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Introduction

This document is primarily based on notes taken by Kyle Snow in Geodetic Science
adjustments courses GS 650 and GS 651 taught by Burkhard Schaffrin at The
Ohio State University in 1997 and 1998. The appendix contains several matrix
properties and identities used throughout the text. A bibliography at the end
includes referenced material and material for suggested reading.

Notation

A few comments about the notation used in this document may be helpful. Matrices
are displayed in uppercase. Vectors are lowercase and are set in bold-face type
(bold face is not used for any other symbols). Scalar variables are generally lower-
case. Greek letters are used for unknown, non-random parameters, while Latin
letters are used for unknown, random variables. Symbols denoting estimates of
non-random variables use Greek letters with a hat on top, while predictions of
random variables are shown as Latin letters with tildes on top. Tables 1 and 2 list
variables, mathematical operators, and abbreviations used herein.

Table 1: Variables and mathematical operators

Symbol Description

A coefficient (design) matrix in the Gauss-Markov Model

B coefficient matrix in the Model of Condition Equations

c right-side vector in the system of normal equations N ξ̂ = c

C{·} covariance operator

D{·} dispersion operator

diag[·] a diagonal matrix with diagonal elements comprised of [·]
dim the dimension of a matrix

e unknown random error vector for the observations

ẽ predicted random error (residual) vector for the observations

Continued on next page
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2 INTRODUCTION

Symbol Description

e0 unknown random error vector associated with stochastic con-
straints

ẽ0 predicted random error (residual) vector for e0

E{·} expectation operator

H0 null hypothesis

HA alternative hypothesis

K constraint matrix used in the Gauss-Markov Model with (stochas-
tic) constraints

m number of unknown parameters

MSE{·} mean squared error operator

n number of observations

N normal-equations matrix in the system of normal equations N ξ̂ = c

N (·) the nullspace (kernel) of a matrix or the normal distribution, de-
pending on the context

P weight matrix for the observations

P0 weight matrix for stochastic constraints

q rank of the coefficient (design) matrix A

Q cofactor matrix for the observations

Qẽ cofactor matrix for the predicted random errors (residuals)

r redundancy of data model

R the field of real numbers

R(·) the range (column) space of a matrix

rk the rank of a matrix

tr the trace of a matrix

U matrix of eigenvectors

w constant vector in the Model of Condition Equations

y vector of observations (possibly in linearized form)

z vector of constraints used in the Gauss-Markov Model with stochas-
tic constraints

α significance level for statistical tests

α observation coefficient vector in the Model of Direct Observations

β a quantity associated with the power of a statistical test

χ2 chi-square statistical distribution

δ a small deviation or non-random error, as in δP denoting a non-
random error in matrix P

Φ Lagrange target function

η unit vector used in the Outlier Detection Model

κ0 vector of specified constants used in the Gauss-Markov Model with
constraints

λ unknown vector of Lagrange multipliers

λ̂ estimated vector of Lagrange multipliers

Continued on next page



INTRODUCTION 3

Symbol Description

µ, µ the expected value of a non-random variable, could be a scalar µ
or vector µ

µ̂, µ̂ the estimate of a non-random variable

µ̂y vector of adjusted observations

ν statistical degrees of freedom

θ the orientation of a confidence ellipse

σ2
0 unknown variance component

σ̂2
0 estimated variance component

Σ dispersion (or covariance) matrix for the observations

τ vector of ones (also called “summation vector”)

Ω (weighted) sum of squared residuals (unconstrained case)

ξ vector of unknown parameters

ξ̂ estimated parameter vector

Continued from previous page

Table 2: List of abbreviations

Abbrev. Meaning

BLUUE Best Linear Uniformly Unbiased Estimate

BLIP Best LInear Prediction

cdf cumulative distribution function

GHM Gauss-Helmert Model

GMM Gauss-Markov Model

LESS LEast-Squares Solution

MSE Mean Squared Error

pdf probability density function

rms root mean square
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Chapter 1
Foundations: Observations,
Parameters, Random Errors, and
Essential Math

1.1 Parameters and Observations, Purpose of Ad-
justment Computations

In geodetic science, observations (measurements) are typically made for the purpose
of estimating certain unknown quantities, for example, coordinates of GPS reference
stations, or heights of benchmarks. These unknown quantities are often expressed
as parameters of an observational model. In some cases an unknown parameter
might be measured directly (say the length of a bridge), but often parameters
are only “measured indirectly,” for example by measuring angles and distances to
determine coordinates of points. In any case, for our purposes we will consider these
unknown quantities to be fixed parameters, rather than random parameters, which
are treated in the Advanced Adjustment Computations notes. The terms fixed and
random parameters refer to the statistical (stochastic) properties of the unknowns.
Physically, one may think of a fixed parameter as representing a quantity that does
not vary in time, at least not over the time span of interest.

While some observations can be made with the naked eye, for example by reading
a tape to determine a distance between survey markers, often they are made by use
of a more sophisticated instrument. Traditionally, in surveying most instruments
were optical, such as a surveyor’s level or transit. These instrument required scales
or rods to be read with the aid of telescopes and magnifying eyepieces. Eventually,
electro-optical instruments added electronic distance measuring functionality, while
horizontal and vertical angles were still read by optical means. Later, with the
advent of the total station, both angles and distances were measured electronically,
and perhaps not even recorded manually if a data collector was used in conjunc-

5



6 CHAPTER 1. FOUNDATIONS

tion with the instrument. Nowadays, robotic total stations, digital levels, GPS (or
GNSS) receivers, and laser scanners, not to mention drones with GPS receivers,
cameras, and LIDAR, remove most of the traditional elements of human observa-
tion. Nevertheless, we still refer to the quantities they measure and record (the
data) as observations. The import thing to know about observations, is that they
always contain some level of unknown error, whether they are made and recorded
manually by a human, or made and recorded electronically with little or no human
involvement.

Errors in observations differ by type (nature). The types we are most concerned
with are random, systematic (bias), and blunders (mistakes). Blunders might belong
to the statistical category of outlier. We will discuss these categories of errors in
more detail in a later section. For now we simply assume that 1) all observations
contain random errors, 2) that it is usually possible to account for systematic errors
in some way (if we know they exist), and 3) that blunders must be avoided or found
and removed.

Let us summarize these concepts with the following brief definitions:

Observation A measured quantity that has a numerical value and unit associated
with it. Observations always contain unknown random error and might also be
corrupted by systematic errors (biases) and blunders. Because of its random
component, an observation is treated as a random variable.

Parameter An unknown quantity of interest that is to be estimated. Here we
treat only fixed parameters, by which we mean they do not vary statistically.

Purpose of adjustment computations Let us assume for now that our obser-
vations are free of biases and blunders. They still contain unknown random errors.
What’s more, by design we usually have more observations than the minimum nec-
essary to determine the unknown parameters of our observational model, if any.
How then do we deal with these extra observations and their random errors? This
is the subject of adjustment computations, the purpose of which is to adjust the
observations in some way so that the difference between the given observations and
their adjusted values (called residuals) is as small as possible according to a stated
criterion. One particular method for doing so is the method of least-squares adjust-
ment, which is the primary subject of these notes. The term “least squares” is due
to the criterion of the method, which is summarized by the often-heard statement
that

the sum of the squares of the (weighted) residuals is a minimum.

1.2 Functional Relations and Stochastic Proper-
ties

As noted above, observations are typically made to determine the value of some
unknown quantity (or quantities) of interest. In order to relate the observations
with the unknown quantity, a mathematical function is specified. The function
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may be linear or nonlinear depending on the complexity of the relation between the
observations and the unknowns. In the case where the unknown quantity can be
observed directly, a simple linear function might be suitable. In other cases, the
chosen function may be highly nonlinear.

As an example, suppose a distance is measured between points p1 and p2 whose
coordinates in the horizontal plane must be determined. In this case, the measured
distance, call it y, is the observation. The the unknown quantities are the coordi-
nate pairs of the two points, viz. (x1, y1) and (x2, y2). The functional relationship
between the measured distance and unknown coordinates can be written as

y(x1, y1, x2, y2) ≈
√

(x2 − x1)2 + (y2 − y1)2. (1.1a)

Obviously, the function is nonlinear in the unknown variables x1, y1, x2, and y2.
Note that the observation variable y is the dependent variable; it depends on the
unknown coordinates, which are the independent variables of the function. The
approximately-equals sign is used because the observation contains random error,
and thus the unknown quantities do not fully explain the observation variable.
Recall that the unknown quantities are considered to be nonrandom.

In order to change the approximately-equals sign to an equals sign, an additional
term must be added to the function so that both sides of the equation have a random
term (or, equivalently, the random term could be subtracted from the left side). The
random term, call it e, accounts for the unknown random error in the observation.
By introducing e, (1.1a) is then modified to read

y =
√

(x2 − x1)2 + (y2 − y1)2 + e, (1.1b)

where the function arguments on the left side are dropped for simplicity.

Some authors would have placed the random error e on the left side of (1.1b)
as a positive term. This is perhaps both a matter of convention and a matter of
view point. Adding e to the left side says that an observation plus its random
error is equal to some function of the unknown variables. We prefer to say that
an observation minus its random error is equal to the function. Our convention
seems to be predominant in the current literature, whereas the other convention
shows up mostly in older publications. Besides being a matter of convention, we
argue that it is more appealing mathematically to add the random error term e to
the right side, because it makes the equation consistent in that an expression with
random properties on the left then equals an expression with random properties on
the right.

Equation (1.1b) is in the form of an (nonlinear) observation equation, which is
what we call an equation that expresses an observation as a random variable that
depends on unknown quantities that must be determined. Thus, we say that (1.1b)
models the observation as a function of unknown variables; we call these unknowns
parameters of the model. We want to determine (solve for) these parameters in some
optimal way. As we will see later, the determination of the values of the parameters
cannot be made with absolute certainty. Thus we use the statistical term estimation
when we speak of determining numerical values for the parameters.
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So, we may refer to (1.1b) as an observational model; however, it is not a com-
plete model, because more needs be said about the stochastic nature of the random
error e in order to exploit its random properties when estimating the unknown pa-
rameters. In the following sections we will discuss in some detail how the stochastic
properties of random errors can be characterized. At this stage it is enough to say
that only the expectation and the variance of the errors need to be specified in the
model. Expectation is a statistical term that denotes the value we expect a random
variable to take on, at least in an average sense. And in this context, variance is a
statistical term that denotes our uncertainty about the expected value of a random
variable, i.e., it puts bounds around the expected value we specify for the random
variable (in this case random observation errors).

Unless otherwise noted, we will always specify the expectation of the random
errors to be zero. The way the expectation and variance of the random error e is
expressed mathematically is like this: e ∼ (0, σ2), which reads, “e is distributed
with zero expectation and sigma-squared variance.” Thus, the observational model
(1.1b) is made complete by extending it to

y =
√

(x2 − x1)2 + (y2 − y1)2 + e, e ∼ (0, σ2). (1.1c)

The observation equation is sometimes referred to as the functional part of the
model (or functional model), while the statement e ∼ (0, σ2) is sometimes referred
to the stochastic part of the model (or stochastic model). We call the inverse of
the variance the weight of the observation (weights are discussed in more detail in
a later section). Note that the unit of measurement of the random error e is the
same as that of the observation y, and the unit of measurement of the variance σ2

is the square of the observation’s unit.
The observational model (1.1c) is relevant to a particular problem, that is, to a

particular type of observation (an observed distance) and to particular parameters
(coordinates of two points). We would rather generalize it for use in a wide variety
of geodetic adjustment problems. For that we collect the unknown parameters in
the m×1 vector ξ, the symbol used to represent a vector of m unknown parameters
throughout these notes. Furthermore, (1.1c) contains only one observation; it must
be generalized to handle any number of observations, possibly all with their own
unique variances. For this we make use of matrices and vectors.

Suppose rather than a single observation y we are given an n × 1 vector of
observations y = [y1, . . . , yn]T , which has an associated, unknown vector of random
errors e = [e1, . . . , en]T . Our general model should allow each of the random errors
to have its own unique variance, and it should allow for covariances between the
random errors (covariances are defined in Section 1.5.2). Thus an n × n cofactor
matrix Q is introduced, with its inverse P := Q−1 called weight matrix. When Q is
multiplied by an unknown scalar σ2

0 called variance component, the result is called
covariance matrix, which is denoted by the symbol Σ, i.e., Σ := σ2

0Q = σ2
0P
−1.

Note that some authors call the variance matrix “variance-covariance matrix,” and
some authors call the variance component the “variance of unit weight.” Putting
these components together results in the following model:

y
n×1

= f(ξ)
Rm→Rn

+ e
n×1

, e ∼ ( 0
n×1

, σ2
0P
−1

n×n
). (1.2a)
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Note that the vector of functions f maps Rm into Rn, denoted mathematically by
f : Rm → Rn.

Now, if the vector of functions f is nonlinear in the unknown parameters ξ, it
can be linearized by a truncated Taylor series expansion (see Appendix B). Whether
we have a linear form f(ξ) or a linearized form, we can represent it by an n ×m
coefficient matrix A, so that the model (1.2a) can be restated as

y
n×1

= A
n×m

ξ + e
n×1

, e ∼ ( 0
n×1

, σ2
0P
−1

n×n
). (1.2b)

The development of the model (1.2b) is an important step in understanding the
relations between observations, parameters, and random errors. The model is of
type Gauss-Markov, which is an important model in geodetic science and one that
is used extensively in Chapter 3, with particular extensions of it as the focus of
Chapter 5 and Section 3.5. More details about random errors, covariances, and
weights will follow, and the usefulness of model (1.2b) will become more apparent
in later chapters. For now, we summarize with a basic description of each element
of the model.

y is a given n× 1 vector of observations.

A is a given n×m coefficient matrix that has full column rank, i.e, rkA = m.

ξ is an m× 1 vector of unknown parameters.

e is an n× 1 vector of unknown random errors associated with the observations.

σ2
0 is an unknown variance component (scalar quantity). Note that σ2

0 is unitless.

P is an n × n weight matrix such that P−1 := Q for a given cofactor matrix Q,
and where the covariance matrix Σ is defined as Σ := σ2

0P
−1. Note that the

diagonal elements of Q have units that are the square of the units of their
associated observations.

1.3 Fundamentals of Matrix Algebra

Matrix algebra (or linear algebra) is fundamental to the mathematics of adjustment
computations, and it is used extensively in these notes. Most of the concepts in
matrix algebra used here are covered in a first course in linear algebra at the college
or university level. Beyond that, there are many derivations in the chapters that
follow that make use of certain matrix relations and identities involving inverses of
sums and products of matrices that generally do not appear in a first course on
linear algebra. These relations are helpful both for reducing complicated formulas
to simpler forms and for showing alternative, but equivalent, solutions to the same
problem. (Seeing more than one solution to a problem may help to provide greater
insight into it, and we will find that sometimes one formula may be more or less
efficient than another equivalent one depending on the problem at hand.)
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A list of matrix relations and identities used in these notes is provided in Ap-
pendix A. The ones involving only a single line should be memorized. While it’s
not necessary to memorize the multi-line formulas to read these notes well, being
able to recognize them or readily refer to them will make some of the derivations
in later chapters easier to follow. To facilitate reading of the text, their equation
numbers are usually referred to when they are used.

1.3.1 Important Concepts

Below is a list of the minimum concepts of linear algebra that the reader should
be familiar with. Some are described briefly in the paragraphs that follow. These
books are good sources for more complete descriptions: Strang (2006); Strang and
Borre (1997).

• Gaussian elimination and back substitution

• Gauss-Jordan elimination

• The column space of a matrix

• The nullspace of a matrix

• The basis and dimension of a vector space

• The rank of a matrix

• Consistent and inconsistent systems of equations

• Eigenvalues and eigenvectors

• The properties of an invertible matrix

• The terms positive definite and positive semidefinite

• The term idempotent

• Choleskey’s decomposition

• All other items in Appendix A

Vector spaces The space Rn consists of all vectors with n components. Two
important vector spaces in adjustment computations are the column space and the
nullspace of a matrix.
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A basis of a vector space A basis for a vector space is a sequence of vectors
that are linearly independent and that span the space. A vector space may have
many different bases, but given a basis, every vector in the space can be expressed
as a unique linear combination of the basis vectors. All bases for a vector space
contain the same number of vectors. This number is the dimension of the space.
The columns of any invertible m×m matrix provide a basis for Rm.

Column space The column space of a matrix A consists of all linear combinations
of its columns. It is denoted by R(A) and is also called the range of A. Its
dimension equals the rank of A, which is also the number of linearly indepen-
dent columns in the space. We say that the columns of A span the column
space of A.

Note that the column space of the matrix product AB is contained in the
column space of A, denoted mathematically by

R(AB) ⊂ R(A). (1.3)

In words, it means that every column of the matrix product AB is a linear
combination of the columns of A.

Nullspace The nullspace of A consists of all solutions to Ax = 0. It is denoted
by N (A) and is also called the kernel of A. The dimension of the nullspace
of A is the number of nonzero vectors in the space. Its dimension is

dimN (A) = m− rkA, if A has m columns. (1.4)

This dimension is also called the nullity. If A is a square, nonsingular matrix,
the only vector in its nullspace is x = 0, and thus the dimension of its nullspace
is zero.

The relationship between the dimensions of the column space and nullspace is
given by

dimR(A) + dimN (A) = dimRm = m, if the size of A is n×m. (1.5)

The rank of a matrix The rank of a matrix A is the number of its independent
rows, which is also the number of its independent columns.

Consistent and inconsistent systems of equations A consistent system of
equations is one that is solvable. The equation Ax = b is only consistent if b is in
the column space of A. For example, the equation in (1.2b) would not be consistent
if the random error vector e were removed from it. That is because the observation
vector y is not in the column space of the coefficient matrix A. Without e, (1.2b)
would be inconsistent.
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Properties of an invertible matrix A matrix A is invertible if there exists a
matrix A−1 such that

A−1A = I and AA−1 = I. (1.6)

Only square matrices are possibly invertible. If matrix A is invertible:

• It is nonsingular (regular).

• Its inverse is unique.

• Its rank is equal to its dimension (size), i.e., rkA = m if the size of A is m×m.

• Its rank is equal to the dimension of its column space, i.e., rkA = dimR(A).

• The vector x = 0 is the only vector in its nullspace. Therefore, dimN (A) = 0.

• All its eigenvalues are nonzero.

Positive definite and positive semidefinite matrices

Positive definite A matrix A is positive definite if xTAx > 0 for all nonzero
vectors x. A positive definite matrix is nonsingular. All of its eigenvalues
are greater than zero. If the matrix is also symmetric, it can be factored by
the Cholesky decomposition. See page 25 for properties of a positive-definite
matrix.

Positive semidefinite A matrix A is positive semidefinite if xTAx ≥ 0 for all
nonzero vectors x. A positive semidefinite matrix is singular. At least one of
its eigenvalues is zero; the rest are greater than zero.

Idempotent matrices An idempotent matrix equals its own square. It is a square
matrix, and it is singular unless it is the identity matrix.

The n× n matrix P is idempotent if PP = P . (1.7a)

If the n× n matrix P is idempotent, then so is In − P . (1.7b)

If P is idempotent, trP = rkP. (1.7c)

The eigenvalues of an idempotent matrix are 0 or 1. (1.7d)

Projection matrices are idempotent. (1.7e)

1.3.2 Practice Problems

The reader should know how to solve the following problems:

1. Solve the following system of equations by Gaussian elimination and back
substitution:

x1 + 3x2 − 2x3 + 2x5 = 0
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2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

2. Solve the preceding system of equations by Gauss-Jordan elimination.

3. Find a basis for the column space of

A =

1 0 1 1

3 2 5 1

0 4 4 −4

 .
4. Find a basis for the row space of

B =


1 −2 0 0 3

2 −5 −3 −2 0

0 5 15 10 0

2 6 18 8 6

 .

5. Find a basis for the nullspace of matrix A and a basis for the row space
of matrix B above. Confirm that the basis vectors in these nullspaces are
orthogonal to the column space of A and the row space of B, respectively (see
(A.19a)–(A.19d)).

6. What are the ranks of matrices A and B above.

7. Find the eigenvalues and eigenvectors of

A =

3 4 2

0 1 2

0 0 0

 and B =

0 0 2

0 2 0

2 0 0

 .
For each matrix, check that the sum of its eigenvalues equals its trace and
that the product of its eigenvalues equals its determinant.

8. Compute the Cholesky factor of

N =


2 0 0 −1 0

0 2 0 −1 −1

0 0 1 0 0

−1 −1 0 2 1

0 −1 0 1 2


and then compute the inverse of N using the Cholesky factor.
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9. Assuming the partitioned matrix[
N11 N12

N21 N22

]

is nonsingular and that its sub-matrices N11 and N22 are also nonsingular,
without referring to Appendix A, derive its inverse using elementary row op-
erations.

10. If N is an m ×m nonsingular matrix and K is an l ×m matrix with l < m
such that rk[N |KT ] = m, then the matrix[

N KT

K 0

]

is nonsingular and so is the matrix (N + KTK). Note that 0 denotes an
l× l matrix of zeros. Without reference to Chapter 5, derive its inverse using
elementary row operations. Hint: start by multiplying the bottom row on the
left by KT and add the result to the top row.

11. With reference to Appendix A, derive (A.6b) from (A.6a).

12. If N is a nonsingular matrix defined by N := ATPA, show that the quantity
I −AN−1ATP is idempotent (see (1.7a)), where I is the identity matrix.

13. If the matrix P is idempotent, show that I − P is too.

14. Can the dimension of the nullspace of a rectangular matrix ever be zero? Why
or why not?

1.4 Random Variables

From here to the beginning of Section 1.5 we use notation consistent with textbooks
in statistics for easy comparison to them. Accordingly, we use X to denote a random
variable and x to denote a numerical value that the random variable could take on.
After these sections, we resume use of notation consistent with the rest of these
notes.

1.4.1 Review from statistics

According to Mikhail and Ackermann (1982), probabilities are associated with sta-
tistical events, which are the outcomes of statistical experiments. If an event has
several possible outcomes, we associate with it a stochastic or random variable X,
which can take on different numerical values x for different outcomes. The total
of all possible outcomes of a statistical event associated with a random variable is
called the population. Because of its large size, it is not practical, or even possible,
to evaluate all the elements of a population. For this reason, we only select a small



1.4. RANDOM VARIABLES 15

number of them (by making observations), the set of which is called a sample of
the population.

Let’s associate these abstract statistical terms with a concrete example from
geodetic science. Suppose the coordinates of a geodetic network are to be deter-
mined from data collected by GPS receivers. The act of collecting and processing
those data is the experiment. The outcome is a set of coordinate differences between
points in the network, which we take to be observations in this example. These co-
ordinate differences could take on different values (i.e., no two experiments are likely
to produce the same set of values). Therefore, each observed coordinate difference
is considered to be a realization of a random variable. Obviously, we cannot obtain
the entire population of observed coordinate differences among the network points,
because there are an infinite number of them. Rather we must settle for a finite
number of observations obtained from the experiment, which constitutes a sample.

Quoting Mikhail and Ackermann, “the total set of possible values of a random
variable, X, together with their probabilities, constitute what is termed a proba-
bility distribution associated with the random variable.” A probability distribution
involves a function that assigns a probability to all possible values of the random
variable it is associated with. The two types of probability distribution functions
are cumulative distribution function and probability density function. These two
distribution functions are defined in the following two sections for a single random
variable (univariate case).

In general, the properties of cumulative distribution functions hold for both
continuous and discrete random variables. However, probability density functions
pertain only to continuous functions. Their discrete analog is the probability mass
function. In the following, we will limit our discussion to continuous random vari-
ables. An important property of a continuous random variable is that the proba-
bility that it will take any particular value is zero. That is,

P{X = x} = 0 (1.8)

for any number x, if X is a continuous random variable.

1.4.1.1 Cumulative Distribution Function

The cumulative distribution function, F (x), gives the probability of the event {X ≤
x} for every number x, is given by

F (x) = P{X ≤ x} = P{−∞ < X ≤ x}. (1.9)

In words, (1.9) says that the probability that the random variable X will take on a
numerical value less than or equal to x is given by the function F (x). By definition,
the probabilities are limited to values between 0 and 1, i.e,

0 ≤ P ≤ 1, implying that lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1. (1.10)

Finally, for any number x,

P{x < X} = 1− F (x). (1.11)
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1.4.1.2 Probability Density Function

A probability density function f(x) of a continuous random variable X provides a
means to calculate the probabilities of intervals of numbers. It does not, however,
give the probability that X equals a specific number x, because P{X = x} = 0 for
all numbers x as stated in (1.8). The probability that X belongs to an interval [a, b]
is given by the integral

P{a ≤ X ≤ b} =

∫ b

a

f(x) dx. (1.12)

It is the area under the curve f(x) between a and b as shown in Figure 1.1.
If the lower limit a is replaced by −∞, then a relationship between the cu-

mulative distribution function and the probability density function can be written
as

F (x) =

∫ x

−∞
f(t) dt, (1.13)

which, considering the Fundamental Theorem of Calculus, leads to the relation

d

dx
F (x) =

d

dx

∫ x

−∞
f(t) dt = f(x), (1.14)

for all values of x. It is important to note that a probability density function must
satisfy the following two properties:

f(x) ≥ 0 for all numbers x.∫ ∞
−∞

f(x) dx = 1.

(1.15a)

(1.15b)

Any integrable function with satisfies these two properties is the probability density
function of some random variable X.

It is also noted that, as a consequence of (1.8), P{X = a} = 0 and P{X = b} =
0, and therefore

P{a ≤ X ≤ b} = P{a < X ≤ b} = P{a ≤ X < b} = P{a < X < b}. (1.16)
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ba
x

f(x)

Figure 1.1: The shaded area under the curve of the density function f(x) is the
probability that a random variable takes on values in the interval [a, b]

1.4.2 Distributions for Adjustment Computations

The four distributions discussed in these notes are

1. The Gaussian or normal distribution.

2. The t (student) distribution.

3. The χ2 distribution.

4. The F (Fisher) distribution.

For our purposes, these distributions are primarily used for hypothesis testing
to validate statistically the results of various adjustment computations. Standard
texts in statistics can be consulted for obtaining critical values of the distributions
from tables. More details about these distributions can be found in Chapter 9.
Here, we briefly describe the normal and standard normal distributions.

1.4.2.1 The Normal Distribution

The probability density function f(x) of the normal distribution is defined by the
equation

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , −∞ < x <∞. (1.17)

The parameters of the function are the mean µ(−∞ < µ < ∞) and the variance
σ2(σ2 > 0). The graph of f(x) is a bell-shaped curve that is symmetric about µ and
that extends over the entire horizontal axis. The shorthand notation for indicating
that a random variable X has a normal distribution with mean µ and variance σ2

is
X ∼ N (µ, σ2). (1.18)

Because f(x) is symmetric about µ and reaches its maximum at x = µ, the mean
of the normal distribution is equal to its median and mode.
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1.4.2.2 The Standard Normal Distribution

To avoid having to generate probability tables for many values of µ and σ, the
random variable X is transformed to a standardized form, which can be done for
any X by the transformation

Z =
X − µ
σ

. (1.19)

The resulting standardized random variable Z has mean µZ = 0 and variance σ2
Z =

1. It expresses the distance of X from its mean µ in units of its standard deviation σ,
as shown in Figure 1.2. Its probability density function is defined by the equation

f(z) =
1√
2π
e−

1
2 z

2

. (1.20)

In summary, we state that

If the random variable X has a normal distribution with mean µ and vari-
ance σ2, the the standardization Z = (X − µ)/σ of X has the standard
normal distribution; i.e., Z ∼ N (0, 1).

68.3%

95.5%

99.7%

34.15% 34.15% 13.6%13.6% 2.1%2.1%

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

Units of standard deviations

f
(z

)

Figure 1.2: Normal distribution curve, with percent of areas under curve denoting
probabilities. Image derived from TikZ code by John Canning, Senior Lecturer at
the University of Brighton (http://johncanning.net/wp/?p=1202).

The reason that the curve in Figure 1.2 appears to peak near 0.4 is because
f(z = 0) = 1/

√
2π ≈ 0.4. The probabilities shown in the figure (as percentages)

are due to the probability statements

P (−1 < z < 1) = P (µ− σ < x < µ+ σ) = 0.683, (1.21a)

http://johncanning.net/wp/?p=1202
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P (−2 < z < 2) = P (µ− 2σ < x < µ+ 2σ) = 0.955, (1.21b)

P (−3 < z < 3) = P (µ− 3σ < x < µ+ 3σ) = 0.997. (1.21c)

The intervals associated with these probability statements are commonly referred
to as the “1-sigma,” “2-sigma,” and “3-sigma” confidence intervals, respectively.
Other commonly used intervals are the so-called 50%, 90%, 95%, and 99% confidence
intervals. Their respective probability statements are given by

0.5 = P (−0.674 < z < 0.674), (1.22a)

0.9 = P (−1.645 < z < 1.645), (1.22b)

0.95 = P (−1.960 < z < 1.960), (1.22c)

0.99 = P (−2.576 < z < 2.576). (1.22d)

The probabilities associated with these statements can be obtained from Table C.1.
For example, (1.21a) is obtained by subtracting F (−1) = 0.1587 from F (1) =
0.8413, which results in 0.6827, or using MATLAB: normcdf(1)-normcdf(-1). For
statements (1.22a)–(1.22d), the probability associated with the left side must be
found in the table and then the corresponding z-value can be read (interpolated)
from the table. Because the limits are centered around z, but the table lists P [Z ≤
z], one should determine the value to find in the table as follows: if P denotes the
probability, the value 1− (1− P )/2 = (1 + P )/2 is the value to find in the table to
obtain the upper limit of z. For the lower limit, use (1 − P )/2, which only differs
in sign from the upper one. For example, for (1.22a), find (1 + .5)/2 = 0.75 in the
table. These limits can also be found by using the MATLAB function norminv. For
example norminv(0.25) returns −0.6745, and norminv(0.75) returns 0.6745.

Further discussions about the standard normal distribution can be found in
Section 9.3.1.

1.5 Random Variables in Adjustment Computa-
tions

In the following, we present some properties of random variables, which are also
called stochastic variables by some authors (e.g., Bjerhammar, 1973). More partic-
ularly, we focus on variables that represent random observation errors. Such errors
also have been called accidental errors ibid, pg. 5. Though we cannot know what
values random errors will take on, we may state what we expect their values to be,
and we may also specify their level of deviation or variance about their expected
values.

In the following sections, the notions of expectation and dispersion are defined
mathematically. We first start with the univariate case, where only one random
error is considered. Then we proceed to the multivariate case, where a vector of n
random errors is considered.
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1.5.1 Univariate Case

The univariate case deals with a single random variable, i.e., it treats a scalar
quantity rather than a vector quantity. Let us introduce the continuous random
variable e with a given probability density function (pdf) f(et), where et represents
a realization of e, i.e., a possible value that e might take on.

Expectation The probabilistic mean of e is the value that we expect e to take
on. We denote the expectation of e as µe and define it as follows:

µe := E{e} =

∞∫
−∞

et f(et) det, (1.23)

where E is called expectation operator. Equation (1.23) is also called the first
moment of e. If the random variable e represents measurement error, then, ideally,
E{e} = 0. If E{e} 6= 0, we say that the measurement error is biased.

Dispersion The dispersion, or variance, of e is denoted by σ2
e and is defined by

σ2
e := E{(e− E{e})2} =

∞∫
−∞

(et − µe)2f(et) det . (1.24a)

If E{e} = 0, then obviously

σ2
e =

∞∫
−∞

e2
tf(et) det . (1.24b)

Equation (1.24a) is also called the second centralized moment of e. In addition to σ2
e ,

The dispersion operator, D{e}, is also used to denote the dispersion (variance) of e,
but usually we reserve this notation for the multivariate case. The terms dispersion
and variance are used interchangeably throughout these notes. The square root of
variance is called standard deviation.

Variance is an indicator of how closely the values taken on by the random vari-
able e are to the expected value of e. It is reflective of measurement precision and
is inversely proportional to it. Thus, a small variance indicates high precision, and
a large variance indicates low precision. A succinct expression for the expectation
and variance of the random variable e, when e is assumed to be unbiased random
measurement error, is

e ∼ (0, σ2
e). (1.25)

The expression (1.25) is said in words as “e is distributed with zero mean and sigma-
sub-e-squared variance.” Note that (1.25) does not specify a pdf for e but only its
expectation and dispersion (or variance).
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1.5.1.1 Expectation and Variance Propagation

Consider the observation equation

y = µ+ e, e ∼ (0, σ2
e), (1.26)

where y is an observation (measurement), µ is an unknown observable, and e ac-
counts for the random error inherent in the observation y. We want to find the
expectation and variance of y. In other words, we want to know how the expecta-
tion and variance propagate from the random variable e to the random variable y.
Note that µ is a constant, or non-random, variable. The expectation of a constant
is the constant itself; i.e., E{µ} = µ.

Using (1.23), we can write the expectation of y = µ+ e as

E{y} =

∞∫
−∞

(µ+ et) f(et) det, (1.27a)

where et was defined in the preceding section as a value that the random variable e
can take on. The expectation operator is linear. Thus, the expectation of the sum
of random variables is the sum of their individual expectations. And, as noted
already, µ is a constant variable. Therefore

E{y} = µ

�
�
�
�
�
�>

1
∞∫
−∞

f(et) det +

∞∫
−∞

et f(et) det = µ+ E{e} = µ+ 0 = µ. (1.27b)

The first integral evaluates to one according to (1.15b); the second integral was
defined as expectation in (1.23).

The following rules are useful when working with expectations, given random
variables x and y and constant c:

E{E{x}} = E{x}, (1.28a)

E{x+ y} = E{x}+ E{y}, (1.28b)

E{c} = c, (1.28c)

E{cx} = c · E{x}, (1.28d)

E{x · y} = E{x} · E{y}
if and only if x and y are independent random variables,

(1.28e)

E{x2} 6= E{x}2 in general. (1.28f)

These rules can be extended to the multivariate case by replacing random variables x
and y with random vectors x and y, respectively, and by replacing the constant c
with a constant matrix A.

After introducing yt as a variable of integration, as was done for et above, the
dispersion (variance) of y is defined by
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D{y} =

∞∫
−∞

(yt − E{y})2f(yt) dyt =

=

∞∫
−∞

(µ+ et − µ)2f(et) det =

∞∫
−∞

e2
tf(et) det = σ2

e . (1.29)

Summarizing, the first and second moments (i.e., the mean and variance) of y can
be written succinctly as y ∼ (µ, σ2

e).
Another useful formula for the dispersion of any random variable y expresses it

as the difference of the expectation of the square of the variable and the square of
the variable’s expected value. It is derived as follows:

D{y} = E{(y − E{y})2} =

= E{y2 − 2yE{y}+ E{y}2} =

= E{y2 − 2yµ+ µ2} =

= E{y2} − 2µE{y}+ E{µ2} =

= E{y2} − 2µ2 + µ2 =

= E{y2} − µ2 ⇒

D{y} = E{y2} − E{y}2 = σ2
y. (1.30a)

Given constants α and γ, the above formulas for expectation and dispersion can
be summarized as follows:

E{αy + γ} = αE{y}+ γ,

D{αy + γ} = α2D{y}.
(1.31a)

(1.31b)

Equation (1.31b) represents the law of error propagation (covariance propagation)
in its simplest form. It shows that, in contrast to the expectation, the dispersion
operator is not linear. Furthermore, it shows that dispersion is not affected by a
constant offset.

1.5.1.2 Mean Squared Error

The mean squared error, or MSE, of y is the expectation of the square of the
difference of y and its true value µ. It is defined as

MSE{y} = E{(y − µ)2} (1.32)

(compare to (1.30)). It is useful to express the MSE as a combination of the dis-
persion and a (squared) bias term. This is done via the following derivation:

MSE{y} = E{(y − µ)2} = E{[(y − E{y})− (µ− E{y})]2} =

= E{(y − E{y})2 − 2(y − E{y})(µ− E{y}) + (µ− E{y})2} =
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= E{(y − E{y})2} − 2E{(y − E{y})(µ− E{y})}+ E{(µ− E{y})2}. (1.33)

Note that while y is a random variable, E{y} is not. So, in the middle term, the
expectation operator only applies to y. Therefore, we may continue with

MSE{y} = D{y} − 2(
���

���
�:0

E{y} − E{y} )(µ− E{y}) + (µ− E{y})2 ⇒
MSE{y} = D{y}+ β2, (1.34)

where bias is defined formally as

β := E{y − µ} = E{y} − µ. (1.35)

Thus, we see that the dispersion of y and the MSE of y are only equal in the absence
of bias, or in other words, only if indeed µ = E{y}.

We noted previously that dispersion (variance) is an indicator of precision. In
contrast, MSE is a measure of accuracy; it includes both dispersion and bias terms.
In general, it is harder to meet accuracy standards than precision standards. We
can typically increase precision by making more observations (though this may come
with additional costs in time and resources); however it might not be possible to
reduce bias by making more observations, and it may be very difficult to determine
the origin of bias.

Finally, we note that the square root of MSE is commonly called rms (root mean
square). Thus, strictly speaking, standard deviation and rms are only equivalent in
the absence of bias.

1.5.2 Multivariate Case

The multivariate case deals with multiple random variables, which are collected in
a column vector. For example, multiple observations of the observable µ in (1.26)
can be expressed in the following system of equations:

y =


y1

...

yn

 = τµ+ e =


1
...

1

µ+


e1

...

en

 , (1.36)

where τ is a “summation vector” defined as τ := [1, . . . , 1]T .1 In the case of unbiased
observations, i.e. E{e} = 0, the expectation of the random error vector e is written
as

E{


e1

...

en

} =


E{e1}

...

E{en}

 =


0
...

0

 , (1.37)

1The phrase “summing vector” has also been used. The name comes from the fact that if the
dot product is taken between a vector of ones and another vector, the result is the sum of the
elements of the other vector.
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showing that the expectation of a vector can be written component-wise. Likewise,
for the dispersion of each element ej of e, we have

D{ej} = E{
(
ej −����:

0
E{ej}

)2} = E{e2
j}. (1.38)

For the multivariate case, we must introduce the concept of covariance, which
is a measure of similar behavior between random variables, e.g., between elements
ej and ek of e. Formally, the definition of covariance is

C{ej , ek} = σjk := E{
(
ej − E{ej}

)(
ek − E{ek}

)
}. (1.39)

Obviously,
C{ej , ek} = C{ek, ej}. (1.40)

Moreover, when E{e} = 0, the covariance between two of its elements reduces to

C{ej , ek} = E{ejek}, (1.41)

since E{ej} = E{ek} = 0. Even though we see from the definition of the covariance
(1.39) that it does not depend on bias, in practice we often find that bias appears
as positive correlation (see (1.51) for the definition of correlation coefficient).

Two random variables are said to be independent if their joint probability distri-
bution is equal to the product of their individual probability distributions. Mathe-
matically, this is written as

f{ej , ek} = f(ej) · f(ek)⇔ ej and ek are independent. (1.42)

If two random variables are independent, their covariance is zero. The converse is
not true unless the random variables are jointly normally distributed.

In light of the concept of covariance, the dispersion of a vector of random vari-
ables is represented by a matrix. The jth diagonal element of the matrix is denoted
by σ2

j (or σ2
jj) and the j, k off-diagonal term is written as σjk. The matrix is called

a covariance matrix and is represented by Σ. Due to (1.40), the covariance matrix
is symmetric. An explicit representation of the covariance matrix Σ is given by

D{ e
n×1
}=


D{e1} C{e1, e2} . . . C{e1, en}
C{e2, e1} D{e2} . . . C{e2, en}

...
...

. . .
...

C{en, e1} C{en, e2} . . . D{en}

=: Σ
n×n

=


σ2

1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ2
n

 .
(1.43)

Obviously, if the random variables are uncorrelated, the covariance matrix is diag-
onal.

An important property of a covariance matrix is that it must be at least positive
semidefinite. A matrix is positive semidefinite if, and only if, all of its eigenvalues
are non-negative. For many applications in geodetic science, the covariance matrix
is positive definite, which means that all its eigenvalues are greater than zero. The
following statements hold for any positive-definite matrix Σ:
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• αTΣα = 0⇒ α = 0.

• Σ is a nonsingular matrix (also called a regular matrix).

• All eigenvalues of Σ are positive and non-zero.

• All principle submatrices of Σ are also positive definite.

In the following chapters, where we treat observational models, we factor out of
the covariance matrix Σ a scalar term denoted by σ2

0 , called a variance component,
with the resulting matrix called the cofactor matrix. We label the cofactor matrix
as Q; its inverse is labeled P and is called weight matrix. The relations between
these terms are written mathematically as

Σ = σ2
0Q = σ2

0P
−1. (1.44)

The simplest form of a covariance matrix Σ is when the cofactor matrix Q is
equal to the identity matrix In. Indeed, if Q is any multiple of the identity matrix,
the data are said to be homogeneously distributed. Another term for that case is
independent and identically distributed, abbreviated iid. If the covariance matrix is
diagonal, but its diagonal elements are not all the same, the data are said to have
a heteroscedastic distribution. These cases are illustrated as follows:

• Homogeneous case

D{e} = σ2
0Q = σ2

0


q 0 · · · 0

0 q 0
...

... 0
. . .

...

0 · · · · · · q

⇒ P =


1/q 0 · · · 0

0 1/q 0
...

... 0
. . .

...

0 · · · · · · 1/q

 =
1

q
·In

(1.45a)

• Heteroscedastic case

D{e} = σ2
0Q = σ2

0


q11 0 · · · 0

0 q12 0
...

... 0
. . .

...

0 · · · · · · qnn

⇒ P =


1/q11 0 · · · 0

0 1/q12 0
...

... 0
. . .

...

0 · · · · · · 1/qnn


(1.45b)

• General case

D{e} = σ2
0Q = σ2

0


q11 q12 · · · q1n

q21 q12 q1,3

...
... 0

. . .
...

qn1 · · · · · · qnn

 , with qij = qji ⇒ P = Q−1

(1.45c)
Note that for P = [pij ], pii 6= 1/qii. Thus, the inverse of the diagonal compo-
nents of Q are not weights in this case!
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1.5.2.1 Error Propagation with Matrices

The derivations of (1.31a), (1.31b) and (1.34) can easily be extended to the mul-
tivariate case. Here we show their matrix analogs without deriving them (though
some are derived in the example problems that follow).

If y is a random vector, A a constant matrix, and γ a constant vector, then
the formulas for propagation of expectation and dispersion (error or covariance
propagation) are summarized as follows:

Expectation:

E{Ay + γ} = A·E{y}+ γ (1.46a)

Dispersion (law of error propagation):

D{Ay + γ} = A·D{y}·AT (1.46b)

Also, analogous to (1.30) and (1.30a) we have

D{y} = E{(y − E{y})(y − E{y})T } = E{yyT } − E{y}E{y}T . (1.47)

Covariance: Given two random vectors, y and z, their covariance is written as

C{z,y} = E{(z − µz)(y − µy)T } = E{zyT } − µzµTy (1.48)

Mean Squared Error: If y is a random vector with true value µ, the MSE of y is
written as

MSE{y} = D{y}+ ββT , (1.49a)

where the bias vector β is defined formally as

β := E{y − u} = E{y} − u. (1.49b)

Once again, we see that the mean squared error matrix of a random vector is only
equal to the dispersion matrix of the random vector in the absence of bias, i.e.,
when µ = E{y} ⇒ β = 0.

1.5.2.2 Correlation Matrix

A measure of correlation can be derived from the Cauchy-Schwartz inequality, which
is given by

C{ej , ek} =

∫∫
(et)j · (et)k · f((et)j , (et)k) d(et)j d(et)k = σjk ≤

≤

√∫
(et)2

j · f
(
(et)j

)
d(et)j ·

∫
(et)2

k · f
(
(et)k

)
d(et)k =

√
σ2
jσ

2
k. (1.50)
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Since σjk can take on a positive or a negative value, the above inequality leads to
the notion of a correlation coefficient, defined as

ρjk :=
σjk√
σ2
jσ

2
k

, with − 1 ≤ ρjk ≤ 1. (1.51)

Analogous to the covariance matrix, we may form a matrix of correlation coefficients.
Such a matrix is called a correlation matrix and is defined as

R
n×n

:=


1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n

...
...

. . .
...

ρn1 ρn2 . . . 1

 = RT . (1.52)

Given a covariance matrix Σ, the correlation matrix can be generated easily by

R = diag
([

1/σ1, . . . , 1/σn
])
· Σ · diag

([
1/σ1, . . . , 1/σn

])
. (1.53)

A note on units: Units must be properly accounted for in covariance matrices.
The following list clarifies the units of relevant terms.

σ2
0 unitless

ρjk unitless

σ2
j has squared units of observation yj

σjk has units of observation yj multiplied by the units of observation yk

A further discussion on observations and random errors is given in Section 2.1.1
in the context of data models and least-squares adjustments.

Examples of covariance propagation

1. Given y as an n × 1 observation vector and z = f(y) as an m × 1 vector of
nonlinear functions of y.

Find the m× n covariance matrix C{z,y}.
Solution: Let µ be the true value of y and linearize about expansion point µ0

to get z = α0 +A(y − µ0), with α0 := F (µ0) and A as the Jacobian matrix
of z = f(y).

Law of covariance propagation:

C{z,y}
m×n

= E{zyT } − E{z}E{y}T =

= E{
[
α0 +A(y − µ0)

]
yT } − E{α0 +A(y − µ0)} · E{y}T =

= α0 · E{y}T +A · E{yyT } −Aµ0 · E{y}T−
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−α0 · E{y}T −A · E{y} · E{y}T +Aµ0 · E{y}T =

= A
[
E{yyT } − E{y}E{y}T

]
= A ·D{y} ⇒

C{z,y} = A ·D{y}

2. Rather than one variable z as above, suppose we have z1 of size m1×1 and z2

of size m2 × 1. Find the m1 ×m2 covariance matrix C{z1, z2}.
Solution: After linearization

C{z1 = α0
1 +A1y, z1 = α0

2 +A2y} = A1
m1×n

·D{y}
n×n

· AT2
n×m2

3. Given the m1 × 1 random vector z1, the m2 × 1 random vector z2, constant
vectors β1(l1 × 1) and β2(l2 × 1) and constant matrices B1(l1 × m1) and
B2(l2 ×m2).

Find the covariance matrix of x1 = β1 +B1z1 and x2 = β2 +B2z2.

Solution:

C{x1 = β1 +B1z1,x2 = β2 +B2z2} = B1
l1×m1

C{z1, z2}
m1×m2

BT2
m2×l2

Note that the matrix C{z1, z2} is not necessarily symmetric.

4. What is the covariance of the random variable y with itself?

Solution:

C{y,y} = E{yyT } − E{y}E{y}T = D{y}

5. Given n× 1 vectors y = µ+ e with E{e} = 0, which implies that E{y} = µ
and D{e} = E{eeT }.
Find: The dispersion matrix D{y}.
Solution:

D{y} = E{(y − E{y})(y − E{y})T } = E{(y − µ)(y − µ)T } =

= E{yyT − yµT − µyT + µµT } = E{yyT } − µµT − µµT + µµT ⇒
D{y} = E{yyT } − µµT

6. Given random vectors y and z, with corresponding expectations E{y} = µy
and E{z} = µz, find the covariance matrix C{z,y}.
Solution:

C{z,y} = E{(z − µz)(y − µy)T } = E{zyT − zµTy − µzyT + µzµ
T
y } =

= E{zyT } − µzµTy − µzµTy + µzµ
T
y = E{zyT } − µzµTy
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7. Suppose y1, y2, and y3 are independent measurements with standard devi-
ations

√
2 cm, 2 cm, and 1 cm, respectively. The quantities x1 and x2 are

computed from the measurements as follows

x1 =2y1 + y2 +2y3,

x2 = y1 − 2y2 .

Evaluate the covariance matrix for the random vector x = [x1, x2]T .

Solution: The given equations can be written in matrix form as

x =

[
x1

x2

]
= Ay =

[
2 1 2

1 −2 0

]y1

y2

y3

 , D{y} =

2 0 0

0 4 0

0 0 1

 cm2 = Σyy

Now apply the law of error propagation (1.46b):

D{x} = A·D{y}·AT =

[
2 1 2

1 −2 0

]2 0 0

0 4 0

0 0 1


2 1

1 −2

2 0

 cm2 =

=

[
16 −4

−4 18

]
cm2 = Σxx

⇒ σx1 = 4 cm, σx2 = 3
√

2 cm, σx1x2 = −4 cm2

⇒ ρx1x2 =
σx1x2

σx2σx2

=
−4 cm2

4 cm · 3
√

2 cm
= −0.2357.

Correlation matrix:

R =

[
1

4 cm 0

0 1
3
√

2 cm

][
16 −4

−4 18

]
cm2

[
1

4 cm 0

0 1
3
√

2 cm

]
=

=

[
1 −0.2357

−0.2357 1

]

8. An azimuth and distance were measured from known point C to point D to
determine the coordinates of D (see Figure 1.3). Compute the coordinates
of D and their covariance matrix, along with the correlation matrix, based on
the given data.

Data:

xc = 2000.0 m, σxc= 1 cm

yc = 3000.0 m, σyc= 1 cm

α = 120◦00′00′′, σα = 10′′

s = 1600.00 m, σs = 5 cm
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y

x

C s

D

α

Figure 1.3: Azimuth α and distance s measured from point C to point D to deter-
mined the coordinates of point D.

Principle: covariance propagation D{Ay + γ} = A·D{y}·AT

Let the random variable y := [xc, yc, α, s]
T and the random variable x :=

[xD, yD]T .

Functional relations:

xD = xC + s · sinα
yD = yC + s · cosα

x = f(y), x is a nonlinear function of y. Under linearization

x ≈ f(y0) +
∂f(y)

∂yT

∣∣∣∣
y0

(y − y0)

Use values of observations for y0.

f(y0) gives: xD = 3385.64 m, yD = 2200.00 m

∂xD
∂xC

= 1,
∂xD
∂yC

= 0,
∂xD
∂α

= s · cosα,
∂xD
∂s

= sinα,

∂yD
∂xC

= 0,
∂yD
∂yC

= 1,
∂yD
∂α

= −s · sinα, ∂yD
∂s

= cosα

⇒ A =

[
1 0 s · cosα sinα

0 1 −s · sinα cosα

]
=

[
1 0 −800.0 0.866

0 1 −1385.64 −0.5

]
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Covariance matrix for given data:

Σyy =


(0.01 m)2 0 0 0

0 (0.01 m)2 0 0

0 0
(

10′′

3600′′/1◦
π

180◦
)2

0

0 0 0 (0.05 m)2


Covariance matrix for coordinates of point D:

D{

[
xD
yD

]
} = A·Σyy·AT =

[
0.0035 0.0015

0.0015 0.0052

]
m2 = Σxx

Standard deviations for coordinates of point D:

⇒ σxD = ±6 cm, σyD = ±7 cm

Correlation matrix:

R =

[
1/σxD 0

0 1/σyD

]
·Σxx·

[
1/σxD 0

0 1/σyD

]
=

[
1 0.3568

0.3568 1

]

1.5.3 Practice Problems

1. Let X be a random variable with the following probability density function:

f(x) =

 1
8 (x− 1) for 1 < x < 5,

0 otherwise.

Derive the cumulative distribution function of X and evaluate P [X < 2],
P [X > 4], and P [1.5 < X < 4.5].

2. Let X be a random variable with the following probability density function:

f(x) =
sinx

2
for 0 < x < π.

Derive the cumulative distribution function of X and evaluate P [X < π/4],
P [X > π/2], and P [π/4 < X < π/2]. Sum the three probabilities and
comment on the result.

3. Evaluate the mean and variance of the random variable in the preceding prob-
lem (hint: integration by parts).

4. Two measurements are normally distributed with standard deviations of
0.55 m and 0.35 m, respectively. Compute the standard deviation of the sum
and difference of the two measurements if the correlation coefficient of the two
measurements is: (a) 0.5, (b) 0, (c) −0.5, (d) 1.0.
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5. The X and Y coordinates of a survey point have standard deviations of
σx = 0.045 m and σy = 0.025 m, respectively. (a) Compute the correlation co-
efficient of X and Y if the covariance of X and Y is 0.00012 m2. (b) Compute
the covariance of X and Y if the correlation coefficient is 0.333.

6. Consider a linear transformation Y = a+ bX, where X is a random variable
having a normal distribution, i.e., X ∼ N (µX , σ

2
X).

Show that E{Y } = a+ b·µX and σ2
Y = b2·σ2

X . Then show that

Z =
X − µX√

σ2
X

has zero mean and unit variance.

7. Consider the following system of equations
y1

y2

y3

y4

 =


1 −2 1 2

−1 3 2 −1

1 −1 6 7

2 −2 14 20



x1

x2

x3

x4

 = y = Ax,

where y1, y2, y3, and y4 are independent and identically distributed (iid) each
with the mean 0 and variance σ2.

(a) Express x1, x2, x3, and x4 in terms of y1, y2, y3, and y4.

(b) Compute the covariance matrix for x.

(c) Suppose now that instead of being iid, the dispersion of y is given by the
matrix 

σ2 ρσ2 0 0

ρσ2 σ2 ρσ2 0

0 ρσ2 σ2 ρσ2

0 0 ρσ2 σ2

 .
Answer question (b) in this case.

8. Suppose three points A, B, and C are sequentially located on a straight line
(Figure 1.4). A total station was used to measure distances between them, so
that the total distance between A and C could be estimated. The data are
listed in Table 1.1.

A B C

Figure 1.4: Points A, B, and C on a straight line

The variance of each observation is given by σ2 = (9 mm)2 + (d/100)2 mm2,
where d is distance in meters. Unbeknownst to the surveyor, a constant
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Table 1.1: Observations of line segments

yi Segment Observation [m]

y1 AB 52.154 + 0.025 = 52.179

y2 AB 52.157 + 0.025 = 52.182

y3 AB 52.155 + 0.025 = 52.180

y4 AC 70.180 + 0.025 = 70.205

y5 AC 70.178 + 0.025 = 70.203

y6 BC 18.022 + 0.025 = 18.047

y7 BC 18.021 + 0.025 = 18.046

y8 BC 18.025 + 0.025 = 18.050

bias β = 2.5 cm affected every observation, which is reflected as +0.025 m in
Table 1.1.

Suppose the surveyor estimated the total distance AC by the formula

AC = z =
1

6
(y1 + y2 + y3 + y6 + y7 + y8) +

1

4
(y4 + y5).

(a) Compute the standard deviation and rms (square root of MSE) of z using
µAC = 70.179 m as a hypothetical “true value” of the total distance AC.

(b) Now use the same formula for z with the unbiased observations (i.e.,
remove the 25 cm bias from each observation). Compute its variance and
compare to the variance of part (a). Do you expect the variances to be
the same? Why or why not?

(c) Find a different combination of the measurements that would provide
an estimate for the total distance that is not affected by the bias in
the measurements. Compute the standard deviation and rms for this
estimate (again using µAC = 70.179 m as a hypothetical “true value”).
Compare these results to those of parts (a) and (b) and comment on your
findings.

9. Given a random variable y with expectation E{y} = µy and variance σ2
y,

suppose f and g are functions of y defined by f = ey and g = y3, respectively.

(a) Using a Taylor series expansion, express the expectations and disper-
sions of f and g in terms of µy, σ2

y, and δ = (µ − µ0), where µ0 is an
approximation of µ.

(b) Assume that E{y} coincides with the true value of µy of y, so that biases
are due to the truncation of the Taylor series. What are the biases in
the f and g due to the series truncation? Which bias is larger?
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(c) Assume that the approximate value µ0 coincides with the expectation µy
of y. What are the expectations and dispersions now?

10. Sides a and b of the right-angled plane triangle in Figure 1.5 were measured.
The values obtained are a = 399.902 m and b = 300.098 m, with variances
σ2
a = (0.015 m)2 and σ2

a = (0.020 m)2, respectively. The correlation coefficient
is ρab = 0.2. Compute side c and angle β and their standard deviations. Also
determine the correlation, if any, between computed side c and angle β.

a

b
c

β

Figure 1.5: Right-angled plane triangle with measured sides a and b

11. The area of a trapezoidal parcel of land is computed by

A =

(
a1 + a2

2

)
b,

where a1, a2, and b were measured independently. The measurements and
their standard deviations are a1 = 301.257± 0.025 m, a2 = 478.391± 0.045 m,
and b = 503.782± 0.030 m. Compute the area of the parcel and the standard
deviation of the computed area.



Chapter 2
The Model of Direct Observations

2.1 Model Definition

When an unknown parameter µ can be observed directly, the model of direct obser-
vations can be formed for the data by

y =


y1

...

yn

 =


µ+ e1

...

µ+ en

 = τµ+ e, (2.1a)

e ∼
(
0, σ2

0Q
)
, Q := P−1. (2.1b)

The terms in the data model are defined as follows:

y is a given n× 1 vector of observations with random properties.

µ is an unknown, non-random parameter to be estimated.

τ is an n× 1 vector of ones (“summation vector”), i.e., τ := [1, . . . , 1]T .

e is an n× 1 vector of unknown, random errors to be predicted.

Q is a given n × n cofactor matrix associated with e. It is symmetric, positive-
definite, and non-random.

P is an n× n positive-definite weight matrix, being the inverse of Q.

σ2
0 is an unknown, non-random variance component that can be estimated.

Equation (2.1a) is called observation equations, while (2.1b) provides a stochastic
model for the random observational errors. Together, these two equations comprise
a complete data model.

35
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2.1.1 Terminology: Observations, Redundancy, Residuals
and Their Minimization

The observation vector y was described above as a given quantity. It is given in the
sense that it consists of measurements (observations) that are typically made and
recorded in the field. The measurements are considered to be a physical realization
of an observable — the quantity (“the thing”) being observed. An observable could
be a dimension of an element of a physical object or a relationship between its
elements, such as an angle between two connected edges of a geodetic network, the
end points of which being accessible monuments in the ground. Or, and observable
could be a property of an immaterial object, such as the phase of an electromag-
netic wave. Another example of an observable is the length of a bridge from a mark
scribed in concrete at its beginning to another at its end; then, an associated ob-
servation could be a distance measured and recorded with a surveyor’s total station
between those two marks. Being a measurement of an observable, an observation
is a numerical value with an associated unit of measurement.

Even though the vector of observations y is given, it has random properties
due to unavoidable random errors inherent both in making observations and in the
instruments used to make them. These random errors are unknown quantities, and
they are accounted for in the observation equations (2.1a) by the random error
vector e. Thus, we can say that we know the value of an observation, but we do
not know the value of its random error constituent. However, we have already
seen that we can say something about the expected values of the random errors
(i.e., E{e} = 0). Likewise, a statement can be made about the expectation of the
observations, viz.

µy := E{y} = E{τµ+ e} = τµ. (2.2a)

We may think of the vector µy as the vector of true observations, the values of
which are unknown, though they can be estimated via

Ê{y} =: µ̂y = τ µ̂, (2.2b)

where µ̂ is an estimate of the unknown parameter µ. The vector µ̂y is called the
vector of adjusted observations.

Because the given observations, y, contain unknown random errors represented
by e, we cannot possibly expect that y will equal τµ, though we may usually
hope that at least y ≈ τµ. The inequality y 6= τµ should be immediately evident
from the symbols, since they imply that y is random and τµ is not. (Recall the
use of Latin characters for random variables and Greek characters for non-random
variables as discussed on page 2.) The rule eluded to here is that when one side of
an equation results in a random quantity, so must the other side. The incongruency
reflected in y 6= τµ is rectified in (2.1a) by the addition of e on the right side. But
practically speaking, e is not much help, since it is unknown. This is where least-
squares adjustment theory and techniques can come to the rescue. For if there are
more observations than parameters in the model (i.e., more than one observation
for model (2.1)), we can use these redundant observations to predict values for e
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using a predictor derived from the principle of least-squares adjustment (see below
for a brief discussion on predictors and estimators).

The number of independent, redundant observations is called the redundancy of
the model. Another term for it is degrees of freedom, sometimes abbreviated df in
the statistical literature. The vector of predicted random errors is denoted by ẽ,
and it is also called the vector of residuals.

The idea behind least-squares adjustment is to predict the residuals so that
the (weighted) sum of their squares is minimized, while still satisfying the relation
y = τµ + e shown in (2.1a), but now with the predicted random errors ẽ and
the estimated parameter µ̂ rather than their corresponding “true,” but unknown,
quantities. That is, the relation

y = τ µ̂+ ẽ (2.3)

must hold after the adjustment, and the (weighted) sum of squared residuals Ω :=
ẽTP ẽ must be as small as possible. That is both the objective and the outcome of
least-squares adjustments.

It is the data that are being adjusted in least-squares adjustments. They are
adjusted so that the inconsistent equation y 6= τµ is replaced by the consistent
equation µ̂y = τ µ̂. So, we speak of adjusted data, predicted residuals, and estimated
parameters as the outcomes of a least-squares solution, which is derived in the next
section.

Estimate vs. estimator In these notes we have hardly distinguished between the
terms estimate and estimator. This is partly because sometimes the same symbol
works for both terms depending on the context, though in some places we might
have used estimate when we could have used estimator, and the same can be said
for prediction and predictor. The distinction between these terms made by Tukey
(1987, p. 633) is quoted as follows:

An estimator is a function of the observations, a specific way of
putting them together. It may be specified by an arithmetic formula,
like ȳ = Σxi/n, or by words alone, as in directions for finding a sample
median by ordering and counting. We distinguish between the estimator
and its value, an estimate, obtained from the specific set of data. The
variance estimator, s2 = Σ(xi − x̄)2/(n− 1), yields the estimate 7 from
the three observations 2, 3, 7. We say s2 is an estimator for σ2, and we
call σ2 the estimand. In the numerical example, 7 estimates σ2.

2.2 The Least-Squares Solution

In order to minimize Ω := ẽTP ẽ while satisfying (2.3) we form the Lagrange target
function

Φ(e,λ, µ) := eTPe+ 2λT (y − τµ− e), (2.4)

where λ is an unknown m× 1 vector of Lagrange multipliers. The target function
is made stationary with respect to the unknown terms e, λ, and µ when its first
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partial derivatives are set equivalent to zero, which is reflected in the following
Euler-Lagrange necessary conditions:

1

2

∂Φ

∂e
=

1

2

[
∂Φ

∂ej

]
n×1

= P ẽ− λ̂ .
= 0, (2.5a)

1

2

∂Φ

∂λ
=

1

2

[
∂Φ

∂λj

]
n×1

= y − τ µ̂− ẽ .
= 0, (2.5b)

1

2

∂Φ

∂µ
= τT λ̂

.
= 0. (2.5c)

These necessary conditions are sometimes called first-order conditions due to the
involvement of first partial derivatives. The sufficient condition for minimization is
satisfied by the fact that the second partial derivative of Φ is ∂Φ2/(∂e∂eT ) = 2P ,
where the weight matrix P is positive definite according to (2.1). Therefore, the
solution to the system of equations (2.5) yields the minimum of Φ, and thus the
weighted sum of squared residuals (weighted SSR) Ω = ẽTP ẽ is minimized. See
Appendix A for comments on derivatives of quadratic functions with respect to
column vectors.

Throughout these notes, we use a hat to denote an estimate of a non-random
variable, whereas a tilde denotes a prediction of a random variable. The hat and
tilde marks were introduced into (2.5) to distinguish between the unknown variables
of the target function (2.4) and those particular quantities that satisfy the necessary

conditions. This reflects that ẽ, λ̂, and µ̂ cannot take on just any values but rather
only those that result from setting the first partial derivatives of the target function
to zero (denoted by the

.
= sign), which explains why it would not be logical to

introduce the hat and tilde symbols in (2.4). Also note that, for the vector ẽ, we
use the terms residual and predicted random error synonymously.

Now we must solve the system of equations (2.5) to obtain the least-squares
solution (LESS) as follows:

λ̂ = P ẽ = P
(
y − τ µ̂

)
using (2.5a) and (2.5b) (2.6a)

τT λ̂ = τTPy −
(
τTPτ

)
µ̂ = 0 using (2.6a) and (2.5c) (2.6b)

Equation (2.6b) leads to

µ̂ =
τTPy

τTPτ
(2.7)

for the estimate of the unknown parameter µ. And, from (2.5b), we have

ẽ = y − τ µ̂⇒ (2.8a)

ẽ =
[
In − τ

(
τTPτ

)−1
τTP

]
y (2.8b)

for the prediction of the random error vector e. As stated already, the prediction ẽ
is also called residual vector. We say that the quantities µ̂, ẽ, and λ̂ belong to a
LEast-Squares Solution (LESS) within the model of direct observations (2.1).
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It turns out that µ̂ is an unbiased estimator of µ, since

E{µ̂} = E{(τTPτ )−1τTPy} = (τTPτ )−1τTP ·E{y} = (τTPτ )−1τTPτµ = µ.
(2.9)

Likewise, the residual vector ẽ is an unbiased predictor of the random error vector e,
since

E{ẽ} =
[
In − τ (τTPτ )−1τTP

]
·E{y} =

=
[
In − τ (τTPτ )−1τTP

]
τµ = τµ− τµ = 0. (2.10)

The vectors τ and ẽ are said to be P -orthogonal since

τTP ẽ = τTP (y − τ µ̂) = τTP
[
In − τ

(
τTPτ

)−1
τTP

]
y =

= τTPy − τTPτ
(
τTPτ

)−1
τTPy = 0. (2.11)

This result reveals that the sum of the P -weighted residual vector within the model
of direct observations is zero.

The adjusted observations, τ µ̂, on the right side of (2.8a) can also be expressed
as

µ̂y := Ê{y} = τ µ̂ = y − ẽ. (2.12)

Obviously, since τTP ẽ = 0, we also have(
τ µ̂
)T
P ẽ = µ̂Ty P ẽ = 0. (2.13)

Equation (2.13) reveals an important characteristic of LESS; viz., the vector of
adjusted observations and the vector of P -weighted residuals are orthogonal to one
another. From a geometric point of view (illustrated in Figure 2.1), the orthogonal
relationship between these vectors means that the vector of observations y and the
vector of adjusted observations µ̂y are as close as possible to each other (considering
the weights in P ), which is exactly what we require from a least-squares adjustment:
a minimum adjustment of the data that will satisfy the given observational model.

In addition to solving for the estimated parameter µ̂ and the predicted random
error vector ẽ, we are typically interested in their dispersions (variances), which are
an indicator of their precisions. To compute their dispersions, we apply the law of
covariance propagation. First, for the dispersion of the estimated parameter µ̂ we
have

D{µ̂} =
τTP

τTPτ
D{y} Pτ

τTPτ
=
τTP

(
σ2

0P
−1
)
Pτ

τTPτ τTPτ
⇒

D{µ̂} =
σ2

0

τTPτ
. (2.14)

The n× n dispersion matrix for the residual vector ẽ is derived by

D{ẽ} = D{
[
In − τ

(
τTPτ

)−1
τTP

]
y} =
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P̄ :=
[
In − τ

(
τTPτ

)−1
τTP

]
y

ẽ

µ̂y = τ µ̂

P R(τ )

Figure 2.1: Depiction of P -orthogonality between residual vector ẽ and vector of
adjusted observations τ µ̂. The P in the box represents its roll in the orthogonality
relationship. The projection matrix P̄ is depicted by the big arrow as projecting
the observation vector y onto the (one-dimensional) range space of τ . The vectors
sum together as y = τ µ̂+ ẽ, just as they should.

=
[
In − τ

(
τTPτ

)−1
τTP

]
D{y}

[
In − Pτ

(
τTPτ

)−1
τT
]

=

= σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT
][
In − Pτ

(
τTPτ

)−1
τT
]

=

= σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT
]
− σ2

0τ
(
τTPτ

)−1
τT+

+ σ2
0τ
(
τTPτ

)−1
τTPτ

(
τTPτ

)−1
τT ⇒

D{ẽ} = σ2
0

[
P−1 − τ

(
τTPτ

)−1
τT
]
. (2.15)

It turns out that the last matrix in (2.15) involves the dispersion of the adjusted
observations, since

D{µ̂y} = τD{µ̂}τT = σ2
0τ
(
τTPτ

)−1
τT . (2.16)

Formally, neither (2.14) nor (2.15) nor (2.16) can be computed, since the variance
component σ2

0 is unknown, though it can be replaced by its estimate shown in (2.38).
From (2.15) we see that the dispersion (variance) of the jth element of ẽ is

σ2
ẽj = σ2

0

(
σ2
jj −

1

τTPτ

)
, (2.17)

where σ2
jj is the jth diagonal element of P−1, and σ2

0 is the variance component
from the model (2.1). Thus it is apparent that the variance of the jth element of
the residual vector ẽ is smaller than the variance of the corresponding jth element
of the true, but unknown, random error vector e.

2.2.1 Equivalency to Arithmetic Mean and Weighted Arith-
metic Mean

In the special case where the random errors are iid (i.e., the case of (1.45a)), the
LESS (2.7) reduces to µ̂ = τTy/(τT τ ), which is equivalent to the arithmetic mean.
This is easily seen by noting that τTy =

∑n
i=1 yi and τT τ = n. Therefore

µ̂ =

∑
y

n
, if e ∼ (0, iid), (2.18)
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which, obviously, is the formula for the arithmetic mean.
In the case where the random errors have a heteroscedastic distribution (i.e., the

case of (1.45b) where the weight matrix P is diagonal), the LESS (2.7) is equivalent
to the weighted arithmetic mean, since

µ̂ =
τT diag([pi, . . . , pn])y

τT diag([pi, . . . , pn])τ
=

∑n
i=1 piyi∑n
i=1 pi

, if e ∼ (0, σ2
0 diag([1/pi, . . . , 1/pn]).

(2.19)

2.3 Observation Weighting and Weight Propaga-
tion

We start our discussion of observation weighting and weight propagation by showing
examples of it. Following that, we give some definitions and rules for general cases.

Assume two measurements y1 and y2 with the same (unknown) expectation µ
and given variance (precision) σ2, i.e.

yi ∼ (µ, σ2) for i = 1, 2. (2.20)

One of the “most plausible” values for µ as derived from the measurements
seems to the the arithmetic mean

µ̂ :=
y1 + y2

2
, (2.21a)

which is unbiased since

E{µ̂} =
1

2
µ+

1

2
µ = µ. (2.21b)

Its variance (dispersion) is given by

D{µ̂} =
[

1
2

1
2

] [
σ2

1 σ12

σ21 σ2
2

][
1
2
1
2

]
=
σ2

1

4
+
σ12

2
+
σ2

2

4
(2.21c)

in general, or

D{µ̂} =
σ2

2
, assuming σ12 := 0 and σ2

1 = σ2
2 =: σ2. (2.21d)

Now, if the result turns out to be insufficiently precise, i.e. the variance σ2/2
is still too large, we are forced to perform a third measurement y3. Assuming
independence (implying σ13 = 0 = σ23) and identical variance (implying σ2

3 = σ2),
we are in the position to from another arithmetic mean via

(i) Simply averaging the first result µ̂ with the new observation y3, i.e.

¯̂µ :=
µ̂+ y3

2
, (2.22a)
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which results in an unbiased estimate, since

E{ ¯̂µ} =
1

2
µ+

1

2
µ = µ. (2.22b)

Its variance is given by

D{ ¯̂µ} =
[

1
4

1
4

1
2

]σ2 0

0 σ2 0

0 0 σ2




1
4
1
4
1
2

 = σ2

(
1

16
+

1

16
+

1

4

)
=

3σ2

8
.

(2.22c)

(ii) Or we may use the arithmetic mean of all three observations via:

ˆ̂µ :=
y1 + y2 + y3

3
, (2.23a)

which is unbiased since

E{ ˆ̂µ} =
1

3
µ+

1

3
µ+

1

3
µ = µ. (2.23b)

Its variance is given by

D{ ˆ̂µ} =
[

1
3

1
3

1
3

]σ2 0

0 σ2 0

0 0 σ2




1
3
1
3
1
3

 = σ2

(
1

9
+

1

9
+

1

9

)
=
σ2

3
. (2.23c)

We see that

D{ ˆ̂µ} =
σ2

3
<

3σ2

8
= D{ ¯̂µ}, (2.24)

and thus we claim that the estimate ˆ̂µ is to be preferred over (is “better than”) ¯̂µ,
since it is more precise, i.e. has smaller variance.

However, we can form a different linear combination of µ̂ and y3 that will result
in ˆ̂µ, viz.

ˆ̂µ =
2·µ̂+ 1·y3

2 + 1
. (2.25a)

But, since

D{µ̂} =
σ2

2
and D{y3} =

σ2

1
, (2.25b)

we can also write

ˆ̂µ =
D{µ̂}−1·µ̂+D{y3}−1·y3

D{µ̂}−1 +D{y3}−1
, (2.25c)

which is a properly weighted (arithmetic) mean of µ̂ and y3.
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Let’s take our example one step further by assuming that the third measure-
ment y3 was performed twice as precise as the previous ones, i.e. σy3 = σ/2 ⇒
y3 ∼ (µ, σ2/4). The corresponding “most plausible” value of µ would then be the
weighted arithmetic mean according to

ˆ̂µ :=
2·µ̂+ 4·y3

2 + 4
=
y1 + y2 + 4y3

6
, (2.26a)

with

E{ ˆ̂µ} =
1

6
µ+

1

6
µ+

4

6
µ = µ, (2.26b)

implying that ˆ̂µ is an unbiased estimate of µ. Its dispersion is provided by

D{ ˆ̂µ} =
[

1
6

1
6

2
3

]σ2 0

0 σ2 0

0 0 σ2/4




1
6
1
6
2
3

 = σ2

(
1

36
+

1

36
+

4

9
·1
4

)
=
σ2

6
. (2.26c)

Definition: For a set of uncorrelated random variables y1, . . . , yn, with variances
σ2

1 , . . . , σ
2
n, we define a set of corresponding weights by

pj :=
const

σ2
j

for all j = 1, . . . , n, (2.27)

where the constant is to be chosen arbitrarily, but fixed. In this case we obtain the
weight matrix to be diagonal with

P := diag(pj) = const·diag(σ−2
j ) = const·Σ−1 for all j = 1, . . . , n. (2.28)

Definition: The arbitrarily chosen constant σ2
0 is called variance component (or

variance of unit weight by some authors), yielding the identities

P := σ2
0 ·Σ−1 =: Q−1 ⇔ Σ = σ2

0Q = σ2
0P
−1, (2.29)

with Q as n× n cofactor matrix.

Remarks:

(i) The variance component σ2
0 is unitless by definition.

(ii) The preceding definition (2.29) is general enough for non-diagonal matrices
Σ = D{y}, or correlated random variables y1, . . . , yn, respectively.
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2.3.1 Choice of Best Weights

If we choose weights according to the rule (2.29), is that the best we can do? By
best we mean a choice of weights that lead to a minimum variance for the estimate
of µ. We also want to ensure that µ̂ remains unbiased. With these objectives in
mind, consider the following:

(i) The weighted (or general) arithmetic mean

µ̄ :=

n∑
j=1

γjyj with

n∑
j=1

γj = 1, (2.30a)

for yi ∼ (µ, σ2
j ) being mutually uncorrelated, is unbiased since

E{µ̄} =

n∑
j=1

γjE{yj} = µ·
n∑
j=1

γj = µ. (2.30b)

This shows that all weighted averages are unbiased, implying that over
infinitely many measurements they would provide the true value for µ.

(ii) The “best variance” of any weighted mean is determined by solving the fol-
lowing minimization problem.

D{µ̄} =

n∑
j=1

γ2
j σ

2
j = min

γj
{
n∑
j=1

γj = 1}. (2.31a)

The Lagrange function

Φ(γj , λ) :=

n∑
j=1

γ2
j σ

2
j − 2λ·

( n∑
j=1

γj − 1
)

= stationary
γj ,λ

(2.31b)

is formed for minimization of Φ, with λ introduced as a Lagrange multiplier.
The Euler-Lagrange necessary conditions

1

2

∂Φ

∂γj
= σ2

jγj − λ
.
= 0, for all j (2.31c)

1

2

∂Φ

∂λ
= −

n∑
j=1

γj + 1
.
= 0 (2.31d)

lead to a minimum of Φ, since the sufficient condition

1

2

∂2Φ

∂γ2
j

= σ2
j > 0 (2.31e)

is fulfilled.
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Equation (2.31c) implies that

λ = σ2
jγj for all j = 1, . . . , n (2.31f)

further implying that

σ2
jγj = const⇒ γj =

const

σ2
j

. (2.31g)

From (2.31d), we have

1 =

n∑
j=1

γj = const·
n∑
j=1

σ−2
j ⇒ const =

( n∑
j=1

σ−2
j

)−1
, (2.31h)

further implying that

γj =
σ−2
j∑n

i=1 σ
−2
i

, (2.31i)

which leads to

γj =
pj∑
pi

for pj :=
1

σ2
j

. (2.31j)

as an expression for the jth weight γj .

Therefore, we can answer the question at the beginning of this section by
saying

If we choose the weights according to rule (2.29), we obtain that weighted
average having a minimum variance, i.e. that which extracts the information
out of the measurements in the “best” way.

2.3.2 Examples for Weighting

The following examples illustrate how weights are chosen as the reciprocals of vari-
ances when working with quantities that have been derived from observations and
that might be combined with other data in an adjustment problem.

1. Leveling:

Let σ2 be the variance of one leveling setup between consecutive turning
points. Then, assuming n different setups for the entire leveling run, we find
the height difference

Hn −H0 := (Hn −Hn−1) + . . .+ (Hj+1 −Hj) + . . .+ (H1 −H0) =

n∑
j=1

hj ,

for hj := Hj −Hj−1.
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Figure 2.2: A single leveling run from point P0 to point Pn

Further assuming uncorrelated observations, with variance D{hj} := σ2 for
all j = 1, . . . , n, the law of error propagation gives

D{Hn −H0} = σ2·n.

Assuming equal intervals of length s0 between consecutive turning points, we
find the equivalent expression

D{Hn −H0} = (σ2s−1
0 )·S,

if S is the distance between point P0 and Pn along the leveling run, implying
that the weights are defined by one over the overall distance S, i.e.

p := S−1.

Here we assume that the interval s0 is constant among all other leveling runs
that may be combined in an adjustment, which is a common case when sur-
veying standards are being adhered to. Thus the term σ2s−1

0 is taken to be a
constant “reference variance,” and the weighting depends only on the length
of the leveling run, which agrees with experience and intuition that suggests
longer runs are less precise (thus lower weight) than shorter ones.

2. Horizontal directions: Let ϕj be the average of a set of measured directions
to target j and n be the number of rounds (or sets) of directions measured.
Further assume that the individual directions are uncorrelated and have vari-
ance σ2. Then we find

D{ϕj} = σ2·n−1

as the variance of the averaged direction and

pj := n

as its corresponding weight. This agrees with experience and intuition that
suggests that the more rounds that are measured, the greater the weight to
be assigned when combined with other data in an adjustment.

Note, however, that angles from the same round are correlated, since they are
essentially differences between two directions.
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3. Electronic distance measurements: If Sj is a measured distance and ρ1 and ρ2

are coefficients from a calibration of the instrument (ρ1 > 0, ρ2 > 0), then
the variance of Sj is

D{Sj} = σ2
0(ρ1 + ρ2·S2

j ),

which implies that the corresponding weight is defined by

pj :=
1

ρ1 + ρ2·S2
j

.

2.4 Estimated Variance Component

The variance component σ2
0 is an unknown quantity in model (2.1). However, it

can be estimated as a function of the P -weighted norm of the residual vector ẽ and
can be used as a “goodness of fit statistic,” a concept discussed in Section 9.4. The
estimated variance component is derived as follows:

The LEast-Squares Solution (LESS) within the model of direct observations is
shown in (2.7) as

µ̂ =
τTPy

τTPτ
=
τTΣ−1y

τTΣ−1τ
, (2.32a)

so that the P -weighted norm of the residual vector

ẽTP ẽ =‖y − τ ·µ̂‖2P = (y − τ ·µ̂)TP (y − τ ·µ̂) (2.32b)

is a random variable with expectation

E{(y − τ ·µ̂)TP (y − τ ·µ̂)} = (2.33a)

= E{yTPy} − E{yTPτ ·µ̂} −���
���E{µ̂·τTPy} +((((

(((E{µ̂2·τTPτ} =

= trE{PyyT } − (τTPτ )−1· trE{τTPyyTPτ} =

= tr
[
P ·E{yyT }

]
− (τTPτ )−1· tr

[
PττTP ·E{yyT }

]
=

= tr
[
P ·D{y}

]
+ tr

[
P ·E{y}E{y}T

]
−

− tr
[
Pτ (τTPτ )−1τTP (σ2

0P
−1)
]
− tr

[
Pτ (τTPτ )−1τTPτµ2τT

]
=

= σ2
0 tr In +��

���µ2·τTPτ − σ2
0 ·
�
�
��τTPτ

τTPτ
−���

��
µ2·τTPτ =

= σ2
0(n− 1)⇒

E{(n− 1)−1(y − τ ·µ̂)TP (y − τ ·µ̂)} = σ2
0 (2.33b)

The quantity n− 1 is called the redundancy or degrees of freedom of the model.
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Now, we may take the argument of the expectation shown in (2.33b) and assign
it the symbol σ̂2

0 , implying that

σ̂2
0 = (n− 1)−1(y − τ ·µ̂)TP (y − τ ·µ̂) =

= (n− 1)−1(yTPy − µ̂·τTPy) =

=
ẽTP ẽ

n− 1
,

(2.34a)

(2.34b)

(2.34c)

which is an unbiased estimate of σ2
0 , since E{σ̂2

0} = σ2
0 .

Remark In fact, σ̂2
0 is the “best” in a certain class of quadratic unbiased estimates

of σ2
0 (being invariant with respect to translations in µ) and has — under normality

assumptions — dispersion

D{σ̂2
0} = 2(σ2

0)2(n− 1)−1 = MSE{σ̂2
0}. (2.35)

In summary, we can write the so-called sum of squared residuals (SSR) as

Ω := ẽTP ẽ, (2.36)

which, together with the redundancy of the model

r := n− 1, (2.37)

comprises the formula

σ̂2
0 :=

ẽTP ẽ

r
(2.38)

for the estimated variance component.

2.5 Computation Checks and an Example

2.5.1 Checks on Residuals

A statistical analysis of the results of various adjustment computations is the subject
of Chapter 9, where tests for goodness of fit, detection of outliers, and for particular
values of the estimated parameters are presented. But even before statistical analy-
sis is employed, certain checks should be made on the residuals to confirm that they
look reasonable and to assure that the computations were made correctly. Below is
a minimal list of checks that should be made after any adjustment computation.

1. Inspect the elements of the residual vector ẽ to make sure they look reasonable.
As a general rule, if any residual is much greater than three times the square
root of the given variance of its corresponding observation, the accuracy of the
observation, or the validity of the given variance, might be questionable. In
that case, the corresponding observation could be temporarily removed and
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the adjustment computed again. Then, a residual could be predicted for the
removed observation and the results inspected to decide if the observation
should be retained or not. The method of outlier detection described in Sec-
tion 9.7 is meant to help lead to decisions about the accuracy of a suspect
observation and whether or not to admit it in the final adjustment.

2. Consider the magnitude of the estimated variance component σ̂2
0 . Is it close

to the value you expect it to take on (perhaps 1)? If it varies largely from
the value you expect it to take on, it will generally indicate that either 1) the
observational model is inaccurate, or 2) the weights (or variances) have not
been accurately specified, or both.

In the case of 1, the model may need to be revised to include more parameters
so that the parameters of the model more accurately explain the observations.
(Of course, then we would no longer have a model of direct observations
with a single parameter µ.) Or, it could be that the observations contain
some systematic errors that need to be removed so that the assumption that
E{y} = τµ is made valid.

In the case of 2, a relative small value of σ̂2
0 suggests that the specified obser-

vational variances (reflected in the cofactor matrix Q = P−1) were too large
(i.e. the observations are more precise than reflected in the cofactor matrix).
Conversely, if σ̂2

0 turns out to be relatively large, the specified variances in Q
might be too small (i.e. the observations are less precise than reflected in the
cofactor matrix).

3. Provided the model redundancy is large enough, say greater than 10 or 20,
we might expect that approximately half the residuals will be negative and
about half positive. Certainly this would be the case if the random observation
errors turned out to be normally distributed. So, it is prudent to check the
ratio of negative to positive residuals and make sure the ratio is not greatly
different than 1. Note that this check might not apply for adjustments within
the model of condition equations discussed in Chapter 4.

4. Going beyond the previous item, if the redundancy is large enough, say greater
than 10 or 20, a histogram of the residuals should be plotted to check how
closely its shape resembles the pdf curve of a normal distribution, if it is
assumed that the random observation errors are approximately normally dis-
tributed.

5. Compute the estimated variance component both by (2.34b) and (2.34c) and
make sure they are equivalent up to the precision of the computations.

6. Compute the trace of the matrix of redundancy numbers as defined in (9.84a)
and (9.84b) and confirm that the result is an integer that equals the redun-
dancy of the model r.
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2.5.2 Example of LESS Within the Model of Direct Obser-
vations

Given the following vector of observations y and its associated dispersion ma-
trix D{y}, compute the LESS for

1. The estimated parameter µ̂ and its estimated dispersion.

2. The estimated variance component σ̂2
0 .

3. The vector of predicted residuals ẽ and its estimated dispersion matrix.

y =

100.02 m

100.04 m

99.97 m

 , D{y} = σ2
0

 1 1/2 0

1/2 1 0

0 0 9

 cm2.

Solution: To simplify the problem somewhat, we may subtract 100 m from the
observations and solve for δµ̂ as an intermediate step, working with cm instead of
meters. Then, the modified observation vector reads y → y = [2 cm, 4 cm, −3 cm]T .
Weight matrix:

⇒ P =

 4/3 −2/3 0

−2/3 4/3 0

0 0 1/9

 cm−2 =
1

9
·

12 −6 0

−6 12 0

0 0 1

 cm−2

Estimated parameter and its estimated variance:

δµ̂ =
τTPy

τTPτ
=

[
2/3 2/3 1/9

]
y[

2/3 2/3 1/9
]
τ

=
(11/3) cm−1

(13/9) cm−2
=

33

13
cm

⇒ µ̂ = 100 m + δµ̂ = 100.0254 m

with D{µ̂} =
σ2

0

τTPτ
=

9

13
σ2

0 cm2

Also yTPy =
[
0 12/3 −1/3

]
y = 17 = 221/13

and δµ̂·τTPy =

(
33

13

)
·
(

11

3

)
=

121

13
⇒ σ̂2

0 =
100/13

2
=

50

13

⇒ D̂{µ̂} =

(
9

13

)
·
(

50

13

)
=

450

169
= 2.66 cm2

µ̂ = (100.025± 0.016) m

Predicted residuals and their estimated covariance matrix:

ẽ = y − τ µ̂ =
[
−0.5385 +1.4615 −5.5385

]T
cm
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with D{ẽ} = σ2
0

( 1 1/2 0

1/2 1 0

0 0 9

−
9/13 9/13 9/13

9/13 9/13 9/13

9/13 9/13 9/13

)·cm2 ⇒

D{ẽ} =
σ2

0

13

 4 −5/2 −9

−5/2 4 −9

−9 −9 108

 ·cm2

Checks:

P ẽ =

−1.6923

+2.3077

−0.6154

⇒ τTP ẽ = −0.00006 X and ẽTP ẽ = 7.69 ≈ 100/13 = σ̂2
0 ·2 X

“Redundancy numbers” (see (9.84a) and (9.84b) for definition of redundancy num-
bers)

D{ẽ}·P =
σ2

0

13

 7 −6 −1

−6 7 −1

−6 −6 12

⇒ tr(D{ẽ}·P )/σ2
0 =

26

13
= 2 = 3− 1 = r X

2.6 Best Linear Uniformly Unbiased Estimate

Here we take a statistical approach to estimating the unknown parameter µ. We
want to find an estimate for µ, expressed as a linear combination of the obser-
vations y, that extracts the “best” information from the data. The estimate is
denoted by µ̂ and is characterized as the Best Linear Uniformly Unbiased Estimate
(BLUUE) of µ. The three criteria used to derive the BLUUE are described as
follows:

1. Linear criterion: The linear criterion states that the estimated parameter must
be a linear combination of the data contained in y, i.e.

µ̂ = αTy, (2.39a)

where α is an unknown vector to be determined.

2. Uniformly Unbiased criteria: An unbiased estimator is one for which its ex-
pectation is equal to the true, but unknown, quantity it estimates. Stated
mathematically,

µ = E{µ̂} = E{αTy} = αTE{y} = αTE{τµ+ e} = αT τµ, for any µ ∈ R,
which implies

αT τ = 1. (2.39b)

Requiring this condition to hold for any µ ∈ R satisfies the “uniform” crite-
rion, whereas the requirement that αT τ = 1 satisfies the “unbiased” criterion.
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3. Best criterion: The best criterion requires minimum MSE(µ̂), or, equivalently,
minimum dispersion, since µ̂ is unbiased. Mathematically, the criterion reads

minD{µ̂}, where D{µ̂} = D{αTy} = αTD{y}α⇒
minD{µ̂} = σ2

0α
TQα, subject to τTα = 1. (2.39c)

Accordingly, a Lagrange target function is formed by

Φ(α, λ) := αTQα+ 2λ
(
τTα− 1

)
. (2.40)

The necessary conditions for stationarity are provided by the Euler-Lagrange equa-
tions, which are written as

1

2

∂Φ

∂α
= Qα̂+ τ λ̂

.
= 0, (2.41a)

1

2

∂Φ

∂λ
= τT α̂− 1

.
= 0. (2.41b)

The sufficient condition for minimization is satisfied by ∂Φ2/(∂α∂αT ) = 2Q, which
is a positive definite matrix according to (2.1). Solving (2.41a) and (2.41b) simul-
taneously yields

α̂ = −Q−1τ λ̂ = −Pτ λ̂ using (2.41a), (2.42a)

1 = τT α̂ = −τTPτ λ̂⇒ λ̂ =
−1

τTPτ
using (2.41b) and (2.42a). (2.42b)

Substituting (2.42b) into (2.42a) we get

α̂ = (τTPτ )−1Pτ . (2.42c)

Finally, substituting the transpose of (2.42c) into the linear requirement µ̂ = αTy
yields the BLUUE of µ as

µ̂ =
τTPy

τTPτ
. (2.43)

Equation (2.43) agrees with (2.7) derived for LESS. Thus we see that the LESS and
the BLUUE are equivalent within the model of direct observations.

We may also prove mathematically that (2.43) fulfills the weighted LESS prin-
ciple by showing that the P -weighted residual norm ẽTP ẽ for any other solution is
larger than that obtained via BLUUE, which we do in the following: Suppose ˆ̂µ is
any other estimate for µ, then

˜̃eTP ˜̃e =
(
y − τ ˆ̂µ

)T
P
(
y − τ ˆ̂µ

)
=

=
[(
y − τ µ̂

)
− τ

(
ˆ̂µ− µ̂

)]T
P
[(
y − τ µ̂

)
− τ

(
ˆ̂µ− µ̂

)]
=

=
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
−2
(
ˆ̂µ− µ̂

)
���

���
�:0

τTP
(
y − τ µ̂

)
+
(
τTPτ

)(
ˆ̂µ− µ̂

)2
=

=
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
+
(
τTPτ

)(
ˆ̂µ− µ̂

)2 ≥
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≥
(
y − τ µ̂

)T
P
(
y − τ µ̂

)
= ẽTP ẽ

Q.E.D.

We have used the P -orthogonality relation (2.11) in the third line of the proof.
Let us briefly summarize these results by stating three important properties of

the least-squares solution (LESS) of the unknown parameter µ within the model of
direct observations.

The LESS (equivalently BLUUE) within the model of direct observations
provides

1. An unbiased estimate µ̂ of the unknown parameter µ, i.e. E{µ̂} = µ.

2. A minimum P -weighted norm of the residual vector, i.e. Ω :=‖ẽ‖2P is
minimized.

3. A minimum variance (dispersion) D{µ̂}.

2.7 Effects of a Wrongly Chosen Weight Matrix in
the Model of Direct Observations

Assume that the weight matrix P has been wrongly chosen by an amount δP ,
where δP is assumed to be a small, positive (semi-)definite matrix that is uncorre-
lated with P . (Apparently δP itself would not have to be positive(semi-)definite as
long as the sum (P + δP ) is positive definite.) Consequently, we have

P → (P + δP )⇒ µ̂→ (µ̂+ δµ̂), D{µ̂} → D{µ̂+ δµ̂}, and σ̂2
0 → σ̂2

0 + δσ̂2
0 . (2.44)

2.7.1 Effect on the Parameter Estimate

The following shows the effect of a wrongly chosen weight matrix on the estimated
parameter µ̂:

(
µ̂+ δµ̂

)
=
τT (P + δP )y

τT (P + δP )τ
⇒

δµ̂ =
τT (P + δP )y

τT (P + δP )τ
− µ̂ =

τT (P + δP )y

τT (P + δP )τ
· τ

TPτ

τTPτ
−
(
τTPy

τTPτ

)
·
τT
(
P + δP

)
τ

τT (P + δP )τ
=

=
(((

(((τTPyτTPτ + τT δPyτTPτ −(((((
(

τTPyτTPτ − τTPyτT δPτ
(τTPτ )τT (P + δP )τ

=

=
τT δPy

τT
(
P + δP

)
τ
− τT δPτ µ̂

τT (P + δP )τ
=
τT δP

(
y − τ µ̂

)
τT (P + δP )τ



54 CHAPTER 2. THE MODEL OF DIRECT OBSERVATIONS

Finally, we arrive at

δµ̂ =
τT δP

τT (P + δP )τ
ẽ. (2.45)

2.7.2 Effect on the Cofactor Matrix for the Estimated Pa-
rameter

The following shows the effect of a wrongly chosen weight matrix on the cofactor
matrix Qµ̂ for the estimated parameter µ̂, where D{µ̂} = σ2

0Qµ̂ is the dispersion
of µ̂:

δQµ̂ =
(
Qµ̂ + δQµ̂

)
−Qµ̂ =

1

τT (P + δP )τ
− 1

τTPτ
=

=
τTPτ − τT (P + δP )τ(
τTPτ

)
τT (P + δP )τ

=
−τT δPτ(

τTPτ
)
τT (P + δP )τ

.

Thus we have

δQµ̂ = − τT δPτ

τT (P + δP )τ
Qµ̂. (2.46)

2.7.3 Effect on the Estimated Variance Component

The following shows the effect of a wrongly chosen weight matrix on the estimated
variance component: First note that

ẽTP ẽ =
(
yT − µ̂τT

)
P
(
y − τ µ̂

)
=

= yTP (y − τ µ̂)− µ̂
��

���
���

���(
τTPy − τTPτ τ

TPy

τTPτ

)
=

= yTPy − yTPτ µ̂ = yTPy − τTPyµ̂ = yTPy − µ̂2τTPτ .

Following the above logic, we have

(n− 1)
(
σ̂2

0 + δσ̂2
0

)
= yT (P + δP )y − τT (P + δP )y

(
µ̂+ δµ̂

)
⇒

⇒ (n− 1)δσ̂2
0 = yT (�P + δP )y − τT (P + δP )y(µ̂+ δµ̂)−��

�
yTPy + (τTPy)µ̂ =

(Note: the last term will cancel one of the four terms in the binomial product.)

= yT (δP )y − τT δPy
(
µ̂+ δµ̂

)
−
(
τTPy

)
δµ̂ =

= yT (δP )y − µ̂τT (δP )y − τT (P + δP )yδµ̂ =

=
(
yT − µ̂τT

)
(δP )y − τT (P + δP )yδµ̂ =

= ẽT (δP )y − τ
T (P + δP )y

τT (P + δP )τ
τT (δP )ẽ =

(Note that the previous results for δµ̂ have been substituted in the line above.)

= yT (δP )ẽ−
(
µ̂+ δµ̂

)
τT (δP )ẽ =



2.8. PRACTICE PROBLEMS 55

(Using yT (δP )ẽ =
(
µ̂τT + ẽT

)
δP ẽ = ẽT δP ẽ+ µ̂τT δP ẽ)

= ẽT (δP )ẽ− δµ̂τT (δP )ẽ⇒

(n− 1)δσ̂2
0 = ẽT (δP )ẽ−

(
δµ̂
)2
τT (P + δP )τ

Finally, we arrive at

δσ̂2
0 =

1

n− 1

[
ẽT (δP )ẽ−

(
δµ̂
)2
τT (P + δP )τ

]
. (2.47)

2.7.4 Effect on the Estimated Dispersion

The the effect of a wrongly chosen weight matrix on the estimated dispersion of µ̂
is obviously given by

D̂{µ̂+ δµ̂} =
(
σ̂2

0 + δσ̂2
0

)
D{µ̂+ δµ̂} =

(
σ̂2

0 + δσ̂2
0

)(
Qµ̂ + δQµ̂

)
. (2.48)

2.8 Practice Problems

1. Show that the LESS of (2.7) is an unbiased estimate of µ.

2. Show that the residual vector of (2.8a) is an unbiased prediction of e.

3. Consider the problem of repeated measurements where an unknown distance µ
between two points was directly observed n times. The observations are col-
lected in the vector y = [y1, y2, . . . , yn]T . The distribution of their random
errors is described by e ∼ (0, σ2

0σ
2In); furthermore E{y} = τµ.

(a) If the random variable z is defined by z = (y1 + y2 + . . . + yn)/n, show
that E{z} = E{µ̂} as shown in (2.7) and that D{z} = D{µ̂} as shown
in (2.14).

(b) Assuming that σ2
0 = 1 and σ2 = 1 cm2, graph the dispersion of µ̂ as a

function of the number of observations n from n = 2 to n = 100.

(c) Now suppose that there is correlation between successive observation
errors described by the relations

ρei,ei+1 = 0.001/σ2, ρei,ei+2 = 0.0008/σ2,

ρei,ei+3
= −0.00006/σ2, for i = 1, . . . , n− 3.

Using assumed values σ2
0 = 1 and σ2 = 1 cm2, compute D{µ̂} for n =

100.

(d) Repeat item (b) for the case of item (c).

4. Twelve direct observations of one unknown parameter µ are listed in Table 2.1.
The first set of five observations (I) were made at one time and have measure-
ment variance σ2

I = (0.05)2. The second set of seven observations (II) were
made at a later time with measurement variance σ2

II = (0.10)2. All random
measurement errors are independent. No units are given.
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Table 2.1: Twelve direct observations of one unknown parameter µ

Set I, σ2
I = (0.05)2

y1 y2 y3 y4 y5

9.99 10.04 9.93 9.88 9.93

Set II, σ2
II = (0.10)2

y6 y7 y8 y9 y10 y11 y12

10.03 10.04 10.05 9.99 10.02 9.95 10.09

(a) Using only data set I:

i. Compute the BLUUE (or LESS) µ̂.

ii. Compute the dispersion D{µ̂} (no hat on D).

iii. Compute the residual vector ẽ.

iv. Compute the estimated variance component σ̂2
0 .

(b) Now using only data set II, repeat items i–iv, this time denoting the

computed values as ˆ̂µ, D{ ˆ̂µ}, ˜̃e, and ˆ̂σ2
0 , respectively.

(c) Based on the discussion above about the weighted arithmetic mean, try
to estimate the unknown parameter based on the linear combination

ˆ̂
µ̂ =

[
α1 α2

] [
µ̂
ˆ̂µ

]
,

using the dispersions computed in the previous two items to determine
the “weights” α1 and α2. Repeat items i and ii for this case, this time

denoting the computed values as
ˆ̂
µ̂ and D{ ˆ̂µ̂}, respectively.

(d) Now compute i–iv using all 12 observation simultaneously and compare
your results to those computed in the preceding items. Comment on
your findings.

5. Stellar observations were made in order to determine the astronomical azimuth
between two geodetic control points. Table 2.2 shows the arc-minute and arc-
second parts of each observation. The degrees part is 126◦ for all observations.
The observations are considered to be uncorrelated. The first 12 observations
were determined from sightings on Polaris with a precision of σ1 = 05′′. The
remaining 18 observations were determined by sightings on the Sun with a
less precise instrument than that used for the first 12. The precision of these
observations is σ2 = 10′′.

(a) Compute the LESS within the model of direct observations for the es-
timated parameter µ̂, its estimated dispersion D̂{µ̂}, and the estimated
variance component σ̂2

0 .
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Table 2.2: Observations of the astronomical azimuth (in minutes and seconds of
arc) between two points. Add 126◦ to all values.

No. Direction No. Direction No. Direction

1 11′34′′ 11 11′34′′ 21 11′19′′

2 11′30′′ 12 11′38′′ 22 11′22′′

3 11′34′′ 13 11′35′′ 23 11′01′′

4 11′29′′ 14 11′40′′ 24 11′44′′

5 11′29′′ 15 11′37′′ 25 11′33′′

6 11′37′′ 16 11′27′′ 26 11′23′′

7 11′37′′ 17 11′33′′ 27 11′44′′

8 11′37′′ 18 11′22′′ 28 11′13′′

9 11′33′′ 19 11′39′′ 29 11′29′′

10 11′24′′ 20 11′19′′ 30 10′38′′

(b) Repeat the previous part 30 times (i = 1, . . . , 30), removing one succes-
sive observation each time so that each ith solution is based on 29 ob-
servations. Tabulate your results and include in each line the difference
between the removed observation yremoved and the estimated azimuth µ̂i;
let’s refer to it as epredicted = yremoved − µ̂i. Highlight the solution that
has the largest magnitude for epredicted. Call it solution k for reference
in the next part.

(c) Now repeat part (a) using all 30 observations, but this time modify the
weight of the observation with the value for epredicted found in solution k
of part (b). Use 1/(epredicted)2

k for the new weight. Compare your solu-
tion to solution k from part (b). Are they close? Do you expect them to
be? Why or why not?

Which of the 32 solutions that you computed would you adopt as the
final solution? Give a justification for your choice.

6. Consider the weight matrix P := P(5.a) used in problem 5.a to have been
“wrongly chosen” and the weight matrix used in 5.c to be legitimate. Let δP
be their difference such that P(5.c) = P + δP .

Compute the effects of the wrongly chosen weight matrix on the estimated
parameter µ̂, its estimated dispersion D̂{µ̂}, and the estimated variance com-
ponent σ̂2

0 .

Note that the root problem with 5.a is that its last observation appears to be
an outlier, not that the weights were necessarily “chosen wrongly.” However,
it seems that the problem can be mitigated by an appropriate “de-weighting”
of the suspect observation, which provides an opportunity to apply equations
(2.45), (2.46), and (2.47).
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2.9 Summary Formulas for the Least-Squares So-
lution Within the Model of Direct Observa-
tions

The model of direct observations is given by

y
n×1

=


y1

...

yn

 =


µ+ e1

...

µ+ en

 = τµ+ e,

e ∼
(
0, σ2

0Q
)
, Q := P−1.

Table 2.3: Summary formulas for the LESS within the model of
direct observations

Quantity Formula Eq.

Model redundancy r = n− 1 (2.37)

Estimated parameter µ̂ = (τTPy)/(τTPτ ) (2.7)

Dispersion of estimated
parameter

D{µ̂} = σ2
0/(τ

TPτ ) (2.14)

Vector of predicted
residuals

ẽ = y − τ µ̂ (2.8a)

Dispersion matrix for
residuals

D{ẽ} = σ2
0 ·
[
P−1 − τ

(
τTPτ

)−1
τT
]

(2.15)

Sum of squared
residuals (SSR)

Ω = ẽTP ẽ (2.36)

Estimated variance
component

σ̂2
0 = (ẽTP ẽ)/(n− 1) (2.38)

Vector of adjusted
observations

Ê{y} =: µ̂y = y − ẽ (2.12)

Dispersion matrix for
adjusted observations

D{µ̂y} = σ2
0 ·τ
(
τTPτ

)−1
τT (2.16)



Chapter 3
The Gauss-Markov Model

3.1 Model Definition

The Gauss-Markov Model (GMM) is the underlying data model for many of the
topics that follow. In presentation of the model, it is assumed that the observation
equations (3.1a) have been linearized, if necessary. The model is written as follows:

y = A
n×m

ξ + e, rkA = m, (3.1a)

e ∼
(
0, σ2

0P
−1
)
. (3.1b)

In the case of linearization, y is a vector of observations minus “zeroth-order”
terms; A is a known n×m coefficient matrix (also called design or information ma-
trix, or Jacobian matrix if partial derivatives are involved) relating the observations
to the unknown parameters; ξ is a vector of unknown parameters to estimate (cor-
rections to initial values in the case of linearization), and e is a vector of random
observation errors, having zero expectation. Equation (3.1a) requires the n × m
coefficient matrix A to have full column rank.

The n × n matrix P is symmetric. It contains weights of the observations,
which may be correlated. The inverse of P shown in (3.1) implies that P is a
positive-definite matrix; this inverse matrix is called the cofactor matrix and is
denoted by Q. The symbol σ2

0 represents a variance component, which is considered
unknown but can be estimated. The dispersion matrix D{e} = σ2

0P
−1 is called the

variance-covariance matrix, or simply the covariance matrix, and is also denoted
by Σ. In summary, we have the following relation between the dispersion, weight,
and cofactor matrices of the unknown, random error vector e:

D{e} = Σ = σ2
0Q = σ2

0P
−1. (3.2)

The redundancy r of the model (3.1a) is defined as

r := n− rkA = n−m. (3.3)

59
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Redundancy is also called degrees of freedom in the context of statistical testing
discussed in Chapter 9.

The GMM shown in (3.1) has two main components. The first component,
(3.1a), contains the observation equations y = Aξ+e, which show the functional re-
lation between the observations, their random errors, and the unknown parameters
that are to be estimated. The second component, (3.1b), shows a stochastic model,
e ∼ (0, σ2

0P
−1), which expresses the expectation and dispersion of the random er-

rors. These quantities are also called the first and second moments, respectively, of
the random error vector e.

If the rank of matrix A is less than the number of unknown parameters to esti-
mate, we say that the problem is rank deficient. Such a problem cannot be solved
based on the observations alone; additional information about the unknown param-
eters must be provided. The problem of rank deficiency is covered in Section 3.5
and, much more thoroughly, in the notes for the advanced adjustment computations
course.

3.2 The Least-Squares Solution Within the Gauss-
Markov Model

We now derive the LEast-Squares Solution (LESS) for the parameter estimate ξ̂
and the predicted random error (residual) vector ẽ, with their associated dispersion
matrices, under the assumption that the coefficient matrix A has full column rank.
For convenience, we define the m×m matrix N and the m× 1 vector c as[

N, c
]

:= ATP
[
A, y

]
. (3.4)

The objective of least-squares minimization is to minimize the P -weighted sum
of squared residuals, or, equivalently, to minimize the P -weighted random errors in
the model (3.1). Thus the Lagrange target function

Φ(ξ) := (y −Aξ)TP (y −Aξ) = stationary (3.5)

should be minimized. Forming the the Euler-Lagrange necessary conditions (or
first-order conditions) leads directly to the least-squares normal equations

1

2

∂Φ

∂ξ
=
(
ATPA

)
ξ̂ −ATPy = N ξ̂ − c .

= 0. (3.6)

The sufficient condition is satisfied by (1/2)·(∂2Φ/∂ξ∂ξT ) = N , which is positive-
definite since matrix A has full column rank according to (3.1a). Equation (3.6)
leads to the least-squares solution (LESS)

ξ̂ = N−1c (3.7)

for the unknown parameter vector ξ, with its expectation computed by

E{ξ̂} = N−1E{c} = N−1ATPE{y} = N−1ATPAξ = ξ. (3.8)
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The predicted random error vector (also called residual vector) is then given by

ẽ = y −Aξ̂ =
(
In −AN−1ATP

)
y, (3.9)

with expectation

E{ẽ} =
(
In −AN−1ATP

)
E{y} =

(
In −AN−1ATP

)
Aξ = Aξ −Aξ = 0. (3.10)

The expectation of the given observation vector is expressed as E{y} = µy, where
µy is the true, but unknown, vector of observables. Thus we write the vector of
adjusted observations as

Ê{y} =: µ̂y = y − ẽ = Aξ̂, (3.11)

with expectation

E{µ̂y} = AE{ξ̂} = Aξ. (3.12)

Equations (3.8), (3.10) and (3.12) show that the estimated parameters, the residuals,
and the adjusted observations, respectively, are unbiased.

The corresponding dispersion matrices are computed by using the law of covari-
ance propagation. The dispersion of the estimated parameters is computed by

D{ξ̂} = D{N−1ATPy} =
(
N−1ATP

)
D{y}

(
PAN−1

)
=

= N−1ATP
(
σ2

0P
−1
)
PAN−1 ⇒

D{ξ̂} = σ2
0N
−1. (3.13)

And, the dispersion of the residual vector ẽ is

D{ẽ} =
(
In −AN−1ATP

)
D{y}

(
In − PAN−1AT

)
=

=
(
In −AN−1ATP

)(
σ2

0P
−1
)(
In − PAN−1AT

)
=

= σ2
0

(
In −AN−1ATP

)(
P−1 −AN−1AT

)
⇒

D{ẽ} = σ2
0

(
P−1 −AN−1AT

)
= (3.14a)

= D{y} −D{Aξ̂} =: σ2
0Qẽ, (3.14b)

where the matrix

Qẽ := P−1 −AN−1AT (3.14c)

is the cofactor matrix of the residual vector ẽ. Equations (3.14a) to (3.14c) reveal
that the variances of the residuals are smaller than the corresponding variances of
the observations, since the matrix product AN−1AT is positive-definite. Finally,
the dispersion of the vector of adjusted observations is computed by

D{µ̂y} = AD{ξ̂}AT = σ2
0AN

−1AT . (3.15)
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Summarizing the above equations, the respective distributions for the estimated
parameter vector, the residual vector, and the vector of adjusted observations are
succinctly expressed by

ξ̂ ∼
(
ξ, σ2

0N
−1
)
, (3.16a)

ẽ ∼
(
0, σ2

0

[
P−1 −AN−1AT

]
=: σ2

0Qẽ,
)
, (3.16b)

µ̂y ∼
(
Aξ, σ2

0AN
−1AT

)
. (3.16c)

Since the variance component σ2
0 is an unknown quantity, the dispersions shown in

(3.16) cannot be computed unless either σ2
0 is estimated or a value is specified for

it. In the case where the estimated variance component is used in lieu of the true,
but unknown, variance component, we speak of an estimated dispersion matrix for
the estimated parameter vector, which is provided by

D̂{ξ̂} = σ̂2
0N
−1, (3.17)

with obvious extension to other quantities, such as D̂{ẽ} and D̂{µ̂y}. See Sec-
tion 3.3 for the derivation of the variance component estimate σ̂2

0 , the formula for
which is given in (3.28).

3.2.1 Example — Fitting a Parabola

Suppose n observations were taken of data that, when plotted in 2D, appear to
approximate a parabola (Figure 3.1). The y-coordinates represent measured data
with random errors having zero mean and iid dispersion. The x-coordinates are
assumed to be known without error. This is a classical regression problem.

0 2 4 6 8 10 12

1.85

1.90

1.95

2.00

2.05

Figure 3.1: A fitted parabolic curve based on measured y-coordinates and given
x-coordinates
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The observations equations of the Gauss-Markov Model (GMM) are set up as
follows: The ith observation equation, i = 1, . . . , n,

yi = ax2
i + bxi + c+ ei, (3.18)

can be extended to a system of equations in matrix from as

y1

y2

...

yn


︸ ︷︷ ︸
y

=



x2
1 x1 1

x2
2 x2 1

...
...

...

x2
n xn 1


︸ ︷︷ ︸

A


ξ1

ξ2

ξ3


︸ ︷︷ ︸
ξ

+



e1

e2

...

en


︸ ︷︷ ︸
e

, (3.19)

where ξ =: [a, b, c]T is the vector of unknown parameters, which, together with
the stochastic model e ∼ (0, iid), constitutes a Gauss-Markov Model. Note that
in other examples within the GMM, the the random observation errors could have
a heteroscedastic distribution, or their dispersion could be represented by a full
cofactor matrix Q.

3.2.2 Correlation of Adjusted Observations and Predicted
Residuals

Equation (3.14b) implies that the covariance between the vector of adjusted obser-

vations µ̂y = Aξ̂ and the vector of residuals ẽ is zero. Since, according to (3.7)
and (3.9), both vectors are a function of the random vector y, this can also be
shown by applying the law of covariance propagation as follows:

C{Aξ̂, ẽ} = AN−1ATP ·D{y} ·
(
In −AN−1ATP

)T
=

= σ2
0

[
AN−1AT −AN−1

(
ATPA

)
N−1AT

]
=

= σ2
0

[
AN−1AT −AN−1AT

]
= 0. (3.20)

Also, we have the following covariance between the adjusted and original observa-
tions:

C{Aξ̂,y} = AN−1ATPD{y} = σ2
0AN

−1ATPP−1 =

= σ2
0AN

−1AT = D{Aξ̂}. (3.21)

Zero correlation does not necessarily imply statistical independence, though the
converse does hold. Analogous to (9.9a), the adjusted observations and predicted
residuals are not statistically independent unless the expectation of their product is
equal to the product of their expectations. The following shows that this property
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is not satisfied: Since the trace of a scalar product is the scalar product itself, we
start with

E{(Aξ̂)T ẽ} = E{tr ξ̂TAT
(
In −AN−1ATP

)
y}.

But the trace is invariant with respect to a cyclic transformation (see (A.5)). Thus,

E{(Aξ̂)T ẽ} = E{tr
(
AT −ATAN−1ATP

)
yξ̂T } =

= tr
(
AT −ATAN−1ATP

)
E{yξ̂T } 6= 0 = E{(Aξ̂)T }E{ẽ}, since E{ẽ} = 0.

3.2.3 P -Weighted Norm of the Residual Vector

The P -weighted norm of the residual vector ẽ is an important quantity that can be
used to check the overall (“global”) fit of the adjustment. The norm is defined as

Ω := ẽTP ẽ, (3.22)

and it is guaranteed to be a minimum, since ẽ was obtained by minimizing eTPe
(cf. (3.5)). In the special case where P = In, the quadratic form Ω is often called
the sum of squared residuals, or SSR, in the statistical literature. We use the term
SSR in the following chapters even when P is not the identity matrix. Substituting
(3.9) into (3.22) leads to some commonly used alternative forms for Ω.

ẽTP ẽ = (y −Aξ̂)TP (y −Aξ̂) = (3.23a)

= yTPy − yTPAξ̂ − ξ̂TATPy + ξ̂TATPAξ̂ =

= yTPy − 2cT ξ̂ + cT ξ̂ =

= yTPy − cT ξ̂ = (3.23b)

= yTPy − cTN−1c = (3.23c)

= yTPy − (N ξ̂)TN−1N ξ̂ =

= yTPy − ξ̂TN ξ̂ = (3.23d)

= yT (P − PAN−1ATP )y (3.23e)

Note that the target function (3.5) could have been written explicitly as a func-
tion of the random error vector e with the introduction of a vector of Lagrange
multipliers λ as follows:

Φ(e, ξ,λ) = eTPe− 2λT (y −Aξ − e) = stationary. (3.24)

This approach leads to the estimate of Lagrange multipliers as −λ̂ = P ẽ and thus
leads to yet another expression for the P -weighted norm

Ω = ẽTP ẽ = −ẽT λ̂ = λ̂TP−1λ̂. (3.25)
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3.3 Estimated Variance Component Within the
Gauss-Markov Model

As stated in Section 2.4, the variance component σ2
0 is an unknown quantity in

the Gauss-Markov Model (GMM). We now present the derivation of the estimated
variance component σ̂2

0 . As defined in (3.1), the dispersion matrix for the random
error vector e is D{e} = σ2

0Q. Also, by definition of dispersion we have D{e} =
E{(e−E{e})(e−E{e})T }. But, for the error vector E{e} = 0; therefore D{e} =
E{eeT } = σ2

0Q = σ2
0P
−1.

The following steps lead to an expression for the variance component σ2
0 in terms

of the quadratic product eTPe.

E{eeT } = σ2
0Q (by definition)

PE{eeT } = σ2
0In (multiply both sides by P )

trPE{eeT } = σ2
0 tr In = nσ2

0 (apply the trace operator)

trE{PeeT } = nσ2
0 (move the constant matrix P into the expectation)

E{trPeeT } = nσ2
0

(interchange the trace and expectation operators—both linear)

E{tr eTPe} = nσ2
0

(the trace is invariant with respect to a cyclic transformation)

E{eTPe} = nσ2
0 (a quadratic product is a scalar; trace of scalar is scalar itself)

σ2
0 = E{e

TPe

n
} (dividing through by n and placing n inside E{·})

σ̄2
0 :=

eTPe

n
(define a symbol for the term inside E{·})

E{σ̄2
0} = σ2

0 (by substitution)

Thus we can say that
(
eTPe

)
/n provides an unbiased representation of σ2

0 . How-
ever, we do not actually know the true random error vector e, but we do know its
predicted value ẽ.

We now work with the residual vector ẽ to find an unbiased estimate of σ2
0 .

Combining steps similar to those explained above, we can write

E{ẽTP ẽ} = trE{ẽTP ẽ} = trE{ẽẽT }P = trD{ẽ}P. (3.26)

According to (3.14a), the dispersion of the residual vector is D{ẽ} = σ2
0

(
P−1 −

AN−1AT
)
. Substituting this result into (3.26) gives

E{ẽTP ẽ} = trσ2
0

(
P−1 −AN−1AT

)
P =

= σ2
0

(
tr In − trAN−1ATP

)
=

= σ2
0

(
tr In − trN−1ATPA

)
= (using (A.5))

= σ2
0(n− rkN) = σ2

0(n− rkA). (using (1.7c))
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Finally, we arrive at

E{ ẽ
TP ẽ

n− rkA
} = σ2

0 . (3.27)

Now, we simply label the argument of the expectation operator on the left side
of (3.27) as σ̂2

0 , which allows us to write the expression for the estimated variance
component as

σ̂2
0 =

ẽTP ẽ

n− rkA
. (3.28)

Obviously, σ̂2
0 is a uniformly unbiased estimate of σ2

0 , since E{σ̂2
0} = σ2

0 . In the
case of the Model of Direct Observations, we replace A with τ , which has rank of 1,
and thus we have σ̂2

0 := ẽTP ẽ/(n−1), which verifies (2.38). Alternative expressions
for σ̂2

0 can be reached by use of (3.23) and (3.25).
The above derivations imply the following relationship between E{eTPe} and

E{ẽTP ẽ}:

E{eTPe}
n

=
E{ẽTP ẽ}
n− rkA

= σ2
0 ⇒ (3.29a)

E{ẽTP ẽ} < E{eTPe} (3.29b)

According to Grafarend and Schaffrin (1993, pg. 103), and Schaffrin (1997b),
the dispersion, and estimated dispersion, respectively, of σ̂2

0 are given by

D{σ̂2
0} = (n−m)−1 · 2

(
σ2

0

)2
(3.30)

and

D̂{σ̂2
0} = (n−m)−1 · 2

(
σ̂2

0

)2
, (3.31)

where it is assumed that m = rkA.

3.4 Linearized Observation Equations and Algo-
rithm

When the unknown parameters ξ are a nonlinear function of the observables, we
can represent the observation equations by

E{y} = a(ξ), D{y} = σ2
0P
−1 = D{e}, e := y − E{y}, (3.32a)

or

y = a(ξ) + e, (3.32b)

where a(ξ) is a vector of functions that maps Rm to Rn. Using an approximate
vector of parameters ξ(0) and a Taylor series expansion permits us to rewrite (3.32a)
as

E{y} = a(ξ(0)) +
∂a

∂ξT

∣∣∣∣
ξ=ξ(0)

·(ξ − ξ(0)) + · · · (3.33a)
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⇒ E{y − a(ξ(0))} = A·(ξ − ξ(0)) + higher order terms. (3.33b)

By truncating the Taylor series expansion (i.e. dropping the higher-order terms)
and working with observation increments y − a(ξ(0)) and parameter increments
ξ − ξ(0), we may form the system of least-squares normal equations

(ATPA)(ξ̂ − ξ(0)) = ATP (y − a(ξ(0))), (3.34)

leading to

ξ̂ = ξ(0) +N−1ATP (y − a(ξ(0))) (3.35a)

and

D{ξ̂} = D{ξ̂ − ξ(0)} = σ2
0(ATPA)−1 (3.35b)

for the estimate of ξ and its dispersion matrix, respectively.
The chosen approximate values for ξ(0) may be less precise than we prefer, which,

in turn, might affect the accuracy and precision of the computed values of ξ̂. In
practice, ξ(0) may be taken from a solution based on only a minimum subset of
the observation equations (i.e., only m of them). Such approximate values could be
improved upon by replacing them with the values obtained from a first computation
of ξ̂. Then, the system of equations could be solved again, leading to a more precise
values for ξ̂. This process could be repeated until the difference between ξ̂ and ξ(0)

becomes arbitrarily small. This approach is called an iterative least-squares solution.
For the jth iteration step of an iterative algorithm the approximate parameter

vector ξ(j) is specified by

ξ(j) := ξ(j−1) + (ξ̂j−1 − 0˜), (3.36a)

where the subtraction of a random zero vector 0˜ is a formality that ensures the
approximate vector ξ(j) is non-random, as it must be. Thus, we say that the

subtraction of 0˜ strips ξ̂j−1 of its randomness (note that subtracting a random zero

does not change the numerical values of ξ̂j−1). The iterations are repeated until∥∥∥ξ̂j+1 − ξ̂j
∥∥∥ < ε (3.36b)

for some chosen, small ε. Such an iterative algorithm is called a Gauss-Newton
algorithm. It is summarized below.

Note that the symbol ξ(j) (with parenthesis around the subscript) has been
used to indicate the approximate Taylor-series expansion point, while ξ is used for
the true (unknown) parameter vector as usual, and ξ̂j (without parenthesis on the
subscript) denotes the vector of estimated parameters.

Iterative algorithm to solve a linearized system of normal equations:

1. Initialization: Specify initial values for ξ(0), e.g., based on a minimum num-
ber of observation equations. Compute a(ξ(0)) and form matrix (A)0 based
on ξ(0). Then set iteration index to j = 1.
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2. Compute the jth solution

ξ̂j = ξ(j−1) +
[
(A)T(j−1)P (A)(j−1)

]−1
(A)T(j−1)P

[
y − a(ξ(j−1))

]
. (3.37a)

Check for convergence using ∥∥∥ξ̂j+1 − ξ̂j
∥∥∥ < ε (3.37b)

for some chosen ε. If the solution has converged go to step 4.

3. Update the expansion point ξ(j) according to (3.36a). Update the partial
derivatives in the Jacobian matrix (A)(j). Increment the iteration counter j
by j → j + 1. Repeat step 2.

4. After convergence, compute the dispersion matrix

D{ξ̂} = D{ξ̂j}, (3.37c)

the residual vector

ẽ = y − a(ξ(j)), (3.37d)

the vector of adjusted observations

y − ẽ = a(ξ(j)), (3.37e)

and the estimated variance component

σ̂2
0 = (ẽTP ẽ)/r. (3.37f)

Note that in this last step, the vector ξ(j) is the “approximate” vector (ex-
pansion point) computed in step 3. Checks similar to those discussed in
Section 2.5.1 should also be made.

3.5 Introduction of Datum Information to Treat
the Rank-Deficient Gauss-Markov Model

A rank-deficient Gauss-Markov Model (GMM) is one in which the rank of the
coefficient matrix A is less than its number of columns. This means that at least
one column of A is either a scalar multiple of a different column or that it can
be expressed as a linear combination of other columns. Such rank deficiency is
expressed mathematically as rkA < m, where m is the number of columns of A. It
implies also that rkN = rkATPA < m, which means that the unknown parameters
cannot be estimated by (3.7). Put another way, a rank-deficient model is one in
which there are more parameters than can be estimated from the data. In fact,
the rank of the coefficient matrix reveals the number of estimable parameters of the
model.

Rank deficiency often arises in the context of network adjustments where sta-
tion coordinates must be estimated but the observations do not contain sufficient
information to define the underlying coordinate system, also called datum in this
context. Thus we speak of a network datum deficiency. As noted in Chapter 5, a
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2-D network where only angles and distance have been measured provides an ex-
ample of a datum deficiency of three, owing to the unknown origin and orientation
parameters of the network. However, if certain values (or known values) are pro-
vided for enough parameters, this “datum information” can be used to eliminate
the rank deficiency of the model. The method is described in the following.

Consider the following (linearized) GMM with rank-deficient matrix A:

y = Aξ + e, e ∼
(
0, σ2

0P
−1
)
, rkA =: q < m. (3.38a)

We can partition the matrix A as

A
n×m

=

[
A1
n×q

A2
n×(m−q)

]
, with rkA1 = q := rkA, (3.38b)

so that matrix A1 has full column rank. A compatible partitioning of the parameter
vector ξ, i.e.,

ξ =


ξ1
q×1

ξ2
(m−q)×1

 , (3.38c)

leads to the following system of partitioned normal equations:AT1
AT2

P [A1, A2

]ξ̂1

ξ̂2

 =

AT1
AT2

Py =

AT1 PA1 AT1 PA2

AT2 PA1 AT2 PA2


ξ̂1

ξ̂2

 =

AT1 Py
AT2 Py

 =

=

N11 N12

N21 N22


ξ̂1

ξ̂2

 =

c1

c2

 . (3.39)

The sub-scripted terms in (3.39) may be defined more succinctly as[
Nij , ci

]
:= ATi P

[
Aj , y

]
, for i, j ∈ {1, 2}. (3.40)

Defining a datum for m−q parameters means that values for them must be specified.
Mathematically, a datum is defined by ξ̂2 → ξ0

2, where ξ0
2 is known. The rank of A1

given in (3.38b) implies that the inverse of the q × q matrix N11 exists. Therefore,

from the top row of (3.39), and with a given datum ξ0
2 substituted for ξ̂2, we can

write

N11ξ̂1 = c1 −N12ξ
0
2 ⇒ (3.41a)

ξ̂1 = N−1
11

(
c1 −N12ξ

0
2

)
. (3.41b)

Equation (3.41b) shows that datum values can be specified or modified after ob-
servations have been made and matrix N11 has been inverted. Moreover, since the
only random component in (3.41b) is c1, we have

D{ξ̂1} = σ2
0N
−1
11 (3.42)
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for the dispersion of the vector of estimated parameters ξ̂1.
The predicted random error (residual) vector and its dispersion are then defined

as follows:

ẽ = y −Aξ̂ = y −
[
A1 A2

]ξ̂1

ξ0
2

 = y −A1ξ̂1 −A2ξ
0
2,

D{ẽ} = D{y} −D{A1ξ̂1} = σ2
0

(
P−1 −A1N

−1
11 A

T
1

)
.

(3.43a)

(3.43b)

Note that C{y, ξ̂1} = 0, which is implied by (3.43b). After computing the residuals,
it is straightforward to compute the vector of adjusted observations and it dispersion
matrix, respectively, by

Ê{y} =: µ̂y = y − ẽ = A1ξ̂1 +A2ξ
0
2,

D{µ̂y} = D{A1ξ̂1} = σ2
0 ·A1N

−1
11 A

T
1 .

(3.44a)

(3.44b)

Here, µ̂y is also interpreted as an estimate of the true, and thus unknown, vector
of observables µy, where E{y} = µy.

The sum of squared residuals (SSR) is given by

Ω = ẽTP ẽ, (3.45)

while the redundancy of the model is provided by

r = n− rkA = n− q. (3.46)

Substituting (3.43a) into (3.45), and considering (3.41a), leads to

σ̂2
0 =

ẽTP ẽ

r
=
yTPy − cT1 ξ̂1 − cT2 ξ0

2

n− q
(3.47)

as an estimate for the unknown variance component σ2
0 . Here, the relation ξ̂T1 N11ξ̂1

+ξ̂T1 N12ξ̂2 = ξ̂T1 c1 has been used. However, since rkA1 = rkA = q, the n× (m− q)
submatrix A2 must be in the column space of the n× q matrix A1 so that

A2 = A1L (3.48a)

for some q × (m− q) matrix L. Therefore,

N12 = AT1 PA2 = AT1 PA1L = N11L⇒ (3.48b)

N−1
11 N12 = L. (3.48c)

With this result, and using (3.41b), we have

cT1 ξ̂1 + cT2 ξ
0
2 = yTPA1

(
N−1

11 c1 −N−1
11 N12ξ

0
2

)
+ yTPA2ξ

0
2 =
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= yTPA1

(
N−1

11 c1 − Lξ0
2

)
+ yTPA2ξ

0
2 =

= yTPA1N
−1
11 c1 − yTP

(
A1L

)
ξ0

2 + yTPA2ξ
0
2 =

= yTPA1N
−1
11 c1 = cT1 N

−1
11 c1, (3.49)

which, upon substitution into (3.47), leads to

σ̂2
0 =

yTPy − cT1 N−1
11 c1

n− q
(3.50)

as an alternative form for the estimated variance component.
It is instructive to compare the dispersion of ξ̂1 shown in (3.42) with the cor-

responding dispersion in the case that matrix A has full row rank, i.e., rkA = m.
In the full-rank case, we could invert the coefficient matrix of (3.39) and find the

upper q× q block of the inverse, scaled by σ2
0 , to be the dispersion of ξ̂1. Referring

to (A.11) for the inverse of the partitioned matrix N , we find

D{ξ̂1}︸ ︷︷ ︸
no datum

= σ2
0

[
N−1

11 +N−1
11 N12

(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

]
=

= σ2
0

(
N11 −N12N

−1
22 N21

)−1
> σ2

0N
−1
11 = D{ξ̂1}︸ ︷︷ ︸

datum supplied

.
(3.51)

The smaller dispersion in the last line of (3.51) shows that if a datum is introduced
(increase in information), the unknown parameters ξ are estimated with smaller
variance.

Minimally constrained adjustment The type of least-squares adjustment de-
scribed in this section belongs to a class of minimally constrained adjustment, a
subject treated in much greater detail in the notes for Advanced Adjustment Com-
putations. The reason that the adjustment is of type minimally constrained is
because the datum information only provides information on m− q of the parame-
ters, which is just enough to overcome the rank deficiency of the model. The result
is a unique solution for the residual vector ẽ, the adjusted observations Aξ̂, and
the estimated variance component σ̂2

0 . This means that the specification for ξ0
2 will

not affect the computed values of these quantities. Put another way, we can say
that they are invariant to the choice of the datum. On the other hand, the vector
of estimated parameters ξ̂ will not be unique; it does depend on the specification
of ξ0

2.

3.6 Practice Problems

1. Starting with the Lagrange target function (3.24), derive the least-squares
solution (LESS) within the Gauss-Markov Model for the unknown parameter
vector ξ and the unknown vector of Lagrange multipliers λ.
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2. Based on your answer in the preceding problem, show that the identity Ω =
λ̂TP−1λ̂ in (3.25) holds.

3. In order to determine the height of point F , leveling measurements have been
taken in forward and reverse directions from three different points A, B,
and C, each with known height. The relevant data are given in Table 3.1.

Table 3.1: Leveling data for Problem 3.

Point
Height
[m]

Forward obs.
to F [m]

Length of
path [km]

Reverse obs.
from F [m]

A 100.055 10.064 2.5 −10.074

B 102.663 7.425 4 −7.462

C 95.310 14.811 6 −14.781

Assume that the standard deviations of the observations are σ = 3 mm per
every one km of leveling and that all measurements are uncorrelated. Setup
the Gauss-Markov Model and compute the LESS of:

(a) The height at point F and its estimated dispersion.

(b) The vector of residuals and its estimated dispersion matrix.

(c) The estimated variance component.

(d) Compute the trace of the product σ−2
0 ·D{ẽ}·P and confirm that it equals

the redundancy of the model.

4. Elevations were observed with a digital level at nodes of a 2D-grid. The
horizontal coordinates of the nodes (X,Y ) are assumed be be known with
certainty, while the random errors of the observed elevations have a homoge-
neous distribution with zero mean and σ2 = (10 mm)2 variance. The data are
listed in Table 3.2.

(a) Use the LESS within the GMM to estimate the parameters of a fitted
plane assuming the observation equations can be modeled by

E{yi} = aXi + bYi + c, i = 1, . . . , n,

with unknown parameters ξ = [a, b, c]T .

(b) Use the LESS within the GMM to estimate parameters for a quadratic
surface assuming the observation equations can be modeled by

E{yi} = aX2
i + bY 2

i + cXiYi + dXi + eYi + f, i = 1, . . . , n,

with unknown parameters ξ = [a, b, c, d, e, f ]T .
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Table 3.2: Elevation data yi observed at known grid locations

i Xi Yi yi i Xi Yi yi

1 −20 −20 9.869 14 0 10 10.019

2 −20 −10 9.920 15 0 20 10.037

3 −20 0 9.907 16 10 −20 9.946

4 −20 10 9.957 17 10 −10 9.988

5 −20 20 9.959 18 10 0 10.035

6 −10 −20 9.889 19 10 10 10.055

7 −10 −10 9.937 20 10 20 10.066

8 −10 0 9.973 21 20 −20 9.963

9 −10 10 10.025 22 20 −10 9.986

10 −10 20 10.026 23 20 0 10.037

11 0 −20 9.917 24 20 10 10.068

12 0 −10 10.000 25 20 20 10.069

13 0 0 10.007

(c) Which of the two above observational models, the planar one or the
quadratic one, fit the data best? Give the reason for your answer.

5. To determine the coordinates of an unknown point P (x, y), some measure-
ments were carried out from two given points A(50, 30) and B(100, 40) in
meters.

A
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im

u
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2
and

azim
uth

y
4

Figure 3.2: Two distances and two azimuths measured from known points A and B
to determine coordinates of point P
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Two distances were observed, the first from A to P and the second from B
to P . The observed distances are y1 = 66.137 m and y2 = 58.610 m, and they
are considered to be uncorrelated with variance σ2 = (1 cm)2.

In addition, two azimuths were observed independently. The observed azimuth
from A to P is y3 = 20◦20′55′′ and the observed azimuth from B to P is
y4 = 332◦33′41′′. The standard deviation of both azimuths is ±σα = 05′′.

Compute the following:

(a) The estimated coordinates of point P .

(b) The estimated variances of the coordinates and their correlation coeffi-
cient.

(c) The residual vector ẽ.

(d) The estimated variance component σ̂2
0 .

6. To determine the coordinates of a new point P , distances were measured to
four given points having known coordinates. One angle was also measured.
The coordinates of the given points are listed in Table 3.3, and the observa-
tions, along with their standard deviations, are listed in Table 3.4.

P1

y1

P

P2

y2

P3

y3

P4

y4

y5

Figure 3.3: Four distances and one angle measured to determine point P

Table 3.3: Coordinates of known points in meters

Point xi [m] yi [m]

P1 842.281 925.523

P2 1337.544 996.249

P3 1831.727 723.962

P4 840.408 658.345
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Table 3.4: Observations: distances and their standard deviation are in units of
meters.

Observable yi σi

P1P 244.457 0.006

P2P 321.622 0.010

P3P 773.129 0.024

P4P 280.019 0.080

∠P1PP2 123◦38′20′′ 05′′

(a) Setup the observation equations and form the normal equations.

(b) Compute the LESS for the coordinates of points P and compute their
variances and covariances.

(c) Compute the residual vector ẽ, the adjusted observations, and the dis-
persion matrices of both.

(d) Compute the estimated variance component σ̂2
0 .

7. Pearson (1901) presented the data in Table 3.5 for a line-fitting problem. Con-
sidering the x-coordinates to be known with certainty and the y-coordinates to
be observed with random errors having zero mean and iid dispersion, complete
the following:

(a) Setup a Gauss-Markov Model to estimate the slope and y-intercept of a
line and compute those estimates.

(b) Compute the residual vector ẽ and the estimated variance component σ̂2
0 .

(c) Plot the data along with the fitted line.
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Table 3.5: Pearson (1901) data for a fitted line

Point i xi yi

1 0.0 5.9

2 0.9 5.4

3 1.8 4.4

4 2.6 4.6

5 3.3 3.5

6 4.4 3.7

7 5.2 2.8

8 6.1 2.8

9 6.5 2.4

10 7.4 1.5

8. The affine 2-D transformation is based on six unknown parameters:

• ξ1, ξ2 for the translation of the origin of the coordinate frame,

• β, β + ε for the rotation angles of the respective axes.

• ω1, ω2 for the scale factors of the respective axes.

For a point having coordinates (xi, yi) in the source coordinate frame and
(Xi, Yi) in the target coordinate frame, the transformation is described by[

Xi

Yi

]
=

[
ω1· cosβ −ω2· sin(β + ε)

ω1· sinβ ω2· cos(β + ε)

][
xi

yi

]
+

[
ξ1

ξ2

]
+

[
eXi
eYi

]
. (3.52a)

Here

• (xi, yi) are given coordinates in the source system;

• (Xi, Yi) are observed coordinates in the target system;

• i denotes the point number, i ∈ {1, 2, . . . , n/2}.

Making the substitutions

ξ3 := ω1 cosβ, ξ4 := ω2 sin(β + ε), ξ5 := ω1 sinβ, ξ6 := ω2 cos(β + ε) (3.52b)

results in the linear system of observation equations

Xi = xi·ξ3 − yi·ξ4 + ξ1 + eXi ,

Yi = xi·ξ5 + yi·ξ6 + ξ2 + eYi ,

[
eXi
eYi

]
∼ (

[
0

0

]
, σ2

0

[
(QXX)ii (QXY )ii

(QTXY )ii (QY Y )ii

]
),

(3.52c)
where QXX , QY Y , and QXY are given cofactor matrices.

Using the data from Table 3.6, which is copied from Wolf (1983, p. 586), and
assuming the random observation errors are iid, complete the following:
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(a) Compute the least-squares estimates of ξ̂ and then the derived quanti-

ties β̂1, β̂2, ω̂1, and ω̂2.

(b) Sketch a diagram showing the axes of both coordinate systems. Annotate
the diagram with labels for the rotation angles between the axes and the
translations between the two origins.

(c) Use the estimated parameters to compute coordinates in the xy system
for points 1–3 shown in Table 3.6.

Table 3.6: Calibrated (known) and comparator (measured) coordinates from Wolf
(1983, p. 586)

Comparator coordinates Calibrated coordinates

Point X [mm] Y [mm] x [mm] y [mm]

Fiducial A 55.149 159.893 −113.000 0.000

Fiducial B 167.716 273.302 0.000 113.000

Fiducial C 281.150 160.706 113.000 0.000

Fiducial D 168.580 47.299 0.000 −113.000

1 228.498 105.029

2 270.307 199.949

3 259.080 231.064

9. The spirit leveling data in Table 3.7 come from Rainsford (1968), where or-
thometric corrections have already been applied to the recorded observations.
The weight of each observation was taken as the distance in miles divided
by 100. All random observation errors are uncorrelated. The unknown pa-
rameters are the heights of points A, B, C, D, E, and F (Figure 3.4). Since
the observations pertain to height differences, the model has a rank deficiency
(datum deficiency) of one. Therefore, datum information is introduced as in
Section 3.5 by specifying the height of point D as 1928.277 ft.

Complete the following:

(a) Set up a partitioned Gauss-Markov model and the corresponding parti-
tioned least-squares normal equations according to Section 3.5.

(b) Compute the LESS for the estimated heights of points A, B, C, E, and F .

(c) Compute the residual vector and the estimated variance component.

(d) Compute the adjusted observations and then sum them for each of the
four closed loops in the network that pass through either point B or C.
Also sum them for the closed perimeter loop that contains all points
except B and C.

(e) Repeat all your computations using a height of 1679.432 ft for point A
as datum information. Which results are different and which are the



78 CHAPTER 3. THE GAUSS-MARKOV MODEL

A

B
C

D

E

F

y1
y2

y3

y4

y5

y6

y7

y8
y9

Figure 3.4: Leveling network after Rainsford (1968)

Table 3.7: Leveling data from Rainsford (1968)

Observed Length

From To No. height diff. [ft] [miles]

A B 1 +124.632 68

B C 2 +217.168 40

C D 3 −92.791 56

A D 4 +248.754 171

A F 5 −11.418 76

F E 6 −161.107 105

E D 7 +421.234 80

B F 8 −135.876 42

C E 9 −513.895 66

same between the two adjustments? Can you explain the differences and
similarities?
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3.7 Summary Formulas for the Introduction of Da-
tum Information for the Least-Squares Solu-
tion Within the Rank Deficient Gauss-Markov
Model

The rank deficient Gauss-Markov Model is given by

y
n×1

=

[
A1
n×q

A2
n×(m−q)

]
ξ1
q×1

ξ2
(m−q)×1

+ e, e ∼
(
0, σ2

0P
−1
)
,

rkA =: q < m and rkA1 = q.

Table 3.8: Summary formulas for the introduction of datum infor-
mation (ξ̂2 → ξ0

2) for the LESS within the rank deficient Gauss-
Markov Model

Quantity Formula Eq.

Model redundancy r = n− rkA = n− q (3.46)

Vector of estimated
parameters, with
given ξ0

2

ξ̂1 = N−1
11

(
c1 −N12ξ

0
2

)
(3.41b)

Dispersion matrix
for estimated
parameters

D{ξ̂1} = σ2
0 ·N−1

11 (3.42)

Vector of predicted
residuals, with
given ξ0

2

ẽ = y −Aξ̂ = y −A1ξ̂1 −A2ξ
0
2 (3.43b)

Dispersion matrix
for residuals

D{ẽ} = σ2
0 ·
(
P−1 −A1N

−1
11 A

T
1

)
(3.43b)

Sum of squared
residuals (SSR)

Ω = ẽTP ẽ (3.45)

Estimated variance
component, with
given ξ0

2

σ̂2
0 = (ẽTP ẽ)/r =

(yTPy − cT1 ξ̂1 − cT2 ξ0
2)/(n− q) (3.47)

Continued on next page
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Quantity Formula Eq.

Vector of adjusted
observations

Ê{y} =: µ̂y = y − ẽ = A1ξ̂1 +A2ξ
0
2 (3.44a)

Dispersion matrix
for adjusted
observations

D{µ̂y} = σ2
0 ·A1N

−1
11 A

T
1 (3.44b)

Continued from previous page

3.8 Summary Formulas for the Least-Squares So-
lution Within the Gauss-Markov Model With
Full Rank

The Gauss-Markov Model with full column rank coefficient matrix A is given by

y
n×1

= A
n×m

ξ + e, e ∼
(
0, σ2

0P
−1
)
,

rkA = m.

Table 3.9: Summary formulas for the LESS within the Gauss-
Markov Model with full rank

Quantity Formula Eq.

Model redundancy r = n− rkA = n−m (3.3)

Vector of estimated
parameters

ξ̂ = N−1c, [N, c] := ATP [A, y] (3.7)

Dispersion matrix for
estimated parameters

D{ξ̂} = σ2
0 ·N−1 (3.13)

Vector of predicted
residuals

ẽ = y −Aξ̂ =
(
In −AN−1ATP

)
y (3.9)

Dispersion matrix for
residuals

D{ẽ} = σ2
0 ·
(
P−1 −AN−1AT

)
(3.14a)

Sum of squared
residuals (SSR)

Ω = ẽTP ẽ (3.22)

Continued on next page
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Quantity Formula Eq.

Estimated variance
component

σ̂2
0 = (ẽTP ẽ)/(n− rkA) (3.28)

Vector of adjusted
observations

Ê{y} =: µ̂y = y − ẽ (3.11)

Dispersion matrix for
adjusted observations

D{µ̂y} = σ2
0 ·AN−1AT (3.15)

Continued from previous page



82 CHAPTER 3. THE GAUSS-MARKOV MODEL



Chapter 4
The Model of Condition Equations

4.1 Model Definition

In the least-squares adjustment within the model of condition equations, the un-
known parameters ξ are not estimated directly, rather the random error vector e
is predicted. This approach might be taken if the parameters are of no particular
interest, or it might be done to make the problem easy to formulate. An example
of the latter is the adjustment of leveling networks, where the parameters (heights
of the stations) are of primary interest, but because closed “level loops” within the
network sum to zero (a necessary condition), it is convenient to difference the obser-
vations along these loops before performing the adjustment (see level-loop example
in Section 4.4). Another motivation for using the model of condition equations
is that the size of the matrix to invert in the least-squares solution (LESS) may
be smaller than that in the corresponding LESS within the Gauss-Markov Model
(GMM).

Let the r×n matrix B represent a difference operator such that when it is applied
to the n×1 observation equations y = Aξ+e, the parameters are eliminated. More
specifically, we require that BA = 0, which implies that By = B(Aξ + e) = Be.
Therefore, by applying the difference operator B, the GMM is transformed to the
following model of condition equations:

w := B
r×n
y = Be, e

n×1
∼ (0, σ2

0P
−1), (4.1a)

r := n− q = rkB, (4.1b)

where the variable r denotes the redundancy of the model, and q is the rank of the
n×m matrix A from the GMM (3.1). Equation (4.1b) requires that matrix B has
full row rank. Moreover, it shows that the redundancy of the model is not changed
from that of the GMM by eliminating parameters.

83
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4.2 The Least-Squares Solution Within the Model
of Condition Equations

The least-squares criterion for minimizing the (P -weighted, squared) norm of the
observation residuals is written as

min eTPe subject to w = Be, (4.2)

for which the Lagrange target function

Φ(e,λ) := eTPe+ 2λT (w −Be) (4.3)

can be written, which must be made stationary with respect to the unknown terms e
and λ. Here, λ is an r × 1 vector of Lagrange multipliers. Taking the first partial
derivatives of (4.3) leads to the Euler-Lagrange necessary conditions

1

2

∂Φ

∂e
= P ẽ−BT λ̂ .

= 0, (4.4a)

1

2

∂Φ

∂λ
= w −Bẽ .

= 0. (4.4b)

The sufficient condition, required to ensure a minimum is reached, is satisfied by
∂Φ2/∂e∂eT = 2P , which is positive definite since the weight matrix P is invertible
according to (4.1a). The simultaneous solution of (4.4a) and (4.4b) leads to the
Best LInear Prediction (BLIP) of e as derived in the following: Equation (4.4a)
leads to

ẽ = P−1BT λ̂. (4.5a)

Then, (4.4b) and (4.5a) allows

w = Bẽ =
(
BP−1BT

)
λ̂⇒ (4.5b)

λ̂ =
(
BP−1BT

)−1
w ⇒ (4.5c)

ẽ = P−1BT
(
BP−1BT

)−1
w, (4.5d)

finally leading to the predicted random error vector

ẽ = P−1BT
(
BP−1BT

)−1
By. (4.5e)

Note that the matrix product BP−1BT results in a symmetric, positive definite
matrix of size r×r, since B has full row rank. The predicted random error vector ẽ
is also called the residual vector. The expectation of the given observation vector is
expressed as E{y} = µy, where µy is the true, but unknown, vector of observables.
Thus we write the vector of adjusted observations as

Ê{y} = µ̂y = y − ẽ. (4.6)
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Nota bene: Implicit in the term By is the subtraction of a constant term κ if
necessary, viz. (By − κ)− Be = 0, implying that By → By − κ. An example
is the condition that the n interior angles of a simple polygon in a plane must
sum to κ = (n− 2)180◦. Then the condition equation would read

[
1 1 · · · 1

]

y1 − e1

y2 − e2

...

yn − en

− (n− 2)π = 0.

Thus, for numerical computations, we may need to modify (4.5e) to read

ẽ = P−1BT
(
BP−1BT

)−1
(By − κ), (4.7)

which has no affect on the dispersion formulas that follow.

The square of the P -weighted residual norm Ω, also called the sum of squared
residuals (SSR), is computed by

Ω = ẽTP ẽ = ẽTBT λ̂ = wT λ̂ = wT (BP−1BT )−1w =

= yTBT (BP−1BT )−1By,

(4.8a)

(4.8b)

leading to the estimated variance component

σ̂2
0 =

Ω

r
=
ẽTP ẽ

r
, (4.9)

with r = rkB. In words, it is described as the squared P -weighted residual norm
divided by the degrees of freedom (redundancy) of the model.

Applying the law of error propagation, the dispersion of the residual vector is
computed by

D{ẽ} = P−1BT (BP−1BT )−1B ·D{y} ·BT (BP−1BT )−1BP−1 =

= P−1BT (BP−1BT )−1B(σ2
0P
−1)BT (BP−1BT )−1BP−1 ⇒

D{ẽ} = σ2
0 · P−1BT (BP−1BT )−1BP−1. (4.10)

As we did earlier within the GMM (Section 3.2.2), we compute the covariance
between the residual vector ẽ and the vector adjusted observations µ̂y = y − ẽ as
follows:

C{µ̂y, ẽ} = C{
[
I − P−1BT

(
BP−1BT

)−1
B
]
y, P−1BT

(
BP−1BT

)
By} =

=
[
I − P−1BT

(
BP−1BT

)−1
B
]
·D{y} ·

[
P−1BT

(
BP−1BT

)−1
B
]T

=

=
[
I − P−1BT

(
BP−1BT

)−1
B
]
· σ2

0P
−1 ·BT

(
BP−1BT

)−1
BP−1 =
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= σ2
0

[
P−1BT

(
BP−1BT

)−1
BP−1 − P−1BT

(
BP−1BT

)−1
BP−1BT ·

·
(
BP−1BT

)−1
BP−1

]
= 0

(4.11)

Thus, it has been shown that the residuals and adjusted observations are uncor-
related, and therefore the dispersion of the adjusted observations can be written
as

D{µ̂y} = D{y} −D{ẽ} = σ2
0

[
P−1 − P−1BT (BP−1BT )−1BP−1

]
. (4.12)

Note that B is not a unique matrix, but regardless of how B is chosen the results
of the adjustment will be the same, provided the following necessary conditions for
B are satisfied:

(i) Dimensionality: rkB = n− rkA = n−q = r, which means that rkB+rkA =
(n− q) + q = n.

(ii) Orthogonality: BA = 0.

4.3 Equivalence Between LESS Within the Gauss-
Markov Model and the Model of Condition
Equations

To show the equivalence between the least-squares adjustments within the GMM
and the model of condition equations, it must be shown that the predicted random
error vectors (residuals) from both adjustments are equivalent. The residual vector ẽ
from each adjustment can be expressed as a projection matrix times the true random
error vector e (or equivalently, times the observation vector y) as shown below.

The residual vector within the GMM can be written as

ẽ =
[
In −AN−1ATP

]
e. (4.13)

And the residual vector within the model of condition equations can be written as

ẽ =
[
P−1BT

(
BP−1BT

)−1
B
]
e. (4.14)

Note that the right sides of (4.13) and (4.14) cannot actually be computed since e
is unknown, but the equations do hold since, for the GMM,

ẽ =
[
In −AN−1ATP

]
y =

=
[
In −AN−1ATP

]
(Aξ + e) =

=
[
Aξ −AN−1(ATPA)ξ

]
+
[
In −AN−1ATP

]
e⇒

ẽ =
[
In −AN−1ATP

]
e, (4.15)

and, for the model of condition equations,

ẽ = P−1BT
(
BP−1BT

)−1
By =
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= P−1BT
(
BP−1BT

)−1
B(Aξ + e)⇒

ẽ =
[
P−1BT

(
BP−1BT

)−1
B
]
e, (4.16)

using the fact that BA = 0.
To show that (4.13) and (4.14) are equivalent, it must be shown that the range

spaces and the nullspaces are equivalent for their respective projection matrices

P̄1 := [In −AN−1ATP ] and P̄2 := [P−1BT (BP−1BT )−1B].

(i) Equivalent range spaces: Show that

R
[
In −AN−1ATP

]
= R

[
P−1BT

(
BP−1BT

)−1
B
]
.

Proof: Since ATPP−1BT = ATBT = 0, then[
In −AN−1ATP

][
P−1BT

(
BP−1BT

)−1
B
]
z =

=
[
P−1BT

(
BP−1BT

)−1
B
]
z − 0 for any z ∈ Rn,

which, according to (1.3), implies that

R
[
P−1BT

(
BP−1BT

)−1
B
]
⊂ R

[
In −AN−1ATP

]
.

Also:

dimR
[
P−1BT

(
BP−1BT

)−1
B
]

=

= rk
[
P−1BT

(
BP−1BT

)−1
B
]

= using (A.19a)

= tr
[
P−1BT

(
BP−1BT

)−1
B
]

= using (1.7c)

= tr
[
BP−1BT

(
BP−1BT

)−1]
= using (A.5)

= tr Ir = r.

Furthermore:

dimR
[
In −AN−1ATP

]
=

= rk
(
In −AN−1ATP

)
= using (A.19a)

= tr
(
In −AN−1ATP

)
= using (1.7c)

= tr In − tr
(
N−1ATPA

)
= using (A.5)

= n− rkN = n− rkA =

= n− q = r,

which implies that

R
[
In −AN−1ATP

]
= R

[
P−1BT

(
BP−1BT

)−1
B
]
, (4.17)

since one range space contains the other and both have the same dimension.
Thus we have shown that the range spaces (column spaces) of P̄1 and P̄2 are
equivalent. Now we turn to the nullspaces.
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(ii) Equivalent Nullspaces: Show that

N
[
In −AN−1ATP

]
= N

[
P−1BT

(
BP−1BT

)−1
B
]
.

Proof:

First show that N
[
In −AN−1ATP

]
= R(A).

We begin with [
In −AN−1ATP

]
Aα = 0 for all α,

which implies that

R(A) ⊂ N
[
In −AN−1ATP

]
, since Aα ⊂ R(A);

also

dimR(A) = rkA = q.

Equations (A.19a) and (A.19b) reveal that the sum of the dimensions of the
range space and nullspace of a matrix is equal to its number of columns. Using
this property, and results from (i), we find that

dimN
[
In −AN−1ATP

]
=

= n− dimR
[
In −AN−1ATP

]
= n− r = q.

Therefore,

N
[
In −AN−1ATP

]
= R(A).

Also, we have [
P−1BT

(
BP−1BT

)−1
B
]
A = 0,

since BA = 0. The preceding development implies that

R(A) = N
[
In −AN−1ATP

]
⊂ N

[
P−1BT

(
BP−1BT

)−1
B
]
,

or

N (P̄1) ⊂ N (P̄2).

We showed in part (i) that the dimensions of the range spaces of the respective
projection matrices are equivalent. And, since

dimN (P̄1) = n− dimR(P̄1) = n− dimR(P̄2),

it follows that

dimN (P̄1) = dimN (P̄2).

As already stated in part (i), if one vector space is a subset of another and both
spaces have the same dimension, then the subspaces are equivalent. Therefore, we
can say that

N (P̄1) = N (P̄2),
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or

N
[
In −AN−1ATP

]
= N

[
P−1BT

(
BP−1BT

)−1
B
]
. (4.18)

We have shown that both the range spaces and nullspaces of the projection
matrices P̄1 and P̄2 are equivalent, proving that the residual vectors from the two
adjustments are the same and thus that the two adjustments are indeed equivalent.

4.4 Examples — Linear and Nonlinear

4.4.1 Linear Example — a Small Leveling Network

The following example is borrowed from Mikhail and Gracie (1981, Problem 4-8).
It involves a leveling network comprised of two closed loops as shown in Figure 4.1.
The data are listed in Table 4.1.

A

B

C D

18 km

y1

12 km
y2

8 km
y4

22 kmy5

20 kmy3

Figure 4.1: Example leveling network

Table 4.1: Leveling network data

Line
Element

of y
Observed elevation

difference (m)
Length
(km)

A to B y1 −12.386 18

B to C y2 −11.740 12

C to A y3 24.101 20

C to D y4 −8.150 8

D to A y5 32.296 22

In a leveling network, one condition equation can be written for each closed loop.
Connecting observations in a counter-clockwise order, two condition equations may
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be written as

(y1 − e1) + (y2 − e2) + (y3 − e3) = 0,

−(y3 − e3) + (y4 − e4) + (y5 − e5) = 0,

or, in matrix form, as

By =

[
1 1 1 0 0

0 0 −1 1 1

]

−12.386

−11.740

24.101

−8.150

32.296

 = Be.

The observations weights are inversely proportional to the distances in km, so that

P−1 = 10−6 · diag(18, 12, 20, 8, 22) ·m2

appears to be a reasonable weight matrix. The residuals are then computed by

ẽ = P−1BT (BP−1BT )−1By =


−0.003

−0.002

−0.020

0.007

0.018

 ·m.

The redundancy of the model is given by r = rkB = 2. The adjusted observations
are computed by

µ̂y = y − ẽ =


−12.383

−11.738

24.121

−8.157

32.278

 ·m.

The dispersion matrix for the residuals is

D{ẽ} = σ2
0 · P−1BT (BP−1BT )−1BP−1 =

= σ2
0 ·


7.7 5.1 5.1 1.4 3.8

5.1 3.4 3.4 0.9 2.5

5.1 3.4 11.4 −2.3 −6.3

1.4 0.9 −2.3 1.5 4.2

3.8 2.5 −6.3 4.2 11.5

mm2.

The weighted sum of squared residuals is Ω := ẽTP ẽ = (6.454972)2, leading to the
estimated variance component σ̂2

0 = Ω/r = (4.564355)2. The estimated variance



4.4. EXAMPLES 91

component may be used to compute the estimated dispersion matrix for the residuals
as

D̂{ẽ} = σ̂2
0 · P−1BT (BP−1BT )−1BP−1 =

=


1.61 1.07 1.07 0.29 0.79

1.07 0.71 0.71 0.19 0.52

1.07 0.71 2.38 −0.48 −1.31

0.29 0.19 −0.48 0.32 0.87

0.79 0.52 −1.31 0.87 2.40

 cm2.

Now, if the same problem were to be modeled within the Gauss-Markov Model
with the unknown parameters being the heights of the points denoted by ξ =
[HA, HB , HC , HD]T , then the coefficient matrix would be written as

A =


−1 0 0

0 1 0

1 −1 0

0 −1 1

1 0 −1

 .

Obviously, the conditions r = n−rkA = rkB = 2 and BA = 0 are satisfied. Indeed,
one can easily verify that the LESS within the GMM will produce the same residual
vector and same estimated variance component as shown above.

4.4.2 Nonlinear Example — Observations of a Triangle

Table 4.2 lists distance observations for all sides of a triangle and two of its angles
as depicted in Figure 4.2. The standard deviations of the observations are shown
in the last column of the table. The observations are to be adjusted by computing
the residual vector within the model of condition equations.

Table 4.2: Observations of sides and angles of a triangle

Obs. no. Observation Std. dev.

y1 120.01 m 1 cm

y2 105.02 m 1 cm

y3 49.98 m 1 cm

y4 94◦47′10′′ 20′′

y5 60◦41′20′′ 20′′

The following two nonlinear condition equations can be written as a function of
the unknown 5 × 1 random error vector e, the first based on the law of sines and
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P1

y
3

P2

y1

P3

y 2

y4

y5

Figure 4.2: Observations of sides and angles of a triangle

the second on the law of cosines for a triangle in a plane:

f1(e) = (y2 − e2)· sin(y4 − e4)− (y1 − e1)· sin(y5 − e5) = 0 (4.19a)

f2(e) = (y1 − e1)2 + (y2 − e2)2 − (y3 − e3)2−
− 2·(y1 − e1)(y2 − e2)· cos(π − y4 + e4 − y5 + e5) = 0.

(4.19b)

The following total derivatives are written for the sake of forming partial deriva-
tives that are needed for linearization:

df1 = − sin(y4 − e4)de2 − (y2 − e2) cos(y4 − e4)de4 + sin(y5 − e5)de1+

+ (y1 − e1) cos(y5 − e5)de5 = 0,
(4.20a)

df2 =
[
−2(y1 − e1) + 2(y2 − e2) cos(π − y4 + e4 − y5 + e5)

]
de1+

+
[
−2(y2 − e2) + 2(y1 − e1) cos(π − y4 + e4 − y5 + e5)

]
de2+

+ 2(y3 − e3)de3 +
[
2(y1 − e1)(y2 − e2) sin(π − y4 + e4 − y5 + e5)

]
(de4 + de5).

(4.20b)

From these equations we get the partial derivatives ∂f1/∂e2 = − sin(y4 − e4), etc.,
leading to the Jacobian matrix

B =

∂f1∂e1

∂f1
∂e2

∂f1
∂e3

∂f1
∂e4

∂f1
∂e5

∂f2
∂e1

∂f2
∂e2

∂f2
∂e3

∂f2
∂e4

∂f2
∂e5

 , (4.20c)

which must have rank 2 (full row rank).
The problem is linearized by the truncated Taylor series

f(e) ≈ f(e0) +
∂f

∂eT

∣∣∣∣
e=e0

·(e− e0) = 0 (4.21a)
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about the expansion point e0, being an approximate value for the unknown vector
of random errors e. Using matrix B, evaluated at e0, to represent the partial
derivatives, and introducing ∆e := e − e0 as an unknown, incremental vector of
residuals, leads to the formula

−f(e0) = B·∆e, (4.21b)

which is in the form of

w = Be (4.21c)

given in the model of condition equations. Therefore, we can setup an iterative
algorithm to predict ∆e as follows:

1. Set e0 = 0 and choose a convergence criterion ε.

2. Then for j = 1, 2, . . ., while ∆̃ej > ε, compute:

∆̃ej = P−1BTj (BjP
−1BTj )−1wj (4.22a)

ẽj = ej + ∆̃ej . (4.22b)

Then update the expansion point, the Jacobian matrix, and the vector w for the
next iteration as follows:

ej+1 = ẽj − 0˜, Bj+1 = B|ej+1
, and wj+1 = −f(ej+1). (4.22c)

For the first iteration, the matrix B and vector w read

B =

[
0.08719744 −0.09965131 0 8.762479 58.75108

−48.92976 8.325453 99.96000 10463.14 10463.14

]
and

w =

[
−0.00816522

−0.86019942

]
.

Upon convergence the predicted residual vector turns out to be

ẽ =


−0.0021 m

0.0035 m

−0.0024 m

−05.6′′

−09.2′′

 . (4.23)

Note that when choosing a numerical value for the convergence criterion ε, one
must be mindful of the units involved in the residual vector. In this example, we have
units of meters, for which a change of less than 0.1 mm might be satisfactory, but we
also have units of radians for the angles, for which a change of less than 5× 10−6rad
might be required. In such cases it may be prudent to check the elements of ∆̃ej
individually, using separate convergence criterion for different observation types.
Then, the algorithm would be considered to have converged when all the convergence
criteria have been satisfied.
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4.5 Generation of Equivalent Condition Equations
When the Gauss-Markov Model is Rank Defi-
cient

We may also wish to transform the rank-deficient model (3.38a) into a model of
condition equations. To do so, consider the further splitting of the rank-deficient
matrix A defined in (3.38b) as follows:

A
n×m

=
[
A1 A2

]
=

[
A11 A12

A21 A22

]
, (4.24a)

dim(A11) = q × q and dim(A22) = (n− q)× (m− q). (4.24b)

Also, we have rkA11 = q := rkA. And, with the introduction of the q × (m − q)
matrix L in (3.48a), satisfying A2 = A1L, we may write

A2 =

[
A12

A22

]
= A1L =

[
A11

A21

]
L⇒ A =

[
A1 A1L

]
. (4.25)

Now, the matrix B within the model of condition equations could be chosen as

B
r×n

:=
[
A21A

−1
11 −In−q

]
, (4.26)

with r being the redundancy of the model as shown in (3.46) and (4.1b). This is a
legitimate choice for B as long as the two conditions discussed in Section 4.2, are
satisfied, viz the dimensionality condition and the orthogonality condition.

The first condition requires that the dimensions of the column spaces of A and B
sum to the number of observations n. The second condition requires that the rows
of matrix B are orthogonal to the columns of A, i.e., BA = 0. Taken together, these
conditions mean that A and BT are orthogonal complements in n-dimensional space,
or, stated more succinctly,

R(A)
⊥
⊕R(BT ) = Rn. (4.27)

Both conditions i and ii are satisfied for (4.26) as shown below.

i. Dimensionality condition:

rkB = r = n− q = n− rkA⇒ rkA+ rkB = n. (4.28a)

ii. Orthogonality condition:

BA = B
[
A1 A2

]
= BA1

[
Iq L

]
, (4.28b)

but

BA1 =
[
A21A

−1
11 −In−q

] [A11

A21

]
= A21A

−1
11 A11 −A21 = 0, (4.28c)

and therefore

BA = 0. (4.28d)
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Note that as long as the rank of matrix A is known, we can always generate a
splitting of A as shown in (4.24a); however, we may need to reorder the columns
of A (tantamount to reordering the elements of the parameter vector) to ensure
that A11 has full column rank.

4.6 Practice Problems

1. Practice deriving the formula for the residual vector ẽ as shown in Section 4.2
until you can do it without referring to the notes.

2. Compute the residual vector of Problem 9 of Section 3.6 using the LESS within
the model of condition equations. Confirm that the rank of matrix B is n− 5
and that BA = 0, where A is the coefficient matrix from problem 9.

3. The observations listed in Table 4.3 are depicted in Figure 4.3. Assume that
the listed angles were derived from differences of independently observed di-
rections measured with a theodolite. For example, observation y2 was derived
from subtracting the observed direction from point P2 to point P3 from the
direction from P2 to P4. The variance of each direction is σ2 = (10′′)2.

(a) Determine the variance of each of the six angles as well as the covariance
between angles y2 and y3 and the covariance between angles y4 and y5.
Based on these results, write down the covariance matrix Q.

(b) Write down suitable condition equations and determine the redundancy
of the model.

(c) Using the LESS within the model of condition equations, compute the
residual vector ẽ and its dispersion matrix D{ẽ}.

(d) Compute the estimated variance component σ̂2
0 .

Table 4.3: Six measured angles between four points

Element
of y

Observation

y1 37◦52′35′′

y2 46◦56′10′′

y3 57◦18′50′′

y4 37◦52′40′′

y5 53◦44′50′′

y6 31◦03′20′′
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P1

P4

P2

P3

y1

y2

y3

y4

y5

y6

Figure 4.3: Six measured angles between four points

4. Four distances were measured between three points A, B, C as shown in
Figure 4.4. The observed distances are y1 = 300.013 m, y2 = 300.046 m,
y3 = 200.055 m, and y4 = 500.152 m. There are no correlations between the
distances, and their standard deviations are defined by σ = (5 + 10d) mm,
where d is the measured distance in km. Perform a least-squares adjustment
within the model of condition equations to find the adjusted distance between
points A and C and its estimated variance.

A B C

y1

y2

y3

y4

Figure 4.4: Four distances measured between three points A, B, C

5. Four angles are depicted in Figure 4.5. Angles y1 and y2 were derived from
differencing among three observed directions. Angle y3 was derived from
an independent set of two directions. Likewise, angle y4 was derived from
yet another independent set of two directions. All directions are considered
uncorrelated with standard deviation σ = 10′′. The derived angles are y1 =
60◦22′15′′, y2 = 75◦39′20′′, y3 = 223◦58′40′′, y4 = 136◦01′30′′.
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Note: The observed directions are uncorrelated, but some of the derived angles
are not.

Use the LESS within the model of condition equations to compute the adjusted
angles for y1 and y2. Also compute their variances.

P

P1

P2

P3

y1

y2

y3

y4

Figure 4.5: Four angles derived from three sets of directions

6. Using the data from problem 7 of Section 3.6, compute the residual vector ẽ
by using the LESS within the model of condition equations. Confirm that the
rank of matrix B is n− 2 and that BA = 0, where A is the coefficient matrix
from problem 7.

Hint: The slope between the first point and the jth point must equal the slope
between the jth point and the (j + 1)th point for j = 2, 3, . . . , n− 1.

4.7 Summary Formulas for the Least-Squares So-
lution Within the Model of Condition Equa-
tions

The model of condition equations is given by

w
r×1

:= B
r×n
y = Be, e ∼ (0, σ2

0P
−1),

r := rkB.
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Table 4.4: Summary formulas for the LESS within the model of condition equations

Quantity Formula Eq. No.

Model redundancy r = rkB (4.1b)

Vector of predicted
residuals

ẽ = P−1BT
(
BP−1BT

)−1
By (4.5e)

Dispersion matrix for
residuals

D{ẽ} = σ2
0 ·P−1BT (BP−1BT )−1BP−1 (4.10)

Sum of squared residuals
(SSR)

Ω = ẽTP ẽ (4.8a)

Estimated variance
component

σ̂2
0 = Ω/r (4.9)

Vector of adjusted
observations

Ê{y} =: µ̂y = y − ẽ (4.6)

Dispersion matrix for
adjusted observations

D{µ̂y} = σ2
0 ·P−1 −D{ẽ} (4.12)



Chapter 5
The Gauss-Markov Model with
Constraints

When prior information about the values of certain parameters, or about functional
relationships between them, is known before the adjustment, those quantities can be
maintained through the adjustment by application of constraints. For example, one
may already know the height difference between two points in a leveling network
that is to be adjusted, or it could be that the azimuth between two points in a
2D network to be adjusted must maintain a specified value. In both cases, the
prior information can be preserved through constraints added to the Gauss-Markov
Model (GMM). We say that such information is known a priori. The term a priori
is a Latin phrase that literally means “from the earlier.” In geodetic science, it
refers to knowledge or information possessed before an experiment is conducted or
an adjustment is computed.

One case where constraints might be useful is when the design matrix A does
not have full column rank, implying that the inverse N−1 of the normal equation
matrix does not exist, which means that the parameters of the model cannot be
estimated using (3.7). This problem can occur, for example, when network observa-
tions must be adjusted in the estimation of point coordinates, but the observations
themselves do not provide complete information about the network datum (i.e., its
size, shape, orientation, and origin). For example, distance measurements provide
information about the scale (size) of a network, and angle measurements provide
information about its shape. But neither measurement type provides information
about the origin or orientation of the network figure, which is necessary for esti-
mating coordinates of network points. In such a case in 2-D, applying a constraint
on two coordinates (i.e., on two parameters) and one azimuth (a function of four
parameters) would provide the lacking information. In this case, the specified con-
straint values could be somewhat arbitrary, but we still may speak of them as being
“known” (i.e., specified a priori) in the context of adjustments with constraints.

Of course, we have already seen in Section 3.5 how a minimum number of con-
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straints on the unknown parameters can be imposed via datum information, thereby
overcoming a datum (rank) deficiency in the model and permitting a minimally con-
strained adjustment of the observations. The model explored in this chapter can
be used not only to handle datum deficiencies in a way that leads to a minimally
constrained adjustment, it can also be used to handle a variety of fixed constraints,
possibly leading to an over-constrained adjustment. The latter case is one in which
the imposition of constraints will impact the values of the residual vector.

5.1 Model Definition and Minimization Problem

The Gauss-Markov Model (GMM) with constraints imposed on the unknown pa-
rameters (all or some of them) is written as

y
n×1

= A
n×m

ξ + e, e ∼ (0, σ2
0P
−1), rkA =: q ≤ m, (5.1a)

κ0
l×1

= K
l×m

ξ, rkK =: l ≥ m− q, (5.1b)

where the rank condition

rk
[
AT , KT

]
= m (5.1c)

must be satisfied. The terms of the model are as defined on page 60, but now with
the addition of a known l×m coefficient matrix K and an l× 1 vector of specified
constants κ0. Symbols for the normal equations were introduced in (3.4) and are
repeated here for convenience:[

N, c
]

:= ATP
[
A, y

]
. (5.2)

Note that, in contrast to the model in (3.1), the coefficient matrix A in (5.1a) is not
required to have full column rank, in which case the matrix inverse N−1 would not
exist. However, the specified rank conditions imply that (N+KTK)−1 exists, and,
if N−1 exists, so does (KN−1KT )−1. This is because the range space of [AT , KT ]
spans Rm as implied by the rank condition stated in (5.1c). The redundancy of the
model is computed by

r := n−m+ rkK = n−m+ l. (5.3)

Introducing an l× 1 vector of Lagrange multipliers λ, the Lagrange target func-
tion to minimize is

Φ(ξ,λ) := (y −Aξ)TP (y −Aξ)− 2λT
(
κ0 −Kξ

)
= stationary = (5.4a)

= yTPy − 2ξTATPy + ξTATPAξ − 2λT (κ0 −Kξ). (5.4b)

Its first partial derivatives are taken to form the following Euler-Lagrange necessary
conditions:

1

2

∂Φ

∂ξ
= N ξ̂ − c+KT λ̂

.
= 0, (5.5a)
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1

2

∂Φ

∂λ
= −κ0 +Kξ̂

.
= 0. (5.5b)

In matrix form (5.5a) and (5.5b) are expressed as[
N KT

K 0

][
ξ̂

λ̂

]
=

[
c

κ0

]
, (5.6)

where the vector on the left side contains m+ l unknowns to be estimated.
The sufficient condition, required for minimization, is satisfied by

(1/2)
(
∂2Φ/∂ξ∂ξT

)
= N, (5.7)

which is positive-(semi)definite. We refer to the matrix on the left side of (5.6) as the
least-squares normal equation matrix. It is invertible if, and only if, rk

[
AT , KT

]
=

m. This rank condition means that, for the normal equation matrix,

• among the first m columns, at least m− l must be linearly independent, and

• the additional l columns are complementary, meaning that when combined
with the first m− l columns they span Rm.

5.2 Estimation of Parameters and Lagrange Mul-
tipliers

In the following, we consider two cases: (1) N is invertible (nonsingular or regular),
and (2) N is singular. The LEast-Squares Solution (LESS) is developed for both
cases in the following:

Case 1: N is invertible, implying that matrix A has full column rank, i.e., rkA = m.
Equations (5.5a) and (5.5b) then imply

ξ̂ = N−1
(
c−KT λ̂

)
, (5.8a)

κ0 = Kξ̂ = KN−1c−KN−1KT λ̂ (5.8b)

⇒ λ̂ = −
(
KN−1KT

)−1(
κ0 −KN−1c

)
, (5.8c)

finally leading to the LESS

ξ̂ = N−1c+N−1KT
(
KN−1KT

)−1(
κ0 −KN−1c

)
. (5.8d)

The vector difference κ0 − KN−1c in (5.8d) is called a vector of discrepancies.
It shows the mismatch between the vector of specified constants κ0 and a linear
combination (as generated by the matrix K) of the solution without constraints

(i.e., N−1c). The estimated vectors ξ̂ and λ̂ may also be presented in terms of the
inverse of the matrix in (5.6), viz.[
ξ̂

λ̂

]
=

[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1 N−1KT

(
KN−1KT

)−1(
KN−1KT

)−1
KN−1 −

(
KN−1KT

)−1

][
c

κ0

]
. (5.9)
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Also, note that the expectation of the estimated vector of Lagrange multipliers
is derived by

E{λ̂} = −E{
(
KN−1KT

)−1
(κ0 −KN−1c)} =

=
(
KN−1KT

)−1[
KN−1ATPE{y} − κ0

]
=

=
(
KN−1KT

)−1
(Kξ − κ0) = 0. (5.10)

Case 2: N is singular (i.e., not invertible), implying that matrix A does not have
full column rank, i.e., rkA < m.

Multiplying equation (5.5b) by KT and adding the result to (5.5a), leads to(
N +KTK

)
ξ̂ = c+KT

(
κ0 − λ̂

)
⇒

ξ̂ =
(
N +KTK

)−1
c+

(
N +KTK

)−1
KT
(
κ0 − λ̂

)
. (5.11)

Then from (5.5b) and (5.11) we have

κ0 = Kξ̂ = K
(
N +KTK

)−1
c+K

(
N +KTK

)−1
KT
(
κ0 − λ̂

)
⇒(

κ0 − λ̂
)

=
[
K
(
N +KTK

)−1
KT
]−1[

κ0 −K
(
N +KTK

)−1
c
]
. (5.12)

Substituting (5.12) into (5.11) leads to the LESS

ξ̂ =
(
N +KTK

)−1
c+

(
N +KTK

)−1
KT ·

·
[
K
(
N +KTK

)−1
KT
]−1[

κ0 −K
(
N +KTK

)−1
c
]
. (5.13)

The form of (5.13) is identical to (5.8d) except that all occurrences of matrix N in
(5.8d) have been replaced by N +KTK in (5.13). Of course, (5.13) can be used for
both the singular and nonsingular cases.

Also, note that the expectation of vector difference κ0 − λ̂ is derived by

E{κ0 − λ̂} = E{
[
K
(
N +KTK

)−1
KT
]−1[

κ0 −K
(
N +KTK

)−1
c
]
} =

=
[
K
(
N +KTK

)−1
KT
]−1[

κ0 −K
(
N +KTK

)−1
ATPE{y}

]
=

=
[
K
(
N +KTK

)−1
KT
]−1

K
[
Im −

(
N +KTK

)−1
N
]
ξ =

=
[
K
(
N +KTK

)−1
KT
]−1

K
[
Im −

(
N +KTK

)−1(
N +KTK

)]
ξ+

+
[
K
(
N +KTK

)−1
KT
]−1

K
(
N +KTK

)−1
KT ·Kξ = Kξ

⇒ E{κ0 − λ̂} = Kξ or E{λ̂} = κ0 −Kξ ⇒ (5.14a)

E{λ̂} = 0. (5.14b)

5.3 Derivation of Dispersion Matrices

We now compute the formal dispersion matrices for the both the vector of estimated
parameters ξ̂ and the vector of estimated Lagrange multipliers λ̂.
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Case 1: For case 1, we start with (5.6), from which we have[
ξ̂

λ̂

]
=

[
N KT

K 0

]−1 [
c

κ0

]
. (5.15)

Applying the law of covariance propagation, noting that κ0 is a non-random vector,
and substituting the matrix from (5.9) implies that

D{

[
ξ̂

λ̂

]
} =

[
N KT

K 0

]−1

·D{

[
c

κ0

]
} ·

[
N KT

K 0

]−1

=

= σ2
0

[
N KT

K 0

]−1 [
N 0

0 0

][
N KT

K 0

]−1

=

= σ2
0

[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1 0

0
(
KN−1KT

)−1

]
, (5.16)

which, upon comparing to (5.9), reveals the relation[
D{ξ̂} X

XT −D{λ̂}

]
= σ2

0

[
N KT

K 0

]−1

. (5.17)

Here the symbol X represents a term of no particular interest. Note that X 6=
C{ξ̂, λ̂} = 0.

Case 2: The results for case 2 are slightly different, because we work with a system
of equations involving N+KTK rather than N itself. Thus, rather than the system
of equations shown in (5.15), we work with the modified system[

ξ̂

λ̂

]
=

[
N +KTK KT

K 0

]−1 [
c+KTκ0

κ0

]
. (5.18)

Note that the matrix in (5.15) has full rank even when matrix N is singular, so it
is not necessary to use the modified system (5.18). However, this modified system
has its own benefits, and it is consistent with equation (5.13) derived above.

Using the formulas for inverting a partitioned matrix (see (A.10) and (A.11))
and introducing the notation NK := (N + KTK) for the sake of brevity, we can
write[
NK KT

K 0

]−1

=

[
N−1
K −N

−1
K KT

(
KN−1

K KT
)−1

KN−1
K N−1

K KT
(
KN−1

K KT
)−1(

KN−1
K KT

)−1
KN−1

K −
(
KN−1

K KT
)−1

]
.

(5.19)
Our goal is to express the inverted matrix in (5.19) in terms of the inverted

matrix in (5.15). We start by multiplying the former by the inverse of the latter
and then carry out some matrix algebra.
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[
N+KTK KT

K 0

]−1 [
N KT

K 0

]
=

[
N+KTK KT

K 0

]−1 [
N+KTK−KTK KT

K 0

]
=

=

[
Im 0

0 Il

]
−

[
N +KTK KT

K 0

]−1 [
KTK 0

0 0

]
=

[
Im 0

0 Il

]
−

[
0 0

K 0

]
=

=

[
N KT

K 0

]−1 [
N KT

K 0

]
−

[
0 0

K 0

]
=

=

[
N KT

K 0

]−1 [
N KT

K 0

]
−

[
0 0

0 Il

][
N KT

K 0

]
=

=

[N KT

K 0

]−1

−

[
0 0

0 Il

][N KT

K 0

]
. (5.20)

Multiplying the first and last products of (5.20) by the inverse of their last terms
and considering (5.17) reveals that[
N+KTK KT

K 0

]−1

=

[
N KT

K 0

]−1

−

[
0 0

0 Il

]
=

[
σ−2

0 D{ξ̂} X

XT −σ−2
0 D{λ̂} − Il

]
,

(5.21)
and therefore, in consideration of (5.19),

−
[
K
(
N +KTK

)−1
KT
]−1

= −σ−2
0 D{λ̂} − Il ⇒

D{λ̂} = σ2
0

{[
K
(
N +KTK

)−1
KT
]−1 − Il

}
. (5.22)

Alternative derivation of dispersion matrix The following alternative ap-
proach to deriving the dispersion matrix for case 2 was recognized by Dru Smith
and Kyle Snow during collaborative work, where, again, the abbreviation NK :=
(N +KTK) is used: The law of linear covariance propagation (law of error propa-
gation) allows us to write

D{

[
ξ̂

λ̂

]
} =

[
NK KT

K 0

]−1

·D{

[
c+KTκ0

κ0

]
} ·

[
NK KT

K 0

]−1

=

= σ2
0

[
NK KT

K 0

]−1

·

[
N 0

0 0

]
·

[
NK KT

K 0

]−1

=: σ2
0

[
Q11 Q12

QT12 Q22

]
, (5.23a)

where, upon substitution of (5.19), the block matrices Q11, Q12, and Q22 turn out
to be

Q22 =
(
KN−1

K KT
)−1

K
(
N−1
K ·N ·N

−1
K

)
KT
(
KN−1

K KT
)−1

, (5.23b)

Q12 =
(
N−1
K ·N ·N

−1
K

)
KT
(
KN−1

K KT
)−1 −N−1

K KTQ22, (5.23c)
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Q11 =
[
N−1
K −N−1

K KT
(
KN−1

K KT
)−1

KN−1
K

]
·NN−1

K −Q12KN
−1
K . (5.23d)

Now, we wish to reduce these matrices to simpler forms, for which the following
relationship is useful

N−1
K ·N ·N

−1
K = N−1

K −N−1
K (KTK)N−1

K . (5.24)

Substituting (5.24) into (5.23b) leads to

Q22 =
(
KN−1

K KT
)−1

K
[
N−1
K −N−1

K (KTK)N−1
K

]
KT
(
KN−1

K KT
)−1

=

=
(
KN−1

K KT
)−1 − Il = σ−2

0 D{λ̂}. (5.25a)

Then, substituting (5.25a) into (5.23c) results in

Q12 =
(
N−1
K ·N ·N

−1
K

)
KT
(
KN−1

K KT
)−1 −N−1

K KT
[(
KN−1

K KT
)−1 − Il

]
=

=
[
N−1
K −N

−1
K (KTK)N−1

K

]
KT
(
KN−1

K KT
)−1−N−1

K KT
(
KN−1

K KT
)−1

+N−1
K KT=

= 0 = C{ξ̂, λ̂}, (5.25b)

and, therefore, (5.23d) reduces to

Q11 =
[
N−1
K −N−1

K KT
(
KN−1

K KT
)−1

KN−1
K

]
·NN−1

K =

= N−1
K −N−1

K (KTK)N−1
K −N−1

K KT (KN−1
K KT )−1K

[
N−1
K −N−1

K (KTK)N−1
K

]
=

= N−1
K −N−1

K KT
(
KN−1

K KT
)−1

KN−1
K = σ−2

0 D{ξ̂}. (5.25c)

Summary of dispersion matrices For convenience, we summarize the disper-
sion matrices of the estimated parameters and the estimated Lagrange multipliers
for both cases 1 and 2 as follows:

Case 1 (N nonsingular):

D{ξ̂} = σ2
0

[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1

]
D{λ̂} = σ2

0

(
KN−1KT

)−1

(5.26a)

(5.26b)

Case 2 (N singular):

D{ξ̂} = σ2
0

(
N +KTK

)−1 − σ2
0

(
N +KTK

)−1
KT ·

·
[
K
(
N +KTK

)−1
KT
]−1

K
(
N +KTK

)−1

D{λ̂} = σ2
0

{[
K
(
N +KTK

)−1
KT
]−1 − Il

}
(5.27a)

(5.27b)

Cases 1 and 2:

C{ξ̂, λ̂} = 0 (5.28)
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As with the parameter estimates, the dispersion matrices for both cases 1 and 2
have a similar form, with every occurrence ofN in case 1 being replaced byN+KTK
in case 2, the exception being the identity matrix Il appearing in case 2. Also note
that the dispersion matrices in (5.26a) and (5.27a) are nothing more than the coeffi-
cient matrices multiplying the vector c in (5.8d) and (5.13), respectively, multiplied
by the (unknown) variance component σ2

0 . Finally, it is clear from the above that

the constraints reduce the dispersion matrix of ξ̂ compared to the corresponding
dispersion matrix within the GMM (without constraints) derived in Chapter 3 (cf.
(3.13)).

5.4 Residuals and Adjusted Observations

For both cases 1 and 2, the residual vector ẽ and vector of adjusted observations µ̂y
may be obtained in a straightforward way after the estimation of the parameters
by use of the formulas

ẽ = y −Aξ̂, (5.29)

and

Ê{y} = µ̂y = y − ẽ. (5.30)

Here, µ̂y is also interpreted as an estimate of the true, and thus unknown, vector
of observables µy, where E{y} = µy.

The dispersion matrix for the residual vector ẽ can be derived from application
of the law of covariance propagation as follows: Since

D{ẽ} = D{y −Aξ̂} = D{y}+AD{ξ̂}AT − 2C{y, Aξ̂}, (5.31)

we start by deriving the covariance matrix C{y, Aξ̂}. For case 1 we have

C{y, Aξ̂} = In ·D{y} ·
{
A
[
N−1ATP −N−1KT (KN−1KT )−1KN−1ATP

]}T
=

(5.32a)

= σ2
0P
−1
[
PAN−1AT − PAN−1KT (KN−1KT )−1KN−1AT

]
= (5.32b)

= σ2
0A
[
N−1 −N−1KT (KN−1KT )−1KN−1

]
AT = (5.32c)

= AD{ξ̂}AT = D{Aξ̂} = C{y, Aξ̂}. (5.32d)

Then, by substituting (5.32d) into (5.31), we arrive at

D{ẽ} = D{y} −AD{ξ̂}AT ⇒ (5.33a)

D{ẽ} = σ2
0 ·
{
P−1 −A

[
N−1 −N−1KT (KN−1KT )−1KN−1

]
AT
}

(5.33b)

and

D{ẽ} = σ2
0 ·
[
P−1 −AN−1AT +AN−1KT (KN−1KT )−1KN−1AT

]
. (5.33c)
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Note that (5.33c) reveals that the dispersion matrix for the residuals within the
GMM with constraints is larger than that for the GMM without constraints (cf.
(3.14a)). For case 2, one only needs to replace the matrix N−1 with (N +KTK)−1

in formulas (5.32) and (5.33).

Obviously, the dispersion matrix for the adjusted observations is written as

D{µ̂y} = D{y − ẽ} = D{Aξ̂} = AD{ξ̂}AT . (5.34)

5.4.1 A Numerical Example

A simple numerical example can be used to verify several of the equations derived
above. We borrow our example from Smith et al. (2018), which is a small leveling
network depicted in Figure 5.1.

246 m

160 m

164 m

135 m 124 m

8
0
 m

192 m

130 m157 m

96 m 85 m 111 m

1

2

3

4 5

6

7

Figure 5.1: Small leveling network copied from Smith et al. (2018)

The matrices of interest are shown below. The unknown parameters (heights of
stations) are ordered according to the seven numbered stations in Figure 5.1. The
connection between the observations and the stations is reflected in the coefficient
matrix A.
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A
12×7

=



1 0 0 0 0 −1 0

0 0 −1 0 0 1 0

1 0 0 −1 0 0 0

0 −1 0 1 0 0 0

0 1 0 0 −1 0 0

0 0 0 0 0 −1 1

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

0 0 0 −1 0 1 0

0 0 0 1 0 0 −1

0 0 0 0 −1 0 1

0 0 −1 0 1 0 0



, y
12×1

=



0.333557

0.365859

2.850824

−0.948661

−1.040570

−0.824317

−1.989007

−0.528043

2.517497

−1.692892

−0.296337

−0.162582



m,

K
3×7

=

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

 , κ0
3×1

=

68.8569

66.9471

68.1559

m,

P−1 = diag(
[
2.214, 1.440, 1.476, 1.215, 1.116, 0.720, 1.728, 1.170, 1.413,

0.864, 0.765, 0.999
]
)·10−6 m2

Since the matrix A does not have full column rank, the problem belongs to
case 2.

5.5 Estimated Variance Component

The estimated variance component for the GMM with constraints is derived similar
to that for the GMM without constraints as shown in Section 3.3. The estimation
is based on the principle

σ̂2
0

ẽTP ẽ
=

σ2
0

E{ẽTP ẽ}
, (5.35)

with the assumption E{σ̂2
0} = σ2

0 . Furthermore, for the purpose of validating
the constraints via hypothesis testing, we wish to decompose the quadratic form
ẽTP ẽ into the sum of two quadratic forms, viz. ẽTP ẽ = Ω + R, where Ω is the
sum of squared residuals (SSR) associated with the LESS within the GMM without
constraints. In the following, we derive these components for both cases 1 and 2.

5.5.1 Case 1 — Matrix N is invertible ⇒ rkA = m

ẽTP ẽ =
(
y −Aξ̂

)T
P
(
y −Aξ̂

)
=
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=
[(
y −AN−1c

)
−AN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)]T
P ·

·
[(
y −AN−1c

)
−AN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)]
=

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
−

−
(
y −AN−1c

)T
PAN−1KT

(
KN−1KT

)−1(
κ0 −KN−1c

)
−

−
(
κ0 −KN−1c

)T (
KN−1KT

)−1
KN−1ATP

(
y −AN−1c

)
+

+
(
κ0 −KN−1c

)T (
KN−1KT

)−1
KN−1

(
ATPA

)
N−1KT

(
KN−1KT

)−1·
·
(
κ0 −KN−1c

)
=

(Note that ATP
(
y −AN−1c

)
= 0.)

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
+
(
κ0 −KN−1c

)T (
KN−1KT

)−1·
·
(
κ0 −KN−1c

)
=

=
(
y −AN−1c

)T
P
(
y −AN−1c

)
+ λ̂T

(
KN−1KT

)
λ̂ = Ω +R (5.36)

The scalars Ω and R defined as

Ω :=
(
y −AN−1c

)T
P
(
y −AN−1c

)
(5.37a)

and

R :=
(
κ0 −KN−1c

)T (
KN−1KT

)−1(
κ0 −KN−1c

)
, (5.37b)

respectively.
Thus we have decomposed the quadratic form ẽTP ẽ into components Ω and R.

Obviously, both Ω and R are random numbers since they are both functions of the
random vector c. It turns out that they are also uncorrelated. The random vari-
able Ω is associated with the LESS within the GMM without constraints, whereas R
is due to the addition of the constraints κ0 = Kξ. From (5.37b) we see that R is
always positive, revealing that the inclusion of constraints increases the value of
ẽTP ẽ. The random variables Ω and R are used for hypothesis testing as discussed
in Chapter 9.

We now derive the expectation of ẽTP ẽ.

E{ẽTP ẽ} = E{Ω}+ E{R} =

= (n−m)σ2
0 + E{λ̂T

(
KN−1KT

)
λ̂} = using (3.27) for E{Ω}

= (n−m)σ2
0 + tr

[(
KN−1KT

)
E{λ̂ λ̂T }

]
=

= (n−m)σ2
0 + tr

[(
KN−1KT

)(
D{λ̂}+ E{λ̂}E{λ̂}T

)]
=

(with E{λ̂} = 0 and D{λ̂} = σ2
0

(
KN−1KT

)−1
)

= (n−m)σ2
0 + tr

[(
KN−1KT

)
σ2

0

(
KN−1KT

)−1]
=

= (n−m+ l)σ2
0 (5.38)
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Substitution of (5.36) and (5.38) into (5.35) yields the following formula for the
estimated variance component:

σ̂2
0 =

(
y −AN−1c

)T
P
(
y −AN−1c

)
n−m+ l

+

+

(
κ0 −KN−1c

)T (
KN−1KT

)−1(
κ0 −KN−1c

)
n−m+ l

. (5.39)

Other useful forms of ẽTP ẽ are derived below starting with (5.36).

ẽTP ẽ =
(
y −AN−1c

)T
P
(
y −AN−1c

)
+ λ̂T

(
KN−1KT

)
λ̂ =

= yTPy − cTN−1c−
(
κT0 − cTN−1KT

)
λ̂ = using (5.8c)

= yTPy − cTN−1
(
c−KT λ̂

)
− κT0 λ̂ = using (5.8a)

= yTPy − cT ξ̂ − κT0 λ̂ =

= yTP
(
y −Aξ̂

)
− κT0 λ̂ =

= yTP ẽ− κT0 λ̂ (5.40)

5.5.2 Case 2 — Matrix N is singular ⇒ rkA < m

ẽTP ẽ =

=
{
y −A

(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]}T
P
{
y −A

(
N +KTK

)−1·
·
[
c+KT

(
κ0 − λ̂

)]}
=

= yTPy − yTPA
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−
[
c+KT

(
κ0 − λ̂

)]T ·
·
(
N +KTK

)−1
ATPy +

[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1·

·
(
ATPA+KTK −KTK

)(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
=

= yTPy − cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−
[
c+KT

(
κ0 − λ̂

)]T ·
·
(
N +KTK

)−1
c+

[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−

−
[
c+KT

(
κ0 − λ̂

)]T (
N +KTK

)−1
KTK

(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
=

= yTPy −
((((

(((
((((

(((
((

cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
−

− cT
(
N +KTK

)−1
c−
hhhhhhhhhhhhh

(
κ0 − λ̂

)T
K
(
N +KTK

)−1
c+

+
(((

((((
(((

((((
((

cT
(
N +KTK

)−1[
c+KT

(
κ0 − λ̂

)]
+

hhhhhhhhhhhhh

(
κ0 − λ̂

)T
K
(
N +KTK

)−1
c+

+
(
κ0 − λ̂

)T
K
(
N +KTK

)−1
KT
(
κ0 − λ̂

)
− ξ̂TKTKξ̂ =

= yTPy − cT
(
N +KTK

)−1
c+

(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT
](
κ0 − λ̂

)
−

− κT0 κ0

(5.41)
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Now we compute the expectation for ẽTP ẽ.

E{ẽTP ẽ} =

= E{yTPy − cT
(
N +KTK

)−1
c
]
+

+
(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT
](
κ0 − λ̂

)
− κT0 κ0} =

= E{yTP
[
y −A

(
N +KTK

)−1
c
]}

+ E{
(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT
]
·

·
(
κ0 − λ̂

)}
− E{κT0 κ0} =

= trP
[
In −A

(
N +KTK

)−1
ATP

]
E{yyT }+ tr

[
K
(
N +KTK

)−1
KT
]
·

· E{
(
κ0 − λ̂

)(
κ0 − λ̂

)T } − trE{κT0 κ0} =

(Note that E{
(
κ0 − λ̂

)(
κ0 − λ̂

)T } = D{κ0 − λ̂} + E{κ0 − λ̂}E{κ0 − λ̂}T and

D{κ0− λ̂} = D{λ̂} = σ2
0

{[
K(N +KTK)−1K

]−1− Il
}

, and E{κ0− λ̂} = Kξ, and
E{yyT } = D{y}+ E{y}E{y}T = σ2

0P
−1 +AξξTAT ).

= trP
[
In −A

(
N +KTK

)−1
ATP

](
σ2

0P
−1 +AξξTAT

)
+

+ tr
[
K
(
N +KTK

)−1
KT
][
D{λ̂}+ E{κ0 − λ̂}E{κ0 − λ̂}T

]
− trKξξTKT =

= tr
[
σ2

0In + PAξξTAT − PA
(
N +KTK

)−1
ATσ2

0 − PA
(
N +KTK

)−1
ATPA·

· ξξTAT
]

+ tr
[
K
(
N +KTK

)−1
KT
]({[

K
(
N +KTK

)−1
KT
]−1 − Il

}
σ2

0+

+KξξTKT
)
− trKξξTKT =

= σ2
0n+ tr ξξTN − σ2

0 tr
(
N +KTK

)−1
N − tr

(
N +KTK

)−1
NξξTN + σ2

0l−

− σ2
0 tr
[
K
(
N +KTK

)−1
KT
]

+ tr
[(
N +KTK

)−1
KTKξξTKTK

]
−

− trKξξTKT =

= σ2
0n− σ2

0 tr
(
N +KTK

)−1(
N +KTK

)
+ σ2

0l+

+ tr
[
Im −

(
N +KTK

)−1
N
]
ξξTN − tr

[
Im −

(
N +KTK

)−1
KTK

]
ξξTKTK =

= σ2
0(n−m+ l) + tr

(
N +KTK

)−1
KTKξξTN − tr

(
N +KTK

)−1
NξξTKTK =

= σ2
0(n−m+ l) + tr

[(
N +KTK

)−1
KTKξξTN

]T−
− trNξξTKTK

(
N +KTK

)−1
= σ2

0(n−m+ l)

⇒ E{ẽTP ẽ} = σ2
0(n−m+ l) (5.42)

Finally, substituting (5.41) and (5.42) into (5.35) yields

σ̂2
0 =

yTPy − cT
(
N +KTK

)−1
c

(n−m+ l)
+

+

(
κ0 − λ̂

)T [
K
(
N +KTK

)−1
KT
](
κ0 − λ̂

)
− κT0 κ0

(n−m+ l)
, (5.43a)
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or, by use of (5.12) and with NK := N +KTK for compactness,

σ̂2
0 =

yTPy − cTN−1
K c+

(
κ0 −KN−1

K c
)T (

KN−1
K KT

)(
κ0 −KN−1

K c
)
− κT0 κ0

(n−m+ l)
,

(5.43b)

or

σ̂2
0 =

ẽTP ẽ

(n−m+ l)
. (5.43c)

We cannot directly identify Ω and R in (5.41) as we could in case 1. Therefore, we
define Ω as

Ω =
(
y −AN−c

)T
P
(
y −AN−c

)
, (5.44)

and R as

R = ẽTP ẽ− Ω, (5.45)

where ẽTP ẽ is given in (5.41). The symbol N− in (5.44) stands for a generalized
inverse of the matrix N . While generalized inverses are beyond the scope of these
notes, the following generalized inverse is shown so that readers unfamiliar with the
topic can still make use of equation (5.44). First, assume that the matrix N and
vector c have been partitioned as follows:

N
m×m

=

N11
q×q

N12

N21 N22

 and c
m×1

=

 c1
q×1

c2

 , (5.46)

where the q × q submatrix N11 has full rank q, i.e., rkN11 = q := rkN . Note
that such a partitioning can always be formed, even if the parameters in ξ must be

reordered to do so. Then, the m×m matrix G :=
[
N−1

11 0
0 0

]
is a generalized inverse

of N and thus can be used in (5.44) for N−, which simplifies that equation to

Ω = yTPy − cT1 N−1
11 c1 if rkN11 = rkN. (5.47)

5.6 Hypothesis Test Using the Estimated Variance
Component

The following ratio is formed for both cases 1 and 2 for the purposes of hypothesis
testing (see Chapter 9 for more details on hypothesis testing):

T :=
R/(l −m+ q)

Ω/(n− q)
∼ F (l −m+ q, n− q), with q := rk(A). (5.48)
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The ratio T is called a Test statistic. It is assumed to have an F -distribution with
l −m+ q and n− q degrees of freedom.1 The hypothesis test is then stated as

H0 : Kξ = κ0 versus HA : Kξ 6= κ0, (5.49)

where H0 is called the null hypothesis and HA is called the alternative hypothesis.
For some chosen significance level α,

Accept H0 : if T ≤ Fα,l−m+q,n−q

Reject H0 : if T > Fα,l−m+q,n−q,

where Fα,l−m+q,n−q is taken from a table of critical values for the F -distribution.
The critical values for certain values of r1 and r2 are listed in Appendix C. If
MATLAB is available, the critical value may be generated by use of the MATLAB
command finv(1− α,r1,r2).

Note that the redundancy r2 := n − q represents the degrees of freedom for
the system of equations if no constraints were applied, whereas the redundancy
r1 := l−m+ q represents the increase in degrees of freedom due to the constraints,
i.e.

r = r1 + r2 = (l −m+ q) + (n− q) = n−m+ l, (5.50)

which agrees with (5.3). In the case that matrix A has full column rank (i.e.,
rkA = q = m), then the redundancies reduce to r1 := l and r2 := n−m, respectively.

5.7 Practice Problems

1. Derive the expectation of the vector of estimated parameters ξ̂ given in (5.8d).

Is ξ̂ an unbiased estimator of the vector of unknown parameters ξ?

2. Solve the following problems for the data given in Section 5.4.1:

(a) Confirm that N = ATPA is rank deficient and that the rank condition
(5.1c) is satisfied.

(b) Compute the vector of estimated parameters ξ̂ by (5.13) and confirm
that it agrees with that obtained by (5.18).

(c) Compute the dispersion matrices of ξ̂ and λ̂ using (5.27a) and (5.27b),
respectively, and compare to that obtained by (5.21).

Note that the matrix to invert in (5.18) may be ill-conditioned (nearly singu-
lar) in this case due to the relative magnitude of the elements of matrices N
and K. To increase numerical stability, you may need to scale matrix K and
vector κ0 before using them in (5.18). Try scaling by 10× 104. No scaling
should be necessary for the other formulas.

1The assumption of F -distribution is based on an underlying assumption that the residuals
are normally distributed, which means that functions of their squares, such as Ω and R, have a
χ2-distribution. The ratio of two independent variables that each have a χ2-distribution is itself
a random variable with F -distribution. Recall that no assumption about the probability density
function of the random errors was required for the derivation of their least-squares prediction.
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3. With reference to Section 5.4.1, we now simulate case 1 by changing the third
element of the last row of matrix A from −1 to 0 and by changing the last
element of vector y from −0.162582 to 67.992. All matrices involving N and
vectors involving y must be recomputed accordingly.

(a) Confirm that the revised matrix N = ATPA has full rank.

(b) Compute the vector of estimated parameters ξ̂ by both (5.8d) and (5.13)
and confirm that they are equal.

(c) Compute the dispersion matrices of ξ̂ and λ̂ using (5.17) and (5.21) and
confirm that they are equal.

(d) Compute the dispersion matrices using the formulas for case 1, (5.26a)
and (5.26b), and confirm that they agree with the respective formulas
for case 2, (5.27a) and (5.27b).

Note that the solution of this problem will not match that of the preceding
problem; they are different problems.

4. Using the GMM with constraints, constrain the height of point D in problem 9
of Section 3.6 to 1928.277 ft and check that the LESS agrees with what you
computed in parts (b), (c), and (d) of that problem.

5. By imposing certain constraints upon the unknown parameters, the affine
transformation problem presented in Problem 8 of Section 3.6, can be con-
verted to an orthogonality-preserving transformation (only one rotation angle
instead of two), or, by a different set of constraints, it can be converted to
a similarity transformation (one rotation angle and one scale factor). Using
the data from Problem 8, setup the GMM with constraints, state the model
redundancy, and compute the LESS for the unknown parameters and variance
component in the following two cases:

(a) Orthogonality-preserving transformation: Impose a constraint on the
second rotation angle so that ε = 0 via the following:

ξ4/ξ6 = ξ5/ξ3 ⇒ ξ3ξ4 − ξ5ξ6 = 0.

Note that linearization is required in this case.

(b) Similarity transformation: Impose the constraints that ε = 0 and ω1 = ω2

via the following:

ξ3 − ξ6 = 0 and ξ4 − ξ5 = 0.

6. To monitor deformation, points P1 and P2 were established between deform-
ing and non-deforming regions, respectively. Distances were observed from
three known points, A, B, and C, to both points P1 and P2 (see Figure 5.2)
The 2D coordinates of the known points are listed in Table 5.1, and the
observations are listed in Table 5.2. The variance of each observation is
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σ2 = (0.005 m)2. Distances observed from the same point have a correlation
coefficient of ρ = 0.4. Otherwise the observations are uncorrelated. Suppose
the baseline between points P1 and P2 is thought to be 251.850 m (perhaps
determined from a previous survey), and it is decided to use this value as a
constraint in a least-squares adjustment. Determine the following by use of
the LESS within the GMM with constraints:

(a) The redundancy of the model.

(b) The 2D coordinates of points P1 and P2 and their dispersion matrix.

(c) The vector of observation residuals and its dispersion matrix.

(d) The estimated variance component.

(e) Setup a hypothesis test with significance level α = 0.05 and determine if
the constraint is consistent with the observations.

A

P1

P2

B

C

Figure 5.2: Observations from known points A, B, and C

Table 5.1: Coordinates of known points

Station X [m] Y [m]

A 456.351 500.897

B 732.112 551.393

C 984.267 497.180
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Table 5.2: Observations from known points A, B, and C

From To Obs. [m]

A P1 183.611

A P2 395.462

B P1 226.506

B P2 181.858

C P1 412.766

C P2 171.195

7. The data plotted in Figure 3.1 are listed in Table 5.3 below, where the x-
coordinates are assumed to be known and the y-coordinates were measured
independently and have a common variance of σ2 = (1 cm)2.

Now suppose a fitted parabola must pass through data point number 5 exactly.
Compute the LESS within the GMM with constraints for the three unknown
parameters of the parabola and form a hypothesis test to check the validity
of the constraint.

Table 5.3: Known x-coordinates and measured y-coordinates plotted in Figure 3.1

No. xi [m] yi [m]

1 1.001 1.827

2 2.000 1.911

3 3.001 1.953

4 4.000 2.016

5 5.000 2.046

6 6.003 2.056

7 7.003 2.062

8 8.003 2.054

9 9.001 2.042

10 9.998 1.996

11 11.001 1.918

12 12.003 1.867



5.8. SUMMARY FORMULAS 117

5.8 Summary Formulas for the Least-Squares So-
lution Within the Gauss-Markov Model with
Constraints

The Gauss-Markov Model with constraints is given by

y
n×1

= A
n×m

ξ + e, e ∼ (0, σ2
0P
−1), rkA =: q ≤ m,

κ0
l×1

= K
l×m

ξ, rkK =: l ≥ m− q, rk
[
AT , KT

]
= m.

Table 5.4: Summary formulas for the LESS within the GMM with
constraints

Quantity Formula Eq.

Model redundancy r = n−m+ rkK = n−m+ l (5.3)

Vector of estimated
parameters, when
rkA = m

ξ̂ =

N−1c+N−1KT
(
KN−1KT

)−1(
κ0−KN−1c

) (5.8d)

Dispersion matrix
for estimated
parameters, when
rkA = m

D{ξ̂} =

σ2
0 ·
[
N−1 −N−1KT

(
KN−1KT

)−1
KN−1

] (5.26a)

Vector of estimated
parameters, when
rkA < m

ξ̂ =
(
N +KTK

)−1
c+

(
N +

KTK
)−1

KT
[
K
(
N +KTK

)−1
KT
]−1[

κ0 −K
(
N +KTK

)−1
c
] (5.13)

Dispersion matrix
for estimated
parameters, when
rkA < m

D{ξ̂} =

σ2
0 ·
[
N−1
K −N−1

K KT
(
KN−1

K KT
)−1

KN−1
K

]
with NK := N +KTK

(5.27a)

Vector of predicted
residuals

ẽ = y −Aξ̂ (5.29)

Dispersion matrix
for residuals, when
rkA = m

D{ẽ} = σ2
0 ·
{
P−1 −A

[
N−1 −

N−1KT (KN−1KT )−1KN−1
]
AT
} (5.33b)

Continued on next page
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Quantity Formula Eq.

Dispersion matrix
for residuals, when
rkA < m

D{ẽ} = σ2
0 ·
(
P−1 −A

{
(N +KTK)−1 − (N +

KTK)−1KT [K(N +KTK)−1KT ]−1K(N +
KTK)−1

}
AT
) (5.33b)

Sum of squared
residuals (SSR)

SSR = ẽTP ẽ
(5.40)
(5.41)

Estimated variance
component

σ̂2
0 = (ẽTP ẽ)/r (5.43c)

Vector of adjusted
observations

µ̂y = y − ẽ (5.30)

Dispersion matrix
for adjusted
observations

D{µ̂y} = A·D{ξ̂}·AT (5.34)

Continued from previous page



Chapter 6
The Gauss-Markov Model with
Stochastic Constraints

6.1 Model Definition

The Gauss-Markov Model (GMM) with stochastic constraints is similar in form
to the GMM with constraints shown in Chapter 5, with one important difference:
the constraints in the stochastic case are specified with some level of uncertainty,
expressed in the form of a given weight matrix P0, or an associated cofactor matrix
Q0 := P−1

0 . The model reads

y
n×1

= A
n×m

ξ + e, rkA =: q ≤ min{m,n}, (6.1a)

z0
l×1

= K
l×m

ξ + e0, rkK =: l ≥ m− q, (6.1b)[
e

e0

]
∼ (

[
0

0

]
, σ2

0

[
P−1 0

0 P−1
0

]
). (6.1c)

Note that in this model there is no correlation between the random error vectors e
and e0. Also, the unknown variance component σ2

0 is common to both cofactor
matrices P−1 and P−1

0 . However, there may be correlations within one or both of
the cofactor matrices, just not between them. Depending on the application, the
data in the vector y can be thought of as new information, while the constraint
information in the vector z0 can be thought of as prior information (for example,
z0 could contain coordinates estimated from a previous adjustment, now considered
as prior information).

It is required that the column space of the augmented matrix [AT |KT ] spans
Rm, which holds when the rank condition

rk
[
AT |KT

]
= m (6.2)

119
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is satisfied. The redundancy of the model is give by

r = n−m+ l. (6.3)

In words, we can say that the redundancy is the number of observation equations
minus the number of parameters to estimate plus the number of constraint equa-
tions.

6.2 Least-Squares Solution

According to Schaffrin (1995), the LEast-Squares Solution (LESS) for the unknown
parameters ξ within model (6.1) may be derived by minimizing the Lagrange target
function

Φ(e, e0, ξ,λ,λ0) = eTPe+ eT0 P0e0 + 2
[
λT , λT0

]([A
K

]
ξ +

[
e

e0

]
−

[
y

z

])
=

= stationary
e,e0,ξ,λ,λ0

. (6.4)

Here we simply consider (6.1) as an extended GMM and apply the addition
theory of normal equations as follows:

[
AT KT

] [P 0

0 P0

][
A

K

]
· ξ̂ =

[
AT KT

] [P 0

0 P0

][
y

z0

]
(6.5a)

or (
N +KTP0K

)
ξ̂ = c+KTP0z0, (6.5b)

where [
N, c

]
:= ATP

[
A,y

]
. (6.6)

In the case where the matrix N is invertible, the Sherman-Morrison-Woodbury-
Schur formula (A.6a) may be used to invert the matrix on the left side of (6.5b) as
in the following:

ξ̂ =
(
N +KTP0K

)−1(
c+KTP0z0

)
= (6.7a)

=
[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
](
c+KTP0z0

)
=

= N−1c+N−1KTP0z0 +N−1KT
(
P−1

0 +KN−1KT
)−1·

·
(
−KN−1c−KN−1KTP0z0

)
=

= N−1c+N−1KT
(
P−1

0 +KN−1KT
)−1[(

P−1
0 +KN−1KT

)
P0z0 −KN−1c−
−KN−1KTP0z0

]
⇒

ξ̂ = N−1c+N−1KT
(
P−1

0 +KN−1KT
)−1(

z0 −KN−1c
)
. (6.7b)
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Thus, the LESS (6.7b) can be viewed as a weighted average between the prior
and the new information. The vector z0 − KN−1c is referred to as a vector of
discrepancies. The solution can also be recognized as an update to the solution
ξ̂ = N−1c within the GMM (3.1). It is also interesting to express it as an update
to the LESS within the GMM with “fixed” constraints (5.1). This can be done

by changing the symbols ξ̂ and κ0 in (5.8d) to ξ̂K and z0, respectively, solving
for N−1c in terms of these renamed variables, and substituting into (6.7b), which
yields the following:

ξ̂ = ξ̂K +N−1KT
[(
P−1

0 +KN−1KT
)−1 −

(
KN−1KT

)−1](
z0 −KN−1c

)
. (6.8)

Note that as P−1
0 = Q0 → 0, ξ̂ → ξ̂K .

By applying the laws of covariance propagation to (6.7a), the dispersion matrix

for the vector of estimated parameters ξ̂ is computed as follows:

D{ξ̂} =
(
N +KTP0K

)−1
D{c+KTP0z0}

(
N +KTP0K

)−1
=

= σ2
0

(
N +KTP0K

)−1(
N +KTP0K

)(
N +KTP0K

)−1 ⇒

D{ξ̂} = σ2
0

(
N +KTP0K

)−1
= σ2

0

[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
.

(6.9)

The subtraction in (6.9) implies that our knowledge of the parameters has improved
(variance decreased) by supplying the additional prior information, provided the
estimated variance component σ̂2

0 does not change much in doing so. Indeed, if the
new data, y, is consistent with the old, z0, then σ̂2

0 is not expected to change very
much when the data are combined. In contrast, σ̂2

0 is expected to increase if there
is inconsistency between the old and new information. In such a case, it may be
advisable to introduce a second variance component, one associated with the weight
matrix P and the other with P0. This is the purpose of the variance component
model, which is introduced in the Advanced Adjustment Computations Notes.

We now present the residual vectors ẽ and ẽ0 (also called predicted random
error vectors). The residual vector ẽ for the observations y is computed by

ẽ = y −Aξ̂. (6.10)

The residual vector ẽ0 associated with the prior information z0 is

ẽ0 = z0 −Kξ̂ = (6.11a)

=
(
z0 −KN−1c

)
−
(
KN−1KT + P−1

0 − P−1
0

)(
P−1

0 +KN−1KT
)−1·

·
(
z0 −KN−1c

)
=

=
(
z0 −KN−1c

)
−
[(
KN−1KT + P−1

0

)(
P−1

0 +KN−1KT
)−1−

− P−1
0

(
P−1

0 +KN−1KT
)−1
](
z0 −KN−1c

)
=

=
{
Il −

[
Il − P−1

0

(
P−1

0 +KN−1KT
)−1]}(

z0 −KN−1c
)

=
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= P−1
0

(
P−1

0 +KN−1KT
)−1(

z0 −KN−1c
)
⇒

ẽ0 =
(
Il +KN−1KTP0

)−1(
z0 −KN−1c

)
. (6.11b)

The dispersion matrix of the residual vectors is derived as follows (see also
Practice Problem 2 in Section 6.6):

D{

[
ẽ

ẽ0

]
} = D{

[
y

z0

]
}+D{

[
A

K

]
ξ̂}−2C{

[
y

z0

]
,

[
A

K

]
ξ̂} = D{

[
y

z0

]
}−D{

[
A

K

]
ξ̂} =

(6.12a)

= σ2
0

[
P−1 0

0 P−1
0

]
− σ2

0

[
A

K

] [
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
·

·
[
AT KT

]
=

= σ2
0

[
P−1 −AN−1AT −AN−1KT

−KN−1AT P−1
0 −KN−1KT

]
+

+σ2
0

[
AN−1KT

KN−1KT

] (
P−1

0 +KN−1KT
)−1

[
KN−1AT KN−1KT

]
. (6.12b)

From (6.12b), we can write the dispersion matrices for the residual vectors individ-
ually as

D{ẽ} = σ2
0

(
P−1 −AN−1AT

)
+ σ2

0AN
−1KT

(
P−1

0 +KN−1KT
)−1

KN−1AT ⇒
(6.13a)

D{ẽ} = σ2
0

[
P−1 −A

(
N +KTP0K

)−1
AT
]

= (6.13b)

D{ẽ} = σ2
0P
−1 −D{µ̂y}, (6.13c)

and

D{ẽ0} = σ2
0P
−1
0 − σ2

0KN
−1KT + σ2

0KN
−1KT

(
P−1

0 +KN−1KT
)−1

KN−1KT =

= σ2
0P
−1
0 − σ2

0KN
−1KT

(
P−1

0 +KN−1KT
)−1·

·
(
P−1

0 +KN−1KT −KN−1KT
)

=

= σ2
0P
−1
0 − σ2

0KN
−1KT

(
Il + P0KN

−1KT
)−1

=

= σ2
0P
−1
0

(
Il + P0KN

−1KT
)(
Il + P0KN

−1KT
)−1 − σ2

0KN
−1KT ·

·
(
Il + P0KN

−1KT
)−1

=

= σ2
0P
−1
0

(
Il + P0KN

−1KT
)−1

+ σ2
0KN

−1KT
(
Il + P0KN

−1KT
)−1−

− σ2
0KN

−1KT
(
Il + P0KN

−1KT
)−1 ⇒

D{ẽ0} = σ2
0P
−1
0

(
Il + P0KN

−1KT
)−1

. (6.14)
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We summarize by listing a few equivalent formulas for D{ẽ0}.

D{ẽ0} = σ2
0P
−1
0

(
Il + P0KN

−1KT
)−1

= (6.15a)

= σ2
0

(
Il +KN−1KTP0

)−1
P−1

0 = (6.15b)

= σ2
0P
−1
0

(
P−1

0 +KN−1KT
)−1

P−1
0 = (6.15c)

= σ2
0

(
P0 + P0KN

−1KTP0

)−1
= (6.15d)

= σ2
0

[
P−1

0 −K
(
N +KTP0K

)−1
KT
]

= (6.15e)

= σ2
0P
−1 −D{µ̂z0} (6.15f)

The symmetry of the matrix D{ẽ0} has been exploited to get from (6.15a) to
(6.15b), using the rule for the transpose of a matrix product (A.1) and the rule for
the transpose of an inverse (A.2). Also (A.3) has been used in the above.

Now it remains to write a succinct form for the covariance matrix C{ẽ, ẽ0},
beginning with the off-diagonal element of (6.12b).

C{ẽ, ẽ0} = −σ2
0AN

−1KT + σ2
0AN

−1KT
(
P−1

0 +KN−1KT
)−1

KN−1KT =
(6.16a)

= −σ2
0AN

−1KT
(
P−1

0 +KN−1KT
)−1(

P−1
0 +KN−1KT −KN−1KT

)
= (6.16b)

= −σ2
0AN

−1KT
(
Il + P0KN

−1KT
)−1

= (6.16c)

= −σ2
0A
(
Im +N−1KTP0K

)−1
N−1KT = (6.16d)

= −σ2
0A
(
N +KTP0K

)−1
KT (6.16e)

The line following (6.16c) is based on relations shown in equations (A.8). To see
how these equations are used, compare what follows the term −σ2

0A in (6.16c)
and (6.16d), with the first and last lines in (A.8).

We also note that in the GMM with stochastic constraints, the predicted residual
vector ẽ = y−Aξ̂ by itself is no longer a projection of y onto the range space of A.

However, the vector
[
ẽT , ẽT0

]T
does represent a projection of

[
yT , zT0

]T
onto the

range space of [AT , KT ]T , since[
ẽ

ẽ0

]
=

[
y −Aξ̂
z0 −Kξ̂

]
=

{[
In 0

0 Il

]
−

[
A

K

] (
N +KTP0K

)−1
[
ATP KTP0

]}[ y
z0

]
,

(6.17)
and the matrix in braces is idempotent, which can be verified by application of
(1.7a).

The adjusted observations and adjusted constraint values are easily computed
by

µ̂y = y − ẽ = Aξ̂, (6.18)

and

µ̂z0 = z0 − ẽ0 = Kξ̂. (6.19)
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Their respective dispersion matrices are derived by simple application of variance
propagation as follows:

D{µ̂y} = D{Aξ̂} = A ·D{ξ̂} ·AT = σ2
0 ·A

(
N +KTP0K

)−1
AT , (6.20)

D{µ̂z0} = D{Kξ̂} = K ·D{ξ̂} ·KT = σ2
0 ·K

(
N +KTP0K

)−1
KT . (6.21)

Here, µ̂y is also interpreted as an estimate of the true, and thus unknown, vector
of observables µy, where E{y} = µy; likewise, E{z0} = µz0 .

Alternative derivation of normal equations Starting with the Lagrange tar-
get function (6.4), the vector of random errors e and the vector of Lagrange mul-
tipliers λ can be eliminated by substitution of y − Aξ for e. Furthermore, by
introducing

−P−1
0 λ0 = e0 = z −Kξ, (6.22a)

as in Schaffrin (1995), the target function can be expressed equivalently as

Φ(ξ,λ0) = (y −Aξ)TP (y −Aξ) + 2λT0
(
Kξ − z0

)
− λT0 P−1

0 λ0 = stationary
ξ,λ0

.

(6.22b)

Minimizing the above target function leads to the following system of normal
equations: [

N KT

K −P−1
0

][
ξ̂

λ̂0

]
=

[
c

z0

]
. (6.23)

Using (6.1b) and (6.23), we can express the predicted residual vector ẽ0 as a function

of the vector of Lagrange multipliers λ̂0 as follows:

z0 = Kξ̂ + ẽ0 = Kξ̂ − P−1
0 λ̂0 ⇒ ẽ0 = −P−1

0 λ̂0. (6.24)

Therefore, the dispersion of ẽ0 is given also by

D{ẽ0} = P−1
0 D{λ̂0)}P−1

0 . (6.25)

Assuming matrix N is invertible, from (6.23) we see that the dispersion of ξ̂

and λ̂0 can be found from

D{

[
ξ̂

λ̂0

]
} =

[
N KT

K −P−1
0

]−1

D{

[
c

z0

]
}

[
N KT

K −P−1
0

]−1

=

= σ2
0

[
N KT

K −P−1
0

]−1 [
N 0

0 P−1
0

][
N KT

K −P−1
0

]−1

=

= σ2
0

[
N KT

K −P−1
0

]−1 [
N−1 0

0 P0

]−1 [
N KT

K −P−1
0

]−1

=
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= σ2
0

[
N +KTP0K 0

0 P−1
0 +KN−1KT

]−1

. (6.26)

The last line was reached by successively applying the rule for the product of two
inverses (A.3). From (6.26) we see that

D{λ̂0} = σ2
0

(
P−1

0 +KN−1KT
)−1

= σ2
0

[
P0−P0K

(
N +KTP0K

)−1
KTP0

]
. (6.27)

Finally, substituting (6.27) into (6.25) and applying the product-of-inverses rule,
we can write

D{ẽ0} = σ2
0P
−1
0

(
P−1

0 +KN−1KT
)−1

P−1
0 = σ2

0

(
P0 + P0KN

−1KTP0

)−1
. (6.28)

Also, the off-diagonal blocks of (6.26) reveal that ξ̂ and λ̂0 are uncorrelated, viz.

C(ξ̂, λ̂0) = 0. (6.29)

6.3 Variance Component Estimate

The derivation of the variance component estimate is shown here in detail. The
trace operator is employed analogously to what was done in Section 3.3. We also
make use of the following expectation and dispersion relationships:

E{c+KTP0z0} =
[
ATP KTP0

]
E{

[
y

z0

]
} =

=
[
ATP KTP0

] [
A

K

]
ξ =

(
N +KTP0K

)
ξ, (6.30a)

D{c+KTP0z0} = D{
[
ATP KTP0

] [ y
z0

]
} =

= σ2
0

[
ATP KTP0

] [P−1 0

0 P−1
0

][
PA

P0K

]
= σ2

0

(
N +KTP0K

)
, (6.31a)

as well as

E{
(
c+KTP0z0

)(
c+KTP0z0

)T } = D{c+KTP0z0}+
+ E{c+KTP0z0}E{c+KTP0z0}T ,

(6.32a)

E{yyT } = D{y}+ E{y}E{y}T = σ2
0P
−1 +AξξTAT , (6.32b)

E{z0z
T
0 } = D{z0}+ E{z0}E{z0}T = σ2

0P
−1
0 +KξξTKT . (6.32c)

The estimated variance component is derived from the expectation of the com-
bined quadratic forms of the residual vectors, ẽTP ẽ+ẽT0 P0ẽ0, based on the principle

σ̂2
0

ẽTP ẽ+ ẽT0 P0ẽ0
=

σ2
0

E{ẽTP ẽ+ ẽT0 P0ẽ0}
. (6.33)
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The derivation proceeds as follows:

E{ẽTP ẽ+ ẽT0 P0ẽ0} =

= E{
([ y
z0

]
−

[
A

K

]
ξ̂
)T [P 0

0 P0

] ([ y
z0

]
−

[
A

K

]
ξ̂
)
} =

= E{yTPy + zT0 P0z0 − 2ξ̂T
(
c+KTP0z0

)
+ ξ̂T

(
N +KTP0K

)
ξ̂} =

= E{yTPy + zT0 P0z0 − 2ξ̂T
(
c+KTP0z0

)
+ ξ̂T

(
c+KTP0z0

)
} =

= E{yTPy + zT0 P0z0 − ξ̂T
(
c+KTP0z0

)
} =

= E{yTPy + zT0 P0z0 −
(
c+KTP0z0

)T (
N +KTP0K

)−1(
c+KTP0z0

)
} =

= E{tr
(
yTPy

)
+ tr

(
zT0 P0z0

)
− tr

[(
c+KTP0z0

)T (
N +KTP0K

)−1·
·
(
c+KTP0z0

)]
} =

= E{tr
(
PyyT

)
+ tr

(
P0z0z

T
0

)
− tr

[(
N +KTP0K

)−1(
c+KTP0z0

)
·

·
(
c+KTP0z0

)T ]} =

= tr
(
PE{yyT }

)
+ tr

(
P0E

{
z0z

T
0

})
− tr

[(
N +KTP0K

)−1
E{
(
c+KTP0z0

)
·

·
(
c+KTP0z0

)T }] =

= tr
(
PE{yyT }

)
+ tr

(
P0E

{
z0z

T
0

})
− tr

[(
N +KTP0K

)−1
D{c+KTP0z0}

]
−

− tr
[(
N +KTP0K

)−1
E{c+KTP0z0}E{c+KTP0z0}T

]
=

= tr
[
P
(
σ2

0P
−1 +AξξTAT

)]
+ tr

[
P0

(
σ2

0P
−1
0 +KξξTKT

)]
−

− σ2
0 tr
[(
N +KTP0K

)−1(
N +KTP0K

)]
−

− tr
[(
N +KTP0K

)−1(
N +KTP0K

)
ξξT

(
N +KTP0K

)]
=

= σ2
0 tr
(
PP−1

)
+ tr

(
PAξξTAT

)
+ σ2

0 tr
(
P0P

−1
0

)
+ tr

(
P0Kξξ

TKT
)
−

− σ2
0 tr
(
Im
)
− tr

(
ξξTN + ξξTKTP0K

)
=

= σ2
0 tr
(
In
)

+ tr
(
ξTNξ

)
+ σ2

0 tr
(
Il
)

+ tr
(
ξTKTP0Kξ

)
−

− σ2
0 tr
(
Im
)
− tr

(
ξTNξ

)
− tr

(
ξTKTP0Kξ

)
=

= σ2
0(n+ l −m)

⇒ σ2
0 = (n+ l −m)−1·E{ẽTP ẽ+ ẽT0 P0ẽ0}

From the preceding derivation, it follows that

σ̂2
0 =

ẽTP ẽ+ ẽT0 P0ẽ0

n−m+ l
(6.34)

provides an unbiased estimate of the variance component σ2
0 . Here, the numerator

contains the sum of squared residuals

SSR : ẽTP ẽ+ ẽT0 P0ẽ0, (6.35)
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while the denominator contains the model redundancy, r = n−m+ l, as specified
in (6.3).

6.4 Hypothesis Test Using the Estimated Variance
Component

Hypothesis testing can be used to validate that the least-squares solution is con-
sistent with the stochastic constraints in the model (6.1). The test statistic to be
computed is comprised of a ratio of two estimated, and therefore random, variances
and thus has an F -distribution (see Section 9.4). The idea is to extract from the
sum of the quadratic products in (6.35) the associated sum of squared residuals
that would have been computed for the LESS within the unconstrained GMM so-
lution, viz. ξ̂u = N−1c, had it been estimated. We label this quantity Ω. What
remains after extracting Ω from (6.35) is a quantity that depends on the weight ma-
trix P0. We denote this remaining portion as R(P0) to indicate that it is a function
of P0. Both Ω and R(P0) are scalars, and both have random properties. These two
variables, which are used to form the test statistic, are defined as follows:

Ω :=
(
y −AN−1c

)T
P
(
y −AN−1c

)
= yTPy − cTN−1c, (6.36a)

R(P0) := ẽTP ẽ+ ẽT0 P0ẽ0 − Ω. (6.36b)

Note: If the matrix N in (6.36a) is singular, than N−1 can be replaced with any
generalized inverse of N as discussed on page 113.

Again we note that ξ̂u = N−1c represents the least-squares solution within
model (6.1) had the stochastic constraints been omitted. In the following deriva-

tions, we also make use of (6.7b), (6.11a), and (6.11b) to write formulas for ẽ0 and ξ̂

in terms of ξ̂u as follows:

ẽ0 = z0 −Kξ̂ =
(
Il +KN−1KTP0

)−1(
z0 −Kξ̂u

)
, (6.37)

ξ̂ = ξ̂u +N−1KTP0ẽ0. (6.38)

As long as N is non-singular (matrix A has full-column rank), we can determine
a formula for R(P0) independent of Ω. To do so, we begin with the quadratic
form for the full predicted residual vector appearing in (6.35) (also called sum of
squared residuals, SSR) and decompose it into Ω and R(P0). Note that the crossed-
out vector in the first line below is neglected since its contribution vanishes in the
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quadratic product.

ẽTP ẽ+ ẽT0 P0ẽ0 =
([ y
z0

]
−
�
�
��

[
A

K

]
ξ̂
)T [P 0

0 P0

] ([ y
z0

]
−

[
A

K

]
ξ̂
)

=

= yTPy − yTPAξ̂ + zT0 P0z0 − zT0 P0Kξ̂ =

= yTPy − yTPA
(
ξ̂u +N−1KTP0ẽ0

)
+ zT0 P0z0 − zT0 P0K

(
ξ̂u +N−1KTP0ẽ0

)
=

=
(
yTPy − yTPAξ̂u

)︸ ︷︷ ︸
Ω

+zT0 P0

(
z0 −Kξ̂u

)︸ ︷︷ ︸
(Il+KN−1KTP0)ẽ0

−
(
c+KTP0z0

)T︸ ︷︷ ︸
ξ̂T (N+KTP0K)

N−1KTP0ẽ0 =

= Ω + zT0 P0

(
Il +KN−1KTP0

)
ẽ0 − ξ̂T

(
N +KTP0K

)
N−1KTP0ẽ0 =

= Ω + zT0
(
Il + P0KN

−1KT
)
P0ẽ0 −

(
Kξ̂
)T (

Il + P0KN
−1KT

)
P0ẽ0 =

= Ω +
(
z0 −Kξ̂

)T (
Il + P0KN

−1KT
)
P0ẽ0 =

= Ω +
(
z0 −Kξ̂u

)T (
Il + P0KN

−1KT
)−1(

Il + P0KN
−1KT

)
·

·
(
P−1

0 +KN−1KT
)−1(

z0 −Kξ̂u
)

=

= Ω +
(
z0 −Kξ̂u

)T (
P−1

0 +KN−1KT
)−1(

z0 −Kξ̂u
)

=

= Ω +R(P0)

Thus, R(P0) is defined as

R(P0) :=
(
z0 −Kξ̂u

)T (
P−1

0 +KN−1KT
)−1(

z0 −Kξ̂u
)
, (6.39)

with ξ̂u := N−1c and assuming the inverse of N exists, in which case (6.36b) and
(6.39) should yield identical results.

Finally, the test statistic T can be expressed as a ratio of R(P0) to Ω, viz.

T =
(ẽTP ẽ+ ẽT0 P0ẽ0 − Ω)/(l −m+ q)

Ω/(n− q)
=

=
R
(
P0

)
/(l −m+ q)

Ω/(n− q)
∼ F (l −m+ q, n− q). (6.40)

Recall from (6.2) that l := rk(K) and q := rk(A).
The following hypothesis test can now be performed, where N stands for the

normal distribution and z0 is an unknown quantity:

H0 : z0 ∼ N
(
Kξ, σ2

0P
−1
0

)
against HA : z0 ∼ N

(
z0 6= Kξ, σ2

0P
−1
0

)
. (6.41)

The term H0 is called the null hypothesis, and HA is the alternative hypothesis.
After choosing a level of significance α and taking Fα,l−m+q,n−q from a table of
critical values for the F -distribution, the following logic can be applied:

If T ≤ Fα,l−m+q,n−q accept H0; else reject H0. (6.42)

If MATLAB is available, the critical value may be generated by use of the MATLAB
command finv(1− α,l −m+ q,n− q).
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6.5 Some Comments on Reproducing Estimators

In this section we briefly discuss two estimators within the Gauss-Markov Model
with stochastic constraints (6.1) that leave the constrained parameters unchanged,
i.e., unchanged from the values specified in z0. Such estimators are called repro-
ducing estimators. For example, in a network adjustment problem the a priori
coordinates of a station might need to be left unchanged by the adjustment.

For simplicity, we restrict the discussion to models of full rank, i.e., rkA = m,
where m is the number of columns of matrix A and also the number of parameters
to estimate.

One approach that is sometimes taken to obtain a reproducing estimator is to
simply adopt the estimator within the Gauss-Markov Model with fixed constraints
shown in (5.8d), which is optimal for that model. Two points should be made
regarding the use of that estimator within the model (6.1). First, it is not an
optimal estimator within model (6.1), and, second, its dispersion matrix shown in
(5.26a) and (5.27a) is not correct within model (6.1). In the following, we show the
proper dispersion matrix for the reproducing estimator within model (6.1). First,
we introduce different subscripts to denote various linear estimators for ξ.

ξ̂U denotes the unconstrained estimator ξ̂U = N−1c, which is not optimal within
model (6.1).

ξ̂K denotes the reproducing estimator from equation (5.8d), which is not optimal
within model (6.1).

ξ̂S denotes the estimator from equation (6.7a), which is optimal within model (6.1).

First we express the estimator ξ̂K as a function of the optimal estimator ξ̂S .
Using (6.5b), we can write(

N +KTP0K
)−1

c = ξ̂S −
(
N +KTP0K

)−1
KTP0z0. (6.43)

We then repeat (5.8d) for the estimator ξ̂K with N replaced by
(
N + KTP0K

)
and κ0 replaced by z0 according to the model (6.1). This is our starting point.

ξ̂K =
(
N +KTP0K

)−1
c+

+
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1[

z0 −K
(
N +KTP0K

)−1
c
]

(6.44)

Now using (6.43) in (6.44), we can write

ξ̂K = ξ̂S −
(
N +KTP0K

)−1
KTP0z0+

+
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1[

z0 −K
(
N +KTP0K

)−1
c
]
.

Factoring out −
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1

yields
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ξ̂K = ξ̂S −
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1·

·
{[
K
(
N +KTP0K

)−1
KT
]
P0z0 − z0 +K

(
N +KTP0K

)−1
c
}
.

Now, from (6.7a) we recognize Kξ̂S in the above line; thus we write:

ξ̂K = ξ̂S +
(
N +KTP0K

)−1
KT
[
K
(
N +KTP0K

)−1
KT
]−1(

z0 −Kξ̂S
)
. (6.45)

We now have the fixed-constraint estimator ξ̂K expressed as a function of the op-
timal estimator for model (6.1), namely ξ̂S . Using a familiar formula for

(
N +

KTP0K
)−1

and noting that(
N +KTP0K

)−1
KTP0 = N−1KT

(
P−1

0 +KN−1KT
)−1

,

we can rewrite (6.45) as:

ξ̂K = ξ̂S +
[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
KT ·

·
[
KN−1KT

(
P−1

0 +KN−1KT
)−1

P−1
0

]−1(
z0 −Kξ̂S

)
. (6.46)

Note the following useful relations:[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
KT =

= N−1KT
(
P−1

0 +KN−1KT
)−1

P−1
0 (6.47)

and[
KN−1KT

(
P−1

0 +KN−1KT
)−1

P−1
0

]−1
=

= P0

(
P−1

0 +KN−1KT
)(
KN−1KT

)−1
. (6.48)

Equation (6.47) is derived as follows:[
N−1 −N−1KT

(
P−1

0 +KN−1KT
)−1

KN−1
]
KT =

= N−1KT −N−1KT
(
P−1

0 +KN−1KT
)−1(

P−1
0 +KN−1KT − P−1

0

)
=

= N−1KT −N−1KT
(
P−1

0 +KN−1KT
)−1(

P−1
0 +KN−1KT

)
−

−N−1KT
(
P−1

0 +KN−1KT
)−1(−P−1

0

)
=

= N−1KT −N−1KT +N−1KT
(
P−1

0 +KN−1KT
)−1

P−1
0 =

= N−1KT
(
P−1

0 +KN−1KT
)−1

P−1
0 .

Successive application of the rule for the product of inverted matrices was used in
equation (6.48). Substituting (6.47) and (6.48) into (6.46) yields:

ξ̂K = ξ̂S +N−1KT
(
P−1

0 +KN−1KT
)−1

P−1
0 P0

(
P−1

0 +KN−1KT
)
·

·
(
KN−1KT

)−1(
z0 −Kξ̂S

)
=
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= ξ̂S +N−1KT
(
KN−1KT

)−1(
z0 −Kξ̂S

)
. (6.49)

Equation (6.49) gives an elegant expression of the fixed-constraint estimator ξ̂K
in terms of the optimal estimator ξ̂S . Realizing that the model with stochastic con-
straints (6.1) becomes the model with fixed constraints (5.1) when P−1

0 is replaced
by zero, we can replace (6.49) with (6.50) below, which is also obvious from our

starting equation (6.44). This also makes the appropriate dispersion matrix D{ξ̂K}
under model (6.1) easier to compute.

ξ̂K = ξ̂U +N−1KT
(
KN−1KT

)−1(
z0 −Kξ̂U

)
(6.50)

Note that C{z0,y} = 0, which allows us to apply the dispersion operator to (6.50)
as follows:

D{ξ̂K} = D{ξ̂u −N−1KT
(
KN−1KT

)−1
Kξ̂U}+

+D{N−1KT
(
KN−1KT

)−1
z0} ⇒

D{ξ̂S → ξ̂K} = σ2
0N
−1 − σ2

0N
−1KT

(
KN−1KT

)−1
KN−1+

+ σ2
0N
−1KT

(
KN−1KTP0KN

−1KT
)−1

KN−1.
(6.51)

Compare (6.51) to (5.16) to see that D{ξ̂K} increases by

σ2
0N
−1KT

(
KN−1KTP0KN

−1KT
)−1

KN−1

when the estimator ξ̂K is used for the model with stochastic constraints (6.1).

We already noted that ξ̂K is a sub-optimal (reproducing) estimator within model
(6.1). We now give the optimal reproducing estimator without derivation (for details
see Schaffrin (1997a)).

ξ̂opt−rep = ξ̂S +KT
(
KKT

)−1(
z0 −Kξ̂S

)
(6.52)

The symbol ξ̂S on the right side of (6.52) represents the optimal (“non-reproduc-
ing”) estimator. Equation (6.52) is identical to (6.49) when N−1 is replaced by I.

The dispersion matrix is given by

D{ξ̂opt−rep} = D{ξ̂S}+D{KT
(
KKT

)−1(
z0 −Kξ̂S

)
} =

= σ2
0N
−1 − σ2

0N
−1KT

(
P−1

0 +KN−1KT
)−1

KN−1+

+ σ2
0K

T
(
KKT

)−1
P−1

0

(
P−1

0 +KN−1KT
)−1

P−1
0

(
KKT

)−1
K. (6.53)

Also note that

E{ξ̂opt−rep} = ξ, (6.54a)

z0 −Kξopt−rep = 0, (6.54b)

D{Kξ̂opt−rep} = D{z0} = σ2
0P
−1
0 . (6.54c)



132 CHAPTER 6. THE GMM WITH STOCHASTIC CONSTRAINTS

6.6 Practice Problems

1. Given the target function

Φ(ξ,λ0) = (y −Aξ)TP (y −Aξ) + 2λT0 (Kξ − z0)− λT0 P−1
0 λ0

from (6.22b), complete the following:

(a) With the help of (6.22a), show that equations (6.4) and (6.22b) are
equivalent.

(b) Formulate the Euler-Lagrange necessary conditions for the least-squares
solution of the unknown parameters ξ and the unknown vector of La-
grange multipliers λ0.

(c) Show how the sufficient condition for minimization is satisfied.

(d) Using the Euler-Lagrange necessary conditions that you formulated in

(a), derive the vector of estimated parameters ξ̂ and check that it agrees
with (6.7b).

2. Confirm that (6.12a) is correct by showing that

C{

[
y

z0

]
,

[
A

K

]
ξ̂} = D{

[
A

K

]
ξ̂}.

3. Repeat Problem 4 of Section 5.7, this time using the following constraints:

(a) Use 1928.277 ft as z0 and σ2 = (0.005 ft)2 for its variance. Compare your
answers to those of Problem 4. Are they the same? If so, what is your
explanation for that? Can a hypothesis test be formulated as described
in Section 6.4?

(b) Now add another constraint that requires the height of point D to be
248.750 ft greater than the height of point A, with variance σ2=2(0.0052 )
ft2. Form a hypothesis test to check the consistency of the observation
equations and the constraint equations.

4. Repeat Problem 6 of Section 5.7. This time use 251.850 m as z0 and σ2 =
(0.005 m)2 for its variance. Compare your answers to those of Problem 6.
What changes, what stays the same? Form a hypothesis test to check the
consistency of the observation equations and the constraint equations.

5. Repeat Problem 7 of Section 5.7. This time use 2.046 m as z0 and σ2 = (1 cm)2

for its variance. Compare your answers to those of Problem 7. What changes,
what stays the same? Form a hypothesis test to check the consistency of the
observation equations and the constraint equations.

6. Referring to the example problem in Section 5.4.1, set the vector κ0 shown
there equal to z0. Use the following matrix for P−1

0 :
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P−1
0 =

 2.84067584875257 0.533989733139618 0.535740019844372

0.533989733139618 2.14132575448909 0.531530384522843

0.535740019844372 0.531530384522843 2.19379908268108

 ·
· (10× 10−6) m2.

In addition, multiply the cofactor matrix P−1 by 0.017381 and the cofactor
matrix P−1

0 by 8.709801 to account for the variance components estimated
in Smith et al. (2018), which should result in a solution that agrees with the
results shown therein.

Complete the following:

(a) Estimate the heights of all points.

(b) Form a hypothesis test to check the consistency of the observation equa-
tions and the constraint equations.

7. Show that the total residual vector [ẽT , ẽT0 ]T results from a projection of
[yT , zT0 ]T onto the range space of [AT , KT ]T . Hint: see equation (6.17).

6.7 Summary Formulas for the Least-Squares So-
lution Within the Gauss-Markov Model with
Stochastic Constraints

The Gauss-Markov Model with stochastic constraints is given by

y
n×1

= A
n×m

ξ + e,

z0
l×1

= K
l×m

ξ + e0,[
e

e0

]
∼ (

[
0

0

]
, σ2

0

[
P−1 0

0 P−1
0

]
).

Table 6.1: Summary formulas for the LESS within the Gauss-
Markov Model with stochastic constraints

Quantity Formula Eq.

Model redundancy r = n−m+ l (6.3)

Vector of estimated
parameters

ξ̂ =
(
N +KTP0K

)−1(
c+KTP0z0

)
(6.7a)

Continued on next page
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Quantity Formula Eq.

Dispersion matrix
for estimated
parameters

D{ξ̂} = σ2
0 ·
(
N +KTP0K

)−1
(6.9)

Vector of predicted
residuals

ẽ = y −Aξ̂ (6.10)

Dispersion matrix
for residuals

D{ẽ} = σ2
0 ·
[
P−1 −A

(
N +KTP0K

)−1
AT
]

(6.13b)

Vector of residuals
of prior
information

ẽ0 = z0 −Kξ̂ (6.11a)

Dispersion matrix
for residuals of
prior information

D{ẽ0} = σ2
0 ·P−1

0

(
Il + P0KN

−1KT
)−1

(6.14)

Sum of squared
residuals (SSR)

Ω +R(P0) = ẽTP ẽ+ ẽT0 P0ẽ0, Ω 6= ẽTP ẽ
(6.35),
(6.36b)

Estimated variance
component

σ̂2
0 = (ẽTP ẽ+ ẽT0 P0ẽ0)/(n−m+ l) (6.34)

Vector of adjusted
observations

µ̂y = y − ẽ (6.18)

Dispersion matrix
for adjusted
observations

D{µ̂y} = σ2
0 ·A
(
N +KTP0K

)−1
AT (6.20)

Vector of adjusted
constraints

µ̂z0 = z0 − ẽ0 (6.19)

Dispersion matrix
for adjusted
constraints

D{µ̂z0} = σ2
0 ·K

(
N +KTP0K

)−1
KT (6.21)

Continued from previous page



Chapter 7
Sequential Adjustments

A sequential adjustment might be called for when two successive data sets must
be combined to estimate a single set of parameters. This type of adjustment is
especially useful when only the parameter estimates and their dispersion matrix,
but not the associated observations, are available from the first data set. Then,
update formulas can be used that allow the second data set to be adjusted in a
way that depends on the estimates from the first data set, with the results being
equivalent to what would have been computed from a simultaneous adjustment of
both data sets. Though we refer to the two data sets respectively as first and second,
they could be any two successive data sets that must be treated by a sequential
adjustment, e.g., they could be the ninth and tenth.

7.1 Model Definition

The data model for sequential adjustments is based on two data sets, denoted by
subscripts 1 and 2, respectively. The first data set is comprised of n1 observations,
and the second is comprised of n2. It is assumed that the observations from the first
data set, y1, are uncorrelated with those from the second, y2, i.e., C{y1,y2} = 0.
Moreover, all parameters associated with the second data set are also associated
with the first data set. Thus, the data model is written as

y1
n1×1

= A1
n1×m

ξ + e1, (7.1a)

y2
n2×1

= A2
n2×m

ξ + e2, (7.1b)[
e1

e2

]
∼
([0

0

]
, σ2

0

[
P−1

1 0

0 P−1
2

])
. (7.1c)

135
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The ranks of the coefficient (design) matrices A1 and A2 are such that

rkA1 = rk

[
A1

A2

]
= m. (7.2)

Note that the coefficient matrix A1 has full column rank, that there is no correlation
between the random error vectors e1 and e2, and that both data sets share a
common variance component σ2

0 . Also, the total number of observations from both
data sets is defined as

n := n1 + n2. (7.3)

The following notation is adopted for normal-equation variables used in Sec-
tions 7.1 to 7.3:

[Nii, ci] = ATi Pi [Ai, yi] , i ∈ {1, 2}, (7.4a)

so that

N11 = AT1 P1A1, N22 = AT2 P2A2, c1 = AT1 P1y1, and c2 = AT2 P2y2. (7.4b)

Subscripts on N and c have somewhat different meanings for sections that follow
Section 7.3; careful attention should be paid to their definitions given there.

We use a single hat to denote estimates that are based only on the first data set
and a double hat to denote estimates that are based on both data sets. For example,

the estimate ξ̂ is based only on the first data set, whereas the estimate
ˆ̂
ξ is based

on both data sets. This makes it convenient to show estimates based on both data
sets as an update to estimates based on only the first data set.

We recognize a structural similarity between the data model shown in (7.1) and
the Gauss-Markov Model with stochastic constraints shown in (6.1). Given this
similarity, we may immediately write down a least-squares solution for ξ, and its
dispersion matrix, in the form of (6.7b) and (6.9), respectively, viewing the second
data set as analogous to stochastic constraints.

ˆ̂
ξ = ξ̂ +N−1

11 A
T
2

(
P−1

2 +A2N
−1
11 A

T
2

)−1(
y2 −A2ξ̂

)
=

= ξ̂ +
(
N11 +AT2 P2A2

)−1
AT2 P2

(
y2 −A2ξ̂

)
D{ˆ̂ξ} = D{ξ̂} − σ2

0N
−1
11 A

T
2

(
P−1

2 +A2N
−1
11 A

T
2

)−1
A2N

−1
11

(7.5)

(7.6)

(7.7)

Equation (A.8a) was used in going from (7.5) to (7.6). It is important to note
that the matrix

(
P−1

2 + A2N
−1
11 A

T
2

)
is of size n2 × n2; whereas the size of matrix(

N11+AT2 P2A2

)
ism×m. Therefore, if the second data set has only one observation,

then n2 = 1, and the update via (7.5) is very fast! This may be the case, for example,
in a real-time application where one new observation is added at each epoch in time.

It is also noted that the matrix subtracted in (7.7) is positive-definite , which
means that regardless of the precision of the second data set reflected in P2, the
dispersion of the parameters estimated from both data sets will be smaller than
that estimated from only the first data set.
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7.2 Verification of the Sequential Adjustment

In this section we discuss verification of the sequential adjustment, the aim of which
is to confirm that the adjustment based on both data sets is consistent with an
adjustment based only on the first data set. By consistent we mean that both the
first data set only and the combined data sets fit the model well, implying that
the residuals from an adjustment of the first data set would not change much in a
sequential adjustment of both data sets.

We can make use of the work done in Chapter 6 to write the estimated variance
component σ̂2

0 in a form composed of the sum of squared residuals (SSR) Ω based
on an adjustment of the first data set only and an update R(P2) for the contribu-
tion to the SSR from the second data set, analogous to the derivation of (6.39).
This facilitates hypothesis testing for the purpose of determining if the combined
adjustment is consistent with an adjustment based only on the first data set. The
decomposition of ˆ̂σ2

0 into Ω and R(P0) is expressed as follows:

ˆ̂σ2
0(n−m) = Ω +R(P2); with Ω = σ̂2

0(n1 −m) (7.8a)

and where

R(P2) = −
(
y2 −A2ξ̂

)T ˆ̂
λ with

ˆ̂
λ := −

(
P−1

2 +A2N
−1
11 A

T
2

)−1(
y2 −A2ξ̂

)
. (7.8b)

Therefore, we can rewrite (7.8a) as

ˆ̂σ2
0(n−m) = Ω +

(
y2 −A2ξ̂

)T (
P−1

2 +A2N
−1
11 A

T
2

)−1(
y2 −A2ξ̂

)
, (7.8c)

where the form of R(P2) is obviously similar to that of R(P0) in (6.39).
Then, the test statistic

T =
R/n2

Ω/(n1 −m)
∼ F (n2, n1 −m) (7.9)

can be computed to verify the sequential adjustment, i.e., that both the first data
set and the combined first and second data sets fit the model well. The test statistic
has an F -distribution with n2 and n1 −m degrees of freedom. For some specified
significance level α, we may claim that the observations from the second data set
are consistent with those from the first if T ≤ Fα,n2,n1−m. See Chapter 9 for more
on hypothesis testing.

7.3 Alternative Solution for the Normal Equations

Using the addition theory of normal equations, we may find a matrix representation
of the normal equations as follows, where again the double hats above ξ refer to a
solution based on both data sets:(

AT1 P1A1 +AT2 P2A2

)ˆ̂
ξ =

(
AT1 P1y1 +AT2 P2y2

)
, (7.10a)
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or (
N11 +N22

)ˆ̂
ξ =

(
c1 + c2

)
. (7.10b)

These normal equations lead to

N11
ˆ̂
ξ +N22

ˆ̂
ξ − c2 = c1 ⇒ (7.11a)

N11
ˆ̂
ξ +AT2

ˆ̂
λ2 = c1, with

ˆ̂
λ = P2

(
A2

ˆ̂
ξ − y2

)
⇒ (7.11b)

y2 = A2
ˆ̂
ξ − P−1

2
ˆ̂
λ. (7.11c)

Then, from (7.11b) and (7.11c), we can write the following system of least-squares
normal equations: [

N11 AT2
A2 −P−1

2

] ˆ̂
ξ
ˆ̂
λ

 =

[
c1

y2

]
. (7.12)

From the first row of (7.12) we get

ˆ̂
ξ = N−1

11 c1 −N−1
11 A

T
2

ˆ̂
λ = (7.13a)

= ξ̂ −N−1
11 A

T
2

ˆ̂
λ. (7.13b)

Equation (7.13b) is an update formula as a function of the vector of estimated

Lagrange multipliers
ˆ̂
λ. Without further derivation, we can compare (7.13b) to

(7.5) to get an expression for the estimated vector of Lagrange-multiplier as

ˆ̂
λ = −

(
P−1

2 +A2N
−1
11 A

T
2

)−1(
y2 −A2ξ̂

)
, (7.14)

which agrees with (7.8b). Applying covariance propagation to (7.13b), we find the

dispersion matrix of
ˆ̂
ξ to be

D{ˆ̂ξ} = D{ξ̂} − σ2
0N
−1
11 A

T
2

(
P−1

2 +A2N
−1
11 A

T
2

)−1
A2N

−1
11 , (7.15)

where we used the fact that C{y2, ξ̂} = 0, which indicates that the observations
from the second data set are uncorrelated with the estimated parameters based on
the first data set only.

7.4 Sequential Adjustment, Rank-Deficient Case

7.4.1 First Data Set Only

Suppose matrix A1 does not have full column rank, i.e. rkA1 =: q1 < m. Then we
may introduce a datum by further splitting the system of equations as was done in
Section 4.5. Let us split A1 into an n1 × q1 part denoted A11 and an n1 × (m− q1)
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part denoted A12. Accordingly, we also split the parameter vector ξ into a q1 × 1
part ξ1 and a (m− q1)× 1 part ξ2. Thus, we have

A1 = [A11, A12] , rkA11 =: q1, and ξ =
[
ξT1 , ξ

T
2

]T
. (7.16a)

With this splitting, we introduce new terms for the normal equations, where it
is stressed that the subscripts on matrix N and vector c are used differently
than in the preceding sections. Most notably, the subscript 2 does not refer to
the second data set, but only to the location of a block in the matrix N .

The terms N11, N12, and c1 are defined as follows:[
AT11

AT12

]
P1

[
A11 A12

]
=

[
AT11P1A11 AT11P1A12

AT12P1A11 AT12P1A12

]
=

[
N11 N12

AT12P1A11 AT12P1A12

]
,

(7.16b)

and

c1 = AT11P1y1. (7.16c)

Note that we purposely did not use symbols N21 and c2 here, because they will be
defined in a different way in the next section.

Next we introduce datum information ξ0
2, such that ξ2 → ξ0

2, where the sub-
script 2 now obviously refers to the datum, rather than a second data set. The
formulas for the estimated parameters and their dispersion matrix based on the
first data set only can be copied from (3.41b) and (3.42), respectively.

ξ̂1 = N−1
11

(
c1 −N12ξ

0
2

)
D{ξ̂1} = σ2

0N
−1
11

(7.17a)

(7.17b)

The estimated variance component σ̂2
0 is slightly different from that of (3.47) and

(3.50) and is given by the formula

σ̂2
0 =

yT1 P1

(
y1 −A11ξ̂1 −A12ξ

0
2

)
(n1 − q1)

(7.17c)

or, equivalently,

σ̂2
0 =

(
yT1 P1y1 − cT1 N−1

11 c1

)
(n1 − q1)

. (7.17d)

Note that the steps taken from (3.47) to (3.50) can be used to go from (7.17c) to
(7.17d).

7.4.2 Both First and Second Data Sets

Now we introduce the second data set with a splitting analogous to the first, viz.

y2 = A21ξ1 +A22ξ2 + e2, e2 ∼
(
0, σ2

0P
−1
2

)
. (7.18)
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The matrix A21 is of size n2 × q1, and A22 is of size n2 × (m− q1). No information
in the second data set refers to the datum choice; it only adds to the redundancy
provided by the first data set. Thus, the rank of the normal equation matrix is
unchanged, which is true also for the 2× 2-block coefficient matrix, i.e.,

rk

[
A11 A12

A21 A22

]
=: q = q1. (7.19)

The full least-squares normal equations are then written as[
AT11P1A11 +AT21P2A21 AT11P1A12 +AT21P2A22

AT12P1A11 +AT22P2A21 AT12P1A12 +AT22P2A22

][
ξ̂1

ξ0
2

]
=

=

[
AT11P1 AT21P2

AT12P1 AT22P2

][
y1

y2

]
. (7.20)

From the first row of (7.20), we may write the least-squares solution for
ˆ̂
ξ1 directly,

followed by its dispersion matrix, as

ˆ̂
ξ1 =

(
AT11P1A11 +AT21P2A21

)−1·
·
[(
AT11P1y1 +AT21P2y2

)
−
(
AT11P1A12 +AT21P2A22

)
ξ0

2

]
,

D{ˆ̂ξ1} = σ2
0

(
AT11P1A11 +AT21P2A21

)−1
.

(7.21)

(7.22)

In order to derive update formulas, it is helpful to introduce an alternative
expression for the normal equations analogous to what was done in (7.11a) through
(7.12). From (7.17a), we can write(

AT11P1A11

)
ξ̂1 =

(
AT11P1y1

)
−
(
AT11P1A12

)
ξ0

2, (7.23a)

or N11ξ̂1 = c1 −N12ξ
0
2, (7.23b)

which, when subtracted from the first row of (7.20), leaves(
AT21P2A21

)
ξ̂1 =

(
AT21P2y2

)
−
(
AT21P2A22

)
ξ0

2, (7.23c)

or N21ξ̂1 = c2 −N22ξ
0
2. (7.23d)

Note that the symbols N11 and N12 are still being used as defined in (7.16b),
whereas the definition of N22 and N21 becomes apparent by comparing (7.23c)
to (7.23d).

Together, (7.23b) and (7.23d) comprise the first row of (7.20). Recombining
(7.23b) and (7.23d) gives(

N11 +N21

)ˆ̂
ξ1 = c1 + c2 −

(
N12 +N22

)
ξ0

2, (7.24a)
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implying that

N11
ˆ̂
ξ1 +AT21

ˆ̂
λ = c1 −N12ξ

0
2, with

ˆ̂
λ := P2

(
A21

ˆ̂
ξ1 − y2 +A22ξ

0
2

)
. (7.24b)

Note that in (7.23a)–(7.23d) a single hat was used for the estimate of ξ1 since
each respective equation represents only one set of data. The double hat in (7.24a)
denotes the estimate of ξ1 based on both data sets. From (7.24b) we can write the
system of normal equations in matrix form as follows:[

N11 AT21

A21 −P−1
2

]ˆ̂
ξ1

ˆ̂
λ

 =

[
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
. (7.25)

The solution of (7.25) can be obtained by applying the inversion formula for a
partitioned matrix as shown in (A.11), resulting inˆ̂

ξ1

ˆ̂
λ

 =

[
N11 AT21

A21 −P−1
2

]−1 [
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
=

=

[
N−1

11 −N
−1
11 A

T
21S
−1
2 A21N

−1
11 N−1

11 A
T
21S
−1
2

S−1
2 A21N

−1
11 −S−1

2

][
c1 −N12ξ

0
2

y2 −A22ξ
0
2

]
,

(7.26)

where

S2 := P−1
2 +A21N

−1
11 A

T
21. (7.27)

Finally, the estimated parameters and Lagrange multipliers are expressed as

ˆ̂
ξ1 = N−1

11

(
c1 −N12ξ

0
2

)
+

+N−1
11 A

T
21

(
P−1

2 +A21N
−1
11 A

T
21

)−1[
A21N

−1
11

(
−c1 +N12ξ

0
2

)
+ y2 −A22ξ

0
2

]
⇒

(7.28a)

ˆ̂
ξ1 = ξ̂1 +N−1

11 A
T
21

(
P−1

2 +A21N
−1
11 A

T
21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
, (7.28b)

ˆ̂
λ = −

(
P−1

2 +A21N
−1
11 A

T
21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
. (7.28c)

The dispersion matrix of the estimated vector of Lagrange multipliers is

D{ ˆ̂λ} =
(
P−1

2 +A21N
−1
11 A

T
21

)−1
D{y −A21ξ̂1}

(
P−1

2 +A21N
−1
11 A

T
21

)−1
, (7.29)

since D{ξ0
2} = 0. The following relations also hold:

C{y2, ξ̂1} = 0, (7.30a)

D{y −A21ξ̂1} = σ2
0

(
P−1

2 +A21N
−1
11 A

T
21

)
, (7.30b)

D{ ˆ̂λ} = σ2
0

(
P−1

2 +A21N
−1
11 A

T
21

)−1
, (7.30c)

D{ˆ̂ξ1} = D{ξ̂1} − σ2
0N
−1
11 A

T
21

(
P−1

2 +A21N
−1
11 A

T
21

)−1
A21N

−1
11 . (7.30d)
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The estimated variance component is expressed as follows:

ˆ̂σ2
0(n− q) = σ̂2

0

(
n1 − q1

)
+
(
y2 −A21ξ̂1 −A22ξ

0
2

)T ·
·
(
P−1

2 +A21N
−1
11 A

T
21

)−1(
y2 −A21ξ̂1 −A22ξ

0
2

)
⇒ (7.31a)

ˆ̂σ2
0(n− q) = σ̂2

0

(
n1 − q1

)
− ˆ̂
λT
(
y2 −A21ξ̂1 −A22ξ

0
2

)
. (7.31b)

Once again, we note that we have used the definition N11 := AT11P1A11 in this
section.

7.5 Sequential Adjustment with New Parameters

In this section we consider the case where the second data set refers to all the
parameters of the first data set plus some additional new parameters. Thus we speak
of m1 parameters associated with the first data set and an additional m2 introduced
with the second data set, so that the total number of parameters involved in the
combination of both data sets is given by m = m1 + m2. In the double subscripts
used below, the first one refers to the data set, while the second one refers to
the matrix splitting. For example, A21 is that part of the design matrix from the
second data set that refers to the original parameters, whereas A22 is associated
with the new parameters involved in the second data set. We could have adopted
a new symbol to denote a “preprocessed observation” vector that includes datum
information, e.g. ȳ. However, we have elected to continue using y and simply note
that it could include datum information in addition to the observations. The data
model that follows implies that we have assumed there are no correlations between
the observations of data-set one and those of data-set two; it also implies that both
sets of observations share a common variance component σ2

0 .[
y1

y2

]
=

[
A11 0

A21 A22

][
ξ1

ξ2

]
+

[
e1

e2

]
,

[
e1

e2

]
∼ (

[
0

0

]
, σ2

0

[
P−1

1 0

0 P−1
2

]
) (7.32)

The size of the system of equations is implied by the following:

y1 ∈ Rn1 , y2 ∈ Rn2 , ξ1 ∈ Rm1 , ξ2 ∈ Rm2 ,
[
ξT1 , ξ

T
2

]T∈ Rm, (7.33a)

n = n1 + n2, m = m1 +m2. (7.33b)

Now, using the addition theory of normal equations, we can write[
AT11 AT21

0 AT22

][
P1 0

0 P2

][
A11 0

A21 A22

]ˆ̂
ξ1

ˆ̂
ξ2

 =

[
AT11P1 AT21P2

0 AT22P2

][
y1

y2

]
⇒ (7.34a)

[
AT11P1A11 +AT21P2A21 AT21P2A22

AT22P2A21 AT22P2A22

]ˆ̂
ξ1

ˆ̂
ξ2

 =

[
AT11P1y1 +AT21P2y2

AT22P2y2

]
. (7.34b)
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Here again, the double-hats refer to estimates based on both data sets.
Now, the first data set may no longer be available, rather we may have only

the estimates from the first adjustment. In this case we can use the bottom row of
(7.34b) to solve for the estimates of the new parameters in terms of only the second
set of observations, leading to

ˆ̂
ξ2 =

(
AT22P2A22

)−1
AT22P2

(
y2 −A21

ˆ̂
ξ1

)
. (7.35)

Then, from the normal equations based solely on the first data set, we may substi-
tute

AT11P1y1 =
(
AT11P1A11

)
ξ̂1 (7.36)

into the top row of the right side of (7.34b) and invert the normal-equation matrix
on the left to solve for the parameter estimates. For convenience, we introduce the
following symbols to use in the inverted matrix:

S1 := AT11P1A11 +AT21P2A21 −AT21P2A22

(
AT22P2A22

)−1
AT22P2A21 = (7.37a)

= AT11P1A11 +AT21P̄2A21, (7.37b)

P̄2 := P2 − P2A22

(
AT22P2A22

)−1
AT22P2, (7.37c)

N22 = AT22P2A22. (7.37d)

We refer to P̄2 as a reduced weight matrix. Upon inverting the normal-equations
matrix from (7.34b) (see (A.11) for the inverse of a partitioned matrix), we find the

following solution for
ˆ̂
ξ1 and

ˆ̂
ξ2:ˆ̂

ξ1

ˆ̂
ξ2

 =

[
S−1

1 −S−1
1

(
AT21P2A22

)
N−1

22

−N−1
22

(
AT22P2A21

)
S−1

1 N−1
22 +N−1

22

(
AT22P2A21

)
S−1

1

(
AT21P2A22

)
N−1

22

]
·

·

[(
AT11P1A11

)
ξ̂1 +AT21P2y2

AT22P2y2

]
. (7.38)

We can continue by using (7.37b) and (7.37c) with the first row of (7.38) to arrive
at

ˆ̂
ξ1 = S−1

1

[(
AT11P1A11

)
ξ̂1 +AT21P2y2 −

(
AT21P2A22

)
N−1

22 A
T
22P2y2

]
= (7.39a)

= S−1
1

{[(
AT11P1A11

)
ξ̂1 +AT21P̄2y2

]
+
[(
AT21P̄2A21

)
−
(
AT21P̄2A21

)]
ξ̂1

}
= (7.39b)

= S−1
1 AT21P̄2

(
y2 −A21ξ̂1

)
+ S−1

1

(
AT11P1A11 +AT21P̄2A21

)
ξ̂1 = (7.39c)

= S−1
1 AT21P̄2

(
y2 −A21ξ̂1

)
+ ξ̂1 ⇒ (7.39d)

ˆ̂
ξ1 − ξ̂1 = S−1

1 AT21P̄2

(
y2 −A21ξ̂1

)
, (7.39e)

where (7.39e) is in the form of an update formula.
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We assume that P2 is invertible, as implied in the given model (7.32). We now
wish to check the rank of the reduced weight matrix P̄2. It is easy to check that
the product P−1

2 P̄2 is idempotent. Then using (1.7c) and (A.4) we find

rk P̄2 = rk
(
P−1

2 P̄2

)
= tr

(
P−1

2 P̄2

)
= tr

(
In2 −A22

(
AT22P2A22

)−1
AT22P2

)
= (7.40a)

= n2 − tr
[
A22

(
AT22P2A22

)−1
AT22P2

]
= n2 − tr

[(
AT22P2A22

)−1
AT22P2A22

]
=

(7.40b)

= n2 −m2 < n2. (7.40c)

Thus there is a rank reduction that comes from modifying the original weight ma-
trix P2 to obtain P̄2. Moreover, we find that matrix P̄2 is singular.

The dispersion matrices for the estimated parameters, i.e., D{ˆ̂ξ1} and D{ˆ̂ξ2},
are shown at the end of the next section.

7.6 Sequential Adjustment with New Parameters
and Small Second Data Set

In (7.39e) we must invert the m1 ×m1 matrix S1 to solve the system of equations.
However, in some applications, the number of observations n2 in the second data
set may be significantly less than m1. In this case we would like to reformulate the
solution in (7.39e) so that only a matrix of size n2 × n2 needs to be inverted.

We have an alternative expression for matrix S1 in (7.37b), the inverse of which
can be derived as follows:

S−1
1 =

[(
AT11P1A11

)
+
(
AT21P̄2A21

)]−1
= (7.41a)

=
{[
Im1

+
(
AT21P̄2A21

)(
AT11P1A11

)−1](
AT11P1A11

)}−1
= (7.41b)

=
(
AT11P1A11

)−1[
Im1 +

(
AT21P̄2A21

)(
AT11P1A11

)−1]−1
. (7.41c)

Using (7.41c), we may rewrite (7.39e) as

ˆ̂
ξ1 − ξ̂1 =

=
(
AT11P1A11

)−1[
Im1

+
(
AT21P̄2A21

)(
AT11P1A11

)−1]−1
AT21P̄2

(
y2−A21ξ̂1

)
=

=
(
AT11P1A11

)−1
AT21P̄2

[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)
.

(7.42a)

(7.42b)

Here, we have made use of (A.8a) in the step from (7.42a) to (7.42b), with matri-
ces A and D in (A.8a) set to identity. Note that the matrix to invert inside the
square brackets is of size m1 ×m1 in (7.42a) but is size n2 × n2 in (7.42b). The
choice of which equation to use will usually be determined by the smaller of m1

and n2. Also, we have the relation

− ˆ̂
λ =

[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)
, (7.43)
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which means that the solution for the first subset of parameters may also be ex-
pressed as

ˆ̂
ξ1 − ξ̂1 = −

(
AT11P1A11

)−1
AT21P̄2

ˆ̂
λ. (7.44)

Now we begin with (7.35), and substitute (7.42b), to find a solution for the

parameters
ˆ̂
ξ2 in terms of the Lagrange multipliers

ˆ̂
λ:

ˆ̂
ξ2 =

(
AT22P2A22

)−1
AT22P2

(
y2 −A21

ˆ̂
ξ1

)
= (7.45a)

=
(
AT22P2A22

)−1
AT22P2 ·

{(
y2 −A21ξ̂1

)
−A21

(
AT11P1A11

)−1
AT21P̄2·

·
[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)}
=

(7.45b)

=
(
AT22P2A22

)−1
AT22P2

[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)
(7.45c)

⇒ ˆ̂
ξ2 = −

(
AT22P2A22

)−1
AT22P2

ˆ̂
λ. (7.45d)

The inverse formula of (A.6a) was used to go from (7.45b) to (7.45c), with matri-
ces T , W , and V in (A.6a) set to identity matrices of appropriate sizes.

To facilitate computing the parameter dispersion matrix we write the following
system of normal equations, noting that (7.46b) is in the form of an update solution
(cf. (7.34b) and (7.36)):[

AT11P1A11 +AT21P2A21 AT21P2A22

AT22P2A21 AT22P2A22

]ˆ̂
ξ1

ˆ̂
ξ2

 =

[(
AT11P1A11

)
ξ̂1 +AT21P2y2

AT22P2y2

]
.

(7.46a)

Then substituting (7.35) leads to[
AT11P1A11 +AT21P2A21 AT21P2A22

AT22P2A21 AT22P2A22

]ˆ̂
ξ1 − ξ̂1

ˆ̂
ξ2

 =

[
AT21P2

(
y2 −A21ξ̂1

)
AT22P2

(
y2 −A21ξ̂1

)] .
(7.46b)

Note that (7.46a) is equivalent to (7.34b) shown earlier.
We have already inverted the normal-equation matrix in (7.38). Taking elements

from (7.38), we may write the parameter dispersion and covariance matrices as
follows:

D{ˆ̂ξ1} = σ2
0S
−1
1 = σ2

0

(
AT11P1A11 +AT21P̄2A21

)−1
,

C{ˆ̂ξ1,
ˆ̂
ξ2} = −D{ˆ̂ξ1}

(
AT21P2A22

)(
AT22P2A22

)−1
,

D{ˆ̂ξ2} = σ2
0

(
AT22P2A22

)−1 −
(
AT22P2A22

)−1(
AT22P2A21

)
C{ˆ̂ξ1,

ˆ̂
ξ2}.

(7.47a)

(7.47b)

(7.47c)

Each of the above covariance matrices (7.47a) through (7.47c) include the ma-
trix S−1

1 , which implies that a matrix of size m1 ×m1 must be inverted. However,
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with the insertion of In2 into (7.47a), and with appropriate matrix groupings, we
may apply the inversion formula (A.6a) to find an inverse of smaller dimension as
shown in the following:

D{ˆ̂ξ1} = σ2
0

[(
AT11P1A11

)
+
(
AT21P̄2

)
In2A21

]−1
= (7.48a)

= σ2
0N
−1
11 − σ2

0N
−1
11 A

T
21P̄2

(
In2

+A21N
−1
11 A

T
21P̄2

)−1
A21N

−1
11 . (7.48b)

Here again, we have used N11 := AT11P1A11 for compactness. The parenthetical
term that must be inverted in equation (7.48b) is an n2 × n2 matrix, which, again,
may be much smaller than an m1 ×m1 matrix, depending on the application. Of
course, the matrix (AT11P1A11)−1 is also size m1 ×m1, but it is assumed that this
inverse had already been performed in the adjustment of the first data set and was
saved for subsequent use.

The estimated variance component is expressed as

ˆ̂σ2
0

(
n−m

)
= σ̂2

0

(
n1 −m1

)
−
(
y2 −A21ξ̂1

)T
P̄2

ˆ̂
λ. (7.49a)

Then, substituting (7.43) results in

ˆ̂σ2
0

(
n−m

)
= σ̂2

0

(
n1 −m1

)
+

+
(
y2 −A21ξ̂1

)T
P̄2

[
In2

+A21

(
AT11P1A11

)−1
AT21P̄2

]−1(
y2 −A21ξ̂1

)
. (7.49b)

7.7 Practice Problems

1. Considering Problem 9 of Section 3.6, assume that a second observation cam-
paign has been conducted, where the original observation scheme was re-
peated, except that the final three observations from the first campaign were
not repeated in the second one. Both data sets are listed in Table 7.1, and
a diagram of the leveling network is shown in Figure 3.4. Furthermore, as-
sume that the weight of each observation in both data sets is defined as the
distance in miles associated with the observation divided by 100. Introduce
datum information so that the height of point D is fixed at 1928.277 ft.

(a) Compute estimates for ξ̂, along with its cofactor matrix, and the esti-
mated variance component σ̂2

0 based only on the first data set.

(b) Using the results of the previous step, compute estimates for
ˆ̂
ξ, D{ˆ̂ξ},

and the estimated variance component ˆ̂σ2
0 using update formulas that do

not directly depend on the observations from the first data set.
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Table 7.1: Leveling data from Rainsford (1968) as yI and simulated second data
set as yII . d stands for distance between stations.

From To No. yI [ft] yII , [ft] d [miles]

A B 1 +124.632 +124.659 68

B C 2 +217.168 +217.260 40

C D 3 −92.791 −92.904 56

A D 4 +248.754 +248.797 171

A F 5 −11.418 −11.402 76

F E 6 −161.107 −161.172 105

E D 7 +421.234 80

B F 8 −135.876 42

C E 9 −513.895 66

2. Now consider the case where one new station, G, was added to the network
during the second observation campaign as depicted in Figure 7.1. The data
for the first observation campaign can be taken from Table 7.1. The data
from the second observation campaign are listed in Table 7.2.

Use (7.39e) followed by (7.35) to compute
ˆ̂
ξ1 and

ˆ̂
ξ2, respectively, or, instead,

use (7.42b) for
ˆ̂
ξ1.

Hint: Because of the network datum deficiency of one, you can modify the
observation vector from the second data set by subtracting out the datum
value of 1928.277 ft from observations y3 and y7 and then remove the param-
eter for the height of station D from the parameter vector. You may check
your answers by combining both data sets into one, and then solve for the
unknown parameters according to Section 3.5.
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Figure 7.1: Simulated extension of a leveling network by Rainsford (1968)

Table 7.2: Leveling data for simulated second data set as yII . d stands for distance
between stations.

From To No. yII , [ft] d [miles]

A B 1 +124.659 68

B C 2 +217.260 40

C D 3 −92.904 56

A G 4 +178.852 85

A F 5 −11.402 76

F E 6 −161.172 105

E D 7 +421.212 80

B G 8 +54.113 45

G C 9 +162.992 45



Chapter 8
Condition Equations with
Parameters: the Gauss-Helmert
Model

8.1 Model Definition

Data models introduced prior to this chapter have either admitted observation
equations with unknown parameters or condition equations without parameters,
but not both. In contrast, the Gauss-Helmert Model (GHM) allows both condition
equations and equations involving unknown parameters to be combined in the same
model. Thus, the GHM can be viewed as being more flexible (or more general) than
either the Gauss-Markov Model (GMM) (Chapter 3) or the Model of Condition
Equations (Chapter 4), since it combines aspects of both. In some cases, the GHM
might be useful for dealing with complicated observation equations, for example
when multiple observations are related functionally to one or more parameters via
specified (possibly nonlinear) equations.

In other cases, the LEast-Squares Solution (LESS) within the GHM is equivalent
to that of orthogonal regression, or, more generally, to a total least-squares (TLS)
solution. Such solutions are sought within models that have both independent and
dependent random data variables. Examples are line and curve fitting in 2D when
both x- and y-coordinates are measured. Coordinate transformation problems also
fall in this category when the coordinates from both the source and target systems
are measured quantities. We will learn how to treat these problems in this chapter.

8.1.1 An example Gauss-Helmert Model

We begin our discussion of the GHM with a leveling-network example in order to
contrast the GMM with the Model of Condition Equations and to show how the
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GHM combines the information used in those two models. The diagram in Figure 8.1
shows a leveling network with four points (P1, P2, P3, P4) that has been observed
in two closed loops comprised of a total of five observations (y1, y2, y3, y4, y5). First
we present a (rank deficient) partitioned GMM as

y = A1ξ1 +A2ξ2 + e, (8.1a)

e ∼
(
0, σ2

0P
−1
)
, (8.1b)

rkA1 = rk
[
A1 |A2

]
=: q < m, (8.1c)

where the coefficient matrix A and the vector of unknown parameters ξ have been
partitioned, respectively, as

A =

[
A1
n×q

A2
n×(m−q)

]
and ξ =

[
ξT1
1×q

ξT2
1×(m−q)

]T
. (8.2)

P1

P3

P4

P2

y1

y2

y3

y4

y5

Figure 8.1: Leveling network. Arrows point in the direction of the level runs.

In this example, the number of unknown parameters is m = 4 (heights of four
points). Since leveled height-differences supply no information about the height
datum, we can only estimate the heights of three of the points with respect to
the remaining fourth one. That explains why rkA =: q = 3 < m, implying a
datum deficiency of m − q = 1. Thus, the model has been partitioned so that ξ1

contains three estimable heights, and ξ2 is a single non-estimable height, which
must be assigned a “datum value.” In this example, we arbitrarily chose point P4

for the non-estimable height. As was stated in Section 3.5, we have the relationship
A2 = A1L for some q × (m− q) matrix L, which means that matrix A2 is a linear
combination of the columns of matrix A1, reflecting the rank deficiency of matrix
A = [A1 |A2].

The problem could also be solved within the Model of Condition Equations
introduced in Chapter 4, which reads

By = Be, e ∼ (0, σ2
0P
−1), (8.3a)
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with the orthogonality condition

i. B ·
[
A1 A2

]
= 0, (8.3b)

and the rank condition

ii. rkB = r = n− rkA1. (8.3c)

These two conditions ensure equivalent least-squares solutions within the models of
(8.1) and (8.3a) as discussed in Section 4.3.

We have the following design (coefficient) matrices and parameter vectors for
the example leveling network, for which it is easy to verify that both conditions i
and ii are satisfied:

A1 =


−1 1 0

−1 0 1

0 −1 1

0 −1 0

0 0 −1

 , A2 =


0

0

0

1

1

 , A =
[
A1 A2

]
,

B =

[
1 −1 1 0 0

0 0 −1 1 −1

]
, ξ1 =

h1

h2

h3

 , ξ2 =
[
h4

]
,

(8.4a)

with

q := rkA1 = rkA = 3, r := rkB = 2 = n− rkA1 = 5− 3 = 2, and B·A = 0.
(8.4b)

Here, hi represents the height of point Pi.
Now we wish to introduce a new coefficient matrix B that does not contain

matrix A in its nullspace, so that we can form a Model of Condition Equations
with parameters. For now we use the symbol B̄ in order to distinguish it from the
coefficient matrix B used in the Model of Condition Equations, which does contain
matrix A in its nullspace (i.e., BA = 0, but B̄A 6= 0). Similarly, we introduce other
bar-terms to form the following GHM:

ȳ = B̄y = w̄ = B̄A1ξ1 + B̄A2ξ2 + B̄e, (8.5a)

B̄e ∼
(
0, σ2

0B̄P
−1B̄T

)
, (8.5b)

rk
(
B̄
)

=: r̄. (8.5c)

The size of B̄ is r̄× n, implying that B̄ has full row rank. The GHM in (8.5) is
equivalent to the GMM in (8.1) if, and only if,

iii. B̄A1 has n− r̄ columns of zeros, and

iv. rk(B̄A1) + r = r̄ ⇔ n = r̄ + q − rk(B̄A1) = rk B̄ + rkA− rk(B̄A1)

Note that, through the matrix B̄, one observation is eliminated for each elimi-
nated parameter. Referring to the level network example, we may wish to eliminate
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the height of point P3 from the parameter list (perhaps it is a temporary benchmark
of no particular interest). This can be done by introducing the following example
matrix B̄:

B̄ =


1 0 0 0 0

0 1 −1 0 0

0 0 0 1 0

0 0 1 0 1

⇒ B̄A2 =


0

0

1

1

 , B̄A1 =


−1 1 0

−1 1 0

0 −1 0

0 −1 0

 .
With these example matrices we have n = 5, r = 2, r̄ = rk B̄ = 4, q = rkA1 = 3, and
rk(B̄A1) = 2. Since n− r̄ = 1, the single column of zeros in B̄A1 satisfies condition
iii. Also, condition iv is satisfied since n = 5 = rk B̄ + rkA− rk(B̄A1) = 4 + 3− 2.

As an aside, we note that it is also possible to remove l estimable parameters via
the splitting of the constraint equation introduced in (5.1), i.e.

κ0 = K
l×m

ξ =
[
K1, K2

] [ξ1

ξ2

]
⇒ (8.6a)

ξ1 = K−1
1 κ0 −K−1

1 K2ξ2. (8.6b)

Here, K1 is a l×l invertible matrix, and K2 is of size l×(m−l). Upon substitution
for ξ1 of (8.6b) into (8.1), we find the following modified system of observation
equations with l parameters eliminated:

y = A1ξ1 +A2ξ2 + e = A1K
−1
1 κ0 + (A2 −A1K

−1
1 K2)ξ2 + e. (8.7)

The l × 1 vector ξ1 has vanished on the right side of (8.7). While this technique
is possible, it might not be used frequently in practice.

8.2 Least-Squares Solution

We could derive the solution for ξ within the GHM (8.5) from statistical principles
via BLUUE (Best Linear Uniformly Unbiased Estimate), but here we use the equiv-
alent principle of LESS (LEast-Squares Solution) as was done in Sections 2.2, 3.2
and 4.3, etc. In the following, we recombine coefficient matrices A1 and A2 back
into the single matrix A and recombine the partitioned parameter vector back into
a single vector ξ = [ξT1 , ξ

T
2 ]T . Accordingly, we can rewrite (8.5) as

w̄ = B̄A1ξ1 + B̄A2ξ2 + B̄e = Āξ + B̄e, (8.8)

where another bar-symbol was introduced for convenience, viz. Ā := B̄A.
Our target function should minimize a quadratic form in the random error vec-

tor e itself, rather than Be; i.e., we minimize eTPe. Then, the Lagrange target
function is written as

Φ(e, ξ,λ) =: eTPe+ 2λT
(
B̄e+ Āξ − w̄

)
, (8.9)
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which must be made stationary with respect to the unknown vectors e, ξ, and λ.
This is done by imposing the Euler-Lagrange necessary conditions, which results in
the following system of equations:

1

2

∂Φ

∂e
= P ẽ+ B̄T λ̂

.
= 0, (8.10a)

1

2

∂Φ

∂ξ
= ĀT λ̂

.
= 0, (8.10b)

1

2

∂Φ

∂λ
= B̄ẽ+ Āξ̂ − w̄ .

= 0. (8.10c)

The vectors of predicted random errors (residuals) and estimated parameters are
then solved for as follows:

ẽ = −
(
P−1B̄T

)
λ̂⇒ from equation (8.10a)

−
(
B̄P−1B̄T

)
λ̂ = w̄ − Āξ̂ ⇒ multiplying by B̄ and using (8.10c)

− λ̂ =
(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
⇒

(
B̄P−1B̄T

)
is invertible

− ĀT λ̂ = ĀT
(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
= 0⇒ mult. by ĀT and using (8.10b)

ĀT
(
B̄P−1B̄T

)−1
Āξ̂ = ĀT

(
B̄P−1B̄T

)−1
w̄

Finally, we arrive at

ξ̂ =
[
ĀT
(
B̄P−1B̄T

)−1
Ā
]−1

ĀT
(
B̄P−1B̄T

)−1
w̄ (8.11a)

and

ẽ = P−1B̄T
(
B̄P−1B̄T

)−1(
w̄ − Āξ̂

)
(8.11b)

for the estimated parameters and predicted residuals, respectively. Equation (8.11a)
has the same form as the LESS derived within the GMM in Section 3.2, and (8.11b)
looks much like formula (4.5d) for the residual vector within the Model of Condition
Equations.

Note that matrix Ā would need to have full column rank to use (8.11a). Thus, in
the example problem in the preceding section, the datum deficiency would need to
be handled first. This could be done, for example, by modifying (“pre-processing”)
the observation vector as mentioned in Section 7.5 and in Problem 2 of Section 7.7.
In the remainder of this chapter, we will assume that there are no rank deficiencies
in the the data models.

The dispersion matrix for the estimated parameter vector ξ̂ is expressed by

D{ξ̂} = σ2
0

[
ĀT
(
B̄P−1B̄T

)−1
Ā
]−1

. (8.12)

And the dispersion matrix for the residual vector reads

D{ẽ} = P−1B̄T
(
B̄P−1B̄T

)−1[
B̄ ·D{e} · B̄T−

− Ā ·D{ξ̂} · ĀT
](
B̄P−1B̄T

)−1
B̄P−1, (8.13)

with D{e} = σ2
0P
−1 as stated in the model (8.1).
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Notation change: For the remainder of the chapter we drop the bars from the
symbols as a matter of convenience. Recall that the bars were introduced in the
first place to distinguish between the matrix B introduced in (8.5) and that used
in Chapter 4 for the Model of Condition Equations. Dropping the bars means that
B̄ → B, w̄ → w, Ā→ BA.

We make one more notation change by replacing the matrix productBA that was
used in the derivations above with the symbol A itself to represents a more general
form of the model. Recall that the matrix BA above included the coefficient matrix
A from a Gauss-Markov Model (GMM). However the more general formulation
of the least-squares adjustment within the GHM would not necessarily reference
quantities used in a GMM.

With these simplified notations, we rewrite the solution (8.11a) as follows:

ξ̂ =
[
AT
(
BP−1BT

)−1
A
]−1

AT
(
BP−1BT

)−1
w. (8.14)

The dispersion of ξ̂ is derived in parts as follows:

D{AT
(
BP−1BT

)−1
w} = AT

(
BP−1BT

)−1
D{w}

(
BP−1BT

)−1
A =

= AT
(
BP−1BT

)−1
B·D{y}·BT

(
BP−1BT

)−1
A =

=
(
BP−1BT

)−1(
σ2

0A
TBP−1BT

)(
BP−1BT

)−1
A =

= σ2
0A

T
(
BP−1BT

)−1
A;

therefore

D{ξ̂}=
[
AT
(
BP−1BT

)−1
A
]−1·D{AT

(
BP−1BT

)−1
w}·

[
AT
(
BP−1BT

)−1
A
]−1

=

=
[
AT
(
BP−1BT

)−1
A
]−1[

σ2
0A

T
(
BP−1BT

)−1
A
][
AT
(
BP−1BT

)−1
A
]−1

,

finally resulting in

D{ξ̂} = σ2
0

[
AT
(
BP−1BT

)−1
A
]−1

. (8.15)

8.3 Iteratively Linearized Gauss-Helmert Model

In this section we present the Gauss-Helmert Model (GHM) as an iteratively lin-
earized model, showing how to form both the model and the least-squares solution
within the model at each step of an iteration scheme. The developed algorithm
is useful for a wide range of problems encountered in geodetic science and other
disciplines.

The reader should be clear that the coefficient matrices A and B used in this
section (and those that follow) are not the same as the coefficient matrices A and B
used in the GMM and Model of Condition Equations, respectively. This should be
obvious from the development that follows.

Suppose we are given a non-linear functional model that relates n observations y
to m unknown parameters Ξ among m + r non-linear condition equations b such
that

b(y − e︸ ︷︷ ︸
n×1

, Ξ︸︷︷︸
m×1

) = 0, b ∈ Rm+r, e ∼ (0, σ2
0P
−1

n×n
), (8.16)
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representing also a mapping b : Rm+n → Rm+r. Equation (8.16) is a non-linear
Gauss-Helmert Model.

By introducing the “true” n× 1 vector of observables µ as

µ := y − e = E{y}, (8.17)

the least-squares objective for model (8.16) is then defined by

eTPe = min, subject to b(µ,Ξ) = 0. (8.18)

An iterative linearization of (8.16), together with the least-squares estimation of
the unknown parameters Ξ and prediction of the unknown random errors e, can be
formed as follows.

Begin by assigning initial values µ0 and Ξ0 to the unknowns µ and Ξ, respec-
tively, e.g., µ0 = y − 0˜ and Ξ0 by some approximate method (perhaps using LESS
within the GMM if linearization would not be required for that solution). Then
execute the following conditional loop:

While
δ < ‖ξ̂j‖ or ε < ‖ẽ(j) − ẽ(j−1)‖ (8.19)

for chosen thresholds δ and ε, and j ∈ N, perform the following steps:

(i) Use the truncated Taylor series about expansion point (µj ,Ξj):[
∂b
∂µT

∣∣
µj ,Ξj

, ∂b
∂ΞT

∣∣
µj ,Ξj

]
·

[
µ− µj
Ξ−Ξj

]
+ b(µj ,Ξj) = 0, (8.20a)

and replace µ with y − e in accordance with (8.17), to introduce

ξj+1
m×1

:= Ξ−Ξj , A(j)

(m+r)×m
:= − ∂b

∂ΞT

∣∣
µj ,Ξj

, B(j)

(m+r)×n
:=

∂b

∂µT
∣∣
µj ,Ξj

, (8.20b)

wj
(m+r)×1

:= b(µj ,Ξj) +B(j) · (y − µj), (8.20c)

and to form the linearized Gauss-Helmert Model

wj = A(j)ξ̂j+1 +B(j)e, e ∼ (0, σ2
0P
−1). (8.20d)

(ii) Produce the (j + 1)th LEast-Squares Solution (LESS) for (8.20d), viz.

ξ̂j+1 =
{

(A(j))T
[
(B(j))P−1(B(j))T

]−1
(A(j))

}−1·

· (A(j))T
[
(B(j))P−1(B(j))T

]−1
wj ,

(8.20e)

ẽ(j+1) = P−1(B(j))T
[
(B(j))P−1(B(j))T

]−1
(wj − (A(j))ξ̂j+1). (8.20f)

(iii) Obtain new approximate values (non-random) through

Ξj+1 := Ξ̂(j+1) − 0˜ = Ξj + ξ̂j+1 − 0˜, (8.20g)
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µj+1 := µ̂(j+1) − 0˜ = y − ẽ(j+1) − 0˜, (8.20h)

where 0˜ denotes a “random zero vector” of suitable size (following Harville,
1986). This means that the jth (approximate) estimates are stripped of their
randomness while keeping their numerical values. The use of 0˜ is formally
required to avoid the assignment of random values to a non-random quantity;
however, its use is of no consequence in practice, since it does not affect the
numerical results.

Repeat the cycle until convergence is reached.
As already suggested, the initial approximate values for µ might be taken from

the observation vector y via µ0 := y−0˜. Unfortunately, this has occasionally led to
the misunderstanding that the so-called “misclosure vector” wi, in the ith iteration
cycle, ought to be updated by b(µi,Ξi) when, in fact, the correct update is described
by (8.20c). Also, the expression for wj in (8.20c) is approximately equal to b(y,Ξj)
and sometimes may turn out to be precisely equal to it; however, in some cases its
usage may lead to convergence to an inaccurate solution. An excellent treatment
of potential pitfalls for solving non-linear least-squares problems, can be found in
Pope (1972), which the reader is encouraged to read. See Schaffrin and Snow (2010)
for a more detailed discussion of this topic.

8.4 Estimated Variance Component

The P -weighted norm of the residual vector ẽ is defined as

Ω := ẽTP ẽ = (8.21a)

=
(
λ̂TBP−1

)
P
(
P−1BT λ̂

)
= (8.21b)

=
[
−
(
w −Aξ̂

)T (
BP−1BT

)−1](
BP−1BT

)
λ̂ = (8.21c)

=
(
w −Aξ̂

)T (
BP−1BT

)−1(
w −Aξ̂

)
= (8.21d)

=
(
Bẽ
)T (

BP−1BT
)−1(

Bẽ
)
. (8.21e)

Thus it follows that, the uniformly unbiased estimate of the variance component σ2
0

is given by

σ̂2
0 =

(
Bẽ
)T (

BP−1BT
)−1(

Bẽ
)

r
=
ẽTP ẽ

r
=
−wT λ̂

r
, (8.22)

where the redundancy r is defined as

r := rkB − rkA, (8.23)

which is the number of rows of B minus the number of columns of A, assuming
matrix B has full row rank and matrix A has full column rank.
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8.5 Equivalent Normal Equations

From (8.10b) and the second equation following (8.10c), and considering the no-
tation changed described on Page 155, we can recognize the following system of
normal equations:[

BP−1BT −A
−AT 0

][
λ̂

ξ̂

]
=

[
−w
0

]
⇒

[
λ̂

ξ̂

]
=

[
BP−1BT −A
−AT 0

]−1 [
−w
0

]
. (8.24)

We want to show that the solution to this system yields the same ξ̂ as that of
(8.14). The formula for the inverse of a partitioned matrix (see (A.11)) leads to the
following solution:[

λ̂

ξ̂

]
=

[
X1 X2

−W−1AT (BP−1BT )−1 (0−W )−1

][
−w
0

]
,

with W := AT (BP−1BT )−1A, and finally to[
λ̂

ξ̂

]
=

[
−X1w[

AT (BP−1BT )−1A
]−1

AT (BP−1BT )−1w

]
. (8.25)

Here the symbols X1 and X2 represent quantities of no interest. We see that the
solution for the parameters ξ̂ is the same in (8.14).

8.6 Example Problems

The following example problems are meant to help illustrate the use of the Gauss-
Helmert Model (GHM).

8.6.1 Example — Fitting a Parabola When Both x- and y-
Coordinates are Observed

In this example, we show how the GHM can be used to fit a parabola when both the
x- and y-coordinates have been observed. This is in contrast to the problem treated
in Section 3.2.1 with the GMM, where only the dependent variables (y-coordinates)
could be considered as measurements. Here, the observation vector y is comprised
of all pairs of the n/2 measured points. For example, y could be defined as

y
n×1

=
[
x1, x2, . . . , xn/2, y1, y2, . . . , yn/2

]T
. (8.26)

Alternatively, the elements of y could be ordered by coordinate pairs, i.e., y =
[x1, y1, . . . , xn/2, yn/2]T . The key is that consistency of ordering must be maintained
for the coefficient matrix B, the random error vector e, and the observation cofactor
matrices, too.
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Denoting the true (unknown) variables as µxi and µyi , i = 1, 2, . . . , n/2, the
following equations can be written for the ith pair of observed variables (xi, yi):

xi = µxi + exi , E{exi}= 0⇒ E{xi} = µxi , (8.27a)

yi = µyi + eyi , E{eyi} = 0⇒ E{yi} = µyi . (8.27b)

For this example, we assume that the measurement errors are iid. Collecting
the random error terms in vectors ex and ey, respectively, their stochastic nature
can then be expressed succinctly as

e
n×1

=

[
ex

ey

]
∼
([

0

0

]
, σ2

0

[
In/2 0

0 In/2

])
. (8.28)

The (nonlinear) function that relates the ith pair of variables (µxi , µyi) to the
non-random parameters Ξ = [Ξ1,Ξ2,Ξ3]T is given by

bi(Ξ1,Ξ2,Ξ3, µxi , µyi) = µyi − µ2
xiΞ1 − µxiΞ2 − Ξ3 = 0, i ∈ {1, 2, . . . , n/2},

(8.29a)

which can be linearized about (ui0,Ξ0) by

b0i + dµyi − (2µ0
xiΞ

0
1 + Ξ0

2) dµxi − (µ2
xi)

0 dΞ1 − µ0
xi dΞ2 − dΞ3 = 0, (8.29b)

where higher order terms have been neglected. Here the superscript 0 denotes the
expansion point for the variables and parameters that the derivatives are evaluated
at, viz. ui0 = [µ0

xi , µ
0
yi ]
T and Ξ0 = [Ξ0

1,Ξ
0
2,Ξ

0
3]T . The argument list for bi has been

dropped for the sake of brevity. Now define n/2 equations with:

ξ =
[
dΞ1, dΞ2, dΞ3

]T
= Ξ−Ξ0, (8.30a)

−Ai =
[
−(µ0

xi)
2, −µ0

xi , −1
]
, (8.30b)

Bi =
[
−2µ0

xiΞ
0
1 − Ξ0

2, 1
]
, (8.30c)

where Ai is the ith row of an (m + r)×m matrix A (with m = 3 and r being the
redundancy of the model, and n = 2(m+ r) in this example). In contrast, Bi shows
only the non-zero elements of a row of an (m+r)×n matrix B. Those two elements
go in the ith and 2ith columns, respectively, of the ith full row of B (assuming the
ordering of observations shown in (8.26)). Further define

dµxi = µxi − µ0
xi = xi − µ0

xi − exi and dµyi = µyi − µ0
yi = yi − µ0

yi − eyi ,
(8.30d)

along with vectors

ei =
[
exi , eyi

]T
, and wi = b0i +Bi

[
xi − µ0

xi , yi − µ
0
yi

]T
(8.30e)

so that (8.29b) can be rewritten for the ith observed coordinate pair as

−Aiξ −Biei + wi = 0. (8.31)
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Then the complete set of n/2 = m+ r equations can be expressed as

w = Aξ +Be, (8.32)

which is obviously in the form of a GHM, within which a least-squares solution can
be computed using the algorithm described in Section 8.3. In order to avoid non-
convergence or convergence to the wrong solution, one must pay careful attention
to the comments in the last paragraph of Section 8.3. In practice, they mean that
all the terms A, B, and w must be updated at each iteration, using numerical value
computed from the previous iteration.

The preceding formulation can be applied to the fitting of many different kinds
of functions in 2D- and 3D-space, including lines, planes, quadratic surfaces, etc.
When the data are iid, these adjustments amount to solving so-called “orthogo-
nal regression” problems, since the residuals pairs (ẽxi , ẽyi) define vectors that are
orthogonal to the fitted curve (or surface in 3D). In the case of a general weight
matrix P , we might prefer to say “P -weighted orthogonal regression,” since the
weights will influence the direction of the 2D and 3D residual vectors.

8.6.2 Example — Fitting a Ellipse When Both x- and y-
Coordinates are Observed

An equation for an ellipse can be written as a function of its center point (z1, z2), the
length of its semi-major axis a, the length of its semi-minor axis b, and the counter-
clockwise angle α between the z1-axis and the semi-major axis (see Figure 8.2).
Accordingly, a (nonlinear) function that relates the ith pair of n/2 pairs of random
variables (µxi , µyi) to the unknown (but non-random) parameters (µα, µa, µb, µz1 ,
µz2) is provided by

bi
(
µα, µa, µb, µz1 , µz2 , µxi , µyi

)
=

= µ2
b

[
cos2 µα(µxi − µz1)2 + 2 cosµα sinµα(µxi − µz1)(µyi − µz2)+

+ sin2 µα(µyi − µz2)2
]
+

+ µ2
a

[
sin2 µα(µxi − µz1)2 − 2 sinµα cosµα(µxi − µz1)(µyi − µz2)+

+ cos2 µα(µyi − µz2)2
]
− µ2

aµ
2
b = 0,

(8.33)

with i ∈ {1, . . . , n/2}. Collecting the unknown parameters in the vector Ξ, viz. Ξ =
[µα, µa, µb, µz1 , µz2 ]T , their values can then be estimated via a least-squares solution
within the GHM as outlined in Section 8.6.1, where (8.29a) would be replaced by
(8.33).

8.6.3 Example — 2D Similarity Transformation When Co-
ordinates Have Been Observed in Both the Source and
Target Systems

If n/2 coordinate pairs (Xi, Yi) and (xi, yi) have been observed in both target
(“new”) and source (“old”) coordinate systems, respectively, then the following
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z1‖(z1, z2)

b a

α

Figure 8.2: An ellipse with semi-major and semi-minor axes a and b, respectively,
centered at (z1, z2) and rotated by angle α

GHM can be used to model a 2D similarity transformation:

b(µ, ξ) :=


· · ·
Xi

Yi

· · ·

−

· · ·
eXi
eYi

· · ·

−

· · · · · · · · ·
1 0 xi − exi −(yi − eyi)
0 1 yi − eyi xi − exi
· · ·



ξ1

ξ2

ξ3

ξ4

 = 0, (8.34a)

where

y :=
[
. . . , Xi, Yi, . . . , xi, yi, . . .

]T
is a 2n× 1 vector of observed coordinates,

(8.34b)

e :=
[
. . . , eXi , eYi , . . . , exi , eyi , . . .

]T
is a 2n× 1 random error vector, (8.34c)

µ := y − e is a 2n× 1 vector of actual (“true”) coordinates, and (8.34d)

ξ :=
[
ξ1, ξ2, ξ3, ξ4]T is the 4× 1 vector of unknown parameters, with (8.34e)

ξ3 := ω cosα, and ξ4 := ω sinα. (8.34f)

Here, ξ1 and ξ2 are translation parameters along the X- and Y -axis, respectively;
ω is a scale factor, and α is a counter-clockwise rotation angle.

8.7 Some Published Examples

The following papers include numerical examples for the GHM that may be of
interest to the reader:

1. Circle fitting: Schaffrin and Snow (2010).

2. Line fitting in 3D: Snow and Schaffrin (2016).

3. 2D similarity transformations: Neitzel and Petrovic (2008).
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In addition to these sources, Pope’s 1972 paper is highly recommended to un-
derstand how to best avoid potential pitfalls in adjusting data within iteratively
linearized models.

8.8 Practice Problems

1. A circle is to be fitted to the set of measured coordinates shown in Table 8.1,
which were presented in Schaffrin and Snow (2010). Both x- and y-coordinates
were measured, and the associated random errors are considered to be iid.

Table 8.1: Measured coordinates for the fitting of a circle. Units are not given.

No. x y

1 0.7 4.0

2 3.3 4.7

3 5.6 4.0

4 7.5 1.3

5 6.4 −1.1

6 4.4 −3.0

7 0.3 −2.5

8 −1.1 1.3

(a) Setup an appropriate Gauss-Helmert Model with the coordinates of the
center of the circle and its radius as the three unknown parameters. What
is the redundancy of the model?

(b) Compute the least-squares estimates of the center of the circle and its
radius. You may use the following initial approximations for the param-
eters: Ξ0 = [3, 1, 4]T (in order of x and y coordinates of the center point
followed by the radius).

(c) Compute the estimated variance component and the empirical rms of the
estimated parameters (i.e., the square roots of the diagonal elements of
the estimated dispersion matrix).

(d) What is the geometrical relationship between the estimated center of the
circle and each respective pair of observed and adjusted coordinates?

2. An ellipse is to be fitted to the set of measured coordinates plotted in Fig-
ure 8.3 and listed in Table 8.2. Both z1- and z2-coordinates were measured,
and the associated random errors are considered to be iid.

(a) Setup an appropriate Gauss-Helmert Model with the coordinates of the
center of the ellipse (z1, z2), its semi-major and semi-minor axes lengths
a and b, and the angle α between the z1 axis and the semi-major axis as
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Figure 8.3: Fitted ellipse and measured coordinates in the 2-D plane (listed in
Table 8.2)

five unknown parameters (see Section 8.6.2). What is the redundancy of
the model?

Table 8.2: Measured coordinates for the fitting of an ellipse. Units are not given.

No. z1 z2

1 2.0 6.0

2 7.0 7.0

3 9.0 5.0

4 3.0 7.0

5 6.0 2.0

6 8.0 4.0

7 −2.0 4.5

8 −2.5 0.5

9 1.9 0.4

10 0.0 0.2
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(b) Compute the least-squares estimates of the unknown parameters of the
ellipse. You may use the following initial approximations for the param-
eters: Ξ0 = [0, 7, 3, 3, 4]T (in order of µ0

α, µ0
a, µ0

b , µ
0
z1 , µ0

z1).

(c) Compute the estimated variance component and the empirical rms of the
estimated parameters (i.e., the square roots of the diagonal elements of
the estimated dispersion matrix).

3. The data used for fitting the parabola shown in Figure 3.1 are listed in Ta-
ble 8.3. Assume that the cofactor matrix for the x-coordinates is Qx =
(0.010 m)2·In and that the cofactor matrix for the y-coordinates is Qy =
(0.005 m)2·In. Using the model presented in Section 8.6.1, compute the fol-
lowing:

(a) Estimates for the three unknown parameters of the parabola.

(b) The estimated variance component.

(c) The empirical rms of the estimated parameters (i.e., the square roots of
the diagonal elements of the estimated dispersion matrix).

Table 8.3: Measured coordinates for the fitting of a parabola. The units are in
meters.

No. x y

1 1.007 1.827

2 1.999 1.911

3 3.007 1.953

4 3.998 2.016

5 4.999 2.046

6 6.015 2.056

7 7.014 2.062

8 8.014 2.054

9 9.007 2.042

10 9.988 1.996

11 11.007 1.918

12 12.016 1.867

8.9 Summary Formulas for the Least-Squares So-
lution Within the Gauss-Helmert Model

See the last paragraph of Section 8.2 for comments about replacing the product BA
used in earlier sections of this chapter with the matrix A itself, as was done in the
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following:
The linearized Gauss-Helmert Model (GHM) is given by

w
(r+m)×1

= A
(r+m)×m

ξ + B
(r+m)×n

e, e
n×1
∼ (0, σ2

0P
−1).

Table 8.4: Summary formulas for the LESS within the Gauss-
Helmert Model

Quantity Formula Eq.

Model
redundancy

r = rkB − rkA (8.23)

Vector of
estimated
parameters

ξ̂ =[
AT
(
BP−1BT

)−1
A
]−1

AT
(
BP−1BT

)−1
w

(8.11a)

Dispersion
matrix for
estimated
parameters

D{ξ̂} = σ2
0 ·
[
AT
(
BP−1BT

)−1
A
]−1

(8.12)

Vector of
predicted
residuals

ẽ = P−1BT
(
BP−1BT

)−1(
w −Aξ̂

)
(8.11b)

Dispersion
matrix for
residuals

D{ẽ} =

P−1BT
(
BP−1BT

)−1[
B·D{e}·BT −

A·D{ξ̂}·AT
](
BP−1BT

)−1
BP−1

(8.13)

Sum of
squared
residuals
(SSR)

Ω = ẽTP ẽ (8.21a)

Estimated
variance
component

σ̂2
0 = Ω/r (8.22)

Continued from previous page



Chapter 9
Statistical Analysis

It is assumed that the reader of these notes has had at least a first course in statistical
methods or probability theory and thus has some familiarity with hypothesis testing
in statistical analysis. Therefore, key terms and concepts will be described only
briefly, and the main focus will be placed on the application of hypothesis testing to
parameters estimated from least-squares adjustments as described in the preceding
chapters. For a broader treatment of statistical methods, and an excellent refresher
on hypothesis testing in particular, see Snedecor and Cochran (1980).

Consider a normally distributed random (scalar) variable y with the following
first through fourth moments:

E{y} = µ, (9.1a)

E{(y − µ)2} = D{y} = σ2, (9.1b)

E{(y − µ)3} = 0, (9.1c)

E{(y − µ)4} = 3(σ2)2. (9.1d)

The third moment being zero in (9.1c) means there is no skewness in the distribution
of the random variable. The right side of (9.1d) indicates that there is no kurtosis
(peak) in the distribution.

If (9.1c) or (9.1d) are not satisfied, the variable is not normally distributed and
can be characterized as follows:

E{(y − µ)3} > 0⇔ the distribution is skewed to the positive side. (9.2a)

E{(y − µ)3} < 0⇔ the distribution is skewed to the negative side. (9.2b)

E{(y − µ)4} − 3(σ2)2 > 0⇔ the distribution has positive kurtosis. (9.2c)

E{(y − µ)4} − 3(σ2)2 < 0⇔ the distribution has negative kurtosis. (9.2d)

Skewness appears in a graph of a sample of the random variable (e.g., a histogram)
as a shift in the peak value from center. Positive kurtosis shows higher probability
near the expected value µ, which results in a taller, narrower graph. Negative

165
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kurtosis shows higher probability in the tails of the graph; thus the graph appears
flatter than that of a normally distributed variable.

The pdf (probability density function, or density function) of a normally dis-
tributed random (scalar) variable y is

f(y) =
1√

2πσ2
e−(y−µ)2/2σ2

, (9.3)

where µ is the expectation of the distribution (population mean), σ is standard
deviation, σ2 is variance, and e is Euler’s number (i.e., the base of the natural log-

arithm, e ≈ 2.71828). Note that the term 1/
√

2πσ2 ≈ 0.4/σ denotes the amplitude
of the graph of the curve, µ shows the offset of the peak from center, and σ is the
distance from the center to the inflection points of the curve.

The cdf (cumulative distribution function, or distribution function) of a normally
distributed random variable is expressed as

F (y) =

y∫
−∞

f(t) dt =
1

σ
√

2π

y∫
−∞

e−(t−µ)2/2σ2

dt. (9.4)

Figure 9.1 shows pdf and cdf plots for the normal distribution using various values
for µ and σ2

0 . Line colors and types match between the pdf and cdf plots. The solid,
green line represents the respective standard normal pdf and cdf curves.

Note that, in geodetic-science applications, the random variable y might be an
observation, an adjusted observation, a predicted residual, etc. We can standardize
the random variable y with the following transformation, which subtracts out the
mean and divides by the standard deviation:

z =
y − µ
σ

. (9.5)

The standardized random variable z has the following moments and probability
functions:

E{z} = 0, (9.6a)

D{z} = 1, (9.6b)

pdf : f(z) =
1√
2π

e−z
2/2, (9.6c)

cdf : F (z) =

z∫
−∞

f(t) dt =
1√
2π

z∫
−∞

e−t
2/2 dt . (9.6d)

A plot of the pdf of z is shown in Figure 9.2, along with example Student’s t-
distribution curves (discussed below).

In the multivariate case, the random variable y is an n×1 vector, with an n×n
dispersion (covariance) matrix Σ = D{y} and expectation vector µ = E{y}, which
is also size n× 1. The pdf is then written as

f(y) =
1

(2π)n/2
√

det Σ
e−(y−µ)TΣ−1(y−µ)/2. (9.7)
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Figure 9.1: pdf curve (top) and cdf curve (bottom) for the normal distribution with
matching line types and colors so that the legend pertains to both graphs

And the cdf is written as

F (y1, . . . , yn) =

yn∫
−∞

. . .

y1∫
−∞

f(t1, . . . , tn) dt1 . . . dtn . (9.8)
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Figure 9.2: Curves of student’s t- and normal distributions for a standardized ran-
dom variable

The elements of y, i.e. y1, . . . , yn, are statistically independent if, and only if,

f(t1, . . . , tn) = f(t1) · f(t2) · . . . f(tn), (9.9a)

which implies

C{yi, yj} = 0 for i 6= j. (9.9b)

Equation (9.9b) states that there is no covariance between the elements of random
vector y.

The third and fourth moments for the multivariate case are given in (9.10a)
and (9.10b), respectively.

E{(yi − µi)(yj − µj)(yk − µk)} = 0 for i, j, k = {1, . . . , n} (9.10a)

E{(yi − µi)(yj − µj)(yk − µk)(yl − µl)} = 3(σ2
i )δijkl for i, j, k, l = {1, . . . , n}

(9.10b)

In the following, we discuss studentized residuals, which have a t-distribution
(or Student’s t-distribution). The pdf for a (scalar) variable having a t-distribution
and ν = n− 1 degrees of freedom is defined as follows:

f(t) =
1√

(n− 1)π
· Γ(n/2)

Γ
(
n−1

2

) · 1(
1 + t2

n−1

)n/2 , (9.11)

where the gamma function is defined by

Γ(n) := (n− 1)Γ(n− 1) =

∞∫
0

e−ttn−1 dt = (n− 1)! for n ∈ N. (9.12)

As is known from introductory statistics, the pdf for the Student’s t-distribution
resembles the pdf of the normal distribution when n is around 30. A plot of the pdf
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for the Student’s t-distribution, with ν = 2, 4, together with the pdf for the normal
distribution, is shown in Figure 9.2.

9.1 Standardized and Studentized Residuals

We begin this section by restating the (full-rank) Gauss-Markov Model and writing
the predicted vector of random errors within the model.

y = Aξ + e, e ∼
(
0, σ2

0P
−1
)
, rkA = m (9.13a)

ẽ =
(
In −AN−1ATP

)
y =

(
In −AN−1ATP

)
e (9.13b)

As usual, the observation vector y is of size n × 1, and the coefficient matrix A is
of size n×m. Obviously, the far-right side of (9.13b) cannot be computed since e
is an unknown variable. However, the expression is useful for analytical purposes.

In the following, we assume that the random error vector e has a normal dis-
tribution expressed by e ∼ N (0, σ2

0P
−1) (where the symbol N denotes normal

distribution). This assumption is made for the sake of hypothesis testing in statis-
tical analysis, which requires that test statistics1 be computed as a function of a
specified pdf. The justification of the assumption owes to the central limit theorem
as stated by Bjerhammar (1973, p. 35) (see also the footnote on page 182). How-
ever, since e and σ2

0 are unknown their respective prediction ẽ and estimate σ̂2
0 are

used instead; consequently, the student t-distribution is used in place of the normal
distribution for formulating hypothesis tests.

The so-called standardized residual vector is a function of the residual vector ẽ
and its dispersion matrix D{ẽ} as shown in the following:

D{ẽ} = σ2
0

(
P−1 −AN−1AT

)
, (9.14a)

σ2
ẽj = ηTj D{ẽ}ηj = E{ẽ2

j}, (9.14b)

with

ηj :=
[
0, . . . , 0, 1

jth
, 0, . . . , 0

]T
, (9.14c)

as a unit vector that serves to extract the jth diagonal element from the dispersion
matrix. Then, the jth standardized residual is defined as

z̃j := ẽj/σẽj . (9.15)

Since the variance component σ2
0 is considered unknown in the model (9.13a), we

replace it with its estimate σ̂2
0 , leading to the following analogous set of equations

for the studentized residual :

σ̂2
0 =

ẽTP ẽ

n− rk(A)
=
yTPy − cTN−1c

n−m
, (9.16a)

D̂{ẽ} = σ̂2
0

(
P−1 −AN−1AT

)
, (9.16b)

1The term test statistic is called test criterion by Snedecor and Cochran (1980, p. 65).
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σ̂2
ẽj = ηTj D̂{ẽ}ηj = Ê{ẽ2

j}. (9.16c)

Then the studentized residual is defined as

t̃j := ẽj/σ̂ẽj . (9.17)

Note that the denominator in (9.15) is constant (due to the unknown but constant
variance component σ2

0), whereas the denominator of (9.17) is random due to the
introduction of the estimate σ̂2

0 , which is random. Of course the numerator is
random in both cases.

Using Q to represent cofactor matrices in general, we can rewrite the standard-
ized and studentized residuals in the following alternative forms:

Standardized residual: z̃j := ẽj
/√

σ2
0

(
Qẽ
)
jj
∼ N (0, 1). (9.18a)

Studentized residual: t̃j := ẽj
/√

σ̂2
0

(
Qẽ
)
jj
∼ t(n− 1). (9.18b)

Here D{ẽ} = σ2
0Qẽ, and (Qẽ)jj denotes the jth diagonal element of the resid-

ual cofactor matrix Qẽ, and we have assumed that the standardized residuals are
normally distributed, implying that the studentized residuals follow the student t-
distribution. Again, it is noted that (9.18a) cannot be computed unless the variance
component σ2

0 is known.
Example: Direct observations of a single parameter µ with weight matrix P = In.

y = τµ+ e, e ∼ N
(
0, σ2

0In
)
, with τ = [1, . . . , 1]T

µ̂ =
τTy

τT τ
=

1

n

(
y1 + . . .+ yn

)
∼ N

(
µ, σ2

0/n
)

ẽ = y − τ µ̂ ∼ N (0, σ2
0

[
In − n−1 · ττT

]
)

Qẽ = In − n−1 · ττT

σ̂2
0 =

ẽT ẽ

(n− 1)

The formula for Qẽ in the above example means that (Qẽ)jj = (n− 1)/n, which
shows that the more observations we have (i.e., the larger n is), the more the
dispersion of the predicted random error D{ẽ} approaches the dispersion of the true
random error D{e}. In this example the standardized and studentized residuals are
written as follows:

Standardized: z̃j =
ẽj√

σ2
0(Qẽ)jj

=
ẽj
√
n

σ0

√
n− 1

∼ N (0, 1). (9.19a)

Or, alternatively: z̃j =
ẽj√

(Qẽ)jj
=

ẽj
√
n√

n− 1
∼ N (0, σ2

0). (9.19b)

Studentized: t̃j =
ẽj√

σ̂2
0(Qẽ)jj

=
ẽj√
ẽT ẽ

√
n ∼ t(n− 1). (9.19c)
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We extend the example by including a hypothesis test for the parameter esti-
mate µ̂ against a specified value µ0 at a significance level α.

Hypothesis test: H0 : E{µ̂} = µ0 against HA : E{µ̂} 6= µ0.

Test statistic: t =
µ̂− µ0√

σ̂2
0

√
n ∼ t(n− 1).

We accept the null hypothesis H0 if t−α/2 ≤ t ≤ tα/2; otherwise we reject H0.
We may perform a similar test H0 : E{ẽj} = 0 for the jth residual. In this case the
test statistic is the studentized residual computed by (9.19c).

9.2 Hypothesis Testing Within the Gauss-Markov
Model

The hypothesis test introduced in Section 9.1 for direct observations of a single
parameter is now extended to the Gauss-Markov Model (GMM). In introducing the
GMM in Chapter 3, a probability density function was not given for the random
observation errors; only the first and second moments of the random errors were
specified. This is indeed all that is necessary to formulate and solve the least-
squares estimation problem within the GMM. However, in order to perform classical
hypothesis testing after the least-squares estimate has been computed, a probability
distribution must be specified. Typically, we assume that the observation errors
have a normal distribution. Then, the (full rank) GMM is written succinctly as

y
n×1

= A
n×m

ξ + e, rkA = m, e ∼ N
(
0, σ2

0P
−1
)
. (9.20)

where the symbol N denotes the normal distribution.
Minimization of the observation errors via a least-squares adjustment leads to

the following vectors of parameter estimates and predicted random-errors, shown
with their corresponding normal distributions (normal because the distribution of
the observations were assumed to be normal for the sake of hypothesis testing):

ξ̂ = N−1c ∼ N
(
ξ, σ2

0N
−1
)
, (9.21a)

ẽ =
(
In −AN−1ATP

)
y ∼ N

(
0, σ2

0

[
P−1 −AN−1AT

])
. (9.21b)

Or equivalently, we could write for the predicted residual vector

ẽ =
(
In −AN−1ATP

)
e = QẽPy ∼ N

(
0, σ2

0Qẽ
)
, (9.22a)

with its cofactor matrix provided by

Qẽ := P−1 −AN−1AT . (9.22b)

The jth standardized and studentized residuals are then written as

jth standardized residual: z̃j := ẽj
/√

σ2
0(Qẽ)jj ∼ N (0, 1), (9.23)
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jth studentized residual: t̃j := ẽj
/√

σ̂2
0(Qẽ)jj ∼ t(n−m). (9.24)

As shown in Chapter 3, we compute the estimated reference variance within the
GMM by

σ̂2
0 =

ẽTP ẽ

n−m
, (9.25)

where n − m is the redundancy of the model. The hypothesis test for the jth
studentized residual then becomes

H0 : E{ẽj} = 0 versus HA : E{ẽj} 6= 0. (9.26)

Likewise, we may test individual elements of the estimated parameter vector ξ̂.
For example, we may want to compare the jth element of the estimated parameter

vector, ξ̂j , against some specified value ξ
(0)
j . In this case, the null hypothesis and

computed test statistic are defined as follows:

H0 : E{ξ̂j} = ξ
(0)
j versus HA : E{ξ̂j} 6= ξ

(0)
j , (9.27a)

tj =
ξ̂j − ξ(0)

j√
σ̂2

0

(
N−1

)
jj

∼ t(n−m), (9.27b)

or

t2j =

(
ξ̂j − ξ(0)

j

)[(
N−1

)
jj

]−1(
ξ̂j − ξ(0)

j

)
/1

(ẽTP ẽ)/(n−m)
∼ F (1, n−m). (9.27c)

From (9.27b) and (9.27c) we see that in this case the square of the test statistic
having a Student’s t-distribution has an F -distribution.

For a given significance level α, we accept H0 if t−α/2 ≤ tj ≤ tα/2; otherwise
we reject H0. We can use a cdf table for the t-distribution to find the value of
tα/2(n −m). Note that α is the probability of making a Type I error (also called
the significance level of the test), and n −m is the degrees of freedom associated
with σ̂2

0 ; for the F -distribution, 1 is the degrees of freedom associated with the
numerator.

9.3 Confidence Intervals for Ellipses, Ellipsoids,
and Hyperellipsoids

After we estimate the mean of a population, or the parameter of a data model, we
might then like to make a statement about the accuracy of the estimated value. In
statistics, a probability statement gives the probability that the estimated quantity
falls within a certain interval centered on the true, but unknown mean (or model
parameter). Such an interval is called a confidence interval, and its upper and lower
bounds are called confidence limits. Confidence ellipses, ellipsoids, and hyperellip-
soids are the respective 2-D, 3-D, and n-D analogues to confidence intervals.
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9.3.1 Confidence Intervals — Univariate Case

By definition, the cdf (cumulative distribution function) of a random variable X is

FX(x) = P (X ≤ x), −∞ < x <∞, (9.28)

which provides the probability that the unknown quantity X is less than or equal
to the sampled value x. It follows, then, that the probability that X lies within the
interval (a, b] is

P (a < X ≤ b) = FX(b)− FX(a). (9.29)

Applying (9.29) to the standard normal random variable z of (9.5), we can write
the following probabilities for confidence intervals bounded by ±1σ, ±2σ, ±3σ,
respectively, from the mean, where σ = 1 since z ∼ N (0, 1) according to (9.6a)
and (9.6b):

P (−1 < z ≤ 1) = P (µ− σ < y ≤ µ+ σ) = 68.3% (9.30a)

P (−2 < z ≤ 2) = P (µ− 2σ < y ≤ µ+ 2σ) = 95.5% (9.30b)

P (−3 < z ≤ 3) = P (µ− 3σ < y ≤ µ+ 3σ) = 99.7% (9.30c)

The intervals associated with these probability statements are commonly referred
to as the “1-sigma,” “2-sigma,” and “3-sigma” confidence intervals, respectively.
Other commonly used intervals are the so-called 90%, 95%, and 99% confidence
intervals. For a normally distributed random variable z, their respective probability
statements are

90% = P (−1.645 < z ≤ 1.645), (9.31a)

95% = P (−1.960 < z ≤ 1.960), (9.31b)

99% = P (−2.576 < z ≤ 2.576). (9.31c)

Probability limits correspond to the area under the graph of the associated
pdf. For example, the area between ±σ under the graph of the standard normal
distribution shown in Figure 9.2 is 0.683, and it is 0.997 for ±3σ. The regions
beyond these areas are called the tails of the graph. Figure 1.2 depicts a graphical
representation of the areas comprising ±σ, ±2σ, and ± 3σ. It is shown again in
Figure 9.3 for convenience.

9.3.2 Confidence Ellipses — Bivariate Case

Now let us consider the bivariate (2-D) case where y is a random 2-D vector and µ
is its expected value; i.e., µ = E{y}. Also, the dispersion of y is given by a 2 × 2
dispersion matrix Σ. In summary, we have

y =

[
y1

y2

]
, µ =

[
µ1

µ2

]
= E{

[
y1

y2

]
}, Σ := D{y} =

[
σ2

1 σ12

σ21 σ2
2

]
, σ12 = σ21. (9.32)

When speaking of the elements of the vectors and matrix in (9.32), we say that
µ1 is the expected value of y1; σ2

1 is the variance of y1 (with σ1 called standard
deviation), and σ12 is the covariance between y1 and y2.
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Figure 9.3: Normal distribution curve, with percent of areas under curve denoting
probabilities. Image derived from TikZ code by John Canning, Senior Lecturer at
the University of Brighton (http://johncanning.net/wp/?p=1202).

The 2-D analogue to a confidence interval is a confidence ellipse, which can be
generated from

(y − µ)TΣ−1(y − µ) = (9.33a)

=
1

(1− ρ2
12)

(
(y1 − µ1)2

σ2
1

− 2ρ12
(y1 − µ1)(y2 − µ2)

σ1σ2
+

(y2 − µ2)2

σ2
2

)
= k2, (9.33b)

where k is a constant, and ρ is the correlation coefficient defined by

ρ12 =
σ12

σ1σ2
. (9.34)

By varying k, we generate a family of ellipses, each having an associated constant
probability. Setting k = 1 results in the standard confidence ellipse. The ellipses
actually originate by slicing the surface associated with a bivariate density function
(pdf) with a plane parallel to the (y1, y2)-coordinate plane as described in the
following.

Using the terms defined in (9.32), together with equation (9.7), we can write the
joint pdf (or bivariate density function) of y explicitly as

f(y) = f(y1, y2) =
1

2π
√
σ2

1σ
2
2 − σ2

12

·

· exp

{
− σ2

1σ
2
2

2(σ2
1σ

2
2 − σ2

12)

[
(y1 − µ1)2

σ2
1

− 2σ12
(y1 − µ1)

σ2
1

(y2 − µ2)

σ2
2

+
(y2 − µ2)2

σ2
2

]}
=

(9.35a)

http://johncanning.net/wp/?p=1202
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=
1

2πσ1σ2

√
1− ρ2

12

·

· exp

{
− 1

2(1− ρ2
12)

[(
y1 − µ1

σ1

)2

− 2ρ12

(
y1 − µ1

σ1

)(
y2 − µ2

σ2

)
+

(
y2 − µ2

σ2

)2]}
,

(9.35b)

where exp stands for the exponential function, e.g., exp{x} = ex. The density
function has the form of a bell-shaped surface over the (y1, y2)-coordinate plane,
centered at (µ1, µ2). By ignoring ρ, the respective marginal pdf’s f(y1) and f(y2)
can be written as

f(y1) =
1

2π
exp

{
−1

2

(
y1 − µ1

σ1

)2}
, (9.36a)

and

f(y2) =
1

2π
exp

{
−1

2

(
y2 − µ2

σ2

)2}
. (9.36b)

The bivariate density function f(y1, y2) and the marginal density functions f(y1)
and f(y1) are depicted in Figure 9.4 with ellipses traced out by slicing planes.

Figure 9.4: Bivariate and marginal density functions (pdf’s) with ellipses traced
from slicing planes, after Mikhail and Gracie (1981, p. 221)

Each element of the vector y may be normalized according to (9.5), so that the
jth element of the normalized vector z is expressed in terms of the corresponding
jth element of y; that is zj = (yj − µj)/σj , j = 1, 2. Substituting zj into (9.35b)
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we can write the following pdf for the normalized 2-D vector z:

f(z1, z2) =
1

2πσ1σ2

√
1− ρ2

12

· exp

{
− 1

2
(
1− ρ2

12

)(z2
1 − 2ρ12z1z2 + z2

2

)}
. (9.37)

As noted above, a family of ellipses can be generated by slicing the bell-shaped
surface generated by the density function (9.37) with planes parallel to the (y1, y2)-
coordinate plane. The formula for the ellipse can be defined by setting the density
function to a constant value related to the height of the slicing plane, which after
some simplification results in an equation of the form (9.33b). According to Mikhail
and Gracie (1981, p. 221), the relationship between the height h of the slicing
plane above the (y1, y2)-coordinate plane and the constant k in (9.33b) is given by
k2 = ln[4π2h2σ2

1σ
2
2(1 − ρ2

12)]−1. Setting k = 1 gives the equation for the standard
confidence ellipse as follows:

z2
1 − 2ρ12z1z2 + z2

2 = 1− ρ2
12. (9.38)

The size, shape, and orientation of the confidence ellipse are determined by the
eigenvalues and eigenvectors of the dispersion matrix Σ.

9.3.2.1 Eigenvector-eigenvalue decomposition of Σ

The eigenvector-eigenvalue decomposition of the 2 × 2 matrix Σ is described as
follows: Denote the eigenvectors of Σ as uj and the eigenvalues as λj , j = 1, 2.
Then we have the relation

Σuj = λuj , (9.39)

for which we write the following characteristic equation:

det
(
Σ−λI2

)
=
(
σ2

1−λ
)(
σ2

2−λ
)
−σ2

12 = λ2−
(
σ2

1 +σ2
2

)
λ+
(
σ2

1σ
2
2−σ2

12

)
= 0. (9.40)

In (9.40), λ has been used in general to represent either eigenvalue λ1 or λ2. By
convention, we require λ1 ≥ λ2 > 0 and write the following solution for the roots of
the characteristic equation (9.40):

λ1 or 2 =
σ2

1 + σ2
2

2
±

√(
σ2

1 + σ2
2

2

)2

− 1

4
4σ2

1σ
2
2 +

4σ2
12

4
⇒ (9.41a)

λ1 or 2 =
σ2

1 + σ2
2

2
± 1

2

√(
σ2

1 − σ2
2

)2
+ 4σ2

12 > 0, (9.41b)

which shows that the eigenvalues must be greater than zero, since Σ is positive
definite.

Now we must find the two corresponding eigenvectors. Let the matrix U be
comprised of the two eigenvectors u1 and u2 such that U := [u1, u2]. Also define
a diagonal matrix comprised of the corresponding eigenvalues Λ := diag(λ1, λ2).
Then according to (9.39) we have

ΣU = UΛ = (9.42a)
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=

[
σ2

1 σ12

σ12 σ2
2

][
u11 u12

u21 u22

]
=

[
u11 u12

u21 u22

][
λ1 0

0 λ2

]
= (9.42b)

=

[
σ2

1u11 + σ12u21 σ2
1u12 + σ12u22

σ12u11 + σ2
2u21 σ12u12 + σ2

2u22

]
=

[
λ1 · u11 λ2 · u12

λ1 · u21 λ2 · u22

]
. (9.42c)

Starting by equating the first columns on each side of (9.42c), and then the second
columns, we can write the following four equations in the four unknowns u11, u12,
u21, and u22:

u21 =

(
λ1 − σ2

1

)
u11

σ12
, u21 =

σ12u11

λ1 − σ2
2

, u12 =
σ12u22

λ2 − σ2
1

, u12 =

(
λ2 − σ2

2

)
u22

σ12
.

(9.43)
The eigenvector u1 = [u11, u21]T defines the direction of the semimajor axis

of the confidence ellipse, while the eigenvector u2 = [u12, u22]T , orthogonal to u1,
defines the semiminor axis direction. The square root of the eigenvalue λ1 gives the
semimajor-axis length, and the square root of the eigenvalue λ2 gives the semiminor-
axis length. Also, if θ is the angle measured counter clockwise from the positive z1-
axis to the semimajor axis of the confidence ellipse, then we can write the matrix U
as

U = [u1, u2] =

[
cos θ − sin θ

sin θ cos θ

]
. (9.44)

Using (9.43) and (9.44), the angle θ is derived as follows:

tan θ =
sin θ

cos θ
=
u21

u11
=
λ1 − σ2

1

σ12
=

σ12

λ1 − σ2
2

= −u12

u22
=
σ2

2 − λ2

σ12
=

σ12

σ2
1 − λ2

and

(9.45a)

tan(2θ) =
2 tan θ

1− tan2 θ
=

(
2σ12

λ1 − σ2
2

)
1

1− σ2
12(

λ1−σ2
2

)2
(
λ1 − σ2

2

λ1 − σ2
2

)
⇒ (9.45b)

tan(2θ) =
2σ12

(
λ1 − σ2

2

)(
λ1 − σ2

2

)2 − σ2
12

=
2σ12

(
λ1 − σ2

2

)
4[

2
(
λ1 − σ2

2

)]2 − 4σ2
12

. (9.45c)

By manipulating (9.41b), we have

2
(
λ1 − σ2

2

)
=
(
σ2

1 − σ2
2

)
±
√(

σ2
1 − σ2

2

)2
+ 4σ2

12 ⇒ (9.46a)[
2
(
λ1 − σ2

2

)]2
= 2
(
σ2

1 − σ2
2

)2 ± 2
(
σ2

1 − σ2
2

)√(
σ2

1 − σ2
2

)2
+ 4σ2

12 + 4σ2
12. (9.46b)

Substituting (9.46a) and (9.46b) into (9.45c) gives

tan(2θ) =

4σ12

[(
σ2

1 − σ2
2

)
±
√(

σ2
1 − σ2

2

)2
+ 4σ2

12

]
2
(
σ2

1 − σ2
2

) [(
σ2

1 − σ2
2

)
±
√(

σ2
1 − σ2

2

)2
+ 4σ2

12

] ⇒ (9.47a)



178 CHAPTER 9. STATISTICAL ANALYSIS

tan(2θ) =
2σ12

σ2
1 − σ2

2

. (9.47b)

The sign of the numerical value of the right side of (9.47b) tells which quadrant the
positive side of the semimajor axis falls in.

Returning now to the notion of ellipses of constant probability represented by
(9.33a), probabilities for various values of k are most easily determined by using a
transformed system of equations centered on µ and rotated so that the y1 and y2

axes coincide with the axes formed by the eigenvectors u1 and u2. Then, instead
of correlated coordinates y1 and y2, we end up with uncorrelated coordinates u1

and u2 with respective variances λ1 and λ2 from (9.41b). And so the probability
statement for being on or within an ellipse having semimajor and semiminor axes
k
√
λ1 and k

√
λ2, respectively, is

P

{
u2

1

λ1
+
u2

2

λ2
< k2

}
= P{χ2

2 < k2} = 1− α, (9.48)

where α is a specified level of significance. Because it is assumed that u1 and u2 are
sampled from a normal distribution, the sum of their squares has a χ2

2 distribution.
See Section 9.4.1 for a description of the χ2

2 distribution.
Given a value for P = 1 − α, the value of k (or visa verse) can be determined

from a table of values for the χ2 density function. Users of MATLAB R© can generate
P given k2 by using P = chi2cdf(k2, 2), and k2 given P can be generated by
k2 = chi2inv(P, 2). Commonly used values are shown in Table 9.1. Compare the
probability of 39.4% associated with the 1-sigma confidence ellipse to the value of
68.3% shown in (9.30a) for the 1-sigma confidence interval in the univariate case.

Table 9.1: “k-sigma” probabilities for various confidence ellipses. P = 1− α.

P 0.394 0.500 0.900 0.950 0.990

k 1.000 1.177 2.146 2.447 3.035

An empirical error ellipse differs from the confidence ellipse in that the matrix Σ
is replaced by the estimated matrix Σ̂ such that Σ̂−1 = σ̂−2

0 P , where σ̂2
0 is the

estimated variance component. In this case, rather than (9.33a), the empirical
error ellipse is described by

(y − µ̂)TP (y − µ̂)

σ̂2
0

= 1. (9.49)

If we are evaluating n/2 number of 2-D points, so that P is of size n×n, we may
simply work with each of the (n/2 number of) 2×2 block diagonal matrices of σ̂−2

0 P
independently to form the empirical error ellipse of each point. However, we must
bear in mind that these block diagonal matrices do not tell the whole story since the
off-block-diagonal elements have been ignored. In any case, it may be prudent to
verify that the associated correlation-coefficients of the off-block-diagonal elements
are relatively small in magnitude.
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9.3.2.2 2-D examples within the Gauss-Markov Model

The following two examples apply to the Gauss-Markov Model (GMM):

1. Consider the GMM (9.20), with an associated least-squares solution and dis-
persion given in (9.21a). Assume that the parameter vector ξ is comprised of

successive 2-D point coordinates such that (ξ̂2i−1, ξ̂2i) represents the coordi-
nate estimates of the ith point. Now, also assume that we wish to compare
the estimates with given (fixed) values (ξ0

2i−1, ξ
0
2i), perhaps from published

results of a previous adjustment. Then we may write the following equations
for the null hypothesis and the standard error ellipse (k = 1), where, for
convenience, k := 2i and j := k − 1 are used for indices:

H0 : E{
[
ξ̂j , ξ̂k

]T } =
[
ξ0
j , ξ

0
k

]T
, (9.50a)

1

σ̂2
0

[
ξ̂j − ξ0

j

ξ̂k − ξ0
k

]T [
Nj,j Nj,k

Nk,j Nk,k

][
ξ̂j − ξ0

j

ξ̂k − ξ0
k

]
= 1. (9.50b)

2. Suppose that instead of comparing the solution to given, fixed values we want
to compare the results (2-D coordinate estimates) of two adjustments. Using
the previously defined indices, let the estimates of the ith point of the second

adjustment be represented by (
ˆ̂
ξj ,

ˆ̂
ξk). We ask the question: is the outcome

of the second adjustment statistically equivalent to the first? Unless there is
statistically significant overlap of the respective error ellipses, the answer is
no. The null hypothesis H0 and the test statistic f are defined as follows:

H0 : E{
[
ξ̂j , ξ̂k

]T } = E{
[ ˆ̂
ξj ,

ˆ̂
ξk
]T }, (9.51a)

f :=
1/2

σ̂2
0/σ

2
0

 ξ̂j − ˆ̂
ξj

ξ̂k − ˆ̂
ξk

T D{
 ξ̂j − ˆ̂

ξj

ξ̂k − ˆ̂
ξk

}−1

 ξ̂j − ˆ̂
ξj

ξ̂k − ˆ̂
ξk

 ∼ F (2, n− rkA).

(9.51b)

Here, 1/2 in the numerator reflects the first degrees of freedom, 2, owing
to two elements of the parameter vector being tested. Also note that the
unknown variance component σ2

0 shown in the denominator cancels with the
same term occurring in the dispersion matrix. Moreover, in computing the test
statistic f , it is assumed that the estimated variance component σ̂2

0 is common
to both adjustments. This assumption can be verified by a homogeneity test
H0 : E{σ̂2

0} = E{ˆ̂σ2
0}, which is discussed in Section 9.4. Here, we also assume

that the rank of matrix A is equivalent in both adjustments, which is equal
to the number of unknown parameters m according to the model definition
(9.20). Note that in the case that the two adjustments are uncorrelated, we
could replace the inverted dispersion matrix of parameter differences with the
inverse of the sum of the two respective dispersion matrices.
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9.3.3 Confidence Ellipsoids and Hyperellipsoids — Multi-
variate Case

In the 3-D case, confidence ellipses are extended to confidence ellipsoids. But, in
our general formulation of the GMM we may be working with any arbitrary higher-
dimensional space, and thus we speak of confidence hyperellipsoids. Since 3-D and
higher dimensions are natural extensions of the 2-D case, no further discussion is
necessary. However, we do list probabilities associated with confidence ellipsoids
for the 3-D case in Table 9.2. The table entries can be generated using the same
MATLAB R© commands shown in the previous section, except that the second ar-
gument must be 3 (degrees of freedom) instead of 2.

Table 9.2: “k-sigma” probabilities for various confidence ellipsoids. P = 1− α.

P 0.199 0.500 0.900 0.950 0.990

k 1.000 1.538 2.500 2.796 3.365

9.4 χ2-distribution, Variance Testing, and F -dis-
tribution

This section includes the statistical topics of χ2- and F -distributions as well as the
topic of variance testing.

9.4.1 χ2-distribution

The χ2-distribution is attributed to the German geodesist F.R. Helmert from 1876.
If we claim that the (unknown) random error vector e from the GMM is nor-
mally distributed as e ∼ N (0, σ2

0P
−1), then the quadratic product eTPe has a χ2-

distribution with ν := rkP = n degrees of freedom, expressed by

eTPe

σ2
0

∼ χ2(ν). (9.52)

Now, define x := eTPe/σ2
0 (which cannot actually be computed since both e and σ2

0

are unknown). Therefore, the pdf of x is written as

f(x) =


1

2ν/2Γ(ν/2)
x(ν−2)/2e−x/2 for x > 0

0 for x ≤ 0,

(9.53)

where e is Euler’s number 2.71828 . . . The gamma function Γ(·) was defined in
(9.12). Figure 9.5 shows plots of the χ2-distribution for ν = {1, 3, 5, 8, 10, 30} with
respective colors: black, magenta, cyan, red, green, blue. Note that the peaks of the
curves move to the right as ν increases and that the curves appear to approximate
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the normal-distribution curve as ν grows to 10 and larger. This agrees with our
expectation that the χ2-distribution is asymptotically normal, due to the central
limit theorem. 2
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f
(x

)
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Figure 9.5: Curve of χ2-distribution with various degrees of freedom ν

From the variance component derivations in Section 3.3, we can write

E{eTPe/σ2
0} = tr

(
P · E{eeT }

)
= tr In = n, (9.54a)

E{ẽTP ẽ/σ2
0} = tr

(
P · E{ẽẽT }

)
= tr

(
In −AN−1ATP

)
= n− rkA = n−m.

(9.54b)

Equations (9.25) and (9.54b) lead to

ẽTP ẽ/σ2
0 = νσ̂2

0/σ
2
0 ∼ χ2(ν), (9.55a)

with

ν := n−m (9.55b)

as the degrees of freedom (usually denoted r for redundancy elsewhere in these
notes).

2According to Bjerhammar (1973, Section 2.15), the central limit theorem says that “the sum
of n independent stochastic variables having equal expectation and variance will have a distribution
that converges towards the normal distribution for n→∞.”
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Note that though we have been discussing the random error vector e and the
predicted residual ẽ, the relations expressed in (9.55a) apply to all quadratic forms in
normally distributed variables. Thus, when we have a vector of normally distributed
variables, the corresponding quadratic form will have a χ2-distribution.

9.4.2 Variance Testing

Suppose we want to compare the estimated variance component σ̂2
0 to a given quan-

tity σ2 (in the latter, the 0-subscript is not used so as not to confuse the given value
with the unknown “true value”). We do so by performing the following hypothesis
test at a chosen significance level α (e.g., α = 0.05):

H0 : E{σ̂2
0} ≤ σ2 vs. HA : E{σ̂2

0} > σ2 (9.56a)

t := (n−m) ·
(
σ̂2

0/σ
2
)
∼ χ2(n−m) (9.56b)

If t ≤ χ2
α,n−m accept H0; else reject H0. (9.56c)

The test as shown is referred to as a one-tailed test, because the null hypothesis
only states that the expectation of the estimated quantity is less than or equal to a
given value (the use of ≥ in H0 would also constitute a one-tailed test). In contrast,
a two-tailed test would require an equals sign in the null hypothesis. The jargon
one- and two-tailed comes from the fact that 1−α represents the area under the pdf
curve left of the right tail in the one-tailed case, and it represents the area between
both the left and right tails (each of which have area α/2) in the two-tailed case.

Under the assumption that the data model is correct, if the estimate σ̂2
0 turns

out statistically to be less than the given value σ2, we deem our measurements to be
more precise than that reflected in the weight matrix P . On the other hand, if σ̂2

0

proves statistically to be greater than the given value, we deem our measurements to
be less precise. Usually our main concern is that σ̂2

0 reflects that our measurements
are at least as precise as what is reflected by the elements of the weight matrix P ,
thus the use of a single-tailed hypothesis may be more commonly used in practice.

On the other hand, if we need to test for equality between the estimated variance
component σ̂2

0 and a chosen value σ2, the above hypothesis test should be modified
to depend on α/2 as follows:

H0 : E{σ̂2
0} = σ2 vs. HA : E{σ̂2

0} 6= σ2 (9.57a)

t := (n−m) ·
(
σ̂2

0/σ
2
)
∼ χ2(n−m) (9.57b)

If χ2
1−α/2,n−m < t < χ2

α/2,n−m accept H0; else reject H0. (9.57c)

Note: Some tables of the χ2 distribution list percentiles that equal the area under
the curve less than χ2

p,df rather than the area under the curve right of χ2
α,df shown

in other tables (where df stands for degrees of freedom, sometimes denoted as ν).
Either type of table can be used as long as the relationship p = 1−α is considered.

In the case where we need to compare two estimated reference variances σ̂2
0,1

and σ̂2
0,2 from two independent adjustments, we must compute a ratio of test statis-

tics, which has an F -distribution (assuming both the numerator and denominator
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have χ2-distributions). Let t1 and t2 be the test statistics from the respective ad-
justments; then we can write

t1/(n1 −m1)

t2/(n2 −m2)
= σ̂2

0,1/σ̂
2
0,2 ∼ F (n1 −m1, n2 −m2), (9.58)

where ni−mi, i = 1, 2, are the respective degrees of freedom of the two independent
adjustments.

9.4.3 F -distribution

The F -distribution was named for its discover R.A. Fisher (1925) by G.W. Snedacor
(1935). It is a distribution for the ratio of two mutually independent random vari-
ables that have χ2-distributions with degrees of freedom v1 := m and v2 := n−m,
respectively. The pdf of such a variable is given by

f(w) =
Γ
(
m
2 + n−m

2

)
mm/2(n−m)(n−m)/2w(m/2)−1

Γ(m2 )Γ
(
n−m

2

)
(n−m+mw)(m/2+(n−m)/2)

= (9.59a)

=
(v1/v2)v1/2Γ

(
(v1 + v2)/2

)
w(v1/2)−1

Γ(v1/2)Γ(v2/2)
(
1 + v1w/v2

)(v1+v2)/2
. (9.59b)

As n becomes large compared to m, the curve of the F -distribution approaches the
curve of the normal distribution.

9.5 Hypothesis Testing on the Estimated Param-
eters

In the GMM, we may wish to perform a global model-check by comparing a specified
parameter vector ξ0 to the estimated vector ξ̂. In such a case, we may use as the
test statistic the ratio of weighted norms of the difference vector ξ̂ − ξ0 and the
predicted residual vector ẽ as follows:

w :=
(ξ̂ − ξ0)TATPA(ξ̂ − ξ0)

σ2
0m

· σ
2
0(n−m)

ẽTP ẽ
∼ F (m,n−m). (9.60)

Here we have assumed that matrix A has full rank, i.e., rkA = m. Since the
numerator and denominator are statistically independent of one another, the test
statistic w has an F -distribution with m and n−m degrees of freedom, as shown in
(9.60). Therefore, our global model-check is made by the following hypothesis test:

H0 : E{ξ̂} = ξ0 vs. HA : E{ξ̂} 6= ξ0 (9.61a)

If w ≤ Fα,m,n−m accept H0; else reject H0. (9.61b)

We now show that the numerator and denominator of w are indeed independent,
as required for use of the F -distribution. To do so, we only need to show that

C{ẽTP ẽ, (ξ̂ − ξ)T (ATPA)(ξ̂ − ξ)} = 0. (9.62)
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Note that, without loss of generality, we have replaced ξ0 with ξ. From (4.5e) we
have ẽ = [In −AN−1ATP ]e. Therefore,

ẽTP ẽ = eT
[
In − PAN−1AT

]
P
[
In −AN−1ATP

]
e =

= eT
[
P − PAN−1ATP

]
e =: eTM1e. (9.63a)

Also

A(ξ̂ − ξ) = e− ẽ = e−
(
In −AN−1ATP

)(
Aξ + e

)
=
(
AN−1ATP

)
e⇒ (9.63b)

(ξ̂ − ξ)T
(
ATPA

)
(ξ̂ − ξ) = eT

(
PAN−1AT

)
P
(
AN−1ATP

)
e = (9.63c)

= eT
(
PAN−1ATP

)
e =: eTM2e. (9.63d)

By substitution of (9.63a) and (9.63d), the condition (9.62) is equivalent to the
condition that eTM1e and eTM2e are independent, which holds if, and only if,

eTM1D{e}M2e = 0, (9.63e)

which is true since

eT
(
P − PAN−1ATP

)(
σ2

0P
−1
)(
PAN−1ATP

)
e = 0. (9.63f)

9.6 Checking an Individual Element (or 2-D or 3-
D Point) of the Parameter Vector

We may use an l×m matrix K to select a subset of size l from the m× 1 vector of
estimated parameters ξ̂ for hypothesis testing as follows:

H0 : E{Kξ̂} = Kξ0 = κ0, (9.64a)

HA : E{Kξ̂} = Kξ0 6= κ0. (9.64b)

If l = 1, K is a unit row vector that extracts the relevant element from the parameter
vector, in which case κ0 is simply a scalar quantity. The following examples show
the matrix K used for extracting a single element, a 2-D point, and a 3-D point,
respectively:

K :=
[
0, . . . , 0, 1, 0, . . . , 0

]
, where 1 appears at the jth element; (9.65a)

K :=
[
02, . . . , 02, I2, 02, . . . , 02

]
, where K is size 2×m; (9.65b)

K :=
[
03, . . . , 03, I3, 03, . . . , 03

]
, where K is size 3×m. (9.65c)

For 2-D and 3-D points, the subscripts denote the dimension of the square sub-
matrices (zero matrix or identity matrix), and In (n ∈ {2, 3}) is the jth sub-matrix

of K, which means it “selects” the jth point from ξ̂.
The test statistic is then defined as

w : =

[
K
(
ξ̂ − ξ0

)]T
D{K

(
ξ̂ − ξ0

)
}−1
[
K
(
ξ̂ − ξ0

)]
/ rkK

σ̂2
0/σ

2
0

= (9.66a)
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=

[
Kξ̂ − κ0

]T [
KN−1KT

]−1[
Kξ̂ − κ0

]
/l

σ̂2
0

=:
R/l

(ẽTP ẽ)/(n−m)
. (9.66b)

Note that σ2
0 appears in the denominator of (9.66a) in order to cancel out the same

term hidden inside the dispersion matrix in the numerator. Also note that since ξ0

is a specified (and therefore non-random) quantity to test against, the dispersion is
not affected by it, i.e.,

D{K(ξ̂ − ξ0)} = D{Kξ̂} = σ2
0KN

−1KT . (9.67)

The symbols R and Ω are used for convenience and are analogous to the symbols
introduced in Sections 5.5 and 6.4, respectively. They are statistically independent
of one another and have the following distributions:

R ∼ χ2(l), Ω ∼ χ2(n−m). (9.68)

Statistical independence between the random variables R and Ω means that their
joint pdf is equivalent to the product of their individual pdf’s: f(R,Ω) = f(R)·f(Ω).
Independence can be shown by following the same line of thought as that used
at the end of the previous section, where M1 remains unchanged and M2 is now

PAN−1KT
[
KN−1KT

]−1
KN−1ATP . Therefore, the test statistic (9.66b) has an

F -distribution represented by

w ∼ F (l, n−m). (9.69)

An alternative, more compact, form for w when l = 1 is given by

w =
(ξ̂j − (κ0)j)

2

σ̂2
0

(
N−1

)
jj

∼ F (1, n−m). (9.70)

The decision to accept or reject the null hypothesis is made analogous to (9.61b).

9.6.1 Non-central F -distribution

If the null hypothesis H0 is false, the test statistic w is said to have a non-central
F -distribution (denoted here as F ′), which requires a non-centrality parameter θ
so that w ∼ F ′

(
v1, v2, θ

)
under HA, where v1 and v2 have been used to denote the

degrees of freedom, in general. The qualification “under HA” implies that we must
pose a specific alternative hypothesis HA in this case, rather than just the negation
of H0. For a one-tailed test, the area under the non-central F -distribution curve and
to the right of Fα (from the F -distribution table) is denoted as β. The value of β
is also the probability of making an error of the second kind, namely to accept the
null hypothesis H0 when the specified alternative hypothesis HA is actually true.
The quantity 1 − β is known as the power of the test. As the value of θ increases,
so does the value 1 − β. Below we have rewritten (9.69) for the non-central case,
with the theoretical formula for 2θ following.

w ∼ F ′(l, n−m, θ) (9.71a)
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2θ =
(
Kξ − κ0

)T (
KN−1KT

)−1(
Kξ̂ − κ0

)
(9.71b)

Note that the non-centrality property is reflected in (9.71b) by including both the

true (unknown) vector of parameters ξ and its estimate ξ̂ in bilinear form.

9.7 Detection of a Single Outlier in the Gauss-
Markov Model

A model that expresses the jth observation as a potential outlier can be written as

yj = aTj ξ
(j) + ξ

(j)
0 + ej . (9.72)

The terms of the model are described as follows

yj is the jth element of the n× 1 observation vector y.

aj is an m × 1 column vector that is comprised of the m elements of the jth row
of matrix A so that [a1,a2, . . . ,an]T := A.

ξ(j) denotes the m × 1 vector of unknown parameters associated with that set of
observations whose jth element is considered an outlier, as opposed to ξ,
which is associated with the same set of observations except that the jth one
is not considered as an outlier.

ej is the jth element of the unknown random error vector e.

ξ
(j)
0 is an unknown (scalar) parameter that accounts for an outlier. In other words,

it accounts for a non-random error in the observation. The formula for its
estimate is developed below.

The following example may be illustrative: Suppose the observation yj should

have been 100 m but only a value of 10 m was recorded, then ξ
(j)
0 accounts for a

90 m blunder.
A modified GMM whose jth observation might be deemed an outlier is expressed

as

y
n×1

= A
n×m

ξ(j) + ηj
n×1

ξ
(j)
0 + e, ηj :=

[
0, . . . , 0, 1, 0, . . . , 0

]T
, (9.73a)

e ∼ N (0, σ2
0P
−1). (9.73b)

Note that the number 1 in ηj appears at the jth element; all other elements are 0.
We must compare the model in (9.73) with the original GMM (3.1), which is as-
sumed to not include an outlier. Since the model (9.73) assumes only one outlier in
the data set, n comparisons of the two models are necessary in order to test all yi
(i = 1, . . . , n) observations independently. For each comparison we introduce the
constraint equation

ξ
(j)
0 = K

[
ξ(j)

ξ
(j)
0

]
= κ0 = 0. (9.74)
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Here K := [0, 0, . . . , 1] is of size 1× (m+ 1). When we impose the constraint (9.74)
upon the model (9.73), we obtain a model equivalent to the original GMM (3.1)
that does not include an additional parameter to model an outlier.

Note: For the remainder of this section, we will assume that the weight matrix P
is diagonal: P = diag(p1, . . . , pn), where pi is the weight of the ith observation. See
Schaffrin (1997b) for a treatment of outlier detection with correlated observations.

Now, we begin with the following Lagrange target function to derive a least-
squares estimator in the unconstrained model (9.73):

Φ
(
ξ(j), ξ

(j)
0

)
=
(
y −Aξ(j) − ηjξ(j)

0

)T
P
(
y −Aξ(j) − ηjξ(j)

0

)
, (9.75)

which is made stationary with respect to ξ(j) and ξ
(j)
0 by setting the first partial

derivatives of (9.75) to zero, resulting in the following Euler-Lagrange necessary
conditions:

1

2

[
∂Φ

∂ξ(j)

]T
= −ATPy +ATPηj ξ̂

(j)
0 +ATPAξ̂(j) .

= 0, (9.76a)

1

2

∂Φ

∂ξ
(j)
0

= −ηTj Py + ηTj PAξ̂
(j) + ηTj Pηj ξ̂

(j)
0

.
= 0. (9.76b)

Of course the second partial derivatives are functions of P , which is positive-definite
by definition, thereby satisfying the sufficient condition required for obtaining the
minimum of (9.75). In matrix form we have[

N ATPηj

ηTj PA ηTj Pηj

][
ξ̂(j)

ξ̂
(j)
0

]
=

[
c

ηTj Py

]
, (9.77a)

or, because P was assumed to be diagonal,[
N ajpj

pja
T
j pj

][
ξ̂(j)

ξ̂
(j)
0

]
=

[
c

pjyj

]
. (9.77b)

Here, as in previous chapters, we have used the definition [N, c] := ATP [A, y].
Using (A.11) for the inverse of a partitioned matrix, and decomposing the resulting
inverse into a sum of two matrices, results in[

ξ̂(j)

ξ̂
(j)
0

]
=

[
N−1 0

0 0

][
c

pjyj

]
+

[
N−1ajpj

−1

] (
pj − pjaTj N−1ajpj

)−1·

·
[
pja

T
j N
−1 −1

] [ c

pjyj

]
,

(9.78a)

or[
ξ̂(j)

ξ̂
(j)
0

]
=

[
N−1 0

0 0

][
c

pjyj

]
−

[
N−1ajpj

−1

] (
pj − p2

ja
T
j N
−1aj

)−1
pj
(
yj − aTj N−1c

)
.

(9.78b)
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From (9.78b), and recalling that ξ̂ = N−1c is based on a data set assumed to have
no outliers, we can write the following difference between estimations:

ξ̂(j) − ξ̂ = −N−1aj

(
yj − aTj ξ̂

p−1
j − aTj N−1aj

)
= −N−1aj

ẽj
(Qẽ)jj

, (9.79)

where (Qẽ)jj is the jth diagonal element of the cofactor matrix for the residual
vector ẽ. For the estimated non-random error in yj we have

ξ̂
(j)
0 =

yj − aTj ξ̂
1− pjaTj N−1aj

=
ẽj

(QẽP )jj
=

ẽj/pj
(Qẽ)jj

. (9.80)

The hypothesis test for the jth observation being an outlier is then written as

H0 : E{ξ̂(j)
0 } = 0 versus HA : E{ξ̂(j)

0 } 6= 0. (9.81)

The test statistic has an F -distribution and is computed by

Tj =
Rj/1

(Ω−Rj)/(n−m− 1)
∼ F (1, n−m− 1). (9.82)

The definition of Rj , in terms of ξ̂
(j)
0 , is

Rj :=

(
ξ̂

(j)
0 − 0

)2
KN−1

1 KT
=

(
ξ̂

(j)
0

)2(
pj − p2

ja
T
j N
−1aj

)−1 =
ẽ2
j

(QẽP )2
jj

pj(QẽP )jj =
ẽ2
j

(Qẽ)jj
.

(9.83)
It is important to note that the symbols ẽ and Qẽ represent the residual vector

and its cofactor matrix, respectively, as predicted within the GMM (3.1) — see
(3.9) and (3.14c). As was already mentioned, when we impose the constraint (9.74)
on model (9.73b) we reach a solution identical to the LESS within model (3.1). It
is also important to understand the terms in the denominator of (9.82). As stated
previously, the symbol R is used to account for that portion of the P -weighted resid-
ual norm due to the constraints. The first parenthetical term in the denominator,
(Ω− Rj), accounts for that part of the norm coming from the unconstrained solu-
tion. Here we have used Ω := ẽTP ẽ, with ẽ belonging to the constrained solution
(determined within the model (3.1)). Therefore, we must subtract R from Ω, as it
is defined here, to arrive at the portion of the norm coming from the unconstrained
LESS computed within model (9.73).

We note again that the equations from (9.77b) to (9.83) hold only in the case
of a diagonal weight matrix P . Regardless of whether or not P is diagonal, the
quantity

rj := (QẽP )jj (9.84a)

is the jth so-called redundancy number, for the unconstrained solution in this case.
The following properties hold for rj :

0 < rj ≤ 1 for i = {1, . . . , n} and
∑
j

rj = n− rkA. (9.84b)
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Note that (QẽP )jj = (Qẽ)jjpj for the case that matrix P is diagonal.
Finally, the matrix N1 in (9.83) is defined as

N1 =

[
N ajpj

pja
T
j pj

]
, (9.85)

which appears in (9.77b). Pre- and post-multiplying N−1
1 by K extracts only its

last diagonal element, which, according to the formula for inverting a partitioned
matrix, turns out to be the scalar quantity (pj − p2

ja
T
j N
−1aj)

−1, also appearing in
(9.83).

We comment that outlier detection at the 2-D and 3-D level can also be per-
formed, for example, in testing whether observed 2-D and 3-D points are outliers.
The 3-D case is also appropriate for GPS baseline adjustments. Its development is
shown by Snow (2002); see also Snow and Schaffrin (2003).

A strategy for outlier detection Since the model (9.73) only accounts for an
outlier at the jth observation. A strategy is needed to check for outliers at all
observations including the case where more than one outlier might be present in
the observation vector y. The usual way of approaching this problem is to perform n
independent outlier tests, allowing j to run from 1 to n. If the null hypothesis cannot
be accepted for one or more of the tests, the observation associated with the largest
value for the test statistic Tj is flagged as a potential outlier and removed from
the observation vector y. The entire process is repeated until the null hypothesis
can be accepted for all remaining observations, with n being reduced by 1 for each
successive set of tests.

To be more conservative, after each set of tests that results in an observation
being flagged as a potential outlier and removed, the previously removed observa-
tions are added back in one at a time (in the opposite order they were removed)
to see if they can remain in the observation vector or if they once again must be
removed. Eventually, one would hope to reach a point where all outliers have been
detected and removed, implying that finally the null hypothesis can be accepted for
all remaining residuals.

The reason for this conservative step is that an outlier at the jth element of
the observation vector may result in a larger test statistic for some residuals other
than ẽj . To see how this could be, we repeat the formula for the vector or residuals
shown in (3.9):

ẽ = y −Aξ̂ =
(
In −AN−1ATP

)
y = QẽPy =: Ry, (9.86a)

where the symbol R has been used to denote the matrix whose diagonal elements
are the so-called redundancy numbers as shown in (9.84a). If R is expressed as
matrix of column vectors, viz. R = [r1, r2, . . . , rn], then it is easy to see that

ẽ = r1·y1 + r2·y2 + · · ·+ rn·yn, (9.86b)

revealing that each element of ẽ is potentially a linear combination of all the ele-
ments of y (since R is not expected to be a diagonal matrix, in general). This means
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that an outlier at the jth element of y could “bleed into” residuals other than ẽj ,
perhaps giving the impression that some different observation is an outlier, when in
fact it is not. This linear relationship between the residuals and the observations
attests to the challenge of successful outlier detection after an adjustment. It may
or may not succeed in identifying all outliers and in avoiding wrongly misidentifying
some observations as outliers when they in fact are not. The challenge of successful
outlier detection underscores the importance of avoiding making errors in observa-
tions and in finding strategies to find any blunders in the data before an adjustment
is performed.



Appendix A
Useful Matrix Relations and
Identities

Product of transposes:
ATBT = (BA)T (A.1)

Transpose of inverse:
(AT )−1 = (A−1)T (A.2)

Product of inverses:
A−1B−1 = (BA)−1 (A.3)

Rank of triple product: Given: A(m× n), B(m×m), C(n× n):

B,C nonsingular⇒ rk(BAC) = rk(A) or rk(BA) = rk(A) if C = I (A.4)

Trace invariant with respect to a cyclic permutation of factors: If the product ABC
is square, then the following trace operations are equivalent:

tr(ABC) = tr(BCA) = tr(CAB). (A.5)

Sherman-Morrison-Woodbury-Schur formula:

(T − UW−1V )−1 = T−1 + T−1U(W − V T−1U)−1V T−1 (A.6a)

Multiplying on the right by U and rearranging leads to the so-called push-through
identity

T−1U(W − V T−1U)−1W = (T − UW−1V )−1U. (A.6b)

191
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The origin of the phrase “push-through” is illustrated by the special case where
T = tI and W = wI, leading to

U(tI − (1/w)V U)−1 = (tI − (1/w)UV )−1U. (A.6c)

As a consequence of (A.6a), we also have:

(I ± UW−1V )−1 = I ∓ U(W ± V U)−1V, (A.7a)

(I ± UV )−1 = I ∓ U(I ± V U)−1V, (A.7b)

(I ±W−1V )−1 = I ∓ (W ± V )−1V, (A.7c)

(I ± V )−1 = I ∓ (I ± V )−1V, (A.7d)

(I ±W−1)−1 = I ∓ (W ± I)−1. (A.7e)

Equations (39–43) of “Useful Matrix Equalities” (handout from Prof. Schaffrin,
possibly originating from Urho A. Uotila).

DC(A+BDC)−1 = (D−1 + CA−1B)−1CA−1 = (A.8a)

= D(I + CA−1BD)−1CA−1 = (A.8b)

= DC(I +A−1BDC)−1A−1 = (A.8c)

= DCA−1(I +BDCA−1)−1 = (A.8d)

= (I +DCA−1B)−1DCA−1 (A.8e)

Suppose the matrices A and B in (A.8) are identity matrices, then we have

DC(I +DC)−1 = (D−1 + C)−1C = (A.9a)

= D(I + CD)−1C = (A.9b)

= (I +DC)−1DC. (A.9c)

Inverse of the partitioned normal equation matrix: Assume the matrix N is of full
rank and is partitioned as follows:

N =

[
N11 N12

N21 N22

]
. (A.10)

The following steps lead to the inverse of N expressed in terms of the partitioned
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blocks: [
N11 N12 I 0

N21 N22 0 I

]
→

 I N−1
11 N12 N−1

11 0

N21 N22 0 I

→
 I N−1

11 N12 N−1
11 0

0 N22 −N21N
−1
11 N12 −N21N

−1
11 I

→
 I N−1

11 N12 N−1
11 0

0 I −
(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11

(
N22 −N21N

−1
11 N12

)−1

→
 I 0

0 I

∣∣∣∣∣ N−1
11 +N−1

11 N12 ·W ·N21N
−1
11 −N−1

11 N12 ·W
−W ·N21N

−1
11 W

 ,
with W := (N22 −N21N

−1
11 N12)−1. Finally we may write[

N11 N12

N21 N22

]−1

=

 N−1
11 +N−1

11 N12 ·W ·N21N
−1
11 −N−1

11 N12 ·W
−W ·N21N

−1
11 W

 . (A.11)

Note that other equivalent representations of this inverse exist. Taking directly from
the Useful Matrix Equalities handout mentioned above, we write some additional
expressions for the inverse.[

N11 N12

N21 N22

]−1

=

[
Q11 Q12

Q21 Q22

]
(A.12)

Q11 =
(
N11 −N12N

−1
22 N21

)−1
= (A.13a)

= N−1
11 +N−1

11 N12

(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11 = (A.13b)

= N−1
11 +N−1

11 N12Q22N21N
−1
11 (A.13c)

Q22 =
(
N22 −N21N

−1
11 N12

)−1
= (A.14a)

= N−1
22 +N−1

22 N21

(
N11 −N12N

−1
22 N21

)−1
N12N

−1
22 = (A.14b)

= N−1
22 +N−1

22 N21Q11N12N
−1
22 (A.14c)

Q12 = −
(
N11 −N12N

−1
22 N21

)−1
N12N

−1
22 = −Q11N12N

−1
22 = (A.15a)

= −N−1
11 N12

(
N22 −N21N

−1
11 N12

)−1
= −N−1

11 N12Q22 (A.15b)
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Q21 = −N−1
22 N21

(
N11 −N12N

−1
22 N21

)−1
= −N−1

22 N21Q11 = (A.16a)

= −
(
N22 −N21N

−1
11 N12

)−1
N21N

−1
11 = −Q22N21N

−1
11 (A.16b)

In the case that N22 = 0, we have:

Q22 = −
(
N21N

−1
11 N12

)−1
(A.17a)

Q11 = N−1
11 +N−1

11 N12Q22N21N
−1
11 (A.17b)

Q12 = −N−1
11 N12Q22 (A.17c)

Q21 = −Q22N21N
−1
11 (A.17d)

Schur Complement: the parenthetical term
(
N22 − N21N

−1
11 N12

)
shown above is

called the Schur Complement of N11. In general, given the partitioned matrix

M =

[
A B

C D

]
, (A.18a)

if matrix D is invertible, the Schur complement of D is

S1 = A−BD−1C. (A.18b)

Likewise, if matrix A is invertible, the Schur complement of A is

S2 = D − CA−1B. (A.18c)

Fundamental Theorem of Linear Algebra: If A is a matrix of size n ×m and the
rank of A is q := rk(A), then:

1. R(A) = column space of A; dimension q (A.19a)

2. N (A) = nullspace of A; dimension m− q (A.19b)

3. R(AT ) = row space of A; dimension q (A.19c)

4. N (AT ) = left nullspace of A; dimension n− q (A.19d)

Derivative of quadratic form:
While some authors write the derivative of a quadratic form (a scalar-valued vector
function) with respect to a column vector as a row vector, we write such a derivative
as a column vector. This is in agreement with the following authors: Grafarend
and Schaffrin (1993); Harville (2000, pg. 295); Koch (1999, pg. 69); Lütkepohl
(1996, pg. 175); Strang and Borre (1997, pg. 300). For example, given x ∈ Rn and
Q ∈ Rn×n, we have

Φ(x) = xTQx⇒ ∂Φ

∂x
= 2Qx. (A.20)
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Vector and matrix norms For a real number p ≥ 1, the p-norm, or Lp-norm,
of the n× 1 vector x is defined by

‖x‖p =
(
|x1|p +|x2|p + · · ·+|xn|p

)1/p
. (A.21)

Special cases:

1. p = 1, 1-norm or L1-norm:

‖x‖1 = |x1|+|x2|+ · · ·+|xn| (A.22a)

2. p = 2, 2-norm or L2-norm (Euclidean distance/norm):

‖x‖2 = (x2
1 + x2

2 + · · ·+ x2
n)1/2 (A.22b)

3. p =∞, ∞-norm or L∞-norm (“infinity norm”):

‖x‖∞ = max{|x1| ,|x2| , . . . ,|xn|} (A.22c)

In a similar way, entry-wise matrix norms for a n×m matrix A are defined by

‖A‖p =‖vecA‖p =
( n∑
i=1

m∑
j=1

∣∣aij∣∣p)1/p, (A.23)

where vec is the operator that turns a matrix into a vector by stacking its columns
on top of each other from the first to the last.

Special cases:

1. p = 2, “Frobenius norm”:

‖A‖2 =‖A‖F =
√

tr(ATA) (A.24a)

2. p =∞, Max norm:

‖A‖∞ =‖A‖max = max
i,j

[aij ] (A.24b)
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Determinants and inverses of 2× 2 and 3× 3 matrices

For a 2× 2 matrix

A =

[
a b
c d

]
the determinant is defined by

detA = |A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc. (A.25a)

The inverse of A can be found by

A−1 =
1

|A|

[
d −b
−c a

]
=

1

ad− bc

[
d −b
−c a

]
. (A.25b)

Writing a 3× 3 matrix A as

A =

a b c
d e f
g h i

 , (A.26a)

the determinant of A is found by

detA = |A| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ =

= +a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ =

= −d
∣∣∣∣b c
h i

∣∣∣∣+ e

∣∣∣∣a c
g i

∣∣∣∣− f ∣∣∣∣a b
g h

∣∣∣∣ =

= +g

∣∣∣∣b c
e f

∣∣∣∣− h ∣∣∣∣a c
d f

∣∣∣∣+ i

∣∣∣∣a b
d e

∣∣∣∣ .
(A.26b)

The inverse of A is found by

A−1 =
1

|A|



+

∣∣∣∣e f
h i

∣∣∣∣ − ∣∣∣∣d f
g i

∣∣∣∣ +

∣∣∣∣d e
g h

∣∣∣∣
−
∣∣∣∣b c
h i

∣∣∣∣ +

∣∣∣∣a c
g i

∣∣∣∣ − ∣∣∣∣a b
g h

∣∣∣∣
+

∣∣∣∣b c
e f

∣∣∣∣ − ∣∣∣∣a c
d f

∣∣∣∣ +

∣∣∣∣a b
d f

∣∣∣∣



T

=
1

|A|



∣∣∣∣e f
h i

∣∣∣∣ ∣∣∣∣c b
i h

∣∣∣∣ ∣∣∣∣b c
e f

∣∣∣∣∣∣∣∣f d
i g

∣∣∣∣ ∣∣∣∣a c
g i

∣∣∣∣ ∣∣∣∣c a
f d

∣∣∣∣∣∣∣∣d e
g h

∣∣∣∣ ∣∣∣∣b a
h g

∣∣∣∣ ∣∣∣∣a b
d f

∣∣∣∣


=

=
1

|A|

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd

 . (A.26c)



Appendix B
Linearization

A truncated Taylor series is frequently used to linearize a nonlinear function.
Reader’s will remember the series for the univariate case from calculus. As a re-
view, we present both Taylor’s theorem and series, as well as quadratic and linear
approximations to functions based on truncations of the series. Then we show the
extension of the liner approximation to the multivariate cases using matrices.

B.1 Taylor’s Theorem and Series for the Univari-
ate Case

If the function f and its first n derivatives f ′, f ′′, . . . , f (n) are continuous on the
interval [a, b] and if f (n) is differentiable on (a, b), then there exists a number cn+1

between a and b such that

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2
(b− a)2 + . . .+

f (n)(a)

n!
(b− a)n+

+
f (n+1)(cn+1)

(n+ 1)!
(b− a)n+1. (B.1)

Taylor series The Taylor series itself, for f at x = a, is given by

f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(b− a)n + . . . (B.2)
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Quadratic approximation A quadratic approximation of f(x) near x = a is

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2, (B.3a)

with an error e2(x) that satisfies∣∣e2(x)
∣∣ ≤ ∣∣max f ′′′(c)

∣∣
6

|x− a|3 , c between a and x. (B.3b)

Linear approximation Likewise, a linear approximation of f(x) near x = a is

f(x) ≈ f(a) + f ′(a)(x− a), (B.4a)

with an error e1(x) that satisfies∣∣e1(x)
∣∣ ≤ ∣∣max f ′′(c)

∣∣
2

(x− a)2, c between a and x. (B.4b)

B.2 Linearization: A Truncated Taylor’s Series for
the Multivariate Case

Let y = f(Ξ) represent an n × 1 set of non-linear functions of the independent
m × 1 vector Ξ. Assume that the functions f are continuous over the interval
[Ξ,Ξ0] and that their first derivatives exist over the interval (Ξ,Ξ0). Then, a linear
approximation of y = f(Ξ) near Ξ = Ξ0 is given by

y ≈ f(Ξ0) +
∂f

∂ΞT

∣∣∣∣
Ξ0

·(Ξ−Ξ0), (B.5a)

which, after introduction of the incremental vector ξ := Ξ − Ξ0 and the n × m
matrix A := ∂f/∂ΞT , can be rewritten as

y − f(Ξ0) ≈ Aξ. (B.5b)

More detailed representations of f(Ξ0) and A are as follows:

f(Ξ0)
n×1

=


f1(Ξ0

1, . . . ,Ξ
0
m)

...

fn(Ξ0
1, . . . ,Ξ

0
m)

 , A
n×m

=


∂f1
∂Ξ1

∣∣∣
Ξ0

1

. . . ∂f1
∂Ξm

∣∣∣
Ξ0
m

...
...

∂fn
∂Ξ1

∣∣∣
Ξ0

1

. . . ∂fn
∂Ξm

∣∣∣
Ξ0
m

 . (B.6)

Example Distances y1, y2, and y3 in the horizontal plane are given from three
points with known horizontal coordinates to one new point with unknown horizontal
coordinates (u, v). Using (u1, v1) as the coordinates of the first known point, etc.,
and (u0, v0) as an approximation for the unknown coordinates (u, v), linearize the
distance functions y1 = f1(u, v) =

√
(u1 − u)2 + (v1 − v)2, etc.
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Solutiony1

y2

y3


︸ ︷︷ ︸
y

−


√

(u1 − u0)2 + (v1 − v0)2√
(u2 − u0)2 + (v2 − v0)2√
(u3 − u0)2 + (v3 − v0)2


︸ ︷︷ ︸

f(Ξ=Ξ0)

≈

≈


(u0−u1)√

(u1−u0)2+(v1−v0)2
(v0−v1)√

(u1−u0)2+(v1−v0)2

(u0−u2)√
(u2−u0)2+(v2−v0)2

(v0−v2)√
(u2−u0)2+(v2−v0)2

(u0−u3)√
(u3−u0)2+(v3−v0)2

(v0−v3)√
(u3−u0)2+(v3−v0)2


︸ ︷︷ ︸

A

[
u− u0

v − v0

]
︸ ︷︷ ︸

ξ

. (B.7)

Note that we have not included a random error vector e, as the focus here is on
linearization, not modeling of random errors — we did not say that y is a vector of
observations; we used the term given distances.
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Appendix C
Statistical Tables

C.1 Values of the Standard Normal Cumulative
Distribution Function

F (z) =

∫ z

−∞

1√
2π
e−u

2/2 du = P [Z ≤ z]

z

Table C.1: Probabilities P [Z ≤ z] computed by the MATLAB function
normcdf(z) over the domain [−3.09, 3.09], at an interval of 0.01

z 0 1 2 3 4 5 6 7 8 9

−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

Continued on next page
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z 0 1 2 3 4 5 6 7 8 9

−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

−0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

Continued from previous page
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C.2 Percentiles (Critical Values) of the t-Distri-
bution

tp

Table C.2: Percentiles (critical values) of the t-distribution computed by the
MATLAB function tinv(p,ν) for percentile p and degrees of freedom ν

ν t0.55 t0.60 t0.65 t0.70 t0.75 t0.80 t0.85
1 0.1584 0.3249 0.5095 0.7265 1.0000 1.376 1.963

2 0.1421 0.2887 0.4447 0.6172 0.8165 1.061 1.386

3 0.1366 0.2767 0.4242 0.5844 0.7649 0.9785 1.250

4 0.1338 0.2707 0.4142 0.5686 0.7407 0.9410 1.190

5 0.1322 0.2672 0.4082 0.5594 0.7267 0.9195 1.156

6 0.1311 0.2648 0.4043 0.5534 0.7176 0.9057 1.134

7 0.1303 0.2632 0.4015 0.5491 0.7111 0.8960 1.119

8 0.1297 0.2619 0.3995 0.5459 0.7064 0.8889 1.108

9 0.1293 0.2610 0.3979 0.5435 0.7027 0.8834 1.100

10 0.1289 0.2602 0.3966 0.5415 0.6998 0.8791 1.093

11 0.1286 0.2596 0.3956 0.5399 0.6974 0.8755 1.088

12 0.1283 0.2590 0.3947 0.5386 0.6955 0.8726 1.083

13 0.1281 0.2586 0.3940 0.5375 0.6938 0.8702 1.079

14 0.1280 0.2582 0.3933 0.5366 0.6924 0.8681 1.076

15 0.1278 0.2579 0.3928 0.5357 0.6912 0.8662 1.074

16 0.1277 0.2576 0.3923 0.5350 0.6901 0.8647 1.071

17 0.1276 0.2573 0.3919 0.5344 0.6892 0.8633 1.069

18 0.1274 0.2571 0.3915 0.5338 0.6884 0.8620 1.067

19 0.1274 0.2569 0.3912 0.5333 0.6876 0.8610 1.066

20 0.1273 0.2567 0.3909 0.5329 0.6870 0.8600 1.064

21 0.1272 0.2566 0.3906 0.5325 0.6864 0.8591 1.063

22 0.1271 0.2564 0.3904 0.5321 0.6858 0.8583 1.061

23 0.1271 0.2563 0.3902 0.5317 0.6853 0.8575 1.060

24 0.1270 0.2562 0.3900 0.5314 0.6848 0.8569 1.059

25 0.1269 0.2561 0.3898 0.5312 0.6844 0.8562 1.058

26 0.1269 0.2560 0.3896 0.5309 0.6840 0.8557 1.058

27 0.1268 0.2559 0.3894 0.5306 0.6837 0.8551 1.057

28 0.1268 0.2558 0.3893 0.5304 0.6834 0.8546 1.056

29 0.1268 0.2557 0.3892 0.5302 0.6830 0.8542 1.055

30 0.1267 0.2556 0.3890 0.5300 0.6828 0.8538 1.055

40 0.1265 0.2550 0.3881 0.5286 0.6807 0.8507 1.050

60 0.1262 0.2545 0.3872 0.5272 0.6786 0.8477 1.045

80 0.1261 0.2542 0.3867 0.5265 0.6776 0.8461 1.043

100 0.1260 0.2540 0.3864 0.5261 0.6770 0.8452 1.042

200 0.1258 0.2537 0.3859 0.5252 0.6757 0.8434 1.039

400 0.1257 0.2535 0.3856 0.5248 0.6751 0.8425 1.038

600 0.1257 0.2535 0.3855 0.5247 0.6749 0.8422 1.037
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ν t0.90 t0.95 t0.975 t0.99 t0.995 t0.9995
800 0.1257 0.2534 0.3855 0.5246 0.6748 0.8421 1.037

1000 0.1257 0.2534 0.3854 0.5246 0.6747 0.8420 1.037

∞ 0.1257 0.2533 0.3853 0.5244 0.6745 0.8416 1.036

ν t0.90 t0.95 t0.975 t0.99 t0.995 t0.9995
1 3.078 6.314 12.71 31.82 63.66 36.62

2 1.886 2.920 4.303 6.965 9.925 31.60

3 1.638 2.353 3.182 4.541 5.841 12.92

4 1.533 2.132 2.776 3.747 4.604 8.610

5 1.476 2.015 2.571 3.365 4.032 6.869

6 1.440 1.943 2.447 3.143 3.707 5.959

7 1.415 1.895 2.365 2.998 3.499 5.408

8 1.397 1.860 2.306 2.896 3.355 5.041

9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587

11 1.363 1.796 2.201 2.718 3.106 4.437

12 1.356 1.782 2.179 2.681 3.055 4.318

13 1.350 1.771 2.160 2.650 3.012 4.221

14 1.345 1.761 2.145 2.624 2.977 4.140

15 1.341 1.753 2.131 2.602 2.947 4.073

16 1.337 1.746 2.120 2.583 2.921 4.015

17 1.333 1.740 2.110 2.567 2.898 3.965

18 1.330 1.734 2.101 2.552 2.878 3.922

19 1.328 1.729 2.093 2.539 2.861 3.883

20 1.325 1.725 2.086 2.528 2.845 3.850

21 1.323 1.721 2.080 2.518 2.831 3.819

22 1.321 1.717 2.074 2.508 2.819 3.792

23 1.319 1.714 2.069 2.500 2.807 3.768

24 1.318 1.711 2.064 2.492 2.797 3.745

25 1.316 1.708 2.060 2.485 2.787 3.725

26 1.315 1.706 2.056 2.479 2.779 3.707

27 1.314 1.703 2.052 2.473 2.771 3.690

28 1.313 1.701 2.048 2.467 2.763 3.674

29 1.311 1.699 2.045 2.462 2.756 3.659

30 1.310 1.697 2.042 2.457 2.750 3.646

40 1.303 1.684 2.021 2.423 2.704 3.551

60 1.296 1.671 2.000 2.390 2.660 3.460

80 1.292 1.664 1.990 2.374 2.639 3.416

100 1.290 1.660 1.984 2.364 2.626 3.390

200 1.286 1.653 1.972 2.345 2.601 3.340

400 1.284 1.649 1.966 2.336 2.588 3.315

600 1.283 1.647 1.964 2.333 2.584 3.307

800 1.283 1.647 1.963 2.331 2.582 3.303

1000 1.282 1.646 1.962 2.330 2.581 3.300

∞ 1.282 1.645 1.960 2.326 2.576 3.291
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C.3 Critical Values of the χ2-Distribution

Table C.3: Critical values of the χ2-distribution computed by the MATLAB
function chi2inv(1− α,ν) for significance level α and degrees of freedom ν

ν α=0.999 0.995 0.99 0.975 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.001

1 0.000 0.000 0.000 0.001 0.004 0.016 0.102 0.455 1.323 2.706 3.841 5.024 6.635 7.879 10.828

2 0.002 0.010 0.020 0.051 0.103 0.211 0.575 1.386 2.773 4.605 5.991 7.378 9.210 10.597 13.816

3 0.024 0.072 0.115 0.216 0.352 0.584 1.213 2.366 4.108 6.251 7.815 9.348 11.345 12.838 16.266

4 0.091 0.207 0.297 0.484 0.711 1.064 1.923 3.357 5.385 7.779 9.488 11.143 13.277 14.860 18.467

5 0.210 0.412 0.554 0.831 1.145 1.610 2.675 4.351 6.626 9.236 11.070 12.833 15.086 16.750 20.515

6 0.381 0.676 0.872 1.237 1.635 2.204 3.455 5.348 7.841 10.645 12.592 14.449 16.812 18.548 22.458

7 0.598 0.989 1.239 1.690 2.167 2.833 4.255 6.346 9.037 12.017 14.067 16.013 18.475 20.278 24.322

8 0.857 1.344 1.646 2.180 2.733 3.490 5.071 7.344 10.219 13.362 15.507 17.535 20.090 21.955 26.124

9 1.152 1.735 2.088 2.700 3.325 4.168 5.899 8.343 11.389 14.684 16.919 19.023 21.666 23.589 27.877

10 1.479 2.156 2.558 3.247 3.940 4.865 6.737 9.342 12.549 15.987 18.307 20.483 23.209 25.188 29.588

11 1.834 2.603 3.053 3.816 4.575 5.578 7.584 10.341 13.701 17.275 19.675 21.920 24.725 26.757 31.264

12 2.214 3.074 3.571 4.404 5.226 6.304 8.438 11.340 14.845 18.549 21.026 23.337 26.217 28.300 32.909

13 2.617 3.565 4.107 5.009 5.892 7.042 9.299 12.340 15.984 19.812 22.362 24.736 27.688 29.819 34.528

14 3.041 4.075 4.660 5.629 6.571 7.790 10.165 13.339 17.117 21.064 23.685 26.119 29.141 31.319 36.123

15 3.483 4.601 5.229 6.262 7.261 8.547 11.037 14.339 18.245 22.307 24.996 27.488 30.578 32.801 37.697

16 3.942 5.142 5.812 6.908 7.962 9.312 11.912 15.338 19.369 23.542 26.296 28.845 32.000 34.267 39.252

17 4.416 5.697 6.408 7.564 8.672 10.085 12.792 16.338 20.489 24.769 27.587 30.191 33.409 35.718 40.790

18 4.905 6.265 7.015 8.231 9.390 10.865 13.675 17.338 21.605 25.989 28.869 31.526 34.805 37.156 42.312

19 5.407 6.844 7.633 8.907 10.117 11.651 14.562 18.338 22.718 27.204 30.144 32.852 36.191 38.582 43.820

20 5.921 7.434 8.260 9.591 10.851 12.443 15.452 19.337 23.828 28.412 31.410 34.170 37.566 39.997 45.315

21 6.447 8.034 8.897 10.283 11.591 13.240 16.344 20.337 24.935 29.615 32.671 35.479 38.932 41.401 46.797

22 6.983 8.643 9.542 10.982 12.338 14.041 17.240 21.337 26.039 30.813 33.924 36.781 40.289 42.796 48.268

23 7.529 9.260 10.196 11.689 13.091 14.848 18.137 22.337 27.141 32.007 35.172 38.076 41.638 44.181 49.728

24 8.085 9.886 10.856 12.401 13.848 15.659 19.037 23.337 28.241 33.196 36.415 39.364 42.980 45.559 51.179

25 8.649 10.520 11.524 13.120 14.611 16.473 19.939 24.337 29.339 34.382 37.652 40.646 44.314 46.928 52.620

26 9.222 11.160 12.198 13.844 15.379 17.292 20.843 25.336 30.435 35.563 38.885 41.923 45.642 48.290 54.052

27 9.803 11.808 12.879 14.573 16.151 18.114 21.749 26.336 31.528 36.741 40.113 43.195 46.963 49.645 55.476

28 10.391 12.461 13.565 15.308 16.928 18.939 22.657 27.336 32.620 37.916 41.337 44.461 48.278 50.993 56.892

29 10.986 13.121 14.256 16.047 17.708 19.768 23.567 28.336 33.711 39.087 42.557 45.722 49.588 52.336 58.301

30 11.588 13.787 14.953 16.791 18.493 20.599 24.478 29.336 34.800 40.256 43.773 46.979 50.892 53.672 59.703

31 12.196 14.458 15.655 17.539 19.281 21.434 25.390 30.336 35.887 41.422 44.985 48.232 52.191 55.003 61.098

32 12.811 15.134 16.362 18.291 20.072 22.271 26.304 31.336 36.973 42.585 46.194 49.480 53.486 56.328 62.487

33 13.431 15.815 17.074 19.047 20.867 23.110 27.219 32.336 38.058 43.745 47.400 50.725 54.776 57.648 63.870

34 14.057 16.501 17.789 19.806 21.664 23.952 28.136 33.336 39.141 44.903 48.602 51.966 56.061 58.964 65.247

35 14.688 17.192 18.509 20.569 22.465 24.797 29.054 34.336 40.223 46.059 49.802 53.203 57.342 60.275 66.619

36 15.324 17.887 19.233 21.336 23.269 25.643 29.973 35.336 41.304 47.212 50.998 54.437 58.619 61.581 67.985

37 15.965 18.586 19.960 22.106 24.075 26.492 30.893 36.336 42.383 48.363 52.192 55.668 59.893 62.883 69.346

38 16.611 19.289 20.691 22.878 24.884 27.343 31.815 37.335 43.462 49.513 53.384 56.896 61.162 64.181 70.703

39 17.262 19.996 21.426 23.654 25.695 28.196 32.737 38.335 44.539 50.660 54.572 58.120 62.428 65.476 72.055

40 17.916 20.707 22.164 24.433 26.509 29.051 33.660 39.335 45.616 51.805 55.758 59.342 63.691 66.766 73.402

41 18.575 21.421 22.906 25.215 27.326 29.907 34.585 40.335 46.692 52.949 56.942 60.561 64.950 68.053 74.745

42 19.239 22.138 23.650 25.999 28.144 30.765 35.510 41.335 47.766 54.090 58.124 61.777 66.206 69.336 76.084

43 19.906 22.859 24.398 26.785 28.965 31.625 36.436 42.335 48.840 55.230 59.304 62.990 67.459 70.616 77.419

44 20.576 23.584 25.148 27.575 29.787 32.487 37.363 43.335 49.913 56.369 60.481 64.201 68.710 71.893 78.750

45 21.251 24.311 25.901 28.366 30.612 33.350 38.291 44.335 50.985 57.505 61.656 65.410 69.957 73.166 80.077

46 21.929 25.041 26.657 29.160 31.439 34.215 39.220 45.335 52.056 58.641 62.830 66.617 71.201 74.437 81.400

47 22.610 25.775 27.416 29.956 32.268 35.081 40.149 46.335 53.127 59.774 64.001 67.821 72.443 75.704 82.720
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48 23.295 26.511 28.177 30.755 33.098 35.949 41.079 47.335 54.196 60.907 65.171 69.023 73.683 76.969 84.037

49 23.983 27.249 28.941 31.555 33.930 36.818 42.010 48.335 55.265 62.038 66.339 70.222 74.919 78.231 85.351

50 24.674 27.991 29.707 32.357 34.764 37.689 42.942 49.335 56.334 63.167 67.505 71.420 76.154 79.490 86.661

60 31.738 35.534 37.485 40.482 43.188 46.459 52.294 59.335 66.981 74.397 79.082 83.298 88.379 91.952 99.607

70 39.036 43.275 45.442 48.758 51.739 55.329 61.698 69.334 77.577 85.527 90.531 95.023 100.43 104.22 112.32

80 46.520 51.172 53.540 57.153 60.391 64.278 71.145 79.334 88.130 96.578 101.88 106.63 112.33 116.32 124.84

90 54.155 59.196 61.754 65.647 69.126 73.291 80.625 89.334 98.650 107.57 113.15 118.14 124.12 128.30 137.21

100 61.918 67.328 70.065 74.222 77.929 82.358 90.133 99.334 109.14 118.50 124.34 129.56 135.81 140.17 149.45
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C.4 Critical Values of the F -Distribution

The tables below list critical values of the F -distribution computed by the MATLAB function
finv(1− α,r1,r2) for level of significance α and degrees of freedom r1 = {1, 2, 3} and r2, where
α(2) pertains to two tails and α(1) pertains to a single tail. The critical values for∞ were generated
by finv(1− α,r1,1.0e6).

Table C.4: Critical values of the F -distribution with numerator degrees of
freedom r1 = 1

α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
1 5.828 39.86 161.4 647.8 4052. 16210. 64840 405400. 1621000.

2 2.571 8.526 18.51 38.51 98.50 198.5 398.5 998.5 1998.

3 2.024 5.538 10.13 17.44 34.12 55.55 89.58 167.0 266.5

4 1.807 4.545 7.709 12.22 21.20 31.33 45.67 74.14 106.2

5 1.692 4.060 6.608 10.01 16.26 22.78 31.41 47.18 63.61

6 1.621 3.776 5.987 8.813 13.75 18.63 24.81 35.51 46.08

7 1.573 3.589 5.591 8.073 12.25 16.24 21.11 29.25 36.99

8 1.538 3.458 5.318 7.571 11.26 14.69 18.78 25.41 31.56

9 1.512 3.360 5.117 7.209 10.56 13.61 17.19 22.86 27.99

10 1.491 3.285 4.965 6.937 10.04 12.83 16.04 21.04 25.49

11 1.475 3.225 4.844 6.724 9.646 12.23 15.17 19.69 23.65

12 1.461 3.177 4.747 6.554 9.330 11.75 14.49 18.64 22.24

13 1.450 3.136 4.667 6.414 9.074 11.37 13.95 17.82 21.14

14 1.440 3.102 4.600 6.298 8.862 11.06 13.50 17.14 20.24

15 1.432 3.073 4.543 6.200 8.683 10.80 13.13 16.59 19.51

16 1.425 3.048 4.494 6.115 8.531 10.58 12.82 16.12 18.89

17 1.419 3.026 4.451 6.042 8.400 10.38 12.55 15.72 18.37

18 1.413 3.007 4.414 5.978 8.285 10.22 12.32 15.38 17.92

19 1.408 2.990 4.381 5.922 8.185 10.07 12.12 15.08 17.53

20 1.404 2.975 4.351 5.871 8.096 9.944 11.94 14.82 17.19

21 1.400 2.961 4.325 5.827 8.017 9.830 11.78 14.59 16.89

22 1.396 2.949 4.301 5.786 7.945 9.727 11.64 14.38 16.62

23 1.393 2.937 4.279 5.750 7.881 9.635 11.51 14.20 16.38

24 1.390 2.927 4.260 5.717 7.823 9.551 11.40 14.03 16.17

25 1.387 2.918 4.242 5.686 7.770 9.475 11.29 13.88 15.97

26 1.384 2.909 4.225 5.659 7.721 9.406 11.20 13.74 15.79

27 1.382 2.901 4.210 5.633 7.677 9.342 11.11 13.61 15.63

28 1.380 2.894 4.196 5.610 7.636 9.284 11.03 13.50 15.48

29 1.378 2.887 4.183 5.588 7.598 9.230 10.96 13.39 15.35

30 1.376 2.881 4.171 5.568 7.562 9.180 10.89 13.29 15.22

35 1.368 2.855 4.121 5.485 7.419 8.976 10.61 12.90 14.72

40 1.363 2.835 4.085 5.424 7.314 8.828 10.41 12.61 14.35

45 1.358 2.820 4.057 5.377 7.234 8.715 10.26 12.39 14.08

50 1.355 2.809 4.034 5.340 7.171 8.626 10.14 12.22 13.86

60 1.349 2.791 4.001 5.286 7.077 8.495 9.962 11.97 13.55

70 1.346 2.779 3.978 5.247 7.011 8.403 9.838 11.80 13.33

80 1.343 2.769 3.960 5.218 6.963 8.335 9.747 11.67 13.17

90 1.341 2.762 3.947 5.196 6.925 8.282 9.677 11.57 13.05

100 1.339 2.756 3.936 5.179 6.895 8.241 9.621 11.50 12.95

120 1.336 2.748 3.920 5.152 6.851 8.179 9.539 11.38 12.80
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α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
140 1.334 2.742 3.909 5.134 6.819 8.135 9.480 11.30 12.70

160 1.333 2.737 3.900 5.120 6.796 8.102 9.437 11.24 12.63

180 1.332 2.734 3.894 5.109 6.778 8.077 9.403 11.19 12.57

200 1.331 2.731 3.888 5.100 6.763 8.057 9.377 11.15 12.52

300 1.328 2.722 3.873 5.075 6.720 7.997 9.297 11.04 12.38

500 1.326 2.716 3.860 5.054 6.686 7.950 9.234 10.96 12.28

∞ 1.323 2.706 3.841 5.024 6.635 7.879 9.141 10.83 12.12

Continued from previous page, r1 = 1

Table C.5: Critical values of the F -distribution with numerator degrees of
freedom r1 = 2

α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
1 7.500 49.50 199.5 799.5 5000. 20000. 80000. 500000. 2000000.

2 3.000 9.000 19.00 39.00 99.00 199.0 399.0 999.0 1999.0

3 2.280 5.462 9.552 16.04 30.82 49.80 79.93 148.5 236.6

4 2.000 4.325 6.944 10.65 18.00 26.28 38.00 61.25 87.44

5 1.853 3.780 5.786 8.434 13.27 18.31 24.96 37.12 49.78

6 1.762 3.463 5.143 7.260 10.92 14.54 19.10 27.00 34.80

7 1.701 3.257 4.737 6.542 9.547 12.40 15.89 21.69 27.21

8 1.657 3.113 4.459 6.059 8.649 11.04 13.89 18.49 22.75

9 1.624 3.006 4.256 5.715 8.022 10.11 12.54 16.39 19.87

10 1.598 2.924 4.103 5.456 7.559 9.427 11.57 14.91 17.87

11 1.577 2.860 3.982 5.256 7.206 8.912 10.85 13.81 16.41

12 1.560 2.807 3.885 5.096 6.927 8.510 10.29 12.97 15.30

13 1.545 2.763 3.806 4.965 6.701 8.186 9.839 12.31 14.43

14 1.533 2.726 3.739 4.857 6.515 7.922 9.475 11.78 13.73

15 1.523 2.695 3.682 4.765 6.359 7.701 9.173 11.34 13.16

16 1.514 2.668 3.634 4.687 6.226 7.514 8.918 10.97 12.69

17 1.506 2.645 3.592 4.619 6.112 7.354 8.701 10.66 12.29

18 1.499 2.624 3.555 4.560 6.013 7.215 8.513 10.39 11.94

19 1.493 2.606 3.522 4.508 5.926 7.093 8.349 10.16 11.64

20 1.487 2.589 3.493 4.461 5.849 6.986 8.206 9.953 11.38

21 1.482 2.575 3.467 4.420 5.780 6.891 8.078 9.772 11.16

22 1.477 2.561 3.443 4.383 5.719 6.806 7.965 9.612 10.95

23 1.473 2.549 3.422 4.349 5.664 6.730 7.863 9.469 10.77

24 1.470 2.538 3.403 4.319 5.614 6.661 7.771 9.339 10.61

25 1.466 2.528 3.385 4.291 5.568 6.598 7.687 9.223 10.46

26 1.463 2.519 3.369 4.265 5.526 6.541 7.611 9.116 10.33

27 1.460 2.511 3.354 4.242 5.488 6.489 7.542 9.019 10.21

28 1.457 2.503 3.340 4.221 5.453 6.440 7.478 8.931 10.09

29 1.455 2.495 3.328 4.201 5.420 6.396 7.419 8.849 9.992

30 1.452 2.489 3.316 4.182 5.390 6.355 7.365 8.773 9.898

35 1.443 2.461 3.267 4.106 5.268 6.188 7.145 8.470 9.519

40 1.435 2.440 3.232 4.051 5.179 6.066 6.986 8.251 9.247

45 1.430 2.425 3.204 4.009 5.110 5.974 6.865 8.086 9.042

50 1.425 2.412 3.183 3.975 5.057 5.902 6.770 7.956 8.883

60 1.419 2.393 3.150 3.925 4.977 5.795 6.632 7.768 8.651
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α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
70 1.414 2.380 3.128 3.890 4.922 5.720 6.535 7.637 8.489

80 1.411 2.370 3.111 3.864 4.881 5.665 6.463 7.540 8.371

90 1.408 2.363 3.098 3.844 4.849 5.623 6.409 7.466 8.281

100 1.406 2.356 3.087 3.828 4.824 5.589 6.365 7.408 8.209

120 1.402 2.347 3.072 3.805 4.787 5.539 6.301 7.321 8.103

140 1.400 2.341 3.061 3.788 4.760 5.504 6.255 7.260 8.029

160 1.398 2.336 3.053 3.775 4.740 5.478 6.222 7.215 7.974

180 1.397 2.332 3.046 3.766 4.725 5.457 6.195 7.180 7.931

200 1.396 2.329 3.041 3.758 4.713 5.441 6.175 7.152 7.897

300 1.393 2.320 3.026 3.735 4.677 5.393 6.113 7.069 7.797

500 1.390 2.313 3.014 3.716 4.648 5.355 6.064 7.004 7.718

∞ 1.386 2.303 2.996 3.689 4.605 5.298 5.992 6.908 7.601

Continued from previous page, r1 = 2

Table C.6: Critical values of the F -distribution with numerator degrees of
freedom r1 = 3

α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
1 8.200 53.59 215.7 864.2 5403.0 21610. 86460. 540400.2 2162000.

2 3.153 9.162 19.16 39.17 99.17 199.2 399.2 999.2 1999.

3 2.356 5.391 9.277 15.44 29.46 47.47 76.06 141.1 224.7

4 2.047 4.191 6.591 9.979 16.69 24.26 34.96 56.18 80.09

5 1.884 3.619 5.409 7.764 12.06 16.53 22.43 33.20 44.42

6 1.784 3.289 4.757 6.599 9.780 12.92 16.87 23.70 30.45

7 1.717 3.074 4.347 5.890 8.451 10.88 13.84 18.77 23.46

8 1.668 2.924 4.066 5.416 7.591 9.596 11.98 15.83 19.39

9 1.632 2.813 3.863 5.078 6.992 8.717 10.73 13.90 16.77

10 1.603 2.728 3.708 4.826 6.552 8.081 9.833 12.55 14.97

11 1.580 2.660 3.587 4.630 6.217 7.600 9.167 11.56 13.65

12 1.561 2.606 3.490 4.474 5.953 7.226 8.652 10.80 12.66

13 1.545 2.560 3.411 4.347 5.739 6.926 8.242 10.21 11.89

14 1.532 2.522 3.344 4.242 5.564 6.680 7.910 9.729 11.27

15 1.520 2.490 3.287 4.153 5.417 6.476 7.634 9.335 10.76

16 1.510 2.462 3.239 4.077 5.292 6.303 7.403 9.006 10.34

17 1.502 2.437 3.197 4.011 5.185 6.156 7.205 8.727 9.989

18 1.494 2.416 3.160 3.954 5.092 6.028 7.035 8.487 9.686

19 1.487 2.397 3.127 3.903 5.010 5.916 6.887 8.280 9.424

20 1.481 2.380 3.098 3.859 4.938 5.818 6.757 8.098 9.196

21 1.475 2.365 3.072 3.819 4.874 5.730 6.642 7.938 8.994

22 1.470 2.351 3.049 3.783 4.817 5.652 6.539 7.796 8.816

23 1.466 2.339 3.028 3.750 4.765 5.582 6.447 7.669 8.657

24 1.462 2.327 3.009 3.721 4.718 5.519 6.364 7.554 8.515

25 1.458 2.317 2.991 3.694 4.675 5.462 6.289 7.451 8.386

26 1.454 2.307 2.975 3.670 4.637 5.409 6.220 7.357 8.269

27 1.451 2.299 2.960 3.647 4.601 5.361 6.158 7.272 8.163

28 1.448 2.291 2.947 3.626 4.568 5.317 6.100 7.193 8.066

29 1.445 2.283 2.934 3.607 4.538 5.276 6.048 7.121 7.977

30 1.443 2.276 2.922 3.589 4.510 5.239 5.999 7.054 7.894

Continued on next page
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α(2): 0.5000 0.2000 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010

α(1): 0.2500 0.1000 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010 0.0005

r2
35 1.432 2.247 2.874 3.517 4.396 5.086 5.802 6.787 7.565

40 1.424 2.226 2.839 3.463 4.313 4.976 5.659 6.595 7.329

45 1.418 2.210 2.812 3.422 4.249 4.892 5.551 6.450 7.151

50 1.413 2.197 2.790 3.390 4.199 4.826 5.466 6.336 7.013

60 1.405 2.177 2.758 3.343 4.126 4.729 5.343 6.171 6.812

70 1.400 2.164 2.736 3.309 4.074 4.661 5.256 6.057 6.673

80 1.396 2.154 2.719 3.284 4.036 4.611 5.193 5.972 6.571

90 1.393 2.146 2.706 3.265 4.007 4.573 5.144 5.908 6.493

100 1.391 2.139 2.696 3.250 3.984 4.542 5.105 5.857 6.432

120 1.387 2.130 2.680 3.227 3.949 4.497 5.048 5.781 6.341

140 1.385 2.123 2.669 3.211 3.925 4.465 5.008 5.728 6.277

160 1.383 2.118 2.661 3.199 3.906 4.441 4.977 5.689 6.230

180 1.381 2.114 2.655 3.189 3.892 4.423 4.954 5.658 6.193

200 1.380 2.111 2.650 3.182 3.881 4.408 4.936 5.634 6.164

300 1.377 2.102 2.635 3.160 3.848 4.365 4.881 5.562 6.078

500 1.374 2.095 2.623 3.142 3.821 4.330 4.838 5.506 6.010

∞ 1.369 2.084 2.605 3.116 3.782 4.279 4.773 5.422 5.910

Continued from previous page, r1 = 3



Appendix D
Answers to Practice Problems

The following list contains partial answers to selected practice problems.

Chapter 2 TODO

Chapter 3

3.a; 3.c ξ̂ = 110.1176 m; σ̂2
0 = 2.205883.

4.a; 4.b â = 0.00252, b̂ = 0.00288, ĉ = 9.98620, σ̂2
0 = (1.987)2; â = −6.1× 10−5,

b̂ = −5.6× 10−5, ĉ = 9.9× 10−6, d̂ = 2.52× 10−3, ê = 2.88× 10−3, f̂ =
10.010, σ̂2

0 = 1.4072.

5.a; 5.d P̂x = 72.997 m, P̂y = 92.009 m; σ̂2
0 = (0.690)2.

6.b; 6.b P̂x = 1065.201 m, P̂y = 825.198 m; σ̂2
0 = (1.758)2.

7.a; 7.b ξ̂1 = −0.5396 (slope), ξ̂2 = 5.7612 (y-intercept); σ̂2
0 = (0.316)2.

8.a ξ̂1 = 168.149 mm, ξ̂2 = 160.300 mm, ω̂1 = 1.000011, ω̂2 = 1.000021, β̂ =

00◦12′22.0′′, β̂ + ε = 00◦13′08.5′′.

9.b; 9.c ĤA = 1679.509 ft, ĤB = 1804.043 ft, ĤC = 2021.064 ft, ĤE = 1507.075 ft,
ĤF = 1668.148 ft, H0

D = 1928.277 ft; σ̂2
0 = (0.081)2.

9.e ĤB = 1803.966 ft, ĤC = 2020.986 ft, ĤD = 1928.200 ft, ĤE = 1506.998 ft,
ĤF = 1668.071 ft, H0

A = 1679.432 ft, σ̂2
0 = (0.081)2.
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Chapter 4

3. ẽ = [8.1, 8.8,−5.3, 3.4,−8.8,−9.4]T arcsec, σ̂2
0 = (0.879453)2,

Q =


200 0 0 0 0 0
0 200 −100 0 0 0

0 −100 200 0 0 0

0 0 0 200 −100 0

0 0 0 −100 200 0

0 0 0 0 0 200

 arcsec2 (to be converted).

4. µ̂y4 = 500.214 m± 5 mm.

5. σ̂2
0 = (1.1321)2, Q =

 200 −100 0 0 0

−100 200 0 0 0

0 0 200 0 0
0 0 0 200 0
0 0 0 0 200

 arcsec2 (to be converted).

Chapter 5

5.a; 5.b r = 3, σ̂2
0 = (0.015)2; r = 4, σ̂2

0 = (0.013)2.

6.a; 5.b r = 3, P̂1 = (589.979, 374.998) m.

7. â = −0.00735466, Ω = 7.57541, R = 0.162439.

Chapter 6

3.a; 3.b r = 4, σ̂2
0 = (0.08063)2; r = 5, σ̂2

0 = (0.07305)2, T = 0.104487.

4. r = 3, σ̂2
0 = (4.599140)2, T = 33.07538.

5. â = −0.00729396, Ω = 7.57541, R = 0.0234899.

6.a ξ̂T =
[
68.8534 66.9512 68.1542 66.0026 67.9917 68.5199 67.6955

]T
m,

σ̂2
0 = (1.00036)2.

Chapter 7

1.a See answers to Problems 9.b and 9.c of Chapter 3.

1.b
ˆ̂
ξ = [1679.497, 1804.053, 2021.126, 1507.062, 1668.156, 1928.277]T ft,
ˆ̂σ2

0 = (0.08197)2 = 0.006719.

2. Estimated height in feet: ĤA = 1679.493, ĤB = 1804.072, ĤC = 2021.150,
ĤE = 1507.068, ĤF = 1668.159, ĤG = 1858.255.
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Chapter 8

1.b; 1.c ξ̂ = [3.04324, 0.74568, 4.10586]T ; σ̂2
0 = (0.243289)2 = 0.059190.

2.b; 2.c ξ̂ = [19.700 975◦, 6.6284, 2.8227, 2.6177, 3.6400]T ; σ̂2
0 = (0.263559)2 =

0.069463.

3.a; 3.b ξ̂ = [1.73586328, 0.098057768, −0.0072771964]T ; σ̂2
0 = (1.830478)2 =

3.350650.
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