE) of ξ and its disper-

sion are, respectively,

ξ̂ = L̂y = Λ̂TATPy = (ATPA)−1ATPy, (2.13a)

and

D{ξ̂} = Λ̂TATP (σ2
0P
−1)PAΛ̂ = σ2

0(ATPA)−1 = σ2
0N
−1. (2.13b)

Likewise, the predicted residual vector and its dispersion are, respectively,

ẽ := y −Aξ̂ =
[
In −A(ATPA)−1ATP

]
y, (2.14a)

and

D{ẽ} = σ2
0

[
P−1 −A(ATPA)−1AT

]
. (2.14b)

Corollary: In the Gauss-Markov Model (GMM) with full-rank matrices A and P ,

the BLUUE of ξ is automatically generated by the LESS ξ̂ with the associated
dispersion matrix D{ξ̂} and residual vector ẽ. This fact is called “Gauss’ second
argument in favor of the least-squares adjustment.”



Chapter 3

Variance Component
Estimation

In this chapter we develop estimators for the unknown variance component σ2
0 from

the Gauss-Markov model (GMM) (1.3b). We begin by restating the full-rank GMM
from chapter Chapter 1.

y = Aξ + e, rkA = m < n, e ∼ (0, σ2
0P
−1) (3.1)

Our goal is to determine the estimated variance component σ̂2
0 in such a way that

it is independent of the estimated parameter vector ξ̂.
First note that

E{eeT } = σ2
0P
−1 = D{e}, (3.2a)

and

E{eTe} = E{tr eTe} = E{tr eeT } = trE{eeT } = σ2
0 trP−1 =

= E{(y −Aξ)T (y −Aξ)} = E{yTy} − E{y}TE{y} = E{yTy} − ξTATAξ.
(3.2b)

We see from (3.2b) that σ2
0 and ξ are not decoupled. But we want the estimates σ̂2

0

and ξ̂ to be decoupled so that estimating the variance component σ2
0 has nothing to

do with estimating the parameter vector ξ. To this end we seek the Best Invariant
Quadratic Uniformly Unbiased Estimate, or BIQUUE. Each term in the acronym
BIQUUE is explained below.

BIQUUE

(i) Quadratic requirement: σ̂2
0 is quadratic in the observation vector y, such that

σ̂2
0 = yTMy, (3.3a)
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where M is an unknown n× n matrix to be determined. Since σ̂2
0 is a scalar,

it is equal to its transpose; therefore

σ̂2
0 = (yTMy)T = yTMTy = yT

(
M +MT

2

)
y. (3.3b)

Thus we can use M or MT ; it does not matter. So, without loss of general-
ity, we require the matrix M to be symmetric. This reduces the number of
unknowns from n2 to n(n+ 1)/2.

(ii) Invariant requirement: We require the estimate to be invariant with respect
to translation, i.e., invariant with respect to a shift of y along the range space
of A. The motivation for this requirement is to ensure that σ̂2

0 is independent

of the estimated parameter vector ξ̂, an objective already stated above.

σ̂2
0 = (y −Aξ)TM(y −Aξ) for all ξ ∈ Rm. (3.4a)

Obviously, (3.4a) includes the estimate ξ̂ since it also belongs to Rm. Due to
invariance we can write

σ̂2
0 = yTMy = (y −Aξ)TM(y −Aξ) =

= yTMy − yTMAξ − ξTATMy + ξTATMAξ,
(3.4b)

implying that

ξTATMAξ = 2yTMAξ for any y and any ξ. (3.4c)

“For any ξ” means that ξ could be positive or negative. The left side of (3.4c)
would not change if ξ is replaced by −ξ, but the right side would change in
sign. The only quantity that remains equal when we change the sign of ξ in
(3.4c) is zero. Therefore, the condition becomes

yTMAξ = 0 for any y and any ξ, which is true if, and only if, MA = 0.
(3.4d)

This matrix constraint satisfies the invariant condition; that is, the “decou-
pling” between ξ̂ and σ̂2

0 guarantees invariance.

(iii) Uniformly Unbiased requirement: The equality

σ2
0 = E{σ̂2

0} = E{yTMy} = E{eTMe} (3.5a)

holds since σ̂2
0 = yTMy according to (3.3a). Also, due to the invariant prin-

ciple, e = y −Aξ holds for all ξ. Thus, we may continue with

σ2
0 = trE{MeeT } = tr(MD{e}) = σ2

0 tr(MP−1) for all σ2
0 ∈ R+ ⇔ (3.5b)

1 = tr(MP−1). (3.5c)

Here, R+ denotes the field of positive real numbers. Equation (3.5c) provides
the uniformly-unbiased condition; it holds due to the invariance principle.
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(iv) Best requirement: “Best” means that the dispersion of the estimated variance
component σ̂2

0 must be minimized.

D{σ̂2
0} = min

M

MA = 0

tr(MP−1) = 1
(3.6)

We are dealing with the dispersion of a quadratic form, which is a fourth moment.
Therefore we need to make an additional assumption. We must assume quasi-
normality, which says that the fourth moment behaves as if the random errors e
are normally distributed.

Aside: For the normal distribution, all moments can be written as a function of
the first and second moments. Therefore, for the ith random error ei, we make the
following assumptions:

E{e4
i } = 3(σ2

i )2 and E{e2i+1} = 0. (3.7)

The left side of (3.6) can also be expressed as follows:

D{σ̂2
0} = D{eTMe} = E{eTMeeTMe} − E{eTMe}2 = (3.8a)

= E{eTMeeTMe} −
[
σ2

0 tr(MP−1)
]2

= E{eTMeeTMe} − (σ2
0)2. (3.8b)

Note that in numerical computations we would replace e with y in (3.8) since e
is unknown. However, analytically the results are the same due to the invariance
property.

Now, the expectation term in (3.8b) consists of products in the random vari-
able e; therefore, it can be expressed as a sum of the expectations of all combinations
of the products. We illustrate this with symbols under the respective occurrences
of e as follows (obviously each of these accented vectors e are actually equivalent
to one another):

E{
¯
eTMe˜_

eTM ê} = E{
¯
eTMe˜}E{_eTM ê}+ E{Me˜_

eT }E{M ê
¯
eT }+

+E{
¯
e

_
eT }E{Me˜ êTMT } =

= (σ2
0)2 +ME{eeT }ME{eeT }+ E{eeT }ME{eeT }MT =

= (σ2
0)2 + (σ2

0)2MP−1MP−1 + (σ2
0)2P−1MP−1MT . (3.9)

Noting that M is symmetrical and substituting (3.9) into (3.8b) and then applying
the trace operator yields

D{σ̂2
0} = 2(σ2

0)2 tr(P−1MP−1MT ) = 2(σ2
0)2(vecM)T (P−1 ⊗ P−1) vecM, (3.10)

leading to the following expression that must be minimized:

D{σ̂2
0} = min

M
{MA = 0, tr(MP−1) = 1}. (3.11)
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Introducing an m × n matrix of Lagrange multipliers Λ and a scalar Lagrange
multiplier λ0 leads to the following Lagrange target function:

Φ(M,Λ, λ0) = tr(MP−1MP−1)− 2 tr(MTAΛ)− 2
[
tr(MP−1)− 1

]
λ0, (3.12)

which must be made stationary with respect to the unknown variables M , Λ, and λ0.
An alternative form of the Lagrangian function can be written as

Φ(vecM,λ, λ0) = 2(vecM)T (P−1 ⊗ P−1) vecM+

+ 4(vecM)T (In ⊗A)λ+ 4
[
(vecM)T vecP−1 − 1

]
λ0,

(3.13)

which must be made stationary with respect to vecM , λ, and λ0.
Note that vecM is an n2 × 1 vector; λ is an nm× 1 vector, and λ0 is a scalar.

The equivalence between (3.12) and (3.13) is seen by noting that vec Λ = λ and by
use of (2.2) and (2.5).

The Euler-Lagrange necessary conditions result in

1

4

∂Φ

∂ vecM
= (P−1 ⊗ P−1) vecM + (In ⊗A)λ̂+ vecP−1λ̂0

.
= 0, (3.14a)

1

4

∂Φ

∂λ
= (In ⊗AT ) vecM

.
= 0, (3.14b)

1

4

∂Φ

∂λ0
= (vecP−1)T vecM − 1

.
= 0. (3.14c)

For convenience, a hat symbol is not used over the particular vector vecM that we
solve for in the minimization, as has been done for λ̂ and λ̂0. From (3.14a) we get
the following expression for vecM :

vecM = −(P−1 ⊗ P−1)−1(In ⊗A)λ̂− (P−1 ⊗ P−1)−1 vec (P−1)λ̂0 =

= −(P ⊗ P )(In ⊗A)λ̂− (P ⊗ P ) vec (P−1)λ̂0 =

= −(PIn ⊗ PA)λ̂− vec (PP−1P )λ̂0 ⇒

vecM = −(P ⊗ PA)λ̂− vec (P )λ̂0. (3.15a)

Now, substituting (3.15a) into (3.14b) and dropping the negative sign results in

(In ⊗AT )
[
(P ⊗ PA)λ̂+ vec (P )λ̂0

]
= 0

(In ⊗AT )(P ⊗ PA)λ̂+ (In ⊗AT ) vec (P )λ̂0 = 0

(InP ⊗ATPA)λ̂+ vec(ATPITn )λ̂0 = 0

(P ⊗N)λ̂+ vec(ATP )λ̂0 = 0. (3.15b)

Finally, we can write the estimated vector of Lagrange multipliers as

λ̂ = −(P−1 ⊗N−1) vec(ATP )λ̂0 = − vec(N−1ATPP−1)λ̂0 = − vec (N−1AT )λ̂0.
(3.15c)
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Substituting (3.15c) into (3.15a) yields

vecM = (P ⊗ PA) vec (N−1AT )λ̂0 − vec (P )λ̂0 =

= vec (PAN−1ATP )λ̂0 − vec (P )λ̂0 ⇒

vecM = −
[
vec (P )− vec (PAN−1ATP )

]
λ̂0. (3.15d)

Then we substitute (3.15d) into (3.14c) to obtain

−(vecP−1)T
[
vec (P )− vec (PAN−1ATP )

]
λ̂0 = 1. (3.15e)

Using (2.2) allows us to rewrite (3.15e) and solve for λ̂0 as follows:

− tr
(
P−1

[
P − PAN−1ATP

])
λ̂0 = 1⇒

− tr(In −AN−1ATP )λ̂0 = 1⇒

−
[
tr In − tr(N−1ATPA)

]
λ̂0 = 1⇒

(n−m)λ̂0 = −1⇒

λ̂0 = −1/(n−m). (3.15f)

Now we substitute (3.15f) into (3.15d) and obtain

vecM = vec
{

(n−m)−1
[
P − PAN−1ATP

]}
. (3.15g)

Because the matrices within the vec operator in (3.15g) are of the same size, we can
write

M = (n−m)−1[P − PAN−1ATP ]. (3.15h)

Now we substitute (3.15h) into (3.3a) to obtain an expression for the estimated
variance component as

σ̂2
0 = yTMy = yT

[
(n−m)−1(P − PAN−1ATP )

]
y = (3.16a)

= (n−m)−1
(
yTPy − yTPAN−1ATPy

)
. (3.16b)

Equation (3.16b) is the BIQUUE for the unknown variance component σ2
0 . The

estimated variance component σ̂2
0 has been determined independently from the pa-

rameter estimate ξ̂, which was our objective.

Let us verify that the two conditions stated in (3.6) are satisfied for matrix M .

First condition: MA = 0

MA =
{

(n−m)−1[P − PAN−1ATP ]
}
A = (n−m)−1[PA− PAN−1ATPA]⇒

MA = (n−m)−1[PA− PA] = 0 (3.17a)
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Second condition: tr(MP−1) = 1

tr(MP−1) = tr
({

(n−m)−1[P − PAN−1ATP ]
})
P−1 ⇒

tr(MP−1) = (n−m)−1[tr In − trPAN−1AT ] = (n−m)−1(tr In − tr Im) = 1
(3.17b)

Now using the symbols N and c introduced in (1.8), we can rewrite BIQUUE
(3.16b) as follows:

σ̂2
0 =

yTPy − cT ξ̂
n−m

=
yTPy − ξ̂TN ξ̂

n−m
=
ẽTP ẽ

n−m
. (3.18)

The vector ẽ in (3.18) is the same as the predicted residual vector associated
with the BLUUE of ξ. Thus the BIQUUE variance component σ̂2

0 agrees with that

associated with BLUUE for ξ. Also note that the use of the symbol ξ̂ in (3.18)
is only done for convenience and does not mean that BIQUUE depends on the
estimate for the parameter vector.

Incidentally, if we omit the uniformly-unbiased condition of (3.6), we arrive at
BIQE, which differs from BIQUUE by an addition of 2 in the denominator.

ˆ̂σ2
0 =

ẽTP ẽ

n−m+ 2
= BIQE{σ2

0} (3.19)

The BIQUUE variance component σ̂2
0 is a random variable, so we want to find

its expectation and dispersion.
First it is useful to compute the expectation E{yyT }.

E{yyT } = E{(Aξ + e)(Aξ + e)T } = E{AξξTAT +AξeT + eξTAT + eeT } =

= E{AξξTAT }+ E{AξeT }+ E{eξTAT }+ E{eeT } =

= AξξTAT +AξE{eT }+ E{e}ξTAT +D{e} ⇒
E{yyT } = σ2

0P
−1 +AξξTAT (3.20a)

Next we compute the expectation of σ̂2
0 .

(n−m)E{σ̂2
0} = E{yTPy − yTPAN−1ATPy} =

= trE{yTPy − yTPAN−1ATPy} = tr(PE{yyT })− tr(PAN−1ATPE{yyT }) =

= tr
[
P
(
σ2

0P
−1 +AξξTAT

)]
− tr

[
PAN−1ATP (σ2

0P
−1 +AξξTAT )

]
=

= tr(σ2
0In + ξTNξ)− tr(PAN−1ATσ2

0 + PAN−1ATPAξξTAT ) =

= tr(σ2
0In + ξTNξ)− tr(Imσ

2
0 + ξTNξ)⇒

(n−m)E{σ̂2
0} = σ2

0(n−m) (3.20b)

Finally, we can write the expectation of the BIQUUE variance component as

E{σ̂2
0} = σ2

0 . (3.21)
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Equation (3.21) shows that BIQUUE σ̂2
0 is indeed an unbiased estimate of σ2

0 .
The dispersion of BIQUUE σ̂2

0 is computed as follows: Considering (3.10) and
that matrix M is symmetric, we write

D{σ̂2
0} = 2(σ2

0)2 tr(MP−1MP−1).

Then, considering (3.15h)

D{σ̂2
0} = 2(σ2

0)2 tr
(
[P − PAN−1ATP ]P−1[P − PAN−1ATP ]P−1

)
(n−m)−2 =

= 2(σ2
0)2 tr

(
[In − PAN−1AT ]2

)
(n−m)−2 =

(because [In − PAN−1AT ] is idempotent)

= 2(σ2
0)2
[
tr In − tr(ATPAN−1)

]
(n−m)−2 =

= 2(σ2
0)2(n−m)(n−m)−2,

finally resulting in

D{σ̂2
0} = 2(σ2

0)2/(n−m). (3.22)

Equation (3.22) shows the true dispersion of the BIQUUE variance component
D{σ̂2

0} in terms of the true variance component σ2
0 . Equation (3.22) also implies

that the estimated dispersion is provided by

D̂{σ̂2
0} = 2(σ̂2

0)2/(n−m). (3.23)

From equation (3.23) we see that the estimated dispersion of the BIQUUE variance
component will turn out to be relatively large unless the model redundancy n−m
is large.

We gave the solution to BIQE above; it can be shown that its dispersion is given
by

D{ˆ̂σ2
0} = 2(σ2

0)2/(n−m+ 2). (3.24)
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Chapter 4

Expectation-Dispersion
Correspondence

An alternative approach to estimating the variance component σ2
0 exploits the vec

operator to a larger degree by changing the quadratic estimate to a linear estimate.
Mathematically, this change is expressed by

yTMy → vec(yTMy) = (vecM)T (y ⊗ y). (4.1)

The first term in (4.1) is quadratic in y. The rightmost term is linear in (y ⊗ y).
Note that the equation in (4.1) holds since (using (A.2))

yTMy = tr(yTMy) = tr(MTyI1y
T ) = (vecM)T (y ⊗ y), (4.2)

where M is symmetric by definition.
The key idea is to change our original (quadratic) model so that the Best Linear

Uniformly Unbiased Estimate (BLUUE) of the variance component in the revised
(linear) model is the same as the BIQUUE for the variance component in the original
model. We call this equivalence Expectation-Dispersion (E-D) Correspondence, so
named because we rephrase the dispersion D{σ̂2

0} as an expectation.
We begin by computing the expectation of the Kronecker product y⊗y in (4.1).

Using (2.7) and (3.20a), we can write

E{y ⊗ y} = vecE{yyT } = vec(σ2
0P
−1 +AξξTAT ) = (4.3a)

(applying (2.7) to Aξ)

= (vecP−1)σ2
0 + (Aξ ⊗Aξ)⇒ (4.3b)

(using (A.8))

E{y ⊗ y} = (vecP−1)σ2
0 + (A⊗A)(ξ ⊗ ξ). (4.3c)

Both unknown quantities σ2
0 and ξ appear in equation (4.3c). Note that we could

estimate the term ξ ⊗ ξ appearing (4.3c); however, ξ ⊗ ξ tells us nothing about ξ
itself, and therefore we consider ξ ⊗ ξ to be a nuisance parameter. Note that the
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size of ξ ⊗ ξ is m2 × 1; however the product contains only (m + 1)/2 independent
elements. We need a matrix B that, when multiplied on the left of (4.3c), will
eliminate the nuisance parameters ξ ⊗ ξ, i.e., B(A ⊗ A) = 0. Also, the matrix B
must satisfy

trB +m(m+ 1)/2 = n(m+ 1)/2. (4.4)

For example, we could choose B as

B := (In −AN−1ATP )⊗ (In −AN−1ATP ). (4.5)

It is apparent from (4.5) that B(A ⊗ A) = 0. Also, using (A.13), we have trB =
(n−m)2, which is the number of independent equations left in the model. The rank
of matrix B is easily computed by noting that the matrix within the parenthetical
terms in (4.5) is idempotent and that the rank of an idempotent matrix equals its
trace, and by using (A.13).

After multiplication by matrix B, the resulting model (now linear in y ⊗ y) is
not equivalent to the original model (which is linear in y), but we choose to proceed
with this matrix B anyway. Our next step is to find the expectation E{ẽ⊗ ẽ}, and
to do so we begin with B(y ⊗ y) since

B(y ⊗ y) =
[
(In −AN−1ATP )⊗ (In −AN−1ATP )

]
(y ⊗ y) = (4.6a)

= (In −AN−1ATP )y ⊗ (In −AN−1ATP )y = (4.6b)

= (y −Aξ̂)⊗ (y −Aξ̂) = ẽ⊗ ẽ. (4.6c)

Here, ξ̂ is the BLUUE for the parameter vector in the Gauss-Markov model (GMM).
Continuing, with the help of (4.3c), we find

E{ẽ⊗ ẽ} = B · E{y ⊗ y} = B
[
(vecP−1)σ2

0 + (A⊗A)(ξ ⊗ ξ)
]

= (4.7a)

= B(vecP−1)σ2
0 +B(A⊗A)(ξ ⊗ ξ)⇒ (4.7b)

E{ẽ⊗ ẽ} = B(vecP−1)σ2
0 . (4.7c)

With equation (4.7c) we have a linear model in σ2
0 . An alternative expression for

E{ẽ⊗ ẽ} is derived as follows:

E(ẽ⊗ ẽ) = B(vecP−1)σ2
0 =

=
[
(In −AN−1ATP )⊗ (In −AN−1ATP )

]
(vecP−1) · σ2

0 =
(4.8a)

(applying (A.1))

= vec
[
(In −AN−1ATP )P−1(In − PAN−1AT ) · σ2

0

]
= (4.8b)

(transposing the symmetrical part)

= vec
[
(In −AN−1ATP )(In −AN−1ATP )P−1 · σ2

0

]
⇒ (4.8c)

(exploiting the idempotent property)

E(ẽ⊗ ẽ) = vec(P−1 −AN−1AT ) · σ2
0 . (4.8d)
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Note that the matrix expression (P−1−AN−1AT ) might be singular, but this poses
no problem due to use of the vec operator. We now derive the dispersion of ẽ⊗ ẽ.

First, note that

ẽ = y −Aξ̂ = (Aξ + e)−Aξ̂ = e+A(ξ − ξ̂). (4.9)

This relation, along with the invariance principle, is exploited in the following:

D{ẽ⊗ ẽ} = D{B(y ⊗ y)} = D{B
[
(y −Aξ)⊗ (y −Aξ)

]
} = (4.10a)

= D{B(e⊗ e)} = BD{e⊗ e}BT = (4.10b)

= B
(
E{(e⊗ e)(e⊗ e)T } − E{e⊗ e}E{e⊗ e}T

)
BT . (4.10c)

Now, considering the first expectation term in (4.10c), and temporarily using various
symbols beneath the variables to illustrate how the combinations are formed, we
find

E{(
¯
e⊗ e˜)(

_
e⊗ ê)T } = E{

¯
e⊗ e˜}E{(_e⊗ ê)T }+

+ E{
¯
e

_
eT } ⊗ E{e˜ êT }+K(E{

¯
e êT } ⊗ E{e˜_

eT }),
(4.11a)

or, more simply

E{(e⊗ e)(e⊗ e)T } = E{(e⊗ e)}E{(e⊗ e)T }+
+ E{eeT } ⊗ E{eeT }+K(E{eeT } ⊗ E{eeT }).

(4.11b)

In equation (4.11b) a commutation matrix K has been introduced by way of (A.10).
Inserting (4.11b) into (4.10c) and making use of (3.2a) leads to

D{ẽ⊗ ẽ} = B(I +K)(P−1 ⊗ P−1) · (σ2
0)2 ·BT = (4.12a)

= (σ2
0)2 · (I +K)

[
B(P−1 ⊗ P−1)BT

]
⇒ (4.12b)

D{ẽ⊗ ẽ} = (σ2
0)2 · (I +K)

[
(P−1 −AN−1AT )⊗ (P−1 −AN−1AT )

]
. (4.12c)

In (4.12b) we have used the fact that B is a Kronecker product of the same matrix
(see (4.5)), so that BK = KB. We may now combine equations (4.8d) and (4.12c)
into one succinct expression describing the distribution of ẽ⊗ ẽ as follows:

ẽ⊗ ẽ ∼ (σ2
0 · vec(P−1 −AN−1AT ),

(σ2
0)2 · (I +K)

[
(P−1 −AN−1AT )⊗ (P−1 −AN−1AT )

]
).

(4.13)

Note that both the expectation and dispersion in (4.13) contain the parameter σ2
0 .

Also note that the matrix comprised of the Kronecker product is singular. This
equation has some similarities to the GMM, enough to try the least-squares solution
(LESS) approach to estimate σ2

0 . We call this approach E-D Correspondence, the
concept of which is summarized in the diagram below.

y ∼ (Aξ, σ2
0P
−1)

E-D→
Correspondence

ẽ⊗ ẽ ∼ (E{ẽ⊗ ẽ}, D{ẽ⊗ ẽ}) (4.14)
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In order to proceed with the estimation of σ2
0 using LESS, we need to handle the

singular dispersion matrix in (4.13), which requires a generalized inverse (g-inverse).
The g-inverse of a p× q matrix G is defined as the q × p matrix G− such that

GG−G = G. (4.15)

We seek a g-inverse for the matrix (P−1 − AN−1AT ), which is provided by (P −
PAN−1ATP ), since

(P−1 −AN−1AT )(P − PAN−1ATP )(P−1 −AN−1AT ) = (P−1 −AN−1AT ).
(4.16)

Furthermore, we define the (singular) cofactor matrix from (4.13) as

Q := (I +K)
[
(In −AN−1ATP )P−1 ⊗ (In −AN−1ATP )P−1

]
, (4.17)

where the term (I+K) is essentially a factor of 2 in Q. Let the g-inverse of matrix Q
be called W , so that QWQ = Q. The following matrix satisfies this equation:

W :=
1

4
(I +K)

[
P (In −AN−1ATP )⊗ P (In −AN−1ATP )

]
. (4.18)

Note that multiplication of matrix W on both the right and left by Q yields

QWQ =
1

4
(I +K)3

[
(In −AN−1ATP )P−1 ⊗ (In −AN−1ATP )P−1

]
, (4.19a)

but
1

4
(I +K)3 =

1

4
(I + 3K + 3K2 +K3) =

1

4
(I + 3K + 3I + IK) = I +K. (4.19b)

So, indeed, W is a g-inverse of Q.
In the GMM we reach LESS by minimization of the target function Φ = (y −

Aξ)TP (y − Aξ). Now we are able to write an analogous LESS target function for
the estimated variance component σ2

0 using the g-inverse W derived above.
LESS target function:[

(ẽ⊗ ẽ)− E{ẽ⊗ ẽ}
]T
W
[
(ẽ⊗ ẽ)− E{ẽ⊗ ẽ}

]
=

= {(ẽ⊗ ẽ)− vec
[
(In −AN−1ATP )P−1

]
σ2

0}T ·
·W ·{(ẽ⊗ ẽ)− vec

[
(In −AN−1ATP )P−1

]
σ2

0} = min
σ2
0

. (4.20)

Following the LESS approach, we write a system of normal equations directly, based
on the target function (4.20).

LESS normal equations:{
vec
[
(In −AN−1ATP )P−1

]}T
W vec

[
(In −AN−1ATP )P−1

]
· σ̂2

0 =

=
{

vec
[
(In −AN−1ATP )P−1

]}T
W (ẽ⊗ ẽ). (4.21)
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To derive a solution for the estimated variance component σ2
0 , we first simplify

{vec[(In −AN−1ATP )P−1]}TW,

since it appears in both sides of (4.21). Here we use (A.1) and the fact that (I+K)
is equivalent to a factor of 2 when multiplied in W .{

vec
[
(In −AN−1ATP )P−1

]}T
W =

=
1

2

{
vec
[
(In − PAN−1AT )P (In −AN−1ATP )P−1P (In −AN−1ATP )

]}T
=

=
1

2

[
vec(P − PAN−1ATP )

]T
=
{

vec
[
(In −AN−1ATP )P−1

]}
)TW (4.22a)

Now we substitute (4.22a) into the right side of (4.21) to arrive at{
vec
[
(In −AN−1ATP )P−1

]}T
W (ẽ⊗ ẽ) =

1

2

[
vec(P − PAN−1ATP )

]T
(ẽ⊗ ẽ) =

=
1

2
ẽT (P − PAN−1ATP )ẽ =

1

2
ẽTP ẽ, (4.22b)

since ATP ẽ = 0 according to (1.9b). Next we substitute (4.22a) into the left side
of (4.21).{

vec
[
(In −AN−1ATP )P−1

]}T
W vec

[
(In −AN−1ATP )P−1

]
σ̂2

0 =

=
1

2

[
vec(P − PAN−1ATP )

]T
vec
[
(In −AN−1ATP )P−1

]
σ̂2

0 =

(Continuing with help of (A.2), where matrices A and C are identity in that equa-
tion)

=
1

2
tr
[
(In −AN−1ATP )P−1(P − PAN−1ATP )

]
σ̂2

0 =

=
1

2
tr
[
(In −AN−1ATP )(In −AN−1ATP )

]
σ̂2

0 =

=
1

2
tr
[
(In −AN−1ATP )

]
σ̂2

0 =
1

2
tr
{

(In −N−1ATPA)
}
σ̂2

0 =

=
1

2
(n−m)σ̂2

0 . (4.22c)

Finally, we equate the left side (4.22b) and right side (4.22c) to obtain

1

2
ẽTP ẽ =

1

2
(n−m)σ̂2

0 , (4.22d)

resulting in the following estimate for the variance component σ2
0 :

σ̂2
0 =

ẽTP ẽ

(n−m)
. (4.23)
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We conclude that LESS for the model (4.13) is equivalent to BIQUUE in the
GMM (3.1), which is evident from the respective formulas for the estimated variance
component (4.23) and (3.18).

We can also use E-D correspondence to derive the Best Linear Estimate, BLE,
of σ2

0 . This is done by expressing the estimate ˆ̂σ2
0 as a linear function of ẽ⊗ ẽ and

minimizing its MSE. The solution is equivalent to the BIQE mentioned in Chapter 3.
The problem is setup below.

� Linear requirement:

ˆ̂σ2
0 = LT (ẽ⊗ ẽ). (4.24)

� Best requirement:

MSE{ˆ̂σ2
0} = D{ˆ̂σ2

0}+ (E{ˆ̂σ2
0} − σ2

0)2 =

= LTD{ẽ⊗ ẽ}+ LTE{ẽ⊗ ẽ}E{ẽ⊗ ẽ}TL− 2σ2
0L

TE{ẽ⊗ ẽ}+ (σ2
0)2 = min

L
.

(4.25)

� Solution:

ˆ̂σ2
0 =

ẽTP ẽ

n−m+ 2
= BLE{σ2

0} = BIQE{σ2
0}. (4.26)



Chapter 5

The Rank-Deficient
Gauss-Markov Model

The rank-deficient Gauss-Markov Model (GMM) describes the case where the co-
efficient matrix A (also called design matrix or information matrix) does not have
full column rank. As usual we speak of n observations and m parameters so that
the (linearized) observation vector y is of size n×1, while matrix A is of size n×m.
The model is stated as follows:

y = Aξ + e, e ∼ (0,Σ = σ2
0P
−1), rkA =: q < min{m,n}. (5.1)

The familiar least-squares normal equations are written as

N ξ̂ = c, (5.2a)

where [
N, c

]
:= ATP

[
A, y

]
. (5.2b)

The ranks of the m ×m normal-equations matrix N and the n ×m coefficient
matrix A are related by

rkN = dimR(N) ≤ dimR(AT ) = rkAT = rkA = q < m, (5.3)

where the symbol R stands for range space (also called column space or kernel).
Here we have assumed that m ≤ n, meaning that it is not necessarily a lack of

observations that gives rise to the rank deficiency but that the system of observation
equations does not carry enough information about the parameters to estimate all
of them. In terms of the columns of matrix A, it can be said that only q of them are
linearly independent and that each of the remaining m−q of them can be expressed
as a linear combination of the q independent ones.

The less-than-or-equals sign in (5.3) denotes a more general relationship than
what is needed here. We may change it to the equality sign since the weight matrix P
is positive definite, which means dimR(N) = dimR(AT ). Therefore,

rkN = rkA = q < m. (5.4)
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Likewise, we can make a statement about the range spaces of matrices N and AT

as follows:

R(N) ⊂ R(AT ) and dimR(N) = rkN = rkAT = dimR(AT )⇔ (5.5a)

R(N) = R(AT ). (5.5b)

Question: Do solutions for ξ̂ always exist? Yes, because

c := ATPy ⊂ R(AT ) = R(N). (5.6)

In other words, the vector c is in the range (column) space of N , which guarantees

that we have solutions for N ξ̂ = c.
Question: How many solutions for ξ̂ are there and how do we represent them?

The general solution ξ̂ belongs to a solution hyperspace that is shifted out of the
origin by a particular solution ξ̂part, where ξ̂part is a solution to an inhomogeneous
system of equations. Running parallel to the set of all particular solutions, and
through the origin of the solution hyperspace, is the nullspace of N , which is com-
prised of all the solutions to the homogeneous system N ξ̂ = 0. Therefore we can
write the general solution, as the sum of the particular solutions and the nullspace
of N , denoted N (N), as in

ξ̂ = ξ̂part +N (N). (5.7)

Figure 5.1 shows a graphical representation of equation (5.7). Obviously there
are infinite choices for the particular solution and thus infinitely many solutions for
the unknown parameters within the rank deficient GMM.

Symbolically, we characterize the nullspaces of N and A by

N (N) := {α |Nα = 0} and N (A) := {α |Aα = 0}, (5.8)

respectively. When Aα = 0 so does Nα; therefore

N (N) ⊂ N (A). (5.9a)

Also

dimN (N) = dimN (A) = m− q, (5.9b)

since

N (A)
⊥
⊕R(AT ) = Rm, (5.9c)

which says that the nullspace of matrix A and the range space of AT are both
complimentary and orthogonal subspaces of one another. Because of (5.9a) and
(5.9b), we can state that

N (N) = N (A), (5.9d)

allowing us to extend (5.7) to

ξ̂ = ξ̂part +N (N) = ξ̂part +N (A). (5.10)

Thus we can generate all solutions ξ̂ if we know how to find a particular solu-
tion ξ̂part and if we know how to generate the nullspace of matrix A (or the nullspace
of N). To find the nullspace, we must turn to the topic of generalized inverses.
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Figure 5.1: A schematic representation of the solution space for ξ̂

5.1 Generalized Inverses

Generalized inverses (g-inverses) are important for solving systems of equations that
have singular coefficient matrices. Let G be the g-inverse of matrix N (with both G
and N of size m×m), then

NGN = N, (5.11a)

implying that

N(Im −GN) = 0, (5.11b)

which further implies that

R(Im −GN) ⊂ N (N). (5.11c)

Question: are the two spaces shown in (5.11c) equivalent? The answer is yes, as
shown below.

The matrix (Im −GN) is idempotent since

(Im −GN)(Im −GN) = (Im −GN)−GN(Im −GN) = (Im −GN). (5.12a)
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Therefore rk(Im −GN) = tr(Im −GN), and the dimension of the range space is

dimR(Im −GN) = rk(Im −GN) = tr(Im −GN) = m− tr(GN). (5.12b)

But, GN itself is also idempotent; therefore:

dimR(Im −GN) = m− tr(GN) = m− dimR(GN) = m− q =

= m− dimR(N) = dimN (N).
(5.12c)

Because of (5.11c) and (5.12c), we can indeed say that the spaces in (5.11c) are
equivalent, i.e.,

R(Im −GN) = N (N). (5.12d)

Let the g-inverse matrix G be represented by the symbol N−, then

R(Im −N−N) = N (N) for any N− of N. (5.13)

Using (5.13) together with (5.10), we are now ready to write the complete solu-

tion space of ξ̂ as

ξ̂ = ξ̂part + (Im −N−N)z for any z ∈ Rm and any chosen g-inverse N−. (5.14)

As an aside, we show the dimension of the range space of the idempotent ma-
trix GN used in (5.12c). The rank of a product of matrices must be less than or
equal to the rank of any factor. Therefore:

rk(NGN) ≤ rk(GN) ≤ rkN = rk(NGN) (5.15a)

implying that

rk(GN) = rkN = q. (5.15b)

5.2 Finding a Generalized Inverse

Note the following properties associated with the normal-equations matrix N and
its g-inverse G:

1. GN is idempotent (and as such, is a projection matrix), and so is NG. That
is, GN ·GN = GN , and NG ·NG = NG.

2. Im −GN is idempotent.

3. m ≥ rkG ≥ rkN = q.

Item 3 states that the g-inverse G of N will always have equal or greater rank than
that of N itself.

An important subclass of g-inverses is the reflexive g-inverse. If G is a g-inverse
of N , and if N is also a g-inverse of G, then we say that G is a reflexive g-inverse
of N . Considering item 3 above, if GNG = G, then rkN = q ≥ rkG ⇒ rkG = q.
So, if we are given a g-inverse of rank q, it must be reflexive.
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Another important g-inverse subclass is the Moore-Penrose inverse1, which is
also called the pseudoinverse. If the following four conditions are met, then the
g-inverse G is the pseudoinverse of N denoted as N+.

NGN = N

GNG = G

NG = (NG)T

GN = (GN)T

⇔ G = N+ (5.16)

The pseudoinverse is unique, and if N has full rank (rkN = m), the pseudoinverse
is the same as the regular matrix inverse N−1.

Note that g-inverses of N do not need to be symmetric. However, if G is a
g-inverse of N , then GT is as well. Proof:

(NGN)T = NT = N = NTGTNT = NGTN. (5.17)

We also note that the pseudoinverse of a symmetric matrix is itself symmetric,
and that N+ = N+N(N+)T is positive semidefinite (assuming N is singular). How-
ever, as already stated, an arbitrary g-inverse G might not be symmetric and also
might not be positive semidefinite. However a reflexive symmetric (and therefore
positive semidefinite) g-inverse defined as

N−rs = GNGT (5.18a)

is characterized by

rkN−rs = rkN = q (5.18b)

and

N−rs = N−rsN(N−rs)
T = N−rsNN

−
rs. (5.18c)

The g-inverse N−rs is in the class of reflexive symmetric g-inverses, which is a
very important class for the work that follows. We note that a reflexive symmetric
g-inverse can always be found from a given arbitrary g-inverse N− by

N−rs = N−N(N−)T . (5.19)

There are many ways to construct a g-inverse of N . We show several examples
below. In some of the examples we use a more generic symbol A in order to stress
that the matrix does not have to be symmetric. For the discussion that follows, it
is helpful to partition N so that the upper-left q × q block matrix N11 has rank q
as follows:

N
m×m

=

[
N11 N12

N21 N22

]
, dimN11 = q × q, rkN11 = q = rkN. (5.20)

1According to Cross (1985), this g-inverse was first discovered by Moore in 1920 and then
independently by Penrose in 1955.
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The equations in (5.20) imply that the second column of the partitioned matrix
is a linear combination of the first column. Therefore, for some q×(m−q) matrix L,
we have [

N12

N22

]
=

[
N11

N21

]
· L, or N12 = N11L and N22 = N21L. (5.21)

In practice, the rows and columns of N might have to be reordered to ensure
that N11 is full rank as shown in (5.20), but that is usually easy to do. Also note
that since N is positive semidefinite, it can be decomposed as follows:

N =

[
UTDU UTDH

HTDU HTDH

]
=

[
UT

HT

]
D
[
U H

]
=

[
(D1/2U)T

(D1/2H)T

] [
D1/2U D1/2H

]
.

(5.22)

Here, U is an upper triangular matrix of size q × q; H is size q × (m− q), and D is
a q × q diagonal matrix. Also note that (D1/2U)T is the Cholesky factor of N11.

g-inverse example 1: (with N defined as in (5.22))

N− =

[
UT

HT

] (
UUT +HHT

)−1
D−1

(
UUT +HHT

)−1
[
U H

]
(5.23)

Check:

NN− =

[
UT

HT

]
D
[
U H

] [UT
HT

] (
UUT +HHT

)−1
D−1

(
UUT +HHT

)−1
[
U H

]
=

=

[
UT

HT

] (
UUT +HHT

)−1
[
U H

]
⇒

NN−N =

[
UT

HT

] (
UUT +HHT

)−1
[
U H

] [
UT

HT

]
D
[
U H

]
=

=

[
UT

HT

]
D
[
U H

]
= N

Since this g-inverse N− has rank q, it is reflexive. Obviously it is also symmetric.
Therefore, it could also be labeled N−rs. In this case it also satisfies all the properties
of a pseudoinverse.

g-inverse example 2: (see Lütkepohl (1996), section 9.12.3, item (3))

N− =

[
(D1/2U)T

(D1/2H)T

]([
D1/2U D1/2H

] [(D1/2U)T

(D1/2H)T

])−2 [
D1/2U D1/2H

]
= N+

(5.24)

The properties (5.16) can be verified for (5.24) after some tedious matrix multipli-
cation.
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g-inverse example 3:

N− =

[
N−1

11 0

0 0

]
= N−1

rs (5.25)

Check:

NN−N =

[
N11 N12

N21 N22

][
N−1

11 0

0 0

][
N11 N12

N21 N22

]
=

[
Im 0

N21N
−1
11 0

][
N11 N12

N21 N22

]
=

=

[
N11 N12

N21N
−1
11 N11 N21N

−1
11 N12

]
=

[
N11 N12

N21 N21N
−1
11 N12

]
From (5.21) we have N12 = N11L and N22 = N21L so that N21N

−1
11 N12 = N21L =

N22, which completes the check. Reflexivity is easy to check also.

g-inverse example 4: By rank factorization, the n×m matrix A may be factored
into the product of an n× q matrix F and a q×m matrix H, where rkA = rkF =
rkH = q and A = FH. Then a reflexive g-inverse of A may be obtained by

A−r = HT (HHT )−1(FTF )−1FT . (5.26)

5.3 The Singular Value Decomposition

Given a matrix A of size n × m and rkA = q, the singular values of A are the
positive square roots of the positive eigenvalues of ATA or AAT , which are square,
symmetric matrices with real eigenvalues. (Note that only the positive eigenvalues of
the matrix products ATA and AAT are the same.) Let the diagonal n×m matrix Λ
contain q non-zero elements, being the singular values λj of A where j = 1, . . . , q.
Let U be the orthogonal n× n matrix whose columns are the eigenvectors of AAT ,
and let V be the orthogonal m ×m matrix whose columns are the eigenvectors of
ATA. Then

A = UΛV T (5.27)

is the Singular Value Decomposition (SVD) of matrix A. Note that if A is sym-
metric, U = V . The g-inverse examples 5 through 8 below are all based on the
SVD.

g-inverse example 5: Define a q × q diagonal matrix as

∆−1 = diag(λj), j = 1, . . . , q. (5.28)

{A−} = {V

[
∆−1 K

L M

]
UT | K,L,M arbitrary with suitable size} (5.29)

The rank of the block matrix can vary between q and m depending on the choices
for K, L, and M .
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g-inverse example 6:

{A−r } = {V

[
∆−1 K

L L∆K

]
UT | K,L arbitrary with suitable size} (5.30)

g-inverse example 7:

{A−rs} = {V

[
∆−1 LT

L L∆LT

]
UT | L arbitrary with suitable size} (5.31)

g-inverse example 8:

A+ = V

[
∆−1 0

0 0

]
UT (5.32)

g-inverse example 9: Zlobec’s formula for the pseudoinverse is

N+ = N(NNN)−N, (5.33)

where the g-inverse can be any g-inverse of N3. The invariance of N+ with respect
to the choice of the g-inverse in Zlobec’s formula is due to the g-inverse’s placement
between the two occurrences of matrix N . Again we note that the pseudoinverse is
unique, but there are a variety of ways to generate it.

Now that we have seen how to generate a g-inverse, the next question regard-
ing our general solution (5.14) is “how do we represent the particular solution

ξ̂part?” We claim that ξ̂part is represented by N−c (or equivalently N−ATPy)
since NN−ATPy = c. To validate this claim, we must show that

NN−AT = AT , (5.34a)

which is done in the following: Because N begins with AT , we can write

R(NN−AT ) ⊂ R(AT ). (5.34b)

Furthermore,

dimR(NN−AT ) = rk(NN−AT ) ≥ rk([NN−AT ]PA) = (5.34c)

= rkNN−N = rkN = q ≥ rk(NN−AT ), v (5.34d)

or

rk(NN−AT ) ≥ q ≥ rk(NN−AT ), v (5.34e)

implying that

rk(NN−AT ) = q, but also dimR(AT ) = q, (5.34f)

which further implies

R(NN−AT ) = R(AT ). (5.34g)
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Thus, we conclude that

NN−AT = AT , (5.35a)

and, after transposing,

AN−N = A. (5.35b)

Therefore it follows that

(NN−AT )Py = ATPy = c. (5.35c)

We can now write our general solution (5.14) in terms of N−c as follows:

ξ̂ = {N−c+ (Im −N−N)α | α ∈ Rm} for any chosen g-inverse N−, (5.36)

where α is an arbitrary, but non-random, m× 1 vector.
From the law of error propagation, we find the dispersion of the general solution

to be

D{ξ̂} = D{N−c+ (Im −N−N)α} =

= N−D{c}(N−)T = σ2
0N
−N(N−)T = σ2

0N
−
rs. (5.37)

We now verify that the dispersion matrix in (5.37) is indeed a reflexive symmetric
g-inverse.

1. Obviously the dispersion matrix σ2
0N
−N(N−)T is symmetric.

2. The matrix N−N(N−)T is a g-inverse of N because:

N [N−N(N−)T ]N = (NN−N)(N−)TN = N(N−)TN = N,

recalling that if N− is a g-inverse of N , so is (N−)T .

3. The matrix N is a g-inverse of N−N(N−)T because:

[N−N(N−)T ]N [N−N(N−)T ] = N−(N(N−)TN)[N−N(N−)T ] =

= N−N [N−N(N−)T ] = N−(NN−N)(N−)T = N−N(N−)T .

Because the dispersion in (5.37) is represented by a reflexive symmetric g-inverse
of N , we may, without loss of generality, restrict ourselves to reflexive symmetric
g-inverses in our search for a general solution ξ̂.

We have infinite choices for our particular solution ξ̂part, but one of particu-
lar interest is that which is shortest in magnitude (i.e., smallest L2-norm). This
particular solution can be derived by imposing a minimum norm condition on the
parameter vector in the least-squares target function, and it is thus called MInimum
NOrm LEast-Squares Solution (MINOLESS).



38 CHAPTER 5. THE RANK-DEFICIENT GAUSS-MARKOV MODEL

5.4 Minimum Norm Least-Squares Solution

MINOLESS is an acronym for MInimum NOrm LEast-Squares Solution. We know
that, within the rank deficient GMM, N ξ̂ = c has many solutions; we seek the short-
est (minimum norm) of these. The idea is to minimize the norm (inner product),

of ξ̂, according to

ξT ξ = min
ξ

such that Nξ = c. (5.38)

Thus, if ξ is an “incremental” parameter vector, as it is under linearization, mini-
mum norm means minimum change from the initial vector ξ0, e.g., the initial Taylor
series expansion point.

The Lagrange target function to minimize is written as

Φ(ξ, λ) := ξT ξ + 2λT (Nξ − c), (5.39)

which must be made made stationary for ξ and λ, where λ is an m × 1 vector
of Lagrange multipliers. Accordingly, the Euler-Lagrange (first-order) necessary
conditions are then written as

1

2

∂Φ

∂ξ
= ξ̂T + λ̂TN

.
= 0, (5.40a)

1

2

∂Φ

∂λ
= ξ̂TN − cT .

= 0. (5.40b)

The sufficient condition (i.e., that second partial derivative must be positive) is
satisfied since (1/2)∂2Φ/∂ξ∂ξT = In, which is positive definite.

Equations (5.40a) and (5.40b) lead to the solution ξ̂ as follows:

ξ̂ = −N λ̂ and N ξ̂ = c,

implying that

c = −NN λ̂⇒ λ̂ = −(NN)−c.

Finally, we arrive at the solution for the unknown parameters ξ as

ξ̂ = N(NN)−c. (5.41)

Note that N(NN)− is a particular g-inverse of N , but also note that (NN)− 6=
N−N−. Equation (5.41) is one expression of MINOLESS. There are others, as will

be shown later. Using variance propagation, the dispersion of ξ̂ is given by

D{ξ̂} = N(NN)− ·D{c} · (NN)−N = σ2
0N(NN)−N(NN)−N, (5.42)

which implies that

N(NN)−N(NN)−N = N−rs. (5.43)

Here, we have used the fact that any power of the symmetric matrix N is also
symmetric, and the g-inverse of a symmetric matrix is also symmetric. The matrix
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scaled by σ2
0 in (5.42) is called cofactor matrix. We can always express a LESS as

a product of such a cofactor matrix and the normal equation vector c. That is,

σ2
0 · ξ̂ = D{ξ̂} · c for any ξ̂. (5.44)

Therefore, we can also express MINOLESS in terms of the matrix N−rs in (5.43) by
writing

ξ̂ = [N(NN)−N(NN)−N ]c. (5.45)

Here, we note that the product AN−AT is invariant with respect to the chosen
g-inverse N−. Also, not only is N(NN)− a g-inverse of N , according to (5.17)
its transpose (NN)−N is also a g-inverse of N . Based on these relations, and by
expressing (5.45) alternatively as

ξ̂ = [ATPA(NN)−N(NN)−N ]ATPy, (5.46)

it is seen that (5.45) is unique regardless of the choice of the g-inverse.

Typically, in geodetic science applications the estimated parameter vector ξ̂ is
a vector of corrections to initial approximations (non-linear case). As noted above,
using MINOLESS in this case guarantees that changes from the initial approxima-
tions are a minimum, in terms of the L2-norm. This minimum-norm solution is
shown schematically in Figure 5.2.

5.5 Partial Minimum Norm Least-Squares Solu-
tion

In some cases we may only want a certain subset of the initial parameter vector
to change in a minimum-norm sense. For example, we may know the locations of
some geodetic network points to a high level of accuracy, while locations of the
remaining network points may not be known as well or may even be known only
approximately. In this case, we may wish to employee partial-MINOLESS, which
is based on using a selection matrix to choose a subset of the parameters for norm
minimization.

The minimization problem is then stated as

ξ̂TSξ̂ = min
ξ̂
{N ξ̂ = c}, S :=

[
Is 0

0 0

]
. (5.47)

The size of the identity matrix Is corresponds to the number of selected parameters.
Note that we can always construct S with Is in the upper-left block, as shown in
(5.47), by reordering the parameter vector if necessary.

The Lagrange target function to minimize in this case is given by

Φ(ξ,λ) := ξTSξ − 2λT (Nξ − c), (5.48)
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Figure 5.2: Schematic representation of the solution space for MINOLESS

which must be made stationary with respect to ξ and λ. Accordingly, The Euler-
Lagrange necessary conditions are written as

1

2

∂Φ

∂ξ
= ξ̂TS − λ̂TN .

= 0⇒ Sξ̂ −N λ̂ .
= 0, (5.49a)

1

2

∂Φ

∂λ
= ξ̂TN − cT .

= 0⇒ N ξ̂ − c .
= 0. (5.49b)

The sufficient condition for minimization is satisfied since (1/2)∂2Φ/∂ξ∂ξT = S,
which is positive (semi) definite.

Obviously matrix S is singular, but we choose S so that (S + N) is invertible,
requiring that S selects at least m − rkA parameters, or equivalently requiring
rkS ≥ m− q. We solve the above system of normal equations as follows:

By adding equations (5.49a) and (5.49b) we obtain

(S +N)ξ̂ = N λ̂+ c, (5.50a)

leading to

ξ̂ = (S +N)−1(N λ̂+ c). (5.50b)
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Substituting (5.50b) into (5.49b) yields

N(S +N)−1(N λ̂+ c)− c = 0,

or

N(S +N)−1N λ̂ = c−N(S +N)−1c =

= [(S +N)−N ](S +N)−1c = S(S +N)−1c,

leading to

λ̂ = [N(S +N)−1N ]−S(S +N)−1c (5.50c)

as an estimate for the vector of Lagrange multipliers. Then, substituting (5.50c)
into (5.50a) yields

(S +N)ξ̂ = c+N [N(S +N)−1N ]−S(S +N)−1c. (5.50d)

We use the identity NN−c = c to write an equivalent equation

(S +N)ξ̂ = N [N(S +N)−1N ]−N(S +N)−1c+

+N [N(S +N)−1N ]−S(S +N)−1c =

= N [N(S +N)−1N ]−
[
N(S +N)−1 + S(S +N)−1

]
c =

= N
[
N(S +N)−1N

]−
c, (5.50e)

finally leading to the partial-MINOLESS

ξ̂ = ξ̂P-MINOLESS = (S +N)−1N [N(S +N)−1N ]−c. (5.50f)

Using the law of covariance propagation, we write the partial-MINOLESS dis-
persion matrix as

D{ξ̂} = σ2
0(S +N)−1N [N(S +N)−1N ]−N [N(S +N)−1N ]−N(S +N)−1.

(5.51)
We may rewrite the partial-MINOLESS solution, replacing the matrix multiply-

ing c in (5.50f) with the cofactor matrix appearing in the dispersion (5.51), resulting
in

ξ̂P-MINOLESS = (S +N)−1N [N(S +N)−1N ]−N [N(S +N)−1N ]−N(S +N)−1c.
(5.52)

Now, what happens if we replace S by Im, i.e., all parameters are selected for
norm minimization? Obviously partial-MINOLESS becomes MINOLESS itself as
shown below.

ξ̂Im−MINOLESS = (Im +N)−1N
[
N(Im +N)−1N

]−
N ·

·
[
N(Im +N)−1N

]−
N(Im +N)−1c =

= (Im +N)−1N
[
N(Im +N)−1N

]−
c⇒

ξ̂MINOLESS = N+c (5.53)
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The dispersion for MINOLESS is computed by

D{ξ̂MINOLESS} = D{N+c} = N+D{c}N+ = σ2
0N

+. (5.54)

It is interesting to compare (5.53) with the form of MINOLESS found earlier
in (5.41). Once again we note that regardless of the form of MINOLESS (or simi-
larly the form of N+), the MINOLESS is unique. However, there is no connection
between MINOLESS and BLUUE, as there is no unbiased estimate for this LESS.
That is, the rank deficient GMM has no unbiased solution for the unknown param-
eters. This fact is easily demonstrated by attempting to derive a LUUE (Linear
Uniformly Unbiased Estimate) as follows.

The Linear Uniformly Unbiased Estimate (LUUE) requires that

ξ̂ = Ly,

with L being an m× n matrix. Then

ξ = E{ξ̂} = LE{y} = LAξ,

with the size of LA being m×m and rk(LA) ≤ rkA = q < m. But, LA is singular,
and therefore LA 6= Im. Thus, LUUE = ∅; i.e., there is no unbiased solution for ξ.

5.6 Best Least-Squares Solution

We expect the least-squares solution to be best in a certain class. By best we mean
that the trace of its dispersion matrix is minimum. We already found that the
dispersion is based on a reflexive symmetric g-inverse, i.e.,

D{ξ̂LESS} = σ2
0N
−
rs for all N−rs. (5.55)

Our task now is to compare the trace of the dispersion matrix from MINOLESS
to that of a general LESS, recalling that the best LESS must satisfy the normal
equations N ξ̂ = c. We start by expressing the estimate as a linear combination of
the observations as follows:

ξ̂ = Ly, with NL = ATP, (5.56a)

which implies that

D{ξ̂} = σ2
0LP

−1LT , (5.56b)

permitting us to write

σ−2
0 trD{ξ̂} = tr(LP−1LT ) = min

LT
{LTN = PA}. (5.56c)

So we see that minimizing the trace of the dispersion matrix is tantamount to
minimizing the m × n matrix L (under the specified conditions) since the weight
matrix P is fixed. Analogous to (2.9), we make use of the vec operator and the
Kronecker-Zehfuss product to form the following Lagrange target function, where
l := vecLT :

Φ(l,λ) := lT (Im ⊗ P−1)l+ 2λT
[
N ⊗ Inl− vec(PA)

]
, (5.57)
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which must be made stationary with respect to l and λ. To clarify the form of
the target function, we note that the first product comes from applying (A.2) to
tr(LP−1LT ) = tr(P−1LT InL). The term containing the Lagrange multiplier λ
comes from the constraint LTN −PA = 0 with application of the vec operator such
that vec(InL

TN)− vec(PA) = 0, followed by the application of (A.1).

The Euler-Lagrange necessary conditions are

1

2

∂Φ

∂l
= (Im ⊗ P−1)̂l+ (N ⊗ In)λ̂

.
= 0, (5.58a)

1

2

∂Φ

∂λ
= (N ⊗ In)̂l− vec(PA)

.
= 0. (5.58b)

The sufficient condition for minimization is satisfied since (1/2) · ∂2Φ/(∂l∂lT ) =
(In⊗P−1) is positive definite. The system of normal equations is solved as follows:

l̂ = −(Im ⊗ P−1)−1(N ⊗ In)λ̂ = −(N ⊗ P )λ̂, from (5.58a). (5.59a)

And, by substituting the preceding equation into (5.58b),

vec(PA) = −(NN ⊗ P )λ̂. (5.59b)

We need (N ⊗ P )λ̂; so we exploit the fact that N(N2)−N2 = N by multiplying
both sides of (5.59b) by (N(NN)− ⊗ In), which gives

(N(NN)− ⊗ In) vec(PA) = −(N(NN)− ⊗ In)(NN ⊗ P )λ̂ =

= (N(NN)− ⊗ In) vec(PA) = −(N ⊗ P )λ̂ = l̂,

leading to

l̂ = vec
[
InPA(N(NN)−)T

]
= vec(PA(NN)−N) = vecLT , (using (A.1)), (5.59c)

implying that

LT = PA(NN)−N ⇒ L = N(NN)−ATP. (5.59d)

Finally, we substitute (5.59d) into (5.56a) to get (compare to (5.41))

ξ̂ = Ly = N(NN)−ATPy = N(NN)−c = ξ̂MINOLESS. (5.59e)

Thus we find that MINOLESS is best among all LESS with minimum trace. How
can we prove this directly? We start by showing that (N+N)N−rs(NN

+) = N+ and
then exploit this relationship in the proof that follows.

(N+N)N−rs(NN
+) = N+(NN−rsN)N+ = N+NN+ = N+

implying that

trN+ = tr
[
(N+N)N−rs(NN

+)
]
.



44 CHAPTER 5. THE RANK-DEFICIENT GAUSS-MARKOV MODEL

We continue by exploiting symmetry and applying a cyclic transformation.

trN+ = tr
[
(NN+)T (N+N)N−rs

]
=

= tr
[
N+NN−rs

]
= (because N+N is idempotent)

= tr
[
N−rs −N−rs +N+NN−rs

]
=

= tr
[
N−rs − (Im −N+N)N−rs

]
=

= trN−rs − tr
[
(Im −N+N)(Im −N+N)N−rs

]
=

(because (Im −N+N) is idempotent)

= trN−rs − tr
[
(Im −N+N)T (Im −N+N)N−rs

]
=

(transpose due to symmetry)

= trN−rs − tr
[
(Im −N+N)N−rs(Im −N+N)T

]
= (cyclic transformation)

But, the triple product is positive semi-definite; therefore we can state that

trN+ = trN−rs − tr
[
(Im −N+N)N−rs(Im −N+N)T

]
≤ trN−rs. (5.60)

Thus we have proved directly that the pseudoinverse N+ provides a minimum trace
in the class of cofactor matrices

trN+ ≤ trN−rs for all N−rs. (5.61)

Can we make a similar characterization of partial-MINOLESS? Is it partially
best in terms of having the smallest (partial) trace of the cofactor matrix? In other
words, is the sum of the cofactor diagonal elements corresponding to the selected
points smallest? The answer is yes, as we show below.

Analogous to (5.56c) we minimize a subset of the trace of the parameter disper-
sion matrix as

σ−2
0 tr(SD{ξ̂}) = min

LT
such that LTN = PA. (5.62)

From (5.50f) we already know that matrix L should satisfy L := (S+N)−1N [N(S+
N)−1N ]−ATP . Analogous to (5.57), we write the following Lagrange target func-
tion:

Φ(l,λ) := lT (S ⊗ P−1)l+ 2λT
[
(N ⊗ In)l− vec(PA)

]
, (5.63)

which must be made stationary with respect to l and λ. Again we have defined
l := vecLT . Accordingly, the Euler-Lagrange necessary conditions are written as
(compare to (5.58a) and (5.58b))

1

2

∂Φ

∂l
= (S ⊗ P−1)̂l+ (N ⊗ In)λ̂

.
= 0, (5.64)

1

2

∂Φ

∂λ
= (N ⊗ In)̂l− vec(PA)

.
= 0. (5.65)
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Note that (S ⊗ P−1) is not invertible due to the singularity of S, in general. We
solve the system of equations (5.64) and (5.65) as follows: Multiplying (5.64) by
(In ⊗ P ) gives

(S ⊗ In)̂l+ (N ⊗ P )λ̂ = 0. (5.66a)

Adding this to (5.65) yields

[(N + S)⊗ In ]̂l = vec(PA)− (N ⊗ P )λ̂, (5.66b)

leading to

l̂ = [(N + S)⊗ In]−1 vec(PA)− [(N + S)⊗ In]−1(N ⊗ P )λ̂ =

= [(N + S)−1 ⊗ In] vec(PA)− [(N + S)−1 ⊗ In](N ⊗ P )λ̂ =

= vec[PA(N + S)−1]− [(N + S)−1N ⊗ P ]λ̂, using (A.2). (5.66c)

Now substitute l̂ from (5.66c) into (5.65) to obtain

vec(PA) = (N ⊗ In)
{

vec[PA(N + S)−1]− [(N + S)−1N ⊗ P ]λ̂
}

=

= vec[PA(N + S)−1N ]− [N(N + S)−1N ⊗ P ]λ̂, using (A.1). (5.66d)

Now, the product that includes λ̂ in (5.66a) can be expressed as follows:

(N ⊗ P )λ̂ =
{
N [N(N + S)−1N ]− ⊗ In

}
[N(N + S)−1N ⊗ P ]λ̂. (5.66e)

Combining (5.66d) and (5.66e) gives

(N ⊗ P )λ̂ = −
{
N [N(N + S)−1N ]− ⊗ In

}
[vec(PA)− vec[PA(N + S)−1N ].

(5.66f)

Multiplying the right side through and using (A.1) yields

(N ⊗ P )λ̂ = − vec
{
PA[N(N + S)−1N ]−N

}
+

+ vec
{
PA(N + S)−1N [N(N + S)−1N ]−N

}
.

(5.66g)

Recalling that N = ATPA, the matrix A in the last term of the preceding line can
be replaced by A = AN−N , see (5.35a), which permits reduction of said term to
vec(PA).

(N ⊗ P )λ̂ = − vec
{
PA[N(N + S)−1N ]−N

}
+ vec(PA) (5.66h)

Now we can substitute the preceding line into (5.66b) in order to solve for l̂.

vec(PA)−
[
(N + S)⊗ In

]̂
l = − vec

{
PA[N(N + S)−1N ]−N

}
+ vec(PA), (5.66i)

implying that

l̂ =
[
(N + S)−1 ⊗ In

]
vec
{
PA[N(N + S)−1N ]−N

}
=

= vec
{
PA[N(N + S)−1N ]−N(N + S)−1

}
= vec(L̂T ), (5.66j)
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which finally leads to an expression for the m×m matrix L as

L̂ = (N + S)−1N [N(N + S)−1N ]−ATP, with ξ̂P-MINOLESS = L̂y. (5.66k)

This agrees with our solution in (5.50f) and shows that partial-MINOLESS indeed
yields the minimum partial trace of the dispersion matrix amongst all other esti-
mators; thus it is partially best.

5.7 Best Linear Uniformly Minimum Bias Esti-
mate

Analogous to BLUUE in the GMM of full rank, we take a statistical approach
here to derive an estimator in the rank-deficient GMM. We already stated that all
estimates ξ̂ in the rank-deficient GMM are biased by our treatment of the rank
deficiency. We wish to minimize this bias by finding the Best Linear Uniformly
Minimum Bias Estimate (BLUMBE ). The attributes of BLUMBE are described
below.

(i) Linear: The estimate is required to be linear in the observation vector y.

ξ̂ = Ly, where the m× n matrix L is to be determined. (5.67)

(ii) Minimum bias:

E{ξ̂} = (LA)ξ, with rk(LA) ≤ rkA = q ⇒ LA 6= Im. (5.68)

v

We see that the matrix product LA cannot be the identity matrix Im because
it has rank q < m. But the product LA would need to be equal to Im in order
for the estimate to be uniformly unbiased. We call the difference LA − Im
the bias matrix, and we wish to make it as small as possible by minimizing
its L2-norm, or rather by minimizing the square of the norm as follows (see
definition of the Euclidean norm of a matrix in the appendix):

Φ(L) = ‖LA− Im‖22 = tr
[
(LA− Im)(LA− Im)T

]
= min

L
. (5.69)

The (first-order) necessary conditions lead to

(AAT )LT −A .
= 0 or (LA− Im)AT = 0. (5.70)

See the appendix for derivatives of the trace. Of course the sufficiency condi-
tions are satisfied for minimization since AAT is positive semi-definite. From
(5.70) we have the geometric interpretation that R(ATLT − Im) ∈ N(AT ).
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(iii) Best: The trace of dispersion matrix must be minimum.

We wish to minimize the dispersion matrix D{ξ̂} = σ2
0LP

−1LT . Dropping
the constant σ2

0 and considering (ii) leads to the following target function to
minimize:

Φ(LT ,Λ) = tr(LP−1LT ) + 2 tr(LA− Im)ATΛ, (5.71)

which must be made stationary with respect to LT and Λ. Accordingly, the
Euler-Lagrange necessary conditions are written as

1

2

∂Φ

∂LT
= P−1L̂T +AAT Λ̂

.
= 0, (5.72a)

1

2

∂Φ

∂Λ
= AAT L̂T −A .

= 0. (5.72b)

Note that we could also check for the sufficient condition; however, this re-
quires the vec operator and Kronecker products to do so. For the sake of
brevity, we simply state that the necessary conditions do indeed lead to a
minimization of (5.71). The above system (5.72a) and (5.72b) is solved as
follows: From (5.72a)) we can write

L̂T = −PAAT Λ̂. (5.73a)

Then, by substituting (5.73a) into (5.72b), we obtain

A = −AATPAAT Λ̂.

Multiplying by ATP from the left results in

N = −NNAT Λ̂.

Then multiplying by N(NN)− from the left gives

N(NN)−N = −N(NN)−NNAT Λ̂.

Noting that N(NN)−NN = N means

N(NN)−N = −NAT Λ̂. (5.73b)

We seek an expression for PAAT Λ̂ in terms of known quantities to substitute
into (5.73a). So we multiply both sides of (5.73b) by AN− to get

AN−N(NN)−N = −AN−NAT Λ̂,

which, together with using (5.35b), implies

A(NN)−N = −AAT Λ̂.

Then, multiplying on the left by P results in

PA(NN)−N = −PAAT Λ̂,
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and, by substitution into (5.73a), we get

L̂T = PA(NN)−N,

leading to

L̂ = N(NN)−ATP. (5.73c)

Finally, upon substituting (5.73c) for L̂ into (5.67) and comparing to (5.59e)
we get

ξ̂BLUMBE = L̂y = N(NN)−c = ξ̂MINOLESS. (5.73d)

We have just shown that the BLUMBE and the MINOLESS are equivalent. This
equivalency makes these solutions very appealing for the rank deficient GMM, as
together they fulfill the following properties:

� Minimum norm of parameter vector.

� Smallest trace of dispersion matrix.

� Smallest norm of bias matrix.

A relevant question at this point is “what is the bias associated with BLUMBE?”
The BLUMBE bias vector β is derived as follows:

β := E{ξ̂} − ξ = (5.74a)

= L̂E{y} − ξ =̂LAξ − ξ ⇒ (5.74b)

β = (L̂A− Im)ξ = [N(NN)−N − Im]ξ. (5.74c)

Equation (5.74c) in the above derivation reveals the bias matrix L̂A − Im that is
minimized by BLUMBE.

We now make a few additional comments about the least-squares solution within
the rank-deficient GMM. In addition to the vector of estimated parameters ξ̂, we
can also generate a predicted residual vector ẽ, a vector of adjusted observations µ̂y,
and an estimated variance component σ̂2

0 . Each of their formulas are summarized
below.

ξ̂ =
{
N−rsc+ (Im −N−rsN)α |α ∈ Rm

}
=

=
{
N−rsc |N−rs is a reflexive symmetric g-inverse of N

} (5.75a)

µ̂y = Aξ̂ (5.75b)

ẽ =
[
In − (AN−rsA

T )P
]
y, (5.75c)

where AN−rsA
T is invariant with respect to the chosen g-inverse

σ̂2
0 = ẽTP ẽ/(n− rkA). (5.75d)
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The denominator in (5.75d) is the redundancy of the model. It is equal to the
number of observations minus the number of estimable parameters. It is only equiv-
alent to the number of observations minus the number of parameters, or unknowns,
if the design matrix A has full column rank, in which case the redundancy is n−m.

An important point to make is that ẽ, µ̂y, and σ̂2
0 are all unique. That is, they

do not depend on the chosen g-inverse, N−rs, for the solution (5.75a). However, ξ̂
itself is not unique; that is, it does depend directly on the chosen g-inverse.

Suppose we have two different elements of the solution space, namely ξ̂(1)

and ξ̂(2), that take the forms

ξ̂(1) = G1c and ξ̂(2) = G2c where G1, G2 ∈ {N−rs}. (5.76)

Now suppose we would like to transform from one solution to the other. The
transformations are written as

ξ̂(1) = (G1N)ξ̂(2) and ξ̂(2) = (G2N)ξ̂(1), (5.77)

with respective dispersion matrices

D{ξ̂(1)} = (G1N) ·D{ξ̂(2)} · (G1N)T and D{ξ̂(2)} = (G2N) ·D{ξ̂(1)} · (G2N)T .
(5.78)

The relations in (5.77) hold because the normal equations N ξ̂(i) = c are ful-

filled for all ξ̂(i). These transformations are called “S-transformations.” They have
practical use in datum transformation problems, and they are discussed further in
section 5.9.

It is often costly to compute N−rs. How then can we represent the product GiN?
The only difference between various GiN is in the dimension of their nullspaces.
Thus, in the following we look at different bases for the nullspace of A (or, equiva-
lently, the nullspace of N) to solve our rank deficient problem.

5.8 Minimum and Inner Constraints

In the context of minimum constraints, the term “minimum” is used to mean the
minimum number of constraints required to overcome the rank deficiency of the
system. The constraints are given in the form of linear equations in the unknown
parameters.

5.8.1 Restricted LEast-Squares Solution (RLESS)

The minimal constraint equation is written as

Kξ = κ0. (5.79)

where, K is an l ×m matrix with

rkK = l = m− q and R(KT ) ∪R(AT ) = Rm, (5.80a)
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implying that

R(KT )⊕R(AT ) = Rm, (5.80b)

which further implies that

rk
[
AT , KT

]
= rkA+ rkK = m. (5.80c)

Both the constraint matrix K and the right-side vector κ0 are known, constant
quantities. In practice, κ0 is often a vector of zeros, especially in the case of lin-
earized observation equations.

The above equations tell us that the row space of matrix A combined with the
row space of K (i.e., their union) span all of Rm. Even more, the union forms a basis
for Rm. And since the union forms a basis, the matrix K provides only the minimum
number of constraints needed. Combining equation (5.79) with the observation
equations (1.3), allows us to write the following system of normal equations:[

N KT

K 0

][
ξ̂

λ̂

]
=

[
c

κ0

]
. (5.81)

The normal-equation matrix on the left side is indeed regular (non-singular) due
to the rank relations of (5.80c). The normal equations can be solved as follows:
Adding KT× row 2 to row 1 results in

(N +KTK)ξ̂ = c+KT (κ0 − λ̂), (5.82a)

leading to

ξ̂ = (N +KTK)−1c+ (N +KTK)−1KT (κ0 − λ̂). (5.82b)

Now we combine the preceding line with row 2 to obtain

κ0 = Kξ̂ = K(N +KTK)−1c+K(N +KTK)−1KT (κ0 − λ̂), (5.82c)

which leads to

κ0 − λ̂ =
[
K(N +KTK)−1KT

]−1[
κ0 −K(N +KTK)−1c

]
. (5.82d)

Finally, upon substituting (5.82d) into (5.82b), we can write the Restricted Least-
Squares Solution (RLESS) as

ξ̂RLESS = (N +KTK)−1c+ (N +KTK)−1KT ·

·
[
K(N +KTK)−1KT

]−1[
κ0 −K(N +KTK)−1c

]
. (5.83)

If κ0 turns out to be zero, and if we factor out the vector c, the solution (5.83)
reduces to

ξ̂RLESS =
[
(N +KTK)−1 − (N +KTK)−1KT

[
K(N +KTK)−1KT

]−1·
·K(N +KTK)−1

]
c, if κ0 = 0.

(5.84)

Now, for convenience in further analysis, denote the matrix on the right side of
5.84 as G, viz.

G :=
[
(N +KTK)−1 − (N +KTK)−1KT

[
K(N +KTK)−1KT

]−1
K(N +KTK)−1

]
.

(5.85)
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5.8.2 Reflexive Symmetric G-Inverse

Question: is the matrix G in (5.85) a reflexive symmetric g-inverse of N? We
claim that it is. The proof that follows is rather lengthy, but out of it comes a
representation of matrix K that leads to the so called inner-constraint solution.
The symmetry of G is obvious from inspection. The reflexivity can be confirmed by
checking the rank. Because the rank of G will not change when premultiplied by the
full-rank matrix N +KTK, and because this multiplication results in a idempotent
matrix (N +KTK)G, we make use of this multiplication as follows:

rkG = rk
[
(N +KTK)G

]
=

= tr
[
(N +KTK)G

]
= (due to its idempotent property)

= tr Im − tr
{

[K(N +KTK)−1KT ]−1K(N +KTK)−1KT
}

=

= m− (m− q) = q = rkN.

Since rkG = rkN , if the symmetric matrix G is a g-inverse of N , it is also a reflexive
symmetric g-inverse. What is left is to show that G is indeed a g-inverse of N . We
start by forming the product NGN .

NGN = N(N +KTK)−1N −N(N +KTK)−1KT ·

·
[
K(N +KTK)−1KT

]−1
K(N +KTK)−1N

(5.86)

Our aim is to show that K(N + KTK)−1N = 0, which would cancel what follows
the minus sign on the right side of (5.86). Then we must show that the remaining
term N(N +KTK)−1N equals N , which implies that (N +KTK)−1 is a g-inverse
of N and thereby proves that G is as well. This is done in the following section.

5.8.3 (Partial) Minimum Norm Least-Squares Solution
(MINOLESS)

Recalling that m is the number of unknown parameters and l is the number of
constraints, we introduce an l ×m matrix E such that

AET = 0, (5.87a)

and

rkE = l = m− q, (5.87b)

implying that

R(AT )
⊥
⊕R(ET ) = Rm. (5.87c)

The above relations mean that the columns of ET (or rows of E) form a basis for the
nullspace of A, and thus also for the nullspace of N . Every row of E is perpendicular
to every row of A, and though the rows of E do not have to be perpendicular to
one another, they are linearly independent of each other. So, we could construct
matrix E with eigenvectors corresponding to the zero eigenvalues of N . But this is
only one choice for constructing E; the matrix E is not unique.



52 CHAPTER 5. THE RANK-DEFICIENT GAUSS-MARKOV MODEL

Because of (5.87a) we have the relation

(N +KTK)ET = KT (KET ). (5.88)

Now we assert that the l × l matrix KET is invertible.
Proof: Suppose KET is not invertible. This implies that there exists a linear

combination of the rows of K that is orthogonal to a column of ET ; or in math-
ematical terms R(KT ) ⊂ R(ET )⊥. This would mean that a vector in R(KT ) is
contained in R(AT ) since R(AT ) = R(ET )⊥. But this contradicts the direct sum
in (5.80b). In other words, there exists no linear combination of the rows of K that
is perpendicular to a column of ET , and therefore, KET is invertible. We continue
by pre- and post-multiplying (5.88) by appropriate inverses as follows:

ET (KET )−1 = (N +KTK)−1KT , (5.89a)

implying that

N(N +KTK)−1KT = NET (KET )−1. (5.89b)

But, NET = 0 due to (5.87a), therefore

N(N +KTK)−1KT = 0. (5.89c)

Thus (5.86) does reduce to NGN = N(N +KTK)−1N . Now, using two successive
applications of the rule for the inverse of a sum (see equation (A.15) in the appendix)
we can check to see if this product further reduces to N .

N(N +KTK)−1N = N
[
N− −N−KT (Il +KN−KT )−1KN−

]
N = (5.90a)

= NN−N −NN−KT
[
Il −K(N +KTK)−1KT

]
KN−N = (5.90b)

= N −NN−KT (Il − Il)KN−N = N (5.90c)

Here we have used the relationship K(N +KTK)−1KT = Il, which is obvious from
(5.89a).

Thus we have shown that the matrix G of (5.85) is indeed a reflexive symmetric
g-inverse for N , given any arbitrary matrix K satisfying the conditions (5.80a)–
(5.80c). We summarize by listing three important relations between the normal-
equations matrix N and the minimal-constraint matrix K.

N(N +KTK)−1N = N (5.91a)

N(N +KTK)−1KT = 0 (5.91b)

K(N +KTK)−1KT = Il (5.91c)

As we have said already, the minimum-constraint matrix K must satisfy condi-
tions (5.80a)–(5.80c); the matrix K is otherwise arbitrary. The matrix E introduced
above satisfies these conditions and may be used in place of K. In this case we get
MINOLESS. Rewriting (5.84), which used κ0 = 0, with E instead of K gives

ξ̂MINOLESS =
{

(N + ETE)−1 − (N + ETE)−1ET ·

·
[
E(N + ETE)−1ET

]−1
E(N + ETE)−1

}
c.

(5.92)
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Using relations (5.89a) and (5.91c), with K replaced by E, allows us to rewrite
(5.92) as

ξ̂MINOLESS =
[
(N + ETE)−1 − ET (EET )−1(EET )−1E

]
c. (5.93)

The diagram in Figure 5.3 shows the geometric relationships between the range
spaces of AT , ET , and KT , together with the MINOLESS.

c
part

)rs

{
N=(

part
»̂

BLUMBE
»̂=

MINOLESS
»̂

)A(N+ 
part
»̂

)T A(R

)
T K(

R

)
T 

E(R

)A(N

Figure 5.3: Schematic representation of solution space with RLESS and MINOLESS

Now we prove that (5.93), or equivalently (5.92), is in fact MINOLESS. To do
so we must show that the matrix on the right side of (5.93), which we define here
as G, is the pseudoinverse N+ of N .

G :=
[
(N + ETE)−1 − ET (EET )−1(EET )−1E

] ?
= N+. (5.94)

We already know that G ∈ N−rs from the above derivation of RLESS. We only have
to show the two remaining properties of the pseudoinverse; see (5.16).

Note that NG = N(N + ETE)−1, because NET contains the product AET ,
which is zero by (5.87a). If G is in fact equal to N+, then NG must satisfy NG =
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(NG)T according to (5.16).

NG = N(N + ETE)−1 =

= (N + ETE − ETE)(N + ETE)−1 =

= (N + ETE)(N + ETE)−1 − ETE(N + ETE)−1

And now using the transpose of (5.89a) with K replaced by E leads to

NG = Im − ET (EET )−1E. (5.95)

The matrix in (5.95) is obviously symmetric so that NG = (NG)T . Also, since G
and N are both symmetric, NG = (NG)T = GTNT = GN so that all conditions
for the pseudoinverse have been satisfied, and thus it is proved that (5.92) is indeed
MINOLESS. Note also that due to the orthogonality relation (5.87a), we can write

ξ̂MINOLESS = (N + ETE)−1c = N+c. (5.96)

Note, however, that (N +ETE)−1 6= N+. The solution for ξ based on matrix E is
a particular type of minimum-constraint solution, which has been called the inner-
constraint solution. Note that the constraint equation (5.79) has, in essence, been
replaced by Eξ = 0 and that MINOLESS can actually be obtained by the following
extended normal equations system, analogously to (5.81):[

N ET

E 0

][
ξ̂

λ̂

]
=

[
c

0

]
. (5.97)

One form of the dispersion matrix for MINOLESS was already shown in (5.54).
Applying covariance propagation to (5.96) leads to the equivalent formula

D{ξ̂MINOLESS} = σ2
0(N + ETE)−1N(N + ETE)−1 = σ2

0N
+. (5.98)

Also, analogous to (5.74c), we write the bias vector for the inner constraint
solution (5.96) as

β = [(N + ETE)−1N − Im]ξ. (5.99)

By introduction of the selection matrix S into the extended normal equations
(5.97), one may also derive partial MINOLESS and its dispersion matrix as

ξ̂P-MINOLESS = (N + SETES)−1c,

D{ξ̂P-MINOLESS} = σ2
0(N + SETES)−1N(N + SETES)−1.

(5.100a)

(5.100b)

We end this section by noting that as a consequence of equations (5.91a) through
(5.91c), and because the leading N in (5.91b) can be replaced by A, the formula
(5.83) for RLESS can be rewritten in the following simplified form:

ξ̂RLESS = (N +KTK)−1(c+KTκ0). (5.101)
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Applying covariance propagation to equation (5.101) yields an alternate form for
the RLESS dispersion as

D{ξ̂RLESS} = σ2
0(N +KTK)−1N(N +KTK)−1. (5.102)

5.8.4 Summary Formulas for Minimally Constrained LESS

Regarding partial MINOLESS, if the selection matrix S is the identity matrix, all
parameters are selected, and partial MINOLESS becomes MINOLESS. On the other
hand, if S selects only the minimum number of parameters necessary to overcome
the datum deficiency, then partial MINOLESS is equivalent to RLESS (if κ0 = 0).
The following table list commonly used formulas for the three minimally constrained
solutions RLESS, MINOLESS, and partial MINOLESS.

Table 5.1: Summary of formulas for minimally constrained least-squares estimators

Type Estimator Dispersion matrix

RLESS ξ̂ = (N+KTK)−1(c+KTκ0) D{ξ̂} = σ2
0(N +KTK)−1N(N +KTK)−1

MINO-
LESS

ξ̂ = (N + ETE)−1c = N+c D{ξ̂} = σ2
0(N + ETE)−1N(N + ETE)−1

Partial
MINO-
LESS

ξ̂ = (N + SETES)−1c D{ξ̂}=σ2
0(N+SETES)−1N(N+SETES)−1

5.9 S -Transformations

In equation (5.77) we introduced the so called S-transformation. We now express
the S-transformation in terms of the minimum-constraint matrix K from (5.79)
and the inner-constraint matrix E from (5.87a). From (5.84) we have the following
reflexive symmetric g-inverse for the (singular) normal-equations matrix N .

N−rs =
{

(N +KTK)−1 − (N +KTK)−1KT
[
K(N +KTK)−1KT

]−1·
·K(N +KTK)−1

}
=

= (N +KTK)−1 − (N +KTK)−1KTK(N +KTK)−1 = (using (5.91c))

= (N +KTK)−1
[
(N +KTK)−KTK

]
(N +KTK)−1 ⇒

N−rs = (N +KTK)−1N(N +KTK)−1 (5.103)
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Now according to (5.77) we must multiply N−rs on the right by N to form an S-
transformation.

N−rsN = (N +KTK)−1N(N +KTK)−1N = (N +KTK)−1N = (using (5.91a))

= (N +KTK)−1(N +KTK −KTK) = Im − (N +KTK)−1KTK =

= Im − ET (KET )−1K = N−rsN (using (5.89a)) (5.104)

Thus, given any RLESS solution ξ̂(2) we can compute a different RLESS solution
ξ̂(1) that is based on its associated constraint matrix K using (5.104) as follows:

ξ̂(1) = N−rsN ξ̂
(2) =

[
Im − ET (KET )−1K

]
ξ̂(2). (5.105)

Note that the matrix to invert in (5.105) might be very small compared to the
dimension of N .

5.9.1 Example S -Transformation

Here, an example is presented where the preservation of sparsity in the extended
normal equation matrix is the motivation to use an S-transformation. Consider
the case of a 3D network adjustment comprised of GPS vectors as the only type
of observation. Such observations provide scale and orientation information about
the network, but they provide no information on its origin. Thus, the network
adjustment problem has a datum deficiency of three, which also means the normal
equation matrix N = ATPA has a rank deficiency of three. Now, further suppose
that MINOLESS is the type of adjustment that must be computed. Then, the 3×m
matrix E would be defined by

E := [I3, . . . , I3], (5.106a)

and thus the m×m product ETE results in

ETE =


I3 . . . I3
...

. . .
...

I3 . . . I3

 . (5.106b)

Obviously, adding ETE to N in this case may greatly reduce the sparsity of N ,
especially if N had most of its nonzero elements near its diagonal. On the other
hand, if partial MINOLESS is computed with the m×m selection matrix S defined
by

S := diag([I3 03 . . . 03]), (5.106c)

then the sparsity of N + SETES would be the same as that of N itself. Now, let

ξ̂
(2)

be the partial MINOLESS computed using S as just defined. The solution can
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be transformed to MINOLESS by substituting E for K, where K := SE in this
case, in (5.105), resulting in

ξ̂(1) =
[
Im − ET (EET )−1E

]
ξ̂(2). (5.106d)

Then, we must only invert the 3 × 3 matrix EET to convert partial MINOLESS

ξ̂
(2)

to MINOLESS ξ̂
(1)

. This is important, because large systems of equations can
be solved more efficiently when the coefficient matrix is sparse.

Obviously, the corresponding dispersion matrix could be computed by

D{ξ̂(1)} =
[
Im − ET (EET )−1E

]
·D{ξ̂(2)} ·

[
Im − ET (EET )−1E

]
. (5.106e)

The respective residual vectors corresponding to ξ̂(1) and ξ̂(2) are identical, a prop-
erty of minimally constrained solutions reiterated in the next section.

5.10 Concluding Remarks about the Restricted
Least-Squares Solution

In addition to (5.14) and (5.36), we have an alternative way to represent the solution
space for the rank deficient GMM via RLESS.

ξ̂ = {ξ̂ | ξ̂ = ξ̂RLESS subject to minimum constraints Kξ = κ0} (5.107)

For convenience we have set κ0 := Kξ = 0 in some of the derivations above. The
zero-vector always applies to the case where we linearize, as ξ̂ becomes a vector of
estimated corrections to the initial parameter values. For purely linear observation
equations (5.1), we may have a non-zero vector κ0, in which case it must be included
in the solution formula as in (5.91b).

If we base the reflexive symmetric matrix N−rs for RLESS on the singular value
decomposition of N , as in (5.31), we only need to replace the arbitrary matrix L in
that formula with the constraint matrix K in order to reach a minimum-constraint
solution satisfying Kξ = κ0.

Finally, we reiterate that no matter what minimum-constraint conditions we
impose, the residual vector will be the same. This is how we determine if two
adjustment models are the same; they should produce the same residual vector.
This is true because in the equation for the predicted random errors (residuals)

ẽ = (In −AN−rsATP )y (5.108)

the term AN−rsA
T is invariant with respect to the choice of N−rs. Applying covariance

propagation to (5.108) leads to the dispersion matrix

D{ẽ} = σ2
0(P−1 −AN−rsAT ). (5.109)
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Chapter 6

The Variance Component
Model

The variance component model (VCM) is used for the case where more than one
variance component must be estimated. The functional part of the model (6.1)
looks like that of the Gauss-Markov model (GMM), except that the dispersion
matrix Σ of the random error vector e (or equivalently the observation vector y)
is now expressed as a linear combination of (known) cofactor matrices Qi, each
multiplied by a unique, unknown variance component σ2

i . In the following, we
restrict the index on the variance components to i = 2. It is certainly possible to add
additional variance components to the model, but such an increase could become
computationally intensive and require a rather large redundancy in the system of
equations. Note also that the model (6.1) shows a full-rank design matrix A.

y = A
n×m

ξ + e, rkA = m < n, e ∼ (0,Σ = σ2
1Q1 + σ2

2Q2) (6.1)

The Best Linear Uniformly Unbiased Estimate (BLUUE) of the unknown pa-
rameters ξ within model (6.1) is given by

ξ̂BLUUE = (ATΣ−1A)−1ATΣ−1y =

=
[
AT (σ2

1Q1 + σ2
2Q2)−1A

]−1
AT (σ2

1Q1 + σ2
2Q2)−1y. (6.2)

We see from (6.2) that the parameter estimates ξ̂BLUUE depend upon the un-
known variance components σ2

i , and thus we cannot actually compute BLUUE for
this model. So we are left with the option of replacing the unknown variance com-
ponents with their estimates σ̂2

1 and σ̂2
2 ; then we have the functional dependency

ξ̂ := ξ̂(σ̂2
1 , σ̂

2
2).

At this point, one may naturally ask whether such an estimator retains the
linear and unbiased properties of BLUUE. Obviously, ξ̂(σ̂2

1 , σ̂
2
2) is non-linear in y,

since the unknown variance components σ̂2
1 and σ̂2

2 are functions of y and they
also multiply y in the normal equations. Therefore, the estimator is not BLUUE.
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However, under certain assumptions, it can be shown that ξ̂ is unbiased. In order to
show this we make use of E-D correspondence (see chapter 4). Let us now proceed

with the derivation of ξ̂(σ̂2
1 , σ̂

2
2).

Our approach will be to develop a model linear in the unknown variance com-
ponents that has the same structure as the Gauss Markov Model (GMM). We will
then derive estimators for the unknown parameters of the model by application of
a least-squares solution (LESS), as was done within the GMM.

We begin by introducing approximations (or initial values) to Σ, σ2
1 , σ2

2 as Σ0,
σ2

1,0, σ2
2,0, respectively, which are defined as follows:

Σ0 := σ2
1,0Q1 + σ2

2,0Q2, (6.3a)

which implies

vec Σ0 =

[
vecQ1 vecQ2

]σ2
1,0

σ2
2,0

 = V ϑ0. (6.3b)

The variables in (6.3) are defined as follows:

vec Σ0 is an n2 × 1 vector.

V is defined as V := [vecQ1, vecQ2] and is size n2 × c, where c is the number of
unknown variance components.

ϑ0 is defined as ϑ0 := [σ2
1,0, σ

2
2,0]T , which is size c× 1.

The transformation of (6.3a) into (6.3b) by use of the vec operator is key to arriving
at a model that is linear in the unknown variance components. Note that in the
following, we restrict the number of variance components to two (c := 2) for the
sake of brevity.

Using the above approximations leads to the following vectors of estimated pa-
rameters and predicted random errors (residuals):

ξ̂0 = ξ̂(σ2
1,0, σ

2
2,0) = (ATΣ−1

0 A)−1ATΣ−1
0 y, (6.4a)

ẽ0 = y −Aξ̂0 =
[
In −A(ATΣ−1

0 A)−1ATΣ−1
0

]
y =

[
In − S0

]
e. (6.4b)

Here, we define the similarity-transformation matrix as S0:=A(ATΣ−1
0 A)−1ATΣ−1

0

and note that A is in the nullspace of [In − S0], which is apparent from

[In − S0]A = [In −A(ATΣ−1
0 A)−1ATΣ−1

0 ]A = 0. (6.5a)

Thus, we can replace y with the true random error vector e to arrive at

[In − S0]y = [In − S0](Aξ + e) = [In − S0]e, (6.5b)

which is theoretically accurate even though e is unknown. From here we can write
a new model based on the Kronecker product ẽ0 ⊗ ẽ0.

E{ẽ0 ⊗ ẽ0} =
[
(In − S0)⊗ (In − S0)

]
· E{e⊗ e} (6.6)
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Again, the motivation for the new model is to eventually arrive at a model that
is linear in our unknown variance components σ2

1,0 and σ2
2,0. Using (2.7), we have

e⊗ e = vec(eeT ), which implies that

E{e⊗ e} = E{vec(eeT )} = vecE{eeT } = vecD{e} = vec Σ. (6.7)

This means that (6.6) can be rewritten as

E{ẽ0 ⊗ ẽ0} =
[
(In − S0)⊗ (In − S0)

]
V ϑ, (6.8)

where ϑ is analogous to ϑ0 but is based on the true (unknown) variance components.
Equation (6.8) is now a linear form in ϑ = [σ2

1 , σ
2
2 ]T , which is precisely the

quantity that we want to estimate. Keep in mind that the initial approximation ϑ0

is used in the computation of ẽ0. This is because ẽ0 is defined through S0, and S0

depends on Σ0, which depends on the approximation ϑ0. Numerically, this means
that we must iterate the solution of ϑ0 until it converges to ϑ̂. This is the so-called
reproducing property.

Now we show the dispersion of the Kronecker product ẽ0⊗ ẽ0, which, under the
assumption of quasi-normality, reads

D{ẽ0 ⊗ ẽ0} = (In2 +K)
[
(In − S0)Σ(In − S0)T ⊗ (In − S0)Σ(In − S0)T

]
. (6.9a)

Here, K is a commutation matrix. Equation (6.9a) is more complicated than (4.17)
within the GMM, since it is based on both the true matrix Σ and the approximate
matrix S0. However, by substituting the approximation Σ0, exploiting the sym-
metry of Σ0(In − S0)T and the idempotent property of (In − S0), we can write an
approximate dispersion matrix as

D0{ẽ0 ⊗ ẽ0} = (In2 +K)
[
(In − S0)Σ0 ⊗ (In − S0)Σ0

]
. (6.9b)

Combining (6.4b) and (6.8), and including (6.9b), the analogy of the model
(6.6) to the GMM (i.e., E{y} = Aξ, D{y} = Σ = σ2

0Q) is shown in the following
schematic:

New model—linear in ϑ = [σ2
1 , σ

2
2 ]T

Expectation:

E{ẽ0 ⊗ ẽ0} = E{(In − S0)y ⊗ (In − S0)y︸ ︷︷ ︸
Analogous to y in the GMM

} =

=
[
(In − S0)⊗ (In − S0)

]
V︸ ︷︷ ︸

Analogous to A in GMM

ϑ︸︷︷︸
Analogous to ξ in the GMM

Dispersion:

D0{ẽ0 ⊗ ẽ0} = (In2 +K)
[
(In − S0)Σ0 ⊗ (In − S0)Σ0

]︸ ︷︷ ︸
Analogous to Σ = σ2

0Q in the GMM

(6.10a)

(6.10b)

Based on the analogy to the GMM, we require a weight matrix G0 (analogous
to P in the GMM) to compute the weighted LEast-Squares Solution (LESS) of the
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variance component vector ϑ. In full analogy to (4.18), we define an “approximate
weight matrix” as follows:

G0 = (In2 +K)
[
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
. (6.11)

Note that up to a factor of 1/4, G0 turns out to be a g-inverse of the approximate
dispersion matrix (6.9b) (cf. (4.17) and (4.18)). Once again, we note that K is
a commutation matrix. We can now write the normal equations for the weighted
LESS. First we form the right-side vector, analogously to ATPy in the GMM.

Right-side:

V T
[
(In − S0)T ⊗ (In − S0)T

]
(In2 +K)

[
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
·

·
[
(In − S0)y ⊗ (In − S0)y

]
=

(6.12a)

V T (In2 +K)
[
(In − S0)T ⊗ (In − S0)T

][
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
·

·
[
(In − S0)y ⊗ (In − S0)y

]
=

(6.12b)

= V T (In2 +K)
[
(In − S0)TΣ−1

0 (In − S0)⊗ (In − S0)TΣ−1
0 (In − S0)

]
·

·
[
(In − S0)y ⊗ (In − S0)y

]
=

(6.12c)

= V T (In2 +K)
[
(In − S0)TΣ−1

0 (In − S0)2y ⊗ (In − S0)TΣ−1
0 (In − S0)2y

]
=

(6.12d)

= V T (In2 +K)
[
(In − S0)TΣ−1

0 (In − S0)y ⊗ (In − S0)TΣ−1
0 (In − S0)y

]
. (6.12e)

We used (A.10) in going from (6.12a) to (6.12b), and the idempotency of (In − S0)
was exploited from (6.12d) to (6.12e). Note that (In − S0)TΣ−1

0 is symmetric, so
by using its transpose and considering that In − S0 is idempotent, we can further
reduce the right side to

V T (In2 +K)
[
Σ−1

0 (In−S0)y⊗Σ−1
0 (In−S0)y

]
= V T (In2 +K)

[
Σ−1

0 ẽ0⊗Σ−1
0 ẽ0

]
=

= 2V T
(
Σ−1

0 ⊗ Σ−1
0

)
(ẽ0 ⊗ ẽ0). (6.12f)

In the second line we used the fact that K is a vec permutation matrix, so that with
symmetric Qi (i = 2 in this case) and use of (A.11), we can rewrite V T (In2 +K) as

V T (In2 +K) =

(vecQ1)T

(vecQ2)T

 (In2 +K) = 2V T . (6.12g)

Note that the factor of 2 is independent of the number of variance components. Now
we can successively apply (A.1) in its transposed form to the last line of (6.12f),
resulting in

2

[
[vec(Σ−1

0 Q1Σ−1
0 )]T

[vec(Σ−1
0 Q2Σ−1

0 )]T

]
(ẽ0 ⊗ ẽ0) = 2

[
[vec(ẽT0 Σ−1

0 Q1Σ−1
0 ẽ0)]T

[vec(ẽT0 Σ−1
0 Q2Σ−1

0 ẽ0)]T

]
=

= 2

[
ẽT0 Σ−1

0 Q1Σ−1
0 ẽ0

ẽT0 Σ−1
0 Q2Σ−1

0 ẽ0

]
.

(6.12h)
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Finally, by use of (6.4b) and introduction of the singular matrix W0 := Σ−1
0 (In−S0),

we may write

2

ẽT0 Σ−1
0 Q1Σ−1

0 ẽ0

ẽT0 Σ−1
0 Q2Σ−1

0 ẽ0

 = 2

yT (In − S0)Σ−1
0 Q1Σ−1

0 (In − S0)y

yT (In − S0)Σ−1
0 Q2Σ−1

0 (In − S0)y

 = 2

yTW0Q1W0y

yTW0Q2W0y

 .
(6.12i)

as an expression of the right side of normal equations.
Now we work out the left side of the normal equations, analogous to (ATPA)ξ̂

in the GMM. Much of this work has already been done since the left side begins
with the same terms as the right side (analogous to ATP in the GMM); these steps
will not be repeated.

Left side:

V T
[
(In − S0)T ⊗ (In − S0)T

]
(In2 +K)

[
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
·

·
[
(In − S0)⊗ (In − S0)

]
V ϑ̂ =

(6.13a)

= 2V T
[
Σ−1

0 (In − S0)⊗ Σ−1
0 (In − S0)

]
V ϑ̂ = (6.13b)

(see (6.12) for more details)

= 2

tr
[
Σ−1

0 (In − S0)Q1Σ−1
0 (In − S0)Q1

]
tr
[
Σ−1

0 (In − S0)Q1Σ−1
0 (In − S0)Q2

]
tr
[
Σ−1

0 (In − S0)Q2Σ−1
0 (In − S0)Q1 tr

[
Σ−1

0 (In − S0)Q2Σ−1
0 (In − S0)Q2


σ̂2

1,0

σ̂2
2,0

 =

(6.13c)

= 2

tr[W0Q1W0Q1] tr[W0Q1W0Q2]

tr[W0Q2W0Q1] tr[W0Q2W0Q2]


σ̂2

1,0

σ̂2
2,0

 . (6.13d)

Before combining the left (6.12i) and right (6.13d) sides into one system of
equations we introduce subscripts to express the dependence of the (j+1)th solution
on the jth solution, and we drop the leading factor of 2 from both sides. Then the
system of normal equations for the (j + 1)th solution is given by tr[W0,jQ1W0,jQ1] tr[W0,jQ1W0,jQ2]

tr[W0,jQ2W0,jQ1] tr[W0,jQ2W0,jQ2]


σ̂2

1,0

σ̂2
2,0


(j+1)

=

yTW0,jQ1W0,jy

yTW0,jQ2W0,jy

 .
(6.14)

The solution for (6.14) is iterated until, for some prescribed level of precision δ,
we arrive at ∥∥ϑ̂j+1 − ϑ̂j

∥∥2
< δ2. (6.15)
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Thus, the solution ϑ̂ is called the reproducing Best Invariant Quadratic Uniformly
Unbiased Estimate (reproBIQUUE) of ϑ.

There is always a solution to the system of equations (6.14) since they represent
normal equations. However, the solution may not be unique, and often it is not.
As stated previously, we consider the system to be non-linear in ϑ. In summary,
we write the normal equations for the weighted LESS of ϑ in its non-linear form,
i.e., without the zero-subscripts denoting approximation and without iteration sub-
scripts.

 tr(ŴQ1ŴQ1) tr(ŴQ1ŴQ2)

tr(ŴQ2ŴQ1) tr(ŴQ2ŴQ2)


σ̂2

1

σ̂2
2

 =

yT ŴQ1Ŵy

yT ŴQ2Ŵy


Ŵ := Σ̂−1 − Σ̂−1A(AT Σ̂−1A)−1AT Σ̂−1, vec Σ̂ = V ϑ̂.

(6.16a)

(6.16b)

Question: Should we solve the problem by aiming for a local BIQUUE at every
iteration step? This is an open question. Dr. Schaffrin does not believe it is the
best way, but it is the way it is often done in practice. The best algorithm may not
produce a local minimum at each iteration, but we are not interested in these local
minimums. Our objective is to convergence to a minimum.

The solutions may or may not depend on the initial approximations. Usually
we know which solution to choose if we do find multiple solutions. The larger
problem is that the system is “blind” to the non-negativity requirement of the
estimates (i.e. the variance components must be positive). In practice, the cofactor
matrices, Qi, are usually revised if the solution yields negative variance component
estimates. This is because the negative values are likely an indicator that there
is something wrong with the model, i.e., the model is not consistent with the the
observations. And we would not change the observations. However, we may be
inclined to disregard a few observations (if we deem them to be outliers). Another
approach would be to introduce an additional variance component to estimate.

Another question that one might ask is why the variance component estimates
sometimes turn out negative. It is easy to see this in our case of two variance
components. The normal matrix in (6.16a) is positive in each block. Therefore,
the off-diagonal elements of its inverse are negative (think of the familiar formula
for the inverse of a 2 × 2 matrix). So depending on the relative magnitudes of Q1

and Q2, we may or may not end up with positive estimates.
What about the precision of our estimates? The estimated dispersion matrix is

simply the inverse of the matrix on the left side of 6.16a, i.e.

D̂{ϑ̂} =

 tr(ŴQ1ŴQ1) tr(ŴQ1ŴQ2)

tr(ŴQ2ŴQ1) tr(ŴQ2ŴQ2)


−1

. (6.17)

This is already the estimated dispersion of ϑ̂ due to the use of the estimated
matrix Ŵ . It is hard to express the true dispersion D{ϑ̂} because of the iteration
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process. Let us check this formula for the case of a single variance component,
which we simply label as σ̂2

0 .
Start with tr(ŴQŴQ), where

Ŵ = Σ̂−1 − Σ̂−1A(AT Σ̂−1A)−1AT Σ̂−1 = (σ̂2
0)−1(P − PAN−1ATP ). (6.18a)

Multiplication by the cofactor matrix Q from the right yields

ŴQ = (σ̂2
0)−1(In − PAN−1AT ), (6.18b)

which implies that

tr(ŴQŴQ) = (σ̂2
0)−2 tr

[
(In − PAN−1AT )2

]
=

= (σ̂2
0)−2 tr

(
In − PAN−1AT

)
= (σ̂2

0)−2(n−m),
(6.18c)

from which it follows

2
[
tr(ŴQŴQ)

]−1
= 2(σ̂2

0)2/(n−m). (6.18d)

Note that (6.18d) is identical to (3.23), showing the consistency of univariate and
multivariate variance component estimators. In general, we should replace m with
rkA to account for possible rank deficiency in matrix A. Compare this result to
the solution found in (3.23).

In general, variance component estimation requires a relatively large redundancy
in the model. For comparison, when estimating the m× 1 vector of unknowns ξ in
the GMM we might like to have a redundancy of about m. However, for variance
component estimation we probably would like to have roughly the square of m.
It may even require a redundancy of over 100 to estimate as few as five variance
components.

Now we return to our earlier question regarding the unbiasedness of the param-
eter estimates. Specifically, is ξ̂ still unbiased when we replace the “true” variance
components σ2

1 and σ2
2 with their reproBIQUUE estimates σ̂2

1 and σ̂2
2?

Formally we can equateyT ŴQ1Ŵy

yT ŴQ2Ŵy

 =

eT ŴQ1Ŵe

eT ŴQ2Ŵe

 , (6.19)

though we cannot actually compute the right side because of the unknown random
error vector e. However, let us assume that e is symmetrically distributed with
E{e} = 0. This assumption means that we have an equal chance of any element

of e being positive or negative. So σ̂2
1 and σ̂2

2 (or more generally ϑ̂) do not change
when +e is replaced by −e, because we base our estimation on a quadratic form in e.
Formally we can write a difference between the estimate and the true parameter
vector as follows:

ξ̂ − ξ = (AT Σ̂−1A)−1AT Σ̂−1(y −Aξ) =
[
(AT Σ̂−1A)−1AT Σ̂−1

]
e. (6.20)
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We see that the difference ξ̂− ξ is linear in e and note that the term multiplying e
will not change in sign when e does. Due to our symmetric distribution assumption,
there is an equal chance of e being positive or negative; therefore there is also an
equal chance of ξ̂ − ξ being positive or negative. As a formality, we also assume
that E{ξ̂} exists. And since ξ̂ − ξ changes sign whenever e does, this implies that

E{ξ̂ − ξ} = 0⇒ E{ξ̂} = ξ, (6.21)

which means that ξ̂ is uniformly unbiased under reproBIQUUE.



Chapter 7

Prior Information

In this chapter we investigate the topic of prior information on the unknown pa-
rameters. More specifically, we decompose the parameter vector ξ into two parts,
ξ1 and ξ2, where we assume that prior information, in the form of pseudo-observa-
tions b0, is available only for ξ1. Furthermore, we associate a random error vector e0

with the prior information and assume that it is uncorrelated with the random er-
ror vector e associated with the observations y, i.e., we assume that C{e, e0} = 0.
In practice, the prior information may come from a previous adjustment with its
dispersion matrix provided by the covariance matrix of the estimated parameters
from that adjustment. The data model with prior-information can be written as an
extended Gauss-Markov model (GMM) as follows:

y
n×1

= A1ξ1 +A2ξ2 + e,

ξ1 ∈ Rr×1, ξ2 ∈ R(m−r)×1, rkA1 ≤ r, rkA2 = m− r
b0
r×1

= ξ1 + e0, e
e0

 ∼ (

0

0

 , σ2
0

P−1 0

0 Q0

)

(7.1a)

(7.1b)

(7.1c)

(7.1d)

Here the full design matrix and parameter vector are denoted by

A
n×m

:=

[
A1 A2

]
and ξ

m×1
:=

ξ1

ξ2

 . (7.2)

The variables in the model are described by

y is a given n× 1 vector of observations.

ξ1 is an r × 1 vector of unknown parameters.
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ξ2 is an (m− r)× 1 vector of unknown parameters.

A1 is a given n× r coefficient (design) matrix.

A2 is a given n× (m− r) coefficient (design) matrix.

e is an n× 1 vector of unknown random errors associated with the observations y.

b0 is a given r×1 vector of (random) pseudo-observations called prior information.

e0 is an r × 1 vector of unknown random errors associated with the pseudo-obser-
vations b0.

P is a given n× n positive-definite weight matrix for the observations y.

Q0 is a given r× r positive-definite cofactor matrix for the pseudo-observations b0.

σ2
0 is an unknown variance component.

Note that matrix A2 is assumed to have full column rank, i.e., rkA2 = m− r, while
A1 does not necessarily have full column rank. Typically, b0 is a vector of zeros due
to linearization (though still a random vector). If b0 is not zero, then it contains
the bias of the prior information with respect to the initial approximations for the
parameters ξ (assuming linearization). Finally, we note that the model uses a single
variance component σ2

0 , multiplying both cofactor matrices P−1 and Q0 =: P−1
0 ,

where P and P0 are called weight matrices.

7.1 Pseudo-observations

The extended GMM includes pseudo-observations, which are considered to be direct
observations of the unknown parameters ξ1. Since the model uses only a single
variance component, it indeed belongs to the class of Gauss-Markov models. The
following expression summarizes the model in a more compact form than does (7.1):y

b0

 ∼ (

A1 A2

Ir 0


ξ1

ξ2

 , σ2
0

P−1 0

0 P−1
0

). (7.3)

Because the model is a type of GMM, we can immediately write the LEast-
Squares Solution (LESS) for the unknown parameters ξ and the associated disper-
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sion matrix, in accordance with the “addition theory of normal equations.”ξ̂1

ξ̂2

=


AT1 Ir

AT2 0


P 0

0 P0


A1 A2

Ir 0



−1 AT1 P P0

AT2 P 0


y
b0

 =

=

N11 + P0 N12

N21 N22


−1 c1+P0b0

c2

 ,
(7.4a)

D{

ξ̂1

ξ̂2

} = σ2
0

N11 + P0 N12

N21 N22


−1

, (7.4b)

with Nij := ATi PAj , i, j ∈ {1, 2}. (7.4c)

It is evident from the upper-left block of the dispersion matrix in (7.4b) that the

magnitude of the variances of ξ̂1 have been reduced due to the prior information
on ξ1.

Now we want to find an equivalent estimator and dispersion matrix in terms of
previous estimates made within a model without prior information. A solution of
this form is more revealing of what is gained by adding the prior information to
the model. For simplicity, we assume that the complete design matrix A has full
column rank, though it does not have to in general. We start with the cofactor
matrix Qξ̂ (inverted matrix on right side of (7.4b)), and rewrite it as follows:

Qξ̂ := σ−2
0 D{

ξ̂1

ξ̂2

} =


N11 N12

N21 N22

+

P0 0

0 0



−1

= (7.5a)

=

N11 N12

N21 N22


−1

N11 N12

N21 N22

+

P0 0

0 0

−
P0 0

0 0



N11 + P0 N12

N21 N22


−1

=

(7.5b)

=

N11 N12

N21 N22


−1 N11 + P0 N12

N21 N22


N11 + P0 N12

N21 N22


−1

−

−

N11 N12

N21 N22


−1 P0 0

0 0


N11 + P0 N12

N21 N22


−1

.

(7.5c)

Now, introducing the first Schur compliment of the partitioned matrix of N as
S1 := N11−N12N

−1
22 N21, and then using the rules for inverting a partitioned matrix,
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we may writeN11 N12

N21 N22


−1

=

 S−1
1 −S−1

1 N12N
−1
22

−N−1
22 N21S

−1
1 N−1

22 +N−1
22 N21S

−1
1 N12N

−1
22

 . (7.5d)

Now we continue manipulating the cofactor matrix from (7.5c) to result in

Qξ̂ =

N11 N12

N21 N22


−1

−

 S−1
1 P0 0

−N−1
22 N21S

−1
1 P0 0

 ·
·

 (S1 + P0)−1 −(S1 + P0)−1N12N
−1
22

−N−1
22 N21(S1 + P0)−1 N−1

22 +N−1
22 N21(S1 + P0)−1N12N

−1
22

 .
(7.5e)

This result implies that the dispersion matrix of ξ̂ can be written as

D{

ξ̂1

ξ̂2

} = σ2
0

N11 N12

N21 N22


−1

−

− σ2
0

 S−1
1 P0(S1 + P0)−1 −S−1

1 P0(S1 + P0)−1N12N
−1
22

−N−1
22 N21S

−1
1 P0(S1 + P0)−1 N−1

22 N21S
−1
1 P0(S1 + P0)−1N12N

−1
22

 .
(7.6)

Note that (7.6) is still symmetric since S−1
1 P0(S1 +P0)−1 is symmetric as shown in

the following:

S−1
1 P0(S1 + P0)−1 =

= S−1
1 P0

[
S1(Ir + S−1

1 P0)
]−1

= S−1
1 P0(Ir + S−1

1 P0)−1S−1
1 =

(now applying (A.21a))

= S−1
1 (Ir + P0S

−1
1 )−1P0S

−1
1 =

=
[
(Ir + P0S

−1
1 )S1

]−1
P0S

−1
1 =

= (S1 + P0)−1P0S
−1
1 .

An interesting observation from the dispersion D{ξ̂} given in (7.6) is that though
prior information is only provided for ξ1, we also gain an improvement in the dis-
persion of ξ̂2.

We are now ready to express the estimator for the parameter vector in terms
of the estimator within the model that does not include prior information. For
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convenience, we write the latter using cup symbols. We then make use of the
cofactor matrix appearing in (7.6).

^

ξ1

^

ξ2

 :=

N11 N12

N21 N22


−1 c1

c2

 =

=

 S−1
1 −S−1

1 N12N
−1
22

−N−1
22 N21S

−1
1 N−1

22 +N−1
22 N21S

−1
1 N12N

−1
22


c1

c2

⇒
(7.7a)

ξ̂1

ξ̂2

 =

^

ξ1

^

ξ2

−
 −Ir

N−1
22 N21

S−1
1 P0

(
S1 + P0

)−1[−Ir, N12N
−1
22

]
·

·

c1 + P0b0

c2

+

N11 N12

N21 N22


−1 P0b0

0


(7.7b)

Note that it is important not to ignore the prior information vector b0 even if it
is numerically zero. This is because it is a random variable and thus its impact will
not be zero in the dispersion matrix D{ξ̂}. Making use of (7.5d), and performing
certain algebraic manipulations, we can further modify (7.7b) with the objective of
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reaching a vector of “parameter improvements.”ξ̂1

ξ̂2

−
^

ξ1

^

ξ2

 =

 −Ir

N−1
22 N21

S−1
1 P0

(
Ir + S−1

1 P0

)−1
S−1

1

[
c1 + P0b0 −N12N

−1
22 c2

]
+

+


 −Ir

N−1
22 N21

S−1
1

[
−Ir, N12N

−1
22

]
+

0 0

0 N−1
22



P0b0

0

 =

=

 −Ir

N−1
22 N21

S−1
1

(
Ir + P0S

−1
1

)−1[−P0S
−1
1

(
N12N

−1
22 c2 − c1

)
+ P0S

−1
1 P0b0

]
+

+

 −Ir

N−1
22 N21

S−1
1

[−Ir, N12N
−1
22

] P0b0

0


 =

=

 −Ir

N−1
22 N21

S−1
1

(
Ir + P0S

−1
1

)−1
[−P0S

−1
1

(
N12N

−1
22 c2 − c1

)
+

+ P0S
−1
1 P0b0 −

(
Ir + P0S

−1
1

)
P0b0] =

=

 −Ir

N−1
22 N21

S−1
1

(
Ir + P0S

−1
1

)−1[
P0S

−1
1

(
c1 −N12N

−1
22 c2

)
− P0b0

]
=

=

 −Ir

N−1
22 N21

S−1
1

(
Ir + P0S

−1
1

)−1
P0

(^
ξ1 − b0

)
In summary, we can express the vector of parameter improvements asξ̂1

ξ̂2

−
^

ξ1

^

ξ2

 =

 −Ir

N−1
22 N21

(Ir + S−1
1 P0

)−1
S−1

1 P0

(^
ξ1 − b0

)
⇒

ξ̂1

ξ̂2

−
^

ξ1

^

ξ2

 =

 −Ir

N−1
22 N21

(Ir + P−1
0 S1

)−1(^
ξ1 − b0

)
.

(7.8a)

(7.8b)

Equation (7.8a) may be used if P0 is not invertible, and equation (7.8b) may be used

if P0 is invertible. The vector
^

ξ1 − b0 is the discrepancy vector between the prior
information and what would have been estimated using the new data set without
the prior information. Since the matrix (Ir + P−1

0 S1) has positive eigenvalues,
multiplication by its inverse reduces the discrepancy vector.
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If we had introduced a second variance component σ2
1 associated with the new

data set, this would only have had a second-order effect on the estimates and would
have required the ratio σ2

0/σ
2
1 in front of the prior information weight matrix P0.

How does the prior information change the predicted random error (residual)

vector ẽ? We want to express the change as an update to the residual vector
^
e and

also as a function of
^

ξ , which would be predicted, respectively, estimated within a
GMM without prior information.

ẽ = y −A1ξ̂1 −A2ξ̂2 =

=
[
y −A1

^

ξ1 −A2

^

ξ2

]
−A1

(
ξ̂1 −

^

ξ1

)
−A2

(
ξ̂2 −

^

ξ2

)
=

=
^
e −A1

(
ξ̂1 −

^

ξ1

)
−A2

(
ξ̂2 −

^

ξ2

)
=

=
^
e +

(
A1 −A2N

−1
22 N21

)(
Ir + P−1

0 S1

)−1(^
ξ1 − b0

)
(7.9)

We note that the product (Ir +P−1
0 S1)−1(

^

ξ1− b0) appears frequently in the above
equations and so in practice it may be worth computing it once at the outset and
then saving it for subsequent use.

7.2 Alternative Normal Equations

In this section we introduce an alternative system of normal equation to accom-
modate prior information. The resulting solution is identical to that presented in
the preceding section, however this alternative form allows for a singular cofactor
matrix Q0.

The normal equations are written as

(N11 + P0)ξ̂1 +N12ξ̂2 = c1 + P0b0, (7.10a)

N21ξ̂1 +N22ξ̂2 = c2, (7.10b)

λ̂ = P0(ξ̂1 − b0). (7.10c)

The preceding three equations can be combined in matrix form as follows:
N11 N12 Ir

N21 N22 0

Ir 0 −P−1
0



ξ̂1

ξ̂2

λ̂

 =


c1

c2

b0

 . (7.11)

Here, λ̂ is an r× 1 vector of estimated Lagrange multipliers. The normal-equations
matrix on the left side of (7.11) is of size (m + r) × (m + r). We could use the
Cholesky algorithm to reduce the upper 2 × 2 sub-matrix block and then proceed
with Gaussian elimination.
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The inverse of the normal-equations matrix yields the cofactor matrix of the esti-
mates. However, we only need to concern ourselves with the upper 2×2 sub-matrix
block of the inverse in order to find the dispersion of the parameter estimates ξ̂1

and ξ̂2. In the equation that follows, the other terms of no special interest have
been replaced with the symbol X.


N11 N12 Ir

N21 N22 0

Ir 0 −P−1
0


−1

=



N11 N11

N11 N11

+

Ir
0

P0

[
Ir 0

]
−1

X

X X

 =

=

 σ−2
0 D{ξ̂} X

X X

 =


N11 + P0 N11

N11 N11


−1

X

X X

 (7.12)

It is interesting to investigate the consequences of diminishing the weight of the
prior information. Suppose the prior information weight matrix is defined as P0 :=
εP0 and we have the situation where ε→ 0. This means that the prior information

looses its influence, resulting in ξ̂1 →
^

ξ1 with degrees of freedom (redundancy) n+

r−m. However, if ε = 0 then we have ξ̂1 =
^

ξ1 with degree of freedom n−m. In other
words, as ε approaches zero, the resulting estimate numerically approaches what
would be obtained if prior information were not included in the model. However,
the degrees of freedom of the model with prior information is larger than that of the
model without prior information by a constant r, which is the number of parameters
that we supposedly have prior information for. This has an unsatisfactory result on
our estimated variance component σ̂2

0 ; it makes it look better than what it is. We
might rather specify redundancy as a function of ε, but exactly how best to do that
is still an open question.

Suppose we are given values for
^

ξ1 and
^

ξ2, together with the prior information b0

and associated weights P0, and suppose we want to find the solution for ξ̂1 and ξ̂2.
From row 1 of (7.8b) we can solve

(P0 + S1)(ξ̂1 −
^

ξ1) = P0(b0 −
^

ξ1). (7.13)

Then, by substitution of the first row of (7.13) into the second row, we can write

ξ̂2 −
^

ξ2 = −N−1
22 N21(ξ̂1 −

^

ξ1). (7.14)
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The update for the dispersion is then given by

D{

ξ̂1

ξ̂2

} −D{
^

ξ1

^

ξ2

} = −σ2
0

N11 + P0 N12

N21 N22


−1 P0 0

0 0


N11 N12

N21 N22


−1

,

(7.15)

which already was evident from (7.5c).
Suppose we are given only the prior information b0 and we would like to find

the solutions for ξ̂1 and ξ̂2. The solution is developed by starting with (7.4a) and
using the relationship Q0 = P−1

0 as follows:ξ̂1

ξ̂2

 =

N11 + P0 N12

N21 N22


−1

c1 −N11b0

c2 −N21b0

+

N11 + P0 N12

N21 N22


b0

0


 ,

which implies thatξ̂1 − b0

ξ̂2

 =

N11 + P0 N12

N21 N22


−1 AT1 P (y −A1b0)

AT2 P (y −A1b0)

 =

=


Ir +N11Q0 N12

N21Q0 N22


P0 0

0 Im−r



−1 AT1 P (y −A1b0)

AT2 P (y −A1b0)

 =

ξ̂1 − b0

ξ̂2

 =

Q0 0

0 Im−r


Ir +N11Q0 N12

N21Q0 N22


−1 AT1 P (y −A1b0)

AT2 P (y −A1b0)

 . (7.16)

The first matrix on the right side of (7.16) is singular if Q0 is singular, but this is
of no consequence since we do not need to invert it. The second matrix on the right
side is regular (non-singular) even if Q0 is singular. The dispersion is given by

D{

ξ̂1

ξ̂2

} = σ2
0

Q0 0

0 Im−r


Ir +N11Q0 N12

N21Q0 N22


−1

. (7.17)

In order to confirm the consistency between the current data and the prior infor-
mation, we can test the validity of the null hypothesis

H0 : E{ξ̂1 −
^

ξ1} = 0. (7.18)

The test statistic T is defined as

T :=
(ξ̂1 −

^

ξ1)T ·D{ξ̂1 −
^

ξ1}−1 · (ξ̂1 −
^

ξ1)

r(σ̂2
0/σ

2
0)

∼ F (r, n−m). (7.19)



76 CHAPTER 7. PRIOR INFORMATION

7.3 Mixed Linear Model (Helmert’s Knack)

The idea underlying the mixed linear model is that some of the parameters are
random, while others are fixed. This is different than all models presented up
to this point, where we have consistently defined the unknown parameters to be
fixed (non-random). Here we introduce a non-random analogue to the vector of
prior information b0, denoted by β0. Numerically, b0 and β0 are equivalent, but
stochastically their equivalence is obtained only by addition of a random zero-vector,
denoted by 0˜, as follows:

b0 = β0 + 0˜ = ξ1 + e0, e0 ∼ (0, σ2
0P
−1
0 = σ2

0Q0), (7.20a)

β0 =
(
ξ1 − 0˜)+ e0 = x1 + e0, where x1 := ξ1 − 0˜. (7.20b)

Equation (7.20b) is known as Helmert’s knack. It is used to transform the non-
random parameter vector ξ1 to a random parameter vector x1. Some explanation
about the notation might be helpful. As usual, we use Greek letters for non-random
variables and Latin letters for random variables. In this case we have also placed
a tilde beneath the zero to denote a random vector of zeros associated with the
unknown parameters. The expectation and dispersion of the unknown, random
parameters x1 are

E{x1} = E{β0 − e0} = β0 − E{e0} = β0, (7.21a)

D{x1} = D{β0 − e0} = D{e0} = σ2
0Q0. (7.21b)

Since we have used the random vector 0˜ in the pseudo-observations, we need to
modify the original observation equations given in (7.1a) by subtracting A10˜ from
both sides of the equation. This does not change the numerical values on the left
side, but it does make it a different vector in terms of its stochastic properties. We
denote the revised left-side vector as ȳ.

ȳ = y −A10˜ =

= A1ξ1 −A10˜+A2ξ2 + e =

= A1

(
ξ1 − 0˜)+A2ξ2 + e⇒

ȳ = A1x1 +A2ξ2 + e (7.22)

Again we note that ȳ contains the same numerical values as y, but now with
dispersion matrix

D{ȳ} = σ2
0(A1Q0A

T
1 + P−1). (7.23)

On the right side of (7.22), we have a random parameter-vector x1 and a non-
random parameter-vector ξ2; the equation is linear in these unknowns. This is why
we call the model a mixed linear model (MLM); it has a mix of fixed and random
unknown parameters. We summarize the MLM in the box below.
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ȳ :=
(
y −A10˜) = A1x1 +A2ξ2 + e,

x1 = β0 − e0, x1 ∼ (β0, σ
2
0Q0), rkA2 = m− r, e

e0

 ∼ (

0

0

 , σ2
0

P−1 0

0 Q0

).

(7.24a)

(7.24b)

(7.24c)

In going from the extended GMM (7.1) to the MLM (7.24), we have changed
from a model that has no a-priori information about the non-random parameters ξ1

to a model that has a-priori information about the random parameters x1. In either
case, we know nothing a priori about the parameters in ξ2. We claim that the MLM
is more flexible, in general, than the extended GMM. The following discussion
supports this claim.

In the extended GMM, the class of linear estimators is represented by[
ξ̂T1 , ξ̂

T
2

]T
= L1y + L2b0 + γ0, (7.25)

where L1 and L2 are unknown matrices. In contrast, in the MLM the class of linear
predictors/estimators is represented by[

x̃T1 , ξ̂
T
2

]T
= Lȳ + γ, (7.26)

where L is unknown and the vector β0, that x1 depends on, could be non-linear.
So we see that the linear class is larger for the MLM than for the extended GMM,
which makes the MLM more flexible. However, it might be that the optimal estimate
found in the MLM could also be found in the extended GMM; it depends on the
linearity of β0.

H. Moritz used the MLM in the 1970’s to introduce least-squares collocation.
The collocation solution was linear for both ȳ and β0; so it could be described by
the extended GMM. Schaffrin prefers the MLM to the extended GMM because it
permits non-linear forms of β0.

0 2 4 6 8 10 12
0

1

2

 

 Signal: x
1

Measurement: y=x
1
+e

trend: β
0

Figure 7.1: Sinusoidal signal containing random noise and linear trend

We now list some practical examples for the use of the MLM.
Example 1:

A typical application comes from signal theory. Here we are interested in a sig-
nal x1, which may include a linear or non-linear component β0. Assuming no fixed
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parameters ξ̂2 and A1 = I, the observation equations become y = x1 + e. Figure
7.1 illustrates this example.

Example 2:
The MLM can be applied to deformation analysis, for example the monitoring of
bridges or dams. In this case, we have a-priori information about how we believe
the structure should deform under load, but we are most interested in the actual
deformation. We observe the signal plus noise; we must remove the noise (i.e.,
extract the signal from the noise).

Example 3:
Moritz applied the MLM to the gravity field problem. The normal gravity field is the
prior information, which is the (known) expectation of a physical phenomenon that
has random behavior. This physical phenomenon is called the disturbing gravity
field.

7.4 Solutions for the Mixed Linear Model

To obtain solutions for the unknown parameters of the MLM, we start by deriving
the BLUUE for the non-random parameters ξ2. Substituting the equation for x1

from (7.24b) into the observation equation of (7.24) allows us to write the Mixed
Linear Model (MLM) in an alternative form as

ȳ −A1β0 = A2ξ2 + (e−A1e0), (7.27a)

(e−A1e0) ∼ (0, σ2
0

[
P−1 +A1Q0A

T
1

]
). (7.27b)

The MLM in (7.27) appears in the form of a GMM. The left side of (7.27a) is known
and so are the characteristics of the combined error vector e − A1e0 on the right
side. So, we can estimate ξ2 using least-squares principles via the following formula:

ξ̂2 =
[
AT2 (P−1 +A1Q0A

T
1 )−1A2

]−1
AT2 (P−1 +A1Q0A

T
1 )−1(ȳ −A1β0).

(7.28)

The first inverted matrix in (7.28) is the cofactor matrix for ξ̂2 so that the

dispersion matrix of ξ̂2 is given by

D{ξ̂2} = σ2
0

[
AT2 (P−1 +A1Q0A

T
1 )−1A2

]−1
. (7.29)

An alternative form of the dispersion matrix is obtained as follows: By use of (A.15)
we obtain

(P−1 +A1Q0A
T
1 )−1 = P − PA1(Q−1

0 +AT1 PA1)−1AT1 P, (7.30a)

with

(Q−1
0 +AT1 PA1)−1 = (Ir +Q0A

T
1 PA1)−1Q0. (7.30b)
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Upon substitution of (7.30a), together with (7.30b), into the dispersion formula
(7.29) we get

D{ξ̂2} = σ2
0

{
AT2
[
P − PA1(Ir +Q0A

T
1 PA1)−1Q0A

T
1 P
]
A2

]
}−1 =

= σ2
0

[
N22 −N21(Ir +Q0N11)−1Q0N12

]−1
= σ2

0

[
N22 −N21Q

−1
0 +N11)−1N12

]−1
=

= σ2
0N
−1
22 + σ2

0N
−1
22 N21

[
(Q−1

0 +N11)N12N
−1
22 N21

]−1
N12N

−1
22 ,

or

D{ξ̂2} = σ2
0N
−1
22 + σ2

0N
−1
22 N21(Ir +Q0S1)−1Q0N12N

−1
22 , (7.31)

where

S1 := N11 −N12N
−1
22 N21. (7.32)

Also, we have used the familiar relations

Nij := ATi PAj and c̄i := ATi P ȳ, (7.33)

where the symbol c̄i is used below. To reach an alternative expression for ξ2, we
use (7.30a) through (7.31) to modify (7.28) as follows:

ξ̂2 =
[
N−1

22 +N−1
22 N21(Ir +Q0S1)−1Q0N12N

−1
22

]
·

·
[
AT2 P −N21(Ir +Q0N11)−1Q0A

T
1 P
]
(ȳ −A1β0).

(7.34)

For convenience, and for future reference, we also write

ξ̂2 = G2(ȳ −A1β0), (7.35a)

with

G2 :=
[
N−1

22 +N−1
22 N21(Ir +Q0S1)−1Q0N12N

−1
22

]
·

·
[
AT2 P −N21(Ir +Q0N11)−1Q0A

T
1 P
]
.

(7.35b)

Expanding (7.35a) leads to

ξ̂2 = N−1
22 (c̄2 −N21β0)−N−1

22 N21(Ir +Q0N11)−1Q0(c̄1 −N11β0)+

+N−1
22 N21(Ir +Q0S1)−1Q0N12N

−1
22 (c̄2 −N21β0)−

−N−1
22 N21(Ir +Q0S1)−1Q0N12N

−1
22 N21(Ir +Q0N11)−1Q0(c̄1 −N11β0).

(7.36)

The single and double underlines in the second and fourth lines of the above equation
are used to highlight similar terms. We may insert the identity matrix

(Ir +Q0S1)−1(Ir +Q0N11 −Q0N12N
−1
22 N21) = Ir (7.37)
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between the underlined terms in the second line, which, after some algebraic ma-
nipulation, leads to

ξ̂2 = N−1
22 (c̄2 −N21β0)−N−1

22 N21(Ir +Q0S1)−1Q0(c̄1 −N12N
−1
22 c̄2 − S1β0).

(7.38)
After further algebraic manipulation, we can also write

ξ̂2 = N−1
22 c̄2 −N−1

22 N21(Ir +Q0S1)−1
[
Q0(c̄1 −N12N

−1
22 c̄2) + β0

]
. (7.39)

In summary, we began with equation (7.27), which has the form of the GMM,
and we applied least-squares criteria to reach a solution for ξ2. We know that LESS
within the (full-rank) GMM is equivalent to BLUUE. So, we claim that the various

expressions of ξ̂2 above, beginning with (7.28), give the BLUUE within the mixed
linear model for the non-random (fixed) parameter vector ξ2.

From (7.27) we see that our solution will only lead to a prediction for e−A1e0.
But what we need a prediction for e0 so that we can predict x1. We can arrive at
LESS for ẽ0 based on the following Model of Condition Equations with Parameters
(see first set of Adjustment Notes):

ȳ −A1β0 = A2ξ2 +
[
In, −A1

]  e
e0

 , (7.40a)

 e
e0

 ∼ (

0

0

 , σ2
0

P−1 0

0 Q0

). (7.40b)

This model leads to the following solution for the predicted random errors:

 ẽ
ẽ0

 =

P−1 0

0 Q0


 In

−AT1

([In, −A1

] P−1 0

0 Q0


 In

−AT1

)−1

·

·
(
ȳ −A1β0 −A2ξ̂2

)
=

=

 P−1

−Q0A
T
1

(P−1 +A1Q0A
T
1

)−1(
ȳ −A1β0 −A2ξ̂2

)
⇒

 ẽ
ẽ0

 =

 P−1

−Q0A
T
1

 [P − PA1

(
Ir +Q0N11

)−1
Q0A

T
1 P
](
ȳ −A1β0 −A2ξ̂2

)
. (7.41)
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The second row of (7.41) provides the following formula for ẽ0:

ẽ0 = −Q0(c̄1 −N11β0 −N12ξ̂2) + (Q0N11 + Ir − Ir)(Ir +Q0N11)−1Q0A
T
1 P ·

· (ȳ −A1β0 −A2ξ̂2) =

= −Q0(c̄1 −N11β0 −N12ξ̂2) +Q0(c̄1 −N11β0 −N12ξ̂2)−

−(Ir +Q0N11)−1Q0(c̄1 −N11β0 −N12ξ̂2) =

= −(Ir +Q0N11)−1Q0(c̄1 −N11β0 −N12ξ̂2)⇒

ẽ0 = −Q0(Ir +N11Q0)−1(c̄1 −N11β0 −N12ξ̂2). (7.42)

By comparing the first and second rows of (7.41), we immediately see ẽ0 as a
function of ẽ:

ẽ0 = −Q0A
T
1 P ẽ. (7.43)

Now, it is obvious from the MLM that we have x̃1 = β0 − ẽ0, which upon
substitution of (7.42) yields

x̃1 = β0 +Q0(Ir +N11Q0)−1(c̄1 −N11β0 −N12ξ̂2), (7.44)

or, alternatively,

x̃1 = (Ir +Q0N11)−1Q0A
T
1 P (ȳ1 −A2ξ̂2) +

[
Ir − (Ir +Q0N11)−1Q0N11

]
β0 =
(7.45a)

= (Ir +Q0N11)−1Q0A
T
1 P (ȳ1 −A2ξ̂2) + (Ir +Q0N11)−1β0. (7.45b)

Here we used the general relationship (I +A)−1 = I − (I +A)−1A in the last step
to reach (7.45b). Note that we have arrived at the prediction x̃1 strictly by least-
squares principles. However, in this model we have the equivalence of LESS to the
inhomBLIP (Best inhomogeneous Linear Predictor). The idea behind inhomBLIP
is given in the following section.

7.5 Best Inhomogeneous Linear Predictor

The idea behind inhomBLIP is that in the class of linear predictors{
L(ȳ −A2ξ̂2) + γ

∣∣ L is an r × n matrix, γ is an r × 1 vector
}

(7.46a)

the predictor

x̃1 = (Ir +Q0N11)−1Q0A
T
1 P (ȳ1 −A2ξ̂2) + (Ir +Q0N11)−1β0 =

= L1(ȳ1 −A2ξ̂2) + γ1

(7.46b)
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has minimum mean square prediction error (MSPE). That is,

tr MSPE{x̃1} = trE{(x̃1 − x1)(x̃1 − x1)T } =

= trE{
[
L1(ȳ1 −A2ξ̂2) + γ1 − x1

][
L1(ȳ1 −A2ξ̂2) + γ1 − x1

]T } = min
L1,γ1

(7.46c)

The variables L1 and γ1 are defined as follows:

L1 := (Ir +Q0N11)−1Q0A
T
1 P = Q0A

T
1 (P−1 +A1Q0A

T
1 )−1, (7.47a)

γ1 := (Ir +Q0N11)−1β0 = β0 − L1A1β0. (7.47b)

The minimization of (7.46c) is not developed further here. However, we do note
that the predictor x̃1 is automatically weakly unbiased in the sense that

E{x̃1} = (Ir +Q0N11)−1[Q0A
T
1 P · E{ȳ1 −A2ξ̂2}+ E{β0}] = (7.48a)

= (Ir +Q0N11)−1[Q0A
T
1 PA1β0 + β0] = β0 (7.48b)

for the given vector β0. Note that (7.48b) does not necessarily hold for any arbitrary
vector β0, but rather for the given β0, hence the term weakly unbiased.

Let us now consider in detail the mean-square prediction error MSPE of {x̃1}.
Because of unbiasedness, we can write

MSPE{x̃1} = D{x̃1 − x1}. (7.49a)

Also, because the vector differences x̃1 −x1 and e0 − ẽ0 only differ by β0, we have

MSPE{x̃1} = D{e0 − ẽ0} = D{e0} − C{e0, ẽ0} − C{ẽ0, e0}+D{ẽ0}. (7.49b)

Let us compute the last four terms of (7.49b) individually.

D{e0} = σ2
0Q0 (7.50a)

In computing D{ẽ0}, we first write the dispersion for the term ȳ − A1β0 − A2ξ̂2.

This term, as we have already seen, is equivalent to the prediction ˜e−A1e0. Also,
equation (7.40b) implies no covariance between ȳ −A1β0 and A2ξ̂2, i.e.

D{ȳ −A1β0 −A2ξ̂2} = D{ ˜e−A1e0} = D{ȳ −A1β0} −D{A2ξ̂2}. (7.50b)

Now making use of (7.42), we can write

D{ẽ0} = Q0(Ir +N11Q0)−1AT1 PD{ȳ −A1β0 −A2ξ̂2}PA1Q0(Ir +N11Q0)−1.
(7.50c)



7.6. ALTERNATIVE NORMAL EQUATIONS FOR THEMIXED LINEARMODEL83

For the covariance terms, we have C{e0, ẽ0} = C{ẽ0, e0}T , and with the help of
(7.35b), we write the covariance C{e0, ẽ0} as follows:

C{e0, ẽ0} = Q0(Ir +N11Q0)−1A1P · C{ȳ −A1β0 −A2ξ̂2, e0} =

= Q0(Ir +N11Q0)−1A1P · C{(In −A2G2)(ȳ −A1β0), e0} =

= Q0(Ir +N11Q0)−1A1P (In −A2G2) · C{(A2ξ2 + e−A1e0), e0} =

= −
[
Q0(Ir +N11Q0)−1A1P

]
(In −A2G2)A1(σ2

0Q0) = C{ẽ0, e0}T (7.50d)

To recap, equation (7.49b) is comprised of equations (7.50a) through (7.50d).
The way we would actually form the dispersion matrix is as follows:

D{

x̃1 − x1

ξ̂2

} =

Ir +Q0N11 Q0N12

N21 N22


−1 Q0 0

0 Im−r

 =

=

 MSPE{x̃1} C{x̃1 − x1, ξ̂2}

C{ξ̂2, x̃1 − x1} D{ξ̂2}

 .
(7.51)

Here we stress that we are not interested in the dispersion D{x̃1}, since this is
an indicator of variation between x̃1 and E{x̃1}. Rather we are interested in the
variation between x̃1 and the true variable x1, a concept that the following formula
makes clear:

MSPE{x̃1} = E{(x̃1 − x1)(x̃1 − x1)T } = D{x̃1 − x1}, (7.52)

since E{x̃1 − x1} = 0.

7.6 Alternative Normal Equations for the Mixed
Linear Model

In the previous section we showed different, but equivalent, expressions for the
predicted parameter vector x̃1. All of these expressions depended on the estimate ξ̂2

for the fixed parameters. Our goal in this section is to find a system of normal
equations that will permit the random parameters x̃1 to be predicted without the
need to compute the fixed parameters ξ̂2. With reference to (7.28), we begin with
the following orthogonality relations, which are analogous to ATP ẽ = 0 in the
GMM:

AT2 (P−1 +A1IrQ0A
T
1 )−1(ẽ−A1ẽ0) = (7.53a)

= AT2
[
P − PA1(Ir +Q0A

T
1 PA1)−1Q0A

T
1 P
]
(ẽ−A1ẽ0) = (7.53b)

= AT2 P ẽ−N21ẽ0 −N21(Ir +Q0N11)−1Q0A
T
1 P ẽ+

+N21(Ir +Q0N11)−1Q0N11ẽ0 = 0.
(7.53c)
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Now we make use of the relations

ẽ = (ȳ −A1x̃1 −A2ξ̂2) (7.54a)

and

ẽ0 = β0 − x̃1 (7.54b)

in order to write

c̄2 = N21x̃1 +N22ξ̂2 +N21(β0 − x̃1) +N21(Ir +Q0N11)−1Q0A
T
1 P (ẽ−A1ẽ0) =

= N21β0 +N22ξ̂2 +AT2 P ẽ−N21ẽ0. (7.55)

Also, multiplying the residuals in (7.54) by AT1 P leads to

c̄1 = N11β0 +N12ξ̂2 +AT1 P ẽ−N11ẽ0. (7.56)

Now we introduce a new symbol

ν̂ := AT1 P ẽ (7.57)

and note that AT2 P ẽ = 0. Combining equations (7.55) through (7.57) into a single
systems of equations yields the normal equations

N11 N12 Ir

N21 N22 0

Ir 0 −Q0



x̃1

ξ̂2

ν̂

 =


c̄1

c̄2

β0

 . (7.58)

The solution to (7.58) yields both x̃1 and ξ̂2; it also allows us to invert the
normal-equations matrix when Q0 is singular. If Q0 is regular (non-singular), we
may reduce the size of the system as follows:P0 +N11 N12

N21 N22


x̃1

ξ̂2

 =

c̄1 + P0β0

c̄2

 . (7.59)

Consistent with previous claims, the solution to (7.59) yields inhomBLIP for x̃1

and BLUUE for ξ̂2. It also leads to ν̂ = P0(x̃1 − β0).
After inverting the matrix on the left side of (7.59) (see Appendix A for inversion

formula), we can write the prediction for x1 as follows:

x̃1 = (P0 +N11)−1(c̄1 + P0β0) + (P0 +N11)−1·

·N12

[
N22 −N21(P0 +N11)−1N12

]−1·
·
[
N21(P0 +N11)−1(c̄1 + P0β0)− c̄2

]
. (7.60a)
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Likewise, the estimation for ξ2 is given by

ξ̂2 = −
[
N22 −N21(P0 +N11)−1N12

]−1[
N21(P0 +N11)−1(c̄1 + P0β0)− c̄2

]
.

(7.60b)
Note that (7.60b) is equivalent to (7.28), which can be seen by confirming the
following two equivalences:[

AT2 (P−1 +A1Q0A
T
1 )−1A2

]−1
=
[
N22 −N21(P0 +N11)−1N12

]−1
, (7.61a)

N21(P0 +N11)−1(c̄1 + P0β0) = c̄2 +AT2 (P−1 +A1Q0A
T
1 )−1(A1β0 − ȳ). (7.61b)

Combining (7.60a) and (7.60b) yields the following expression for the predicted

random effects vector x̃1 as a function of the estimated fixed parameters ξ̂2:

x̃1 = β0 + (P0 +N11)−1(c̄1 −N11β0 −N12ξ̂2), (7.62a)

which agrees with (7.44).
Recall that ȳ, c̄1, and c̄2 are numerically equivalent to y, c1, and c2, respectively,

but they have different stochastic properties due to the randomness of x1 (see (7.33)
and (7.22)). If we factor out the term AT1 P from second parenthetical expression
in (7.62a), we get

x̃1 = β0 +
(
P0 +N11

)−1
AT1 P (ȳ −A1β0 −A2ξ̂2), (7.62b)

which can be re-written as

x̃1 = β0 + C{x1,y}[D{y}]−1(c̄1 −N11β0 −N12ξ̂2), (7.63)

since

C{x1,y} = σ2
0P
−1
0 AT1 (7.64a)

and

D{y} = σ2
0(A1P

−1
0 AT1 + P−1). (7.64b)

We conclude this chapter by commenting that LESS from the extended GMM
yields the same numerical results as LESS from the MLM, but the interpretation
is completely different. In the mixed linear model, x̃1 is predicted, while ξ̂1 is esti-
mated within the extended GMM. Therefore, we are not interested in the dispersion
of x̃1 itself but rather its MSPE.

D{

x̃1 − x1

ξ̂2

} = σ2
0

P0 +N11 N12

N21 N22


−1

6= D{

x̃1

ξ̂2

}, (7.65a)

where

D{x̃1 − x1} = MSPE{x̃1}. (7.65b)
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Finally, we state that the estimated variance component as shown below is the
Best Invariant Quadratic Uniformly Unbiased Estimate within the MLM.

σ̂2
0 =

(ẽ−A1ẽ0)T (P−1 +A1Q0A
T
1 )(ẽ−A1ẽ0)

(n−m+ r)
(7.66a)

Or, alternatively, using (7.40b), we can write

σ̂2
0 =

ẽT (In +Q0N11)T (P−1 +A1Q0A
T
1 )(In +Q0N11)ẽ

(n−m+ r)
. (7.66b)

Here, we have assumed that rkA = m. Also, recall that for the MLM, r is the
dimension of x1.



Chapter 8

The Dynamic Linear Model

The Dynamic Linear Model (DLM) is a linearized model that consists of an initial
value problem (IVP) and observed variables. It can be viewed as a model of ob-
servation equations with differential constraints. The constraints are not imposed
on the parameters but rather on the parameter changes (i.e., changes that occur in
time).

After linearizing and discretizing the original differential equations, we arrive
at the following (differential) state equation at epoch 1 as a function of the state
variables x0 at epoch 0:

x1 = Φ0x0 + u1. (8.1)

The symbols are defined as follows:

xi is an m× 1 unknown state vector at epoch i = 0, 1.

Φ0 is an m×m given state transition matrix.

u1 is an m× 1 random noise vector.

From (8.1) we can write the following stochastic constraints for x0 and x1:

[
Im, −Φ0

] x1

x0

 = u1. (8.2)

We mentioned already that the DLM is an initial value problem. The initial
conditions are expressed by

x̃0 = x0 + e0
0. (8.3)

Here the subscript 0 denotes epoch 0, while the superscript 0 denotes the initial
condition. We note that the subscript for u1 is sometimes shown as 0 rather than 1
in the literature. This is merely a convention, as the variable u1 represents the
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noise (random error) of the difference of the states x1 and Φ0x0, between epochs 1
and 0, respectively. Also, for any epoch i, the state transition matrix Φi is unique;
that is, it changes from epoch to epoch. Our knowledge of the initial state vector x̃0

can be improved by using a backward filter, but its use is not possible in real-time
applications.

Equations (8.2) and (8.3) constitute the IVP in discrete form. Their stochastic
properties (expectation and dispersion) are written asu1

e0
0

 ∼ (

0

0

 ,
Θ1 0

0 Σ0
0

). (8.4)

At this stage we have 2m unknowns and 2m equations (owing to the unknown
m×1 vectors x and u). Since there is no redundancy in the model, we cannot deter-
mine the unknowns. The redundancy enters the model via the following observation
equations:

y1 = A1x1 + e1, y1 ∈ Rn, A1 ∈ Rn×m, (8.5a)

with the stochastic model

e1 ∼ (0,Σ1), C{e1,u1} = 0, C{e1, e
0
0} = 0. (8.5b)

Thus we see that the DLM is comprised of three components: observation equa-
tions (8.5a), state equations (8.1), and initial conditions (8.3). We may combine all
three parts of the model into one succinct statement as follows:

y1 = A1x1 + e1

x1 = Φ0x0 + u1

x̃0 = x0 + e0
0



e1

u1

e0
0

 ∼ (


0

0

0

 ,


Σ1 0 0

0 Θ1 0

0 0 Σ0
0

). (8.6)

Note that a (common) variance component, σ2
0 , is embedded within the covari-

ance matrices Σ1, Θ1, and Σ0
0.

Our goal is to predict the unknown state vector x1 and determine its mean
squared error (MSE) matrix. The relations between the predicted variables (with
tildes) and true variables (without tildes) are described by

x̃1 = x1 + e0
1, (8.7a)

and

D{e0
1 = x̃1 − x1} = MSPE{x̃1} = Σ0

1. (8.7b)

We may also wish to use “backward filtering” to compute the prediction ˜̃x0 for the
initial state vector x0. However, as mentioned previously, this is not feasible, or
even possible, in real-time problems.
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We now introduce a new prediction variable
^
x1 by combining the state equation

and initial condition. This variable represents our prior knowledge about the state
vector

x1 = Φ0x0 + u1 = Φ0(x̃0 − e0
0) + u1, (8.8a)

which leads to the predictor

^
x1 := Φ0x̃0 = x1 − (u1 − Φ0e

0
0). (8.8b)

We call the term in parenthesis in (8.8b) the combined error. Note that

E{^x1} = E{x1}, (8.9a)

since

E{u1 − Φ0e
0
0} = 0. (8.9b)

We note that the “prior information” in the DLM is more complicated than in the
Mixed Linear Model (MLM). Here, we must determine the predicted state vector x̃1

(which is different than
^
x1) based on the new observations. The variable

^
x1 is the

best prediction based on the state equation and the initial condition only. We

essentially blend the prior knowledge
^
x1 with the observations y1. With this fusion

of information we are able to determine the prediction x̃1. Note that all of the
redundancy in the model comes from the observation equations. The initial value
problem is just uniquely solvable.

This fusion process is called Kalman filtering. It can be done in real time,
in which case the number of state parameters may be restricted by the speed of
the computer processor. The key is to have good information about the state
equation, not only the state transition matrix Φ0 but also the associated covariance
matrix, Θ1, of the state equation. The information contained in matrices Φ0 and Θ1

describes how we think the dynamic system behaves. Our knowledge of the system
is introduced as a differential equation, which is linearized and discretized to form
the state equation. This work must be done before the adjustment stage.

With the introduction of (8.8b), we may write an equivalent version of the DLM
as follows:

y1 = A1x1 + e1

^
x1 = x1 − (u1 − Φ0e

0
0)

}  e1

−(u1 − Φ0e
0
0)

 ∼ (

0

0

 ,
Σ1 0

0 Θ1 + Φ0Σ0
0ΦT0

)

(8.10)

The model (8.10) essentially combines observation equations (in y1) with pseudo-

observation equations (in
^
x1). But here we are dealing with random effects, so the

DLM is not an extended GMM but rather is essentially an extended random effects
model (REM).
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The LEast-Squares Solution (LESS) within the DLM is equivalent to the in-
homBLIP of x1. Based on the model (8.10), we can write the least-squares normal
equations directly as follows:

[
AT1 Im

] Σ−1
1 0

0
(
Θ1 + Φ0Σ0

0ΦT0
)−1


A1

Im

 x̃1 =

=

[
AT1 Σ−1

1

(
Θ1 + Φ0Σ0

0ΦT0
)−1

]y1

^
x1

 .
(8.11)

Solving the normal equations results in

x̃1 =
[
AT1 Σ−1

1 A1 +
(
Θ1 + Φ0Σ0

0ΦT0
)−1]−1[

AT1 Σ−1
1 y1 +

(
Θ1 + Φ0Σ0

0ΦT0
)−1^

x1

]
.

(8.12)

Then, the following steps lead to the isolation of
^
x1:

x̃1 =
[
AT1 Σ−1

1 A1 +
(
Θ1 + Φ0Σ0

0ΦT0
)−1]−1·

·
[
AT1 Σ−1

1 y1 +
(
Θ1 + Φ0Σ0

0ΦT0
)−1^

x1 +AT1 Σ−1
1 A1

^
x1 −AT1 Σ−1

1 A1
^
x1

]
⇒

(8.13a)

x̃1 =
^
x1 +

[
AT1 Σ−1

1 A1 +
(
Θ1 + Φ0Σ0

0ΦT0
)−1]−1

AT1 Σ−1
1

(
y1 −A1

^
x1

)
,

(8.13b)
or

x̃1 =
^
x1 +K1z1. (8.13c)

Here, the m× n matrix

K1 :=
[
AT1 Σ−1

1 A1 +
(
Θ1 + Φ0Σ0

0ΦT0
)−1]−1

AT1 Σ−1
1 (8.13d)

is called Kalman gain matrix, and the n× 1 vector

z1 := (y1 −A1
^
x1) (8.13e)

is called the innovation.
The form of the Kalman gain matrix in (8.13d) is useful for the case where the

dimension, m, of the state vector is smaller than the number of observations n.
We may write alternative forms of the solution as follows:

x̃1 −
^
x1 =

[
Im + (Θ1 + Φ0Σ0

0ΦT0 )AT1 Σ−1
1 A1

]−1·

· (Θ1 + Φ0Σ0
0ΦT0 )AT1 Σ−1

1 (y1 −A1
^
x1) =

(8.14a)

= (Θ1 + Φ0Σ0
0ΦT0 )AT1

[
Σ1 +A1(Θ1 + Φ0Σ0

0ΦT0 )AT1
]−1

(y1 −A1
^
x1). (8.14b)
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In (8.14a) we have used the the relations (A.22a) and (A.22c), and in (8.14b) we
have used the relations (A.21a) and (A.21e). Both equations (8.14a) and (8.14b)
are in the form of an update. However, equation (8.14a) requires the inversion of an
m×m matrix, whereas equation (8.14b) requires the inversion of an n× n matrix.
Oftentimes, in real-time applications, the number of observations n at a given epoch
is small (perhaps only 1) compared to the number of state parameters m. In such
a case, equation (8.14b) would be preferred over equation (8.14a).

We note that in the technical literature x̃1 is called the filtered state, while
^
x1

is called the predicted state. However, in the statistical literature, x̃1 represents the
best prediction. It is this best prediction x̃1 that we are interested in.

We summarize the various forms of the Kalman gain matrix appearing in the
above formulas as follows:

K1 =
[
AT1 Σ−1

1 A1 + (Θ1 + Φ0Σ0
0ΦT0 )−1

]−1
AT1 Σ−1

1 = (8.15a)

=
[
Im + (Θ1 + Φ0Σ0

0ΦT0 )AT1 Σ−1
1 A1

]−1
(Θ1 + Φ0Σ0

0ΦT0 )AT1 Σ−1
1 = (8.15b)

=
(
Θ1 + Φ0Σ0

0ΦT0
)
AT1
[
Σ1 +A1(Θ1 + Φ0Σ0

0ΦT0 )AT1
]−1

. (8.15c)

By combining the two equations in (8.10), we can alternatively express the
innovation vector as

z1 := (y1 −A1
^
x1) = e1 +A1(u1 − Φ0e

0
0) =

[
In A1 −A1Φ0

]
e1

u1

e0
0

 . (8.16)

The dispersion of the innovation vector is readily apparent from (8.16) as

D{z1} =

[
In A1 −A1Φ0

]
Σ1 0 0

0 Θ1 0

0 0 Σ0
0




In

AT1

−ΦT0 A
T
1

 =

= Σ1 +A1(Θ1 + Φ0Σ0
0ΦT0 )AT1 .

(8.17)

We may express the stochastic properties of the innovation z1 more concisely as

z1 ∼ (0, D{z1}) and C{zi, zj} = 0 for i 6= j. (8.18)

The statement of zero correlation means that the innovative sequence (from epoch
to epoch) is uncorrelated. The expectation E{zi} = 0 should be tested for. If,
through statistical testing, the expectation is found to be non-zero, this means that
the state equations are inconsistent with the observation equations, and it means
that the state equations might need to be modified.

The familiar model of condition equations (see first set of Adjustment Notes),
along with the LESS for the residual vector is given by

w := Be, (8.19)
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and

ẽ = P−1BT (BP−1BT )−1w. (8.20)

Comparing (8.16) with the first part of (8.20), we see that the innovation vector
is in the form of the model of condition equations. Thus, in accordance with the
LESS within that model, we can immediately write the solution to the vector of
predicted errors as

ẽ1

ũ1

ẽ0
0

 =


Σ1 0 0

0 Θ1 0

0 0 Σ0
0




In

AT1

−ΦT0 A
T
1

 ·

·


[
In A1 −A1 Φ0

]
Σ1 0 0

0 Θ1 0

0 0 Σ0
0




In

AT1

−ΦT0 A
T
1



−1

z1,

(8.21a)

or 
ẽ1

ũ1

ẽ0
0

 =


Σ1

Θ1A
T
1

−Σ0
0ΦT0 A

T
1

 [Σ1 +A1

(
Θ1 + Φ0Σ0

0ΦT0
)
AT1
]−1
z1. (8.21b)

If we substitute the predicted errors from (8.21b) into the second equation of
(8.10), we arrive at

x̃1 =
^
x1 +

(
ũ1 − Φ0ẽ

0
0

)
, (8.22)

which leads to the same update formula found in (8.14b).
We mentioned earlier that backwards filtering can be used to obtain a better

prediction of the initial state vector x̃0, though this is usually not feasible in real-
time applications. Substituting the predicted random error vector ẽ0

0 of (8.21b)
into the third equation of (8.6), and making use of (8.13e) for z1, allows us to write
the backwards filter in the form of an update to x̃0 as follows:

˜̃x0 = x̃0 + ẽ0
0 = x̃0 − Σ0

0ΦT0 A
T
1

[
Σ1 +A1(Θ1 + Φ0Σ0

0ΦT0 )AT1
]−1

(y1 −A1Φ0x̃0).
(8.23)

In order to form the model for the next interval, we need the covariance ma-
trix Σ0

1. This matrix is defined as

Σ0
1 := MSPE{x̃1} = D{x̃1 − x1} = D{(x̃1 −

^
x1)− (x1 −

^
x1)}. (8.24)
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Referring to (8.8b), we may write a vector difference depending on unknown vectors
x1, u1, and e0

0 as

x1 −
^
x1 = u1 − Φ0e

0
0, (8.25a)

which implies the following vector difference based on corresponding predicted vari-
ables:

x̃1 −
^
x1 = ũ1 − Φ0ẽ

0
0. (8.25b)

So, with help of (8.25b), we may replace the differences in (8.24) with linear com-
binations of the residual vectors as in the following:

D{(ũ1 − Φ0ẽ
0
0)− (u1 − Φ0e

0
0)} =

D{ũ1 − Φ0ẽ
0
0} − C{(ũ1 − Φ0ẽ

0
0), (u1 − Φ0e

0
0)}−

− C{
(
u1 − Φ0e

0
0

)
,
(
ũ1 − Φ0ẽ

0
0

)
}+D{u1 − Φ0e

0
0}.

(8.26)

We now determine each of the four terms on the right side of (8.26) before
combining them into a single equation. Comparing (8.14b) and (8.22) we see that

D{ũ1 − Φ0ẽ
0
0} = (Θ1 + Φ0Σ0

0ΦT0 )AT1
[
Σ1 +A1(Θ1 + Φ0Σ0

0ΦT0 )AT1
]−1

D{z1}·

·
[
Σ1 +A1(Θ1 + Φ0Σ0

0ΦT0 )AT1
]−1

A1(Θ1 + Φ0Σ0
0ΦT0 ),

(8.27a)

which, upon substitution of (8.17), leads to

D{ũ1 − Φ0ẽ
0
0} = (Θ1 + Φ0Σ0

0ΦT0 )AT1
[
Σ1 +A1(Θ1 + Φ0Σ0

0ΦT0 )AT1
]−1·

·A1(Θ1 + Φ0Σ0
0ΦT0 ).

(8.27b)

From the given model (8.10) we can write

D{u1 − Φ0e
0
0} = Θ1 + Φ0Σ0

0ΦT0 . (8.27c)

Using (8.27c), we can rewrite (8.27b) as

D{ũ1 − Φ0ẽ
0
0} = (Θ1 + Φ0Σ0

0ΦT0 )AT1
[
Σ1 +A1(Θ1 + Φ0Σ0

0ΦT0 )AT1
]−1·

·A1D{u1 − Φ0e
0
0} = K1A1D{u1 − Φ0e

0
0},

(8.27d)

which leads to the following covariance terms:

C{ũ1 − Φ0ẽ
0
0,u1 − Φ0e

0
0} = K1A1D{u1 − Φ0e

0
0} = (8.27e)

(and, due to symmetry,)

= C{u1 − Φ0e
0
0, ũ1 − Φ0ẽ

0
0} = D{ũ1 − Φ0ẽ

0
0}. (8.27f)
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Summing the individual components (8.27c) through (8.27f) yields

D{(ũ1 − Φ0ẽ
0
0)− (u1 − Φ0e

0
0)} = (Im −K1A1)(Θ1 + Φ0Σ0

0ΦT0 ) =: Σ0
1.

(8.28)

With the covariance matrix Σ0
1, we are ready to process the data at epoch 2, and

we can continue in a like manner with any epochs that follow.
Notice that the variance component σ2

0 has not been included in the dispersion
formulas. This is because we try to avoid extra computations in real-time applica-
tions. However, we may wish to test our hypothesis that the innovation vector z1

is zero. To do so, we form the test statistic

Ω := zT1
(
D{z1}

)−1
z1, (8.29)

which has redundancy n. Our hypothesis test (at each epoch) is

H0 : E{z1} = 0 versus Ha : E{z1} 6= 0. (8.30)

The distribution of the test statistic is

Ω ∼ χ2
n under H0. (8.31)

For some chosen level of significance α, we reject the null hypothesis H0 if Ω > χ2
α.

Note that we could also test the expectations of ẽ1, ũ1, and ẽ0
0 separately if the

null hypothesis in (8.30) is rejected.



Appendix A

Useful Matrix Relations and
Identities

Kronecker product The Kronecker-Zehfuss product of matrices is often sim-
ply called the Kronecker product. Its definition and several computational rules
associated with it are given below.

Definition: let G = [gij ] be a p × q matrix and H = [hij ] be an r × s matrix,
then

G⊗H :=
[
gij ·H

]
(A.0)

gives the Kronecker-Zehfuss product G⊗H, which is of size pr × qs.
Kronecker-Zehfuss computational rules:

(1) vecABCT = (C ⊗A) vecB (A.1)

(2) trABCTDT = trDTABCT = (vecD)T (C ⊗A) vecB (A.2)

(3) (G⊗H)T = GT ⊗HT (A.3)

(4) (G⊗H)−1 = G−1 ⊗H−1 (A.4)

(5) α(G⊗H) = αG⊗H = G⊗ αH for α ∈ R (A.5)

(6) (F +G)⊗H = (F ⊗H) + (G⊗H) (A.6)

(7) G⊗ (H + J) = (G⊗H) + (G⊗ J) (A.7)

(8) (A⊗B)(G⊗H) = AG⊗BH (A.8)

(9) (H ⊗G) = K(G⊗H)K for “commutation matrices” of suitable size
(A.9)

(10) KT is also a commutation matrix with KKT = I = KTK ⇒
K(H ⊗G) = (G⊗H)K (A.10)

(Note that K is a generic symbol; the two K matrices could be different.)

specially: K(H ⊗ g) = g ⊗H for any vector g
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(11) K ⊗K is also a commutation matrix ⇒ vec(GT ) = vec(KKTGT ) =

(G⊗ I)K vec I = K(I ⊗G) vec I = K vecG. Hence, K is called a “vec-

permutation matrix.” (A.11)

(12) Let λG and λH be vectors with the respective eigenvalues of the matrices

G and H; then the vector x(λG ⊗ λH)contains exactly the eigenvalues of

the matrix (G⊗H). (A.12)

(13) tr(G⊗H) = trG trH (A.13)

(14) G and H positive (semi) definite ⇒ G⊗H positive (semi) definite (A.14)

The four fundamental matrix subspaces Let A be a matrix of size n × m
with rkA =: q. The four fundamental matrix subspaces are

The column space of A (also range of A) is denoted by R(A).

The nullspace of A (also the kernel of A) is denoted by N (A).

The row space of A, which is R(AT ).

The left nullspace of A, which is N (AT ).

The subspaces are elements of larger spaces, the sizes of which are determined
by the dimension of A.

N (A) ⊂ Rm, R(AT ) ⊂ Rm

N (AT ) ⊂ Rn, R(A) ⊂ Rn

The dimensions of the subspaces are a function of the rank of A, which we denote
by q.

dimR = q

dimN (A) = m− q (also called the nullity of A)

dimR(AT ) = q

dimN (AT ) = n− q

Sherman-Morrison-Woodbury-Schur formula

(T − UW−1V )−1 = T−1 + T−1U(W − V T−1U)−1V T−1 (A.15)

As a consequence, we also have:

(I ±W−1V )−1 = I ∓ (W ± V )−1V, (A.16a)

(I ± V )−1 = I ∓ (I ± V )−1V, (A.16b)

(I ±W−1)−1 = I ∓ (W ± I)−1. (A.16c)
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Inverse of the partitioned normal equation matrix Assume the matrix N
is of full rank and is partitioned as

N =

N11 N12

N21 N22

 . (A.17)

The following row reductions lead to the inverse of N , expressed in terms of the
partitioned blocks:N11 N12 I 0

N21 N22 0 I

→
 I N−1

11 N12 N−1
11 0

N21 N22 0 I

→
→

 I N−1
11 N12 N−1

11 0

0 N22 −N21N
−1
11 N12 −N21N

−1
11 I

→

→

I N−1
11 N12 N−1

11 0

0 I −
(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

(
N22 −N21N

−1
11 N12

)−1

→

→

 I 0

0 I

∣∣∣∣∣∣∣
N−1

11 +N−1
11 N12(N22 −N21N

−1
11 N12)−1N21N

−1
11

−(N22 −N21N
−1
11 N12)−1N21N

−1
11

−N−1
11 N12(N22 −N21N

−1
11 N12)−1

(N22 −N21N
−1
11 N12)−1


Finally we may writeN11 N12

N21 N22


−1

=

 N−1
11 +N−1

11 N12

(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

−(N22 −N21N
−1
11 N12)−1N21N

−1
11

−N−1
11 N12(N22 −N21N

−1
11 N12)−1

(N22 −N21N
−1
11 N12)−1

 .
(A.18)

Note that other equivalent representations of this inverse exist.

Euclidean norm Also called l2-norm, Frobenius norm, Hilbert-Schmidt norm,
or Schur Norm: (see LÜTKEPOHL, pg. 103).

‖A‖ ≡
√

tr(ATA) for an m× n real matrix A. (A.19)
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Derivatives of the trace (for additional formulas see Lütkepohl, pp. 177-179)

X(m× n), A(n×m) :
∂ tr(AX)

∂X
=
∂ tr(XA)

∂X
= AT (A.20a)

X(m× n), A(m× n) :
∂ tr(XTA)

∂X
=
∂ tr(AXT )

∂X
= A (A.20b)

X(m× n) :
∂ tr(XTX)

∂X
=
∂ tr(XXT )

∂X
= 2X (A.20c)

X(m× n), A(m×m) :
∂ tr(XTAX)

∂X
= (A+AT )X (A.20d)

X(m× n), A(m×m) symmetric:
∂ tr(XTAX)

∂X
= 2AX (A.20e)

X(m× n), A(n× n) :
∂ tr(XAXT )

∂X
= X(A+AT ) (A.20f)

X(m× n), A(n× n) symmetric:
∂ tr(XAXT )

∂X
= 2XA (A.20g)

X,A(m×m) :
∂ tr(XAX)

∂X
= XTAT +ATXT (A.20h)

X(m× n), A(p×m) :
∂ tr(AXXTAT )

∂X
= 2ATAX (A.20i)

Useful Matrix Equivalents (handout from Prof. Schaffrin, possibly originating
from Urho A. Uotila)

DC(A+BDC)−1 = (D−1 + CA−1B)−1CA−1 = (A.21a)

= D(I + CA−1BD)−1CA−1 = (A.21b)

= DC(I +A−1BDC)−1A−1 = (A.21c)

= DCA−1(I +BDCA−1)−1 = (A.21d)

= (I +DCA−1B)−1DCA−1 (A.21e)

We may expand the above UME’s by setting, in turn, each matrix equal to the
identity matrix, thus generating four new sets of identities, as follows:

Let A = I:

DC(I +BDC)−1 = (D−1 + CB)−1C = (A.22a)

= D(I + CBD)−1C = (A.22b)

= (I +DCB)−1DC. (A.22c)
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Let B = I:

DC(A+DC)−1 = (D−1 + CA−1)−1CA−1 = (A.23a)

= D(I + CA−1D)−1CA−1 = (A.23b)

= DC(I +A−1DC)−1A−1 = (A.23c)

= DCA−1(I +DCA−1)−1 = (A.23d)

= (I +DCA−1)−1DCA−1. (A.23e)

Let C = I:

D(A+BD)−1 = (D−1 +A−1B)−1A−1 = (A.24a)

= D(I +A−1BD)−1A−1 = (A.24b)

= DA−1(I +BDA−1)−1 = (A.24c)

= (I +DA−1B)−1DA−1. (A.24d)

Let D = I:

C(A+BC)−1 = (I + CA−1B)−1CA−1 = (A.25a)

= C(I +A−1BC)−1A−1 = (A.25b)

= CA−1(I +BCA−1)−1. (A.25c)

References: LÜTKEPOHL, H. (1996). Handbook of Matrices, John Wiley &
Sons Ltd., West Sussex, England.
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